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Preface

This volume represents presentations given at the 83rd annual meeting of the
Psychometric Society, organized by Columbia University and held in New York,
USA, during July 9–13, 2018. The meeting attracted 505 participants, and 286
papers were presented, of which 81 were part of a symposium. There were 106
poster presentations, 3 pre-conference workshops, 4 keynote presentations, 3
invited presentations, 2 career award presentations, 3 state-of-the-art presentations,
1 dissertation award winner, and 18 symposia.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society to allow presenters to
make their ideas available quickly to the wider research community, while still
undergoing a thorough review process. The first six volumes of the meetings in
Lincoln, Arnhem, Madison, Beijing, Asheville, and Zurich were received suc-
cessfully, and we expect a successful reception of these proceedings too.

We asked the authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 38 state-of-the-art chapters addressing a diverse set of psychometric
topics, including item response theory, multistage adaptive testing, and cognitive
diagnostic models.

Umeå, Sweden Marie Wiberg
Urbana-Champaign, IL, USA Steven Culpepper
Leuven, Belgium Rianne Janssen
Santiago, Chile Jorge González
Amsterdam, The Netherlands Dylan Molenaar
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Explanatory Item Response Theory
Models: Impact on Validity and Test
Development?

Susan Embretson

Abstract Many explanatory item response theory (IRT) models have been devel-
oped since Fischer’s (Acta Psychologica 37:359–374, 1973) linear logistic testmodel
was published. However, despite their applicability to typical test data, actual impact
on test development and validation has been limited. The purpose of this chapter is
to explicate the importance of explanatory IRT models in the context of a frame-
work that interrelates the five aspects of validity (Embretson in Educ Meas Issues
Pract 35, 6–22, 2016). In this framework, the response processes aspect of validity
impacts other aspects. Studies on a fluid intelligence test are presented to illustrate
the relevancy of explanatory IRT models to validity, as well as to test development.

Keywords Item response theory · Explanatory models · Validity

1 Introduction

Since Fischer (1973) introduced the linear logistic test model (LLTM), many addi-
tional explanatory IRT models have been developed to estimate the impact of item
complexity on item parameters. These models include the linear partial credit model
(LPCM; Fischer & Ponocny, 1995), the linear logistic test model with response error
term (LLTM-R; Janssen, Schepers, & Peres, 2004), the constrained two parame-
ter logistic model (2PL-Constrained; Embretson, 1999) and the Rasch facet model
(Linacre, 1989). Explanatory IRT models also can include covariates for both items
and persons, as well as within-person interactions (De Boeck & Wilson, 2004).
Several models can detect strategy differences between persons, such as mixture
distribution models (Rost, 1990; Rost & von Davier, 1995) and mixed models that
include response time to detect strategies (Molenaar & De Boeck, 2018). Further,
hierarchicalmodels can be used in an explanatory fashion, such as item familymodels
(Glas, van der Linden &Geerlings, 2010) and a criterion-referenced model (Janssen,
Tuerlinckx,Meulder&DeBoeck, 2000).Multidimensional IRTmodels with defined
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2 S. Embretson

dimensions, such as the bifactor MIRT (Reise, 2012) or the multicomponent latent
trait model (MLTM; Embretson, 1984, 1997) also can be used as explanatory IRT
models. The Handbook of Item Response Theory (van der Linden, 2016) includes
several explanatory models. Janssen (2016) notes that explanatory IRT models have
been applied to many tests, ranging from mathematics, reading and reasoning to
personality and emotions.

However, despite the existence of these models for several decades and their
applicability to typical test data, actual impact on test development and validation has
been limited. The purpose of this chapter is to highlight the importance of explanatory
IRT models in test development. Studies on the development of a fluid intelligence
test are presented to illustrate the use of explanatory IRT models in test design and
validation. Prior to presenting the studies, background on the validity concept and a
framework that unifies the various aspects are presented.

1.1 Test Validity Framework

In the current Standards for Educational and Psychological Testing (2014), validity
is conceptualized as a single type (construct validity) with five aspects. First, the
content aspect of construct validity is the representation of skills, knowledge and
attributes on the test. It is supported by specified test content, such as blueprints
that define item skills, knowledge or attribute representation, as well as specifica-
tions of test administration and scoring conditions. Second, the response processes
aspect of validity consists of evidence on the cognitive activities engaged in by the
examinees. These cognitive activities are assumed to be essential to the meaning of
the construct measured by a test. The Standards for Educational and Psychological
Testing describes several direct methods to observe examinees’ processing on test
items, such as eye-trackers movements, videos and concurrent and retrospective ver-
bal reports/observations, as well as response times to items or the whole test. Third,
the internal structure aspect of construct validity includes psychometric properties
of a test as relevant to the intended construct. Thus, internal consistency reliability,
test dimensionality and differential item functioning (DIF) are appropriate types of
evidence. Item selection, as part of test design, has a direct impact on internal struc-
ture. Fourth, the relationship to other variables aspect concerns how the test relates
to other traits and criteria, as well as to examinee background variables (i.e., demo-
graphics, prior experience, etc.). Evidence relevant to this aspect should be consistent
with the goals of measurement. Fifth, the consequences aspect of validity concerns
how test use has adverse impact on different groups of examinees. While the test
may not have significant DIF, studies may nonetheless show that the test has adverse
impact if used for selection or placement. Adverse impact is particularly detrimental
to test quality if based on construct-irrelevant aspects of performance.

The various aspects of validity can be conceptualized as a unified sys-
tem with causal interrelationships (Embretson, 2017). Figure 1 organizes the
five aspects into two general areas, internal and external, which concern test
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Fig. 1 Unified framework for validity

meaning and test significance, respectively. Thus, the content, response processes
and internal structure aspects are relevant to defining the meaning of the construct
while the relationships to other variables and consequences aspects define the sig-
nificance of the test. Notice that the content and response processes aspect drive
the other aspects causally in this framework. Importantly, these two aspects can be
manipulated in test development. That is, item design, test specifications and testing
conditions can impact test meaning. Thus, understanding the relationship between
test content and response processes can be crucial in test development to measure
the intended construct.

Unfortunately, the methods for understanding response processes described in
the Standards have substantial limitations. Both eye-tracker data and talk aloud data
are typically expensive to collect and analyze as well as impacting the nature of
processing for examinees. Further, unless elaborated in the context of a model, the
utility of response time data may be limited to identifying guessing or inappropriate
responses. Importantly, explanatory IRTmodeling can be applied to standard test data
with no impact on examinees responses. Further, such models permit hypotheses to
be tested about the nature of response processes through relationships of item content
features and item responses.

2 Explanatory IRT Models in Item Design: Examples
from ART

The Abstract Reasoning Test (ART) was developed in the context of research on
response processes. ART is a test of fluid intelligence used to predict learning and
performance in a variety of settings (Embretson, 2017). ART consists of matrix
completion items as shown in Fig. 2. In these items, the examinee must identify the
figure that completes the matrix based on the relationships between the figures across
the rows and down the columns.
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Fig. 2 Example of an ART item

2.1 Theory of Response Processes on Matrix Problems

Consistent with the Carpenter, Just and Shell’s (1990) theory, it was hypothesized
that examinees process the various elements individually in the matrix entries to
find relationships. According to the theory, processing complexity is driven by the
number of unique objects (as counted in the first entry) and memory load in finding
relationships. Memory load depends on both the number and types of relationships,
which are hypothesized to be ordered by complexity as follows: 1 = Constant in
a Row (or column), the same figure appears in a row; 2 = Pairwise Progressions,
figures change in the same way in each row; 3 = Figure Addition/Subtraction, the
third column results from overlaying the first and second columns and subtracting
common figures; 4 = Distribution of Three, a figure appears once and only once
in each row and column and 5 = Distribution of Two, one figure is systematically
missing in each row and column. Figure 2 illustrates relationships #1, #4 and #5
(see key on right) and Fig. 4 illustrates relationship #3. Relationship #2 could be
illustrated by a change in object size across rows. Carpenter et al. (1990) postulate
that these relationships are tried sequentially by examinees, such that Constant in a
Row is considered before Pairwise Progressions and so forth. Thus, theMemoryLoad
score is highest for the Distribution of Two relationships. Figure 2 shows numerical
impact on Memory Load for three types of relationships. The difficulty of solving
matrix problems also is hypothesized to depend on perceptual complexity, which
is determined by Distortion, Fusion or Integration of objects in an entry. Figure 2
has none of these sources of perceptual complexity while Fig. 4 illustrates object
integration in the matrix on the right side. Each matrix item can be scored for the
processing and perceptual complexity variables. Item difficulty is postulated to result
from these variables because they drive cognitive complexity.
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2.2 Explanatory Modeling of Response Processes on ART
Matrix Problems

An explanatory modeling of ART item difficulty results from applying LLTM to
item response data, using the scores for matrix problem complexity. LLTM is given
as follows:

P(θ) = exp(θj − ∑
k τkqik + τ0)

1+ exp(θj − ∑
k τkqik + τ0)

(1)

where qik is the score for item i on attribute k, τk is the weight of attribute k in item
difficulty and τ0 is an intercept. Finally, θj is the ability of person j.

LLTM was applied to model item responses for ART items, scored for the two
predictors of processing complexity and the three predictors of perceptual complexity.
For example, a sample of 705 Air Force recruits were administered a form of ART
with 30 items. The delta statistic, which is a likelihood ratio index of fit (Embretson,
1999) similar in magnitude to a multiple correlation, indicated that LLTM had strong
fit to the data (�= .78). Theprocessing complexity variables had the strongest impact,
especially memory load, which supports the theory.

2.3 Impact of Explanatory Modeling on Item Design
for Matrix Problems

These results and the scoring system had direct impact on item and test design for
ART. An automatic item generator was developed for ART items. Abstract structures
were specified to define the objects within each cell of the 3 × 3 display and the
response options. Types of relationships, as described above, specifies the changes
in objects (e.g., circles, arrows, squares, etc.) and/or their properties (e.g., shading,
borders, distortion, size, etc.) across columns and rows. LLTM results on military
samples indicated high predictability of item difficulty by the generating structure (�
= .90) and continued prediction by the five variables defining cognitive complexity
(� = .79).

3 Strategy Modeling in Test Design: Example from ART

Examinee differences in item solving strategies and potential impact on the various
aspects of validity was examined in two studies. In Study 1, ART was adminis-
tered with the original brief instructions. In Study 2, ART was administered with an
expanded version of the instructions with examples of each type of relationship. In
both studies, strategies were examined through mixture modeling.
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3.1 Mixture Modeling to Identify Latent Classes

The mixture Rasch model (Rost & von Davier, 1995) can be applied to identify
classes of examinees that vary in item difficulty ordering, which is postulated to
arise from applying different item solving strategies. The mixture Rasch model is
given as follows:

P(θ) = �gπg
exp(θjg − βig)

1+ exp(θjg − βig)
(2)

where βig is the difficulty of item i in class g, θjg is the ability of person j in class g
and πg is the probability of class g. Classes are identified empirically to maximize
model fit. However, class interpretation can be examined by follow-up explanatory
modeling (e.g., applying LLTM within classes) or by comparing external correlates
of ability.

3.2 Study 1

Method. A form of ART with 30 items was administered to 803 Air Force recruits
who were completing basic training. The ART instructions concerned the nature of
matrix problems as defined by relationships in the row and columns in the 3 × 3
matrices. However, the scope of relationships that could be involvedwas not covered.
ART was administered without time limits. Item parameters were estimated with
the Rasch model and with the mixture Rasch model. In both cases the mean item
parameter was set to zero.

Results from other tests were available on the examinees, including the Armed
Services Vocational Aptitude Battery (ASVAB).

Results. The test had moderate difficulty for the sample based on raw scores
(M = 18.097, SD = 5.784) and latent trait estimates (M = .636, SD = 1.228).
Racial-ethnic comparisons were between groups with N > 50. The latent trait
estimates were significant (F2,743 = 8.722, p < .001, η2 = .023). Standardized
differences of (d = .452) for African Americans and (d = .136) for Hispanics were
observed as compared to Caucasians.

The mixture Rasch model was applied with varying numbers of classes. Table 1
shows thatwhile the log likelihood index (−2lnL) decreased successively fromone to
three classes, the Bayesian Information Criterion (BIC) increased for three classes.
Thus, the two-class solution, with 68.7 and 31.2% of examinees in Class 1 and
Class 2 respectively, was selected for further study. The latent trait means differed
significantly between classes (F1,801 = 439.195, p < .001), with Class 1 (M = 1.143,
SD = .984) scoring higher than Class 2 (M = −.413, SD = .865). Significant racial
ethnic differences were observed between the classes

(
χ2
1,695 = 12.958, p < .001

)

, with 75.0% of Caucasians and 57.3% of African-Americans in Class 1.
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Table 1 Mixture Rasch modeling results

Number of classes Parameters −2lnL BIC

Study 1

1 31 25,472 25,680

2 62 25,146 25,567

3 93 25,044 25,680

Study 2

1 33 13,222 13,423

2 67 13,068 13,477

3 101 13,001 13,616

Table 2 LLTM weights, standard errors and t value by class

Complexity source Class 1 (df = 572, � = .820) Class 2 (df = 229, � = .809)

Weight SE t value Weight SE t value

Unique elements .1922 .0113 16.95* .2681 .0185 14.50*

Memory load .1851 .0049 37.49* .0926 .0077 12.09*

Integration .4543 .0454 10.00* .5502 .0622 8.85*

Distortion .7434 .0654 11.36* −.0121 .1054 −.12

Fusion .3150 .0508 6.20* .0549 .0723 .76

Intercept −4.1809 .1018 −41.08* −2.2618 .1285 −17.61*

*p < .01

LLTM was applied within each class to determine the relative impact of the
sources of cognitive complexity. While the overall prediction, as indicated by the
� statistic (Embretson, 1999) shown on Table 2, was strong for both classes, the
LLTM weights for cognitive complexity differed. Typically, the strongest predictor
is Memory Load; however, the weight for Memory Load was significantly higher in
Class 1. Unique Elements was the strongest predictor in Class 2 and two of three
perceptual complexity variables were not significant.

Item difficulty also was modeled by the sources of memory load from the five
types of relationships. It was found that the number of Figure-Addition relationships
was correlated negatively for Class 1 (r = −.211) and positively for Class 2 (r =
.216). Itemswith Figure-Addition relationships mostly more difficult for Class 2 (see
Fig. 3).

Finally, ART trait estimates were correlated with four factors of ASVAB: Ver-
bal, Quantitative, Perceptual Speed and Technical Information. Although significant
positive correlations were found with all factors except Perceptual Speed for Class
1, no significant correlations with ASVAB factors were found for Class 2.

Discussion. Two classes of examinees, with varying patterns of item difficulty,
were identified on the ART for fluid intelligence. Class 2 was characterized by sub-
stantially lower trait levels and lack of significant correlations with other aptitude
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Fig. 3 Item difficulties by class

measures (i.e., ASVAB factors). Further, item difficultywas less predictable for Class
2 from the memory load associated with ART items. An analysis of the relationship
types that contribute to memory load indicated that items with Figure-Addition rela-
tionships had substantially higher difficulty in Class 2. A possible explanation is that
examinees in this class were unfamiliar with the Figure-Addition relationships and
applied the much harder Distribution of Two relationship. Figure 4 shows examples
of these relationships. Notice that the item on the left requires two Distribution of
Two relationships (i.e., changes in the hourglass and house figures), as well as a Con-
stant in a Row (triangles). The item on the right, however, can be solved by either
three Figure-Addition (colum 3 is the substraction of column 2 from column 1) or
three Distribution of Two relationships.
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Fig. 4 Two ART items varying in distribution of two relationships

3.3 Study 2

The application of themixture Raschmodel in Study 1 identified a class of examinees
with lower scores and different patterns of item difficulty that may be based on
unfamiliarity with the possible types of relationships that can occur in ART. In this
study, instructions were added to demonstrate each type of relationship.

Method. The examinees were 444 police recruits who were enrolled in basic
training in law enforcement. A version of ART with 32 items included extended
instructions in which all types of relationships were presented and illustrated. These
instructions involved approximately eight additional minutes of testing time. For a
sub-sample of examinees, training scores and scores on another test of fluid intelli-
gence were available.

Results. The test was somewhat easy for the sample based on raw scores (M =
21.459, SD= 4.779) and latent trait estimates (M = 1.152, SD= 1.203). As for Study
1, racial-ethnic comparisons were made between groups with N > 50. The latent
trait estimates were significant (F2,406 = 3.099, p = .016, η2 = .015). Compared to
Caucasians, standardized differences of (d = .276) for African Americans and (d =
.075) for Hispanics were observed.

Themixture Raschmodel was applied to determine the number of classes. Table 1
shows that while the log likelihood index (−2lnL) decreased somewhat from one to
two classes, the BIC index increased. Thus, the single class model is the preferred
solution. Finally, for a subsample of 144 recruits, scores for a six-week course in
legal issues for police officers were available. Training scores were correlated more
highly with ART (r = .333, p < .001) than with the Cattell Culture Fair Intelligence
Test (CCF; r = .211, p = .009).

Discussion. A single item-solving strategy is supported for ART when adminis-
tered with extended instructions. That is, a single class was supported with mixture
Rasch modeling. Further, the magnitude of the racial-ethnic differences was also
substantially smaller in this study. Finally, ART correlated more highly with training
than a similar non-verbal intelligence test, which has very short instructions.
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4 Summary

The purpose of this chapter was to illustrate how using explanatory IRT models can
contribute to the test development process and impact validity. The mixture Rasch
model identified two classes of examinees on the ART with different item difficulty
orders. The LLTM indicated strong predictability of item performance from cogni-
tive complexity variables; however, the weights varied by class, supporting strategy
differences. Items involving a certain type of relationship were relatively more dif-
ficult in the lower scoring class. Further, there was an undesirable impact of the
second class on the external relationships aspect of validity; ART did not correlate
with other aptitude tests and racial-ethnic differences were also found. A redesigned
ART, that include extended instructions on types of relationships, had a single class,
supporting common problem-solving strategies. Further, racial ethnic differences
were substantially smaller on the redesigned ART and ART had stronger correla-
tions with achievement than a similar test of fluid intelligence. Thus, two explana-
tory IRT models were used to inform the responses processes aspect of validity for
a fluid intelligence test. The redesigned test to optimize responses processes had
smaller racial-ethnic differences than the previous ART and more desirable external
relationships than the CCF, a similar test of fluid intelligence.
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Abstract The main aim of this study is to report on the frequency of which different
item response theory models are employed in Psychometrika articles. Articles rele-
vant to item response theory modeling in Psychometrika for 82 years (1936–2017)
are sorted based on the classification framework by Thissen and Steinberg (Item re-
sponse theory: Parameter estimation techniques. Dekker, NewYork, 1986). A sorting
of the item response theory models used by authors of 367 research and review ar-
ticles in Volumes 1–82 of Psychometrika indicates that the usual unidimensional
parametric item response theory models for dichotomous items were employed in
51% of the articles. The usual unidimensional parametric item response theory mod-
els for polytomous itemswere employed in 21%of the articles. Themultidimensional
item response theory models were employed in 11% of the articles. Familiarity with
each of more complicated item response theory models may gradually increase the
percentage of accessible articles. Another classification based on recent articles is
proposed and discussed. Guiding principles for the taxonomy are also discussed.

Keywords Item response theory ·Models · Psychometrika · Rasch model ·
Taxonomy

1 Introduction

In this study, we report on the frequency of use of item response theorymodels inPsy-
chometrika classified using the taxonomy of Thissen and Steinberg (1986) to answer
the following questions:Will knowledge of a few basic item response theory models,
such as the Rasch model and the three-parameter logistic model, assist readers in
recognizing the modeling component of a high percentage of research articles that
are relevant to item response theory modeling in Psychometrika? Which additional
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item response theory models are used most often and therefore could be added most
profitably to the psychometric and educational measurement background of readers?
To aid psychometricians, measurement specialists, and applied statisticians who are
continuing their own psychometric training, as well as persons designing courses in
psychometrics and educational measurement for advanced undergraduate and gradu-
ate students, we report on modeling components of the item response theory relevant
research and review articles in Psychometrika between 1936 and 2017.

In their taxonomy, Thissen and Steinberg (1986) classified item response theory
models into four distinct groups based on assumptions and constraints on the parame-
ters: binary models, difference models, divided-by-total models, and left-side-added
models. They classified, for example, the two-parameter normal ogive model and the
Rasch model as the binary models; Samejima’s graded response model in normal
ogive and logistic forms as the differencemodel; Bock’s nominal responsemodel and
Master’s partial credit model as the divide-by-total models; and Birnbaum’s three-
parameter logistic model as the left-side-added model (see Thissen & Steinberg,
1986, and references therein). In this paper, we present a more refined classification
of the item response theory models based on the type of data analyzed.

2 Methods

This study analyzed Volumes 1 through 82 (March 1936 through December 2017) of
Psychometrika and included all articles identified in the table of contents as Articles,
Notes, Comments, Brief Comments, Tables, and Presidential Addresses. Excluded
were Errata, Announcements, Abstracts, Book Reviews, Rules, Obituaries, Reports,
Minutes, Notices, Constitution, and Lists of Members. For example, the excluded
portions included: Volume 1, Issue 2, Pages 61–64 that contained the List of 150
Members of the Psychometric Society; Volume 4, Issue 1, Pages 81–88 that con-
tained the List of 235 Members of the Psychometric Society; and Volume 2, Issue 1,
Pages 67–72 that presented the Abstracts of 11 papers to be presented at the District
Meeting of the Psychometric Society, The University of Chicago, on Saturday,
April 3, 1987.

2.1 Review Process

Initially, 2837 articles were screened and identified from these volumes, and a group
of measurement specialists eventually selected 367 articles for detailed review. The
367 articles were selected for their relevance to various models in item response
theory. At least two measurement specialists independently reviewed each of the
367 articles for their use of item response theory models and completed a checklist
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documenting topics and models. The excluded articles received a second but briefer
review for the presence or absence of the use of item response theory models in the
procedures and techniques employed in the study. The reviewer read the abstracts,
the methods sections, and all tables, and scanned other sections of the articles for
the pertinent information. All reviewers were faculty members or graduate students
trained in both quantitative methodology and applied statistics.

For the 367 articles receiving detailed review, any discrepancies between the two
or more independent reviewers were discussed and resolved. Discrepancies were
found initially for some of these articles. Another careful reading of these discrepant
articles by the reviewers indicated that nearly all errors involved overlooking the
methods section and the procedures and techniques used in the article.

For the 367 articles relevant to item response theory modeling in this study, we
first partitioned these papers into theoretical and application types. Due to the char-
acteristic of Psychometrika as a leading journal in psychometrics, the articles except
for four were classified as theoretical.

2.2 Analysis of Models Used

We determined the frequency of the item response theory models in the 367 journal
articles. Articles were sorted based on the classification framework by Thissen and
Steinberg (1986). In addition to performing the simple quantification (number and
percentage of articles using amethod),we assessed howmuch a reader’s acquaintance
with additional item response theory models would improve his or her psychometric
repertoire. In trying to obtain a definite measure, we were handicapped by the lack of
a natural order for learning and applying these models. For the analysis, we chose the
order that maximally increased the percentage of articles for which a reader would
be acquainted with the item response theory models employed if he or she learned
one more item response theory model.

We began this analysis by assuming that there are three major ordered classes
of the item response theory models; (1) unidimensional parametric item response
theory models for dichotomous items, (2) unidimensional parametric item response
theory models for polytomous items, and (3) multidimensional item response theory
models. In a sense, the order was thus determined by the complexity of models as
well as modeling data gathered. This ordering, though useful, intellectually reason-
able, and empirically based, is nevertheless arbitrary. In particular, it ignores the
fundamental role of broad psychometric concepts used in the article such as adap-
tive testing, differential item functioning, equating and linking, parameter estimation
techniques, test scoring, and so on in determining the extent of a reader’s psychome-
tric understanding. Furthermore, it may not be the best order for learning about the
item response theory models.
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3 Results

Figure1 shows the time plots of the number of articles in Psychometrika as well as
the number of item response theory relevant articles in each volume from 1936 to
2017. The average of the number of articles in each volume was 34.6 and its standard
deviation was 8.6. The five number summary was (19, 28.8, 33, 41, 59). There was
a steady increasing pattern in terms of the number of articles in each volume. The
average of the number of item response theory relevant articles in each volume was
4.2 and its standard deviation was 4.3. The five number summary was (0, 0, 2.5, 8,
17). A rapid increase occurred between the 70’s and the 90’s for the number of item
response theory relevant articles in each volume.

Figure2 shows the time plot of the proportion of the item response theory relevant
articles in each volume from 1936 to 2017. The average of the proportion was .11
and its standard deviation was .11. The five number summary was (0, 0, .07, .21,
.53). The proportion was rapidly increased between the 70’s and the 90’s.

Table1 presents the number of articles that used different item response theory
models by decades from the 1930s (n.b., the 1930s starts from1936) to the 2010s (n.b.,
the 2010s are not finished yet). The bottom line contains the total number of unique
(i.e., not the column sum) item response theory relevant articles by decades. The
far right-hand-side column of Table1 shows the frequency of item response theory
models found in Volumes 1 through 82 of Psychometrika. Under the assumptions
outlined above, we analyzed the frequencies of the classes of item response theory
models employed in the journal articles.

The followings are themodel acronyms in Table1: One-Parameter Logistic (1PL),
One-Parameter Normal (1PN), Two-Parameter Logistic (2PL), Two-Parameter Nor-
mal (2PN),Nonparametric (NON),Three-ParameterLogistic (3PL),Three-Parameter

Fig. 1 Time plots of the
number of articles in blue
and the number of item
response theory relevant
articles in red
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Fig. 2 Time plot of the
proportion of item response
theory relevant articles
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Normal (3PN), Two-Parameter of Choppin (2PC), Four-Parameter Logistic (4PL),
Multiple Choice of Samejima (MCS), Multiple Choice of Thissen and Steinberg
(MCTS), Multiple Choice (MC), Graded Response (GR), Partical Credit (PC), Rat-
ing Scale (RS), Generalized Partial Credit (GPC), Nominal Categories (NC), Bino-
mial Trials (BT), Poisson Counts (POC), Continuation Ration (CR), Linear Logistic
Test Model (LLTM), and Multidimensional Item Response Theory (MIRT).

Table1 shows many articles reviewed relied on some type of unidimensional
dichotomous item response theory models. These articles used the Rasch model
most frequently by 107 out of 367 articles. The one-parameter logistic model with a
common item discrimination parameter was used in 15 articles. The two-parameter
logisticmodelwas used by 60 out of 367 articles, and the two-parameter normal ogive
model was used by 37 out of 367 articles. The three-parameter logistic model was
used quite frequently, that is, 82 out of 367 articles. The polytomous item response
theory models are generally used less frequently (25 for the graded response model,
21 for the partial credit model, 10 for the rating scale model, 5 for the generalized
partial credit model, and 7 for the nominal categories model).

It can be noticed that the various taxonomic classifications of the item response
theory models defined in Table1 were not frequently employed in the articles re-
viewed. The impression is that only limited cases of the item response theory models
or the combinations of the models have been employed in Psychometrika, although
this finding does depend on the initial taxonomy of the item response theory models.
Articles published recently within about 20 years that used item response theory
models were more complicated both mathematically and statistically than other pre-
viously published articles in Psychometrika. Theoretical research studies based on
more complicated item response theory models require a deeper understanding of
and more extensive training in psychometrics and applied statistics.
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A sorting of the item response theory models used by authors of the 367 articles
in Psychometrika indicates that a reader who is familiar with the usual unidimen-
sional parametric item response theorymodels for dichotomous items (e.g., theRasch
model, the one-parameter logistic model, the two-parameter logistic or normal ogive
model, and the three-parameter logistic or normal ogive model) may have potential
access to 186 out of 367 articles (51%). Note that the number 186 was not obtained
from Table1 but based on the separate counting of the articles. Note also that the
numbers in Table1 are not mutually exclusive because, for example, an article might
employ two or more different item response theory models together. It should also
be noted that the accessibility here implies the recognition of the model used in the
article instead of comprehension of the entire contents of the article. Because the uni-
dimensional parametric item response theory models for polytomous items (e.g., the
graded response model, the partial credit model, the rating scale model, the nominal
categories model, and the generalized partial credit model) were employed in 79 out
of 367 articles, a reader who is familiar with the two classes of the unidimensional
item response theory models may have potential access to cumulatively 72% of the
journal articles. Familiarity with each of the more complicated item response theory
models may gradually increase the percentage of accessible articles. If one knew
the multidimensional item response theory models in addition to the unidimensional
item response theory models, one would access 38 articles, or 83 cumulative per cent
of the number of articles reviewed. However, more complicated models (e.g., non-
parametric models, testlet models, mixture models, multilevel models, etc.) were
concurrently used in the psychometric research journal articles together with the
usual parametric models for the dichotomous and polytomous items. Hence, 64 out
of 367 (17%) of the articles cannot be fully accessible in terms of item response
theory if a reader is familiar with only these parametric models.

Although some classifications were obviously quite narrowly defined, others such
as multidimensional item response theory models and nonparametric models were
not. Furthermore, these latter models, though cited infrequently in the articles, may
be more frequently used in other application fields and may become more common
in future psychometric research.

The selected articles relevant to item response theory modeling in Table1 were
sorted based on the classification framework by Thissen and Steinberg (1986). An-
other recent classification based on Van der Linden (2016a), however, can be used,
and a more refined subclassification (e.g., Nering &Ostini, 2010) can also be consid-
ered. Note that articles may be further sorted by the parameter estimation methods
(e.g., Baker & Kim, 2004; De Ayala, 2009) as well as the computer programs used to
implement the estimation methods (e.g., Hambleton, Swaminathan, & Roger, 1991,
pp. 159–160; Van der Linden, 2016b).

Psychometric researchers interested in continuing their own training in method-
ology should find the frequencies of various item response theory models presented
in Table1 helpful in identifying the knowledge of which item response theory mod-
els they should be aware. This paper reviews item response theory models with the
perspective of a general reader, and no attempt has been made to identify a hierar-
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chical structure of the item response theory models, which may vary for researchers
in different psychometric research areas within different specialties.

4 Discussion

Except for general item response theory review articles in Psychometrika, not many
item response theory models were used simultaneously in each research article. As
noted by Popham (1993) andBock (1997) there are several unexpected consequences
of using item response theory models in the analysis of testing data. Only a limited
number of item response theory experts can fully understand what is happening, for
example, in the process of test calibration. Also, there are many different directions
of the development of item response theory so that even experts in the item response
theory field may not be able to comprehend the full scope of the theory and applica-
tions of item response theory. It is unfortunate that the item response theory models
and item response theory itself are too difficult to understand for scholars with only
limited statistical andmathematical training.Nevertheless, item response theory does
occupy and may continue to occupy major portions of lively and productive future
development in psychometric research.

Understanding someof the item response theory relevant articles inPsychometrika
definitely requires more than the familiarity of the item response theory models. For
example, training in modern Bayesian statistics for which the Bayesian posterior
approximation methods with data augmentation techniques are taught is needed for
reading several articles. Note that the normal ogivemodelswere frequently employed
in data augmentation techniques by some authors who are themselves prepared for
understanding more advanced research articles.

It should be noted that the numerical measure of ability or proficiency is the ul-
timate, eventual entity that is pursued in item response theory modeling. In other
applications, the item parameters are something needed assuming that persons are
randomly sampled from a population. In item response theory with such a sampling
concept, the item parameters are the structural parameters while the person param-
eters are incidental parameters. The concept of invariance of ability with regard to
the sets of item parameters (i.e., persons ability can be measured with different sets
of items) as well as invariance of item characteristics with regard to the groups of
persons (i.e., item characteristics can be obtained with different groups of persons)
are crucial in item response theory. Many investigations of structural parameters
such as measurement invariance or differential item functioning studies are stud-
ies of structural parameters. Note that measurement invariance is a preliminary to
studying invariant person measures, and as such, needs to be seen as a process within
measurement validation (Kane, 2006). Hence, item response theory models and the
required parameters to estimate ought to be scrutinized in conjunction with specific
application areas.

In the field of educational assessment, items can be in the forms of both
dichotomously-scored and polytomously-scored. Inmost large scale assessment pro-
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grams (e.g., National Assessment of Educational Progress, Trends in International
Mathematics and Science Study) a combination of the three-parameter logisticmodel
and the generalized partial credit model is used to calibrate item response data. In
the analysis of instruments with mixed item types, there are special combinations of
dichotomous and polytomous item response theory models to be used (e.g., Rasch
and PC; 2PL and GR). So, there are natural combinations of item response theory
models for mixed item types.

This study may be helpful to people designing and teaching courses in psycho-
metric methods for advance undergraduate and graduate students and other psycho-
metricians or measurement specialists using various item response theory models.
But one should keep in mind that any professional specialization in psychometric
research may influence understanding with regard to the relative importance of the
various item response theory models.

The purpose of writing for some journal articles that are relevant to item response
theory in psychometric research might not be to disseminate the findings of the
studies to more general psychometric researchers. The authors might have tried to
demonstrate their capabilities to invent novel models, to create new ideas, and to
explore challenging areas of psychometrics. Consequently, there are a plethora of
item response theory models invented recently.

We have identified the various models in item response theory that have been
used by psychometricians in Psychometrika articles and that are thus very much
likely to be used by future authors in psychometric research. Note that the latter
point may not be the case because some articles used the most esoteric item response
theory models together with complicated computational techniques. The appropriate
training of psychometric researchers in the use of item response theorymodels seems
to be an important consideration. Such an issue should be addressed by the leading
scholars who are responsible for training future psychometric researchers. More in
depth evaluation of the articles and more thorough review would be helpful.

It can be noted that item response theory models presented in Table1 already
contained additional models than those (e.g., 4PL, MC, CR, LLTM, MIRT, Testlet,
and Multilevel) in Thissen and Steinberg (1986). There are many different item
formats sowemay classify item response theorymodels in terms of the item response
data and additional variables required for themodeling. If we denote the original item
response data for multiple-choice items as U , then item response theory models for
multiple-choice items can be used to estimate model parameters. When we denote
the keyed or scored data to be R and further denote dichotomously scored data to
be D, then we may use the Rasch model and other item response theory models
for dichotomously scored items (e.g., 1PL, . . . , 4PL). If R can be further specified
with the types of polytomously scored items that is denoted by P , then we may use
item response theory models for polytomous items. Here, the set of item parameters
can be denoted by ξ and the set of ability parameters can be denoted by θ . If we
allow additional dimensionality to the item and ability parameters, then wemay have
multidimensional item response theory models. In the above context, if there exist a
latent group hyperparameter τ and both ability and item parameters are characterized
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by τ , then we may have mixture item response theory models. Note that in all of
these models, we are not required to use any auxiliary variables.

When examinee groups are organized with a manifested variable g (e.g., male and
female), then the data can be seen as Rg. In conjunction with item response theory
modeling, such data can be denoted as the multiple group data (e.g., differential
item functioning data, equating and linking data, measurement invariance data, etc.).
Models for differential item functioning, for example, can be applied to such data.
A similar case with a timing variable t can yield data Rt . The item response theory
model for such data can be denoted as the parameter drift model. It should be noted
that in case of obtaining R, raters can be entered to the modeling as a new facet of
the resulting data in the generalizability context. If the raters’ information denoted
as r is also entered to the data, then we may express the data Rr and add the set
of raters’ severity parameters to the model. If there exists information about the
cognitive components and the items (e.g., W for the linear logistic test model), the
resultingmodels relate ξ to another set of basic parameters (e.g., η). There are several
linear logistic or component test models that use RW as input data. The testlet model
seems to require an additional vector that contain item relationship or dependency d,
that is, Rd as the input data and tries to explicate the dependency among the items.
If there are the matrix of nested grouping structure G added to the data, then the
required item response theory model for analyzing such data of RG becomes the
multilevel item response theory model. In addition, the time matrix T that contains
examinees’ response time to items is analyzed that yields RT , then item response
theory models that contain speededness parameters may be used.

In the above classification, the type of input data determines the resulting so
called parametric item response theory models. There are also nonparametric item
response theory models for these data as well as models for nonmonotone items.
The item response theory models, hence, can be classified with the input data type as
well as the characteristics of item response functions and the methods of parameter
estimation. Note that Thissen and Steinberg’s (1986) classification was partly based
on the parameter estimation context.
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NUTS for Mixture IRT Models

Rehab Al Hakmani and Yanyan Sheng

Abstract The No-U-Turn Sampler (NUTS) is a relatively newMarkov chainMonte
Carlo (MCMC) algorithm that avoids the random walk behavior that common
MCMC algorithms such as Gibbs sampling or Metropolis Hastings usually exhibit.
Given the fact that NUTS can efficiently explore the entire space of the target distri-
bution, the sampler converges to high-dimensional target distributions more quickly
than other MCMC algorithms and is hence less computational expensive. The focus
of this study is on applying NUTS to one of the complex IRT models, specifically
the two-parameter mixture IRT (Mix2PL) model, and further to examine its perfor-
mance in estimating model parameters when sample size, test length, and number of
latent classes are manipulated. The results indicate that overall, NUTS performs well
in recovering model parameters. However, the recovery of the class membership of
individual persons is not satisfactory for the three-class conditions. Findings from
this investigation provide empirical evidence on the performance of NUTS in fitting
Mix2PL models and suggest that researchers and practitioners in educational and
psychological measurement should benefit from using NUTS in estimating parame-
ters of complex IRT models.

Keywords Markov chain Monte Carlo · No-U-Turn sampler ·Mixture IRT
models

1 Introduction

Classical test theory (CTT; Novick, 1966) has served the measurement community
well formost of the last century.However, problems emerged usingCTThave encour-
aged the development of a modern test theory, namely the item response theory (IRT;
Lord, 1980), which has become a fundamental tool for measurement professionals
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in behavioral sciences (van der Linden &Hambleton, 1997). IRT consists of a family
of models that specify the probability of a response given person latent trait and item
characteristics. Different models exist for different types of response data. Conven-
tional dichotomous IRT models (e.g., Birnbaum, 1969; Lord, 1980; Lord & Novick,
1968; Rasch, 1960), including the one-parameter logistic (1PL), the two-parameter
logistic (2PL), and the three-parameter logistic (3PL) models, are used when test
items require binary responses such as true-false questions or multiple-choice ques-
tions that are scored as correct or incorrect.

These conventional IRT models assume that the observed response data stem
from a homogenous population of individuals. This assumption, however, limits their
applications in test situationswhere, for example, a set of test items can be solvedwith
different cognitive strategies. If the population consists ofmultiple groups of persons,
with each group employing a different strategy for the same item, the parameters for
this item will be different across these groups (or subpopulations), and consequently,
the conventional IRTmodels cannot be used for the response data. On the other hand,
the conventional IRT models may hold when each of the subpopulations employs a
common strategy. As a result, mixture IRT (MixIRT; Rost, 1990) models have been
developed to capture the presence of these latent classes (i.e. latent subpopulations)
that are qualitatively different but within which a conventional IRT model holds.
MixIRT models have become increasingly popular as a technique for investigating
various issues in educational and psychological measurement such as identifying
items that function differently across latent groups (e.g., Choi, Alexeev & Cohen,
2015; Cohen&Bolt, 2005; DeAyala, Kim, Stapleton, &Dayton 2002;Maij-deMeij,
Kelderman, & van der Flier, 2008; Samuelsen, 2005; Shea, 2013; Wu et al., 2017)
or detecting test speededness (e.g., Bolt, Cohen, & Wollack, 2002; Meyer, 2010;
Mroch, Bolt, & Wollack, 2005; Wollack, Cohen, & Wells, 2003).

Over the past decades, the estimation of IRT and particularly MixIRT models
has moved from the traditional maximum likelihood (ML) approach to the fully
Bayesian approach via the use of Markov Chain Monte Carlo (MCMC) techniques,
whose advantages over ML have been well documented in the IRT literature (e.g.,
de la Torre, Stark, & Chernyshenko, 2006; Finch & French, 2012; Kim, 2007; Wol-
lack, Bolt, Cohen, & Lee, 2002). The common MCMC algorithms, such as Gibbs
sampling (Geman & Geman, 1984) and Metropolis Hastings (MH; Hastings, 1970;
Metropolis &Ulam, 1949), have been applied to estimateMixIRTmodels (e.g., Cho,
Cohen,&Kim, 2013;Huang, 2016; Samuelsen, 2005; Shea, 2013). These algorithms,
however, suffer from problems of inefficiently exploring the parameter space due to
their random walk behavior (Neal, 1992). Recent developments of MCMC focus
on non-random walk MCMCs such as the no-U-turn sampler (NUTS; Hoffman &
Gelman, 2011), which can converge to high dimensional posterior distributions more
quickly than common random walk MCMC algorithms, and is hence less computa-
tional expensive. In the IRT literature, Zhu, Robinson, and Torenvlied (2015) applied
NUTS to simple IRTmodels and demonstrated its advantage over Gibbs sampling in
the efficiency of the algorithm. Although NUTS has been applied with simple unidi-
mensional IRT models (e.g., Chang, 2017; Luo & Jiao, 2017; Grant, Furr, Carpenter,
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& Gelman, 2016), to date, no research has investigated its application to the more
complex IRT models, such as MixIRT models.

1.1 Two-Parameter Mixture IRT Model

In the MixIRT modeling framework, persons are characterized by their location on a
continuous latent dimension as well as by their latent class membership. Also, each
subpopulation has a unique set of item parameters (e.g., difficulty, or discrimination).
This study focuses on the two-parameter mixture (Mix2PL) IRT model, which can
be viewed as an extension of the mixture Rasch model proposed by Rost (1990). If
we let Yij detonate a correct (Yij = 1) or incorrect (Yij = 0) response for person i to
item j, the probability of a correct response in the Mix2PL model is defined as

P
(
Yi j = 1|θ ) =

G∑

g=1

πg × P
(
Yi j = 1

∣∣θig, b jg, a jg, g
)

=
G∑

g=1

πg × exp
[
a jg

(
θig − b jg

)]

1+ exp
[
a jg

(
θig − b jg

)] , (1)

where g= 1, …, G is the latent class indicator, θ ig denotes the ability for person i in
class g, πg denotes the proportion of examinees (i.e., the mixing proportion) in each
class with a constraint that all these proportions sum to one, and bjg and ajg are the
difficulty and discrimination parameters, respectively, for item j in the gth class.

1.2 Non-random Walk MCMC

Random walk algorithms such as Gibbs sampling and MH explore the parameter
space via inefficient random walks (Neal, 1992). For complicated models with many
parameters, these methods may require an unacceptably long time to converge to the
target posterior distribution. On the other hand, non-randomwalk algorithms such as
HamiltonianMonte Carlo (HMC;Duane, Kennedy, Pendleton, &Roweth, 1987) and
NUTS avoid the inefficient exploration of the parameter space. Specifically, HMC
borrowed its idea from physics to suppress the randomwalk behavior by means of an
auxiliary variable, momentum, that transforms the problem of sampling from a target
posterior distribution into the problem of simulating Hamiltonian dynamics, allow-
ing it to move much more rapidly through the posterior distribution (Neal, 2011).
The unknown parameter vector θ is interpreted as the position of a fictional particle.
The Hamiltonian is an energy function for the joint state of the position θ and the
momentum φ, which defines a joint posterior distribution p(θ , φ|y). At each iteration,
a random momentum vector φ is generated, which is usually drawn from a multi-
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variate normal distributionN(μ,�) with meanμ and covariance matrix�. Then, the
path of the particle is simulated with a potential energy equal to the negative value
of the log of the posterior density p(θ |y).Values of (θ , φ) are simultaneously updated
over time using the leapfrog algorithm, which breaks the time into discrete steps
such that the total Hamiltonian simulation time is the product of the discretization
interval (or the step size ε) and the number of steps taken per iteration (or the leapfrog
steps L). After a Metropolis decision step is applied, the whole process repeats for an
adequate number of iterations until convergence is reached (Gelman, Carlin, Stern,
Dunson, Vehtari, & Rubin, 2014; Stan Development Team, 2017).

Although HMC is a powerful MCMC technique, it requires choosing suitable val-
ues for three parameters (i.e., the step size ε, the number of leapfrog steps L, and the
mass matrix �) for the fictional particle. Tuning these parameters, and specifically
L, requires expertise and a few preliminary runs, which can be challenging (Neal,
2011; Hoffman & Gelman, 2011). To overcome this, Hoffman and Gelman (2011)
introduced NUTS to eliminate the need to set the number of leapfrog steps that the
algorithm takes to generate a proposal state. Using a recursive algorithm, NUTS cre-
ates a set of candidate points that spans awide path of the target posterior distribution,
stopping automatically when it starts to double back and retrace its steps (i.e. starts
to make a U-turn). Empirically, NUTS performs as efficiently as, and sometimes
better than, a well-tuned HMC without requiring user interventions. Thus, NUTS
is a tune-free technique, which will make it easily accessible by practitioners and
researchers in behavioral sciences to fit various complex measurement models.

In viewof the above, the purpose of this study is to investigate howNUTSperforms
in recovering parameters of the Mix2PL model under various test conditions where
sample size, test length, and number of latent classes are taken into consideration. The
significance of the study lies in that it not only demonstrates the application of a more
efficient MCMC algorithm to the more complex MixIRT model, but also provides
guidelines to researchers and practitioners on the use of such models under the fully
Bayesian framework. The successful implementation of NUTS to theMix2PLmodel
will also help researchers with fittingmore complex IRTmodels using fully Bayesian
estimation. Findings from this investigationwill provide empirical evidence and shed
light on the performance of NUTS in fitting more complicated IRT models.

1.3 Model Identification

Given the difference between Bayesian and likelihood identifiability (Gelfand &
Sahu, 1999), theMix2PL IRTmodelwas identified under the fullyBayesian approach
following the literature to avoid two problems: (a) the indeterminacy and (b) the
problem of label switching, which is inherent in mixture models in general. The
usual practice to avoid the indeterminacy in MixIRT models, as recommended by
Rost (1990), is to impose a sum-to-zero constraint in the item difficulty parameter
within each latent class (i.e.,

∑
j b jg = 0). Under the fully Bayesian estimation using

NUTS, there are several methods available to enforce a sum-to-zero constraint on a
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parameter vector (see Stan Development Team, 2017 for more details). Due to its
ease in implementation, soft centeringwas used in this study to apply the sum-to-zero
constraint on the difficulty parameter in each latent class (i.e., bg ~ N(0, 1)). Further,
one practice for avoiding the problem of label switching of mixture components
in MixIRT models, under the fully Bayesian framework, is to impose an ordinal
constraint on the mixing proportions or the difficulty parameter (e.g., Bolt et al.,
2002) or other parameters (e.g., Meyer, 2010) across latent classes. In this study, an
ordinal constraint had to be imposed on both the mean ability (μg) parameters and
the item difficulty parameters (bg) to ensure Bayesian identifiability with Mix2PL
models.

2 Methods

Monte Carlo simulations were carried out to investigate the performance of NUTS in
terms of parameter recovery of theMix2PLmodel under various test conditions. Data
were generated using the Mix2PLmodel as defined in Eq. (1) with equal proportions
(i.e., equal class sizes) while manipulating three factors: test length (J = 20 or 30),
number of latent classes (G = 2 or 3), sample size in each subpopulation (n =
250 or 500). Specifically, for the two-class condition (G = 2), the total number of
subjects (N) was 500 or 1000; the mixing proportions were π1 = 0.50 and π2 = 0.50;
the person ability parameters were generated from a mixture of two subpopulations
where θ1 ~ N(−2, 1) and θ2 ~ N(2, 1); the class-specific item difficulty parameters
were generated from a uniform distribution where b1 ~ U(−2, 0) and b2 ~ U(0, 2);
and the class-specific item discrimination parameters were generated from a uniform
distribution where ag ~U(0, 2), g= 1 or 2. For the three-class condition (G= 3), the
total number of subjects was 750 or 1500; themixing proportions wereπ1 = 0.33,π2

= 0.33, and π3 = 0.33; the person ability parameters were generated from a mixture
of three subpopulations where θ1 ~ N(−4, 1), θ2 ~ N(0, 1), and θ3 ~ N(4, 1); the
class-specific item difficulty parameters were generated from a uniform distribution
where b1 ~U(−2,−0.5), b2 ~U(−0.5, 0.5), and b3 ~U(0.5, 2); and the class-specific
item discrimination parameters were generated from a uniform distribution where
ag ~ U(0, 2), g = 1, 2, or 3.

Priors and hyperpriors were selected to be comparable to those adopted by others
(e.g., Bolt, Cohen, & Wollak, 2002; Meyer, 2010; Li, Cohen, Kim, & Cho, 2009;
Wollack et al., 2003). Specifically, normal prior densities were used for person ability
parameters θ ig ~ N(μg, 1), with a standard normal distribution for the hyperparame-
ters μg, and a Dirichlet distribution for the mixing-proportion parameters such that
(π1, …, πG) ~ Dirichlet(1, …,1).

Convergence of the Markov chains was examined using the Gelman-Rubin R
statistic (Gelman & Rubin, 1992), with a threshold of 1.10 as suggested by Gelman
et al. (2014). For the conditions involving two latent classes, the warm-up stage of
either 2000 or 3000 iterations followed by 3 chainswith either 3000 or 5000 sampling
iterations was sufficient for the chains to reach convergence when the sample size



30 R. Al Hakmani and Y. Sheng

was 500 or 1000, respectively. For the conditions involving three latent classes, in
order to reach convergence, the warm-up stage had to reach 3000, 5000 or 8000
iterations followed by 3 chains with 5000, 7000 or 10,000 sampling iterations for N
= 750 or N = 1000, respectively. Ten replications were conducted for each of the
simulated condition. The precision of the class and item parameter estimates was
evaluated using bias and root mean square error (RMSE), which are defined as

biasξ =
∑R

r=1

(
�

ξr −ξ

)

R
, (2)

RMSEξ =
√

∑R
r=1

(
�

ξr −ξ

)2

R

, (3)

where ξ is the true value of the parameter (e.g., μg, πg, ajg, or bjg), and ˆξ is the esti-
mated value of the parameter in the rth replication where r = 1,…, R. To summarize
the recovery of item parameters, these measures were averaged over items. Further,
the recovery of class memberships was evaluated by computing the percentage of
correct classifications of individual persons into the class from which they were sim-
ulated. This was achieved by first calculating the probability of membership in each
class g for each individual. Then, each individual was assigned to the latent class for
which he or she has the highest probability of belonging (i.e., the largest membership
probability).

