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Abstract Many explanatory item response theory (IRT) models have been devel-
oped since Fischer’s (Acta Psychologica 37:359–374, 1973) linear logistic testmodel
was published. However, despite their applicability to typical test data, actual impact
on test development and validation has been limited. The purpose of this chapter is
to explicate the importance of explanatory IRT models in the context of a frame-
work that interrelates the five aspects of validity (Embretson in Educ Meas Issues
Pract 35, 6–22, 2016). In this framework, the response processes aspect of validity
impacts other aspects. Studies on a fluid intelligence test are presented to illustrate
the relevancy of explanatory IRT models to validity, as well as to test development.
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1 Introduction

Since Fischer (1973) introduced the linear logistic test model (LLTM), many addi-
tional explanatory IRT models have been developed to estimate the impact of item
complexity on item parameters. These models include the linear partial credit model
(LPCM; Fischer & Ponocny, 1995), the linear logistic test model with response error
term (LLTM-R; Janssen, Schepers, & Peres, 2004), the constrained two parame-
ter logistic model (2PL-Constrained; Embretson, 1999) and the Rasch facet model
(Linacre, 1989). Explanatory IRT models also can include covariates for both items
and persons, as well as within-person interactions (De Boeck & Wilson, 2004).
Several models can detect strategy differences between persons, such as mixture
distribution models (Rost, 1990; Rost & von Davier, 1995) and mixed models that
include response time to detect strategies (Molenaar & De Boeck, 2018). Further,
hierarchicalmodels can be used in an explanatory fashion, such as item familymodels
(Glas, van der Linden &Geerlings, 2010) and a criterion-referenced model (Janssen,
Tuerlinckx,Meulder&DeBoeck, 2000).Multidimensional IRTmodels with defined
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dimensions, such as the bifactor MIRT (Reise, 2012) or the multicomponent latent
trait model (MLTM; Embretson, 1984, 1997) also can be used as explanatory IRT
models. The Handbook of Item Response Theory (van der Linden, 2016) includes
several explanatory models. Janssen (2016) notes that explanatory IRT models have
been applied to many tests, ranging from mathematics, reading and reasoning to
personality and emotions.

However, despite the existence of these models for several decades and their
applicability to typical test data, actual impact on test development and validation has
been limited. The purpose of this chapter is to highlight the importance of explanatory
IRT models in test development. Studies on the development of a fluid intelligence
test are presented to illustrate the use of explanatory IRT models in test design and
validation. Prior to presenting the studies, background on the validity concept and a
framework that unifies the various aspects are presented.

1.1 Test Validity Framework

In the current Standards for Educational and Psychological Testing (2014), validity
is conceptualized as a single type (construct validity) with five aspects. First, the
content aspect of construct validity is the representation of skills, knowledge and
attributes on the test. It is supported by specified test content, such as blueprints
that define item skills, knowledge or attribute representation, as well as specifica-
tions of test administration and scoring conditions. Second, the response processes
aspect of validity consists of evidence on the cognitive activities engaged in by the
examinees. These cognitive activities are assumed to be essential to the meaning of
the construct measured by a test. The Standards for Educational and Psychological
Testing describes several direct methods to observe examinees’ processing on test
items, such as eye-trackers movements, videos and concurrent and retrospective ver-
bal reports/observations, as well as response times to items or the whole test. Third,
the internal structure aspect of construct validity includes psychometric properties
of a test as relevant to the intended construct. Thus, internal consistency reliability,
test dimensionality and differential item functioning (DIF) are appropriate types of
evidence. Item selection, as part of test design, has a direct impact on internal struc-
ture. Fourth, the relationship to other variables aspect concerns how the test relates
to other traits and criteria, as well as to examinee background variables (i.e., demo-
graphics, prior experience, etc.). Evidence relevant to this aspect should be consistent
with the goals of measurement. Fifth, the consequences aspect of validity concerns
how test use has adverse impact on different groups of examinees. While the test
may not have significant DIF, studies may nonetheless show that the test has adverse
impact if used for selection or placement. Adverse impact is particularly detrimental
to test quality if based on construct-irrelevant aspects of performance.