3 Results

3.1 Mixing-Proportion and Mean Ability Recovery

The results for recovering the mixing proportion and mean ability for each latent
class in the Mix2PL model are summarized in Tables 1 and 2 for the two- and
three-class conditions, respectively. The small values of bias and RMSE suggest
that NUTS performed well in recovering the mixing-proportion and mean ability
parameters under all simulated conditions, no matter whether there were two or three
latent classes. For the two-class scenarios, the RMSEs for estimating the mixing-
proportion parameters tended to decrease with the increase of either sample size or
test length. However, this pattern was not observed with the three-class scenarios
or with the recovery of the mean abilities. Given that both two- and three-class
conditions considered the same sample size per class (n = 250 or 500) and test
length (J = 20 or 30) conditions, parameter recovery results can also be compared
across the G = 2 versus G = 3 scenarios. Hence, a comparison of Tables 1 and 2
reveals that the RMSEs for estimating the mixing-proportion parameters tended to
decrease with the increase in the number of latent classes from two to three classes,
except for one scenario (i.e., N = 1000, J = 30). This is, however, not the case with
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Table 1 Bias and RMSE for recovering mixing-proportion and mean ability parameters when G
= 2

N J Parameter Bias RMSE Parameter Bias RMSE

500 20 π1 −0.004 0.019 μ1 −0.016 0.205

π2 0.004 0.019 μ2 −0.085 0.196

30 π1 −0.003 0.013 μ1 −0.003 0.013

π2 0.003 0.013 μ2 0.003 0.013

1000 20 π1 0.005 0.012 μ1 0.116 0.197

π2 −0.005 0.012 μ2 −0.039 0.146

30 π1 −0.001 0.011 μ1 0.111 0.152

π2 0.001 0.011 μ2 −0.089 0.150

Table 2 Bias and RMSE for recovering mixing-proportion and mean ability parameters when G
= 3

N J Parameter Bias RMSE Parameter Bias RMSE

750 20 π1 −0.002 0.012 μ1 0.074 0.242

π2 0.001 0.012 μ2 −0.008 0.102

π3 0.001 0.010 μ3 −0.026 0.260

30 π1 −0.002 0.008 μ1 −0.292 0.333

π2 −0.002 0.010 μ2 −0.034 0.133

π3 0.006 0.010 μ3 0.190 0.293

1500 20 π1 −0.001 0.010 μ1 0.032 0.260

π2 −0.001 0.008 μ2 −0.031 0.085

π3 0.002 0.007 μ3 0.075 0.189

30 π1 −0.005 0.007 μ1 −0.282 0.355

π2 0.010 0.012 μ2 −0.025 0.062

π3 −0.005 0.008 μ3 0.284 0.363

the mean ability parameters, whose RMSEs tended to increase whenG= 2 increased
to G = 3.

It is further noted that for the three-class scenarios, the accuracy of estimating the
mean ability of the second latent class was better than that of the first or third latent
class (see Table 2). In addition, the precision of the mean ability estimates for the
second latent class improved with the increase in the sample size.

3.2 Item Parameter Recovery

The results for recovering the difficulty and discrimination parameters are summa-
rized in Tables 3 and 4 for the two- and three-class conditions, respectively. These
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Table 3 Average Bias and RMSE for recovering item parameters when G = 2

N J Parameter Bias RMSE Parameter Bias RMSE

500 20 a1 −0.074 0.397 b1 0.396 0.626

a2 −0.063 0.400 b2 −0.457 0.669

30 a1 −0.061 0.356 b1 0.419 0.601

a2 −0.055 0.359 b2 −0.493 0.691

1000 20 a1 −0.014 0.298 b1 0.447 0.638

a2 −0.076 0.339 b2 −0.397 0.594

30 a1 −0.020 0.288 b1 0.436 0.616

a2 −0.037 0.300 b2 −0.382 0.609

Table 4 Average Bias and RMSE for recovering item parameters when G = 3

N J Parameter Bias RMSE Parameter Bias RMSE

750 20 a1 −0.054 0.409 b1 0.386 0.522

a2 −0.049 0.469 b2 0.057 0.421

a3 −0.053 0.443 b3 −0.398 0.590

30 a1 −0.108 0.413 b1 0.341 0.509

a2 −0.078 0.482 b2 0.017 0.396

a3 −0.085 0.452 b3 −0.375 0.545

1500 20 a1 0.023 0.339 b1 0.352 0.517

a2 −0.058 0.482 b2 0.054 0.421

a3 −0.096 0.419 b3 −0.311 0.499

30 a1 −0.058 0.383 b1 0.377 0.558

a2 −0.071 0.420 b2 0.035 0.379

a3 −0.088 0.356 b3 −0.421 0.579

results indicate that with smaller average bias or RMSE, NUTS was more accurate in
recovering the discrimination parameter than the difficulty parameter of the Mix2PL
model for both classes in the two-class condition and for the first and third classes
in the three-class condition.

The small negative values of the average bias for estimating the discrimination
parameters suggest that they were slightly underestimated across all the simulated
conditions except for one condition (i.e., N = 1500 and J = 20) where the discrimi-
nation for the first class was overestimated (see Table 4). For the two-class condition,
the recovery of the discrimination parameters improved with the increase in sample
size or test length, however, this patternwas not observed in the three-class condition,
which has mixed results.

The difficulty parameters were consistently underestimated for the last latent class
while overestimated for the other classes, no matter whether there were two or three
classes. Also for the three-class condition, the recovery of the difficulty parameters
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Table 5 Percent of correct classifications of individual persons

G = 2 G = 3

N J Average Min Max N Average J Min Max

500 20 90.96 74.40 97.20 750 69.65 20 65.20 81.60

30 92.38 80.80 97.20 69.91 30 66.53 87.60

1000 20 93.55 82.80 96.10 1500 71.59 20 66.60 83.40

30 94.44 86.50 97.20 75.13 30 64.20 90.73

in the second class, as indicated by the average values of bias and RMSE, was better
than the recovery of those in the first or third class across the four data sizes.

In addition, a comparison of Tables 3 and 4 suggests that the average RMSEs
for estimating the discrimination parameter tended to increase with the increase in
the number of latent classes. On the hand, the RMSEs for estimating the difficulty
parameters tended to decrease with the increase in the number of latent classes.

3.3 Class Membership Recovery

For the class membership, the percentages of correct classifications of individual
persons were computed and displayed in Table 5, which suggests that NUTS was
fairly accurate when the population consisted of two latent subpopulations. The
average percentages of correct classifications, across the ten replications, for the
four data sizes were 90.96, 92.38, 93.55, and 94.44. However, in the conditions
where the population consisted of three latent subpopulations, the recovery was
less accurate, where the average percentages of correct classifications for the four
data sizes were 69.65, 69.91, 71.59, and 75.13. Moreover, the recovery of class
memberships is apparently affected by sample size and test length. Specifically, the
average percentage of correct classifications increased with an increase in sample
size or test length, for both the two- and the three-class conditions.

4 Discussion and Conclusion

With Monte Carlo simulations, results of this study suggest that overall, NUTS
performs well in recovering parameters for the Mix2PL model, including the class
parameters (πg and μg), item parameters (ajg and bjg), and class membership (g),
although the recoveryof the classmembership of individual persons is not satisfactory
for the three-class condition.

With respect to the effects of sample size or test length, they play a role in recov-
ering the class membership no matter whether the generated data sets consisted of
two or three latent subpopulations. This is consistent with previous research (e.g.,
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Cho et al., 2013) where the proportion of correct classification of class membership
increased with either sample size or test length. However, their effects on estimating
other parameters in the Mix2PL model is not clear, as some patterns of recovery
improvement with the increment of sample size and/or test length in the two-class
condition are not observed in the three-class condition. For example, for the two-class
condition, the accuracy of estimating the mixing-proportion parameters increases
with the increase of either sample size or test length but this pattern is not observed
with the three-class condition. This is possibly due to the increased complexity of the
mixture item response theory (MixIRT) model with the increased number of latent
classes. Adding one subpopulation may seem trivial, but it would result in a substan-
tial increase in the number of parameters to be estimated. This complexity is further
reflected in the estimation of person mean ability or item discrimination parameters,
whose accuracy decreases with the increased number of classes. On the other hand,
the recovery of the mixing proportions or individual item difficulties in the model is
not seemingly affected by such added complexity. As a matter of fact, their RMSE
values decrease when adding one more subpopulation. This reduction is due to the
fact that the magnitude of RMSE depends on the unit/scale of the parameter. For
instance, the mixing proportion is larger for the two-class condition (πg = 0.5) than
the three-class condition (πg = 0.33), and hence the RMSEs tend to be larger with the
two-class condition. This is certainly a limitation of using RMSE for evaluating the
accuracy in recovering model parameters in this study. Future studies shall consider
other measures, such as the relative RMSE or normalized RMSE that are free from
the scale of the parameters.

The finding that the discrimination parameter is better recovered than the difficulty
parameter in the MixIRT model (based on the comparison of average RMSE/bias
values) agrees with Chang (2017), who focused on the estimation of the conventional
IRTmodel usingNUTS andGibbs sampling.However, it does not agreewith findings
from studies on fitting some other IRT models with non-Bayesian estimations (e.g.,
Batley & Boss, 1993; Kang & Cohen, 2007) although the same RMSE criterion
has been used. Given the limitation of RMSE as noted previously, further studies
are needed to direct the trend of such comparisons. In addition, results based on
the three-class situation suggest that the item difficulty or the class mean ability
parameters are estimated more accurately for the second class than for the first or
third class. This is likely due to the choice of the simulated person ability and item
difficulty parameters for each of the three latent classes. Specifically, the generated
person abilities for the second class (i.e., θ2 ~ N(0, 1)) coincides with the generated
item difficulty (i.e., b2 ~ U(−0.5, 0.5)) for that class. However, the generated person
abilities for the first class (i.e., θ1 ~ N(−4, 1)) is quite distant from the generated
item difficulty (i.e., b2 ~ U(−2, −0.5)) for that class, such that the average person
ability (i.e., −4) is 2.75 standard deviations lower than the average item difficulty
(i.e.,−1.25). Similarly, the generated person ability for the third class (i.e., θ3 ~N(4,
1)) is quit distant from the generated item difficulty (i.e., b2 ~ U(0.5, 2)) for that
class, such that the average person ability (i.e., 4) is 2.75 standard deviations higher
than the average item difficulty (i.e., 1.5). Thus, in order to obtain more accurate
estimates of the person mean ability and item difficulty parameters for the first class,
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more easy items should be added. On the other hand, in order to obtain more precise
estimations of the person mean ability and item difficulty parameters for the third
class, more difficult items should be added.

This study provides empirical evidence on the performance of NUTS in fitting
MixIRT models. It also shows that researchers and practitioners in educational and
psychological measurement can use NUTS in estimating parameters of complex
IRT models such as MixIRT models. However, conclusions that are made in the
present study are based on the simulated conditions and cannot be generalized to
other conditions. Therefore, for future studies, additional test conditions need to be
explored such as unequalmixing proportions, small sample size, and short test length.
Given the computational expense of fitting NUTS to the complex Mix2PL model,
this study only used 10 replications for each experimental condition. However, as
suggested by Harwell, Stone, Hsu, & Kirisci, (1996), a minimum of 25 replications
is recommended for typical Monte Carlo studies in IRTmodeling. Additional studies
with similar experimental conditions are needed before one can conclude about the
use of the algorithm with fitting the Mix2PL model and further the effects of sample
size, test length, and number of classes on estimating themodel. In addition, this study
focused on the dichotomous Mix2PL model. Future studies may consider evaluating
the performance of NUTS using other dichotomous MixIRT models such as the
Mix1PL model or the Mix3PL models, or using MixIRT models with polytomous
categories such as a mixture version of Bock’s (1972) nominal response model or
a mixture version of Masters’s (1982) partial credit model. Moreover, this study
considered certain population distributions and difficulty ranges. Additional studies
are necessary to consider other person distributions and/or other ranges for item
difficulty parameters to decide on the test condition that leads to more accurate
estimates for all classes. Future studies are also needed to decide on the optimal
number of persons and/or items for more accurate estimations of class membership
in conditions where the population includes three or more subpopulations for any
given class size. Finally, findings from this study are based on simulated conditions
where the true parameters are known, Future studies may adopt NUTS algorithms
to fit the Mix2PL models to real data and examine how NUTS performs in real test
situations.
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Controlling Acquiescence Bias
with Multidimensional IRT Modeling

Ricardo Primi, Nelson Hauck-Filho, Felipe Valentini, Daniel Santos
and Carl F. Falk

Abstract Acquiescence is a commonly observed response style that may distort
respondent scores. One approach to control for acquiescence involves creating a bal-
anced scale and computing sum scores. Other model-based approaches may explic-
itly include an acquiescence factor as part of a factor analysis or multidimensional
item response model. Under certain assumptions, both approaches may result in
acquiescence-controlled scores for each respondent. However, the validity of the
resulting scores is one issue that is sometimes ignored. In this paper, we present an
application of these approaches under both balanced and unbalanced scales, and we
report changes in criterion validity and respondent scores.
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1 Introduction

1.1 Large-Scale Assessment of Socioemotional Skills
and the Self-report Method

Evidence has consistently indicated that socioemotional skills can predict many life
outcomes (Ozer & Benet-Martínez, 2006), including job-related variables (Heck-
man, Stixrud, & Urzua, 2006), quality of life (Huang et al., 2017), psychopathology
(Samuel &Widiger, 2008), and physical health (Allen,Walter, &McDermott, 2017).
Among students, such skills have been associated with academic performance even
when partialling out intelligence (Poropat, 2014), perhaps because these skills foster
multiple learning strategies andpositive self-beliefs (Zhang&Ziegler, 2018).Consid-
ering that such individual differences not only change over time (Soto, John, Gosling,
& Potter, 2011), but can also be enhanced via school-based interventions (Lipnevich,
Preckel, & Roberts, 2016), they represent key variables to modern national education
policies.

Althoughmany strategies exist for the assessment of socioemotional skills among
students, the self-report method is recommended because it is simple, easy, and
has a low cost compared to alternative techniques (Kyllonen, Lipnevich, Burrus,
& Roberts, 2014). One recently published self-report inventory designed for the
assessment of non-cognitive skills among students is SENNA (Primi, Santos, John,&
De Fruyt, 2016). It contains 18 self-report scales using 5-point Likert-type items and
provides researchers and public agencies with information on five broad dimensions
of socioemotional skills: Open-mindedness (O), Conscientious Self-Management
(C), Engaging with others (E), Amity (A), and Negative-Emotion Regulation (N)
(John, Naumann, & Soto, 2008).

1.2 Self-report Method and Response Styles

Although the self-report method has many merits, it does not result in error-free
information about respondents. Scores calculated on self-report data may be con-
taminated by random error or by systematic components unrelated to the trait of
interest. Systematic biases include “response styles” (Paulhus, 1991) or “method
variance” (McCrae, 2018). Response styles (RS) represent individual differences
in the usage of response scales. For instance, some respondents will tend to man-
ifest their agreement or disagreement with the content of an item by choosing the
extremes of the Likert scale, while others will systematically avoid extremes. RS
represent relatively stable individual differences (Weijters, Geuens, & Schillewaert,
2010; Wetzel, Lüdtke, Zettler, & Böhnke, 2015) and may account for up to 40%
of item variance (McCrae, 2018). When separating trait and state components in
repeated measures designs, response styles seem to be responsible for up to 59% of
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systematic state variance (Wetzel et al., 2015). By adding nuisance variance to the
data, RS can impair the validity and reliability of test scores (Ziegler, 2015).

1.3 Acquiescence and the Assessment of Socioemotional
Skills

Acquiescence (ACQ) is one response style that deserves closer attention in the self-
report assessment of socioemotional skills among youths. ACQ refers to a tendency
to agree with items at the expense of their content (Paulhus, 1991). For instance,
a student might indicate that he or she agrees (e.g., “4” on a 5-point Likert scale
ranging from 1 = strongly disagree to 5 = strongly agree) with two items such as
“I am an introvert” and “I am an extravert.” Of course, such a response pattern is
semantically contradictory, and it indicates agreement in detriment to consistency.
In some cases, ACQ may reflect cognitive simplicity (Knowles & Nathan, 1997) as
it occurs more often among under-educated people (Meisenberg &Williams, 2008),
older adults (Weijters et al., 2010) and younger children and adolescents (Soto, John,
Gosling, & Potter, 2008).

With respect to self-reports of socioemotional skills, ACQ has the potential to
diminish correlations between semantically opposite items, creating method factors
among negatively worded items (Kam & Meyer, 2015). ACQ can also increase cor-
relations among items capturing unrelated traits (Soto et al., 2008). Accordingly,
factor structure distortions are very likely to occur in the presence of ACQ. In a
simulation study, ACQ caused classical parallel analysis and Hull methods to over-
estimate the number of factors to retain, and MAP and permutation parallel analysis
to underestimate it (Valentini, 2017).

Moreover, ACQ can attenuate external validity (Mirowsky & Ross, 1991). ACQ
tends to inflate scores of scales composed of mostly positively worded items. Thus,
ACQ might impact the validity of a scale in a manner proportional to the amount of
positively- and negatively-keyed items. At the same time, ACQ is often negatively
related to achievement, suggesting that high ACQ can be explained in part by low
language skills. Therefore, the criterion validity of socio-emotional skills may be
suppressed by ACQ. In real data and using a classical scoring approach, Primi, De
Fruyt, Santos, Antonoplis, and John (2018) found that partialling out ACQ resulted
in disattenuated associations of socioemotional skills with achievement tests of lan-
guage (from .13 to .21) and math (from .11 to .17).

1.4 Controlling for Acquiescence

One traditional way of controlling for ACQ is to create a balanced scale in which
each positively worded item is paired with an antonym (a negatively worded item),
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such as: I am often talkative /I am often quiet. On balanced scales, it is expected that
subjects will give mirrored responses to antonym pairs (e.g., 5-1, 4-2, 3-3, 2-4 and
1-5 on a 5-point Likert-type item). If the response pattern of subject j is semantically
consistent, then the average of subject j’s item responses before reverse codingwill be
the midpoint of the response options (in this case, 3; Soto et al., 2008). The person’s
average of the item responses before reverse coding negative items is the classical
index of ACQ (acq j ).

Under certain assumptions (e.g., positively and negatively worded items are on
average equally vulnerable to ACQ; Savalei & Falk, 2014a, b), classical scoring
procedures will result in unbiased estimates of the respondents’ scores. In essence,
the effect of ACQ on positive and negatively worded items “cancels out” when
computing a total score. For example, Primi et al. (2019) shows that scr j , the classical
average score of subject j on a balanced scale (with a 5-point Likert type item scored
from 1 to 5), can be written as:

scr j = 3 + 1

2

(∑k(p)

i=1 x
(p)
i j

k(p)
−

∑k(n)

i=1 x
(n)
i j

k(n)

)

where k(p) equals the number of positive items, k(n) is the number of negative items,
x (p)
i j and x (n)

i j are subject j’s original responses (before reverse coding) on positive
item i , and negative item i , respectively. Inside parentheses, the classical score is
a function of the difference between the average agreement with positive versus
negative items. The more inconsistent the responses to antonym items are, the more
the term in parentheses will tend towards zero. Semantically consistent responses,
however, will tend to result in either larger or smaller scr j , depending on the subject’s
standing on the trait.

In unbalanced scales (i.e., k(p) �= k(n)), classical scores may not be fully corrected
and ACQ will not fully cancel out. In such a case, a form of within-person centering
(or ipsatization) is sometimes recommended to control for ACQ (e.g., Soto et al.,
2008). In the first step, an ACQ index (acq j ) is calculated as the average of only
antonympairs of items.Next,ACQ is removed from the raw item scores (xi j − acq j ).
Raw scores for the reverse-keyed items are then multiplied by −1, and scale scores
are obtained by averaging these items with those of the positively worded items.

1.5 Item Response Theory with Questionnaires
and Acquiescence

Item response theory (IRT)models are routinely usedwhen scaling constructs derived
from questionnaires in large-scale educational assessments. While much is known
about the effect of ACQ in balanced and unbalanced classical scores (Ten Berge,
1999; Primi et al., 2019), less is understood about the effect of ACQ on latent trait
scores estimated via IRT. Since it is known that ACQ, even with a balanced scale,
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may contaminate the covariance structure when performing linear factor analysis
(e.g., Savalei & Falk, 2014a, b), we conjecture that IRT-based models may also
be vulnerable to the effects of ACQ. For instance, the graded response model and
generalized partial credit models are commonly used IRT models for the analysis of
ordered polytomous responses (De Ayala, 2009), but may not automatically correct
for ACQ. There are, however, a number of model-based approaches that could be
used to control forACQ, such as those based on the random interceptmodel (Billiet&
McClendon, 2000;Cai, 2010;Maydeu-Olivares&Coffman, 2006;Maydeu-Olivares,
& Steenkamp, 2018).

Although we provide some details on these models later, some key questions
emerge regarding the consequences of ACQ regardless of the method used. Simu-
lations and analytical proofs are useful for studying whether a modeling approach
can recover population parameters or results in bias, as well as the consequences of
fitting a misspecified model. In practice, however, we never know the true model and
whether a more complex modeling approach fits the data better because it is a better
approximation to reality or because it is fitting noise. Supposing that we are interested
in using self-management scores to predict an objective real-world outcome, wemay
wonder about the consequences of ignoring ACQ or using a specialized approach
to control for it. For example, how does the use of one model versus another affect
the validity of IRT scores? Are there differences if questionnaires are balanced or
unbalanced? Are there any differences in scoring bias when comparing classical
and IRT-based approaches? We therefore present an empirical study comparing the
criterion validity of classical scores against four IRT approaches.

2 Method

Our main goal was to explore the criterion validity of self-management scores esti-
mated via IRT. Previous research with classical scores suggests that ACQ suppresses
criterion validity, and that ACQ-controlled scores show relatively higher validity
(Primi, Santos, De Fruyt, & John, 2018). In the present study, we calculated scores
via IRT, and then explored their criterion validity. We wanted to examine if classical
scores are similar toACQ-controlled trait estimates.We also compared these findings
on a balanced versus an unbalanced item set.

2.1 Data

We reanalyzed data from Primi et al. (2018). Data comprised of 12,987 adolescents
(52.7% female) from grades 7, 9, and 10, who ranged in age from 12 to 20 years (M
= 16, SD = 1.85). Participants were regular students attending 425 public schools
located in 216 cities of the state of Sao Paulo. Students completed SENNAas part of a
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reading literacy program developed by the Ayrton Senna Institute and in partnership
with the state secretariat.

2.2 Instruments

We focused on the 45-item Conscientious Self-Management Scale (C) from the
SENNA inventory (Primi et al., 2018). The scale contains 30 antonym pairs, 15
positively-keyed and 15 negatively-keyed items, with an additional 15 positively-
keyed items. The scale is therefore unbalanced. In what follows, we performed the
analyses twice: Once on the 30 antonym pairs (the balanced item set), and a sec-
ond time on the complete 45-item set (the unbalanced item set). Students responded
using a 5-point scale. We also had two measures of students’ academic achievement:
standardized assessments for language and math (SARESP—Assessment of Educa-
tional Achievement at São Paulo State, in Portuguese—see http://saresp.fde.sp.gov.
br). These scores were used as criterion measures.

2.3 Data Analysis and Multidimensional IRT Modeling

In synthesis, the study design crossed two features: (a) two types of item sets: Bal-
anced versus unbalanced; and (b) five psychometric models to calculate scores: Clas-
sical, unidimensional IRT via a graded response model (GRM), a unidimensional
partial credit model (PCM; e.g., see De Ayala, 2009; Embretson, & Reise, 2000), and
two multidimensional IRT models that were an adaptation of the random intercept
model but based on either the GRM or PCM. Our main focus was the correlation
between self-management and standardized achievement in language and math.

When calculating classical scores, we obtained original scores (Raw ave) that are
simply the average of item responses after reverse coding negative items (equivalent
to computation of scr j ). We also calculated classical ACQ-controlled scores (ACQ
cntr) using the procedure advocated by Soto et al. (2008) for unbalanced items as
mentioned earlier in our manuscript, along with an acquiescence index (ACQ) via
average endorsement of the 15 antonym pairs before reverse coding. Note that in the
case of a balanced scale, Raw ave and ACQ cntr are equivalent; these indices differ
only for unbalanced scales.

Tounderstand the two random interceptmodels, consider boundary discrimination
functions for the GRM as follows

Pri = 1

1 + exp
(−(

a1iθ j + a2iζ j + cri
))

where Pri is short-hand for the probability of endorsing category r or higher for item
i. For each 5-point Likert-type item there will be four of these equations modeling the

http://saresp.fde.sp.gov.br
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transitions 1 versus 2345, 12 versus 345, 123 versus 34, and 1234 versus 5. a1i is the
discrimination for item i on the substantive trait, θ j , and a2i is a set of fixed weights
for item i associated with item wording and designed to capture ACQ. Values of a2i
were fixed to 1 if the item was positively worded, and −1 if the item was negatively
worded. With this fixed set of weights, ζ j represents ACQ. Finally, cir represents
an intercept term. This model is similar to what Maydeu-Olivares and Steenkamp
(2018) named the compensatory random-intercept model (see also Cai, 2010).

To estimate the model, we freed item discriminations (a1i ), and constrained the
trait variance to 1. Sincewefixed alla2i parameters,we freed thevarianceof the acqui-
escence factor, ζ j , and fixed the covariance between trait and acquiescence to zero
for identification. We also estimated a second model with all specifications similar to
the GRM but using a multidimensional PCM. This model fixed item discriminations
to 1, and estimated substantive trait variance. After calibrating item parameters, we
estimated subject factor scores using the Expected a Posteriori (EAP) algorithm.
Trait and acquiescence scores were named GRM f1 and GRM f2, respectively, for
the GRM and PCM f1 and PCM f2, respectively, for the PCM. (Chalmers, 2012)

3 Results

Table 1 shows descriptive statistics and criterion validity of the distinct types of scores
investigated here. Whereas the upper half of the table shows scores calculated with a
set of items balanced with respect to item wording, the lower half displays the same
set of scores but calculated using the unbalanced set of items. The last two columns
show zero-order correlations of various scores with standardized achievement in
language and math.

Some key points are worth noticing in Table 1. First, considering classical scores
in the balanced condition, we found that self-management was positively associated
with achievement in magnitudes consistent with previous literature (see Poropat,
2009), while acquiescence tended to be negatively associated with achievement
(Mirowsky & Ross, 1991). Second, Raw ave and ACQ cntr had the same association
with achievement (r = .22 and .18 for language and math, respectively). Consider-
ing the unbalanced item set, Raw ave showed smaller correlations with achievement
(r = .16 and .14) than did acquiescence-controlled scores, ACQ cntr (r = .20 and
.16). This result is likely a consequence of the suppression effect of ACQ discussed
earlier (see Primi et al., 2018). The negative correlation of ACQ with standardized
achievement in language (r = −.12) was slightly stronger than its correlation with
math (r = −.08), corroborating the idea that ACQ is associated with poor language
skills.

When we consider IRT estimated scores from the balanced set of items, we also
found a positive correlation between trait and achievement, but a negative correlation
between acquiescence and achievement. It is interesting to note that only the PCM
had validity coefficients that were of a similar magnitude as classical scores. On the
one hand, this is not surprising as sum scores are a sufficient statistic for estimating
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Table 1 Descriptive statistics and criterion validity of various scores based on classical, partial
credit, graded response model and random intercept multidimensional IRT models

Variables M SD Min Max Correlation

Lang. Math

Balanced scale

Classical scores

Raw ave 3.550.57 1.13 5.00 0.22 0.18

ACQ cntr 0.550.57 −1.87 2.00 0.22 0.18

ACQ 2.950.35 1.00 5.00 −0.12 −0.08

Unidimensional IRT

GRMa 0.000.96 −4.40 3.28 0.17 0.14

PCMb 0.000.54 −2.39 2.05 0.22 0.18

Random intercept MIRT

GRM f1c −0.010.96 −4.40 3.29 0.18 0.15

GRM f2 0.000.59 −3.58 3.67 −0.11 −0.07

PCM f14 0.000.60 −2.67 2.28 0.21 0.17

PCM f2 0.000.30 −1.80 1.78 −0.10 - 0.07

Unbalanced scale

Classical scores

Raw ave 3.530.58 1.07 5.00 0.16 0.14

ACQ cntr 0.570.58 −2.00 2.11 0.20 0.16

Unidimensional IRT

GRMe 0.000.98 −4.80 3.58 0.12 0.10

PCMf 0.010.61 −2.93 2.57 0.19 0.15

Random intercept MIRT

GRM f1g −0.010.97 −4.72 3.59 0.16 0.13

GRM f2 0.000.63 −3.99 4.08 −0.12 −0.08

PCM f1h 0.000.66 −3.09 2.71 0.20 0.16

PCM f2 0.000.35 −2.23 2.19 −0.10 −0.07

Note: Raw ave classical scores calculated via average item endorsing after reversing negatively
phrased items; ACQ cntr classical scores controlled for acquiescence using the procedure by Soto
et al. (2008); ACQ classical acquiescence index calculated via average endorsement of 15 antonym
pairs of items before reversing negatively phrased items; PCM IRT estimated scores based on the
partial credit model; GRM IRT estimated scores based on the graded response model; GRM f1 and
GRM f2 trait and acquiescence scores estimated from the random intercept graded response model;
PCM f1 and PCM f2 trait and acquiescence scores estimated from the random intercept partial
credit model. Fit indices were: aCFI = .68, RMSEA = .08, AIC = 1,062,104, BIC = 1,063,008;
bCFI = .73, RMSEA = .07, AIC = 1,043,494, BIC = 1,044,615; cCFI = .82, RMSEA = .06, AIC
= 1,022,051, BIC = 1,023,179; dCFI = .77, RMSEA = .07, AIC = 1,042,179, BIC = 1,043,091;
eCFI = .73, RMSEA = .08, AIC = 1,513,148, BIC = 1,514,829; fCFI = .78, RMSEA = .07, AIC
= 1,554,601, BIC = 1,555,954; gCFI = .84, RMSEA = .06, AIC = 1,485,955, BIC = 1,487,643;
hCFI = .82, RMSEA = .06, AIC = 1,5182,58, BIC = 1,519,618
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the PCM (De Ayala, 2009), but surprising given that the GRM is often described as a
more realisticmodel for data. Validity coefficients from the other threemodels (GRM
and both random interceptmodels)were similar inmagnitude, butwere slightly lower
than the validity of classical scores.

Although balanced scales have an equal number of items for each pole (15 items),
we still found a difference in item discrimination under GRM across positively (1.27
on average) versus negatively worded (1.03 on average) items, which might yield an
imbalance in the contribution of these items to EAP scores. Since the positive trait
pole was favored, the correction process also becomes unbalanced, and is no longer
similar to what occurred with classical scores. For instance, Raw ave correlated
negatively with ACQ (r = −.05) in the balanced condition while GRM correlated
positively with ACQ and GRM f2 (r =.09 and .07 respectively) This indicates that
the estimation of IRT scores may be slightly biased by ACQ even in balanced scales
due to differences in the discrimination between positively- and negatively-keyed
items. For instance, when discrimination is constrained equal across items (i.e., for
the random intercept PCM), then the correlation between ACQ and the estimated
trait becomes r = −.04.

For score estimates from the unbalanced item set, we found some noticeable
differences. Since there were more positively worded items and they had higher
discrimination (1.52 on average) than negatively worded items (0.79 on average)
under GRM, this might lead to an even stronger positive association of ACQ with
trait scores. In fact, classical acquiescence scores (ACQ) were positively correlated
with Raw ave, r = .18, PCM, r = .10, and GRM, r = .28. By contrast, correlations
between ACQ and self-management were lower when compared to EAP scores from
the random intercept models, GRM f1, r = .03, and PCM f1, r = .01.

Score inflation due to ACQ tended to suppress the correlation between self-
management and achievement. We see that the uncontrolled score Raw ave (r =
.16 and .14 for language and math, respectively) had lower validity coefficients than
ACQ cntr (r = .20 and .16). The random intercept GRM, GRM f1, had better coef-
ficients (r = .16 and .13) than the GRM (r = .12 and .10). Rasch models tended
to have better validities, as the unidimensional PCM (r = .19 and .15) and random
intercept PCM, PCM f1 (r = .20, .16), had the best validity coefficients of any IRT
model. Overall, it is possible that this result indicates that random intercept models
are producing scores that may be better controlling for ACQ.

Figures 1 and 2 show the effect of ACQ correction on scores. The upper part of
Fig. 1 shows the relationship between ACQ (x-axis) and Raw ave (y-axis) for the
balanced item set. When the ACQ index was near 3, scores had the full amplitude
of variation from 1 to 5. As subjects tended to respond inconsistently, that is, tended
to have ACQ > 3 or ACQ < 3, score variation was reduced. When agreeing was not
completely consistent, scores were corrected towards the scale’s center.

The lower part of Fig. 1 shows what happens in the unbalanced item set. We
see the relationship between ACQ (x-axis) and Raw ave (y-axis) on the left, and
between ACQ and ACQ cntr on the right (y-axis). In all graphs, we see a diamond
shape characterizing the ACQ correction, with an important difference. Original
scores (Raw ave) were correlated positively with ACQ (r = .18), but ACQ controlled
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Unbalanced

Fig. 1 Effects of acquiescence correction in classical scores of balanced scales (upper panel) versus
unbalanced scales (lower panel). Scores on y-axis and ACQ indexes in x-axis

scores (ACQ cntr) were slightly negatively correlated withACQ (r = −.08). Because
the scale had more positively than negatively worded items, the correction process
tended to produce the opposite effect, lowering high scores and increasing low scores
if subjects exhibited ACQ or disacquiescence, respectively. This impacts validity
coefficients because, in theory, ACQ is partialled out of ACQ cntr.

Figure 2 shows what happens with IRT scores, with ACQ always on the x-axis.
The left columns show plots for the balanced item set, and the right columns for
the unbalanced item set. On the y-axis, the upper panels represent PCM, the middle
panels GRM and the lower panels GRM f1.We see patterns similar to what is shown
in Fig. 1. In that scores may be corrected for ACQ. Nevertheless, we observe some
variability among methods in the amount that scores are confounded with ACQ.
There is no confounding for the PCM under the balanced item set (r = −.04),
but some confounding under the unbalanced item set (r = .10). The GRM was
slightly confounded in the balanced item set (r = .09), but much more confounded
in the unbalanced item set (r = .28). Finally, random intercept models were less
confounded. For example, for both balanced and unbalanced item sets, GRM f1
correlated with ACQ near zero, r = .03.
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Balanced Unbalanced

Fig. 2 Effects of acquiescence correction in IRT scores (partial credit—PCM, graded respon-
se—GRM and random interceptGRM f1) of balanced scales (left column) versus unbalanced scales
(right column). Scores on y-axis and ACQ indexes in x-axis
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4 Discussion

Acquiescence can negatively affect the criterion validity of self-report instruments.
Balanced scales or acquiescence-controlled scores for unbalanced scales are ways
to improve score validity (Mirowsky, & Ross, 1991; Primi et al., 2018; Soto & John,
2019). But less is known about ACQ corrections and the validity of IRT scores when
scales are composed of both positively and negatively worded items. We tested five
approaches spanning classical scoring, traditional IRTmodels and multidimensional
IRT models based on the random intercept model (Billiet & McClendon, 2000; Cai,
2010; Maydeu-Olivares & Coffman, 2006; Maydeu-Olivares, & Steenkamp, 2018;
Primi et al., 2018). The two modified versions of the random intercept models added
an extra factor to explicitly model ACQ, and these were based on the GRMand PCM.
These models produced ACQ-controlled IRT trait scores and also IRT ACQ index
scores. The best of these models was the random intercept PCM.

We found that ignoring the possibility of ACQ is the worst-case scenario in terms
of criterion validity. In balanced scales, the unidimensional PCM performed better
than the GRM. With unbalanced scales, unidimensional GRM scores had the worst
criterion validity. We suspect that either different item loadings for the GRM are
picking up on some misspecification (lack of modeling ACQ) or that unique item
content is important for criterion validity and is more equally considered under the
PCM.

References

Allen, M. S., Walter, E. E., & McDermott, M. S. (2017). Personality and sedentary behavior:
A systematic review and meta-analysis. Health Psychology, 36(3), 255–263. https://doi.org/10.
1037/hea0000429.

Billiet, J. B., & McClendon, M. J. (2000). Modeling acquiescence in measurement models for two
balanced sets of items. Structural Equation Modeling, 7(4), 608–628. https://doi.org/10.1207/
S15328007SEM0704_5.

Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychome-
trika, 75, 581–612. https://doi.org/10.1007/s11336-010-9178-0.

Chalmers, R. P. (2012). MIRT: A multidimensional item response theory package for the R envi-
ronment. Journal of Statistical Software, 48(6), 1–29. Retrieved from http://www.jstatsoft.org/
v48/i06/.

De Ayala, R. J. (2009). The theory and practice of item response theory. New York: Guilford
Publications.

Embretson, S.E.,&Reise, S. (2000). Item response theory for psychologists.Mahwah,NJ:Lawrence
Erlbaum Associates.

Heckman, J. J., Stixrud, J., & Urzua, S. (2006). The effects of cognitive and noncognitive abilities
on labor market outcomes and social behavior. Journal of Labor Economics, 24(3), 411–482.
https://doi.org/10.1086/504455.

Huang, I.-C., Lee, J. L., Ketheeswaran, P., Jones, C. M., Revicki, D. A., & Wu, A. W. (2017).
Does personality affect health-related quality of life? A systematic review. PLOS ONE, 12(3),
e0173806. https://doi.org/10.1371/journal.pone.0173806.

https://doi.org/10.1037/hea0000429
https://doi.org/10.1207/S15328007SEM0704_5
https://doi.org/10.1007/s11336-010-9178-0
http://www.jstatsoft.org/v48/i06/
https://doi.org/10.1086/504455
https://doi.org/10.1371/journal.pone.0173806


Controlling Acquiescence Bias with Multidimensional … 51

John, O., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big-Five trait
taxonomy:History, measurement, and conceptual issues. InO. John, R.W. Robins, &L.A. Pervin
(Eds.),Handbook of personality: Theory and research (pp. 114–158). New York: Guilford Press.

Kam, C. C. S., & Meyer, J. P. (2015). How careless responding and acquiescence response bias can
influence construct dimensionality. Organizational Research Methods, 18(3), 512–541. https://
doi.org/10.1177/1094428115571894.

Knowles, E. S., & Nathan, K. T. (1997). Acquiescent responding in self-reports: cognitive style or
social concern? Journal of Research in Personality, 31(2), 293–301. https://doi.org/10.1006/jrpe.
1997.2180.

Kyllonen, P. C., Lipnevich, A. A., Burrus, J., & Roberts, R. D. (2014). Personality, motivation, and
college readiness: A prospectus for assessment and development. ETS Research Report Series,
2014(1), 1–48. https://doi.org/10.1002/ets2.12004.

Lipnevich, A. A., Preckel, F., & Roberts, R. D. (2016). Psychosocial skills and school systems in
the 21th century. New York: Springer.

Maydeu-Olivares, A., & Coffman, D. L. (2006). Random intercept item factor analysis. Psycholog-
ical Methods, 11(4), 344–362. https://doi.org/10.1037/1082-989X.11.4.344.

Maydeu-Olivares, A., & Steenkamp, J. E. M. (2018). An integrated procedure to control
for common method variance in survey data using random intercept factor analysis mod-
els. https://www.academia.edu/36641946/An_integrated_procedure_to_control_for_common_
method_variance_in_survey_data_using_random_intercept_factor_analysis_models.

McCrae, R. R. (2018). Method biases in single-source personality assessments. Psychological
Assessment, 30(9), 1160–1173. https://doi.org/10.1037/pas0000566.

Meisenberg, G., &Williams, A. (2008). Are acquiescent and extreme response styles related to low
intelligence and education? Personality and Individual Differences, 44(7), 1539–1550. https://
doi.org/10.1016/j.paid.2008.01.010.

Mirowsky, J., & Ross, C. E. (1991). Eliminating defense and agreement bias from measures of the
sense of control: A 2 × 2 index. Social Psychology Quarterly, 54(2), 127–145. https://doi.org/
10.2307/2786931.

Ozer, D. J., & Benet-Martínez, V. (2006). Personality and the prediction of consequential out-
comes. Annual Review of Psychology, 57(1), 401–421. https://doi.org/10.1146/annurev.psych.
57.102904.190127.

Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R. Shaver, &
L. S. Wrighsman (Eds.),Measures of personality and social psychological attitudes (pp. 17–59).
San Diego, CA: Academic Press.

Poropat, A. E. (2009). A meta-analysis of the five-factor model of personality and academic per-
formance. Psychological Bulletin, 135(2), 322–338. https://doi.org/10.1037/a0014996.

Poropat, A. E. (2014). A meta-analysis of adult-rated child personality and academic performance
in primary education. British Journal of Educational Psychology, 84(2), 239–252. https://doi.
org/10.1111/bjep.12019.

Primi, R., De Fruyt, F., Santos, D., Antonoplis, S. & John, O. P. (2018). True or False? Keying
direction and acquiescence influence the validity of socio-emotional skills items in predicting
high school achievement. Submitted paper under review.

Primi, R., Santos, D., De Fruyt, F., & John, O. P. (2019). Comparison of classical and modern
methods for measuring and correcting for acquiescence. British Journal of Mathematical and
Statistical Psychology.

Primi, R., Santos, D., John, O. P., & De Fruyt, F. D. (2016). Development of an inventory assessing
social and emotional skills in Brazilian youth. European Journal of Psychological Assessment,
32(1), 5–16. https://doi.org/10.1027/1015-5759/a000343.

Savalei, V., & Falk, C. F. (2014a). Recovering substantive factor loadings in the presence of acquies-
cence bias:Acomparisonof three approaches.MultivariateBehavioralResearch, 49(5), 407–424.
https://doi.org/10.1080/00273171.2014.931800.

https://doi.org/10.1177/1094428115571894
https://doi.org/10.1006/jrpe.1997.2180
https://doi.org/10.1002/ets2.12004
https://doi.org/10.1037/1082-989X.11.4.344
https://www.academia.edu/36641946/An_integrated_procedure_to_control_for_common_method_variance_in_survey_data_using_random_intercept_factor_analysis_models
https://doi.org/10.1037/pas0000566
https://doi.org/10.1016/j.paid.2008.01.010
https://doi.org/10.2307/2786931
https://doi.org/10.1146/annurev.psych.57.102904.190127
https://doi.org/10.1037/a0014996
https://doi.org/10.1111/bjep.12019
https://doi.org/10.1027/1015-5759/a000343
https://doi.org/10.1080/00273171.2014.931800


52 R. Primi et al.

Samuel,D.B.,&Widiger, T.A. (2008).Ameta-analytic reviewof the relationships between the five-
factor model and DSM-IV-TR personality disorders: a facet level analysis. Clinical Psychology
Review, 28(8), 1326–1342. https://doi.org/10.1016/j.cpr.2008.07.002.

Savalei, V., & Falk, C. F. (2014b). Recovering substantive factor loadings in the presence of acquies-
cence bias: A comparison of three approaches. Multivariate Behavioral Research, 49, 407–424.
https://doi.org/10.1080/00273171.2014.931800.

Soto, C. J., John, O. P., Gosling, S. D., & Potter, J. (2008). The developmental psychometrics of big
five self-reports: Acquiescence, factor structure, coherence, and differentiation from ages 10 to
20. Journal of Personality and Social Psychology, 94(4), 718–737. https://doi.org/10.1037/0022-
3514.94.4.718.

Soto, C. J., John, O. P., Gosling, S. D., & Potter, J. (2011). Age differences in personality traits from
10 to 65: Big five domains and facets in a large cross-sectional sample. Journal of Personality
and Social Psychology, 100(2), 330–348. https://doi.org/10.1037/a0021717.

Soto, C. J., & John, O. P. (2019). Optimizing the length, width, and balance of a personality
scale: How do internal characteristics affect external validity? Psychological Assessment, 31,
586–590.https://doi.org/10.1037/pas0000586.

Ten Berge, J. M. (1999). A legitimate case of component analysis of ipsative measures, and par-
tialling the mean as an alternative to ipsatization. Multivariate Behavioral Research, 34(1),
89–102. https://doi.org/10.1207/s15327906mbr3401_4.

Valentini, F. (2017). Editorial: Influência e controle da aquiescência na análise fatorial [Editorial:
Acquiescence and factor analysis].AvaliaçãoPsicológica, 16, 120–121. https://doi.org/10.15689/
ap.2017.1602.

Weijters, B., Geuens, M., & Schillewaert, N. (2010). The stability of individual response styles.
Psychological Methods, 15(1), 96–110. https://doi.org/10.1037/a0018721.

Wetzel, E., Lüdtke, O., Zettler, I., & Böhnke, J. R. (2015). The Stability of extreme response style
and acquiescence over 8 years. Assessment. https://doi.org/10.1177/1073191115583714.

Zhang, J., & Ziegler, M. (2018). Why do personality traits predict scholastic performance? A three-
wave longitudinal study. Journal of Research in Personality, 74, 182–193. https://doi.org/10.
1016/j.jrp.2018.04.006.

Ziegler, M. (2015). “F*** You, I Won’t Do What You Told Me!”—Response biases as threats
to psychological assessment. European Journal of Psychological Assessment, 31(3), 153–158.
https://doi.org/10.1027/1015-5759/a000292.

https://doi.org/10.1016/j.cpr.2008.07.002
https://doi.org/10.1080/00273171.2014.931800
https://doi.org/10.1037/0022-3514.94.4.718
https://doi.org/10.1037/a0021717
https://doi.org/10.1037/pas0000586
https://doi.org/10.1207/s15327906mbr3401_4
https://doi.org/10.15689/ap.2017.1602
https://doi.org/10.1037/a0018721
https://doi.org/10.1177/1073191115583714
https://doi.org/10.1016/j.jrp.2018.04.006
https://doi.org/10.1027/1015-5759/a000292


IRT Scales for Self-reported Test-Taking
Motivation of Swedish Students in
International Surveys

Denise Reis Costa and Hanna Eklöf

Abstract This study aims at modeling the self-reported test-takingmotivation items
in PISA and TIMSS Advanced studies for Swedish students using an IRT approach.
In the last two cycles of the assessments, six test-specific items were included in
the Swedish student questionnaires to evaluate pupil’s effort, motivation and how
they perceived the importance of the tests. Using a Multiple-Group Generalized
Partial Credit model (MG-GPCM), we created an IRT motivation scale for each
assessment. We also investigated measurement invariance for the two cycles of PISA
(i.e., 2012 and 2015) and of TIMSSAdvanced (i.e., 2008 and 2015). Results indicated
that the proposed scales refer to unidimensional constructs and measure reliably
students’ motivation (Cronbach’s alpha above 0.78). Differential item functioning
across assessment cycles was restricted to two criteria (RMSD and DSF) and had
more impact on the latent motivation scale for PISA than for TIMSS Advanced.
Overall, the test-taking motivation items fit well the purpose of a diagnostic of test-
taking motivation in these two surveys and the proposed scales highlighted the slight
increase of pupils’ motivation across the assessment cycles.

Keywords Test-taking motivation · PISA · TIMSS · IRT
1 Introduction

Regarded as a regular feature of many educational assessment systems, international
surveys, such as the Programme for International Student Assessment (PISA) and
the Trends in International Mathematics and Science Study (TIMSS), have a major
impact on the discussions about educational quality in many countries around the
world (Wagemaker, 2013).
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Created in 2000 by theOrganisation for EconomicCo-operation andDevelopment
(OECD), PISA assesses 15-year-old student’s literacy in science, mathematics, and
reading. First conducted in 1995 by the International Association for the Evaluation
of Educational Achievement (IEA), TIMSS Advanced assesses students in the final
year of secondary school enrolled in special advanced mathematics and physics
programs or tracks.

As there are no personal benefits related to students’ performance on the test, PISA
andTIMSSAdvanced are usually low-stakes tests for participating students, but high-
stakes for other stakeholders. In this scenario, some pupils may lack the motivation
to do their best on the test and the results, therefore, can be an underestimation of
their knowledge (Eklöf and Nyroos, 2013).

In this study, we created a test-taking motivation scale for the PISA and TIMSS
Advanced assessments in Sweden and we investigated the quality of these measures.
These scales were built using six test-taking motivation items created specifically
for each assessment and based on the expectancy-value model (Wigfield and Eccles,
2000). In particular, item response theory (IRT) analysis was used to examine the
psychometric properties of the test-taking motivation items and their measurement
invariance over the last two cycles of each assessment. Moreover, the differences in
test motivation were studied across the different test administrations.

2 Methods

2.1 Data

A total of 4736 Swedish students participated in the PISA 2012 cycle and 5458
in 2015. In TIMSS Advanced, the 2008 assessment counted with 2303 Swedish
students and in the 2015 cycle, 3937. In their questionnaires, six national items
(Table1) referring to their effort, motivation and how they perceived the importance
of that specific test were presented. All items use four-point Likert-type scales and,
except for negative items, theywere reversed so that score categories are in increasing
order with respect to the target trait, test-taking motivation.

The number of students who answered the test-taking motivation item varied
by assessment and cycle. The percentage of students who had at least one missing
response is larger for PISA 2012 (11%), followed by PISA 2015 (5%), and TIMSS
Advanced 2008 (2%) and 2015 (1%). One possible reason for the missing data is
that the student did not reach the end of the questionnaire where the motivation items
were located. In PISA 2012, for example, about 80% of the students with missing
responses omitted all the motivation items.

To handle this, we imputed the cases using the proportional odds model with stu-
dents’ background information. This analysis was conducted using the mice package
(Buuren and Groothuis-Oudshoorn, 2010). As background variables, we used immi-
grant status, language most often spoken at home and gender for both assessments
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Table 1 Item description and percentage of students with missing data by assessment and cycle

Item Code Description Percentage of missing response

PISA 2012 (%) PISA 2015 (%)

MOTIV_R I felt motivated to do my best on
the PISA test

10.6 4.4

GODEFF_R I engaged in good effort
throughout the PISA test

10.8 4.7

DIDBES_R I did my best on the PISA test 11.1 4.7

WORKIT_R I worked on the tasks in the test
without giving up even if some
tasks felt difficult

10.9 4.5

IMPWEL_R Doing well on the PISA test was
important to me

10.7 4.7

IMP2_R Doing well on the PISA test meant
a lot to me

10.8 4.8

TIMSS Adv. 2008
(%)

TIMSS Adv. 2015
(%)

MOTIV_R I felt motivated to do my best on
this test

2.3 1.0

DIDBE_R I gave my best effort on this test 1.8 1.2

WORKI_R I worked on each item in the test
and persisted even when the task
seemed difficult

2.0 1.1

NOCONC I did not give this test my full
attention while completing it

1.6 0.9

NOEFF I tried less hard on this test as I do
on other tests we have at school

1.9 1.8

NOWORK While taking this test, I could have
worked harder on it

1.7 2.1

Note The suffix “_R” refers to the reversing of the items. All PISA items were reversed from
the original response scale: Strongly disagree (4), Disagree (3), Agree (2) and Strongly agree (1).
Items were scored so that a low value is always indicative of a more negative attitude torwards
the test in terms of perceived importance and reported invested effort. Likewise, three items in the
TIMSS Advanced assessments were reversed: MOTIV_R, DIDBE_R and WORKI_R. In TIMSS
Advanced, the original response scale was: Disagree a lot (4), Disagree (3), Agree (2) and Agree a
lot (1)

and for PISA the students’ economical and socio-cultural status on top of that. A
sensitivity analysis comparing the IRT item parameter estimates with imputed data
and with listwise case deletion was carried out and no substantial difference on the
estimates and respective interval confidences were found. Thus, we proceeded the
analyses using the complete cases.
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2.2 Statistical Analyses

2.2.1 Descriptive Analysis

The percentage of students’ agreement with the test-taking motivation items was
illustrated in a radar plot. For this analysis, negative items were reversed and the
response options dichotomized (with the highest value referring to the two more
positive response categories of the attitudes scale).

2.2.2 Reliability

We computed the Cronbach’s alpha reliability coefficient. It ranges between 0 and 1,
with higher values indicating higher internal consistency of the scale. Commonly ac-
cepted cut-off values are 0.9 to signify excellent, 0.8 for good, and 0.7 for acceptable
internal consistency (OECD, 2017).

2.2.3 Dimensionality

An analysis of the eigenvalues was done. Using the polychoric correlation matrix,
the principal axis factor analysis and the minimum residual solution to estimate
the communalities, eigenvalues were calculated using the psych package (Revelle,
2014). The eigenvalues communicate variance and guide the factor selection process
by conveying whether a given factor explains a considerable portion of the total
variance of the observed measures (Brown, 2014). We used the Kaiser criterion,
where eigenvalues above 1.0 provide an indication of unidimensionality of the latent
structure.

2.2.4 IRT Analyses

The analyses were conducted in four steps. The first step was related to the analysis
of the item parameters through theMultiple-Group Generalized Partial Credit model
(MG-GPCM) approach, considering each assessments cycles as a group and the
estimated item parameter equal (invariant) across groups (Model 1). In the second
step, an analysis of the differential item functioning (DIF) over time was carried out.
For those items that did not present an indication of DIF, their parameter estimates
were fixed across the groups (anchor items) in the third step of the analysis (Model
2). Finally, we estimated the individual scores for each assessment.

The MG-GPCM is based on the assumption that the two-parameter dichotomous
response model governs the probability of selecting the k-th category over the (k-1)
category by (Muraki, 1999):

Pgjk(θg) = exp[∑k
r=1 Zgjr (θg)]

∑K j

m=1 exp[
∑k

r=1 Zgjr (θg)]
, (1)
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where: Zgjr (θg) = Dagj (θg − bgjr ), agj is the slope parameter for group g and item
j , bgjr is the item category parameter for group g, item j , and category r , D is
equal to 1.7, generally inserted to make the logit scale comparable to a normal
metric. The latent trait, θg , is generally assumed to be normally distributed for each
group (g = 1, . . . ,G). In this study, we use the slope-intercept parameterization
implemented in the mirt package (Chalmers, 2012), where Zgjr (θg) = agjθg + dgjr ,
where agj is the slope parameter for group g and item j , dgjr is the intercept parameter
for group g, item j , and category r .

For identification purposes, the mean and variance of the reference group (in case
of PISA, the 2012 cycle and, for TIMSS Advanced, the 2008 assessment) were fixed
to 0 and 1, respectively.

Since oneof the advantages of theMG-GPCMapproach is its flexibility to estimate
item parameters separately for each group, we detected DIF using two criteria and
then evaluated a secondMG-GPCMmodel fixing anchor items. For the DIF analysis,
we calculated the root mean square deviance (RMSD) for each item using the tam
package (Kiefer, Robitzsch, &Wu, 2015) and the differential step functioning (DSF)
using the DIFAS software (Penfield, 2005). The cut-off criteria to flag the item with
DIF was an RMSD value greater than 0.3 (OECD, 2017) or large levels of DSF effect
(i.e., the log-odds ratio estimator is greater than or equal to 0.64 in absolute value)
as suggested in the Penfield’s classification scheme (Penfield, 2008).

For the best model, individual scores were generated using weighted maximum
likelihood (WLE) estimation (Warm, 1989) and were transformed to scales with a
mean of 0 and a standard deviation of 1 for the reference group.

2.3 Student Weights

It is usual in these assessments to use a type of studentweight (called “senateweights”
in PISA) such that all countries contribute equally to the estimation of the item
parameters. On PISA 2015, for example, a senate weight was constructed to sum
up to the target sample size of 5000 within each country (OECD, 2017). Since the
focus of this study is related only to the Swedish samples, the student weights were
not included in this study.

3 Results

3.1 Descriptive Analysis

There was a significant increase in reported test-taking motivation between 2012 and
2015 in PISA. From Fig. 1, we can see a difference of more than 15 percentage points
on student’s agreement for all items in PISA, except on the GODEFF_R item (“I
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Fig. 1 Percentage of agreement by assessment and cycle. Negative items were reversed

engaged in good effort throughout the PISA test”) where the difference was only 5.
For TIMSS Advanced, on the other hand, the highest difference between cycles was
on the DIDBE_R item (“I did my best”), where 9% of the Swedish students agree or
agree a lot with this statement.

3.2 Reliability and Dimensionality

From Table2, we can see that the internal consistency evaluated by Cronbach’s alpha
was at an acceptable level, with all values above 0.78. This measure was higher in the
PISA assessments than in TIMSS Advanced. Using the Kaiser criterion, the eigen-
values suggest that the items could be adequately represented by a unidimensional
scale for each assessment.

Table 2 Cronbach’s α and eigenvalues by assessment and cycle

Assessment Cycle α Eigenvalue 1 Eigenvalue 2

PISA 2012 0.89 4.02 0.27

2015 0.86 3.56 0.37

TIMSS Advanced 2008 0.79 2.78 0.23

2015 0.82 3.09 0.27
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3.3 IRT Analyses

Tables3 and 4 present the item parameter estimates through the MG-GPCM ap-
proach. By considering the item parameters invariant across the assessment cycles
(Model 1), there is an improvement of half standard deviation from PISA 2012 to
2015 and about one quarter for TIMSS Advanced cycles.

Table 3 Item parameter estimates by cycle - PISA

Item code Parameter Model 1 Model 2

2012 2015 2012 2015

MOTIV_R a1 2.304 – 2.972 2.817

d1 2.830 – 4.265 3.309

d2 3.713 – 0.974 0.957

d3 0.989 – −3.338 −3.111

GODEFF_R a1 1.821 – 2.233 –

d1 3.166 – 4.294 –

d2 4.653 – 1.549 –

d3 2.010 – −2.994 –

IMPWEL_R a1 2.661 – 3.239 2.957

d1 3.109 – 4.080 3.235

d2 2.888 – −0.382 −0.050

d3 −0.780 – −4.388 −3.895

WORKIT_R a1 1.669 – 2.145 –

d1 2.774 – 3.752 –

d2 3.493 – 0.798 –

d3 1.336 – −2.632 –

IMP2_R a1 2.510 – 2.927 –

d1 2.532 – 2.988 –

d2 1.570 – −0.994 –

d3 −2.464 – −4.574 –

DIDBES_R a1 2.245 – 2.816 2.576

d1 3.201 – 4.260 4.409

d2 4.627 – 1.148 2.137

d3 2.926 – −2.505 −1.676

Group MEAN 0 0.53 0 0.47

Group VAR 1 0.84 1 0.79

Number of parameters 26 38

Log-likelihood −57971.04 −57391.65

AIC 115994.10 114859.30

BIC 116182.10 115134.00

Note The symbol “–” indicates that the estimates are equal to the 2012 column
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Table 4 Item parameter estimates by cycle - TIMSS Advanced

Item code Parameter Model 1 Model 2

2008 2015 2008 2015

DIDBE_R a1 2.039 – 2.391 –

d1 3.527 – 4.175 –

d2 4.352 – 0.840 –

d3 1.660 – −3.255 –

NOCONC a1 0.671 – 1.093 –

d1 1.002 – 1.573 –

d2 0.307 – −0.808 –

d3 −0.936 – −2.568 –

NOEFF a1 1.363 – 1.896 –

d1 0.456 – 0.812 –

d2 −0.802 – −1.734 –

d3 −3.332 – −3.986 –

WORKI_R a1 0.835 – 1.218 –

d1 1.300 – 1.849 –

d2 0.654 – −0.806 –

d3 −1.102 – −2.928 –

MOTIV_R a1 1.406 – 1.859 –

d1 1.334 – 1.828 –

d2 0.601 – −0.984 –

d3 −1.952 – −3.625 –

NOWORK a1 1.217 – 1.868 1.774

d1 0.013 – 0.841 −0.046

d2 −1.465 – −1.968 −2.279

d3 −4.237 – −4.404 −4.559

Group MEAN 0 0.22 0 0.27

Group VAR 1 1.35 1 1.37

Number of parameters 26 30

Log-likelihood −41786.07 −41424.06

AIC 83624.15 82908.12

BIC 83799.36 83110.29

Note The symbol “–” indicates that the estimates are equal to the 2012 column

Table5 indicates good item fit for all test-motivation items for the Model 1 using
the RMSD criterion. Comparing the levels of DSF effect, however, three items on the
PISA dataset (MOTIV_R, IMPWEL_R, and DIDBES_R) and one item on TIMSS
Advance data (NOWORK) present largeDIF. Thus,we estimated the itemparameters
using anchor items in the analysis and freely-estimated parameters for those with
large DSF (Model 2). Results indicate that flagged items were more discriminative
for PISA 2012 and TIMSS Advanced 2008 than the following cycles. According to
the AIC and BIC criteria, Model 2 was the best model for both assessments.

Figure2 shows the distribution of the individual scores for Model 2 for each
assessment in the logitmetricwithmeasuredvalues ranging from−3 to 3.An increase
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Table 5 The root mean square deviance (RMSD) and the item-level log-odds ratio estimate for
testing the differential step functioning for each assessment
Assessm. Item Code RMSD Step 1 (SE) Step 2 (SE) Step 3 (SE)

2012 2015

PISA MOTIV_R 0.038 0.025 0.941 (0.116) 0.111 (0.068) 0.123 (0.079)

GODEFF_R 0.043 0.027 0.522 (0.173) 0.344 (0.069) 0.385 (0.075)

IMPWEL_R 0.031 0.024 0.709 (0.105) −0.195(0.062) −0.042
(0.092)

WORKIT_R 0.041 0.029 0.098 (0.139) −0.037
(0.060)

−0.083
(0.072)

IMP2_R 0.033 0.016 0.275 (0.086) 0.078 (0.063) 0.013 (0.106)

DIDBES_R 0.066 0.040 −0.172
(0.161)

−1.002
(0.079)

−0.500
(0.063)

2008 2015

TIMSS Adv. DIDBE_R 0.028 0.021 −0.224
(0.132)

−0.442
(0.081)

−0.175
(0.096)

NOCONC 0.054 0.044 0.424 (0.086) 0.278 (0.073) −0.252
(0.105)

NOEFF 0.036 0.019 0.324 (0.076) −0.338
(0.088)

−0.196
(0.130)

WORKI_R 0.042 0.034 −0.056
(0.087)

−0.314
(0.071)

−0.259
(0.110)

MOTIV_R 0.023 0.024 −0.270
(0.088)

−0.100
(0.077)

−0.346
(0.116)

NOWORK 0.065 0.036 0.756 (0.073) 0.189 (0.096) 0.017 (0.157)

Fig. 2 Distribution of the WLE scores for Model 2 (anchor items)
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in students’ test motivation is observed, especially in the PISA assessment. With
these measures, it is possible to monitor the test-taking motivation across assessment
cycles and analyze the relationship between the reportedmotivation and other student
measures, such as performance.

4 Discussion

In this work, we evaluated two test-taking motivation scales included in the Swedish
student questionnaire of two large-scale international assessments. Results indicated
that both scales are unidimensional and, while the item parameters were largely
stable across the two cycles of TIMSS Advanced, half of the items in PISA showed
some DIF. Our findings also indicated that there was a slight increase in test-taking
motivation in PISA 2015 in comparison to 2012which can be related to the change of
the test mode administration from paper and pencil to computer-based across these
two PISA cycles.

For future studies, we intend to expand these analyses to carry out studies of
PISA log-file data to evaluate how the self-reported test-taking motivation measures
agree with student behaviors during the administration of the test. With information
of response times, for example, we can further investigate the construct validity of
these measures.
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AModification of the IRT-Based
Standard Setting Method

Pilar Rodríguez and Mario Luzardo

Abstract We present a modification of the IRT-based standard setting method pro-
posed by García, Abad, Olea & Aguado (Psicothema 25(2):238–244, 2013), which
we have combined with the cloud delphi method (Yang, Zeng, & Zhang in IJUFKBS
20(1):77–97, 2012). García et al. (Psicothema 25(2):238–244, 2013) calculate the
average characteristic curve of each level, to determine cutoff scores on the basis of
the joint characteristic curve. In the proposed newmethod, the influence of each item
on the average item characteristic curve is weighted according to its proximity to
the next level. Performance levels are placed on a continuous scale, with each judge
asked to determine an interval for each item. The cloud delphi method is used until
a stable final interval is achieved. From these judgments, the weights of each item in
the scale are calculated. Then, a family of weighted average characteristic curves is
calculated and in the next step, joint weighted averaged ICC are calculated. The cut-
off score is determined by finding the ability where the joint weighted averaged ICC
reach a certain predefined probability level. This paper compares the performance
of this new procedure for a math test with the classic Bookmarking method. We will
show that this modification to the method improves cutoff score estimation.

Keywords Performance standard setting · Item response theory · Delphi method

1 Introduction

The setting of performance standards is a central issue in educational measurement.
Therefore, the methods for setting them have undergone significant development in
recent years. It has been one of the most researched topics over the last forty years
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and also one of the most contentious (Berk, 1986; Cizek & Bunch, 2007; Glass,
1978; Hambleton, 1978; Hambleton et al., 2000; Jaeger, 1989; Kane, 1994; Linn,
2003; Margolis & Clauser, 2014; Mousavi, Cui & Rogers, 2018). Different methods
of setting cutoff scores provide different standards on the same test (Jaeger, 1989).
Therefore, it is important to develop methods to set cutoff scores with precision and
stability. This work is a contribution in such regard.

2 Method

We present a procedure which introduces a modification to the method for establish-
ing cutoff scores devised by García et al. (2013), combined with the cloud delphi
method. The proposed method can be applied to both a bank already built, and bank
items built to match a certain performance level.

Let us assume that k levels of performance have been defined (for instance, level
1, level 2 and level 3).

In García et al. (2013)’s method, the bank is built to obtain a set of items that will
represent each performance level; but it cannot be agreed that all the items classified
or developed for each performance level represent the description of that level in the
same way.

To capture the difference in the influence of each item for the determination of
the cutoff scores, we resort to the cloud delphi method. To apply this method, it is
necessary to obtain a continuous magnitude of the performance level of each item.
Operationally, a correspondence of the levels is established with the interval [0, k +
1], with the integer values 1, 2, …, k being the lower ends of the levels expressed
qualitatively. For instance, if there are three performance levels, the interval will be
(0, 4), with the sub-interval (0, 1) corresponding to “does not reach level 1,” interval
[1, 2) to level 1, interval [2, 3) to level 2, and (3, 4) to level 3. There is a bijective
function between the scale of skill and performance levels.

From a group of judges and by applying the cloud delphi method, a numerical
value is obtained on the performance scale: where the item will have a subjective
probability of 0.5 of being correctly responded to by a subject with that value on
the scale. It is a difficult task for a judge to determine the point of the scale where
the above property is fulfilled. However, the proposed method asks each judge to
determine an interval on the performance scale, where he considers a subject with
that performance level to have a 0.5 probability of correctly responding to the item.
The width of the interval will reflect the uncertainty in the judge’s response. The
cloud delphi method allows us to stabilize their response, and the intervals provided
by each judge can be used to determine the item score on the performance scale.
This value of each item determines a position on that scale, which will then be used
to weight its influence on the establishment of each cutoff score.

After the items have been calibrated, the ICC of each item can be used to calculate
the weighted ICC in relation to each cutoff score, which wewill note asWPk(θ).This
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curve connects the performance level scale with the ability scale, and represents the
probability that a subject will correctly respond to a typical item of cutoff score k.

From the WPk(θ) we can find the joint probability of correctly responding to a
prototype item of cutoff score k and the previous cutoff scores. We will note this
curve as JW Pk(θ).The cutoff score will be determined as the value of the ability
that causes the joint probability to reach a predetermined value μ (for instance, 0.5);
that is, it solves the equation JW Pk(θ) = μ.

2.1 Cloud Delphi Method

The cloud model relates a qualitative concept with quantitative data based on prob-
ability and the fuzzy set theory. The most important model here is the normal cloud
model, based on the normal distribution and the Gaussian membership function. In
particular, the normal cloud model makes it possible to measure the deviation of a
random phenomenon from a normal distribution, when the former does not strictly
satisfy the latter (Wang, Xu, & Li, 2014).

This model uses three numerical concepts: expectation (Ex); entropy (En), which
represents the degree of cloudiness of the concept; and hyper entropy (He), which
represents the variability of the concept in the cloud (Yang, Zeng, & Zhang, 2012).

Formally, let us denote U as the universe of discourse, which is made up of num-
bers, and let T be a qualitative concept. Let us assume that concept T is determined
in U by its expectation, entropy and hyper entropy; in other words, by the triple (Ex,
En, He). Let x ∈ U be a random realization of concept T, such that x has normal
distribution of mean Ex and variance σ 2

x . In addition, we assume that σ 2
x is a random

variable with a normal distribution of mean En and variance He2. LetμT (x) ∈ [0, 1]
be the certainty degree of x belonging to T. We will say that the distribution of x over
U is a normal cloud if

μ(x) = e
(x−Ex)2

2(y)2 wi th y ∼ N
(
En, He2

)
(1)

Then, the distribution of x in universe U is defined as a cloud and x is called
cloud drop. This definition establishes that drop x ∈ U is an extension of concept T.
Mapping μT (x) establishes that the certainty degree of x belonging to concept T is
a probability distribution (Yang et al., 2012).

The procedure for applying the cloud delphi method was developed by Yang et al.
(2012), andwe applied it by following the procedure explained in the previous section
to obtain the level of each item.

A set of n judges was asked to determine the interval on the performance level
scale in which they think a subject has a 0.5 probability of correctly responding to
the item. The procedure involves the following steps:

Step 1 : Set the iteration counter j equal to one.
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Step 2 : In iteration j, each judge provides the requested interval. The following

intervals are thus obtained
[
l( j)i , u( j)

i

]
, where i indicas the i-th judge.

Step 3 : The interval provided by each judge is expressed in terms of the normal

cloud model, determined by the triple C ( j)
i =

(
Ex ( j)

i , En( j)
i , He( j)

i

)
i =

1, . . . , n.

Cloud parameters can be calculated as follows for i = 1,…, n:

Ex ( j)
i = l( j)i +u( j)

i
2

En( j)
i = u( j)

i −l( j)i
6

He( j)
i = max{u( j)

i −u( j−1)
i ,0}+max{l( j−1)

i −l( j)i ,0}
6 and He(1)

i = En(1)
i
6

(2)

Step 4 : Generate the feedback information for the next iteration by using cloud
aggregation algorithms described by Yang et al. (2012).

The synthetic cloud and weighted cloud of each item are shown graphically: to
each judge for the purpose of making a new estimate of the interval. These clouds
are determined by means of the following equations:

Synthetic Cloud

Let us assume we have n clouds Ci = (Exi , Eni , Hei )i = 1, . . . , n. The param-
eters of synthetic cloud Cs(Exs, Ens, Hes) are defined by

Exs = 1
n

n∑

i=1
Exi

Ens = 1
6

[
max

i
{Exi + 3Eni } − min

i
{Exi − 3Eni }

]

Hes = 1
n

n∑

i=1
Hei

(3)

Weighted Cloud

The parameters of weighted cloud Cwa(Exwa, Enwa, Hewa) are defined by

Exwa =
n∑

i=1
wi Exi

Enwa =
√

n∑

i=1
(wi Eni )2

Hewa =
√

n∑

i=1
(wi Hei )2

(4)

The relative importance of each judge in the j-th step is:
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r ( j)
i = 1

∣∣
∣∣

(
Ex ( j)

i −Ex ( j)
s

)

Ex ( j)
s

∣∣
∣∣ + En( j)

i + He( j)
i

i = 1, 2, . . . , n (5)

Finally, the weights are:

w
( j)
i = r ( j)

i∑n
i=1 r

( j)
i

i = 1, 2, . . . , n (6)

Step 5 : The relative difference of the entropy with respect to the previous iteration,
which we will denote as �En; and the Unc ratio of hyper entropy with
respect to the entropy, are calculated for the j-th iteration.

�En( j)
i =

∣
∣
∣En( j−1)

i −En( j)
i

∣
∣
∣

En( j−1)
i

y �En(1)
i = En(1)

i

Unc( j)
i = He( j)

i

En( j)
i

i = 1, . . . , n
(7)

Step 6 : IfUnc( j)
i = 0 and for δ> 0 prefixed�En( j)

i ≤ δ i = 1, 2, . . . , n iterations
are completed.

The cloud delphi method is applied until the opinion stabilizes. Once the final
intervals have been obtained, the synthetic cloud and weighted cloud are obtained.
The weighted cloud of each item is considered the final decision of the judges; and
its expectation, which we will denote as bi , will be the score of the item on the
performance scale.

To illustrate the information received by a judge, Fig. 1 shows the graph for item
230 of a mathematics test.

2.2 Setting Cutoff Scores

This second stage involves generalizing García et al. (2013)’s method to obtain the
cutoff scores. From the ICCs of each item, the weighted average ICC is obtained at
each cutoff score.

WPk(θ) =
∑N

j=1 K
(
b j−k
h

)
Pj (θ)

∑N
j=1 K

(
b j−k
h

) (8)

where b j is the item score estimation on the performance scale, h is the bandwidth
and K is a kernel. Kernels are used to determine the weight of each item in the
weighted average ICC estimation.
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Fig. 1 Cloud model
showing synthetic cloud,
weighted cloud and judge’s
opinion for mathematics
item 230

Synthetic cloud Weighted cloud

Judge’s opinion

Joint averaged ICC (JWP) is calculated for the cutoff scores and represents the
probability that an examinee with ability θ will respond correctly to the prototype
item of cutoff score k and all previous ones. It is calculated by means of JW Pk(θ) =
k∏

z=1
WPz(θ).

To calculate cutoff score k, we identify the ability for which the probability of
responding to the prototype item of cutoff score k and the previous ones is equal
to a predetermined value. We denote probability with μ and the examinee’s ability
with θcs . This ability is the solution to the equation JW Pk(θcs) = μ, from which the
cutoff score is obtained.

3 Results

The method was tested in a university entrance exam assessing reading and math-
ematics (Rodríguez, 2017). Two methods were applied for performance standard
setting: bookmark and the method proposed in this paper.

The item bank has 247 items; a sample of 50 reading and 50 mathematical items
was taken. Judges established three performance levels. For the proposedmethod, two
kernels were applied: Gaussian and Epanechnikov. The Gaussian kernel is defined
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by 1√
2π
e−u2/2; the Epanechnikov kernel by 3

4

(
1 − u2

)
, with |u| ≤ 1. Results for

different methods are shown in Tables 1, 2, 3 and 4.

Reading

The final cutoff scores from the proposed method represent the average of the
results in both kernels.

Mathematics

For theMathematics test, the final cutoff scores by the proposed method represent
the average of the results in both kernels.

A sample was selected of 204 students who took the exam. Their performance
levels were classified using the bookmark method and proposed method. They were
also classified by expert judgment. The proportions of students in each level are
presented in the following graph (Fig. 2).

Table 1 Cutoff scores
obtained by Bookmark
method in the three
performance levels for the
Reading test

Levels Bookmark

1 −0.94

2 0.12

3 1.62

Table 2 Cutoff scores
obtained by the proposed
method using Gaussian and
Epanechnikov kernels in the
three performance levels for
the Reading test

Levels Epanechnikov Gaussian Average

1 −1.63 −1.47 −1.55

2 −0.19 −0.07 −0.13

3 1.27 1.37 1.32

Table 3 Cutoff scores
obtained by Bookmark
method in the three
performance levels for the
Mathematics test

Levels Bookmark

1 −1.23

2 −0.09

3 1.57

Table 4 Cutoff scores
obtained by the proposed
method using Gaussian and
Epanechnikov kernels in the
three performance levels for
the Mathematics test

Levels Epanechnikov Gaussian Average

1 −0.88 −0.94 −0.91

2 −0.01 0.13 0.06

3 1.39 1.43 1.41
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Fig. 2 Comparative graphs of the two methods and expert judgment for the cutoff scores of each
level of the Mathematics and Reading tests

4 Discussion

The proposed method establishes cutoff scores closer to the expert judgment than
the bookmark method. Moreover, it is better at capturing the variability of the item
bank and manages to weight the qualitative judgments. It differs from the bookmark
method in that all items participate in determining the cutoff score beyond its order-
ing by level of difficulty. In addition, it avoids the confusion and discrepancies of
the bookmark method when there is no agreement between the difficulty obtained
through the theory of response to the item, and a judge’s perception of subjective
difficulty related to the item. This method considers both the empirical difficulty
and the judges’ relative difficulty, with both participating in determining the cutoff
scores.

This method also allows greater variability in the judges’ opinion, capturing the
fuzziness of the process; it does not require the determination of a score, but an
interval, which makes the task simpler and more efficient.

Unlike García et al. (2013)’s original method, which requires that the items are
developed for a certain performance level, it can be applied to banks of previously
developed items. The proposedmethod is alsomore flexible, as the original considers
the items developed for each level to contribute with the same magnitude to each
cutoff score. Therefore, this approach makes it possible to obtain a more adjusted
valuation of the contributions of each item in the continuum representing the per-
formance level. These advantages make the proposed method a better alternative for
the establishment of cutoff scores.
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Model Selection for Monotonic
Polynomial Item Response Models

Carl F. Falk

Abstract One flexible approach for item response modeling involves use of a
monotonic polynomial in place of the linear predictor for commonly used para-
metric item response models. Since polynomial order may vary across items, model
selection can be difficult. For polynomial orders greater than one, the number of
possible order combinations increases exponentially with test length. I reframe this
issue as a combinatorial optimization problem and apply an algorithm known as sim-
ulated annealing to aid in finding a suitable model. Simulated annealing resembles
Metropolis-Hastings: A random perturbation of polynomial order for some item is
generated and acceptance depends on the change in model fit and the current algo-
rithm state. Simulations suggest that this approach is often a feasible way to select a
better fitting model.

Keywords Combinatorial optimization · Nonparametric item response theory ·
Monotonic polynomial · Balanced incomplete block design

Many standard unidimensional item response models assume a normally distributed
latent trait and a simplistic relationship between the latent trait and the item responses.
For example, the two-parameter logistic model (2PL) represents a multivariate ex-
tension of logistic regression, where the log-odds of obtaining a correct response to
the items is a linear function of the latent trait (Birnbaum, 1968). This relationship
may not be expected to hold for all educational and psychological constructs (Meijer
& Baneke, 2004), and violations may arise from population heterogeneity in expo-
sure to unique item content (Falk & Cai, 2016b) or items that require multiple steps
in order to complete (Lee & Bolt, 2018). Additional flexibility in the trait-response
relationship is possible, including but not limited to nonparametric Kernel smoothing
(Ramsay, 1991), smoothed isotonic regression (Lee, 2007), Bayesian nonparamet-
ric techniques (Duncan & MacEachern, 2013), normal ogive models that assume
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heteroscedastic errors (Molenaar, 2015), and splines (Ramsay &Wiberg, 2017). Al-
ternatively, if the source of this assumption violation stems in part from a non-normal
trait distribution, one could directly model such non-normality (Woods, 2007).

The focus of this paper is on a monotonic polynomial (MP) approach to flexible
item response function (IRF) estimation (Falk&Cai, 2016a, 2016b; Liang&Browne,
2015). The basic idea behind MP item response models is to replace the linear pre-
dictor of a standard item responsemodel with anMP. Like nonparametric techniques,
MP models make few assumptions about the underlying process that produces non-
standard response functions. Rather, increasing polynomial order allows MPmodels
to approximate many different functional forms, regardless of whether the MP is the
true model (Feuerstahler, 2016). In contrast to the 2PL, a logistic function of a mono-
tonic polynomial models the log-odds of a correct response as a polynomial function
of the latent trait with constraints imposed such that this relationship is monotonic.

Webelieve theMPapproachwarrants further study for its potential to fulfill several
needs of large scale or operational testing. For example, a psychometricianmayuse an
MP-based model to improve item fit for a few items on a long test, allowing retention
of expensive-to-develop items, but still use a traditional item model such as the
2PL or three-parameter logistic (3PL) for the remaining test items. Since MP-based
models can also be explained using an analogy with polynomial regression, MP-
based approaches may be more substantively interpretable to some stakeholders. We
also conjecture that the derivatives necessary forMP-based itemmodels to be used in
a computer adaptive test with traditional item selection strategies are readily available
in closed form, in contrast to some other approaches (Xu&Douglas, 2006). Finally, a
testing program that has hundreds of items is likely to employ a planned missing data
design. It would otherwise be burdensome to expect respondents to complete all such
test items in a diligent manner. MP-based item models can be used in conjunction
withmaximummarginal likelihood (MML) estimation (Bock&Aitkin, 1981), which
can be used with planned missing data designs and investigations of differential item
functioning (Falk & Cai, 2016a).

1 The Computational Problem

One potential barrier for MP-based models involves a computational problem in
selecting polynomial order. To further understand, consider the IRF for a logistic
function of a monotonic polynomial (Falk & Cai, 2016a; Liang & Browne, 2015):

Pj (1|θ) = 1

1 + exp(−(c j + m j (θ)))
(1)

where j = 1, . . . , n indexes n test items, θ corresponds to the latent trait, and m j (θ)

is a polynomial term:

m j (θ) = b1, jθ + b2, jθ
2 + · · · + b2k j+1, jθ

2k j+1 (2)
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Fig. 1 Example response functions for three different order polynomials

m j (θ) is parameterized to bemonotonic increasing and has a non-negative deriva-
tive with respect to θ . This is accomplished in part by a polynomial with an odd
number of terms: 2k j + 1, where k j is a non-negative integer that controls polyno-
mial order for item j (see Fig. 1). In addition, the coefficients, b1, j , b2, j , . . . , b2k j+1, j ,
are not directly estimated, but are a function of 2k j + 1 other parameters with con-
straints that maintain monotonicity. Other MPmodels have been developed based on
the 3PL, generalized partial credit, and graded response models (Falk, 2018; Falk &
Cai, 2016a, 2016b).When k j = 0, thesemodels reduce to their standard counterparts
(e.g., Eq. 1 reduces to the 2PL).

The key to the computational problem concerns the selection of k j , which may be
different for each item. This problem is a byproduct of using MML for estimation:
Selection of k j for one itemmay affect itemfit for other items and overall model fit. In
one investigation, Falk andCai (2016a) employed a step-wise approachwherebyAIC
was used to select a single increase in polynomial order for one item at a time. This
approach is difficult to usewith a long test as each stepwould require fitting nmodels.
For example, if n = 100, then 100 models must be fit before increasing polynomial
order for a single item. In a different paper, Falk and Cai (2016b) experimented
with use of summed score item fit statistics, S − X2 (Orlando & Thissen, 2000),
to screen for items that may be good candidates for use of an MP. Although this
approach arguably improved fit, S − X2 had power that was less than expected to
detect non-standard items, and using summed score based item fit statistics may not
always be desirable with missing data. If an observed score substitute for θ is used
in estimation instead, then the modeler may proceed item by item in selection of k j .
However, this approach may not readily handle multiple group models or models
with missing data.

1.1 A Possible Solution

We reframe the selection of k j for each item as a combinatorial optimization problem.
If we consider k j for each item from 0 to 2, then there are 3n possible combinations of
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polynomial order. Clearly for large n, there may bemany combinations and therefore
too many possible models to actually try out even with a modern computer. Further
suppose that there is some combination of polynomial order that may be optimal
(e.g., according to information criterion such as AIC or BIC). In addition to a step-
wise approach being computationally slow, it may also be prone to getting stuck at
a local optimum.

Although there are a number of combinatorial optimization algorithms suitable
for finding an approximate global optimum, we chose to experiment with simulated
annealing (Černý, 1985; Kirkpatrick, Gelatt, & Vecchi, 1983), which has seen some
use by psychometricians (Drezner &Marcoulides, 1999; Edwards, Flora, & Thissen,
2012). SA gets its name in part from an analogy to metallurgy, yet we find it more
intuitive to explain its workings by analogy to Metropolis-Hastings (MH). Given
some model, Ms , at iteration s, SA has the following steps:

1. Generate some candidate model, M∗
s , from a list of possible neighboring models

in a well-defined search space.
2. Compute energy for the candidate, e(M∗

s ), and current model, e(Ms).
3. Determine acceptance/rejection of the candidate, M∗

s , based on the difference
in energy, e(M∗

s ) − e(Ms), and the current temperature, ts , which represents the
current algorithm state.

4. Repeat 1–3 and stop based on an iteration maximum, S, or termination rule.

In the sameway thatMHwill tend to move towards and sample from high-density
regions of a probability distribution, SA will tend to move towards and select models
in regions of a search space that have better fit. In our application, we allowed values
for k j between 0 and 2, which defines the search space as the 3n possible polynomial
order combinations. We considered a neighboring model to be a random increment
or decrement of 1 to k j for one or two items that were randomly sampled with
uniform probability. For example, if item 5 were to be randomly selected and the
current k5 = 1, then the candidate could only change to k5 = 0 or k5 = 2 (selected
with equal probability). If k5 = 0, then the candidate had k5 = 1. k j for all other
items would remain as-is. Changing k j by only one at a time for each item and only
for a couple of items may allow a reduction in estimation difficulty. For example,
use of parameter estimates from a lower-order polynomial may be used as starting
values for some parameters when estimating models with higher-order polynomials.
However, defining neighbors and the search space in this way, it is possible to move
from one state of the search space (e.g., all k j = 0) to the furthest state (e.g., all
k j = 2) within only 300 or 150 steps or less if n = 100 and either one or two items’
polynomials are perturbed at each step.

Energy is a function of the fittedmodel and defines its optimality. For this purpose,
we used e(·) to calculate either AIC or BIC. Thus, lower energy indicates better fit.
The acceptance probability of M∗

s was based on the following,

min
{
1, exp(−(e∗ − e)/ts)

}
(3)
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wherewe use e∗ and e as shorthand for e(M∗
s ) and e(Ms), respectively. In otherwords,

if M∗
s has lower energy (or improves model fit), it is accepted with certainty. If M∗

s
results in worse fit, the model may still be accepted with some non-zero probability.
The function in (3) is based on Kirkpatrick and colleagues’ work (Kirkpatrick et
al., 1983) and is often used in applications of SA, in part due to its similarity to
acceptance probabilities under MH (see p. 672).

Acceptance of a suboptimal model may still be useful, especially early in the
algorithm, to the extent that it allows SA to avoid being stuck in a local optimum.
However, ts typically decreases across iterations as determined by a cooling schedule
so that the probability of accepting a suboptimal model is less likely over time.
A conceptual explanation of this behavior is as follows. If after many iterations
SA has led Ms to (hopefully) be near the global optimum, a lower value for ts
will provide increasingly smaller acceptance probabilities for suboptimal models,
potentially forcing additional acceptedmodels to be closer and closer to the optimum.

Although there is a rich literature on the selection of a starting value and cooling
schedule for ts , in this paper we opted for a simplistic solution as a preliminary test
of SA’s potential. In particular, we considered starting temperatures of 5, 10, and 25.
To provide a concrete example, suppose an increase in BIC of 10 is very undesirable.
With ts = 5, ts = 10, and ts = 25 such an increase would yield acceptance of ap-
proximately .14, .37 and .67, respectively, meaning that in most cases such a model
would be accepted when ts = 25, but rejected when ts = 5 or ts = 10. We chose a
straight cooling schedule in which temperature decreases linearly across iterations:
ts = t0(S − s)/S, where t0 is the starting temperature. Though we note that finer
tuning may result in slightly better performance (Stander & Silverman, 1994).

2 Simulations

Simulations were conducted to test the ability of SA to select polynomial order for
MP-based item models. The main outcome was item response function recovery,
followed by whether SA correctly modeled non-standard items with an MP. A final
purpose was to test MP-based models along with SA under conditions that might
occur with a planned missing data design.

2.1 Method

Fixed Factors. Simulated datasets included 100 dichotomous items, 5000 respon-
dents, and a standard normal θ . Twenty-five replications per cell of the below data
generation design were conducted, with data generation in R (R Core Team, 2015)
and models fitted using rpf Pritikin (2016) and OpenMx Neale et al. (2016).

Data Generation. We manipulated the percentage of items that followed a non-
standard model (20, 40, 60, and 80%), with such IRFs generated as the cumula-
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tive distribution function (CDF) from a mixture of normal variates, p1N (μ1, σ
2
1 ) +

p2N (μ2, σ
2
2 ) + p3N (μ3, σ

2
3 ). To generate variety in IRFs across items and datasets,

the following values were randomly generated, p1 ∼ unif(.1, .6), p2 ∼ unif(.1, .3),
p3 = 1 − p1 − p2, μ1 ∼ N (−2.2, .22), μ2 ∼ N (2.2, .22), μ3 ∼ N (0, .22), σ1 ∼
N (2, .32), σ2 ∼ N (.6, .32), and σ3 ∼ N (.6, .32). The remaining items followed a
normal CDF (analogous to a normal ogive model) with μ ∼ unif(−2.5, 2.5) and
σ ∼ N (2, .42). Although the MP-based item model does not strictly follow the ex-
act same shape as the normal CDF items, we still consider them “standard” items
for the following investigation since these items should be well approximated by a
2PL or MP with k = 0.

We also compared complete data (all respondents completed all items) versus
missing data. The missing data condition emulated a planned missing data design
with a balanced incomplete block design. The 100 items were split into 5 blocks
of 20 items each. Ten test forms with 40 items (i.e., 2 blocks) each were created,
corresponding to 60%missing data.We argue that this number of items per test-taker
is not atypical of such a design for item calibration, while 60% missing data at this
sample size may pose a challenge for MP models.

Fitted Models. To all datasets, we used the logistic function of an MP in (1) as
parameterized by Falk and Cai (2016a) and included three models in which k was
fixed to the same for all items: k = 0, k = 1, and k = 2. Note that k = 0 corresponds
to the 2PL model. Following these models, we performed several runs of SA by
crossing the following conditions: Energy (AIC vs. BIC), starting temperature (5,
10, and 25), and number of items to perturb (1 vs. 2). One of the three fixed models
with the best energy was chosen as the starting model for each SA run. For all MP
models with k > 0, soft Bayesian priors following Falk and Cai (2016a) were used.
One additional model followed the same procedure as SA and started at the best fixed
k model according to BIC, but all candidate models were accepted with certainty.
We refer to this approach as semi-random in what follows, and was included to test
whether SA has any advantage over a completely random search in the neighborhood
of the best BIC of the fixedmodels. This and all SA runs included only 300 iterations,
and the best model according to AIC or BIC was recorded as the selected model,
regardless of whether it was the last accepted model.

2.2 Results

Response Function Recovery. Recovery of response functions was assessed using
root integrated mean square error (RIMSE) (Ramsay, 1991), using Q = 101 equally
spaced quadrature points (Xq ) between −5 and 5:

RIMSE j =
(∑Q

q=1((P̂j (1|Xq) − Pj (1|Xq))
2φ(Xq)

∑Q
q=1 φ(Xq)

)1/2

× 100 (4)



Model Selection for Monotonic Polynomial Item Response Models 81

which can be understood as the root of a weighted mean of squared differences
between true, Pj (1|Xq), and estimated, P̂j (1|Xq), response functions, with the pop-
ulation density for θ , φ(Xq), providing weights. Lower values of RIMSE are better,
and the values we report were averaged across all items and replications in each cell
of the simulation design.

In general, differences across most tuning options for SA were small for RIMSE,
with the number of item perturbations and starting temperature resulting in differ-
ences in average RIMSE less than .1 in each cell of the data generation design.
For brevity, we report RIMSE results using an initial temperature of 5 and a single
item perturbation per iteration of the algorithm. This starting temperature slightly
outperformed the other SA conditions.

The best (according to AIC or BIC) out of the fixed (all k = 0, k = 1, or k = 2)
models was compared with the 2PL (all k = 0), SA (using AIC or BIC), and semi-
randommodels, andRIMSE for thesemodels appears in Table1. The best performing
model is highlighted in bold for each column, and the second best in bold and italics.
We highlight several noticeable trends. First, AIC tended to do better than BIC with
complete data and a higher percentage of non-standard items. This result tended to
hold regardless of whether SA or a fixed k was utilized. For example, with complete
data and 80% non-standard items, use of AIC resulted in RIMSE of 1.98 and 1.95,
for SA and fixed conditions, respectively, whereas BIC resulted in 2.42 and 2.91.
With only 20% non-standard items, BIC performed better than AIC, and this was
especially true under missing data where SA using AIC (RIMSE = 1.93) had worse
performance than SA with BIC (RIMSE = 1.77) and all other models (RIMSE =
1.81). SA in conjunction with AIC selection was otherwise the best or second best
performing model across all other conditions. However, we note that SA with BIC
always outperformed the 2PL and semi-random conditions. In contrast, SA with

Table 1 Root integrated mean square error (response function recovery)

Complete data Missing data

Model 20% 40% 60% 80% 20% 40% 60% 80%

SA (AIC) 1.45 1.57 1.81 1.98 1.93 2.31 2.57 2.75

SA (BIC) 1.39 1.70 2.09 2.42 1.77 2.26 2.66 3.02

Fixed (AIC) 1.58 1.65 1.82 1.95 1.81 2.34 2.71 2.93

Fixed (BIC) 1.50 1.98 2.50 2.91 1.81 2.33 2.80 3.24

2PL 1.50 1.98 2.50 3.01 1.81 2.33 2.80 3.24

Semi-random 1.49 1.96 2.43 2.81 1.81 2.33 2.80 3.23

Note Percentages refer to the number of non-standard true item response models. SA Simulated
annealing; fixed = best out of all k = 0, k = 1, k = 2, models according to AIC or BIC; 2PL =
two-parameter logistic. The best RIMSE value in each column is in bold, the second best is in bold
and italics
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AIC had poor performance in this single cell of the design versus the 2PL and semi-
random model. Finally, SA tended to do better than use of fixed k, though this trend
tended to hold within a particular information criterion. For instance, SA with AIC
tended to do better than fixed k with AIC selection, and SA with BIC did better than
fixed k with BIC selection.

Flagging of Non-standard Items. Although a secondary outcome, we might
expect that better fitting models using SA will tend to have non-standard items
modeled using k > 0. We therefore examined sensitivity = # hits/# actual positives
= # non-standard items using MP/# non-standard items, and the false positive rate =
# false positives/# actual negatives = # standard items using MP/# standard items.

We desire high sensitivity, but low false positives—the upper-left region of each
panel in Fig. 2. A starting temperature of 5 had a slight advantage over 10, which in
turn was better than 25.A better sensitivity/false positive trade-off appears present
under complete versus missing data. AIC (versus BIC) resulted in higher sensitivity,
but also more false positives. It is difficult to further compare AIC and BIC due to
little overlap on each axis. In some casesBIChad near zero false positives, but enough
sensitivity to improve IRF recovery. For BIC and a starting temperature of 5, only
two cells had false positive rates above .02 (both complete data, 80% non-standard,
with .16 and .19). Excluding these two cells, sensitivity for BIC still ranged from .07
to .41. Although not explicitly depicted, a lower percentage of non-standard items
tended towards the lower left of these plots, and increasing percentages are connected
by straight lines. That is, a higher percentage of non-standard items tended to result
in higher sensitivity and higher false positives.
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Fig. 2 False positives and sensitivity for final models selected by simulated annealing. Note “t”
indicates starting temperature
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3 Discussion and Conclusion

We conclude that SA has potential to aid in selecting polynomial order for MP-based
item models in that SA tended to improve IRF recovery under most conditions. This
result is promising given our initial attempt at SA implementation. For instance,
tuning of the cooling schedule may further improve performance. In retrospect, a
starting temperature of 25may allow initial acceptance ofmany poorly fittingmodels,
and a lower starting temperature is preferable. The number of iterations could also be
increased, yet a computational advantage is still apparent over a step-wise approach:
300 fitted models would have only allowed change in polynomial order for 3 items
on a test with n = 100.

There were some trade-offs in the choice of AIC versus BIC. AIC tended to have
greater gains in IRF recovery, except undermissing data andwhen few items followed
a non-standardmodel. AsAIC had greater sensitivity inmodeling non-standard items
with an MP, it also tended to result in some over-fitting. Given the great contrast in
sensitivity and false positive rates, we suppose that the psychometrician’s preference
for a conservative (BIC) versus liberal (AIC) flagging of non-standard items may
guide which to use. Of course, other optimality criterion or use of other item fit
statistics may be used in future research. In addition, test length, sample size, and
the amount of missing data may also be important to consider and could be further
examined.

A similar computational problemmay hold for other flexible parametric modeling
techniques (Lee & Bolt, 2018): Should we use a standard item model or a different
modeling approach? To the extent that the test is very long, this same problem may
occur if one is trying to decide between several different models for each test item. Of
course, substantive theory should be used to guide modeling choices where possible.
However, in the absence of good theory, an automated approach such as that we
have provided here may be a reasonable start to help improve fit while identifying
which items require closer examination, especially for a long test or large item bank.
MP-based models do not directly inform about the source of item misfit. Further
follow-up analyseswith alternativemodels and/or content analysis of particular items
may provide insight into whether an MP or other modeling approach is appropriate.
That is, there is both room for MP-based itemmodels to complement other modeling
approaches, and also for such combinatorial optimization algorithms to be used in
selecting whether to use any of these other modeling approaches.
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TestGardener: A Program for Optimal
Scoring and Graphical Analysis

Juan Li, James O. Ramsay and Marie Wiberg

Abstract The aimof this paper is to demonstrate how to useTestGardener to analyze
testing data with various item types and explain some main displays. TestGardener
is a software designed to aid the development, evaluation, and use of multiple choice
examinations, psychological scales, questionnaires, and similar types of data. This
software implements the optimal scoring of binary and multi-option items, and uses
spline smoothing to obtain item characteristics curves (ICCs) that better fit the real
data. Using TestGardner does not require any programming skill or formal statis-
tical knowledge, which will make optimal scoring and item response theory more
approachable for test analysts, test developers, researchers, and general public.

Keywords Item response theory · Graphical analysis software · Optimal scoring ·
Spline smoothing

1 Introduction

TestGardener is the successor of TestGraf, and both softwares are designed to aid the
development, evaluation, and use of multiple-choice examinations, psychological
scales, questionnaires, and similar types of data. TestGraf was developed by James
Ramsay (1995) and has been widely used as an analysis and/or teaching tool of
nonparametric item response theory (IRT) in fields like education (Liane, 1995;
Nering & Ostini, 2010), psychology (Lévesque et al., 2017; Sachs et al., 2003),
medicine (Gomez, 2007; Luciano et al., 2010), and business (Laroche et al., 1999).
Users who are familiar with TestGraf can still choose to use its algorithms such as
item correct score and kernel smoothing within the TestGardener framework. But
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this paper will focus on the new features (spline smoothing and optimal scoring) and
displays that are included in TestGardener.

When we analyze and evaluate real-world testing data, a known problem with
parametric IRT is the inability to model all items in a test accurately, even in care-
fully developed large-scale tests. Using spline smoothing, TestGardener can provide
estimated item characteristic curves (ICC) with high precision, even for ill-behaved
items. TestGardener also implements optimal scores, which consider the interaction
between the test-takers’ performance and the sensitivity of the items.

With the user-friendly interface and self-explanatory displays, TestGardener is
designed for users with various backgrounds, with or without knowledge in IRT,
statistics, and programming. Psychometricians, researchers, test developers, and
teachers can easily upload their data, and have the analysis results displayed in
diagrams.

TestGardener is relatively fast when analyzing real-world testing data. A sample
of 54,033 test takers response data who took the quantitative part of the Swedish
Scholastic Assessment Test (SweSAT) is used to demonstrate TestGardener. The
SweSAT is amultiple-choice college admissions test, with a verbal and a quantitative
part, each containing 80 items. The whole analysis of this 54,033*80 multi-choice
data, including reading and writing files, takes about five minutes using a laptop with
intel i7 core.

The next section briefly introduces the algorithms of spline smoothing and optimal
scoring, which are implemented in TestGardener. The following section provides a
short demo of using this software and describes some of the main displays. This
paper ends with a short discussion about different versions of TestGardener, new
features that may be implemented in later version, and some closing remarks.

2 Theories Behind TestGardener

The real-world testing data rarely meets all the assumptions made in the parametric
IRT model. Taking one administration of SweSAT (quantitative part) as an example,
the distribution of sum scores is much more skewed than the normal distribution
(Fig. 1), indicating that it was a difficult test.

Furthermore, the highlighted ICCs show the ill-behaviors of some items: some
items have almost linear ICCs (see highlighted curve in Fig. 2), which means that
these items are not very discriminating at any ability level. There are also items with
plateaus for a certain score range (Fig. 2); it means these items have no sensitivity
for test takers in these ranges. It’s probably because test takers with certain level of
related knowledge can rule out some of the distractors and choose among the rest
options. ICCs of these ill-behaved items can be difficult to estimate using parametric
IRT. But TestGardener, using spline smoothing, can estimate these 80 curves without
any problems and in only a few seconds.

It is important that the test scores should estimate the test takers’ ability as precisely
as possible, since tests and test scores are often used to make decisions about test
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Fig. 1 Distribution of sum
scores of one administration
of the SweSAT. The
histogram indicates the
number of test takers within
each score range, the black
smooth line indicates the
smooth density function. The
vertical dotted lines are the
5, 25, 50, 75, and 95%
quantile lines

Fig. 2 Estimated ICCs of
one administration of the
SweSAT, quantitative part.
Blue curves are the ICCs of
all the 80 items, and red
curves highlighted some of
the ill-behaved items

takers. Sum score (or number correct score) has been the most commonly used test
score because it is easy to interpret and computationally fast. However, sum scores
assume that a certain item has constant sensitivity over the entire ability range, which
is seldom true. For example, an easy item can have high discrimination power for
lower-end test takers, but provides virtually no information about the top students, and
vice versa. Optimal scoring, first proposed byRamsay andWiberg (2017a), considers
the interaction between performance/ability-level and item sensitivity and provides
more precise estimation of the test takers’ ability. In their 2017 paper, Ramsay and
Wiberg only considered the binary response (0/1); but with the extra information of
which (wrong) option has been chosen, we can have even more precise estimation
of the ability θ because sometimes some wrong options are more wrong than others.