The various aspects of validity can be conceptualized as a unified sys-
tem with causal interrelationships (Embretson, 2017). Figure 1 organizes the
five aspects into two general areas, internal and external, which concern test
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Fig. 1 Unified framework for validity

meaning and test significance, respectively. Thus, the content, response processes
and internal structure aspects are relevant to defining the meaning of the construct
while the relationships to other variables and consequences aspects define the sig-
nificance of the test. Notice that the content and response processes aspect drive
the other aspects causally in this framework. Importantly, these two aspects can be
manipulated in test development. That is, item design, test specifications and testing
conditions can impact test meaning. Thus, understanding the relationship between
test content and response processes can be crucial in test development to measure
the intended construct.

Unfortunately, the methods for understanding response processes described in
the Standards have substantial limitations. Both eye-tracker data and talk aloud data
are typically expensive to collect and analyze as well as impacting the nature of
processing for examinees. Further, unless elaborated in the context of a model, the
utility of response time data may be limited to identifying guessing or inappropriate
responses. Importantly, explanatory IRTmodeling can be applied to standard test data
with no impact on examinees responses. Further, such models permit hypotheses to
be tested about the nature of response processes through relationships of item content
features and item responses.

2 Explanatory IRT Models in Item Design: Examples
from ART

The Abstract Reasoning Test (ART) was developed in the context of research on
response processes. ART is a test of fluid intelligence used to predict learning and
performance in a variety of settings (Embretson, 2017). ART consists of matrix
completion items as shown in Fig. 2. In these items, the examinee must identify the
figure that completes the matrix based on the relationships between the figures across
the rows and down the columns.
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Fig. 2 Example of an ART item

2.1 Theory of Response Processes on Matrix Problems

Consistent with the Carpenter, Just and Shell’s (1990) theory, it was hypothesized
that examinees process the various elements individually in the matrix entries to
find relationships. According to the theory, processing complexity is driven by the
number of unique objects (as counted in the first entry) and memory load in finding
relationships. Memory load depends on both the number and types of relationships,
which are hypothesized to be ordered by complexity as follows: 1 = Constant in
a Row (or column), the same figure appears in a row; 2 = Pairwise Progressions,
figures change in the same way in each row; 3 = Figure Addition/Subtraction, the
third column results from overlaying the first and second columns and subtracting
common figures; 4 = Distribution of Three, a figure appears once and only once
in each row and column and 5 = Distribution of Two, one figure is systematically
missing in each row and column. Figure 2 illustrates relationships #1, #4 and #5
(see key on right) and Fig. 4 illustrates relationship #3. Relationship #2 could be
illustrated by a change in object size across rows. Carpenter et al. (1990) postulate
that these relationships are tried sequentially by examinees, such that Constant in a
Row is considered before Pairwise Progressions and so forth. Thus, theMemoryLoad
score is highest for the Distribution of Two relationships. Figure 2 shows numerical
impact on Memory Load for three types of relationships. The difficulty of solving
matrix problems also is hypothesized to depend on perceptual complexity, which
is determined by Distortion, Fusion or Integration of objects in an entry. Figure 2
has none of these sources of perceptual complexity while Fig. 4 illustrates object
integration in the matrix on the right side. Each matrix item can be scored for the
processing and perceptual complexity variables. Item difficulty is postulated to result
from these variables because they drive cognitive complexity.
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2.2 Explanatory Modeling of Response Processes on ART
Matrix Problems

An explanatory modeling of ART item difficulty results from applying LLTM to
item response data, using the scores for matrix problem complexity. LLTM is given
as follows:

P(θ) = exp(θj − ∑
k τkqik + τ0)

1+ exp(θj − ∑
k τkqik + τ0)

(1)

where qik is the score for item i on attribute k, τk is the weight of attribute k in item
difficulty and τ0 is an intercept. Finally, θj is the ability of person j.

LLTM was applied to model item responses for ART items, scored for the two
predictors of processing complexity and the three predictors of perceptual complexity.
For example, a sample of 705 Air Force recruits were administered a form of ART
with 30 items. The delta statistic, which is a likelihood ratio index of fit (Embretson,
1999) similar in magnitude to a multiple correlation, indicated that LLTM had strong
fit to the data (�= .78). Theprocessing complexity variables had the strongest impact,
especially memory load, which supports the theory.

2.3 Impact of Explanatory Modeling on Item Design
for Matrix Problems

These results and the scoring system had direct impact on item and test design for
ART. An automatic item generator was developed for ART items. Abstract structures
were specified to define the objects within each cell of the 3 × 3 display and the
response options. Types of relationships, as described above, specifies the changes
in objects (e.g., circles, arrows, squares, etc.) and/or their properties (e.g., shading,
borders, distortion, size, etc.) across columns and rows. LLTM results on military
samples indicated high predictability of item difficulty by the generating structure (�
= .90) and continued prediction by the five variables defining cognitive complexity
(� = .79).