Let Sj denote sum scores and let Pi (θ) be the probability that the test taker j with
ability level θ answer an item i correctly, i = 1, . . . , n; j = 1, . . . , N . The estimate
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Fig. 3 The opening page (a) and display page (b) of TestGardener

of optimal scores focuses on estimating the more convenient choice Wi (θ) as it will
facilitate the estimations (Ramsay &Wiberg 2017a).Wi (θ) is the log-odds of Pi (θ),
which can be defined in terms of Pi (θ) as

Wi (θ) = log

(
Pi (θ)

1− Pi (θ)

)
. (1)

If Ui j is test taker j response to item i and if either Pi (θ) or their counterparts
Wi (θ) are known or we can condition on estimates on them, then the optimal θ

associated with the negative log likelihood satisfies the equation

∑n

i

∑Mi

m
[Uji,m − Pi,m(θ j )]dWi,m

dθ j
= 0, (2)

where m = 1, . . . , Mi andMi is the number of options of item i. More details about
optimal scoring can be found in Ramsay and Wiberg (2017a, 2017b) and Wiberg,
Ramsay, and Li (2018). More papers about optimal scoring of multi-choice items
and scale items are currently under preparation.

3 A Short Demo of TestGardener

UsingTestGardener requires no knowledge of programming; users can simply upload
their data (in format described in the manual) and have it analyzed. A result file in
.irt format will be generated by the software; it stores all the analysis results and
will be used to generate the graphical displays. Figure 3a shows the opening page of
TestGardener. By following the flowchart, users should be able to find the appropriate
function. Users have the option to change values of several important parameters;
but for most users, they are recommended to run the analysis with default values.
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Fig. 4 ICC and other displays indicating performance of item 16. a ICCs of all options, blue curve
indicates the right option, and red curves represent wrong options. Display b–d are for the right
option only; P16(θ), W16(θ), and the derivative of W16(θ) respectively. The blue curves are the
corresponding curves of all the items, in which the curves of item 16 is highlighted with red

Using the .irt file, users can review the performance of item, test-taker, and test
in various displays. The left panel in Fig. 3b lists the names of different displays,
which will be introduced briefly below.

Figure 4 shows four displays that represents the performance of an individual
item, here we randomly select item 16 as an example. Figure 4a shows the ICCs
of all the options, where the right option is represented by a blue line. The indices
associating with each curve indicate the corresponding option, so test developer or
analyst can have more detailed evaluation of each option. For example, in item 16,
option 2 seems quite distracting for test-takers in the middle to upper range. In fact,
even for the top students, there is still around 10% probability that they may choose
option 2. Figure 4b–d illustrate the probability (P16(θ)), the log-odds ratio (W16(θ)),
and derivative ofW16(θ) (dW16(θ)) respectively.Wi (θ) and dWi (θ) curves illustrate
the items’ sensitivity at each score value and are especially important for the process
of optimal scoring. With the corresponding curves of all items (blue curves) in the
background, users can have a more intuitive impression of how this item performed
comparing with other items.
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Fig. 5 Displays about the comparison between sum score and optimal score: a box plots of the
difference between optimal score and sum score; b two-panel plot of the distributions of sum score
and optimal score respectively; and c score credibility plot of subject 351: red and blue vertical lines
indicate the sum score and optimal score respectively; black curve shows the likelihood (credibility)
of the score, and the two black vertical lines indicate the 95% confidence interval

Figure 5 contains three displays that show the comparison between optimal score
and sum score. Since the sum scores are integers, we can plot the difference between
optimal score and sum score using box plots. Figure 5a shows that the differences
in the middle range are distributed around zero, while for the lower and upper end,
the differences are mostly negative and positive respectively. For lower end, optimal
scores are corrected for guessing; while for upper end, optimal scores eliminate the
influence of ill-behaved items. Figure 5b shows the distribution of sum score and
optimal score, with quantile lines changing accordingly. It conveys the same infor-
mation as the boxplot but from another perspective. Figure 5c shows the comparison
at the individual level using the likelihood curve. Optimal score is always at the peak
of the likelihood curve, hence optimal.
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4 Discussion

TestGardener currently has two versions: one stand-alone version for windows sys-
tem and one web-based version that can be used on any major browsers. These two
versions share almost the same features, but currently, the stand-alone version has
more ability to edit and prepare the data file. The web-based version is newly devel-
oped for users on other operating systems or someone who wants to try some of
the features before downloading the software. It also serves as the teaching platform
for optimal scoring and even item response theory, by including pages for software
manual, theories, and resources. Both versions of TestGardener are still under devel-
opment, although a beta version dedicating to the workshop held in Umea, Sweden
this August has been published. Readers who are interested in TestGardener are
welcome to try the web-based version on http://testgardener.azurewebsites.net/. But
please note that this version is premature and not very stable.

The formally released TestGardener (both versions) are expected to be even faster,
with more display options. For example, users may be able to choose the options that
plot the confidence interval and data points on the ICCs. Plots in Fig. 4 are currently
displayed separately, and we plan to implement this four-panel plot like Fig. 4 in the
later version of TestGardener.

Acknowledgements This research was funded by the Swedish Research Council (grant. 2014-
578).

References

Gomez, R. (2007). Australian parent and teacher ratings of the DSM-IV ADHD symptoms differ-
ential symptom functioning and parent-teacher agreement and differences. Journal of Attention
Disorders. 11(1), 17–27.

Laroche, M., Chankon, K., & Tomiuk, M. (1999). Irt-based item level analysis: an additional
diagnostic tool for scale purification. In J. E. Arnould, L. M. Scott (Eds.) Advances in consumer
research (Vol 26, pp. 141–149). Provo, UT: Association for Consumer Research.

Lévesque, D., Sévigny, S., Giroux, I., & Jacques, C. (2017). Gambling-related cognition scale
(GRCS): Are skills-based games at a disadvantage? Psychology of Addictive Behaviors, 31(6),
647–654.

Liane, P. (1995). A comparison of item parameter estimates and ICCs produced with TESTGRAF
and BILOG under different test lengths and sample sizes. The University of Ottawa, thesis.

Luciano, J., Ayuso-Mateos, J., Aguado, J., Fernandez, A., Serrano-Blance, A., Roca, M., et al.
(2010). The 12-item world health organization disability assessment schedule II (WHO-DAS II):
A nonparametric item response analysis. BMC Medical Research Methodology, 2010(10), 45.

Nering, M. L., & Ostini, R. (2010). Handbook of polytomous item response theory models. New
York: Taylor and Francis.

Ramsay, J. O. (1995). TestGraf—a program for the graphical analysis of multiple choice test and
questionnaire data [computer software]. Montreal: McGill University.

Ramsay, J. O., & Wiberg, M. (2017a). A strategy for replacing sum scores. Journal of Educational
and Behavioral Statistics, 42(3), 282–307.

http://testgardener.azurewebsites.net/


94 J. Li et al.

Ramsay, J. O. &Wiberg, M. (2017b). Breaking through the sum score barrier. (pp. 151–158). Paper
presented at the International Meeting of the Psychometric Society, Asheville: NC, July 11–15.

Sachs, J., Law, Y., & Chan, C. K. (2003). A nonparametric item analysis of a selected item subset of
the learning process questionnaire. British Journal of Educational Psychology 73(3), 395–423.

Wiberg, M., Ramsay, J. O., & Li, J. (2018). Optimal scores as an alternative to sum scores. In:
M. Wiberg, S. Culpepper, R. Janssen, J. González, D. Molenaar (eds) Quantitative Psychology.
IMPS 2017. Springer Proceedings in Mathematics & Statistics, vol 233. Cham: Springer.



Item Selection Algorithms
in Computerized Adaptive Test
Comparison Using Items Modeled
with Nonparametric Isotonic Model

Mario Luzardo

Abstract A computerized adaptive test (CAT) is used in this paper where the item
bank is calibrated by using the nonparametric isotonic model proposed by Luzardo
andRodríguez (Quantitative psychology research. Springer International Publishing,
Switzerland, pp. 99-108, 2015). Themodel is based on the estimation of the inverse of
the item characteristic curves (ICC), and it uses a two-stage process. First, it uses the
Ramsay nonparametric estimator of the ICC (Ramsay In Psychometrika 56:611–630,
1991) and then it estimates the density function of the inverse ICC by using Ramsay’s
estimator. By integrating the density function and then symmetrizing it, we obtain the
result. Xu and Douglas (Psychometrika 71:121–137, 2006) studied the possibility of
using Ramsay’s nonparametric model in a CAT. They explored the possible methods
of item selection but they did not use Fisher’s maximum informationmethod because
the derivatives of the ICC may not be estimated well. We present, for the isotonic
model, a suitable way to estimate the derivatives of the ICCs and obtain a formula
for item information that allows us to use the maximum information criterion. This
work focuses on comparing three methods for selecting items in the CAT: random
selection, the maximum Fisher information criterion with the isotonic model, and
the Kullback-Leibler information criterion.

Keywords Isotone IRT nonparametric model · Kullback-Leibler information ·
Computerized adaptive test

1 Introduction

Nonparametric item response models have been an alternative to parametric item
response models, especially when it comes to finding a flexible model for ICC mod-
elling. However, a common problem is how to make CAT administration and, in
particular, automatic item selection operational.
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Xu and Douglas (2006) explored the possibility of applying CAT by using Ram-
say’s nonparametric model. Under this model, the usual methods for estimating the
ICC derivative do not work properly and the derivative may be negative for some val-
ues of the ability. This means it is impossible to use the maximum Fisher information
criterion when choosing the items to be managed. Xu and Douglas (2006) propose as
alternative the use of procedures based on Shannon entropy (Cover & Thomas, 1991;
Shannon, 1948) and Kullback-Leibler information (Chang & Ying, 1996), since the
implementation of these procedures does not require ICC derivatives. In addition,
when the test size is large enough, they are equivalent to the maximum Fisher infor-
mation criterion. The authors used a simulation study to show that both procedures
work properly and have very similar outcomes.

In this paper we will show that when the nonparametric isotonic model is used
to estimate the ICCs, their derivatives can be calculated in a simple way, and they
can be used to estimate the Fisher information for each item. Our aim is therefore to
compare this new approach with those proposed by Xu and Douglas (2006). Since
the Kullback-Leibler procedure and that based on the Shannon entropy produce
very similar results, we will only use Kullback-Leibler. Our main intention is to
compare performances in the case of small test sizes, since the Kullback-Leibler
and the Shannon entropy procedures are asymptotically equivalent to the maximum
information criterion.

2 One-Dimensional Isotonic Model

The isotonic model presented in Luzardo & Rodríguez (2015) estimates the ICC in
two stages. The first stage uses the Ramsay model (1991) as a preliminary estimate
of the ICC, and the second obtains the isotonic estimator.

Let X be a dichotomous item and assume that P(θ) is the probability that a
subject with ability θ will respond to item X correctly. As the random variable X is
Bernoulli, it follows that P(θ) = E(X |� = θ), that is, the ICCs match a conditional
expectation. On this basis, Ramsay estimated the ICCs by means of a nonparametric
kernel regression estimator.

Let us assume thatN subjects with a latent trait θ1 . . . θN respond to n dichotomous
items. Let us denote Xi j as the binary response of subject i to item j (i = 1,…, N j =
1,..,n). The kernel smoothing estimator of Pj (θ) is

Pj (θ)
∧

=
∑N

i=1 Xi j Kh

(
θ̂i − θ

)

∑N
i=1 Kh

(
θ̂i − θ

) (1)

where the bandwidth h contemplates the trade-off between the variance of the esti-

mator and the bias. Function K is a kernel and Kh(θi − θ) = 1
h K

(
(θi−θ)

h

)
. In Eq. (1),

θ̂i is the estimator of the i-th subject’s ability. These estimates can be easily calculated
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by converting the empirical distribution of the sum of the subjects’ scores to the scale
determined by the distribution of the ability.

Wewill take—with no loss of generality—θ to have a uniformdistribution in [0,1].
This assumption is justified by the non-identifiability of the scale. Let us assume that
the distribution of the actual trait τ is F(τ ) and let us consider a specific item with a
strictly increasing ICC, which we will denote as P(τ ).

If we change the variable θ = F (τ ), the function P∗(θ) = P
(
F−1(θ)

) = P(τ ) is
also the ICC of that item. It is clear that the distribution of θ is uniform in [0,1] and
P∗(θ) is increasing.

Note that if U1, . . . ,UT is a sample of independent random variables with a uni-

formdistribution on the interval [0,1], then 1
Thd

∑T
t=1 Kd

(
P∗(Ut )−u

hd

)
is an estimator of

the density of the random variable P∗(U ), where Kd is a kernel and hd a bandwidth.
The density of P∗(U ) is P∗−1′

(u)I[P∗(0),P∗(1)](u), where I is the indicator function.

Then, 1
Thd

∫ θ

−∞
∑T

t=1 Kd

(
P∗(Ut )−u

hd

)
du is a consistent estimator of P∗−1 in θ (Dette,

Neumeyer, & Pilz, 2006).
In order to apply the above property to our problem, let us consider a kernel Kr a

bandwidth hr , and a grid 1
T , . . . , t

T , . . . , 1. Then, the Ramsay estimator of the ICC
in each score is

PR
∧

(
t

T

)

=
∑N

i=1 Kr

( t
T −θ̂i

hr

)
Xi

∑N
i=1 Kr

( t
T −θ̂i

hr

) (2)

Based on the above, the isotonic estimator of the inverse of the ICC in θ is:

P∗−1(θ)

∧

= 1

Thd

∫ θ

−∞

∑T

t=1
Kd

⎛

⎝
PR
∧(

t
T

) − u

hd

⎞

⎠du (3)

The estimator P∗
∧

is obtained by the reflection of P∗−1
∧

with respect to the bisector
of the first quadrant.

3 Item Selection Method Through Maximum Information

The maximum information procedure is based on the fact that when the maximum
likelihood method is used to estimate the ability, the test information is inversely
proportional to the estimation error of θ . It is therefore reasonable to present in the
next step the item that will maximize the accumulated information. This procedure
will be adopted in this article. It is therefore necessary to be able to correctly estimate
the derivative of the ICC of the nonparametric isotonic model.
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Fig. 1 True ICC and
estimated ICC using the
isotone model

True ICC Isotone model

In our case, we easily obtain a simple expression for the derivative of the ICC
which is smooth and always positive by applying the inverse function derivative
theorem.

P∗′
(θ) = 1

(
P∗−1

)′
(P∗(θ))

= Thd
∑T

t=1 Kd

(
P∗(Ut )−P∗(θ)

hd

) (4)

Figure 1 shows the true ICC and the estimated ICC by means of the isotonic
model, and Fig. 2 shows the derivatives of this ICC.

Now, on the basis of (4), we can estimate the information function of item j
through:

I j (θ)
∧

=

(
∂P∗

j

∧

(θ)

∂θ

)2

P∗
j

∧

(θ)
(
1 − P∗

j

∧

(θ)
) =

⎡

⎢
⎢
⎢
⎢
⎣

Thd

∑T
t=1 Kd

⎛

⎜
⎝
P∗( t

T

)∧

−P∗(θ)

hd

⎞

⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

2

P∗
j

∧

(θ)
(
1 − P∗

j

∧

(θ)
) (5)

Information estimation works very well on values where item information is
maximum, having distortions when we move away from that value. Our interest is
focused on a setting where information is maximum, so outside that neighborhood,
we can estimate information using a linear model. Figure 3 shows the information
function estimate.
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Fig. 2 True derivative and
estimated derivative of the
ICC

True derivative  Estimated derivative

Fig. 3 Estimated
information function

The maximum likelihood method will be used to estimate the ability. If P∗(θ) is
the ICC when the ability follows a uniform distribution, θ will be estimated in step
k through

θ̂i = argmax
∏k

j=1
P∗(θ)

Xi j
(
1 − P∗(θ)

)1−Xi j (6)
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4 Item Selection Method Using Kullback-Leibler

This divergence proposed by Kullback and Leibler (KL) (1951) measures the dis-
crepancy between two measures of probability. On the basis of this, Chang and Ying
(1996) define a measure of global information for use in CAT.

If P and Q are two probability measures over �, and if dQ
dP is the Radon-Nikodym

derivative of Q with respect to P, the Kullback Leibler divergence is defined as:

K L(P‖Q) = −
∫

�

ln
dQ

dP
dP (7)

In particular, if μ is a measure over �, such that f and g are densities of P and Q
with respect to μ, then

K L(P‖Q) =
∫

�

f ln f

g
dμ (8)

If we consider the maximum likelihood estimate in a parametric family f (θ , x),
and f (θ0, x) as the true density, then:

K L
(
fθ0‖ fθ

) =
∫

f (θ0, x) ln
f (θ0, x)

f (θ, x)
dx (9)

Chang and Ying (1996) define the Kullback Leibler information for item j and
subject i as

K L j (θ‖θi ) = E

[

ln
L j (θi |Xi j )

L j (θ |Xi j )

]

= Pj (θi )ln
Pj (θi )

Pj (θ)
+ (

1 − Pj (θi )
)
ln

1 − Pj (θi )

1 − Pj (θ)

(10)

In the context ofCATs, if θ̂k is themaximum likelihood estimator of θ , after k items

have been responded to, then the global information index GK L j

(
θ̂k

)
is obtained

by taking the average of the discrepancy K L j

(
θ‖θ̂k

)
in the interval centered on θ̂k ,

that is, if εk > 0,

GK L j

(
θ̂k

)
=

∫ θ̂k+εk

θ̂k−εk

K j

(
θ‖θ̂k

)
dθ (11)

The sequence εk → 0 with k. Chang and Ying (1996) recommend εk ∝ k− 1
2 so

that the interval
(
θ̂k − εk, θ̂k + εk

)
will contain the actual value of the ability. Based

on the above, the item to be chosen for step (k + 1) will be the one with the greatest
GKL, which has not been applied yet.
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5 Simulation Study

The objective of this study was to compare three ways of selecting items in the
CAT. The selection methods implemented are: the Kullback-Leibler procedure, the
information-based procedure using the isotonic estimation, and random selection of
items. The ability was estimated by using maximum likelihood and considering the
nonparametrically estimated ICCs.Additionally, the ability for random itemselection
was estimated by maximum likelihood, when the ICC is estimated parametrically.

A bank of 700 items was built whose ICCs followed the two-parameter logistic
model (2PL). The discrimination parameters of the items were simulated from a
uniform distribution [0.75, 2.5] and the difficulty parameters were simulated from a
uniform distribution [−2, 2].

To estimate the ICCs, the responses of 5000 subjects were simulated. The abilities
were assumed to follow a standard normal distribution. On the basis of the responses,
we used the isotonic estimator with Gaussian kernels Kr and Kd .

The bandwidths used were hr = (5000)(−
1
5 ) = 0.18, and a robust estimate for

hd = 0.9(5000)(−
1
5 )min

(
sd, Q3−Q1

1.364

)
, where the deviation and the quartiles refer to

the Ramsay’s estimator of the ICC for each item.
For the CAT, 5000 subjects were generated whose traits had a uniform distribution

on the interval [0,1]. A test of 50 items in length was applied for each of the methods
and the procedures for each subtest of 5, 10, 20, 30, 40 and 50 items in length
were assessed. The different procedures were compared to root mean squared error
(RMSE) and bias across the simulations. The RSME and bias were computed for
each subtest through:

RMSE =
⎛

⎜
⎝

∑N
i=1

(
θ̂ι − θi

)2

N

⎞

⎟
⎠

( 1
2 )

(12)

BI AS =
∑N

i=1

(
θ̂ι − θi

)2

N
(13)

Also, the RSME and bias of the estimators were calculated with a certain value
of θ through:

RMSE(θ) =
⎛

⎜
⎝

∑
iε I (θ)

(
θ̂ι − θi

)2

#I (θ)

⎞

⎟
⎠

( 1
2 )

(14)

BI AS(θ) =
∑

iε I (θ)

(
θ̂ι − θi

)2

#I (θ)
(15)

where I (θ) = {i : θi = θ, 1 ≤ i ≤ N }
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6 Results

Table 1 presents the average root mean square error for the different methods and
for different subtest lengths. This table shows how the procedures based on the
information estimated from the isotonic ICC and the Kullback-Leibler method work
in a similar way. In addition, these methods are better than the random selection of
items, and the estimation of the ability is based on the isotonic nonparametric model
when fewer than 30 items are administered. They are also always better than random
selection and ability estimation using 2PL model. Table 2 shows a similar behavior
for the bias.

Figure 4 graphically shows how the RMSE stabilizes after a test length of 20 items
for the nonparametric isotone model and Kullback-Leibler procedures. The Fig. 5
shows that the bias is also stabilized.

Table 1 Average root mean
square error

Selection
rule

Number of items

5 10 20 30 40 50

Random
isotone

0.203 0.147 0.108 0.085 0.074 0.074

K-L 0.154 0.125 0.098 0.085 0.076 0.074

Isotone
Informa-
tion

0.154 0.123 0.098 0.084 0.080 0.074

Random
2PL

0.242 0.181 0.142 0.116 0.105 0.103

Calculated on the 5000 subjects

Fig. 4 RMSE of selection
procedures
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Fig. 5 Bias of selection
procedures

Fig. 6 RMSE over theta

An analysis of the RMSE(θ) finds that the same behavior is obtained for all θ,
with an equivalence of the Kullback-Leibler method and the nonparametric isotonic
method and the latter’s superiority over random selection using de 2PL model pro-
cedure (Fig. 6).

When the bias is analyzed globally and as a function of θ, both methods behave
appropriately (Fig. 7).
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Fig. 7 BIAS over theta

Table 2 Bias

Selection rule Number of items

5 10 20 30 40 50

Random isotone 0.012 −0.013 0.003 −0.002 0.001 0.001

K-L −0.003 −0.009 0.002 0.004 0.0001 0.001

Isotone Information 0.0004 0.003 0.007 0.005 0.005 0.005

Random 2PL 0.002 −0.014 −0.011 −0.012 −0.01 −0.01

Calculated on the 5000 subjects

7 Discussion

The procedure based on estimating information through the isotonic model quickly
converges to the actual trait, stabilizing after 20 items. The performance of the pro-
cedure presented based on the isotonic model is similar to that of KL in terms of root
mean square error, and simpler to implement. It is also observed that both adaptive
procedures work better than random selection of items in terms of root mean square
error.

It would be wise to expand some studies that would extend these results, for
example by studying the rate of exposure of the items, which it has been omitted in
this work.
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Utilizing Response Time in On-the-Fly
Multistage Adaptive Testing

Yang Du, Anqi Li and Hua-Hua Chang

Abstract On-the-fly multistage adaptive testing (OMST), which integrates
computerized adaptive testing (CAT) and multistage testing (MST), has recently
gained popularity. While CAT selects each item on-the-fly and MST bundles items
to pre-assembled modules, OMST assembles modules on-the-fly after the first stage.
Since item selection algorithms play a crucial role in latent trait estimation and test
security in CAT designs, given the availability of response time (RT) in the current
testing era, researchers have been actively striving to incorporate RT into item selec-
tion algorithms. However, most such algorithms were only applied to CAT whereas
little is known about RT’s role in the domain of OMST. Building upon previous
research on RT-oriented item selection procedures, this research intends to apply
RT-oriented item selection algorithms to OMST. This study found that the relative
performance of RT-oriented item selection methods in OMST was consistent with
CAT. But the underlying item bank structure and test design features can make a
huge difference with respect to estimation accuracy and test security.
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1 Introduction

Before response time (RT) became available to test developers and researchers, item
responses were the sole information source of test-takers and test items. Within the
scope of item responses, traditional item selection methods in computerized adaptive
tests (CAT) have been focused on improving estimation accuracy, test security, as
well as item bank usage.

Given the rapid development of test technology, RT attracted more attention of
psychometricians. Owing to the indispensable support of RTmodels, such as the log-
normal model, and the hierarchical framework of response and RT (van der Linden
2006; van der Linden, Breithaupt, Chuah, & Zhang, 2007), RT has been effectively
utilized in a myriad of aspects, such as detecting cheating, rapid guessing, or student
disengagement, e.g.,Wang andXu (2015). In other words, apart from item responses,
researchers are interested in understanding how RT can provide additional informa-
tion with respect to the latent traits of test-takers.

Due to the exponential growth of RT research, the purpose of item selection algo-
rithms inCAThas also been expanded. In addition to the aforementioned orientations,
researchers, such as Fan, Wang, Chang, and Douglas (2012) and Choe, Kern, and
Chang (2018), have incorporatedRT to a number of item selectionmethods to shorten
the test time span while maintaining estimation accuracy and test security. However,
both of these studies only explored RT’s role in conventional CAT, in which items
are sequentially selected and administered. Little is known about RT’s role in multi-
stage tests, especially in on-the-fly multistage tests (OMST). This study is aimed at
investigating the role of RT-oriented item selection algorithms in OMST. To be more
specific, this study intends to answer the following questions: How do RT-oriented
methods perform in OMST? Does item bank stratification impact RT-oriented item
selection in OMST?

The following parts of this paper will first introduce the theoretical framework of
CAT, OMST, and RT models. Next, a description of item selection algorithms and
simulation studies will be presented. The results and conclusions will be shown at
the end.

2 Adaptive Testing Design

CAT is developed on the basis of various measurement models in the item response
theory (IRT) framework, among which the 3PL model is universally used Lord and
Novick (1968). In the 3PL model, the estimates of the examinees’ latent traits are
usually obtained by maximum likelihood estimate(MLE). However, MLE has two
main drawbacks. On the one hand, at the beginning of the test, when only a handful
of items are administered, MLE is not stable and accordingly the corresponding
latent traits estimates may not be accurate. On the other hand, when examinees’ all
responses are correct or incorrect, their MLEs would be practically meaningless.
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To compensate for these weaknesses, an alternative estimator, expected a posteriori
(EAP), is therefore employed Bock and Mislevy (1982).

In conventional CAT selection procedures, in order to minimize the variance of la-
tent trait estimates, maximizing Fisher information (MI) is commonly used Lord and
Novick (1968). However, this method is notorious for improperly prioritizing more
discriminating (high a-parameter) items Chang, Qian, and Ying (2001), Chang and
Ying (1999) and Hau and Chang (2001). Despite such items’ efficiency in estimating
latent traits, their skewed exposure rates, consequently, compromise test security. To
balance the item pool usage and thus to improve test security, Chang et al. (2001)
proposed a-stratificationwith b-blocking (ASB) procedure. To be specific, according
to the magnitude of b-parameters, the item bank is first divided into several blocks.
Next, within each block, items are stratified into several strata based on the magni-
tude of a-parameters. Finally, items within the same strata are grouped across the
blocks. In item selection, low-a items are selected at the beginning whereas high-a
items are selected at a later stage of the test.

As a special case of CAT, multistage testing (MST) has gained its long-standing
popularity in the testing industry Yan, von Davier, and Lewis (2014). Unlike CAT
which estimates examinees’ abilities item by item, MST sequentially routes exam-
inees to pre-assembled modules of items Yan et al. (2014). Nevertheless, since the
modules and panels in MST are pre-assembled, it is not cost-effective to recruit
many employees to review these pre-assembled modules Zheng and Chang (2015).
To further improveMST, Zheng andChang (2015) proposedOMSTwhich assembles
modules on-the-fly after the first stage. In OMST, item selection methods inMST are
still applicable. The only difference is that within each stage of OMST, a set of items
are sequentially selected on-the-fly to optimize the objective selection algorithms.
Therefore, items are no longer bundled together. The estimation efficiency and test
security can be significantly enhanced.

3 Response Time Model

As RT data can be collected conveniently via test delivery software, it has drawn
greater attention with its potential as a rich source of information. Among a variety
of RT models, the lognormal model within the hierarchical modeling framework by
van der Linden et al. (2007) has received the most recognition for its practicality. In
this model, it is assumed that each examinee operates at a constant latent speed unless
the exam is over-speeded van der Linden et al. (2007). Specifically, the lognormal
model characterizes the RT of a fixed person on a set of test items van der Linden
(2006). The model assumes that the RT of the i th person on item j is the realization
of a random variable ti j following a lognormal distribution, which can be written as:

f (ti j |τi ) = α j

ti j
√
2π

e−[α j (log ti j−β j+τi )]2/2, (1)
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where τi is the latent speed of the i th person, α j and β j respectively denote time
discrimination and time intensity. β j and τi are fixed on the same scale. Accordingly,
the MLE of latent speed τi is given by

τ̂i =
∑k

j=1 α2
j (β j − log ti j )

∑k
j=1 α2

j

. (2)

In addition, the expected RT based upon latent speed is given as

E(Ti j |τi ) = eβ j−τi+1/2α2
j . (3)

4 Item Selection Methods

In this study, three RT methods proposed by Fan et al. (2012) and Choe et al. (2018)
were employed. They are a-stratification b-blocking with time (ASBT), maximum
information with beta matching (MIB), and generalized maximum information with
time (GMIT). To evaluate the performance of these methods, ASB and MI were
adopted as two baseline methods.

The ASB method, shown below, prioritizes items which minimize the absolute
difference between item difficulty parameter and the examinee’s estimated latent trait
in a stratified item bank.

Bj (θ̂i ) = 1

|θ̂i − b j |
. (4)

MI selects the next item that maximizes the Fisher information given as

I j (θi ) = a2j (
1 − Pj (θi )

Pj (θi )
)(
Pj (θi ) − c j
1 − c j

)2 (5)

By incorporating RT in item selection criterion, ASBT tends to minimize the
expected RT while matching the examinee’s latent trait with the item difficulty pa-
rameter Fan et al. (2012).

BTj (θ̂i , τ̂i ) = Bj (θ̂i )

E(Ti j |τ̂i ) =
1

|θ̂i−b j |
eβ j−τi+1/2α2

j

(6)

MIB proposed by Choe et al. (2018) favors items with greater information and a
shorter distance between latent speed and item time intensity.

I B j (θ̂i , τ̂i ) = I j (θ̂i )

|β j − τ̂i | (7)



Utilizing Response Time in On-the-Fly Multistage Adaptive Testing 111

GMIT is based upon maximum information with time (MIT) proposed by Fan
et al. (2012),which tends tomaximize the informationwhileminimizing the expected
RT. Choe et al. (2018) added two variables trying to adjust its performance, which
is given by

I T G
j (θi , τi ) = I j (θi )

|E(Ti j |τi ) − v|w (8)

Since locating the optimal v and w is not the primary goal of this study, only v = 0
and w = 1 were adopted.

5 Simulation Design and Evaluation Criteria

In this study, all simulations were completed in R and 50 replications were conducted
in total. The simulatedOMST includes three stages,within eachofwhichfifteen items
were administered. Moreover, in the first stage, due to the concern of test overlap
rates, 20 parallelmoduleswere pre-assembled based on the target information criteria
Luecht (2000). The difficulty levels of all these parallel modules were anchored at
zero, where items produced the largest Fisher information. 1000 examinees and an
item bank of 500 items were simulated. The parameters of examinees and items are
shown below.

– Item Bank

(a∗
j , b j , β j ) ∼ MVN [μ1,�1], μ1 =

⎡

⎣
0.3
0.0
0.0

⎤

⎦ , �1 =
⎡

⎣
0.10 0.15 0.00
0.15 1.00 0.25
0.00 0.25 0.25

⎤

⎦ ,

c j ∼ β [2, 10], α j ∼ U [2, 4],
where a∗

j = log a j . In other words, a j follows a lognormal distribution.
– Examinees

(θi , τi ) ∼ MVN [μ2,�2], μ2 =
[
0
0

]

, �2 =
[
1.00 0.25
0.25 0.25

]

.

To investigate the relationship between RT-oriented item selection methods and
item bank stratification, our simulation studies were administered in both stratified
and unstratified item banks. The ASB item bank structure was employed Chang et al.
(2001). Due to our three-stage test structure, our item bank was accordingly divided
into three disjoint sub-banks, which served as sub-pools for each stage, respectively.
Each sub-pool had 167, 167, and166 items, respectively.A summaryof item selection
methods can be found in Table 1.

The performance of item selection procedures was assessed in four aspects: es-
timation accuracy, test efficiency and stability, test security, as well as item bank
usage efficiency. For each of these aspects, the following measures were adopted
respectively:
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Table 1 A summary of item selection methods

Item bank Selection methods Selection criterion

Stratified item bank ASB Bj (θ̂i ) = 1

|θ̂i − b j |
ASBT BTj (θ̂i , τ̂i ) = Bj (θ̂i )

E(Ti j |τ̂i )
MIB I B j (θ̂i , τ̂i ) = I j (θ̂i )

|β j − τ̂i |
GMIT I T G

j (θi , τi ) = I j (θi )

|E(Ti j |τi ) − v|w
Unstratified item bank MI I j (θi ) = a2j (

1 − Pj (θi )

Pj (θi )
)(
Pj (θi ) − c j
1 − c j

)2

MIB I B j (θ̂i , τ̂i ) = I j (θ̂i )

|β j − τ̂i |
GMIT I T G

j (θi , τi ) = I j (θi )

|E(Ti j |τi ) − v|w

– Estimation accuracy measures: root mean squared error (RMSE) of examinees’
latent traits and latent speeds.

RMSE(θ̂) =
√
√
√
√1

n

n∑

i=1

(θ̂i − θi )2 (9)

RMSE(τ̂ ) =
√
√
√
√1

n

n∑

i=1

(τ̂i − τi )2 (10)

– Test efficiency and stability measures: mean and standard deviation of test time
t ti .

t̄ t = 1

n

n∑

i=1

t t i = 1

n

n∑

i=1

m∑

j=1

ti j (11)

stt =
√
√
√
√ 1

n − 1

n∑

i=1

(t ti − t̄ t)2 (12)

– Test security measures: the exposure rates of individual items er j as well as mean
and standard deviation of test overlap rates torii ′ (Chen et al., 2003).

er j = k

n
, (13)
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¯tor =
(
n

2

)−1 n−1∑

i=1

n∑

i ′=i+1

torii ′ = n

L(n − 1)

m∑

j=1

er2j − 1

n − 1
, (14)

stor =
√
√
√
√[

(
n

2

)

− 1]−1
n−1∑

i=1

n∑

i ′=i+1

(torii ′ − ¯tor)2, (15)

where k is the times of item j being administered, n is the number of examinees.
m is the item bank size and L is the fixed test length. Note that the simulated
OMST has a fixed length of 45 items, thus the mean of the exposure rates will not
be informative. For the simplicity of our evaluation, this study chose 0.2 as the
maximum proper exposure rate, a commonly set value for high-stakes tests. Items
whose exposure rates are greater than 0.5 were treated as over-exposed.

– Item Bank Usage Efficiency: raw counts of unused items and over-exposed items.

6 Results

Stratified Item Bank. The results of the stratified item bank are shown in Tables 2
and 3. It is apparent that ASB, ASBT, and MIB performed similarly in estimating
examinees’ latent traits and latent speeds. In comparison, GMIT produced better
estimation accuracy with strikingly shorter test time. The other two RT item selection
procedures also had more efficient tests compared to the baseline ASB method.
However, in contrast to the other three methods, GMIT almost doubled their overlap
rates, suggesting that every two students may share one half of identical test items.
The overlap rates ofMIB andASBTwere similar to each other, and their test security
was acceptable. In terms of the item bank usage, GMIT resulted in over 315 unused
items and 26 over-exposed items, greatly impairing the item bank usage efficiency
and test security. The item bank usage of ASBT andMIBwere, again, similar to each
other. Although their item bank usage was more efficient than GMIT, there were still
quite a few items staying in the bank either never selected or over-exposed.
Unstratified Item Bank. The results for the unstratified item bank are shown in
Tables 4 and 5. It was expected that MI would produce the most accurate estimation.
GMIT’s estimation accuracy was comparable to MI. In addition, consistent with our

Table 2 Estimation accuracy, test efficiency, and overlap rates in the stratified item bank

RMSE (θ̂ ) RMSE (τ̂ ) tt tt.sd tor tor.sd

ASB 0.287 0.049 59.822 29.981 0.248 0.219

ASBT 0.291 0.049 52.464 26.337 0.266 0.226

MIB 0.296 0.049 55.283 17.247 0.252 0.214

GMIT 0.267 0.050 44.466 23.086 0.434 0.349
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Table 3 Exposure rates and item bank usage in the stratified item bank

Unused items er < 0.5 0 < er < 0.2

ASB 126 11 341

ASBT 126 11 326

MIB 126 11 342

GMIT 315 26 97

Table 4 Estimation accuracy, test efficiency, and overlap rates in the unstratified item bank

RMSE (θ̂ ) RMSE (τ̂ ) tt tt.sd tor tor.sd

MI 0.238 0.049 55.310 27.517 0.283 0.289

MIB 0.302 0.0489 54.722 16.002 0.147 0.161

GMIT 0.246 0.0485 43.887 22.616 0.339 0.312

Table 5 Exposure rates and item bank usage in the unstratified item bank

Unused items er > 0.5 0 < er < 0.2

MI 220 6 187

MIB 0 0 455

GMIT 254 17 161

results for the stratified item bank, GMIT and MIB both improved the test stability
by reducing the mean and standard deviation of test time. As for the test security,
GMIT still produced relatively higher overlap rates, more unused items, and more
over-exposed items.

In summary, to answer the first research question, how RT-oriented item selection
methods perform in OMST, the results are shown below:

– Estimation accuracy: in terms of latent trait estimation, GMIT outperformed the
other RT item selection methods in both item banks. The estimation accuracy of
latent speeds of all RT methods were comparable.

– Test efficiency and stability: all RT-oriented methods in both item banks had better
test efficiency and stability, with shorter average test time and smaller test time
standard deviation. This is reasonable as the other two baseline methods, ASB
and MI, only selected items within the scope of item accuracy. Among RT item
selection methods, in accordance with the results in Choe et al. (2018), MIB
performed similarly to ASBT. GMIT, again, produced the most efficient test.

– Test security: the estimation accuracy and test security trade-offmentioned inChoe
et al. (2018) was manifest in this study. The security of GMIT-based tests, implied
by their overlap rates and exposure rates, was far from satisfactory whereas MIB
performed similarly to ASBT and their corresponding test security wasmaintained
well in both item banks.
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– Item bank usage efficiency: among RT methods, GMIT had the worst item bank
usage efficiency. MIB and ASBT had more efficient item bank usage.

To answer the second research question, i.e., if item bank stratification impacts
item selection in OMST, the results of MIB and GMIT were plotted in Fig. 1. Based
on the plot, it is apparent that item bank stratification influenced RT item selection in
OMST: in contrast to the stratified item bank, bothMIB andGMIT hadmore accurate
estimation, lower overlap rates as well as better item bank usage in the unstratified
item bank. Such results may seem to be contradictory to what Chang et al. (2001)
advocated; Yet note that item bank stratification is primarily designed to balance
item exposure. But it may not successfully control the overlap rates or improve the
item bank usage efficiency. Moreover, when the item bank is stratified and the item
selection algorithms take more parameters into computing, the stratified sub-banks
will undoubtedly have fewer items satisfying the algorithms. This would result in
more over-exposed items and higher overlap rates.

Overall, in OMST, all RT item selection methods improved the test efficiency by
shortening the test time. The trade-off between estimation accuracy and test security
was evident: while GMIT produced the most accurate estimation compared to ASBT
and MIB, its test security was also severely undermined. Additionally, in OMST, the
stratified item bank structure may also tend to hinder the test security and item bank
usage.
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Fig. 1 Impacts of item bank stratification on RT methods in OMST
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7 Conclusions

This study adopted RT-oriented item selection algorithms proposed by Fan et al.
(2012) and Choe et al. (2018). We tested their performance in OMST within both
stratified and unstratified item banks. The performance of ASBT, MIB, and GMIT
in OMST were consistent with what Choe et al. (2018) found in terms of estimation
accuracy and test stability. Yet the item bank stratification influenced the test security
and item bank usage efficiency in OMST.

This study is limited in that only a handful of conditions of examinees, item bank,
item parameters, and test designs were included. Such limitations may make our
conclusions less generalizable. In future studies, more conditions of item and person
parameters should be examined.
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Heuristic Assembly of a Classification
Multistage Test with Testlets

Zhuoran Wang, Ying Li and Werner Wothke

Abstract In addition to the advantages of shortening test and balancing item bank
usage, multistage testing (MST) has its unique merit of incorporating testlets. Testlet
refers to a group of items sharing the same piece of stimulus. As MST can include
an entire testlet in one module, fewer stimuli are required than items. On the other
hand, computerized adaptive testing (CAT) selects item one by one, thus excludes
the possibility of several items sharing the same stimulus. In this way, testlets inMST
save the stimuli processing time and facilitate ability estimate. In order to utilize the
advantages brings by testlet, a classification MST was designed to upgrade an opera-
tional listening test. A heuristic module top-down assembly procedure incorporating
testlet was developed based on the modified normalized weighted absolute deviation
heuristic (NWADH). A three-stage classification MST with 1-3-5 panel design was
assembled to classify examinees into six levels. A real data-based simulation study
was conducted to compare the performance of the classification MST and the opera-
tional linear test in terms of ability recovery and classification accuracy. The bi-factor
model was used in item parameter calibration and examinee scoring. Results show
the 30-item MST had a similar performance as the 44-item linear test with prior
knowledge of examinee ability and outperformed the 44-item linear test without
prior information, in both ability recovery and classification accuracy. In conclusion,
the classification MST can shorten the test while keeping a good accuracy.
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1 Introduction

Multistage testing (MST) is increasingly used in the language testing area (Yan, von
Davier, & Lewis, 2016; Breithaupt, Ariel, & Veldkamp, 2005). In addition to the
advantages of shortening test and balancing item bank usage, MST has its unique
merit of incorporating testlets. Testlet refers to a group of items sharing the samepiece
of stimulus. For instance, when the stimulus is a longer segment of spoken language,
the items could reflect two or three unrelated questions about that segment. The
entire package of stimulus and associated items then form the testlet. As anMST can
include an entire testlet in one module, fewer stimuli are required than items. On the
other hand, another type of adaptive testing, computerized adaptive testing (CAT),
selects items one by one, thereby excluding the possibility of several items sharing
the same stimulus (Boyd, Dodd, & Fitzpatrick, 2013). In this way, testlets in MST
save the stimuli processing time and facilitate ability estimation (Zheng, Chang, &
Chang, 2013).

Like all the other testing formats, MST can also be used to classify test takers. A
commonexamplewould be a certification test, inwhich test takers are either classified
as pass or fail, or arranged into one of several levels. In this study, a classification
MSTwas constructed based on the administration of a linear language test to explore
the performance ofMST in practice. As therewas no algorithm to copewith testlets in
classification MST, a module assembly algorithm incorporating testlets was needed.
The heuristic module top-down assembly was proved to work well in MST without
testlets (Zheng, Nozawa, Zhu, & Gao, 2015). Thus, in this study a heuristic module
assembly procedure taking testlets into account was created and used to develop the
MST.

In addition to generating MST, this assembly algorithm can also be applied in
linear test generation. Due to concerns over test security, some large-scale admission
tests, such as the Scholastic Aptitude Test (SAT), still utilize a linear test format.
When testlets are involved, the linear test assembly is no longer simple. Among
the other issues, testlet structure should be taken into consideration. The assembly
algorithm developed in this study can be used to choose testlets when the number of
items and the number of testlets are set beforehand.

Please note, in MST studies sometimes “testlet” and “module” are used inter-
changeably. In this study, testlet represents the set of items sharing the same stimuli,
while module stands for a group of items to be shown in one stage at one time.
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Table 1 Proficiency levels of
items

Proficiency level 0+ 1 1+ 2 2+ 3

Number of items 41 68 36 28 14 11

2 Methods

2.1 Bi-factor Testlet Model

A bi-factor testlet model was used to calibrate item parameters as well as to conduct
the simulation study (Bradlow, Wainer, & Wang, 1999). The model can be written
as

Pi j (θi ) = 1

1 + exp
(−1.7

(
a0θi0 + akθik − b j

)) (1)

where, Pi j (θi ) is the probability test taker i correctly answers item j . ao and ak are the
discrimination parameters of the primary dimension and testlet k, respectively. Due
to sample size restrictions, the constraint of equal primary dimension discrimination
parameters was imposed. Thus, all items share the same ao. In the testlet model, all
the discrimination parameters (loadings) on the same testlet (specific dimension) are
restricted to be equal. Thus, each testlet k only has one discrimination parameter
ak . θi0 and θik are the primary ability and the testlet k-related trait of test taker i ,
respectively, while b j is the difficulty of item j .

2.2 Data Cleaning

The linear test aims at classifying test takers into one of the six Interagency Language
Roundtable (ILR) proficiency levels. There are 15 test forms, either classifying test
takers among the four easy levels (0+, 1, 1+, 2), or classifying test takers among
the four hard levels (1+, 2, 2+, 3). Whether a test taker receives an easy form or a
hard form is based on the teacher’s rough evaluation. Each form contains 44 items.
Altogether, 2247 test takers answered 337 items. As item response theory (IRT) was
used to estimate item parameters, only items with more than 100 responses were
retained to construct the MST. There were 198 items with more than 100 responses.
2144 test takers answered these items. The item proficiency distribution is shown in
Table 1.

Among the 198 items, there are 34 two-item testlets and four three-item testlets.
The remaining 118 items which do not belong to any testlets were designated single
items.
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Fig. 1 MST panel

2.3 MST Panel Design

In order to classify test takers into six levels, the final stage should contain five
modules (Zheng, Nozawa, Zhu, & Gao, 2016). Thus, a 1-3-5 panel design was used
as shown in Fig. 1.

In the 30-itemMST, each stage contained 10 items. To ensure the item bank usage
balance, there was no parallel form for stage-3 modules. There were two and five
parallel forms, respectively, for the stage-2 and stage-1 modules. No overlap was
allowed between modules. 160 out of 198 items were utilized to build the MST.
Backward assembly was used, so the modules in stage-3 were assembled first. The
anchors for the fivemodules in stage-3 were set at the five classification cutoff points,
which were the 66-th percentiles of b values in level “1”, “1+”, “2”, “2+” and “3”
items, respectively. The anchor for each module in the preceding stage was set to the
average of the anchor values of all the modules in the next stage accessible from this
module (e.g. The anchor value of 2H is the mean of anchor values of 3H and 3MH.).
The routing cut score was set to be the intersection of module information curves
in the adjacent two follow-up modules (e.g. the routing cut score for 3MH and 3M
from 2 M is the intersection of module information curves in 3 MH and 3M).

2.4 Heuristic Module Assembly with Testlets

Panels are assembled from modules based on the panel design. As the testlet con-
straint is at the module level, the bottom-up assembly can be utilized to construct
panels frommodules, with which themodules are freelymixed andmatched to create
panels (Breithaupt, et al., 2005). The other panel assembly method is the bottom-up
assembly, which is used when there are panel level restrictions.
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Heuristic assembly was employed to construct modules from item banks, as it has
the advantage of simplicity and feasibility compared to linear programming (van der
Linden, 1998). The new algorithm incorporating testlets was based on the modified
normalized weighted absolute deviation heuristic (NWADH; Zheng, et al., 2016;
Luecht, 1998). There are two constraints: themodule information value at the anchor,
and the anchor itself. The ten items in each module constitute eight testlets/single
items, either seven single items plus one three-item testlet, or six single items plus
two two-item testlets. Let i = 1, 2, . . . , I denote one of the I testlets in the item
bank, j = 1, 2, . . . , J denote one of the J testlets needed in a module. The j th testlet
in the module was selected by maximizing:

I∑

i=1

N∑

n=1

ei,nxi (2)

subject to xi ∈ {0, 1} and ∑I
i=1 xi = J . Here xi is the decision variable for selecting

testlet i into the module. Then ei,n , the “priority index” of testlet i on constraint n,
is defined as:

ei,n =
⎧
⎨

⎩

1 − di,n∑
i∈R j−i

di,n
, i f

∑

i∈R j−i

di,n �= 0;
0, otherwise.

(3)

where, R j−1 is the subset of item bank excluding the j − 1 already selected testlets,
and di,n is an “absolute deviation”.

For the constraint on module information at the anchor(s), n = 1 and

di,1 =
∣∣∣ T1−

∑I
k=1 uk,1xk

L−l+1 − ui,1
∣∣∣, i ∈ R j−1 (4)

where, T1 is the target value of module information, and ui,1 is the average item
information of testlet i at the anchor location. Based on Weiss and Gibbons’ strat-
egy (Weiss & Gibbons, 2007), only the information in the primary dimension was
considered here. L is the number of items needed to be selected into a module; l is
the module length after testlet i is selected.

For the constraint on item difficulty, n = 2 and

di,2 = ∣∣T2 − ui,2
∣∣, i ∈ R j−1 (5)

where, T2 is the target item difficulty, and ui,2 is the average difficulty of testlet i .
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2.5 Simulation Design

500 test takers were simulated from a N (0, 1) distribution. To facilitate comparison,
each test taker took 5 tests: a 30-item MST, a 44-item linear test with prior infor-
mation, a 30-item linear test with prior information, a 44-item randomly selected
test, and a 30-item test randomly selected test. As MST is intended to shorten the
test, 44-item MST was not considered. Test taker responses were simulated using
the bi-factor testlet response model.

InMST, the bi-factor testlet responsemodel was used to estimate examinee ability
at the end of each stage. After stage-1 and stage-2, the examinees were distributed
to the next stage based on their ability estimate in the primary dimension (Weiss &
Gibbons, 2007).

A 44-item and a 30-item linear test both with prior information about students’
language levels were used to imitate the operational test. A hard version test and an
easy version test were assembled from the same item bank. The hard test contained
items from levels “1+”, “2”, “2+”, and “3”, while the easy test contained items from
levels “0+”, “1”, “1+”, and “2”. The same number of items (for the 30-item test, 7
items were selected from each of the two extreme levels, while 8 items were selected
from each of the two central levels) were randomly selected from each of the four
levels considering the testlet structure. An examinee’s prior classification function
was used to simulate the assignment of tests by teachers. The probability of been
assigned to take the hard test is

Pi (θ0i ) = 1
1+exp(dθ0i )

(6)

where, θ0i is the ability of examinee i in the primary dimension, d is a constant to
control the discrimination ability of teachers’ prior information on examinee ability.
d was arbitrarily set to be 0.7 in this study.

When there is no prior information about students’ language level, items are
randomly selected to construct linear tests. In this way a 44-item and a 30-item
linear test were used as baseline, with items randomly selected while considering
testlets.

All five kinds of test (MST, two linear randomly selected tests, and two linear
with prior information tests) tests were generated for each examinee, respectively.
50 repetitions were administered to ensure a stable result. Note that the linear tests
used IRT item parameters, thuswere different from the operational scoring procedure
using sum score.

2.6 Evaluation Criteria

Bias and RMSEwere used to evaluate θ0 estimate accuracy, as it is the primary ability
the tests measured. The formula of bias and RMSE are as follows
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Table 2 Weight matrix 0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

bias =
∑N

i=1 θ̂i0−θi0
N

(7)

RMSE = 2

√
∑N

i=1

(
θ̂i0−θi0

)2

N
(8)

where, θ
∧

i0 and θi0 are the estimated and true primary ability of examinee i respec-
tively. N is the sample size.

The weighted Kappa coefficient which was used to measure classification accu-
racy is as follows

κ = 1 −
∑K

l=1

∑K
m=1 wlmolm∑K

l=1

∑K
m=1 wlmelm

(9)

where, K is the number of classification levels. In this study, wlm , olm , and elm
are elements in the weight, observed, and expected matrices, respectively. All three
matrices are of size K ×K . The observed and expected matrices show the agreement
between test-based and true classification and the hypothetical chance agreement.
The diagonal elements of the weight matrix are zero, while the off-diagonal elements
demonstrate the seriousness of disagreement. The elements one off the diagonal are
weighted have weight 1, elements two off the diagonal are weighted have weight 2,
etc. The weight matrix is shown in Table 2.

3 Results

3.1 Module Information

Figures 2, 3 and 4 depict the module information and anchor for each module.
The modules in stage-3 fitted the module design blueprint well. The peaks of

different modules are divergent and close to the respective anchors. On the other
hand, due to the small item bank, some modules in stage-2 and stage-1 were off-
target and some others had lower module information.
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3.2 Accuracy Evaluation

Table 3 shows the estimation accuracy under the five test designs. The 30-itemMST
has the best ability estimate accuracy. Thus, MST can decrease the test length while
maintaining accurate ability estimation and classification.

Fig. 2 Module information
and anchors in stage-3

Fig. 3 Module information
and anchors in stage-2

Table 3 Estimation accuracy Bias RMSE Kappa

CTT_prior_30 −0.01 0.41 0.9

CTT_prior_44 −0.01 0.32 0.92

CTT_random_30 −0.05 0.5 0.89

CTT_random_44 −0.03 0.38 0.91

MST −0.00 0.32 0.92
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Fig. 4 Module information
and the anchor in stage-1

4 Discussion

Several reasons may account for the considerably small differences among tests.
First, due to the restriction of the item bank, the modules in stage-1 and stage-2 did
not provide enough information at the anchors. In this way,MST design cannot bring
its priority to full play. For the purpose of module assembly algorithm evaluation, in
future studies larger item banks can be simulated. The advantage of MST is expected
to be more obvious with the larger item bank. Second, there were only around 10
items in level 2+ and level 3, thus the high ability test takers used roughly the
same sets of items in the linear test with prior information and MST. Unsurprisingly,
their ability recovery and classification accuracy in the two tests were very similar.
Third, with the 2PL-based testlet model, the 30-item test is practically long enough
to accurately recover ability. Thus, the increment from 30 items to 44 items did not
result in substantial difference in ability recovery. In a forthcoming study, shorter
test length can be attempted.
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Statistical Considerations for Subscore
Reporting in Multistage Testing

Yanming Jiang

Abstract This study examines factors that influence the reliability of subscores and
the accuracy of subscore estimates in multistage testing (MST). The factors consid-
ered in the study include the number of subtests, subtest length, correlations among
subscores, item pool characteristics such as item pool size relative to the number
of items required for an MST and statistical properties of items. Results indicated
that the factors that most influenced subscore reliability and subscore estimates were
subtest length, item pool size, and the degree of item discrimination.

Keywords Subscore · Subscore reliability ·Multistage testing

1 Introduction

In K-12 large-scale state assessments, subscores are of interest to score users because
of their potential diagnostic value in determining examinees’ strengths and weak-
nesses in different subcontent areas. Such diagnostic information may be used to
plan future remedial instruction.

The Standards for Educational and Psychological Testing (American Educational
Research Association, American Psychological Association, & National Council
on Measurement in Education, 2014) states that “scores should not be reported for
individuals without appropriate evidence to support the interpretations for intended
uses (Standard 6.12, pp. 119).” This applies to subscores as well. The Standard 1.14
also clarifies that when more than one score is reported for a test, the subscores that
comprise the assessment should be sufficiently distinct and reliable, and be consistent
with the construct(s) being assessed.

Subscore reliability is an important requirement for subscore reporting. In this
study, we examine subscore reliability in multistage testing (MST). Characteristics
of MSTs differ from those of linear tests in that an MST is generally shorter, with
item difficulties that are adaptive to examinee abilities at various stages. This study
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examines the combined impact of the characteristics of MST, item pool properties,
subtest lengths, and subscore correlations on the subscore reliability and the accu-
racy of subscore estimates. There is currently limited research available on subscore
reliabilities in an MST setting.

2 Methods

2.1 MST Design and Multidimensional Item Response
Theory (MIRT) Models

This study focused on two-stage MST with one routing module in Stage 1 and three
modules in Stage 2 with three levels of item difficulty: easy, moderate, and difficult.
We assume that the total number of items is the same across subscores and that within
a subscore, the total number of items is also the same in the two stages. For example,
for a 2 × 16 design (two subscores and 16 items per subscore), each student takes 8
items in each subtest in Stage 1 and the same number in Stage 2.

An item pool with only dichotomously-scored items was considered. The com-
pensatory multidimensional 2PL model with simple structures was assumed (i.e.,
each item belongs to one and only one dimension). Assuming there are K dimen-
sions, the probability that individual j with ability θ j =

(
θ j1, . . . , θ j K

)
answers item

i correctly is

Pi
(
θ j

) = P
(
xi j = 1|θ j , ai , bi

) = 1

1+ exp
[−Daik

(
θ jk − bik

)] , (1)

where xi j is individual j’s response value to item i and item i belongs to dimension
k; aik and bik are the discrimination and difficulty parameters, respectively, for item
i on dimension k; the constant D equals 1.7; i = 1, 2,…, I, j = 1, 2,…, J, and k = 1,
2,…, K.

The latent vector, θ j , is of dimension K in which each element is intended to
measure a proficiency of a specific skill. It is assumed that each element has unit
variance and correlations among dimensions are generally equal.

The expected a posteriori (EAP) estimators are used to estimate subscores.
The estimation is conducted using Multidimensional Discrete Latent Trait Models
(mdltm) software (von Davier, 2016).

The reliability of subscore k is estimated as:

ρ̂k = 1−
1
J

∑J
j=1 σ 2

(
θ̂ jk |X jk

)

σ 2
(
θ̂k

) , (2)
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where θ̂k is a random variable representing a theta estimate on subtest k, σ 2(θ̂k) is the
variance of θ̂k , σ 2(θ̂ jk |X jk) is the estimated variance of θ̂ jk conditional on examinee
j’s response pattern X jk , and J is the total number of examinees.

2.2 Simulation Conditions

Sinharay (2010) indicated that for a subscore to have potential for added value, a
subscore has to consist of at least 20 items and be sufficiently distinct from other
subscores. For an MST, we might relax this a little because of the adaptive nature of
the test. Therefore, subtest lengths of both 16 and 20 are considered. The simulation
study was based on a random sample of 5000 examinees from a multivariate normal
distributionwith specified covariance structures. For each simulation condition, there
were 100 replications of itempools, the process of item selection, and item calibration
and ability estimation. Detailed simulation conditions are listed in Table 1.

For each simulated item pool, automated test assembly (ATA) of an MST was
conducted using lpSolve software in R (Diao & van der Linden, 2011; Konis, 2009),
which is based on the maximin principle, that is, the minimum values for the target
test information function (TIF) at target theta values are maximized. No overlapping
items are allowed among Stage 2modules. After calibration of Stage 1 items, routing
an examinee into the easy module in Stage 2, for example, is based on K thresholds
where the kth threshold is met by θ̂ jk for all k = 1, 2,…, K. These thresholds are
predetermined based on themultivariate normal distributions such that the percentage
of examinees who are routed into the easy module ranged approximately from 22 to
25%. The same is true for examinees routed to the difficult module in Stage 2.

Table 1 Simulation conditions

Simulation parameters Levels

Number of subtests 2 or 3

Subtest length 16 or 20 score points

Correlation among subscores 0.5, 0.7, or 0.9

Characteristics of item pool in each subcontent area

Percentage of items of the pool required for
subtest assembly

Medium (70% usage) or large (50% usage)

Average item discrimination 0.7, 0.8, 0.9, or 1.0

Item difficulty N(0, 0.72), N(0, 1), or N(0, 1.32)
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2.3 Simulation Procedure

Below is the simulation procedure for one replication:

1. Simulate an itempool thatmeets specified requirements of itempool size, number
of subtests, and item parameter distributions; run lpSolve software to assemble
an MST.

2. Simulate item responses for all examinees and all items selected for the MST;
calibrate items that are in the routing module using mdltm software and obtain
initial dimensional theta estimates.

3. Route examinees into one of the three Stage 2 modules based on the initial theta
estimates and a set of predetermined theta thresholds; suppress items not taken by
an examinee so that the final item response matrix includes only item responses
for those items that an examinee actually took.

4. Calibrate the final item response matrix and obtain final item parameter and
subscore estimates.

2.4 Evaluation of Results

Subscore reliability estimates were evaluated based on their mean and standard
error over 100 replications. The accuracy of subscore estimates was evaluated based
on the average bias and root mean square error (RMSE) over all examinees by

1
J

∑J
j=1

[
1
R

∑R
r=1

(
θ̂ jkr − θ jk

)]
and 1

J

∑J
j=1

√
1
R

∑R
r=1

(
θ̂ jkr − θ jk

)2
, respectively,

where θ jk is the latent ability of individual j at dimension k, θ̂ jkr is the estimate of
θ jk for the rth replication, and R is the total number of replications.

3 Results

Table 2, Figs. 1 and 2 are based on equal simulation conditions across dimensions and
the results for all dimensions were quite similar. Therefore, results are only shown
for Dimension 1 or Subscore 1.

The results in Table 2 demonstrate that long subtests, a discriminating item pool,
and low subscore correlations had a positive impact on subscore reliability and sub-
score estimates. Compared with the 3 × 16 design, the 2 × 16 design performed
slightly better.

Figure 1 contrasts the results of the amount of variations in item difficulty (in
terms of the standard deviation of item difficulty parameters being 1.3 versus 0.70)
for the 2 × 20 design. Large variations negatively affected subscore reliability and
subscore estimates. However, the effect was small in magnitude.
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Table 2 Impact of number of subtests, subtest length, average item discrimination, and subscore
correlations on subscore reliability and subscore estimates

Test
design

Item pool characteristics Subscore
correla-
tion

Subscore
reliability

Subscore
estimates

Pool size Mean
a-parm1

b-parm1 Mean SE2 Bias RMSE

2 × 16 Medium 0.7 N(0, 1) 0.5 0.726 0.034 0.0124 0.4445

(70%
usage)

0.7 0.713 0.038 −0.0050 0.4511

0.9 0.702 0.039 0.0179 0.4605

0.8 0.5 0.772 0.022 0.0124 0.4151

0.7 0.762 0.024 −0.0050 0.4202

0.9 0.752 0.026 0.0179 0.4305

0.9 0.5 0.795 0.025 0.0124 0.3981

0.7 0.785 0.029 −0.0050 0.4036

0.9 0.777 0.030 0.0179 0.4123

1.0 0.5 0.823 0.015 0.0124 0.3759

0.7 0.815 0.016 −0.0050 0.3800

0.9 0.808 0.018 0.0179 0.3898

2 × 20 0.7 0.5 0.788 0.025 0.0124 0.4048

0.7 0.778 0.028 −0.0050 0.4087

0.9 0.769 0.031 0.0180 0.4193

0.8 0.5 0.820 0.020 0.0124 0.3785

0.7 0.811 0.022 −0.0050 0.3849

0.9 0.803 0.024 0.0179 0.3938

0.9 0.5 0.843 0.016 0.0124 0.3563

0.7 0.838 0.018 −0.0050 0.3608

0.9 0.830 0.020 0.0179 0.3701

1.0 0.5 0.860 0.011 0.0124 0.3409

0.7 0.854 0.013 −0.0050 0.3444

0.9 0.849 0.014 0.0179 0.3534

3 × 16 0.7 0.5 0.723 0.042 0.0124 0.4508

0.7 0.708 0.047 −0.0050 0.4593

0.9 0.700 0.048 0.0179 0.4689

0.8 0.5 0.766 0.029 0.0124 0.4227

0.7 0.753 0.033 −0.0050 0.4315

(continued)
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Table 2 (continued)

Test
design

Item pool characteristics Subscore
correla-
tion

Subscore
reliability

Subscore
estimates

Pool size Mean
a-parm1

b-parm1 Mean SE2 Bias RMSE

0.9 0.743 0.035 0.0179 0.4432

0.9 0.5 0.793 0.022 0.0124 0.4032

0.7 0.784 0.024 −0.0050 0.4097

0.9 0.774 0.026 0.0179 0.4238

1.0 0.5 0.818 0.017 0.0124 0.3827

0.7 0.809 0.019 −0.0050 0.3906

0.9 0.801 0.021 0.0179 0.4025

1Item discrimination and difficulty parameters
2Standard error of subscore reliability estimates

Fig. 1 Impact of variation in item difficulty (small vs. large) and subscore correlations on subscore
reliability (a) and subscore estimates (b) based on 2 × 20 design

An increase in item pool size had a positive impact on both subscore reliability
and subscore estimates. But the effects were larger for a less discriminating item
pool than a more discriminating item pool (Fig. 2).

Table 3 presents two scenarios based on the 3 × 16 design with both equal (0.8)
and unequal (0.8, 0.9, and 1.0) mean item discriminations across three dimensions
and a specific theta correlation matrix.1 Medium sized item pool and standard nor-
mal distribution for item difficulty parameter were assumed. The results indicated

1Theta correlation matrix is

⎛

⎝
1 0.5 0.7
0.5 1 0.9
0.7 0.9 1

⎞

⎠.
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Fig. 2 Impact of item pool size (medium vs. large) and mean item discriminations (0.7 vs. 1.0) on
subscore reliability (a) and subscore estimates (b) based on 2 × 20 design

Table 3 Subscore reliability and subscore estimates under both equal and unequal mean item
discriminations across dimensions based on 3 × 16 design

Mean item discrimination Subscore Subscore reliability Subscore estimates

Mean SE1 Bias RMSE

0.8 1 0.760 0.031 0.012 0.427

2 0.752 0.030 0.012 0.435

3 0.740 0.035 0.015 0.439

Mixed2 1 0.759 0.028 0.012 0.428

2 0.779 0.024 0.012 0.412

3 0.802 0.022 0.015 0.397

1Standard error of subscore reliability estimates
2Mean item discriminations were 0.8, 0.9, and 1.0 for Dimensions 1, 2, and 3, respectively

that when correlations were unequal among subscores, both reliability and subscore
estimates could vary across subscores. Higher reliability and more stable subscore
estimates were associated with a subscore that was least correlated with other sub-
scores. Similar results were found for a subscore whose item pool on average was
most discriminating.

4 Discussion

The results demonstrate that the following factors had a positive impact on subscore
reliability and the accuracy of subscore estimates: a longer subtest, a relatively larger
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item pool, a more discriminating item pool, a smaller variation in item difficulty, and
lower subscore correlations. Among these factors, subtest length, item pool size, and
item discrimination had a greater effect on subscore reliabilities and the effects of
item pool size were more pronounced for a less discriminating item pool than for a
more discriminating item pool.

Subscores are an important component of anMSTdesign.Multiple factors, includ-
ing test length, subscore correlations, and item pool characteristics should be taken
into account when making decisions on subscores during the assessment design pro-
cess. For instance, in some testing programs,when designing anMST, target subscore
reliabilities may be required (e.g., a minimum of 0.70–0.75). In exploring the poten-
tial number of subscores and the minimum subtest length to support a test design, a
thorough examination of the item pool is recommended.

Future research may be extended to include subtests with a mix of simple and
complex structures, and item pools comprised of both dichotomous and polytomous
items.

Ideally, a subscore should have a relatively high reliability estimate and be suffi-
ciently distinct fromother subscores. In addition, a subscore should have added value,
that is, when predicting the same subscore on a parallel form, the subscore-based
prediction is more accurate than the total-score based prediction, as illustrated by
Sinharay (2013) using scores on split tests. These statistical properties of subscores
also need to be investigated inMST settings in order to understand the circumstances
in which subscore reporting is warranted.
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Investigation of the Item Selection
Methods in Variable-Length CD-CAT

Ya-Hui Su

Abstract Cognitive diagnostic computerized adaptive testing (CD-CAT) provides
useful cognitive diagnostic information for assessment and evaluation. At present,
there are only a limited numbers of previous studies investigating how to optimally
assemble cognitive diagnostic tests. The cognitive discrimination index (CDI) and
attribute-level discrimination index (ADI) are commonly used to select items for cog-
nitive diagnostic tests. The CDImeasures an item’s overall discrimination power, and
the ADI measures an item’s discrimination power for a specific attribute. Su (Quan-
titative psychology research. Springer, Switzerland, pp. 41–53, 2018) integrated the
constraint-weighted procedure with the posterior-weighted CDI and ADI for item
selection in fixed-length CD-CAT, and found examinees yielded different precision.
In reality, if the same precision of test results is required for all the examinees, some
examinees need to take more items and some need to take fewer items than others do.
To achieve the same precision for examinees, this study investigated the performance
of the constraint-weighted procedure with the posterior-weighted CDI and ADI for
item selection in variable-length CD-CAT through simulations.

Keywords Cognitive diagnostic computerized adaptive testing · Item selection ·
Constraint-weighted procedure · Variable-length

1 Introduction

Cognitive diagnostic models (CDMs) assume the latent trait to be discrete cognitive
patterns, which describes if examinees have mastered or have not mastered specific
skills. Many CDMs have been proposed to obtain diagnostic information (Hartz,
2002; Junker & Sijtsma, 2001; Mislevy, Almond, Yan, & Steinberg, 2000; Rupp,
Templin, & Henson, 2010; Tatsuoka, 1983). One of the major CDMs applications
is to implement CDMs through computerized adaptive testing (CAT), denoted as
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cognitive diagnostic CAT (CD-CAT; Cheng, 2009; Huebner, 2010). The CD-CAT
approach provides useful cognitive diagnostic information measured by psychologi-
cal or educational assessments, and has been attracting a lot of practitioners’ attention
(Wang, Chang, & Douglas, 2012). However, there are only a limited numbers of pre-
vious studies investigating how to optimally assemble cognitive diagnostic test (Kuo,
Pai, & de la Torre, 2016).

The cognitive discrimination index (CDI; Henson&Douglas, 2005) and attribute-
level discrimination index (ADI; Henson, Roussos, Douglas, & He, 2008) are com-
monly used for item selection in CDMs. The CDImeasures an item’s overall discrim-
ination power, which is the pattern-level information. By contrast, the ADI measures
an item’s discrimination power for a specific attribute, which is the attribute-level
information. Zheng and Chang (2016) extended these two indices for item selec-
tion in CD-CAT, denoted as the posterior-weighted cognitive discrimination index
(PWCDI) and posterior-weighted attribute-level discrimination index (PWADI). In
their study, the PWCDI and PWADI obtained results comparable with or better than
the mutual information (MI; Wang, 2013) and posterior-weighted Kullback-Leibler
(PWKL; Cheng, 2009) in both short and long tests, and their computational time
was shorter than that for the PWKL. They also suggested that these indices could be
integrated with constraint-weighted procedures for test construction.

The priority index approach (PI; Cheng & Chang, 2009; Cheng, Chang, Dou-
glas, & Guo, 2009) is one of the popular constraint-weighted procedures. A series
of constraints are specified to include items for test construction (Stocking & Swan-
son, 1993; Swanson & Stocking, 1993). These constraints can be both statistical
(such as target item or test information) and non-statistical (such as content specifi-
cations or key balancing) on item properties. The PI approach can manage many
constraints simultaneously well. Su (2018) integrated the PI approach with the
PWCDI and PWADI, denoted as the constraint-weighted PWCDI (CW-PWCDI)
and constraint-weighted PWADI (CW-PWADI), for item selection in fixed-length
CD-CAT. It was found that the CW-PWCDI and CW-PWADI performed slightly
better than the PWCDI and PWADI in terms of attribute correct classification rates
and pattern correct classification rates. In practice, if the same precision of test results
is required for all the examinees, some examinees need to take more items and some
need to take fewer items than others do. The fixed-length CD-CAT obtains different
precision, which results in a highmisclassification rate; therefore, the variable-length
CD-CAT is more desirable, which achieves the required precision. However, there
are problems with using precision rules as stopping rules. On one hand, some exam-
inees may be administered undesirable lengthy tests because the required precision
cannot be met. On the other hand, some examinees may be stopped too early when
administering few items might have improved the precision significantly. Achieving
the required precision is the main goal for a test; this depends not only on the qual-
ity of the item pool but also on the item selection procedures. To achieve the same
precision for examinees, this study investigated the performance of the CW-PWCDI
and CW-PWADI in variable-length CD-CAT through simulations.
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1.1 Using the CW-PWCDI and CW-PWADI for Item
Selection

TheCDIwas proposed byHenson andDouglas (2005) for test construction inCDMs.
To extend Chang and Ying’s (1996) Kullback–Leibler information, the CDI of item
j for any two different cognitive patterns αu and αv is defined as follows:

CDI j =
∑

u �=v

[
h(αu, αv)

−1Djuv

]

∑

u �=v

h(αu, αv)−1
, (1)

where

h(αu, αv) =
K∑

k=1

(αuk − αvk)
2, (2)

and

Djuv = Eαu

[

log

[
Pαu (X j )

Pαv
(X j )

]]

= Pαu (1) log

[
Pαu (1)

Pαv
(1)

]

+ Pαu (0) log

[
Pαu (0)

Pαv
(0)

]

. (3)

αu and αv are 1 × K attribute vectors. Pαu (1) and Pαu (0) are the probabilities of
a correct response and an incorrect response for a given αu , respectively, and Pαv

(1)
and Pαv

(0) are the corresponding probabilities for a given αv . X j is the response of
item j. An item with the largest CDIj will be selected.

To address an item’s discrimination power for a specific attribute, the ADI is
proposed by Henson et al. (2008) and defined as follows:

ADI j = d j1 + d j0

2
=

K∑

k=1
d jk1 +

K∑

k=1
d jk0

2K ∗
j

. (4)

For item j, d jk1 represents the power to discriminate masters from non-masters
on attribute k whereas d jk0 represents the power to discriminate non-masters from
masters on attribute k. An item with the largest ADIj will be selected.

To add posterior information to theCDI andADI indices, Zheng andChang (2016)
proposed the posterior-weighted version of the CDI and ADI, denoted as PWCDI
and PWADI. These two indices can be considered as an extension of the KL and
PWKL methods. For item j, the posterior-weighted D (PWD) matrix can be defined
as follows:

PWD juv = Eαu

[

π(αu) × π(αv) × log

(
P(X j |αu)

P(X j |αv)

)]

, (5)
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Then, the PWCDI and PWADI are defined as follows:

PWCDI j = 1
∑

u �=v h(αu,αv)−1

∑

u �=v

h(αu,αv)
−1PWD juv, (6)

and

PWADI j = 1

2K
∑

all_relevant_cells

PWD juv, (7)

respectively.
To manage many constraints simultaneously, the PI approach was proposed

(Cheng & Chang, 2009; Cheng et al., 2009) for item selection. The index for item j
can be defined as:

PI j = I j

K∏

k=1

(wk fk)
c jk , (8)

where K is the total number of constraints, and I j is the Fisher information of item j
evaluated at the current θ̂ . In the current study, the Fisher information is replacedwith
the PWCDI in Eq. (6) or the PWADI in Eq. (7) when the CW-PWCDI or CW-PWADI
method is applied for item selection, respectively. The c jk is 1 when the constraint
k is relevant to item j; otherwise, the c jk is 0. Each constraint k is associated with
a weight wk . The fk measures the scaled ‘quota left’ of constraint k. For a content
constraint k, after xk items have been selected from the content area, the PI can be
defined as:

fk = (Xk − xk)

Xk
. (9)

For every available item in the pool
(
c jk = 0

)
, the PI can be computed according

to Eq. (8). An item with the largest value in Eq. (8) will be chosen to administer.
For item exposure control, assume constraint k requires that the item exposure

rates of all items to be lower than or equal to rmax, the fk can be defined as:

fk = 1

rmax

(
rmax − n

N

)
, (10)

where n/N is the provisional exposure rate of item j. AmongN examinees have taken
the CATs, n examinees have seen item j.
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2 Method

In this study, the deterministic input, noisy and gate (DINA) model (Haertel, 1989;
Junker & Sijtsma, 2001) was used for data generation. The DINA model assumes
that each attribute measured by the item must be successfully applied to obtain a
correct answer. The probability of getting a correct answer is defined as

P(Xi j = 1|s j , g j , ηi j ) = (1 − s j )
ηi j g

(1−ηi j )

j , (11)

where

ηi j =
∏K

k=1
α
q jk

ik . (12)

The ηi j represents if examinee i has mastered all the required attributes of item j.
The s j is the slip parameter, which measures the probability that an examinee with
all the required attributes misses to obtain a correct answer for item j. The g j is the
guessing parameter, which measures the probability that an examinee without all the
required attributes obtain a correct answer for item j.

A variable-length CD-CAT simulation study was carried out to evaluate the effi-
ciency of the item selectionmethods. For the comparison, data generationwas similar
to the studies of Cheng (2009) and Zheng and Chang (2016). A total number of 500
five-attribute items were generated for the study. A total number of 3000 exami-
nees were generated assuming every examinee has a 50% chance of mastering each
attribute. The Q-matrix used in this study was generated that each item has a 30%
chance of measuring each attribute. The item parameters sj and gj were generated
from U(0.05, 0.25), which represented high quality items. Three constraints con-
sidered in this study were item exposure (rmax = 0.2), content balance, and key
balancing. Two factors were manipulated in this study: item selection method (CW-
PWCDI,CW-PWADI, PWCDI, andPWADI) and the stopping rule (0.7, 0.8, and 0.9).
When the probability of the cognitive pattern with the largest probability reaches a
pre-specified value, which are 0.7, 0.8, or 0.9 in the study, a variable-length test is
stop (Tatsuoka & Ferguson, 2003). To evaluate the efficiency of each method, the
test length was used as a measure in a variable-length test. Besides, the constraint
management and item exposure for four methods were also reported in this study.

3 Results

To evaluate the efficiency of each method, the test length, constraint management,
and item exposure for four methods was reported. With respect to test length, the
descriptive statistics, including maximum, minimum, mean, and standard deviation
(SD), of the test length for the generated CD-CAT tests were summarized in Table 1.
It was found that the constraint-weighted version (CW-PWCDI and CW-PWADI)
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Table 1 The descriptive statistics of the test length for the variable-length tests

Item selection methods Stopping rule Maximum Minimum Mean SD

CW-PWCDI 0.7 12 10 11.21 0.86

0.8 19 15 17.33 1.12

0.9 21 17 19.53 1.23

CW-PWADI 0.7 14 12 13.38 0.79

0.8 21 18 19.75 1.21

0.9 23 19 21.55 1.19

PWCDI 0.7 20 18 19.57 1.19

0.8 23 20 21.78 1.25

0.9 25 22 23.66 1.33

PWADI 0.7 26 23 25.57 1.25

0.8 30 25 27.78 1.31

0.9 37 32 34.66 1.66

tended to use fewer items than the non-constraint-weighted version (PWCDI and
PWADI) while maintaining similar precision. The CW-PWCDI and CW-PWADI
needed items between 11 and 22 whereas the PWCDI and CPWADI needed items
between 20 and 35. This is because constraint-weighted methods could have fewer
items andbalance these items selected fromdifferent attributes to achieve the required
precision. It was also found that the CDI-based procedures performed slightly better
than the ADI-based procedures because the CDI-based procedures tended to need
fewer items to achieve the same precision. That is, the CW-PWCDI performed better
than the CW-PWADI, and the PWCDI performed better than the PWADI. When the
required precision was high (e.g., 0.9), more items were needed for all procedures.

With respect to the constraint management and item exposure, the number of
averaged violations and the number of item overexposed for all procedures were
reported in Table 2. It was found that the constraint-weighted version (CW-PWCDI
and CW-PWADI) outperformed the non-constraint-weighted version (PWCDI and
PWADI) in terms of no violations and no item overexposed. The PWADI performed
better than the PWCDI since the PWADI has less violation and less itemoverexposed.
The PWADI obtained the averaged violations between 1.2 and 2.2, and overexposed
items between 3 and 8. The PWCDI obtained the averaged violations between 1.6
and 2.6, and overexposed items between 6 and 12. When the required precision was
high (e.g., 0.9), higher averaged violations and more overexposed items were found
for the PWCDI and PWADI.
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Table 2 The number of
averaged violations and the
number of item overexposed
for the variable-length test

Item selection
methods

Stopping rule #Violations #Item
overexposed

CW-PWCDI 0.7 0 0

0.8 0 0

0.9 0 0

CW-PWADI 0.7 0 0

0.8 0 0

0.9 0 0

PWCDI 0.7 1.6 6

0.8 2.2 8

0.9 2.6 12

PWADI 0.7 1.2 3

0.8 1.9 5

0.9 2.2 8

4 Discussions

The CD-CAT provides useful cognitive diagnostic information for teachers, parents,
and students in psychological or educational assessments. This study integrated the
constraint-weighted procedure with the PWCDI and PWADI for item selection in
variable-length CD-CAT. It was found that the CW-PWCDI and CW-PWADI outper-
formed the PWCDI and PWADI in terms of test length (short test length), constraint
management (no constraint violation), and item exposure (no item overexposed).
Besides, the CW-PWCDI and CW-PWADI can be implemented easily and computed
efficiently. The constraint-weighted item selection procedures (i.e. the CW-PWCDI
and CW-PWADI) have great potential for item selection in operational CD-CAT.

Some future research lines are addressed as follows. In practice, the performance
of item selection methods depends on the quality and structure of the item pool.
This study only considered the simulated item bank with five-attribute DINAmodel,
whichwas similar to previous studies (Cheng, 2009; Zheng&Chang, 2016). Besides,
constraints on item exposure, content balance, and key balancing were considered in
the study. It would be worth to investigate the efficiency of item selection methods
in an operational CD-CAT pool with different attributes, different constraints, other
CDMs, and other constraint-weighted procedures.
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A Copula Model for Residual
Dependency in DINA Model

Zhihui Fu, Ya-Hui Su and Jian Tao

Abstract Cognitive diagnosis models (CDMs) have been received the increasing
attention by educational and psychological assessment. In practice, most CDMs are
not robust to violations of local item independence. Many approaches have been pro-
posed to deal with the local item dependence (LID), such as conditioning on other
responses and additional random effects (Hansen InHierarchical item responsemod-
els for cognitive diagnosis. University of California, LA, 2013); however, these have
some drawbacks, such as non-reproducibility of marginal probabilities and interpre-
tation problem. (Braeken et al. In Psychometrika 72(3): 393–411 2007) introduced
a new class of marginal models that makes use of copula functions to capture the
residual dependence in item response models. In this paper, we applied the copula
methodology tomodel the itemdependencies inDINAmodel. It is shown that the pro-
posed copulamodel could overcome someof the dependency problems inCDMs, and
the estimated model parameters recovered well through simulations. Furthermore,
we have extended the R package CDM to fit the proposed copula DINA model.
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1 Introduction

The deterministic inputs, “noisy” and“gate” (DINA)model (Junker,&Sijtsma, 2001)
is a popular conjunctive cognitive diagnosis models (CDMs) which assumes that a
respondent must have mastered all required attributes in order to correctly respond
to an item on an assessment. To estimate respondent’s knowledge of attributes, we
need information about which attributes are required for each item. For this, we use
a Q-matrix which is an J × K matrix where qjk = 1 if item j requires attribute k and
0 if not. I is the number of items and K is the number of attributes in the assessment.
A binary latent variable αik indicates respondent i’s knowledge of attribute k, where
αik = 1 if respondent i has mastered attribute k and 0 if he or she has not. Then, an
underlying attribute profile of respondent i, αi, is a binary vector of length K that
indicates whether or not the respondent has mastered each of the K attributes.
The deterministic element of the DINA model is a latent variable ηij that indicates
whether or not respondent i has mastered all attributes required for item j:

ηij =
K∏

k=1

αik
qjk (1)

for i = 1, 2, · · · , I , I denotes the number of examinees; j = 1, 2, · · · , J and k =
1, 2, · · · ,K . If respondent i has mastered all attributes required for item j, ηij = 1;
if the respondent has not mastered all of the attributes, ηij = 0.

sj = P(Yij = 0|ηij = 1), gj = P(Yij = 0|ηij = 0)

The slip parameter sj is the probability that respondent i responds incorrectly to item
j although he or she has mastered all required attributes. The guess parameter gj is
the probability that respondent i responds correctly to item j although he or she has
not mastered all the required attributes. It follows that the probability of a correct
response of respondent i to item j with skill vector αi is

Pj(αi) = P(Yij = 1|αi) = g
1−ηij
j (1 − sj)

ηij (2)

A basic assumption of the DINA model is local conditional independence:

P(Y i = yi) =
J∏

j=1

P(Yij = yij|αi) =
J∏

j=1

Pj(αi)
yij [1 − Pj(αi)](1−yij) (3)

where Y i is the response vector of examinee i on the set of J items. The DINAmodel
and most CDMs are not robust to violations of local item independence. Potential
causes of dependence could be from the fact that the model is too simple, therefore
more general CDMs ( e.g., the LCDM and GDINA) should be considered for some
practices (de la Torre, 2011; Henson, Templin, &Willse, 2009; von, 2008). Residual
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item dependence might also be interpreted as the Q-matrix misspecification ( That
is, a failure to include all relevant attributes in the model, see (Chen, Culpepper,
Chen, & Douglas, 2018; Culpepper and Chen, 2018; Chen, Liu, Xu, & Ying, 2015;
Xu, & Shang, 2018). Local item independence (LID) can affect the estimation and
the reliability of the model parameters. Ignoring such dependencies, i.e., using a
traditional CDM that assumes local independency may affect the estimates of model
parameters and misclassification of respondents.

Hansen (2013) have included additional random effects to account for the depen-
dency; this approach is followed by testlet models (Bradow, 1999), random intercept
item factormodel (Maydeu-Olivares,&Coffman, 2006). To dealwith LID, (Braeken,
Tuerlinckx, & De Boeck, 2007) primitively introduced a convenient marginal cop-
ula modeling tool to construct multivariate distributions for dependent responses in
IRT models. In this paper, we will also employ copula-based technique to model the
dependencies in CDMs. The remaining manuscript is arranged as follows.

In Sect. 2, we describe the some basic theory of copula function and present the
proposed Copula CDMs as an extension. In Sect. 3, we present the EM algorithm
to estimate the marginal and associates parameters. In Sect. 4, Simulation studies
are demonstrated to show the consequences of local item independence violations
within the context of cognitive diagnostic modeling. Finally, we conclude with a few
summary remarks.

2 Modeling

2.1 An Overview of Copula Theory

In mathematics, a copula function can be defined as a R-dimensional distribution
functionC : [0, 1]R → [0, 1] that relates a multivariate uniform cumulative distribu-
tion function (CDF) to its univariatemargins that have uniformCDFs (Nelsen, 2006).
The Sklar’s theorem (Sklar, 1959) ensures that for any R-dimensional distribution
function FY with univariate marginal FY1 ,FY2 , · · · ,FYR , there exist a copula function
C such that

FY (y1, · · · , yR) = C(FY1(y1), · · · ,FYR(yR))

Two most widely used copula families are elliptical copulas and Archimedean cop-
ulas. In this paper, we focused on the Archimedean copulas which have a simple
structure and can be written as:

C(u1, · · · , uR) = φ−1[φ(u1) + · · · + φ(uR)]
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2.2 Copula Model for DINA Model

In this section, we extend Braeken et al. (2007)’s copula-based joint approach to the
setting of CDMs. Specifically, we consider S disjoint subsets of {1, · · · , J } denoted
as J1, · · · , Js, · · · , JS , where Js has cardinality Is. The response vector of examinee i,
Y i is similarly divided into subsets Y(1)

i , · · · ,Y (s)
i , · · · ,Y(S)

i , where Y(s)
i = (Y (s)

ij , j ∈
Js), s = 1, 2, · · · , S. The different subsets are assumed independent.

P(Y i = yi|αi) =
S∏

s=1

P(Y(s)
i = y(s)

i |αi)

=
S∏

s=1

P(Y (s)
ij = y(s)

ij , j ∈ Js|αi), i = 1, 2, · · · , I . (4)

(Note the superscript (s) in Y (s)
ij and y(s)

ij are dropped in the remainder of this article
for simplicity.) Let bij = Fij(yij), and aij = Fij(y

−
ij ) be the left hand limit of marginal

distribution function Fij at yij, with Fij(0−) = 0, Fij(1) = 1, and Fij(0) = Fij(1−) =
1 − Pj(αi) = s

ηij
j (1 − gj)

1−ηij (see Eq. (2)).
For responses in the subset s, the joint probability is evaluated from a copula function
Cs

P(Yij = yij, j ∈ Js|αi)

= P(Yi1 = yi1,Yi2 = yi2, · · · ,YiIs = yiIs |αi)

= Δbi1
ai1Δ

bi2
ai2 · · · ΔbiIs

aiIs
Cs(vi) (5)

where vi = (vi1, · · · , viIs) and we employ the difference notation of (Nelsen, 2006):

Δbi1
ai1Cs(ui1, · · · , ui,j−1, vij, ui,j+1, · · · , uiIs) =

Cs(ui1, · · · , ui,j−1, bij, ui,j+1, · · · , uiIs) − Cs(ui1, · · · , ui,j−1, aij, ui,j+1, · · · , uiIs)

where vij is an index of differencing. For example, when Is = 3,

P(Yi1 = yi1,Yi2 = yi2,Yi3 = yi3) = Δbi1
ai1Δ

bi2
ai2Δ

bi3
ai3Cs(vi1, vi2, vi3)

= Cs(bi1, bi2, bi3) − Cs(bi1, bi2, ai3) − Cs(bi1, ai2, bi3) − Cs(ai1, bi2, bi3)

+Cs(bi1, ai2, ai3) + Cs(ai1, bi2, ai3) + Cs(ai1, ai2, bi3) − Cs(ai1, ai2, ai3)

The regular conditional independent DINA model arises as a special case when
S = 1 and Cs is the independence copula

∏
(FYi1|αi , · · · ,FYiJ |αi ) =

∏J

j=1
FYij |αi .
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The regular conditional independentDINAmodel arises as a special casewhen S = 1
and Cs is the independence copula:

∏
(FYi1|αi , · · · ,FYiJ |αi ) =

∏J

j=1
FYij |αi

3 Parameter Estimation for Copula CDMs

Parameter estimation of the Copula DINA model is performed by marginal maxi-
mum likelihood (MML) estimation method and implemented using the expectation-
maximization (EM; see (Dempster, Laird, & Rubin, 1977)) algorithm. The marginal
likelihood for the Copula DINA model is

L(Y) =
I∏

i=1

L(Y i) =
I∏

i=1

L∑

l=1

L(Y i|αl)P(αl) (6)

The conditional likelihood of Y i can be written as

L(Y i|αl) =
S∏

s=1

P(Y(s)
i |αl) =

S∏

s=1

P(Yij = yij, j ∈ Js|αl) (7)

E-step

a. The individual posterior distribution for the skills αl , l = 1, . . . ,L

P(αl |Y i) = P(Y i|αl)P(αl)∑L
m=1 P(Y i|αm)P(αm)

(8)

b. Two types of expected numbers are obtained from the posterior: The first count

Tjl =
I∑

i=1

P(αl |Y i)

Rjl =
I∑

i=1

Y iP(αl |Y i)

denotes the expected number of examinees which are classified into skill class
αl for item j, j = 1, . . . , J . The second count denotes the expected number of
examinees classified in skill class αl while answering item j correctly.
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M-step
a. Update ĝj, ŝj

Independent case

∂ logL(Y)

∂βj
=

I∑

i=1

P(αl |Y i)

L∑

l=1

∂ logPj(αi)
yij [1 − Pj(αi)](1−yij)

∂βj
= 0

Then the derived item estimators have the same closed form of those issued from the
traditional DINA model:

ĝj = R(0)
j

T (0)
j

and ŝj = 1 − R(1)
j

T (1)
j

(9)

where

T (0)
j =

∑L

l=1
Tjl(1 − ηlj),R

(0)
j =

∑L

l=1
YijTjl(1 − ηlj),

T (1)
j =

∑L

l=1
Tjlηlj,R

(1)
j =

∑L

l=1
YijTjlηlj

dependent case

For items exhibit some dependence and form a dependent subset, we have

∂ logL(Y)

∂βj
=

I∑

i=1

P(αl |Y i)

L∑

l=1

∂ logP(Yij = yij, j ∈ Js|αl)

∂βj
= 0

No closed-form solutions of this equation exist. An iterative algorithm was used to
find the optimal solution.
b. Update P(αl)

P(αl) =
∑I

i=1
P(αl |Yi)/I (10)

and the skill mastery probabilities are defined as

P(αk) =
∑L

l=1
αlkP(αl |Y i) (11)

The E- and M-Step alternate until convergence. EM algorithm was implemented by
R and we extend the CDM package to estimate Copula DINA/DINO.
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4 Illustrated Examples

4.1 Design

We compare the results of correctly specified model-Copula CDM (which used to
generate the data), with those issued by the misspecified model-traditional CDM.
Detailed design are listed in Table1.

4.2 Results

To save space, we only list partial results. And detailed results can be requested from
the author.

Part 1 Comparison of item parameter estimators Fig. 1 illustrated the estimated
guessing and slipping parameter issued from the DINAmodel and the Copula-DINA
model for J = 20, I = 500/1000/2000. By observing the distance from the points to
the line, we find that the Copula-DINA estimates are much closer to the true values,
compared with the DINA estimates which deviated from the true line.

Part 2 Bias andRMSETable2 gives gives Bias andRMSE of the guessing, slipping,
and skill class parameters. The results indicate that the Copula-DINAmodel provides
accurate parameter estimates compared with DINA model. Under the same condi-
tions, all RMSE values derived from Copula-DINA model are smaller than those
computed from the DINAmodel. Further, for each model, the RMSE decreases with
increasing sample size.

Table 1 Simulation Design

Condition Specification

number of examinees I = 500, 1000, or 2000

number of items J = 20 or 30

number of attributes K = 5

dependent subsets J1 = {1, 2}J2 = {5, 6}, J3 = {10, 11, 12}
Model Copula-DINA versus DINA or Copula-DINO

versus DINO

Copula function Frank’s copula, Gumbel’s copula

Copula dependency parameter [δJ1 = 2, δJ2 = 4, δJ3 = 6] or
[δJ1 = 4, δJ2 = 6, δJ3 = 8]

True value: s = g = 0.2

Replications: R = 100
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Fig. 1 Comparison of estimated guess and slip parameters issued from the DINA model and the
Copula-DINA model, test length J = 20, total number of examinees I = 500/1000/2000. Note:

solid line denotes the true value, denotes estimates from DINA, and © represents the estimates
from Copula-DINA

Part 3 Difference of Person Classifications The IRT.factor.scores are computed by
reference to the R package “CDM” to compare the individual classifications obtained
from the Copula-CDM and CDM. First, we computed the classifications for each
model using the function IRT.factor.scores:

CDM::IRT.factor.scores(DINA, type = “MLE”)= class-independent
CDM::IRT.factor.scores(Copula-DINA, type = “MLE”)= class-copula

Second, count the number of different classifications between the above two types
of models, and divided by the total number of examinees I, then got the ratio of
classification differences (RCD) which listed in Table3.

RCD =
∑

(class-independent �= class-copula)/I
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Table 2 Comparison of estimated results issued from the DINA model and the Copula-DINA
model, test length is J = 20, total number of examinees I = 500/1000/2000; dependency: δJ1 = 4,
δJ2 = 6, δJ3 = 8

Bias RMSE

I Parameter model mean min max mean min max

500 gj DINA 0.0003 −0.0345 0.0421 0.0359 0.0214 0.0586

Copula-
DINA

0.0002 −0.0066 0.0068 0.0275 0.0191 0.0394

sj DINA −0.0017 −0.0998 0.0401 0.056 0.0319 0.1175

Copula-
DINA

−0.0025 −0.0178 0.0063 0.0393 0.0275 0.0567

p(αl) DINA 0 −0.0124 0.012 0.0139 0.0102 0.0218

Copula-
DINA

0 −0.0023 0.0022 0.0116 0.0094 0.0162

1000 gj DINA 0.0009 −0.0322 0.0421 0.0264 0.0149 0.0522

Copula-
DINA

0.0003 −0.0036 0.0036 0.0191 0.0138 0.0265

sj DINA −0.0019 −0.1038 0.0404 0.0418 0.0218 0.1117

Copula-
DINA

−0.0014 −0.0088 0.0042 0.0272 0.0201 0.0389

p(αl) DINA 0 −0.0127 0.0122 0.0105 0.0066 0.0176

Copula-
DINA

0 −0.002 0.0018 0.0081 0.0062 0.0107

2000 gj DINA 0.0011 −0.0328 0.0385 0.0208 0.0115 0.0439

Copula-
DINA

−0.0003 −0.0061 0.0045 0.0136 0.0111 0.0174

sj DINA −0.0012 −0.1043 0.0482 0.035 0.016 0.1093

Copula-
DINA

−0.0003 −0.0038 0.0058 0.0191 0.0138 0.0258

p(αl) DINA 0 −0.014 0.0126 0.0083 0.0052 0.0149

Copula-
DINA

0 −0.001 0.0014 0.0056 0.0047 0.0071

It is easy to see that the ratio of differences increase with the dependency δ. From
Table3, we can conclude that the classification differences can not be ignored for the
current design.

Part 4 AssessingModel Fit and Local DependenceWe computes several measures
of absolute model fit and local dependence indices for dichotomous item responses
which are based on comparing observed and expected frequencies of item pairs (see
(Chen, de la Torre, & Zhang, 2013) for details). We extend the R package function
CDM::modelfit.cor.din and CDM::IRT.modelfit to the Copula-CDM model.
For each fit statistics, it holds that smaller values (values near to zero) indicate better
fit. These indexes were computed from both the traditional and copula CDMs over
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Table 3 Ratio of classification difference (RCD) under 24 conditions

DINA versus Copula-DINA DINO versus Copula-DINO

J I δJ1 , δJ2 , δJ3 = 2,4,6 δJ1 , δJ2 , δJ3 = 4,6,8 δJ1 , δJ2 , δJ3 = 2,4,6 δJ1 , δJ2 , δJ3 = 4,6,8

RCD RCD RCD RCD

20 500 89/500 99/500 90/500 95/500

1000 182/1000 197/1000 180/1000 193/1000

2000 380/2000 403/2000 377/2000 399/2000

30 500 57/500 60/500 53/500 59/500

1000 113/1000 123/1000 108/1000 120/1000

2000 236/2000 255/2000 227/2000 246/2000

the range of simulation conditions. Results from these analyses were presented in
Table4. On the basis of all the listed indexes, the results from Copula DINA/DINO
model are consistently smaller than those from DINA/DINO model.

Test of global absolute model fit
In Table5, the statistic max(X2) denotes the maximum of all χ2

jj′ statistics accom-
panied with a p value. A similar statistic abs(fcor) is created as the absolute value
of the deviations of Fisher transformed correlations as used in (Chen, de la Torre, &
Zhang, 2013). The index demonstrated high rate of acceptance for copula model.

χ2
jj′ =

1∑

n=0

1∑

m=0

[
N (Yj = n,Yj′ = m) − P̂(Yj = n,Yj′ = m)

]

P̂(Yj = n,Yj′ = m)

5 Conclusions and Future Study

The purpose of this research was to apply the copula methodology to model the item
dependencies in CDMs. There are two advantages of copula modeling method: first,
the marginal model and dependency part can be modeled separately; second, it is
not restricted to model a linear dependency structure as implied by the use of the
multivariate normal distribution.

In the simulation study, we assess the performance of proposed copula model
and estimating methods, where we obtain the satisfactory results under the current
conditions. The results show that the parameters are recovered and can be estimated
properly withminor bias. Otherwise, results from simulation demonstrate that failure
to account for dependency can result biased item parameter estimates, misclassifi-
cation of examinees.

For future studies: Firstly, more simulation conditions should be considered. Sec-
ondly, some complex diagnostic model(e.g., Gdina model) should be considered.
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Table 4 Model fit statistics results under dependency δJ1 = 4,δJ2 = 6,δJ3 = 8

J I Model AIC BIC MADcor SRMSR MX2 100*MAD
RESIDCOV

MADQ3 MADaQ3

20 500 DINA 12347 12647 0.039 0.065 2.105 0.937 0.065 0.062

Copula-
DINA

11963 12262 0.031 0.038 0.781 0.727 0.061 0.059

1000 DINA 24624 24972 0.031 0.059 3.476 0.744 0.059 0.056

Copula-
DINA

24053 24401 0.022 0.027 0.775 0.514 0.054 0.052

2000 DINA 49180 49578 0.026 0.056 6.173 0.616 0.056 0.053

Copula-
DINA

48740 49138 0.015 0.019 0.765 0.36 0.049 0.047

500 DINO 12341 12640 0.038 0.063 1.966 0.914 0.064 0.061

Copula-
DINO

12005 12305 0.03 0.038 0.761 0.716 0.06 0.058

1000 DINO 24634 24983 0.031 0.057 3.265 0.736 0.058 0.055

Copula-
DINO

24152 24500 0.022 0.027 0.779 0.516 0.053 0.052

2000 DINO 49187 49585 0.025 0.054 5.765 0.607 0.054 0.052

Copula-
DINO

48878 49276 0.015 0.019 0.767 0.362 0.049 0.047

Table 5 Test of global model fit results issued from the CDM model and the Copula-CDM model
δs=1 = 2, δs=2 = 4, δs=3 = 6 δs=1 = 4, δs=2 = 6, δs=3 = 8

max(X2) abs(fcor) max(X2) abs(fcor)

J I Model value p value p value p value p

20 500 DINA 85.42 0 0.5 0 90.91 0 0.52 0

Copula-DINA 6.64 0.9 0.12 0.77 6.92 0.86 0.12 0.71

1000 DINA 167.17 0 0.49 0 177.33 0 0.52 0

Copula-DINA 6.68 0.89 0.08 0.75 6.64 0.9 0.08 0.75

2000 DINA 338.46 0 0.5 0 350.34 0 0.52 0

Copula-DINA 6.72 0.89 0.06 0.77 6.58 0.88 0.06 0.76

500 DINO 73.88 0 0.45 0 79.76 0 0.48 0

Copula-DINO 6.79 0.88 0.12 0.74 6.55 0.89 0.11 0.78

1000 DINO 147.72 0 0.46 0 161.59 0 0.49 0

Copula-DINO 6.58 0.91 0.08 0.77 6.73 0.89 0.08 0.77

2000 DINO 289.34 0 0.45 0 313.27 0 0.48 0

Copula-DINO 6.81 0.86 0.06 0.75 6.3 0.94 0.06 0.86

Thirdly, for dependent item sets with large cardinality Is, optimization problem gets
harder. We can combine the EM algorithm with the two-stage estimation method-
IFM method (Joe, & Xu, 1996). Further corresponding simulation studies are still
needed. Fourthly, model selection-we have to choose the most adequate diagnostic
model for the marginal probabilities and find out which copula function shows the
best representation of the dependence structure.
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A Cross-Disciplinary Look
at Non-cognitive Assessments

Vanessa R. Simmreing, Lu Ou and Maria Bolsinova

Abstract The past two decades have seen an increasing interest in studying non-
cognitive skills across disciplines. Despite the shared popularity, non-cognitive skills
have been assessed variously across disciplines with different assumptions and target
populations. Synthesizing across the commonalities, differences, and limitations in
these various approaches will have important implications for the development and
interpretation of non-cognitive assessments. In this project, we review the ways in
which non-cognitive skills have been conceptualized and measured across psychol-
ogy and education, and use self-control as an example to address the challenges to
various types of assessments that are commonly seen in these disciplines. We will
draw implications from a cross-disciplinary perspective on the validity and reliability
of the non-cognitive assessments.