3 Strategy Modeling in Test Design: Example from ART

Examinee differences in item solving strategies and potential impact on the various
aspects of validity was examined in two studies. In Study 1, ART was adminis-
tered with the original brief instructions. In Study 2, ART was administered with an
expanded version of the instructions with examples of each type of relationship. In
both studies, strategies were examined through mixture modeling.
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3.1 Mixture Modeling to Identify Latent Classes

The mixture Rasch model (Rost & von Davier, 1995) can be applied to identify
classes of examinees that vary in item difficulty ordering, which is postulated to
arise from applying different item solving strategies. The mixture Rasch model is
given as follows:

P(θ) = �gπg
exp(θjg − βig)

1+ exp(θjg − βig)
(2)

where βig is the difficulty of item i in class g, θjg is the ability of person j in class g
and πg is the probability of class g. Classes are identified empirically to maximize
model fit. However, class interpretation can be examined by follow-up explanatory
modeling (e.g., applying LLTM within classes) or by comparing external correlates
of ability.

3.2 Study 1

Method. A form of ART with 30 items was administered to 803 Air Force recruits
who were completing basic training. The ART instructions concerned the nature of
matrix problems as defined by relationships in the row and columns in the 3 × 3
matrices. However, the scope of relationships that could be involvedwas not covered.
ART was administered without time limits. Item parameters were estimated with
the Rasch model and with the mixture Rasch model. In both cases the mean item
parameter was set to zero.

Results from other tests were available on the examinees, including the Armed
Services Vocational Aptitude Battery (ASVAB).

Results. The test had moderate difficulty for the sample based on raw scores
(M = 18.097, SD = 5.784) and latent trait estimates (M = .636, SD = 1.228).
Racial-ethnic comparisons were between groups with N > 50. The latent trait
estimates were significant (F2,743 = 8.722, p < .001, η2 = .023). Standardized
differences of (d = .452) for African Americans and (d = .136) for Hispanics were
observed as compared to Caucasians.

The mixture Rasch model was applied with varying numbers of classes. Table 1
shows thatwhile the log likelihood index (−2lnL) decreased successively fromone to
three classes, the Bayesian Information Criterion (BIC) increased for three classes.
Thus, the two-class solution, with 68.7 and 31.2% of examinees in Class 1 and
Class 2 respectively, was selected for further study. The latent trait means differed
significantly between classes (F1,801 = 439.195, p < .001), with Class 1 (M = 1.143,
SD = .984) scoring higher than Class 2 (M = −.413, SD = .865). Significant racial
ethnic differences were observed between the classes

(
χ2
1,695 = 12.958, p < .001

)

, with 75.0% of Caucasians and 57.3% of African-Americans in Class 1.
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Table 1 Mixture Rasch modeling results

Number of classes Parameters −2lnL BIC

Study 1

1 31 25,472 25,680

2 62 25,146 25,567

3 93 25,044 25,680

Study 2

1 33 13,222 13,423

2 67 13,068 13,477

3 101 13,001 13,616

Table 2 LLTM weights, standard errors and t value by class

Complexity source Class 1 (df = 572, � = .820) Class 2 (df = 229, � = .809)

Weight SE t value Weight SE t value

Unique elements .1922 .0113 16.95* .2681 .0185 14.50*

Memory load .1851 .0049 37.49* .0926 .0077 12.09*

Integration .4543 .0454 10.00* .5502 .0622 8.85*

Distortion .7434 .0654 11.36* −.0121 .1054 −.12

Fusion .3150 .0508 6.20* .0549 .0723 .76

Intercept −4.1809 .1018 −41.08* −2.2618 .1285 −17.61*

*p < .01

LLTM was applied within each class to determine the relative impact of the
sources of cognitive complexity. While the overall prediction, as indicated by the
� statistic (Embretson, 1999) shown on Table 2, was strong for both classes, the
LLTM weights for cognitive complexity differed. Typically, the strongest predictor
is Memory Load; however, the weight for Memory Load was significantly higher in
Class 1. Unique Elements was the strongest predictor in Class 2 and two of three
perceptual complexity variables were not significant.