Keywords Non-cognitive · Assessment · Validity · Reliability

1 Introduction

1.1 What Does “Non-cognitive” Mean?

Non-cognitive skills have been an increasingly popular target of assessment, but what
do we mean when we say “non-cognitive”? Easton (2013) noted “Everybody hates
this term but everyone knows roughly what you mean when you use it” (p. 8; see also
Duckworth&Yeager, 2015). Table 1 shows a non-exhaustive list of twelve adjectives
and six nouns that are variously combined across research areas; additional specific
sub-skills, such as “grit” and “growth mindset”, have been popular in recent research
(Kyllonen, Bertline, & Zu, 2018). A search of the Web of Science Core Collection
on the intersections of these terms indicated more than 17,500 publications, with
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Table 1 Range of adjectives
and nouns used together to
refer to constructs we discuss
here (from Kyllonen et al.,
2018)

Adjectives Nouns

Non-cognitive Non-academic Attributes

Socio-emotional Psychosocial Competencies

Soft 21st-Century Skills

Personal Intra-/inter-personal Traits

Self-management Character Strengths

Meta-cognitive Emotional Intelligence

dramatic growth in the rate of publication in the past two decades, from less than
300 in 1998 to over 1100 in 2017.

If we “roughly” knowwhat is meant by non-cognitive and related terms, as Easton
(2013) argued, is it important to consider differences in terminology? We argue it
is because the choice of terminology is more than semantics: each of these terms
was developed with particular underlying assumptions and goals. For example, the
choice of referring to non-cognitive “traits” versus “skills” or “competencies” implies
different expectations for malleability—we typically think of traits as stable charac-
teristics of a person, whereas skills or competencies are more likely to be developed
and improve. The underlying assumptions and goals across disciplines then influence
what type of measures will be proposed and investigated through research. In the
current paper, we consider the history of such terms across disciplines, where the
initial motivation to develop assessments and details of the goals and populations
differ.

1.2 When “Non-cognitive” Appeared in the Literature

Our first question was when and how the term “non-cognitive” emerged in the social
sciences literature. We limited our search to this term for simplicity, with the general
principles of our argument being applicable to other terms as well (although the
specific details differ). Table 2 shows some of the earliest appearance of this term
across disciplines based on a Web of Science Core Collection search.

As these examples show, there were three general disciplines in which the term
was presented in the early- to mid-20th century. First was social psychology, a dis-
cipline in which there was a straightforward contrast with cognitive psychology
encompassing affect/emotion, personality, and interpersonal interactions. Next was
education, in which the contrast was with academic or intellectual abilities, which
have traditionally been the targets of assessments. Lastly this term emerged in the
context of training and the workforce; in these contexts non-cognitive skills were dif-
ferentiated frommore typical metrics from education, and the goal was more specific
differentiation and prediction of success. There is some similarity in the emergence
of the term non-cognitive across disciplines, but there are also important differences.
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Table 2 Sample of early publications using the term “non-cognitive”

Publication title Year Discipline

An experimental study of the cognitive
and affective processes in retention and
recall

1914 Social psychology

Personality tests—whither? 1933 Social psychology

The measurement of socially valuable
qualities

1947 Social psychology

Non-intellective factors in certain
intelligence and achievement tests

1951 Education

University selection: Some psychological
and educational factors

1953 Education

The validity of several non-cognitive tests
as predictors of certain naval office
candidate school criteria

1954 Training/workforce

Differential testing of high-level
personnel

1957 Training/workforce

For the purposes of this paper, we will consider the intersection of social psychol-
ogy and workforce under the umbrella of industrial/organizational (I/O) psychology,
and divide education into later (higher/secondary) and earlier (primary/preschool)
because these align with major areas of the literature. This discussion, as well as
the samples above, are not intended to be an exhaustive review of the literature, so
other disciplines in which the term has been used (e.g., neuropsychology) will not
be considered.

2 Comparing Across Disciplines and Assessment Types

When developing and comparing non-cognitive assessments, a number of specific
challenges arise related to underlying assumptions about the constructs of interest,
which may differ across disciplines of origin and assessment types. We first consider
a general comparison between disciplines, then specific examples of assessments of
one non-cognitive factor, self-control. Although the assessments of self-control arose
within the same discipline (personality psychology), the examples we use illustrate
characteristics of assessments that reflect different assumptions about the underlying
constructs.
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2.1 Comparing Disciplines: Who Is Assessed and for What
Purpose

Historically, different disciplines developed assessments of non-cognitive skills for
different purposes or goals, as Table 2 suggests, driven by different assumptions
about the underlying constructs, and targeting different populations. Comparing I/O
psych with education, we can see similarities in later education, when the targeted
populations and goals are similar, but difference in earlier education due to the
different populations who require different methods and potentially different goals.
What is less clear in this comparison, however, iswhether the assumptions underlying
the constructs are similar in cases where the populations and goals differ.

In I/O psych and later education, the goal is often to contrast with academic abil-
ity, with some focus on interpersonal interactions (e.g., so-called bedside manner in
medical students, whether an employee would work well with others). The popula-
tion of interest is mostly young adults and older teens who have already surpassed
some academic thresholds to reach this point in education or the workplace. Within
that already narrowed population, then, educators and employers seek to differenti-
ate the pool further to predict workplace effectiveness and/or select best candidates
for specific types of positions. Most often, therefore, non-cognitive assessments are
used as predictors, but the related skills may also be measured as an outcome of
targeted training (e.g., bedside manner). In some parts of the literature, the termi-
nology suggests assumptions of stability or inherent differences between individuals
(e.g. “traits” or “attributes”), which aligns best with using assessments as predictors.
When assessments are designed to measure outcomes, however, this indicates some
expectation that non-cognitive skills are malleable. Assessments are designed dif-
ferently when the construct of interest is assumed to be stable versus malleable, but
these assumptions are not often made explicit when presenting assessment results.

Similar to I/O psych and later education, non-cognitive assessments in early edu-
cation are designed to contrast with academic ability, andmay also touch on interper-
sonal interactions (e.g., anti-bullying efforts). A major difference in early education,
however, is the focus on children and adolescents, who have very different base capa-
bilities for assessments. This necessarily changes the types of assessments that can
be used, as we discuss further below. Another differentiation is the inclusion of all
students, with a goal to support the development of these skills. Because research has
shown non-cognitive factors as predictors of later success in education and employ-
ment, teachers, administrators, and parents are motivated to support these factors
to benefit students’ academic achievement, retention, continuation. In these younger
grades, then, non-cognitive skills may be targeted with a specific curriculum and then
measured as outcomes. Early research has also sought to establish typical and atypical
developmental trajectories of these factors in the absence of curricular guidance.
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2.2 Comparing Assessment Types: Examples
from Self-control

To make concrete the types of challenges to assessment that must be addressed,
we will use self-control as an example. Some of these challenges are general to
questionnaires versus performance tasks (see Duckworth &Yeager, 2015, for further
discussion of task types and the related threats to validity), but others are specific to
underlying assumptions about the constructs of interest.

Questionnaires. One well-cited example comes from Moffitt et al. (2011) who
argued that many important outcomes in adulthood are predicted by self-control
during early childhood to adolescence. They followed 1000 participants in New
Zealand from birth to 32 years of age and used childhood self-control as a predictor
of later outcomes (four health dimensions, six wealth dimensions, and criminal con-
victions). They used a composite of self-control measures across age and observers,
as described further below. The authors reported that the effects of self-control on
later outcomeswere dissociable from IQ (average scores on theWechsler Intelligence
Scale for Children—Revised, measured at 7, 9, and 11 years of age), socio-economic
status (1–6 scale based on parent occupation), and so-called “adolescent snares” (e.g.
early smoking, parenthood, school drop-out). We chose this study as an illustration
because the findings have been influential on the literature, the measures are typical
of these types of large-scale predictive studies, and it used a range of assessments at
different ages in childhood.

The measures used by Moffitt et al. (2011), as described in their supplemen-
tary materials, were questionnaires developed as assessments of personality within
social psychology or psychiatry. One implication of these disciplinary origins is an
assumption that these are stable traits being measured, which influences the way
the questionnaires were developed. Due to the wide age range covered, Moffitt et al.
used different informants at different ages. The informants at ages 3 and 5 years were
from trained observers who were part of the research team; they rated the child’s lack
of control (item content, see supplementary materials p. 2: “labile, low frustration
tolerance, lack of reserve, resistance, restless, impulsive, requires attention, brief
attention to task, lacks persistence in reaching goals”). At ages 5, 7, 9, and 11 years,
parents and teachers reported on impulsive aggression (“flies of handle, fights”),
hyperactivity (“runs and jumps about, cannot settle, has short attention span” at all
ages; at 9 and 11 only, “‘on the go’ as if ‘driven by a motor’, difficulty sitting still”.
At 9 and 11 years, teachers and parents also rated lack of persistence (“fails to finish
tasks, easily distracted, difficulty sticking to activity”) and impulsivity (“acts before
thinking, has difficulty awaiting turn, shifts excessively between activities”). At 11,
adolescents self-rated hyperactivity (“fidgety, restless”), inattention (“difficulty pay-
ing attention, trouble sticking to a task”), and impulsivity (“difficulty waiting turn,
talking while others are still talking”).

There are a number of threats to validity and reliability in these types of methods
(see Duckworth & Yeager, 2015, for a related overview and discussion of measure-
ment issues), which are not specific to theMoffitt et al. (2011) study but are general to
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questionnaire assessments. Many techniques have been developed to address these
threats, but none can be perfect, and across studies they may not be used consis-
tently or details of implementation can be difficult to find (e.g., if specific items are
not made available, general instructions before the questionnaire are not described).
Furthermore, some of these techniques have been developed using narrow samples
and may not be equipped to handle cultural differences (some of which we highlight
below).

Source of Information. The first threat to validity and reliability of questionnaires
we consider is the source.Moffitt et al. (2011) used all three of the types of informants
who may be used in these assessments: (1) trained observers from the research team,
(2) people in the subject’s life who know them well (teachers and parents in Moffitt
et al.; other studies have used coworkers or classmates), and (3) the subjects them-
selves. Each of these has potential concerns with framing, opportunity to observe,
and bias, which we consider in turn here. Framing concerns who the reference group
is for the subject, which can be defined at the outset of the questionnaire (e.g., stu-
dents in the same school, children of the same age) for all informants. However,
only with trained observers is there an opportunity to carefully control knowledge of
the reference group—for example, if evaluating a subject relative to other children
of the same age, how much the observer knows about typical children of that age
can be evaluated and supported through training. Other informants’ knowledge of
the reference group could be measured within a questionnaire, but often researchers
do not want to extend the length any more than is necessary, and these items are
not central to the research questions of most studies. Proxies for knowledge can be
designed with only a few items (e.g., for teachers, “Howmany years have you taught
this grade?”) but provide only a coarse metric.

Different informants will also have different opportunities to observe behaviors in
question. Only subjects themselves have universal access to the subject’s behavior,
so any outside observer would have a more limited opportunity to observe particular
behaviors.While the concernwith framing is best handled byusing a trained observer,
this type of informant is the most limited in the opportunity to observe. This problem
is exacerbated by the fact that behaviors are likely contextually-bound (discussed
below), and therefore the level of self-control a child demonstrateswill differ between
school andhomeand anunfamiliar setting (as is often the casewith trainedobservers),
as well as between settings or contexts within the school and home. If the goal of
assessing self-control is to predict its effect in particular settings, then it is sensible
to limit the informants to the relevant setting. Some cases are not clear-cut, however,
as in the case of homework for example. Parents and teachers may legitimately rate a
child’s ability to complete homework differently when observed at home (the process
of completion) versus school (the outcome of completion) because the contextual
considerations will be different in those settings: a child may finish an assignment
at home, but fail to find it when relevant at school the next day. Which part of this
behavior is most relevant to the assessment may not be clear.

Even with ample opportunity to observe and good knowledge of the reference
group, any informant may be motivated, consciously or unconsciously, to respond
more or less favorably than their true knowledge of the subject.When evaluating one’s
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self, the subject maywant to appear better to an examiner, or may be overly critical of
their own behaviors. Parents and teachers may want to reflect better on themselves
if they view a child’s behavior as their responsibility to support; conversely, they
may view the child as more problematic on these dimensions due to other, unrelated
behavioral issues. All observers may hold stereotypes (positive or negative) about
the social groups the subject belongs to (e.g., gender, race, socioeconomic status,
cultural background) that could lead them to interpret behavior as more in line with
their expectations than the behavior truly is, or to more readily identify behaviors
that violate stereotypes. Because biases could lead to either over- or under-estimation
of particular behaviors, there is not an easy universal solution to adjust reporting.
Furthermore, bias may be ‘contagious’ between informants. For example, children
may internalize descriptions fromparents and teachers, either negatively or positively.
If a child has been described as easily distracted (on one extreme) versus attentive
and diligent (on the other extreme), by the time they are old enough to provide
self-ratings, they have likely received substantial feedback that could influence their
ratings more than their actual behavior.

Finally, informants will also be required to make their evaluation of the subject
concrete or quantifiable, a process that may introduce additional error or bias. Ques-
tionnaires typically ask observers to rate on a Likert-type scale covering a range of
similarity to the subject or frequency of a behavior. These types of ratings require
an internal threshold in the observer for what would constitute “a lot” or “a little”
in terms of similarity to the subject or frequency. This likely relates closely to the
source’s opportunity to observe both the subject andmembers of the reference group,
but could also differ between individuals with similar experiences. For frequency, it
is possible to adapt scales to be more concrete (e.g., “at least once a week”, “less
than once a month”) but even these ratings will rely on subjective recall.

Context-Dependence. Across all sources, the potential context-dependence of
behaviors canmake questionnaires an ill-suited assessment. Some behaviors of inter-
est may only occur in particularly constrained contexts, for example, a child who
has a problem maintaining attention on a book they are reading may be better able to
attend to the book being read to them (or vice versa). Children may become deeply
engrossed in subjects they enjoy but have trouble sticking to a task in a subject they
do not enjoy. Because questionnaire items tend to ask for generalizations or typical
behaviors, it is unclear how one should respond to an item that differs across contexts.
Items may be constructed to address different contexts, for example by specifying
whether an activity is one the child likes or dislikes, but individual differences in
contextual variation make it difficult to design items that will work equally well for
all subjects.

Performance Tasks. As a contrasting example to questionnaires as assessments
of self-control assessments, we consider a performance task: the delay of gratification
task (Mischel & Ebbesen, 1970; Mischel, Ebbesen, & Raskoff Zeiss, 1972; Mischel,
Shoda, & Rodriguez, 1989), colloquially referred to as the ‘marshmallow task’. In
this task, the participant is told that they can either have a small snack (e.g., one
marshmallow) immediately or a larger snack (e.g., two marshmallows) if they wait.
The snack is typically presented in front of the participant during the delay to maxi-
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mize temptation, although there are a number of variations in the method including
the personalization of the snacks offered to ensure that different participants will
be similarly tempted (see Duckworth & Kern, 2011, for additional variations). The
dependent measure of interest is how long the participant waits to receive the larger
snack. This task has shown longitudinal predictive power from childhood to adoles-
cence (e.g., Mischel, Shoda, & Peake, 1988; Shoda, Mischel, & Peake, 1990), and
correspondence to concurrent parent ratings in early childhood and teacher ratings
in middle childhood (Duckworth, Tsukayama, & Kirby, 2013). Mischel’s work was
notable for challenging the characterization of personality traits as leading to stable
behavioral patterns (e.g., Mischel & Shoda, 1995), and he presented the marshmal-
low task as a way to study different contextual influences on children’s performance.
Thus, although this performance task originated from the same discipline as many
questionnaires described above, the assumptions underlying the design and goals of
the assessment differed.

Benefits of performance tasks over questionnaires include the direct assessment
of participants’ choices, the possibility for parametric manipulation (e.g., length of
delay, difference between small and large snacks, even broader context as described
below). This task has been adapted across age groups from 3 years to adults by
modifying the nature and size of the choices and delay to be appropriate for the
sample. There are, however, still significant threats to validity and reliability of this
task. It is unclear how stable performance should be when used repeatedly, as having
performed the task before may change how participants approach and interpret the
task. Variance across individuals can be truncated by the experimenter-imposed delay
limit; for example, in one study 59% of 10-year-olds waited the maximum 30 min
for the larger delay, providing no differentiation among individuals in that portion
of the sample (Duckworth et al., 2013).

Although this type of task has been used extensivelywith preschool-aged children,
it is unclear whether they understand the tasks as the experimenter intends and/or
trust that experimenter will follow through on the promised reward. Trust in the larger
reward is essential for the task to work, yet it is not easily measured in young children
performing the task. Kidd, Palmeri, and Aslin (2013) showed that children’s trust can
be modulated by the context of the task: if in an earlier interaction the experimenter
failed to provide something that was promised, children were less likely to wait
for the larger reward (see Ma, Chen, Xu, Lee, & Heyman, 2018; Michaelson &
Munakata, 2016, for related findings with children; and Michaelson, de la Vega,
Chatham, & Munakata, 2013, for similar findings with adults). As further evidence
for the influence of context, Doebel and Munakata (2018) showed that children’s
beliefs about whether others in their peer group waited influenced how long they
were willing to wait.

Implications of Assumptions Underlying Assessment Design. A general ques-
tion applicable to all methods of assessment is what the expected stability should be
over time. The expectation likely differs by theoretical perspective and/or discipline,
as mentioned above: if self-control is considered a trait of an individual, one might
expect it to change very little; if it is viewed as a skill, one might expect it to improve
over time with practice. In the examples we used above, reliability was relatively
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low. Moffitt et al. (2011) reported only a moderate correlation (r = 0.30) between a
composite of the childhood measures and a survey of the subjects as adults (as rated
by themselves and a friend, partner or family member). Depending on one’s expec-
tations and perspective, this could be viewed positively—child self-control provides
additional explanatory power over adult self-control, which assumes they are sepa-
rable constructs—or negatively—indicating that self-control is not a stable trait or
that our measures cannot reliably assess it. For the marshmallow task, we found only
one report of test-retest reliability, which was r = 0.22 (Mischel et al., 1988). As
noted above, it is unclear if performance tasks are undermined by repeated testing (a
possibility raised byMischel et al., 1988), as participants might have different expec-
tations or find new strategies to approach the task, which therefore could change the
construct(s) they measure.

These assessment examples in self-control raise the question of whether it is best
to use one measure (where threats may be well-known and attempted to control) or
multiple measures (each with different limitations that may have opposite effects),
and how any measure should deal with context sensitivity. Regardless of which
choice researchers make, it is important that we acknowledge the limitations of each
type of measure and work to account for these when drawing conclusions about the
underlying constructs. These types of concerns generalize to other competencies as
well, beyond the specific measures discussed above and the construct of self-control.

3 Outlook

The goal of this paper was to consider how non-cognitive assessments are shaped
by assumptions about the underlying constructs within and between disciplines.
Comparing across disciplines, we considered how different purposes, goals, and
populations shape these assumptions, in turn influencing the way assessments are
designed and interpreted. We then used specific examples of assessments of one type
of non-cognitive factor, self-control, to illustrate howdifferent assumptions about this
construct play out in questionnaires versus performance tasks. In this section, we also
considered the threats to validity and reliability of these different assessments.

Moving forward, we recommend not only that these issues around measurement
be brought to the forefront, but also that the theoretical implications surrounding
them. For example, context sensitivity should be thought of as a feature of human
behavior, not a noise to be eliminated. There are no ‘pure’ underlying abilities devoid
of the influence of behavior, whether that behavior is measured in a performance task
or generating a rating for a questionnaire. We should measure within the context we
care most about, repeatedly and frequently, expecting variation and potentially even
using that variation as a metric of interest (cf. van Geert & van Dijk, 2002).

Lastly, at the broadest level, the field would benefit from more specificity in
our descriptions of the constructs we seek to measure. Although referring to ‘non-
cognitive’ skills carries with it connotations that researchers across disciplines iden-
tifywith, trying tomeasure at a level so general will sacrifice precision and specificity
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in predictive power. We are doing ourselves a disservice by lumping together such
disparate skills as collaboration and study skills, for example; although these do
have some underlying commonalities like self-regulation, the variation in how self-
regulation influences the overt behaviors we can measure will make it difficult to
pull those commonalities out. As our abilities to collect and analyze more extensive
and different types of data increase, we must be mindful of the limitations of existing
assessments and consider new ways to overcome them.
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An Attribute-Specific Item
Discrimination Index in Cognitive
Diagnosis

Lihong Song and Wenyi Wang

Abstract There lacks an item quality index as a measure of item’s correct classifi-
cation rates of attributes. The purpose of this study is to propose an attribute-specific
item discrimination index as a measure of correct classification rate of attributes
based on a q-vector, item parameters, and the distribution of attribute patterns. First,
an attribute-specific item discrimination index was introduced. Second, a heuristic
method was presented using the new index for test construction. The first simula-
tion results showed that the new index performed well in that their values matched
closely with the simulated correct classification rates of attributes across different
conditions. The second simulation study results showed that the heuristic method
based on the sum of the attributes’ indices yielded comparable performance to the
famous CDI. The new index provides test developers with a useful tool to evaluate
the quality of diagnostic items. It will be valuable to explore the applications and
advantages of using the new index for developing an item selection algorithm or a
termination rule in cognitive diagnostic computerized adaptive testing.

Keywords Cognitive diagnosis · Item discrimination index · Correct classification
rate · Test construction · The deterministic inputs · Noisy “and” gate model

1 Introduction

The primary objective of cognitive diagnosis is to classify examinees into latent
classes determined by vectors of binary attributes. Thus, the statistical quality of
diagnosis test or items is most directly relevant to the classification accuracy. Since
the estimation of attribute patterns no longer involves a continuousmeasure of ability,
indices initially introduced by classical test theory (CTT) and item response theory
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(IRT), such as reliability and information, do not apply directly to discrete latent
space modeled by cognitive diagnostic models (Henson & Douglas, 2005).

Item discrimination indices for cognitive diagnosis provide an important tool for
understanding the statistical quality of a diagnostic item and identifying “good” items
(Rupp, Templin, & Henson, 2010). There are two basic sets of item discrimination
index to measure discriminatory power of an item (Rupp et al., 2010). The first one
is based on descriptive measures from CTT, such as the global item discrimination
index. The second index is based on information measures from IRT, including the
cognitive diagnosis index (CDI; Henson & Douglas, 2005), the attribute discrim-
ination index (ADI; Henson, Roussos, Douglas, & He, 2008), the modified CDI
and ADI (Kuo, Pai, & de la Torre, 2016). The modified CDI and ADI (Kuo et al.,
2016) take into account attribute hierarchy and the ratio of test length to the number
of attributes for designing cognitive diagnostic assessment. Moreover, the mutual
information reliability (MIR) coefficient is proposed to evaluate the measurement
quality of latent class or attribute pattern obtained from a mastery or diagnostic test
(Chen, Liu, &Xu, 2018). TheMIR is also a kind of information-based discrimination
index because it is defined as 1−SHE(α|X)/SHE(α), where SHE(α|X)/SHE(α)

refers to the conditional entropy of attribute pattern α given item responses X and
SHE(α) refers to the shannon entropy of attribute pattern α.

A global item discrimination index as a CTT-based index is defined as d j =
P(X j |αu) − P(X j |αl), where P(X j |α) is the probability of a correct response of
item j with attributes pattern α, αu = (1, 1, …, 1), and αl = (0, 0, …, 0). Let K be the
number of attributes. The corresponding attribute-specific item discrimination index
is defined as d jk = P(X j |αu) − P(X j |αl), where αuk = 1, αlk = 0, and αuk′ = αlk′
for any k′ �= k, k ′, k = 1, 2, . . . , K . For the deterministic inputs, noisy “and” gate
model (called the DINA model; Haertel, 1989; Junker & Sijtsma, 2001) in Sect. 2.1,
if s j and g j are slip and guessing parameters, then d j= (1 − s j ) − g j . If attribute k
is measured by item j, then d jk = (1 − s j ) − g j , otherwise d jk = 0.

Cognitive diagnostic information (CDI; Henson, & Douglas, 2005) as a global
information-based item discrimination index which is based on Kullback-Leibler
information (Chang & Ying, 1996) can be written as

CDI j = 1

2K (2K − 1)

∑
u �=v

Djuv, (1)

where,

Djuv = K L I j (P(X j |αu), P(X j |αv)) = Eα

[
ln

[
P(X j |αu

)

P(X j |αv

)
]]

=
∑1

x=0
P(X j = x |αu)ln

[
P(X j = x |αu

)

P(X j = x |αv

)
]
. (2)

Kullback-Leibler information or, more appropriately, the Kullback-Leibler infor-
mation for discrimination (Lehmann & Casella, 1998) is most commonly thought
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of as a measure of distance between any two probability distributions, f(x) and g(x).
Chang and Ying (1996) suggested using Kullback-Leibler information instead of
Fisher information as a more effective index for item selection in computerized
adaptive tests based on unidimensional IRT models. For the DINA model, the CDI
can be written as

CDI j = 1

2K (2K − 1
)
(
2K − 2K−K j

)
2K−K j

(
1 − s j − g j

)

(log((1 − s j )/g j )) + log((1 − g j )/s j ). (3)

There are two attribute-specific item discrimination indices (Henson et al., 2008)
as a kind of information-based index

d(A) jk = 1

2K−1

(∑
Ωk1

Djuv +
∑

Ωk0
Djuv

)
, (4)

d(B) jk =
∑

Ωk1
wk1Djuv +

∑
Ωk0

wk0Djuv, (5)

where K is the number of attributes,

�k1 = {
(αu,αv)|αuk = 1, αvk = 0, and αuk ′ = αvk ′,∀k ′ = k

}
, (6)

�k0 = {(αu,αv)|αuk = 0, αvk = 1, and αuk ′ = αvk ′,∀k ′ = k}, (7)

wk1 = P(αu |αuk = 1), (8)

and

wk0 = P(αu |αuk = 0). (9)

From all indices above, they are dependent on the characteristics of items and
population, such as the q-vector, item parameters, and the distribution of attribute
patterns. Existing studies have shown that there are strong relationships between
the discrimination indices and correct classification rates (Henson et al., 2008) or
classification error (Chen et al., 2018). However, there lacks an item quality index
which can directlymeasure or estimate item’s correct classification rates of attributes.
The purpose of this study is to propose an attribute-specific item discrimination index
based on a q-vector, item parameters, and the distribution of attribute patterns, as a
classification-based index for measuring the statistical quality of a diagnostic item
in terms of classification error.

The remainder of this chapter is structured as follows. Firstly, an attribute-specific
item discrimination index is proposed to serve as a measure of correct classification
rates for attributes at the item level. Secondly, a heuristicmethod is presentedusing the
new index for test construction. Thirdly, simulation studies and results are elaborated.
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Finally, the conclusions and discussion on future research directions are summarized
in the final section.

2 Methodology

2.1 The DINA Model

The DINA model, a commonly used cognitive diagnostic model, is chosen here
because it is a parsimonious and interpretable model that requires only two item
parameters for each item regardless of the number of attributes being measured. The
item response function for the DINA model is given by

P j (αi ) = P
(
Xi j = 1|αi

) = (
1 − s j

)ηi j g
1−ηi j
j , (10)

where the deterministic latent response ηi j = ∏K
k=1 α

qkj
ki indicates whether or not

examinee i possesses all of the attributes required by item j, 1 if mastered and 0 if
unmastered. Let αi denote an attribute mastery pattern or a knowledge state from
the universal set of knowledge states. Moreover, Q-matrix that specifies the item-
attribute relationship is a K × J matrix, in which entry qkj = 1 if attribute k is
required for answering item j correctly and qkj = 0 otherwise. The slip parameter
s j refers to the probability of an incorrect response to the item j when ηi j = 1, and
the guessing parameter g j represents the probability of a correct response to item j
when ηi j = 0. Xi j is a binary random variable denoting the response of examinee i
to item j. In addition, let K j = ∑K

k=1 qkj be the total number of attributes measured
by item j.

2.2 An Attribute-Specific Item Discrimination Index

If an individual’s status on attribute k is classified, respectively, as α
∧

k1 and α
∧

k0

given a correct response X j = 1 and an incorrect response X j = 0 on item j.
Let P(αk = α

∧

k1|X j = 1) and P(αk = α
∧

k0|X j = 0) represent the conditional
probabilities of the two states of attribute k (i.e., α

∧

k1 or α
∧

k0) given item response
X j . Let P

(
X j = 1

)
and P

(
X j = 0

)
denote the marginal probabilities of a correct

response and an incorrect response on item j, respectively. Since P(αk = α
∧

k1|X j =
1) and P(αk = α

∧

k0|X j = 0) can be viewed as an attribute-level classification
accuracy index (Wang, Song, Chen, Meng, & Ding, 2015) given item response X j .
In viewof the randomness of item responses, by taking an expectation of the attribute-
level classification accuracy index with respect to item responses, thus an attribute-
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Fig. 1 The values of ECA jk

specific item discrimination index or expected classification accuracy, denoted by
ECA, can be written as

ECA jk = P
(
αk = α

∧

k1|X j = 1
)
P

(
X j = 1

) + P
(
αk = α

∧

k0|X j = 0
)
P

(
X j = 0

)
.

(11)

Consider the expected a posteriori (EAP) estimate of attribute patterns (Huebner
& Wang, 2011) under the DINA model. If the attributes are independent of each
other and the attribute patterns follow a uniform distribution, then for 1 − s j > g j ,
q jk = 1, and K j = ∑K

k=1 q jk , the ECA for attribute k on item j is given by

ECA jk = (1 − s j − g j )/2
K j + 0.5. (12)

Figure 1 shows the values of ECA jk for items with different item parameters and
the numbers of attributes required by items.

3 Simulation Study I

3.1 Study Design

The first simulation study was conducted to investigate whether the ECA index can
accurately estimate the simulated or true values of correct classification rates of
attributes. The true or simulated correct classification rate of an attribute was the
proportion of times that each examinee was classified into the true attribute via the
EAP given item responses on each item.

From Formulas (11) and (12), we know that the ECA index is dependent on three
factors: (a) item parameters, (b) the number of attributes required by an item, and
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Table 1 Conditions of simulation study

Factors Levels

Model The DINA model

The number of attributes K = 5

The number of examinees N = 10,000

The number of items J = 1000

The Q-matrix Each entry has a probability of 0.6 of being a 1

Item parameters U(0.05, 0.25) and U(0.25, 0.45)

Distributions of attribute patterns ρ = 0, 0.5, 0.75, and 0.95

Note For four distributions of attribute patterns (ρ = 0, 0.5, 0.75, and 0.95), the first distribution
was a uniform distribution and the remaining three distributions were generated in the way of Chiu
et al. (2009) and Henson et al. (2008)

(c) the distribution of attribute patterns. These three factors will be manipulated in
this study. Table 1 shows a list of factors and their levels. The number of attributes
measured by a test was fixed at K = 5.

Magnitude of item parameters. The size of item parameters was varied at two
levels: low and high. Low level referred to relatively smaller guessing and slip param-
eters, which were randomly generated from a uniform distribution U(0.05, 0.25).
High level, on the contrary, indicated relatively larger guessing and slip parameters,
which were randomly generated from a uniform distribution U(0.25, 0.45) (Chen,
Xin, Wang, & Chang, 2012).

The number of attributes required by an item. A total number of 1000 items
(i.e., M = 1000) with two different distributions of item parameters was simulated
to form two item banks. The elements of Q-matrix were generated item by item and
attribute by attribute. To ensure that all the possible combinations of attributes or
q-vectors occurred, the probability that an attribute was measured by an item was set
to be 0.6 as in the studies of Cui, Gierl, and Chang (2012), and Wang et al. (2015).

The distribution of attribute patterns. Four distributions of attribute patterns
were considered here. The first distribution was a uniform distribution, meaning that
the attribute patterns were generated to take each of all 2K possible patterns with
equal probability. Considering the examinee’s attribute-mastery probability and the
relationship between the attributes, the remaining three distributions were generated
in the following way (Chiu, Douglas, & Li, 2009; Henson & Douglas, 2005; Henson
et al., 2008): first, continuous vectors of latent abilities were randomly drawn from
a multivariate normal distribution θ ∼ MVN(0,ρ), where ρ represented a corre-
lation matrix with equal off-diagonal elements. Three values of 0.5, 0.75 and 0.95
were assigned to the off-diagonal elements as in the study of Henson et al. (2008),
respectively; second, the i-th individual’s mastery for attribute k was given by

αik =
{
1 i f θik ≥ φ−1

(
k

K+1

)

0 otherwise,
. (13)
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where k = 1, 2, . . . , K .
In this study, we simulated N = 10,000 examinees. An informative prior dis-

tribution estimated from the population of 10,000 examinees. The ECA index was
computed from Formula (11) by employing different informative prior distributions
corresponding to the four distributions.

3.2 Evaluation Criteria

The correct classification rates of attributes for the simulated data on each item was
used as a baseline to evaluate the performance of the ECA. It should be noted that
attribute pattern estimate α

∧

i was obtained via the EAP method with an informative
prior distribution based on an item response of examinee i on a test item. Given
the estimated attribute patterns α

∧

i and simulated αi (i = 1, 2, . . . , N ), the correct
classification rate for attribute k (Chen et al., 2012; Henson & Douglas, 2005; Kuo
et al., 2016; Sun, Xin, Zhang, & de la Torre, 2013) was computed as follows

CCRk = 1

N

∑N

i=1
I
(
α
∧

ki , αki
)
, (14)

where I (.) is an indicator function, having the value 1 for α
∧

ki = αki and the value
0 for α

∧

ki �= αki . Note that the CCR was considered as the true value of the ECA for
attributes.With respect to the estimation precision, the overall recoverywas evaluated
by bias (BIAS), absolute bias (ABS), and root mean squared error (RMSE).

3.3 Results

Table 2 shows the estimation precision across all simulation conditions. On the
whole, the BIAS was between −0.0248 and 0.0062; the ABS was between 0.0027
and 0.0333; the RMSE was between 0.0034 and 0.0390, indicating that all correct
classification rates were recovered accurately by the ECA index.

As illustrated in the top left panel of Fig. 2, it was observed that the distribution
of attribute patterns did not cause a significant impact on the estimation error. The
impact of the number of attributes required by an item on the estimation precision
is presented in the top right panel of Fig. 2. The estimation error on items with a
higher number of attributes required by an item was slightly larger than that of items
with a smaller number of attributes required by an item. This might be because the
higher number of attributes, the more parameters needed to be estimated. The bottom
panel of Fig. 2 shows the impact of item parameters on the estimation precision. Item
parameters had a little impact on the accuracy of the proposed index.
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Table 2 The precision of the ECA index across all simulation conditions

Correlation Item parameters K j BIAS ABS RMSE

ρ = 0 U(0.05, 0.25) 1 0.0006 0.0028 0.0035

2 −0.0153 0.0154 0.0168

3 −0.0248 0.0248 0.0268

4 −0.0207 0.0208 0.0233

5 −0.0143 0.0144 0.0167

U(0.25, 0.45) 1 0.0007 0.0037 0.0045

2 −0.0024 0.0044 0.0056

3 −0.0032 0.0053 0.0066

4 −0.0024 0.0051 0.0062

5 0.0001 0.0045 0.0054

ρ = 0.5 U(0.05, 0.25) 1 −0.0001 0.0028 0.0034

2 −0.0002 0.0188 0.0230

3 −0.0008 0.0258 0.0295

4 0.0025 0.0282 0.0323

5 0.0047 0.0288 0.0329

U(0.25, 0.45) 1 −0.0007 0.0028 0.0034

2 0.0013 0.0071 0.0091

3 0.0015 0.0076 0.0098

4 0.0020 0.0072 0.0093

5 0.0019 0.0060 0.0075

ρ = 0.75 U(0.05, 0.25) 1 0.0010 0.0030 0.0038

2 0.0018 0.0185 0.0242

3 −0.0005 0.0265 0.0314

4 0.0015 0.0310 0.0363

5 0.0032 0.0333 0.0390

U(0.25, 0.45) 1 0.0011 0.0038 0.0048

2 0.0026 0.0099 0.0119

3 0.0031 0.0114 0.0140

4 0.0038 0.0121 0.0148

5 0.0040 0.0118 0.0144

ρ = 0.95 U(0.05, 0.25) 1 −0.0003 0.0027 0.0034

2 0.0031 0.0148 0.0210

3 0.0014 0.0213 0.0263

4 0.0026 0.0257 0.0312

5 0.0029 0.0285 0.0342

(continued)
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Table 2 (continued)

Correlation Item parameters K j BIAS ABS RMSE

U(0.25, 0.45) 1 0.0023 0.0033 0.0041

2 0.0041 0.0064 0.0088

3 0.0049 0.0077 0.0107

4 0.0058 0.0085 0.0119

5 0.0062 0.0085 0.0121

M −0.0004 0.0131 0.0158

-0.02

-0.01

0.00

0.01

0.02

0.03

ρ=0 ρ=0.5 ρ=0.75 ρ=0.95

-0.02

-0.01

0.00

0.01

0.02

0.03

#1 #2 #3 #4 #5

-0.02

-0.01

0.00

0.01

0.02

0.03

U(0.05, 0.25) U(0.25, 0.45)

BIAS ABS RMSE

Fig. 2 The impact of correlations, the number of attributes and item parameters on the estimation
precision

4 Simulation Study II

4.1 Study Design

The second study was conducted to investigate the performance of the ECA index
for test construction, which was compared with the CDI (Henson & Douglas, 2005).
Table 3 shows a list of factors and their levels. All data were simulated in the same
way employed in the first study. Under an item bank with 300 items, a heuristic
algorithm based on the ECA index for test construction used the following steps:
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Table 3 Conditions of simulation study

Factors Levels

Model The DINA model

The number of attributes K = 4 and 8

The number of examinees N = 10,000

The number of items J = 300

The Q-matrix Randomly selecting from all possible attribute patterns
with replacement

Item parameters U(0.05, 0.40)

Distributions of attribute patterns ρ = 0 and 0.5

Step 1. Select the first item with the largest ECA j , where ECA j = ∑K
k=1 ECA jk .

Step 2. Select the next item such that ECA j is the maximum of all remaining
items in the item bank.

Step 3 Repeat step 2 until the desired test length (i.e. 40 or 80) is achieved.

4.2 Evaluation Criteria

Two hundred data sets of item responses were generated and analyzed for each
condition. For each data set, attribute pattern α

∧

i was obtained via the EAP method
using the prior distribution estimated from the population of 10,000 examinees.Given
the estimated attribute patterns α

∧

i and simulated αi (i = 1, 2, . . . , N ), the correct
classification rate for attribute patterns (Chen et al., 2012; Henson & Douglas, 2005;
Kuo et al., 2016; Sun et al., 2013) was computed as follows

CCR = 1

N

∑N

i=1
I
(
α
∧

i ,αi
)
, (15)

where I (.) is an indicator function, having the value 1 for α
∧

i = αi and the value 0
for α

∧

i �= αi . The average of CCR across the 200 replications is computed for each
condition.

4.3 Results

Figures 3 and 4 show the average correct classification rates of attribute patterns
across the replications for two test construction methods under various conditions.
The heuristic method based on the sum of the ECAs of attributes yielded comparable
performance to the famous CDI across various test lengths regardless of correlations.
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Fig. 3 Correct classification rates of attribute patterns for two test construction methods (K = 4)
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Fig. 4 Correct classification rates of attribute patterns for two test construction methods (K = 8)

5 Discussion

Theoretical results shows that the proposed attribute-specific item discrimination
index,which is based on a q-vector, itemparameters, and the distribution of attributes,
can be viewed as a measure of correct classification rates of attributes. The first
simulation study was conducted to evaluate the performance of the ECA under the
DINAmodel. Several factors were manipulated for five independent attributes in this
study. Results showed that the new index performed well in that their values matched
closely with the simulated correct classification rates of attributes across different
simulation conditions. The second simulation study was conducted to examine the
effectiveness of the heuristic method for test construction. The test length was fixed
to 40 or 80 and simulation conditions are similar as used in the first study. Results
showed that the heuristic method based on the sum of the ECAs yielded comparable
performance to the famous CDI.

These indices can provide test developers with a useful tool to evaluate the quality
of the diagnostic items. The attribute-specific item discrimination index will provide
researchers and practitioners a way to select the most appropriate item and test that
they want to measure with greater accuracy. With these indices, one can get reliable
statistical evidence of the quality of a single item and obtain valuable data for test
construction in cognitive diagnostic assessment as well. Because the ECA can be
regarded as a measure of correct classification rate of attributes on test items (Wang,
Song, & Ding, 2018). Wang, Song, Chen, and Ding (2019) have proposed a method
for making the prediction of the test-level correct classification rates of attribute
patterns based on the ECAs of test items. Since computerized adaptive testing with
cognitive diagnosis (CD-CAT) can help with classroom assessment and facilitate
individualized learning (Chang, 2015), it is interesting to study the application of
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the designed index in CD-CAT for developing an item selection algorithms or a
termination rule in future.

There were several limitations to this research. First, the current study focused on
the DINA model only. In the future, the proposed index should be applied to general
families of cognitive diagnosticmodels (CDMs) such as the generalizedDINAmodel
(de la Torre, 2011), the log-linear CDM (Henson, Templin, & Willse, 2009), the
general diagnostic model (von Davier, 2005), and the polytomous CDMs (Xia, Mao,
&Yang, 2018). Finally, the existing methods for test construction did not incorporate
the informative prior distribution of attribute patterns into test construction. When
the informative prior distribution is known, then Bayesian methods, which make
use of more information, are preferred due to their better performance (Theodoridis
& Koutroumbas, 2009). For example, the fully Bayes approach is most accurate,
provided that the informative prior information is reliable (de la Torre,Hong,&Deng,
2010), and employing informative prior in item selection can significantly improve
classification accuracy in CD-CAT (Cheng, 2009). Therefore, it is worth exploring
ways of utilizing prior knowledge to develop new methods of test construction for
further improving the classification accuracy of a diagnostic test in future.
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Assessing the Dimensionality
of the Latent Attribute Space
in Cognitive Diagnosis Through Testing
for Conditional Independence

Youn Seon Lim and Fritz Drasgow

Abstract Cognitive diagnosis seeks to assess an examinee’s mastery of a set of
cognitive skills called (latent) attributes. The entire set of attributes characterizing a
particular ability domain is often referred to as the latent attribute space. The correct
specification of the latent attribute space is essential in cognitive diagnosis because
misspecifications of the latent attribute space result in inaccurate parameter estimates,
and ultimately, in the incorrect assessment of examinees’ ability. Misspecifications
of the latent attribute space typically lead to violations of conditional independence.
In this article, the Mantel-Haenszel statistic (Lim & Drasgow in J Classif, 2019)
is implemented to detect possible misspecifications of the latent attribute space by
checking for conditional independence of the items of a testwith parametric cognitive
diagnosis models. The performance of the Mantel-Haenszel statistic is evaluated in
simulation studies based on its Type-I-error rate and power.

Keywords Cognitive diagnosis model · Dimensionality ·Mantel-haenszel statistic

1 Introduction

Cognitive diagnosis models (CDMs) try to account for the dependence among obser-
vations by latent dimensions that are related to the mastery or possession of cognitive
skills, or “attributes” required for a correct response to an item. Thesemodels have re-
ceived considerable attention in educational research because tests based on CDMs
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promise to provide more diagnostic information about an examinee’s ability than
tests that are based on Item Response Theory (IRT) (Rupp et al., 2010). Specifi-
cally, whereas IRT defines ability as a unidimensional continuous construct, CDMs
describe ability as a composite of K discrete, binary latent skill variables called
attributes that define 2K distinct classes of proficiency.

Like with other measurement models in assessment, the validity of a CDM de-
pends on whether the latent attributes characterizing each proficiency class entirely
determine an examinee’s test performance, so that item responses can be assumed
to be independent after controlling for the effect of the attributes. (This property of
conditional independence is often called “local independence” in the IRT literature.)
As Lord and Novick (1968) pointed out, the misspecification of the latent ability
space underlying a test usually leads to violations of the conditional independence
assumption that, in turn, result in inaccurate estimates of the model parameters and,
ultimately, incorrect assessments of examinees’ ability. For cognitive diagnosis, the
assumption of conditional independence is equivalent to the assumption that the K
attributes span the complete latent space. More to the point, violations of conditional
independence are likely to occur if the latent attribute space has been misspecified
in either including too few or too many latent attributes in the model.

Within the context of IRTmodels, various methods have been proposed for exam-
ining the dimensionality of the latent ability space underlying a test through checking
for possible violations of conditional independence. Stout (1987), for example, de-
veloped DIMTEST, a nonparametric procedure for establishing unidimensionality
of the test items through testing for conditional independence. Another instance is
Rosenbaum’s (1984) use of the Mantel-Haenszel statistic for assessing the unidi-
mensionality of dichotomous items.

Lim and Drasgow (2019) proposed a nonparametric procedure for detecting mis-
specifications of the latent attribute space in cognitive diagnosis, which relies on the
Mantel-Haenszel statistic to check for violations of conditional independence in the
context of nonparametric cognitive diagnosis method approaches. This study extends
the study of Lim and Drasgow (2019) by using the proposed statistic with parametric
cognitive models for the estimation of proficiency classes.

2 The Mantel-Haenszel Test

Lim andDrasgow (2019) propose to use theMantel-Haenszel (MH) chi-square statis-
tic to test for the (conditional) independence of two dichotomous variables j and j ′
by forming the 2-by-2 contingency tables in conditioning on the levels of the strati-
fication variable C . In their study, the stratification variable C is defined in terms of
the latent attribute vector αc = (αc1, αc2, ..., αcK )′, for c = 1, 2, ..., 2K ; that is, the
different strata of C are formed by the 2K proficiency classes.

Let {i j, j ′c} denote the frequencies of examinees in the 2 × 2 × C contingency
table. The marginal frequencies are the row totals {i1+c} and the column totals {i+1c},
and i++c represents the total sample size in the cth stratum. Then, the MH statistic
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is defined as

MHχ2 = [∑c(i11c − ∑
c E(i11c)]2

∑
c var(i11c)

, (1)

where E(i11c) = i1+ci+1c/ i++c and var(i11c) = i0+ci1+ci+0ci+1c/ i2++c(i++c − 1).
The stratum having minimum total sample size i++c equal or larger than 1 is in-
cluded. Under the null hypothesis of conditional independence of the items j and j ′,
for cognitive diagnosis models, the MH statistic has approximately a chi-square dis-
tribution with degrees of freedom equal to 1 if examinee’s true latent attribute vectors
are used as the levels of the stratification variable C . Assume that the odds ratio be-
tween j and j ′ is constant across all strata. Then the null hypothesis of independence
is equivalent to an odds ratio of one

Odds RatioMH j, j ′ = 1

C

C∑

c=1

or j, j ′c, (2)

where or j, j ′c = (i11ci00c)/(i10ci01c).

3 Simulation Studies

The finite test-length and sample-size properties of MHχ2 have been investigated in
simulation studies. For each condition, item response data of sample sizes I = 500, or
2000 were drawn from a discretized multivariate normal distributionMVN(0K ,

∑
),

where the covariance matrix
∑

has unit variance and common correlation ρ = 0.3 or
0.6.TheK-dimensional continuousvectors θ i = (θi1, θi2, ..., θiK )′ weredichotomized
according to

αik =
{
1, if θik ≥ Φ−1 k

K+1 ;
0, otherwise

Test lengths J = 20 or 40 were studied with attribute vectors of length K= 3 or 5.
The correctly specified Q-matrix for J = 20 is presented in Table1 (Attributes with �

were used for Q-matrix (K = 3); attributes with �� for Items 4 and 5). The Q-matrix
for J = 40 was obtained by duplicating this matrix two times.

Data were generated from three different models: the DINA model, the additive-
cognitive diagnosis model (A-CDM), and a saturated model (i.e., the generalized-
DINA (G-DINA) model). For the DINA model, item parameters were drawn from
Uniform (0, 0.3). For the A-CDM and the saturated model, like Chen et al. (2013),
the parameters were restricted as P(α�

i j )min = 0.10 and P(α�
i j )max = 0.90, where α�

i j
was the reduced attribute vector whose components are the required attributes for the
j − th item (see de la Torre, 2011, more details). The R was used for the estimation
in this study (e.g., Robitzsch, Kiefer, George, & Uenlue, 2015) in which model
parameter estimation was performed by maximization of the marginal likelihood.
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Table 1 Correctly specified Q (K = 5)

Item k�
1 k�

2 k�
3 k4 k5 Item k�

1 k�
2 k�

3 k4 k5

1 1 0 0 0 0 11 1 1 0 0 0

2 0 1 0 0 0 12 1 1 0 0 1

3 0 0 1 0 0 13 1 0 0 1 1

4 0�� 0 0 1�� 0�� 14 0 1 0 1 1

5 0�� 0 0 0�� 1�� 15 0 0 1 1 0

6 1 1 0 1 1 16 1 0 0 1 0

7 1 0 0 1 0 17 0 1 0 0 1

8 0 1 0 1 0 18 0 0 1 0 0

9 0 0 1 1 0 19 1 0 0 1 0

10 0 1 0 1 0 20 1 0 0 1 1

For each condition, a set of item response vectors was simulated for 100 replica-
tions. The proposedMHstatistic, Chi-squared statistic x j j ′ (Chen andThissen, 1997),
absolute deviations of observed and predicted corrections r j j ′ (Chen et al. 2013), and
their corresponding p-values were computed for all (J × (J − 1))/2 item-pairs in
an individual replication.

4 Results

Across 100 trials for each condition, the proportion of times the p-value of each item-
pair was smaller than the significance level 0.05 was recorded and is summarized in
the tables shown below.

Type I Error Study In this simulation study, the correctly specified Q-matrices (K
= 5, or K = 3) were used to fit the data to examine type I error rates. Table2 shows
that most type I error rates of the three different statistics were around the nominal
significance level 0.05. The Chi-squared test statistic x j j ′ was conservative, with type
I error rates below 0.024. The MH statistic got consistent under all conditions when
item J = 40, confirming the asymptotic consistency. In the condition of K= 5, J
= 20, and I = 2000, the type I error rates of the MH test slightly increased over
the nominal rate in the A-CDM and the saturated model for the difficulty of correct
classification.
Power Study: 20%misspecified Q-matrix For each replication, 20% of q jk entries
of the correctly specified Q-matrices (K = 5, or K = 3) were randomly misspecified.
It is over-specification when q-entries of 0 are incorrectly coded as 1, and it is
underspecification when q-entries of 1 are incorrectly coded as 0. Table3 shows that
the average rejection rates of all J × (J − 1) × 1/2 item pairs result in relatively
low in the MH test (i.e., 0.310 or below in Non-Parametric Model, 373 or below in
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DINA model, 0.258 or below in A-CDM, 0.270 or below in saturated model). When
K = 5, and I = 500, the power rates appear to be low (i.e., 0.074 or below) in the
A-CDM, and the saturated model. They are rather complex models. It is very likely
for small sample size to increase the difficulty of accurate model estimation.
Power Study: Over-specified Q-matrix For each replication, a data set was gen-
erated with the Q-matrix (K = 3) that is embedded as a subset of the Q-matrix (K
= 5) in Table1. The data was fitted with the Q-matrix (K = 5) to over-specify the
correctly specified Q-matrix (K = 3). A dimension (total 9 items) or two dimensions
(total 4 items) were over-specified. The results were consistent with what Chen et al.
(2013) found.

As Table4 shows, all statistics were insensitive to over-specified Q-matrices when
the true models were the saturated model or the A-CDM. The average power rates
of the item pairs where both items were over-specified in the same dimension were
Non-Parametric Model = 0.074, MH = 0.052, x j j ′ = 0.181, and r j j ′ = 0.220, and
those of the item pairs where either item was over-specified were MH = 0.058,
x j j ′ = 0.104, and r j j ′ = 0.137 when the true model was the DINA model. If more
attributes are included in the Q-matrix than required, as Rupp et al. (2010) indicated,
conditional independence may still be preserved, because true attribute vector may
be embedded in subcomponents of the modeled vector, resulting in a model that is
too complex but preserves conditional independence. This finding implies that unlike
the other statistics, the MH statistic is inappropriate to be used for the detection of
the over-specified Q-matrices when the true model is the DINA model.
Power Study: Under-specified Q-matrix A data set was generated with the Q-
matrix (K = 5) in Table1. The data was fitted with the embedded Q-matrix (K =
3) in each replication. A dimension (total 9 items) or two dimensions (total 4 items)
were under-specified. The average power rates of the item pairs where both items
were under-specified in the same dimensionwereMH= 0.572, x j j ′ = 0.669, and r j j ′ =
0.735, with power relatively consistent across all conditions as shown in Table5. The
average rejection rates across item pairs where either item was under-specified were
MH = 0.124, x j j ′ = 0.144, and r j j ′ = 0.201. The power rates slightly increased when
J = 40, I = 2000, or the true model is the A-CDM in all statistics. Taking this finding
into account, like the other statistics, theMH test is sensitive to Q-underspecification
and has high power in all conditions.
Power Study:ModelMisspecification In this simulation study, a correctly specified
Q-matrix (K = 3 or 5)was used, but with amisspecified cognitive diagnosismodels.
As Chen et al. (2013) indicated, no statistics detected the model misspecification in
all conditions when the fitted model was the saturated model, and the true models
were the DINA model and the A-CDM (i.e., 0.052 or below for MH, 0.024 or below
for x j j ′ , and 0.059 or below for r j j ′). Due to limited space, the output is not included.
The results in Table6 show that the rejection rates of the MH statistic were low (i.e.,
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0.186 or below with few exceptions when the true model was the DINA model, and
the fitted model was the A-CDM, 0.097 or below with few exceptions when verse
versa). When the true model was the A-CDM, and the fitted model was the DINA
model, the power rates were even lower because the DINA model is simper than the
A-CDM.

5 Discussion

A Mantel-Haenszel(MH) statistic proposed by Lim and Drasgow (2019) was eval-
uated for detecting misspecifications of the latent attribute space in parametric cog-
nitive diagnosis models; that is, the Q-matrix might contain too many or too few
latent attributes. (Recall that a misspecified latent attribute space may result in in-
accurate parameter estimates that will cause incorrect assessments of examinees’
ability.) The proposed MH statistic uses as the levels of the stratification variable
the different proficiency classes, with examinees’ individual attribute vectors—that
identify proficiency class membership—estimated from the data. Simulation studies
were conducted for investigating the diagnostic sensitivity of the MH statistic in
terms of Type-I-Error rate and power under a variety of testing conditions. Across
different sample sizes, test lengths, number of attributes defining the true attribute
space, and levels of correlation between the attributes, the MH statistic consistently
attained a Type-I-Error rate that was typically close to the nominal 0.05 − α-level
when the data were generated using the true Q-matrix based on the correctly speci-
fied latent attribute space. When the data were generated using a Q-matrix based on
an under-specified latent attribute space, the MH statistic displayed moderate power
in detecting the resulting conditional dependence among test items. In summary, the
MH statistic might be a promising tool for uncovering possible misspecifications of
the latent attribute space in cognitive diagnosis. Further research is needed to inves-
tigate the specific factors that affect the power of the MH statistic; especially, when
the latent attribute space has been over-specified (i.e., too many attributes have been
included).
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Comparison of Three Unidimensional
Approaches to Represent
a Two-Dimensional Latent Ability Space

Terry Ackerman , Ye Ma and Edward Ip

Abstract All test data represent the interaction of examinee abilities with individual
test items. It has been argued that formost tests these interactions result in, either unin-
tentionally or intentionally, multidimensional response data. Despite this realization,
many standardized tests report a single score which follows from fitting a unidimen-
sional model to the response data. This process is justified with the understanding
that the response data, when analyzed, say for example by a principal component
analysis, have a strong, valid, and content identifiable first component and weaker
minor inconsequential components. It is believed that the resulting observed score
scale represents primarily a valid composite of abilities that are intended to be mea-
sured. This study examines three approaches which estimate unidimensional item
and ability parameters based on the parameters obtained from a two-dimensional
calibration of the response data. The goal of this study is to compare the results of
the different approaches to see which best captures the results of the two-dimensional
calibration.

1 Introduction

Testing practitioners are often faced with difficult decisions when they examine the
response data from their standardized assessments and the data do not appear to be
strictly unidimensional. One option would be to report individual subscores for each
dimension if the subscores are indeed reliable and reflect a profile of skills the test

T. Ackerman (B) · Y. Ma
Department of Psychological and Quantitative Foundations, University of Iowa, Iowa City, IA,
USA
e-mail: taackerman@uiowa.edu

Y. Ma
e-mail: ye-ma@uiowa.edu

E. Ip
Wake Forest School of Medicine, Wake Forest University, Bowman Gray Center for Medical
Education, 475 Vine Street, Winston-Salem, NC 27101, USA
e-mail: eip@wakehealth.edu

© Springer Nature Switzerland AG 2019
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 265, https://doi.org/10.1007/978-3-030-01310-3_18

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01310-3_18&domain=pdf
https://orcid.org/0000-0003-2391-3542
mailto:taackerman@uiowa.edu
mailto:ye-ma@uiowa.edu
mailto:eip@wakehealth.edu
https://doi.org/10.1007/978-3-030-01310-3_18


196 T. Ackerman et al.

was designed to measure. Another option, which is commonly followed, would be
to calibrate the multidimensional data to fit a unidimensional model and assume that
the linear composite being estimated captures the purported skill.

This study compares three different approaches, each of which reduces the two-
dimensional latent ability space to a unidimensional space with unidimensional item
and ability parameter estimates. The purpose is to identify which approach best
recovers characteristics of the underlying two-dimensional model.

2 Three Approaches Investigated

2.1 Approach 1: Projective IRT Model

Ip (2010) and Ip and Chen (2012) developed what they called the Projective IRT
(PIRT) and it’s unidimensional item parameter approximations. The goal of their
work was to provide practitioners with a way to eliminate invalid dimensionality
from their item and ability estimates. The approach essentially integrated out the
nuisance dimensions resulting in a more valid, albeit dependent, unidimensional
2PL IRT model. The 2PL PIRT model unidimensional item parameters for which θ1
is the valid dimension are given as

a∗
i = λlogi t

(
ai1 + ai2ρσ2

σ1

)
; d∗

i = λlogi t di (1)

where a* and d* are the PIRT discrimination and difficulty parameters respectively,
with

λlogi t = [
k2a22

(
1 − ρ2

)
σ 2
2 + 1

]−1/2
, k = 16

√
3

(15π)
= 0.588 (2)

and where ρ is the correlation between the two dimensions, di is the intercept param-
eter, and ai1, ai2, and σ1, σ2 are the discrimination parameter and standard deviations
of the θ1 and θ2 distributions, respectively.

Ip (2010) demonstrated that response data generated from the 2D MIRT and the
(locally dependent) PIRT are empirically indistinguishable. In Ip and Chen (2012)
established that the RMSEs between a two-dimensional IRTmodel and the projected
model are quite comparable. They also found that when the MIRT model was miss-
specified (i.e., the correct model was say 3D or 5D) that the PIRT model based upon
a 2D MIRT solution still yielded a robust performance.



Comparison of Three Unidimensional Approaches to Represent … 197

2.2 Approach 2: The Reference Composite

Wang (1986) and Camilli (1992) analytically derived the relationship between unidi-
mensional 2PL item parameter estimates from a 1-D calibration and the underlying
2-D latent space for item j. That is, they postulated that the relationship between
an underlying two-dimensional item and ability parameters and the estimated item
and ability parameters that would result if one were to fit a 2PL IRT model to
two-dimensional data. Their unidimensional 2PL model approximations for the dis-
crimination and difficulty parameters are respectively calculated using the formulas

a
∧

j = a′
jW1√

2.89+a′
jW2W ′

2a j
; b

∧

j = d j−a′
jμ

a jW1
(3)

where a j is the discrimination vector for the M2PL model, d j is the M2PL difficulty
parameter,W 1 andW 2 are the first and second standardized eigenvalues of thematrix
L ′A′AL ,whereA represents thematrix of discrimination parameters for all the items
on the test and L ′L = Ω . In their formulation the resulting unidimensional ability
estimate was estimated as

θuni = θ ′
iW1 (4)

where θ ′
i represents the transpose of the two-dimensional ability vector.

Wang (1986) termed the unidimensional composite that would result from fitting
a unidimensional model to two-dimensional data as the reference composite. The
angular direction between the reference composite and the positive θ1-axis is equal
to arccosine of the first element of W1 and therefore is a function of the test’s dis-
crimination parameters and the underlying two-dimensional ability distribution of the
examinees. Thus, the direction of the composite scale through the two-dimensional
latent ability space is not chosen by the testing practitioner, but rather is an artifact
of how well the items are discriminating their various composite skills and how the
examinees are distributed throughout the latent ability plane.

2.3 Approach 3: User Specified Composite (USC)

Zhang and Wang (1988) presented a paper in which they provided formulas for
a prespecified composite direction defined by θα where α = (α1, α2, … αd)t is a
constant vector with non-negative αjs such that αt�α = 1 (i.e., the Var(θα) = 1). The
unidimensional ability θα is given as

θα = αtθ =
d∑
j=1

α jθ j . (5)
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Then the unidimensional discrimination parameter, ai* and difficulty parameter
bi* are given as

a∗
i = (1 + σ∗2

i )− 1
2 ati

∑
α; b∗

i = (1 + σ∗2
i )− 1

2 bi (6)

where σ ∗2
i = atiΣai − (

atiΣα
)2

.

The goal of this research was to allow the user to specify a composite direction
an investigate the dimensionality of the test and psychometric properties of observed
and true scores.

3 Comparison of Approaches

3.1 Description of Data

To compare the three different mapping approaches several analyses were conducted
with both simulated and real data. In this study we used response data from 5000
examinees to a large-scale standardizedmath assessment test that contained 60 items.
The data were fit to a two-dimensional IRT compensatory model Eq. (1) using the R
software package mirt (Chalmers, 2012). The estimated item and ability parameters
were then used in the formulas above for each of the three approaches to calculate
unidimensional parameter estimates.

3.2 Graphical Representation

Using thegraphical vector representationdevelopedbyReckase (2009), the sixty item
vectors are displayed in Fig. 1 along with a red vector which denotes the reference
composite direction which indicates the linear composite that would be estimated if
the test data were fit to a unidimensional 2PL IRT model. One can see the vectors
for the most part lie in a narrow sector with the reference composite having almost
an equal weighting of the two dimensions.

The corresponding TCC and its contour are shown in Fig. 2. The reference com-
posite for this test forms an angle of 45.58° with the positive θ1-axis.

3.3 True Score Distributions

True score distributions using the estimated 2D-MIRT model parameters and the
various unidimensional composite directions were created and are shown in Fig. 3.
It appears that the Reference Composite appears to capture most closely the shape
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Fig. 1 The vectors for the 60 mathematics items

Fig. 2 The TCC surface and its corresponding contour plot with the reference composite direction
indicated by the red vector

and distributional characteristics of the true score distribution from the underlying
2D MIRT model.
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Fig. 3 True score distributions for the estimated 2D MIRT solution and the three different
approaches, PIRT, Reference Composite and the USA at 0°, 45° and 90°

3.4 Test Characteristic and Information Curves

The test characteristic curves and the corresponding test information functions for the
PIRT, Reference Composite, and the USC unidimensional IRT angular composites at
0°, 30°, 45°, 60° and 90° are displayed in Fig. 4. As might be expected the Reference
Composite approach and the USC 45° composite provide the steepest TCC’s and the
steepest information curves.

The PIRT approach and the USC composites of 0° and 90° provide slightly more
than a third maximum information as the Reference Composite and the USC 45°
estimates.
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Fig. 4 The TCC’s and test information functions using the PIRT, Reference Composite and USC
composite directions of 0°, 30°, 45°, 60° and 90°

3.5 RMSE Analysis of True Scores

Another analysis that was completed was to divide the theta scale into twelve equal
segments and compute the root mean squared error of the difference between the
true score calculated using each unidimensional approach and the true score based
upon the two-dimensional MIRT parameters. A plot showing the RMSE for each
approach is shown in Fig. 5. The Reference Composite approach clearly provided
the smallest RMSE with the PIRT approach providing the largest.

Fig. 5 RMSE of True Score based on unidimensional approaches minus the True Score calculated
from the underlying 2D parameters
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Table 1 Percent of agreement for passing score decisions between the MIRT 2D parameters and
the estimated parameters from the three unidimensional approaches

3.6 Correct Classification Analysis

Another comparison made was to calculate the percent of correct classification deci-
sions That would be made using the true score from the two-dimensional parameters
versus the true scores computed from the three approaches for a cut-score of 45. The
results appear below in Table 1. Surprisingly the percent agreement is very high for
all methods; however, the highest agreement was obtained by the Reference Com-
posite method. Notice that the USC approach for 45° did about as well as the USC
approach for 30° and 60° composites.
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USC
Mapping

BILOG
Mapping 

Fig. 6 Mapping of the MIRT (θ1,θ2) onto the true score scale using the USC approach and BILOG
calibration results

3.7 Comparison of Two-Dimensional to Unidimensional
Mappings

A final graphical approach that was conducted to compare the Reference Composite
theoretical approach to that obtained from a unidimensional BILOG calibration. Two
plots were created in which segments were drawn from examinees estimated (θ1, θ2)
to their estimated true score calculated using the theoretical Reference Composite
formulation and one in which segments were drawn from the estimated (θ1, θ2) to a
true score based upon a BILOG unidimensional theta and item parameter estimation.
The true score scale occupies the reference composite direction. The mappings are
shown in Fig. 6. This graph was created for only 100 randomly selected examinees.
Green segments indicate examinees which surpassed the cut score of 45. One can
clearly see how BILOG was not nearly as consistent in its mapping of the 2-D
latent abilities compared with the theoretical approach based upon the 2D parameter
estimates.

4 Discussion

The Reference Composite formulation, which was intended to capture a unidimen-
sional calibration ofMIRT data, does extremely well for capturing the distribution of
true scores produced from the 2DMIRT model. This approach best captured the dis-
tribution of true scores based upon the 2D calibration, had the steepest TCC, provided
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the most test information across the unidimensional theta scale and had the highest
percentage of agreement with the 2D data for the cut score that was established.

It should be noted that when the Wang and Zhang composite approach matched
the direction of the Reference Composite the approximated 2PL a-parameters were
identical, however the b-parameters were noticeably different. Because the PIRT
projects onto the first dimensions and the data sets that were examined had reference
composite angles at 45.58°, in fairness to the PIRT model, the analyses that were
conducted obviously did not favor this model.
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Comparison of Hyperpriors for Modeling
the Intertrait Correlation
in a Multidimensional IRT Model

Meng-I Chang and Yanyan Sheng

Abstract Markov chain Monte Carlo (MCMC) algorithms have made the estima-
tion of multidimensional item response theory (MIRT) models possible under a fully
Bayesian framework. An important goal in fitting a MIRT model is to accurately
estimate the interrelationship among multiple latent traits. In Bayesian hierarchical
modeling, this is realized through modeling the covariance matrix, which is typically
done via the use of an inverseWishart prior distribution due to its conjugacy property.
Studies in the Bayesian literature have pointed out limitations of such specifications.
The purpose of this study is to compare the inverse Wishart prior with other alterna-
tives such as the scaled inverseWishart, the hierarchical half-t, and the LKJ priors on
parameter estimation and model adequacy of one form of the MIRT model through
Monte Carlo simulations. Results suggest that the inverse Wishart prior performs
worse than the other priors on parameter recovery and model-data adequacy across
most of the simulation conditionswhen variance for person parameters is small. Find-
ings from this study provide a set of guidelines on using these priors in estimating
the Bayesian MIRT models.

Keywords Multidimensional item response theory · Fully bayesian model ·
Markov chain Monte Carlo

1 Introduction

Item response theory (IRT; Lord, 1980) is a modern test theory that has been widely
used in educational and psychological measurements (e.g., achievement tests, rat-
ing scales, and inventories) as well as other areas such as medical, health sciences,
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quality-of-life, and marketing research. IRT posits that the probability of a cor-
rect response to an item is a mathematical function of person and item parameters
(Hemker, Sijtsma, & Molenaar, 1995). This paper focuses on a special case of the
multidimensional IRT model, namely, the multi-unidimensional model (Sheng &
Wikle, 2007) where the test measures multiple latent traits with each itemmeasuring
one of them.

Accurate estimation of model parameters from response data is a central problem
in the IRTmodels. In fact, successful applications of IRThighly rely onfinding appro-
priate procedures for estimating the model parameters (Hambleton, Swaminathan, &
Rogers, 1991). Modern computational technology and the development of Markov
chain Monte Carlo (MCMC; e.g., Hastings, 1970) methods have made it possible
for the IRT estimation methods to gradually shift to a fully Bayesian approach (e.g.,
Béguin&Glas, 2001; Bolt &Lall, 2003; Chib&Greenberg, 1995; Fox&Glas, 2001;
Patz& Junker, 1999). Unlike the conventionalmarginalmaximum likelihood (MML;
Bock & Aitkin, 1981) method, the fully Bayesian estimation can avoid unreason-
able parameter estimates (e.g., Kim, 2007; Mislevy, 1986; Swaminathan & Gifford,
1983), simultaneously estimate person and item parameters by deriving their joint
distribution and allow the uncertainty of estimating items to be incorporated by the
uncertainty of estimating person parameters. Fully Bayesian estimation relies on
MCMC methods that focus on simulating samples from the posterior distribution,
and have been proved useful in practically all aspects of Bayesian inference such as
parameter estimation and model comparisons. This study uses the no-U-turn sam-
pler (NUTS; Hoffman & Gelman, 2014), an improvement of an efficient MCMC
algorithm named Hamiltonian Monte Carlo (HMC; Duane, Kennedy, Pendleton, &
Roweth, 1987). The algorithm gets its name “no-U-turn” sampler because it pre-
vents inefficiencies that would arise from letting the trajectories make a U-turn.
NUTS generalizes the notion of the U-turn to high dimensional parameter spaces
and estimates when to stop the trajectories before they make a U-turn back toward
the starting point. Compared to other MCMC algorithms such as Gibbs sampling
(Geman & Geman, 1984), the efficient NUTS requires fewer iterations to converge
(e.g., Vehtari, Gelman, & Gabry, 2017).

When estimatingmultidimensional (Reckase, 1997) or multi-unidimensional IRT
models under a fully Bayesian framework, a prior specification is required for the
covariance matrix to model the interrelationship among multiple latent traits. The
usual practice is to adopt an inverse Wishart (IW) prior distribution (e.g., Sheng &
Wikle, 2007) due to its conjugacy property (Barnard, McCulloch, & Meng, 2000).
However, in theBayesian (and not specifically IRT) literature, researchers have called
attention to limitations of this prior due to bias resulted from low density around zero
for the marginal distribution of variances (Gelman, 2006). To overcome this prob-
lem, they have proposed other priors such as the scaled inverse Wishart (O’Malley
& Zaslavsky, 2008), the hierarchical half-t (Huang & Wand, 2013), and the separa-
tion strategy (SS, Barnard et al., 2000) via the use of the LKJ prior (Lewandowski,
Kurowicka, & Joe, 2009). The inverse-Wishart prior has been compared with other
priors in non-IRT settings for estimatingmodels such as themultivariate linearmodel
(Alvarez, Niemi, & Simpson, 2014), the growth curve model (Liu, Zhang, &Grimm,
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2016), and the multilevel autoregressive model (Schuurman, Grasman, & Hamaker,
2016). Their results generally suggested that the inverse-Wishart prior performed
relatively worse in recovering model parameters when the true variance was small
even with large sample sizes (e.g., Alvarez et al., 2014). This may hold true with esti-
mating multidimensional IRT (MIRT) models. These priors, however, are typically
adopted for the variance-covariance matrix (or hyperparameter) for the unobserved
latent variables (instead of that for observed variables as with other studies) in MIRT
models. In other words, they are higher-level priors and their effects on estimating
such models are not limited to the recovery of the correlation parameter. Given this
and that they have not been compared in the IRT framework, the purpose of this
study is to investigate the impact of these priors on the posterior inference of the
covariance matrix when modeling the interrelationship among multiple latent traits
in a multidimensional IRT model. The specific focus is on actual situations where
the latent traits have small variances given findings from previous studies with other
models.

2 Common Prior Densities for a Covariance Matrix

This section describes common prior specifications that have been considered by
researchers in the fully Bayesian estimation for the covariance matrix, �. These
priors include the inverse Wishart, scaled inverse Wishart, hierarchical half-t, and
LKJ priors.

2.1 Inverse Wishart (IW) Prior

The IW prior is considered as the natural conjugate prior for a covariance matrix of
a multivariate normal distribution and can be represented as

� ∼ IW (ν,�)

where ν is a scalar degree of freedom and� is a positive definite matrix of size d×d.
A default approach for the IW prior sets � = I and ν = d + 1 where I is an identity
matrix. The IW prior is generally adopted because of its conjugate properties with
the normal sampling model and this conjugacy allows it to be easily incorporated
into MCMC methods. It, however, suffers from the following problems: (1) The
uncertainty of all variance parameters is set by a single degree of freedom parameter,
which loses its flexibility to incorporate different amount of prior knowledge to other
variance components (Gelman, 2014). (2) When ν > 1, it implies that the scaled
inverse-χ2 prior distribution has an extremely low density near 0, which causes bias
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in Bayesian inferences for these variances (Gelman, 2006). (3) There is a dependency
between the correlations and variances when using the IW prior. Specifically, large
variances are associated with correlations with absolute values close to 1 while small
variances are associated with correlations near 0 (Tokuda, Goodrich, Van Mechelen,
Gelman, & Tuerlinckx 2011). (4) When the true variance is small, the posterior for
the variance is biased toward larger values and the correlation is biased toward 0.
This bias still exists even with large sample sizes (Alvarez et al., 2014).

2.2 Scaled Inverse Wishart (SIW) Prior

Another approach to model the covariance matrix is using of the scaled inverse
Wishart (SIW) prior, which is based on the IWdistributionwith additional parameters
for flexibility (O’Malley & Zaslavsky, 2008). The SIW prior is defined as

� ∼ SIW (ν,�, bi , δi ),

where ν is the degrees of freedom,� is a positive definite matrix with bi and δi being
location and standard deviation vector for the scaling parameters. A hierarchical
representation of the SIW prior is � ≡ �Q� where � is a diagonal matrix with
�i i = ξi , and

Q ∼ IW (ν,�), log(ξi ) ∼ N
(
bi,, δ

2
i

)
,

where the matrixQ represents the unscaled covariance matrix distribution, ξi param-
eters are auxiliary parameters to adjust the scale. The SIW prior implies that
σi = ξi ,

√
Qi i ,	i j = ξiξ j

√
Qi j , and the correlations ρi j = Qi j/

√
Qi iQ j j have

the same distribution they have under the inverse Wishart on Q. Gelman and Hill
(2007) recommended to set � = I and ν = d + 1 to ensure uniform priors on the
correlations as in the IW prior but still can be flexible to incorporate some prior
information about standard deviations.

2.3 Hierarchical Half-t Prior

Huang and Wand (2013) proposed a hierarchical approach for the covariance matrix
as shown below

� ∼ IW (ν + d − 1, 2ν�), λi ∼ Gamma(
1

2
,
1

ξ 2
i

)with E(λi ) = ξ 2
i

2
,
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where ν again is the degrees of freedom, ξi is the scale in the marginal deviations,
� is a diagonal matrix with the ith element λi . An important advantage of using the
hierarchical half-t prior is that it suggests that the standard deviations are distributed
as a t distribution that is truncated at 0 to cover only positive values with ν degrees
of freedom and ξi scale, i.e., σi ∼ t+ν (0, ξi ), as recommended by Gelman (2006).
If ξi is set to be large, we can obtain weakly informative priors on the variance and
maintain the conjugacy of the prior. In addition, setting ν = 2 implies marginally
uniform distribution for the correlation coefficient.

2.4 Separation Strategy via the Use of LKJ Prior

Barnard et al. (2000) proposed a separation strategy (SS), which ensures prior
independence between standard deviations and correlations. They decomposed the
covariance matrix as Σ =DRD where D is a diagonal matrix with ith element σi

and R is a correlation matrix with ρi j on its ith row and jth column. In fact, the
Stan manual (Stan Development Team, 2017) recommends a SS approach via the
use of the LKJ prior when modeling the covariance matrix of a multivariate normal
distribution. The LKJ distribution provides a prior on the correlationmatrixR, which
has a Cholesky factorization R = LLT where L is a lower-triangular matrix. This
decomposition is numerically more stable and efficient than direct matrix inversion.
The LKJ distribution has the density f (R|η) ∝ |R|η−1, with η > 0. When η = 1, the
LKJ distribution leads to a uniform distribution on correlation matrices, while the
magnitude of correlations between components decreases as η→∞.

3 Methods

Monte Carlo simulations were carried out to compare the four prior specifications for
modeling the covariance hyperparameter for the latent person parameters in a multi-
unidimensional model. This section describes the model as well as the methodology
of the study.

3.1 Model

The two-parameter logistic (2PL) multi-unidimensional model is defined as

P
(
Yvi j = 1|θvi , av j , bv j

) = exp[av j
(
θvi − bv j

)]
1 + exp[av j

(
θvi − bv j

)] , (1)
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where Yvi j is the correct
(
Yvi j = 1

)
or incorrect

(
Yvi j = 0

)
response of the ith indi-

vidual to the jth item in the vth dimension, θvi is the latent trait parameter for person
i on dimension v, av j is the discrimination parameter of the jth item in dimension v,
and bv j is the difficulty parameters of the jth item in dimension v.

3.2 Simulation Procedures

Dichotomous responses of N persons (N = 100 or 500) to K items (K = 40 or
100) were simulated from the multi-unidimensional model as defined in (1), where
v = 2. Person parameters θ i = (θ1i , θ2i )

′ were generated from a bivariate normal
distribution such that

θ i ∼ N2

(
μ,

∑)
,

where μ = (0, 0)′ and
∑ =

(
σ 2
1 ρ12σ1σ2

ρ12σ1σ2 σ 2
2

)
. The values of σ 2

1 and σ 2
2

were set to be equal (i.e., 0.01 or 0.1) (e.g., Alvarez et al., 2014; Bouriga & Féron,
2013). The intertrait correlation ρ12 was manipulated to be 0.2, 0.5, or 0.8. Item
parameters were generated from uniform distributions such that avj ~U(0, 2) and bvj
~ U(−2, 2).

To implement the MCMC procedure, the prior for θ i was assumed to follow a
multivariate normal distribution

θ i ∼ MV N
(
μ,

∑

H

)
,

where μ = (0, 0)′, and the covariance matrix
∑

H had an IW prior, a SIW prior, a
hierarchical half-t prior, or an LKJ prior. The prior specifications for

∑
H are shown

in Table 1. These values were adopted to imply marginal non-informative priors on
the correlations (Alvarez et al., 2014). In addition, prior densities for av j and bv j

were set following the Bayesian IRT literature, such that av j ∼ N(0,∞) (0, 1) (e.g.,
Chang & Sheng, 2016) and bv j ∼ N (0, 1) (e.g., Sheng & Wikle, 2007).

Table 1 Parameter values for∑
H in the simulation study

Prior Hyperparameter values for prior sampling

IW v = 3, � = I

SIW v = 3, � = I, bi = 0, ξ i ~ U(0, 100)

Half-t v = 3, ξ i = 100

LKJ η = 1, σ i ~ Half-Cauchy(0, 2.5)



Comparison of Hyperpriors for Modeling the Intertrait … 211

NUTS was implemented via the use of Stan (Carpenter et al., 2016) where the
warm-up stage was set to 500 iterations followed by four chains with 1500 iterations.
Convergence of theMarkov chains was evaluated using the Gelman-Rubin R statistic
(Gelman&Rubin, 1992)with R̂ < 1.1, suggesting that the chain has converged to the
posterior distribution (Brooks & Gelman, 1998). 10 replications for each simulation
condition were conducted to avoid erroneous results in estimation due to sampling
error.

3.3 Measures of Estimation Accuracy

The accuracy of item and person parameter estimates was evaluated using bias and
the root mean square error (RMSE). Bias is defined as

biasπ =
∑n

j=1

(
π̂ j − π j

)

n
, (2)

where π j (e.g., av j , bv j , or θvi ) is the true value of an item or person parameter, π̂ j is
the estimated value of that parameter in the jth replication, and n is the total number
of replications. If bias is close to zero, it suggests that the value of the estimated
parameter is close to the true parameter. Also, positive bias suggests that the true
parameter is overestimated and a negative bias suggests an underestimation of the
true parameter (Dawber, Roger, & Carbonaro, 2009).

The RMSE for each item parameter was calculated using the following formula

RMSEπ =
√∑n

j=1(π̂ j − π j )2

n
, (3)

where π j , π̂ j , and n are as defined in Eq. (2).
The RMSE measures the average squared discrepancy between a set of estimated

and true parameters and can be conceived as the amount of variability around a point
estimate. In general, a smaller value of the RMSE suggests that the more accurate
the parameter estimate is. These measures were averaged across items or persons to
provide summary information.

3.4 Model Selection

In this study, two fully Bayesian fit indices were considered, namely, the widely
available information criterion (WAIC;Watanabe, 2010) and the leave-one-out cross-
validation (LOO; Geisser & Eddy, 1979) given that they perform better than other
partially Bayesian fit measures such as the deviance information criterion (DIC;
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Spiegelhalter, Best, Carlin, & van der Linde, 2002) in the context of IRT model
selections (Luo&Al-Harbi, 2017). Similar to any information criteria, smaller values
of WAIC and LOO suggest a better model-data adequacy.

4 Results

For the 2PLmulti-unidimensional IRTmodel, theGelman-Rubin R̂ is less than 1.1 for
each model parameter using the IW, SIW, Half-t, and LKJ priors under all simulation
conditions, suggesting that convergence is potentially achieved. The average RMSEs
of intertrait correlation (ρ12) parameters, and the average RMSEs averaged across
items for recovering the discrimination (a1, a2), difficulty (b1, b2), and averaged
across subjects for recovering person ability (θ1, θ2),parameters in the 2PL multi-
unidimensional model using these four priors are summarized in Fig. 1. The results
of the average RMSEs for the two dimensions are similar so only the average RMSEs
of the first dimension are presented in the figure. Also, the results of the average bias
are not presented since there are no specific patterns. For all item parameters, a1 and
b1 are used to denote the discrimination and difficulty parameters for items in the
first subtest, which are assumed to measure θ1, and a2 and b2 are used to denote the
discrimination and difficulty parameters for items in the second subtest, which are
assumed to measure θ2.

4.1 Parameter Recovery

Results on recovering the intertrait correlation parameter show that the RMSEs for
estimating ρ12 using the IW prior tend to be slightly smaller than those using the
other priors when ρ12 = 0.2 and σ 2 = 0.1. On the other hand, the RMSEs for
estimating ρ12 using the LKJ prior tend to be slightly smaller than those using the
other priors when ρ12 = 0.8 regardless of N, K or σ 2. In addition, all four priors
consistently underestimate ρ12 when σ 2 = 0.01 regardless of N or K. As the sample
size increases, the RMSEs for estimating ρ12 consistently decrease using all four
priors when σ 2 = 0.1 and using the IW or SIW prior when σ 2 = 0.01. As the test
length increases, the RMSEs for estimating ρ12 tend to decrease using the four prior
specifications for � except for the condition where ρ12 = 0.2 and σ 2 = 0.01. This
pattern, however, is not observed with bias. In addition, as the intertrait correlation
increases, the RMSEs for estimating ρ12 tend to increase using all four priors when
σ 2 = 0.01.

For item parameter recovery, the results show that the RMSEs for estimating the
discrimination and difficulty parameters tend to be slightly larger using the IW prior
than those using the other priors when σ 2 = 0.01. The RMSEs for estimating the
item parameters (a1, a2) and (b1, b2) parameters, however, are similar using the four
priors when σ 2 = 0.1. As the sample size increases, the RMSEs for estimating the
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Fig. 1 Average RMSEs for recovering the intertrait correlation (ρ12), discrimination (a1), dif-
ficulty (b1), and person ability (θ1) parameters under various test conditions in the 2PL multi-
unidimensional IRT model

item parameters tend to decrease using all four priors when σ 2 = 0.1. This pattern,
however, is not observed with bias. As the test length increases, the RMSEs for
estimating (a1, a2) and (b1, b2) do not show a consistent pattern using these four
priors. Similarly, there is no clear pattern observed with bias. In other words, sample
size plays a more crucial role than test length in improving the precision of the
item parameter estimates. When comparing the average RMSEs for estimating the
discrimination and difficulty parameters from different dimensions (i.e., a1 vs. a2 and
b1 vs. b2) under various test conditions, the results indicate that there is no consistent
pattern using these four priors.
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For person ability parameter recovery, the results show that the RMSEs for esti-
mating the person parameter (θ1, θ2) tend to be slightly larger using the IW prior than
those using the other priors when σ 2 = 0.01. The RMSEs for estimating the person
parameters, however, are similar using the four priors when σ 2 = 0.1. As the test
length increases, the RMSEs for estimating the (θ1, θ2) parameters tend to decrease
using all four priors when σ 2 = 0.1. This pattern, however, is not observed with
bias. As the sample size increases, the RMSEs for estimating (θ1, θ2) do not show
a consistent pattern using these four priors. Similarly, there is no pattern observed
with bias. In other words, test length plays a more crucial role than sample size in
recovering the person ability parameters. When comparing the average RMSEs for
estimating the person ability parameters from different dimensions (i.e., θ1 vs. θ2)
under various test conditions, the results indicate that there is an inconsistent pattern
using these four priors.

4.2 Model Selection

Regarding the model-data adequacy, Table 2 summarizes theWAIC and LOO values
averaged across 10 replications for the 2PL multi-unidimensional IRT model using
the four priors under various simulation conditions. Only the results of N = 100
are presented in the table since the results of N = 500 are similar. The results show
that the WAIC and LOO values are similar using these four priors under various
simulation conditions when σ 2 = 0.1. The WAIC and LOO values, however, tend
to be larger using the IW prior than those using the other priors when σ 2 = 0.01. As
for the comparison between the WAIC and LOO, they lead to the same conclusion
regarding which model is the best under most of the simulation conditions.

Table 2 WAIC and LOO for the 2PL multi-unidimensional IRT model when N = 100 and σ 2
1 =

0.1(0.01)

N K ρ12 IW SIW Half-t LKJ

100 40 0.2 WAIC 4411.06
(4449.92)

4412.78
(4438.38)

4413.37
(4438.36)

4412.77
(4438.28)

LOO 4413.90
(4451.37)

4414.77
(4438.83)

4415.33
(4438.81)

4414.66
(4438.79)

0.5 WAIC 4549.85
(4655.33)

4548.11
(4646.90)

4548.26
(4646.60)

4547.85
(4647.08)

LOO 4552.57
(4656.95)

4549.88
(4647.46)

4550.02
(4647.18)

4549.62
(4647.70)

(continued)
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Table 2 (continued)

N K ρ12 IW SIW Half-t LKJ

0.8 WAIC 4484.06
(4501.29)

4484.04
(4490.73)

4483.34
(4490.49)

4483.35
(4490.97)

LOO 4487.05
(4503.09)

4486.20
(4491.35)

4485.51
(4491.12)

4485.45
(4491.59)

100 0.2 WAIC 11,286.08
(11,217.34)

11,288.09
(11,201.81)

11,287.71
(11,202.18)

11,288.37
(11,201.82)

LOO 11,289.62
(11,219.65)

11,291.11
(11,202.67)

11,290.70
(11,203.04)

11,291.34
(11,202.65)

0.5 WAIC 11,208.28
(11,013.42)

11,208.42
(10,996.07)

11,208.32
(10,995.92)

11,208.66
(10,995.87)

LOO 11,211.95
(11,015.73)

11,211.48
(10,996.96)

11,211.39
(10,996.82)

11,211.69
(10,996.73)

0.8 WAIC 11,192.27
(11,280.47)

11,187.64
(11,264.09)

11,187.69
(11,264.71)

11,187.59
(11,264.24)

LOO 11,195.54
(11,282.80)

11,190.08
(11,265.01)

11,190.15
(11,265.61)

11,189.93
(11,265.14)

5 Conclusions and Discussion

This study compares the IW, SIW, Half-t, and LKJ priors in the performance of
parameter recovery for the 2PL multi-unidimensional model through manipulating
four factors: intertrait correlation (ρ12), sample size (N), test length (K), and vari-
ance (σ 2) for person parameters. When considering the effects of priors, results on
the recovery of item and person parameters for the 2PL multi-unidimensional model
indicate that the IW prior performs relatively worse than the other priors across most
of the simulation conditions when σ 2 = 0.01. In this particular scenario, from the
item parameter recovery point of view, the scaled IW, Half-t, and LKJ priors can
be utilized interchangeably to replace the IW prior to have slightly better perfor-
mance when variance (σ 2) for person parameters is small (i.e., σ 2 = 0.01). In terms
of recovering the intertrait correlation parameter in the 2PL multi-unidimensional
model, the IW prior is recommended when multiple latent traits have low correla-
tions (e.g., ρ12 ≤ 0.2), but the LKJ prior is recommended when the traits have high
correlations (e.g., ρ12 ≥ 0.8). It is noted that when the true variance for latent person
parameters is small (σ 2 = 0.01), all four priors resulted in poor recovery of the
intertrait correlation. This finding is not consistent with Alvarez et al. (2014) who
found that all priors work well except for the IW prior when the true variance is small
under which the posterior for the variance is biased toward larger values and the cor-
relation is biased toward zero. As pointed out earlier, the four priors are adopted in
the multidimensional IRT models as hyperpriors of the covariance hyperparameter
for the latent person parameter. This is fundamentally different from previous stud-
ies where these priors are used for the covariance parameter for observed variables.
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In the IRT setting, small variances for person trait parameters imply that all person
trait levels cluster near the mean, which is unusual in the actual (large-scale) testing
situations. This study, however, provides empirical evidence that using the IW prior
in the 2PL multi-unidimensional model has similar limitations when the person vari-
ance is small, which can be useful for situations where the test is given to a more
homogenous group of examinees.

In addition, increased sample sizes improve the precision but not the bias in esti-
mating both the discrimination and difficulty parameters, as well as the intertrait
correlation when σ 2 = 0.1. Since increased sample sizes provide more information
on estimating items, item parameter estimation improves accordingly. Test length,
however, has no consistent effect on the accuracy or bias in estimating item parame-
ters, but tend to improve the precision in estimating the intertrait correlation. In terms
of the recovery of the person ability parameters (θ1 and θ2), the results suggest that
test length has a positive and major effect on estimating θ1 and θ2 when σ 2 = 0.1.
More specifically, increased test lengths provide more information on subjects, and
therefore, the person ability parameter can be better recovered. These findings are
consistent with findings from previous studies on IRT that sample size affects the
accuracy of item parameter estimation and test length affects the accuracy of person
ability parameter estimation (e.g., Kieftenbeld & Natesan, 2012; Roberts & Thomp-
son, 2011; Sheng, 2010; Swaminathan & Gifford, 1982; Wollack, Bolt, Cohen, &
Lee, 2002).

In terms of comparing the performance of these four priors through model-data
adequacy, this study shows that the IW prior performs worse than the other prior
specifications in model adequacy for data similar to what was considered in this
study when σ 2 = 0.01. This result is consistent with parameter recovery results that
the IW prior performs worse than the other prior specifications when σ 2 = 0.01.

Finally, there are limitations on this study and directions for future studies. It is
noted that conclusions are based on simulation conditions considered in the present
study and cannot be generalized to other conditions. The present study only con-
siders two sample sizes (i.e., 100 and 500 examinees), two test lengths (i.e., 40 and
100 items), three intertrait correlations (i.e., 0.2, 0.5, and 0.8), two levels of the vari-
ance for person parameters (i.e., σ 2 = 0.1 and 0.01), and equal test items in the
two subtests for the 2PL multi-unidimensional model, but for future studies, addi-
tional test conditions such as unequal test items or unequal variance for the person
parameters can be explored. In addition, the results of this study are based on 10
replications, which are fewer than the minimum number of 25 replications recom-
mended for typical Monte Carlo studies in the IRT-based research (Harwell, Stone,
Hsu, & Kirisci, 1996). Due to the fact that MCMC algorithms and model selection
procedures are computationally expensive, taking considerable amount of time to
execute, it is difficult to go beyond 10 replications in this study for all simulation
conditions. Therefore, the results need to be verified with further studies before one
can generalize the results to similar conditions. Simulation studies often demonstrate
performance under ideal situations. In this case, the true IRT model was known and
fit can be assumed to be nearly perfect. Future studies may use these four priors to fit
the model to real data and use them for model comparison and selection. In addition,
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this study only considers two latent dimensions. Future studies can compare the four
priors on multi-unidimensional models that have more than two latent dimensions,
more general multidimensional, multilevel, or mixture IRT models. Moreover, the
findings of the present study are limited to dichotomous models. Models for poly-
tomous responses (e.g., the partial credit or graded response models) should also be
explored. Finally, there are a large number of choices for prior distributions or simu-
lated values for the IRT model parameters. Due to that, other prior specifications or
simulated values for model parameters a j , b j , θi , and covariance matrices can also
be considered in future studies.
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On Extended Guttman Condition in High
Dimensional Factor Analysis

Kentaro Hayashi, Ke-Hai Yuan and Ge (Gabriella) Jiang

Abstract It is well-known that factor analysis and principal component analysis
often yield similar estimated loadingmatrices.Guttman (Psychometrika 21:273–285,
1956) identified a condition under which the two matrices are close to each other
at the population level. We discuss the matrix version of the Guttman condition for
closeness between the two methods. It can be considered as an extension of the
original Guttman condition in the sense that the matrix version involves not only
the diagonal elements but also the off-diagonal elements of the inverse matrices of
variance-covariances and unique variances. We also discuss some implications of
the extended Guttman condition, including how to obtain approximate estimates of
the inverse of covariance matrix under high dimensions.

Keywords High dimensions · Principal components · Unique variances

1 Factor Analysis and Principal Component Analysis

Factor analysis (FA) and principal component analysis (PCA) are frequently used
multivariate statistical methods for data reduction. In FA (Anderson, 2003; Lawley&
Maxwell, 1971), the p-dimensional mean-centered vector of the observed variables
yi , i = 1, . . . , n, is linearly related to a m-dimensional vector of latent factors f i
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via yi = � f i+εi , where � = (λ1, . . . ,λm) is a p × m matrix of factor loadings
(with p > m), and εi is a p-dimensional vector of errors. Typically for the orthogonal
factor model, the three assumptions are imposed: (i) f i ∼ Nm(0, Im); (ii) εi ∼
Np(0,�), where � is a diagonal matrix with positive elements on the diagonal; (iii)
Cov( f i , εi ) = 0. Then, under these three assumptions, the covariance matrix of yi
is given by � = ��′ + �. If yi is standardized, � is a correlation matrix.

Let�+ = (λ+
1 , . . . ,λ+

m) be the p×mmatrix whose columns are the standardized
eigenvectors corresponding to the first m largest eigenvalues of �; � = diag(ω) be
them × m diagonal matrix whose diagonal elements ω = (ω1, . . . , ωm)′ are the first
m largest eigenvalues of �; and �1/2 be the m × m diagonal matrix whose diagonal
elements are the square root of those in �. Then principal components (PCs) (c.f.,
Anderson, 2003) with m elements are obtained as f ∗

i = �+′ yi . Clearly, the PCs are
uncorrelated with a covariance matrix �+′��+. When m is properly chosen, there
exists � ≈ �+��+′ = �*�∗′ , where �∗ = �+�1/2 is the p × m matrix of PCA
loadings.

2 Closeness Conditions Between Factor Analysis
and Principal Component Analysis

It has been well-known that FA and PCA often yield approximately the same results,
especially their estimated loading matrices �̂ and �̂

∗
, respectively (e.g., Velicer &

Jackson, 1990). Conditions under which the two matrices are close to each other
are of substantial interest. At the population level, two such conditions identified by
Guttman (1956) and Schneeweiss (1997) are among the most well-known.

2.1 Guttman Condition

Consider the factor analysis model � = ��′ + �, where � is a diagonal unique
variance matrix, with (�−1) j j = σ j j and (�) j j = ψ j j , j = 1, . . . , p. Let m be the
number of common factors, Guttman (1956; See also Theorem 1 of Krijnen, 2006)
has shown that if m/p → 0 as p → ∞, then ψ j jσ

j j → 1 for almost all j. Here,
“for almost all j” means lim p→∞ #{ j : ψ j jσ

j j < 1}/p = 0. That is, the number of
j that satisfies ψ j jσ

j j < 1 is ignorable as p goes to infinity.

2.2 Schneeweiss Condition

The closeness condition between the loading matrix from FA and that from PCA
by Schneeweiss and Mathes (1995) and Schneeweiss (1997) is evm(�′�−1�) →
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∞, where evk(A) is the k-th largest eigenvalue of a square matrix A. Obviously,
evm(�′�−1�) is the smallest eigenvalue of �′�−1�.

Related with the Schneeweiss condition, Bentler (1976) parameterized the corre-
lation structure of the factor model as �−1/2��−1/2 = �−1/2��′�−1/2 + I p and
showed that, under this parameterization, a necessary condition for evm(�′�−1�) =
evm(�−1/2��′�−1/2) → ∞ is that as p increases, the sum of squared loadings on
each factor has to go to infinity (λ′

kλk → ∞, k = 1, . . . ,m, as p → ∞).

2.3 Relationship Between Guttman and Schneeweiss
Conditions

The relationship between Guttman and Schneeweiss conditions is summarized in
Table 1. Schneeweiss condition (evm(�′�−1�) → ∞) is sufficient for Guttman
condition (m/p → 0 as p → ∞) (Krijnen, 2006, Theorem 3). What we would like
is for the converse (m/p → 0 as p → ∞ ⇒ evm(�′�−1�) → ∞) to hold in
practical applications, as to be discussed in the next section.

First, the condition of m/p → 0 as p → ∞ is sufficient for ψ j jσ
j j → 1 for

almost all j (Guttman, 1956; Krijnen, 2006, Theorem 1). Also, ψ j jσ
j j → 1 for all

j implies evm(�′�−1�) → ∞ (Krijnen, 2006, Theorem 4). Here, “ψ j jσ
j j → 1 for

all j” is slightly stronger than “ψ j jσ
j j → 1 for almost all j .” However, in practice,

it seems reasonable to assume that the number of loadings on every factor increases
with p proportionally, as stated in Bentler (1976). Then the condition of m/p → 0
as p → ∞ becomes equivalent to evm(�′�−1�) → ∞. That is, Guttman and
Schneeweiss conditions become interchangeable.