Item difficulty also was modeled by the sources of memory load from the five
types of relationships. It was found that the number of Figure-Addition relationships
was correlated negatively for Class 1 (r = −.211) and positively for Class 2 (r =
.216). Itemswith Figure-Addition relationships mostly more difficult for Class 2 (see
Fig. 3).

Finally, ART trait estimates were correlated with four factors of ASVAB: Ver-
bal, Quantitative, Perceptual Speed and Technical Information. Although significant
positive correlations were found with all factors except Perceptual Speed for Class
1, no significant correlations with ASVAB factors were found for Class 2.

Discussion. Two classes of examinees, with varying patterns of item difficulty,
were identified on the ART for fluid intelligence. Class 2 was characterized by sub-
stantially lower trait levels and lack of significant correlations with other aptitude
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Fig. 3 Item difficulties by class

measures (i.e., ASVAB factors). Further, item difficultywas less predictable for Class
2 from the memory load associated with ART items. An analysis of the relationship
types that contribute to memory load indicated that items with Figure-Addition rela-
tionships had substantially higher difficulty in Class 2. A possible explanation is that
examinees in this class were unfamiliar with the Figure-Addition relationships and
applied the much harder Distribution of Two relationship. Figure 4 shows examples
of these relationships. Notice that the item on the left requires two Distribution of
Two relationships (i.e., changes in the hourglass and house figures), as well as a Con-
stant in a Row (triangles). The item on the right, however, can be solved by either
three Figure-Addition (colum 3 is the substraction of column 2 from column 1) or
three Distribution of Two relationships.
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Fig. 4 Two ART items varying in distribution of two relationships

3.3 Study 2

The application of themixture Raschmodel in Study 1 identified a class of examinees
with lower scores and different patterns of item difficulty that may be based on
unfamiliarity with the possible types of relationships that can occur in ART. In this
study, instructions were added to demonstrate each type of relationship.

Method. The examinees were 444 police recruits who were enrolled in basic
training in law enforcement. A version of ART with 32 items included extended
instructions in which all types of relationships were presented and illustrated. These
instructions involved approximately eight additional minutes of testing time. For a
sub-sample of examinees, training scores and scores on another test of fluid intelli-
gence were available.

Results. The test was somewhat easy for the sample based on raw scores (M =
21.459, SD= 4.779) and latent trait estimates (M = 1.152, SD= 1.203). As for Study
1, racial-ethnic comparisons were made between groups with N > 50. The latent
trait estimates were significant (F2,406 = 3.099, p = .016, η2 = .015). Compared to
Caucasians, standardized differences of (d = .276) for African Americans and (d =
.075) for Hispanics were observed.

Themixture Raschmodel was applied to determine the number of classes. Table 1
shows that while the log likelihood index (−2lnL) decreased somewhat from one to
two classes, the BIC index increased. Thus, the single class model is the preferred
solution. Finally, for a subsample of 144 recruits, scores for a six-week course in
legal issues for police officers were available. Training scores were correlated more
highly with ART (r = .333, p < .001) than with the Cattell Culture Fair Intelligence
Test (CCF; r = .211, p = .009).

Discussion. A single item-solving strategy is supported for ART when adminis-
tered with extended instructions. That is, a single class was supported with mixture
Rasch modeling. Further, the magnitude of the racial-ethnic differences was also
substantially smaller in this study. Finally, ART correlated more highly with training
than a similar non-verbal intelligence test, which has very short instructions.
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4 Summary

The purpose of this chapter was to illustrate how using explanatory IRT models can
contribute to the test development process and impact validity. The mixture Rasch
model identified two classes of examinees on the ART with different item difficulty
orders. The LLTM indicated strong predictability of item performance from cogni-
tive complexity variables; however, the weights varied by class, supporting strategy
differences. Items involving a certain type of relationship were relatively more dif-
ficult in the lower scoring class. Further, there was an undesirable impact of the
second class on the external relationships aspect of validity; ART did not correlate
with other aptitude tests and racial-ethnic differences were also found. A redesigned
ART, that include extended instructions on types of relationships, had a single class,
supporting common problem-solving strategies. Further, racial ethnic differences
were substantially smaller on the redesigned ART and ART had stronger correla-
tions with achievement than a similar test of fluid intelligence. Thus, two explana-
tory IRT models were used to inform the responses processes aspect of validity for
a fluid intelligence test. The redesigned test to optimize responses processes had
smaller racial-ethnic differences than the previous ART and more desirable external
relationships than the CCF, a similar test of fluid intelligence.
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