Table 1 Relationships among conditions and results
Condition(s) Result Source

1. m/p → 0 as p → ∞ ψ j jσ
j j → 1 for almost all j Guttman (1956), Krijnen (2006,

Thm 1)

2. ψ j jσ
j j → 1 for almost all j; evm (�′�−1�) >

c > 0

m/p → 0 as p → ∞ Krijnen (2006, Thm 2)

3. evm (�′�−1�) → ∞ m/p → 0 as p → ∞ Krijnen (2006, Thm 3), Hayashi
and Bentler (2000, Obs 8b)

4. evm (�′�−1�) → ∞ ψ j jσ
j j → 1 for all j Krijnen (2006, Thm 4), Hayashi

and Bentler (2000, after Obs 7)

5. ψ j jσ
j j → 1 for all j evm (�′�−1�) → ∞ Krijnen (2006, Thm 4)

6. evk (�′�−1�) → ∞,k =
1, . . . , r; evk (�′�−1�) < C < ∞,k =
r + 1, . . . ,m; p → ∞,m fixed

ψ j jσ
j j → 1 for almost all j Krijnen (2006, Thm 5)

7. evm (�′�−1�) → ∞ �−1 − �−1 → 0

Notes (i) 2 is a partial converse of 1; (ii) 5 is the converse of 4; (iii) 7 is the matrix version of 4
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3 Extended Guttman Condition

By far the most important consequence of the Schneeweiss condition is that, when
evm(�′�−1�) → ∞, the second term in the right-hand side of the Sherman-
Morrison-Woodbury formula (see, e.g., Chap. 16 of Harville, 1997):

�−1 = �−1 − �−1�(Im + �′�−1�)−1�′�−1 (1)

vanishes, so that

�−1 − �−1 → 0 as evm(�′�−1�) → ∞ (2)

As we noted in the previous section, the condition of m/p → 0 as p → ∞ can
be equivalent to evm(�′�−1�) → ∞ in practical applications. Therefore, we have
�−1 − �−1 → 0 under high dimensions with a large p. We call �−1 − �−1 → 0
the extended Guttman condition. It is an extension of the original Guttman condition
in the sense that ψ j jσ

j j → 1 can be expressed as ψ−1
j j − σ j j → 0, as long as ψ j j is

bounded above (ψ j j ≤ ψsup < ∞).
Note that there exists a similar identity for the FA model:

�−1 − �−1�(�′�−1�)−1�′�−1 = �−1 − �−1�(�′�−1
�)−1�′�−1 (3)

(see, e.g., Hayashi & Bentler, 2001). Clearly, as evm(�′�−1�) → ∞, not only the
second term on the left-hand side of Eq. (3) but the second term on the right-hand
side of Eq. (3) vanishes.

As we have just seen, the extended Guttman condition is a direct conse-
quence of the Schneeweiss condition. Because �−1�(Im + �′�−1�)−1�′�−1 <

�−1�(�′�−1�)−1�′�−1 and Im + �′�−1� is only slightly larger than �′�−1�

when �′�−1� is large in the sense that evm(Im + �′�−1�) = evm(�′�−1�) + 1,
the speed of convergence in �−1 − �−1 → 0 is approximately at the rate of the
reciprocal of smallest eigenvalues of �′�−1�, that is, of 1/evm(�′�−1�).

4 Approximation of the Inverse of the Covariance Matrix

An important point to note here is that the original Guttman condition ofψ j jσ
j j → 1

(for almost all j) has to do with only the diagonal elements of � (or �−1) and �−1,
while�−1−�−1 → 0 involves both the diagonal and the off-diagonal elements of the
matrices. It justifies the interchangeability of �−1 and �−1 as evm(�′�−1�) → ∞,
or assuming that the number of loadings on every factor increases with p propor-
tionally, as m/p → 0 with p → ∞. The important implication is that all the
off-diagonal elements of �−1 approach zero in the limit. Thus, it is a result of spar-
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sity of the off-diagonal elements of the inverted covariance (correlation) matrix in
high dimensions.

One of the obvious advantages of being able to approximate �−1 by �−1 in
high dimensions is that the matrix of unique variances � is a diagonal matrix and
thus it can be inverted only with p operations. Note that, in general, the inversion
of a p –dimensional square matrix requires operations of order O(p3) (see, e.g.,
Pourahmadi, 2013, p. 121).

Consequently, the single most important application of the extended Guttman
condition is to approximate the inverse of the covariance matrix �−1 by �−1 under
high dimensions. This implication is very important because �−1 is involved in the
quadratic form for the log likelihood function of the multivariate normal distribution.
Even if � is positive definite so that �−1 exists in the population, the inverse S−1 of
the sample covariance matrix S does not exist under high dimensions when p > n.
When S−1 does not exist, we cannot estimate �−1 under the FA model using the
generalized least squares (GLS) or the maximum likelihood (ML) method, without
resorting to certain regularization method(s), either. Thus, a natural choice would
be to employ the unweighted least square (ULS) estimation method that minimizes
the fit function of FULS(S,�) = tr{(S − �)2}, which does not require to compute
S−1 or the estimate of �−1. Note that 1 − 1/s j j , a common initial value for the j-th
communarity cannot be used because it requires the computation of S−1. Then, we
can use the value of 1 as the initial communality estimates. In this case, the initial
solution is identical to PCA.

Alternatively, when p is huge, we can employ the following “approximate” FA
model with equal unique variances (e.g., Hayashi & Bentler, 2000), using standard-
ized variables, that is, applying to the correlation matrix:

� ≈ �∗�∗′ + k I p, (4)

with a positive constant k. Note that this model is also called the probabilistic PCA
in statistics (Tipping & Bishop, 1999). Use of the FA model with equal unique
variances seems reasonable, because the eigenvectors of (� − k I p) are the same
as the eigenvectors of �, and the eigenvalues of (� − k I p) are smaller than the
eigenvalues of � by only the constant of k. Thus, the FA model with equal unique
variances is considered as a variant of the PCA, and, the loading matrices between
the FA and the PCA approach the same limit values as evm(�′�−1�) → ∞, or they
become essentially equivalent, under high dimensions.

In Eq. (4), let �* = k I p, then �∗−1 = k−1 I p. Thus, we can use �∗−1 as quick
and fast approximation for �−1. The natural estimator of k is the MLE for k given
�∗ (Tipping & Biship, 1999):

k̂ = 1

p − m

p∑

j=m+1

ev j (S). (5)
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However, a more practical method seems as follows: Once estimating �* = k I p

by �̂
* = k̂ I p, we can compute loadings �̂∗ using the eigenvalues and eigenvectors

of (S− k̂ I p) and find the estimates of�∗ as �̂
∗ = diag(S−�̂∗�̂∗′).Note that �̂ ∗ is

no longer a constant times the identity matrix. Now, invoke the estimator version of

the extended Guttman condition �̂
∗−1 − �̂

−1 ≈ 0 to find the approximate estimator

�̂
−1

of �−1.

5 Illustration

The compound symmetry correlation structure is expressed as � = (1 − ρ)I p +
ρ1p1′

p with a common correlation ρ, 0 < ρ < 1. Obviously, it is a one-factor
model with the vector of factor loadings λ1 = √

ρ1p and the diagonal matrix unique
variances � = (1 − ρ)I p. Because the first eigenvalue and the corresponding stan-
dardized eigenvector of � = (1 − ρ)I p + ρ1p1′

p are ω1 = 1 + (p − 1)ρ and
λ+
1 = (1/

√
p)1p, respectively, the first PC loading vector is

λ∗
1 = λ+

1

√
ω1 = (1/

√
p)

√
1 + (p − 1)ρ · 1p = √

1/p + (1 − 1/p)ρ · 1p, (6)

which approaches the vector of factor loadings λ1 = √
ρ1p with m/p = 1/p → 0

and p → ∞. The remaining p − 1 eigenvalues are ω2 = . . . = ωp = 1 − ρ. Thus,
obviously, the constant k in the FA model with equal unique variances is k = 1− ρ.
Note that the Schneeweiss condition also holds

λ′
1�

−1λ1 = (
√

ρ1p)
′{(1/(1 − ρ))I p}(√ρ1p) = p · ρ/(1 − ρ) → ∞ (7)

with m/p = 1/p → 0 as p → ∞. The inverse of the correlation matrix is:

�−1 = �−1 − �−1λ1(1 + λ′
1�

−1λ1)
−1λ′

1�
−1

= (
1

1 − ρ
)I p − (

1

1 − ρ
)I p · (

√
ρ1p) · (1 + ρ

1 − ρ
· p)−1 · (√ρ1′

p) · (
1

1 − ρ
)I p

= (
1

1 − ρ
)I p − (

ρ

1 − ρ
)(

1

(1 − ρ) + ρ · p )(1p1′
p) → (

1

1 − ρ
)I p = �−1 (8)

with m/p = 1/p → 0 as p → ∞.
For example, it is quite easy to show that if ρ = 0.5, then for p = 10, the diagonal

elements of the inverse of the compound symmetry correlation structure are 2− 1/5.5
= 1.818 and the off-diagonal elements are−1/5.5= –0.182. At p= 100, the diagonal
and the off-diagonal elements become 2 − 1/50.5 = 1.980 and −1/50.5 = –0.0198,
respectively. Furthermore, at p = 1000, the diagonal and the off-diagonal elements
become 2 − 1/500.5 = 1.998 and −1/500.5 = –0.001998. Again, we see the off-
diagonal elements of �−1 approaching 0 as p increases. Also, the diagonal elements
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of �−1 approach 2, which are the value of the inverse of the unique variances in the
FA model.

6 Discussion

We discussed the matrix version of the Guttman condition for closeness between FA
and PCA. It can be considered as an extended Guttman condition in the sense that
the matrix version involves not only the diagonal elements but also the off-diagonal
elements of the matrices �−1 and �−1. Because �−1 is a diagonal matrix, the
extended Guttman condition implies that the off-diagonal elements of�−1 approach
zero as the dimension increases. We showed how the phenomenon happens with the
compound symmetry example in the Illustration section. We also discussed some
implications of the extended Guttman condition, which include the ease of inverting
� compared against inverting �. Because the ULS estimation method does not
involve any inversion of either the sample covariance matrix S or the estimated
model implied population covariance matrix �̂, the ULS should be the estimation of
choice when sample size n is smaller than the number of variables p. Furthermore,
we proposed a simple method to approximate �−1 by �−1 using the FA model with
equal unique variances, or equivalently, the probabilistic PCA model.

Some other implications of the extended Guttman condition (especially with
respect to algorithms) are as follows: First of all, suppose we add the (p + 1)th
variable at the end of already existing p variables. Then, while the values of σ j j ,
j = 1, . . . , p, can change, ψ−1

j j , j = 1, . . . , p, remain unchanged. Thus, with the
extended Guttman condition, only one additional element needs to be computed.

Another implication is on the ridge estimator, which is among the methods to
deal with singularity of S or the estimator of its covariance matrix by introducing
some small bias term (see e.g., Yuan&Chan, 2008, 2016).Warton (2008, Theorem1)
showed that the ridge estimator of the covariance (correlation) matrix �̂η=η�̂+(1−
η)I p (with the tuning parameter η) is the maximum penalized likelihood estimator
with the penalty term proportional to −tr(�−1). Unfortunately, as the dimension
p increases (or the ratio p/n increases), it becomes more difficult to obtain the
inverse of the covariance matrix. Therefore, in high dimensions, it is not practical
to express the ridge estimator of the covariance matrix in the form of the maximum
penalized likelihood with the penalty term involving −tr(�−1). This naturally leads
to employing an “approximate”maximumpenalized likelihoodwith the penalty term
approximately proportional to −tr(�−1) in place of the penalty term proportional
to −tr(�−1), assuming the factor analysis model, when the dimension p is large.

We are aware that, perhaps except approximations of the inverse of covariance
matrix, the majority of implications that we discussed in this article may be of
limited practical utility. For example, because the original Guttman condition, the
Schneeweiss condition, and the extended Guttman condition are all conditions for
closeness between FA and PCA, we can simply employ PCA as an approximation
to FA when the conditions hold. Also, we did not discuss regularized FA with L1
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regularization here, which in itself is a very interesting topic. Yet, we think the
implications we discussed are still of theoretical interest that should continue to be
studied. The compound symmetry example used in the Illustration is probably only
an approximation to the real world. We will need to do an extensive simulation to
come up with some empirical guidelines regarding how to best apply the theoretical
results in practice.
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Equivalence Testing for Factor
Invariance Assessment with Categorical
Indicators

W. Holmes Finch and Brian F. French

Abstract Factorial invariance assessment is central in the development of educa-
tional and psychological instruments. Establishing factor structure invariance is key
for building a strong validity argument, and establishing the fairness of score use.
Fit indices and guidelines for judging a lack of invariance is an ever-developing line
of research. An equivalence testing approach to invariance assessment, based on the
RMSEA has been introduced. Simulation work demonstrated that this technique is
effective for identifying loading and intercept noninvariance under a variety of con-
ditions, when indicator variables are continuous and normally distributed. However,
in many applications indicators are categorical (e.g., ordinal items). Equivalence
testing based on the RMSEAmust be adjusted to account for the presence of ordinal
data to ensure accuracy of the procedures. The purpose of this simulation study is to
investigate the performance of three alternatives for making such adjustments, based
on work by Yuan and Bentler (Sociological Methodology, 30(1):165–200, 2000)
and Maydeu-Olivares and Joe (Psychometrika 71(4):713–732, 2006). Equivalence
testing procedures based on RMSEA using this adjustment is investigated, and com-
pared with the Chi-square difference test. Manipulated factors include sample size,
magnitude of noninvariance, proportion of noninvariant indicators, model parameter
(loading or intercept), and number of indicators, and the outcomes of interest were
Type I error and power rates. Results demonstrated that the T3 statistic (Asparouhov
& Muthén, 2010) in conjunction with diagonally weighted least squares estimation
yielded the most accurate invariance testing outcome.
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1 Introduction

Social scientists, policy makers, and others make use of scores from psychologi-
cal scales to make decisions about persons, and groups of people, for a variety of
purposes, including hiring, schoolmatriculation, professional licensure, and determi-
nations regarding the need for special educational and psychological services. Given
their importance, there must be strong validity evidence for using scores in these
ways (American Education Research Association, American Psychological Asso-
ciation, & National Council on Measurement in Education, 2014). One important
aspect of providing such evidence is the determination as to whether the measures
provide equivalent information for members of different groups in the population,
such as males and females, or members of different economic subgroups (Wu, Li,
& Zumbo, 2007). Traditionally, such factor invariance (FI) assessments have been
made using a Chi-square difference test with multiple group confirmatory analysis
(MGCFA). However, this approach is very sensitive to sample size, so that it might be
statistically significant for very minor differences in group parameter values (Yuan
& Chan, 2016). Perhaps more importantly, information about the magnitude of any
group differences in latent variablemodel parameters identified is not available (Yuan
& Chan, 2016). Yuan and Chan described an alternative approach to FI assessment
that is based on equivalence testing. When indicator variables are normally dis-
tributed, this equivalence testing based method is an effective tool, yielding accurate
results with respect to the invariance (or noninvariance) of the latent variable model
(Finch & French, 2018). The purpose of the current simulation study was to extend
this earlier work by investigating how the equivalence testing technique performed
when the observed indicators were ordinal variables (such as items on a scale), rather
than being normally distributed.

1.1 MGCFA and FI Assessment

FI assessment (Millsap, 2011) refers to a set of nested models with differing levels
of cross group equality assumed about the parameters in a latent variable model
linking observed indicators (x) to latent variables (ξ ). The weakest type of FI is
configural invariance (CI), where only the general latent structure (i.e., number of
latent variables and correspondence of observed indicators to latent variables) is the
same across groups. The next level of FI is measurement invariance (MI), where the
factor loading matrix (�) is assumed to be equivalent across groups (Kline, 2016;
Wicherts & Dolan, 2010). If MI holds, researchers might next assess the equality
of the factor model intercepts (τ ) across groups (Steenkamp & Baumgartner, 1998),
and/or group equality of the unique variances (δ) invariant across groups.

The most common approach for assessing FI is based on the MGCFA model:

xg = τg + �gξ + δg (1)
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where

xg Observed indicators for group g
τg Threshold parameters for group g
�g Factor loading matrix for group g
ξ Latent variable(s)
δg Unique variances of the indicator variables for group g.

The terms in Eq. (1) are as described above, except that the parameters are allowed
to vary by group, which is denoted by the g subscript. MGCFA is used to test each
type of FI through a series of nested models, which differ in terms of that model
parameters that are held equivalent between groups. For example, in order to assess
MI, the researcher would constrain factor loadings to be equivalent across groups,
thereby replacing �g with � in Eq. (1). The fit of the constrained and unconstrained
models are then compared using a difference in Chi-square fit statistic value, χ2

�.
The null hypothesis of this test is that MI is present.

The performance ofχ2
� for invariance testing has yielded somewhatmixed results.

French and Finch (2006) found that for normally distributed indicators and a sample
size of no more than 500, χ2

� had Type I error rates at the nominal (0.05) level,
while also exhibiting relatively high power. Other researchers have reported that χ2

�

is sensitive to sample size, to a lack of normality in the indicators, and to model
misspecification errors, and in such cases may yield inflated Type I error rates when
assessing MI (Chen, 2007; Yuan & Chan, 2016; Yuan & Bentler, 2004).

1.2 Factor Invariance with Equivalence Testing

Given these problems associated with using χ2
�, Yuan and Chan (2016) proposed an

extension of other work designed to assess model fit using an equivalence testing
approach (Marcoulides & Yuan, 2017; Yuan, Chan, Marcoulides, & Bentler, 2016)
to the assessment of FI using MGCFA. In the case of MGCFA for FI assessment, the
null hypothesis is:

H0I : (Fbc0 − Fb0) > ε0 (2)

Fbc0 is the fit function value for a model where group parameters are constrained to
be equal, Fb0 is the fit function value for a model where group latent variable model
parameters are allowed to differ between groups, and ε0 is the maximum acceptable
model misspecification. Rejecting H0I leads to the conclusion that any model mis-
specification due to constraining factor model parameters to be equal across groups
does not greatly degrade model fit vis-à-vis the model where these constraints are
relaxed. Therefore, rejecting H0I in the MI equivalence testing framework would
indicate that when the groups’ factor loadings are constrained to be equal, the dif-
ference in fit between the loadings constrained and loadings unconstrained models
does not exceed an acceptable level of misfit, as expressed by ε0.
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Yuan and Chan (2016) showed that the value of ε0 can be obtained as follows:

ε0 = d f (RMSE A0)
2

m
(3)

where

d f Model degrees of freedom
m Number of groups
RMSE A0 Maximum value of RMSEA that can be tolerated.

For FI assessment, Yuan and Chan recommend using this equivalence testing pro-
cedure to characterize the relative degree of noninvariance present in the data, as
opposed to making strict hypothesis testing based determinations regarding equiva-
lence or not. In this framework, the degree of model parameter invariance present in
the data can be characterized using common guidelines (e.g., MacCallum, Browne,
& Sugawara, 1996) to describe the model constraining group parameters to be equal.
These guidelines for interpreting values of RMSEA suggest the following fit cat-
egories: Excellent fit (<0.01), Close fit (0.01–0.05), Fair fit (0.05–0.08), Mediocre
fit (0.08–0.10), and Poor fit (0.10+). Thus, an RMSEA of 0.17 for a model con-
straining factor loadings to be equal among groups would suggest poor fit of the MI
model, meaning that model parameters are likely not equivalent between the groups.
Yuan and Chan (2016) found that for the purposes of determining the value of ε0,
these standard cutoffs for interpreting RMSEA may be too stringent, and thus rec-
ommended an alternative approach for obtaining adjusted cutoffs based on the data
being analyzed. The interested reader is encouraged to review this earlier paper for a
description of how these alternatives are obtained. This equivalence testing approach
is effective for assessing the fit of a single model, and for invariance assessment (e.g.,
Finch & French, 2018; Marcoulides & Yuan, 2017; Yuan & Chan, 2016). However,
the performance of the equivalence testing approach to invariance assessment when
indicators are categorical and not normally distributed has not been investigated.

1.3 Fit Indices for Categorical Indicators

Yuan and Chan (2016) indicated that the equivalence invariance test was designed
for use with normally distributed indicators. However, in many contexts in the social
sciences researchers workwith ordinal observed variables, such as responses to items
on a rating scale. In such cases, the equivalence testing approach may not be appro-
priate, because calculation of the standard full information χ2 statistic upon which
RMSEA is based is problematic (Maydeu-Olivares & Joe, 2006). In the context of
categorical indicators, this statistic relies on the full cross-tabulation of the entire set
of categorical indicators (full information), leading to the potential for cell sparsity,
and resulting problems in its calculation (Maydeu-Olivares & Joe), which in turn
biases the RMSEA estimate.
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In order to address these problems caused by sparsity, alternative goodness of
fit statistics based on limited information approaches have been proposed for use
with latent variable modeling in the context of categorical indicator variables. One
set of alternatives is based upon a least squares, rather than maximum likelihood,
estimation paradigm. For example, the weighted least squares (WLS) fit function
takes the form:

F(θ;W ) = (
ρ̂ − ρ(θ)

)′
W

(
ρ̂ − ρ(θ)

)
(4)

where

ρ̂ Sample polychoric correlation matrix for the indicator variables
ρ(θ) Model implied polychoric correlation matrix
W Asymptotic covariance matrix of ρ̂.

Given that WLS yields biased estimates and has difficulty in converging when sam-
ples are small (Muthén, 1993), the diagonally weighted least squares (DWLS) esti-
mator was proposed (Muthén, du Toit, & Spisic, 1997). DWLS reduces the compu-
tational burden and yields less biased parameter estimates for smaller sample sizes
by using only the diagonal ofW as the weight matrix (Flora & Curran, 2004). When
W is the identity matrix, (5) is the unweighted least squares (ULS) estimator. For
each of these estimators, a moment corrected goodness of fit statistic, T3, can be
calculated based upon the fit function, and is asymptotically a Chi-square statistic
(Asparouhov & Muthén, 2010). T3 can then be used to calculate RMSEA, which in
turn can be used with the invariance equivalence methodology described above.

An alternative limited information goodness of fit statistic for use with categorical
indicators was proposed byMaydeu-Olivares and Joe (2006). This statistic is defined
as:

M∗
2 = Nê2�̂2ê2 (5)

where

ê2 Vector of first and second order residual probabilities.

�̂2 �̂2 = �−1
2 − �−1

2 �2
(
�′

2�
−1
2 �2

)−1
�′

2�
−1
2

�2 Asymptotic covariance matrix of the first and second order sample proportions
�2 Matrix of derivatives of the first and second order model implied probabilities

with respect to the vector of parameter estimates θ̂ .
M∗

2 is asymptotically distributed as a Chi-square statistic, and can be used to calcu-
late RMSEA for use with the invariance equivalence testing approach described
above.
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1.4 Goals of the Current Study

The goal of the current study was to extend earlier work that investigated the per-
formance of the equivalence testing procedure for normally distributed indicators
(Finch & French, 2018). The current study extends this research by examining the
performance of T3 for both DWLS and ULS, as well as M2 in the context of MI when
the indicator variables are categorical.

2 Method

AMonte Carlo simulation study (1000 replications) was utilized to address the study
goals. Data simulation was completed in Mplus, version 7.11 (Muthén & Muthén,
1998–2016), and data analyses were conducted using R version 3.3.1 (R Develop-
ment Core Team, 2016). Data were generated using a single factor confirmatory
factor analysis model for 2 groups, where the factor, error variances, and factor vari-
ances followed the standard normal distribution, with a mean of 0 and variance of 1.
Indicator variables were simulated to be ordinal with 5 categories, with the following
pattern of thresholds:−1,−0.5, 0.5, 1. Factor loadings were set to 1 for all indicators,
unless manipulated to induce measurement noninvariance, as described below. All
other model parameters were held invariant between the two groups. The referent
indicator method was used to identify the factor models. The following factors were
manipulated in the study, and were based upon earlier published work in this area
(e.g., Finch & French, 2018).

2.1 Sample Size

Given that sample size has been shown to be important in terms of the performance
of the equivalence testing approach, and the χ2

� test (Chen, 2007; Finch & French,
2018; French & Finch, 2006), it was manipulated in the current study. Total sample
sizes were simulated to be 200, 400, 600, 1000, 1500, or 2000, and were designed
to reflect small to large samples.

2.2 Number of Indicator Variables

Either 10 or 20 observed factor indicators were simulated, representing a range of
values that might be encountered in practice.
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2.3 Number of Noninvariant Indicators and Magnitude
of Measurement Noninvariance

Measurement noninvariancewas simulated by creating group differences in the factor
loadings for some observed indicators. For the invariance condition, the difference in
factor loadings between the groups was 0 (complete invariance). For the noninvariant
cases, loadings were simulated to differ by 0.1, 0.2, 0.3, 0.4, or 0.5. The percent
of indicators allowed to be noninvariant was 0, 10, 20, or 30%. As an example
of how noninvariance was simulated, in the 10 indicators, 10% noninvariant, 0.1
noninvariance magnitude condition, the factor loading for indicator 2 was set to 0.9
in one group, and kept at 1.0 in the other group.

2.4 Invariance Assessment Approaches

For each replicationwithin each simulation condition, invariancewas tested using the
MGCFA χ2

� approach, with T3 for DWLS (TDWLS) and ULS (TULS), as well as M∗
2 .

In addition, the equivalence test method based was also used to assess invariance,
with the RMSEA values based upon TDWLS , TULS , and M∗

2 , respectively.

2.5 Study Outcomes

The outcomes were the Type I error and power rates of the χ2
� tests, and the adjusted

equivalence test fit category distribution (Excellent, Close, Fair, Mediocre, or Poor).
Analysis of variance (ANOVA) was used to identify statistically significant main
effects and interactions of the manipulated conditions with respect to the proportion
of cases for which the equivalence testing method identified poor fit. In addition, the
partial η2 effect size was also used to identify ANOVAmodel terms of interest, such
that main effects and interactions of themanipulated conditions had to be statistically
significant with partial η2 value of 0.1 or larger, ensuring that effects accounted for
at least 10% of the outcome variance to be deemed important.

3 Results

3.1 Measurement Invariance Is Present

The interaction of invariance assessment method by sample size was the only sta-
tistically significant model term (F10,8 = 10.527, p = 0.001, η2 = 0.929) when
invariance was present. The Type I error rate for the TDWLS statistic was the only one
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Table 1 Type I error rates and proportion of adjusted equivalence test results in excellent or close
range, by sample size and method

N TDWLS TULS M∗
2 Proportion in excellent/close fit range

RMSEA TDWLS RMSEA TULS RMSEA M∗
2

200 0.07 0.08 0.11 0.39 0.12 0.03

400 0.06 0.08 0.10 0.41 0.13 0.03

600 0.04 0.08 0.10 0.57 0.21 0.04

1000 0.05 0.08 0.07 0.80 0.45 0.25

1500 0.05 0.07 0.06 0.84 0.55 0.34

2000 0.05 0.07 0.05 0.92 0.69 0.50

that was in the acceptable range (0.025–0.075) as defined by Bradley (1978), across
all sample size conditions (Table 1). For the other two statistics, the samples needed
to be at least 1000 (M∗

2 ) or 1500 (TULS) in order for the Type I error rates to be in
this range. Results in Table 1 show that equivalence testing based on TDWLS had
the highest rates in the expected excellent/close fit categories, across sample sizes.
This proportion increased concomitantly with increases in sample size. Finally, the
proportion in the expected excellent/close fit range was below 0.8 for samples of less
than 1000 for TDWLS , which was the best performer in this regard.

3.2 Measurement Invariance Is Not Present

When factor loadings were simulated to differ between the groups, ANOVA found
the interactions of equivalence test statistic by number of noninvariant indicator vari-
ables by magnitude of group loading difference (F16,234 = 14.389, p < 0.001, η2 =
0.496), and equivalence test statistic by number of loadings by magnitude of group
loading difference (F8,234 = 9.104, p < 0.001, η2 = 0.237), to be statistically
significantly related to the performance of the equivalence test procedure. The first
set of results to be examined are those for measurement invariance not present, by
method, magnitude of group loading difference, and percent of noninvariant load-
ings. The proportion of replications in each equivalence testing category for this
combination of conditions appear in Fig. 1. It is clear from these results that when
the magnitude of group loading differences was 0.3 or more, and 20 or 30% of the
indicators were noninvariant between groups, virtually all replications were in the
poor fit range (expected outcome given simulated lack of invariance) for all of the
methods. Under conditions in which the degree of group difference was less pro-
nounced, the invariance tests based on M∗

2 and TULS tended to indicate worse fit
more frequently than did those based on TDWLS . This result was strongest when 30%
of the indicators were simulated to have different loadings between groups, and the
magnitude of these differences was 0.1 or 0.2. Power results for the χ2

� tests appear
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Table 2 Power rates for detecting measurement noninvariance for the chi-square difference test by
the magnitude of group loading difference, number of noninvariant indicators, and test statistic

Magnitude of
group loading
difference

Number of
noninvariant
indicators

TDWLS TULS M∗
2

0.1 1 0.07 0.84 0.15

2 0.11 0.90 0.28

3 0.15 0.90 0.29

0.2 1 0.21 0.93 0.44

2 0.45 0.97 0.63

3 0.61 0.98 0.67

0.3 1 0.53 0.97 0.63

2 0.76 0.99 0.82

3 0.85 0.99 0.87

0.4 1 0.76 0.99 0.79

2 0.91 0.99 0.92

3 0.97 1.00 0.95

0.5 1 0.89 0.99 0.89

2 0.94 0.99 0.94

3 0.99 1.00 0.990

in Table 2, and demonstrate that TULS had the highest rates of power across con-
ditions, whereas TDWLS exhibited somewhat lower power than did M∗

2 , particularly
for lower group loading difference magnitudes, and fewer noninvariant indicators. It
is important when interpreting these results to recall that the Type I error rates were
inflated under many conditions for each of these statistics, particularly M∗

2 and TULS .
The proportion of replications in each equivalence testing category by magnitude

of group loading difference and number of indicators when noninvariance was sim-
ulated to be present appear in Fig. 2. These results revealed that with a larger group
loading difference there was a higher likelihood of mediocre and poor fit, based
on the equivalence test. In addition, with more indicators this effect was magnified
for each of the statistics. For example, the proportion of cases in the mediocre and
poor fit categories was greater for 20 indicators than for 10, across methods stud-
ied here. Power results for the χ2

� tests by magnitude of group loading difference
and number of indicators appear in Table 3, and are aggregated over the number of
non-invariant indicators. Power for all three equivalence testing methods was higher
when more indicators were present, and that power for TULS was the highest across
conditions, whereas power for TDWLS was the lowest for the smallest magnitudes of
group loading difference.
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Fig. 1 Proportion of adjusted equivalence test results in each fit category by equivalence statistic,
number of noninvariant loadings, andmagnitude of group loading difference: noninvariance present
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Fig. 2 Proportion of adjusted equivalence test results in each fit category by equivalence statistic,
number of indicator variables, and magnitude of group loading difference: noninnvariance present
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Table 3 Power rates for detecting measurement noninvariance for the chi-square difference test by
the magnitude of group loading difference, number of indicators, and test statistic

Magnitude of group loading
difference

Number of indicators TDWLS TULS M∗
2

0.1 10 0.10 0.79 0.30

20 0.11 0.97 0.39

0.2 10 0.38 0.93 0.58

20 0.46 0.99 0.68

0.3 10 0.66 0.98 0.74

20 0.77 0.99 0.81

0.4 10 0.84 0.99 0.85

20 0.92 1.00 0.92

0.5 10 0.91 0.99 0.91

20 0.97 1.00 0.97

4 Discussion

The results of this study demonstrated that the equivalence testing procedure based
on TDWLS appeared to correctly identify models in which MI held at the highest
rates among the methods studied here, while at the same time generally identifying
poorly fitting models at a high rate. It is important to note that when the magnitude
of group factor loading difference was relatively low (0.2 or less), this statistic was
less likely to indicate fair to poor fit than the alternatives studied here. This result
could suggest a relative lack of power for this approach, or it could simply reflect
the fact that small differences in factor loadings are not indicative of a major lack
of equivalence between groups. Finally, the χ2

� based approaches exhibited inflated
Type I error rates in many cases, and may not be as useful as the equivalence testing
approach.

Future research in this area should focus on identifying additional alternatives
for calculating RMSEA with categorical indicators. Though TDWLS was the best
performer, it was not without problems, particularly for low levels of noninvariance.
In addition, future work should include a wider array of indicator categories (e.g., 3,
4, 6, 7), and more complex latent structure (e.g., 2 or 3 factors). Such continued work
will allow the invariance literature to continue to expand to address group differences
in the measurement of constructs used to make decisions about individuals.
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Canonical Correlation Analysis
with Missing Values: A Structural
Equation Modeling Approach

Zhenqiu (Laura) Lu

Abstract Canonical correlation analysis (CCA) is a generalization of multiple cor-
relation that examines the relationship between two sets of variables. When there
are missing values, spectral decomposition in CCA becomes complicated and dif-
ficult to implement. This article investigates structural equation modeling approach
to Canonical correlation analysis when data have missing values.

Keywords Canonical correlation analysis · Structural equation modeling ·
Missing values

1 Introduction

Canonical correlation analysis (CCA) (see Hotelling, 1936) is a statistical method
to calculate multiple correlations that examines the relationship between two sets of
variables. In a stepwise procedure, pairs of linear combinations of original variables,
one from each set, are derived. At each step, the linear combinations are derived
to maximize the correlation between them. Also, the current pair of combinations
is uncorrelated with all previously derived pairs (Anderson, 2003). The number of
such pairs is the number of variables in the smaller set of original variables. The
series of maximal correlations between pairs of newly created combinations are
called canonical correlations (CCs). These newly created linear combinations of
original variables are called canonical variates. Those coefficients used in linear
combinations to create canonical variates are called canonical weight coefficients or
just weights. The canonical correlations are exclusively determined by the canonical
weight coefficients. For normalization purposes, the weight coefficients must satisfy
some restrictions.

The goal of CCA is essentially to find the optimal weights that maximize these
canonical correlations. However, the actual implementations of CCA are not com-
putationally effective. The traditional way is to employ a mathematically equivalent

Z. (Laura) Lu (B)
University of Georgia, 325V Aderhold Hall, 110 Carlton Street, Athens, GA 30602, USA
e-mail: zlu@uga.edu

© Springer Nature Switzerland AG 2019
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 265, https://doi.org/10.1007/978-3-030-01310-3_22

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01310-3_22&domain=pdf
mailto:zlu@uga.edu
https://doi.org/10.1007/978-3-030-01310-3_22


244 Z. (Laura) Lu

spectral decomposition of some quadruple product of covariance/correlation matri-
ces, and all canonical correlations and the associated weight coefficients are obtained
simultaneously. There are many limitations for this approach. For example, it is hard
to deal with missing values. When there are missing values at any set of original
variables, the spectral decomposition in CCA becomes really complicated and dif-
ficult to implement. The traditional way is to conduct a list-wise deletion to make
data complete.

Structural equationmodeling (e.g., Bollen, 1989) is widely used statisticalmethod
to investigate the underlying relationship among observed variables and latent vari-
ables. It is a generalization of various multivariate linear models, such as path analy-
sis,measurementmodels, factormodels, structural relationmodels, and latent growth
models. A general SEM model has three parts, one measurement model of exoge-
nous variables, onemeasurementmodel of endogenous variables, and an overarching
structural model of the relationships among exogenous and endogenous variables.

The research on statistical connections between CCA and SEM is less obvious
and is rare in literature. Bagozzi, Fomell, and Larcker (1981) discussed that canonical
correlation analysis could be viewed as a case of a structural relations model. Fol-
lowing this idea, Fan (1997) developed a multiple stages procedure using a multiple
indicators and multiple causes (MIMIC) model at each step to analyze canonical cor-
relations. But “the representation of CCA using SEM is not straightforward” (Fan,
1997, p. 69). Also, as it is a multiple stages approach, it is not practical to conduct the
stepwise procedure for most researchers. Lu and Gu (2018) proposed a general SEM
approach to CCA. The CCA is directly mathematically formulated by the structural
equation modeling. However, all the researchers above did not investigate the SEM
approach to CCA with missing values.

Missing data are almost inevitable. Research participants may drop out of a study,
or some students may miss a test due to absence or fatigue. Missing data can be
investigated from their mechanisms, or whymissing data occur. Little and Rubin dis-
tinguished ignorable missingness mechanism and non-ignorable missingness mech-
anism. For ignorable missingness mechanism, estimates are usually asymptotically
consistent when the missingness is ignored, because the parameters that govern the
missing process either are distinct from the parameters that govern the model out-
comes or depend on the observed variables in the model. The ignorable missingness
mechanism includes missing completely at random (MCAR), in which the missing
data probability does not depend either on observed outcomes or on missing values
(or latent variables), andmissing at random (MAR), in which the missing data prob-
ability may depend on some observed outcomes, but not on missing values (or latent
variables).

By using SEM, missing data can be easily handled with maximum likelihood
(ML) estimation method under the MCAR or MAR assumption, and this method is
now available in most popular SEM software.

In this article, we investigate the structural equation modeling approach to canon-
ical correlation analysis when the data have missing values. We compare the results
obtained from the conventional CCA approach and those from the SEM approach
by using maximum likelihood estimation method.
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2 SEM Approach to CCA

In this section, we describe the structural equation modeling approach to canonical
correlation analysis.

2.1 SEM Representation of CCA

Let X be a p-variate (p ≥ 1) zero-mean vector of p random variables in the first
variable set, and Y be a (p + d)-variate (d ≥ 0) zero-mean vector of (p + d) random
variables in the second variable set. We assume that �11 and �22 are the covariance
matrices of X and Y, respectively, and �12 = �′

21 is the covariance matrix between
X and Y. So if we use Z = [

X′ Y′ ]′
, then the covariance matrix of Z is

Cov(Z) = � =
(

�11 �12

�21 �22

)
.

Let a1i and a2i (i = 1, 2, …, p) be the canonical weight vectors for the ith
pair of canonical variates (V1i , V2i ) of Z, respectively, such that V1i = a′

1iX
and V2i = a′

2iY. The goal of conventional CCA is to maximize E(V1i V2i ) =
E

(
a′
1iXY

′a2i
) = a′

1i�12a2i (i = 1, 2, …, p), subject to the following unit-variance
and orthogonality constraints as follows, unit-variance a′

1i�11a1i = a′
2i�22a2i =

1, (i = 1, 2, . . . , p), within-set orthogonality a′
1i�11a1 j = a′

2i�22a2 j = 0, (i �=
j and i, j = 1, 2, . . . , p) and between-set orthogonality a′

1i�12a2 j = 0, (i �=
j and i, j = 1, 2, . . . , p). If we let A1 = (

a11 . . . a1p
)
, and A2 = (

a21 . . . a2p
)
.

By adding another (p + d) × d additional matrixA3 = (
a2,p+1 . . . a2,p+d

)
with each

column derived from variable Y2 (Anderson, 2003, p. 499). We further assume the
unit-variance and orthogonality constraints for matrix A3. Let A be a (2p + d)× (2p
+ d) block-diagonal matrix

A =
(
A1 0 0
0 A2 A3

)
,

where A1 is a block of p × p and (A2 A3) is another block of (p + d) × (p + d).
Because of the definition and constraints above, the conventional CCA states that
mathematically

A′�A =
⎛

⎝
A′

1 0
0 A′

2

0 A′
3

⎞

⎠
(

�11 �12

�21 �22

)(
A1 0 0
0 A2 A3

)
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=
⎛

⎝
A′

1�11A1 A′
1�12A2 A′

1�12A3

A′
2�21A1 A′

2�22A2 A′
2�22A3

A′
3�21A1 A′

3�22A2 A′
3�22A3

⎞

⎠ =
⎛

⎜
⎝
Ip R 0
R Ip 0
0 0 Id

⎞

⎟
⎠

where 0 denotes a matrix of zeros of proper dimension. In other words, if we assume
the vectors of canonical variates V1 = (

V11 · · · V1p
)′
and V2 = (

V21 · · · Vp+d
)′
, then

V =
[
V1

V2

]
= A′Z = A′

[
X
Y

]
=

⎛

⎝
A′

1 0
0 A′

2

0 A′
3

⎞

⎠
[
X
Y

]
(1)

with a covariance matrix

Cov(V) = A′�A =
⎛

⎜
⎝
Ip R 0
R Ip 0
0 0 Id

⎞

⎟
⎠ (2)

Equation (1) can be transformed to an equivalent form

Z =
[
X
Y

]
= (

A′)−1
V = (

A′)−1
[
V1

V2

]
(3)

with Cov(V) as in (2). Equation (3) is a simplified measurement model in SEM
when �y = (A’)−1, η = V, and ε = 0. Therefore, the matrix form of CCA has been
represented by a simplified structural equation model,

Z = (
A′)−1

V + 0 = �η + ε,

where � is a factor loading matrix for the vector of observed indicators Z, η is a
vector of latent variables, ε is a vector of measurement errors of Z. Because of A′
= �−1, the weight matrix A in CCA can be obtained as the transpose of the inverse
of the loading matrix in SEM.

2.2 SEM Approach to CCA with Missing Values

Based on the derivation above, the CCA has been represented by a simplified struc-
tural equation model. To address the missing data problem in SEM, researchers have
developedmany approaches (Enders &Bandalos, 2001; Yuan&Lu, 2008). Themost
widely used method is the full information maximum likelihood (ML) estimation
method.

For complete data, the log likelihood function for independent observations from
a distribution with a probability density function f (.) can be expressed as
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l = log(L) =
N∑

i=1

log( f (xi |θ))

where xi is a vector of observed values for individual i, θ is a vector of parameters,
such asmeanvector and covariancematrix formultivariate normal distribution.When
data have missing values, the likelihood becomes

l =
N∑

i=1

log( f (xi |θi ))

where the forms of xi and θi depend on individual i. If there are missing values
for that individual, then xi is a sub-vector of the complete case xi by deleting cor-
responding missing elements, and θi is sub-matrix of θ by deleting the rows and
column corresponding to missing elements. The likelihood function with missing
values is then maximized to obtain ML estimates. The maximization can be carried
out by conventional numerical methods, such as the Newton-Raphson algorithm.

2.3 Software Implementation

Convectional CCA can be implemented by using software packages such as Proc
CANCORR in SAS/STAT (SAS Institute Inc., 1993), the CCA package in R (R Core
Team, 2013), the MANOVA command in IBM-SPSS (SPSS, 2012), the algebraic
function for eigen-analysis in R, MATLAB (MathWorks, Inc., 2012), and SAS/IML.

The SEM approach to CCA can be implemented by using existing SEM software
packages, such as the Lavaan package (Rosseel, Oberski, Byrnes, Vanbrabant, &
Savalei, 2013) in R, the SEM package (Fox, 2006) in R,Mplus (Muthén andMuthén,
2012), EQS (Bentler, 1995), the OpenMx package (Boker et al., 2011) in R, and
LISREL (Jöreskog and Sörbom, 2006). In this article, we use the R package Lavaan,
Mplus, and EQS. The results from these SEM software are similar. Special settings
or options in SEMmight be included, such as the option of “missing=ml” in Lavann
in order to use the full information maximum likelihood (FIML) estimation by using
all available data when data are missing completely at random (MCAR) or missing
at random (MAR).

3 Real Data Analysis

In this section, we illustrate the SEM approach to CCA with missing values.
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3.1 The Data Set

The data are from 34 countries of the world from FAOSTAT (Food and Agriculture
Organization of the United Nations, 1998). We are interested in two sets of variables:
one on food supply and the other on cancer type. By using canonical correlation
analysis, we are trying to investigate the relationships between food intake types and
the mortality rate by cancer types.

In the data set there are four cancer sites, esophagus, stomach, pancreas, and liver.
Suppose we use a 4 by 1 vector X = (x1, x2, x3, x4)′ to represent these variables.
Also, the data include seven food supplies, alcohol, meat, fish, cereal, vegetable, milk
products, and the total calorie per day. We use a 7 by 1 vector Y = (y1, y2, y3, y4,
y5, y6, y7)′ to represent these food supplies. In total, there are 34 complete cases,
with 11 variables for each case. The total observed values are 34 × 11 = 374.

3.2 Generating Incomplete Data Set with Missing Values

In order to generate data sets with missing values, we randomly deleted some
observed values from the complete data to make the missing mechanism MCAR.
We first created an incomplete data set with a low missing data rate by removing
only 2 observations. The missing data rate is 2/(34 * 11) = 0.53%. But if it’s a
listwise deletion, then two rows will be removed and the missing data rate becomes
(2 * 11)/(34 * 11) = 5.88%.

We also created a second MCAR incomplete data set by removing more observa-
tions. The missing data rate is 15/(34 * 11) = 4.01%. Again, if the list-wise deletion
is conducted, then the five rows will be removed, and the missing data rate becomes
(5 * 11)/(34 * 11) = 14.71%.

3.3 SEM Model

The factor model can be set up as follows.

[
X
Y

]
=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

x1
x2
x3
x4
y1
y2
y3
y4
y5
y6
y7

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

= �η + 0 =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

λ11 sym
λ21 λ22 0
λ31 λ32 λ33

λ41 λ42 λ43 λ44

λ55

λ65 λ66 sym
λ75 λ76 λ77

λ85 λ86 λ87 λ88

0 λ95 λ96 λ97 λ98 λ99

λ105 λ106 λ107 λ108 λ109 λ1010

λ115 λ116 λ117 λ118 λ119 λ1110 λ1111

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

η1

η2

η3

η4

η5

η6

η7

η8

η9

η10

η11

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦
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=
(

�1 0
0 �2

)
η = (A′)−1η

where η having a covariance matrix

COV (η) =
⎛

⎝
I4 R 0
R I4 0
0 0 I3

⎞

⎠

3.4 Results

For complete data, Table 1 lists the results fromboth approaches. The canonical corre-
lations, the estimates of the weights of X and Y are similar from both approaches due
to rounding errors (sometimeswith a different sign but still provides the same results).
There are 4 canonical correlations as the dimension of the smaller set of variables is 4.
Ordered from the largest to the smallest, they are 0.9043192, 0.6146330, 0.6006710,
and 0.2170920. In SEM, the canonical correlations are shown as covariance between
different pair of latent variables (η) with unit variance. After re-organizing (2, 4, 1,
3 for X and 6, 8, 5, 7 for Y), we have

eta2 ∼∼ eta6
eta4 ∼∼ eta8
eta1 ∼∼ eta5
eta3 ∼∼ eta7

:
:
:
:

Estimate
0.904
0.615
0.601
0.217

Std.Err
0.031
0.107
0.110
0.163

Z-value
28.940
5.760
5.480
1.328

P(> |z|)
0.000
0.000
0.000
0.184

In addition to estimates, SEM software also provides their corresponding standard
errors, z values and p values. Based on the order of canonical correlations, the re-
organized loading matrix of X is obtained as follow.

�X =

⎛

⎜⎜
⎝

3.074
−7.134
3.991

12.236

1.836
13.043
2.308
3.385

0.916
0.462
2.109

−3.207

−2.485
5.244
4.071
3.163

⎞

⎟⎟
⎠.

The weight matrix of X is obtained as the transpose of the inverse of loading matrix.

WY =

⎛

⎜⎜
⎝

0.05990199
−0.02548197
0.03901400
0.03909513

0.10610786
0.06205122

−0.03021496
0.01937608

0.14778630
−0.02765598
0.22396835

−0.12630358

−0.195442661
0.004129405
0.108494720
0.016120259

⎞

⎟⎟
⎠.

For Y, the re-organized loading matrix is
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�Y =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

26.061 23.883 −7.307 −9.992 9.991 5.611 4.853
19.459 −1.021 −7.736 −6.402 −4.176 −5.595 6.842
−1.842 3.436 −6.755 12.896 −1.243 −5.476 −0.129
−22.282 2.228 2.931 −6.224 −15.675 8.323 9.280
−8.784 −4.043 −32.032 −9.451 −33.259 −10.941 −16.060
7.207 6.005 29.614 −10.736 −5.185 −23.932 0

197.238 57.688 −74.403 10.947 −218.822 0 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

And its weight matrix is the previous four columns of the following matrix

WY =

⎛

⎜
⎜⎜
⎜⎜
⎝

−0.001932080
0.008238362

−0.014339519
−0.017323157
−0.006968780
−0.001936593
0.002182018

0.03309409
−0.02996765
0.02883383
0.01271601
0.00434944
0.01060145
0.00009596

−0.008146909
−0.022407600
−0.018446419
−0.001538340
−0.012748814
0.012842720
0.001904032

−0.012061048
−0.013311480
0.042034528

−0.006735220
−0.013545125
−0.005483783
0.002135723

0.009149787
0.006478400
0.003051289

−0.012076011
−0.001477576
−0.003591782
−0.003118395

0.001069227
−0.028198185
−0.039427278
0.001708119

−0.010386398
−0.020578041
0.002754796

−0.003604512
0.061358140
0.033180670
0.037150307

−0.016015302
−0.002540349
−0.001690846

⎞

⎟
⎟⎟
⎟⎟
⎠

For incomplete data sets, Tables 2 and 3 provide the comparison between the two
approaches. From these tables, we can see the ML estimates are closer to the true
estimates of complete data than those from conventional CCA, especially in the case
with a low missing data rate. It is because the conventional CCA approach deletes
more variables when there are missing values, but SEM approach uses all available
values.

4 Conclusions and Discussion

This article investigates the structural equation modeling approach to canonical cor-
relation analysis when data have missing values. By using SEM, missing data can be
easily handled with maximum likelihood (ML) estimation method under the MCAR
or MAR assumption. It is very practical for researchers to run any SEM software to
conduct canonical correlation analysis.

Appendix

See Tables 1, 2 and 3.
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Table 1 The canonical correlations (CCs) and the weights of X and Y obtained from the conven-
tional CCA and from the SEM approach for complete data

Complete data without any missing values

CC 1 CC 2 CC 3 CC 4

Conventional CCA approach

CCs 0.9043192 0.6146330 0.6006710 0.2170920

X weight coefficients

x1 −0.05902017 0.10451992 −0.14558750 0.19251424

x2 0.02510597 0.06112781 0.02725057 −0.00407127

x3 −0.03844114 −0.02975079 −0.22066721 −0.10688032

x4 −0.03851303 0.01908197 0.12443830 −0.01588451

Y weight coefficients

y1 0.001903454 0.0326031166 0.008026194 0.011882483

y2 −0.008116932 −0.0295245314 0.022075638 0.013113633

y3 0.014126789 0.0284056630 0.018173654 −0.041410665

y4 0.017065997 0.0125260479 0.001515223 0.006635931

y5 0.006865899 0.0042858813 0.012559922 0.013344329

y6 0.001908078 0.0104446401 −0.012652317 0.005402780

y7 −0.002149688 0.0000945811 −0.001875860 −0.002104078
1SEM approach

CCs 0.904 0.615 0.601 0.217

X weight coefficients

x1 0.05990199 0.10610786 0.14778630 −0.195442661

x2 −0.02548197 0.06205122 −0.02765598 0.004129405

x3 0.03901400 −0.03021496 0.22396835 0.108494720

x4 0.03909513 0.01937608 −0.12630358 0.016120259

Y weight coefficients

y1 −0.001932080 0.03309409 −0.008146909 −0.012061048

y2 0.008238362 −0.02996765 −0.022407600 −0.013311480

y3 −0.014339519 0.02883383 −0.018446419 0.042034528

y4 −0.017323157 0.01271601 −0.001538340 −0.006735220

y5 −0.006968780 0.00434944 −0.012748814 −0.013545125

y6 −0.001936593 0.01060145 0.012842720 −0.005483783

y7 0.002182018 0.00009596 0.001904032 0.002135723

Note
1. We use the R package “Lavaan”. The results obtained from other EM software (such as Mplus,
EQS, and AMOS) are similar
2. The number of participants is 34, with 11 variables per participant. No missing value
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Table 2 The canonical correlations (CCs) and the weights of X and Y obtained from the conven-
tional CCA and from the SEM approach for incomplete data with a low missing values of 2/374 =
0.53%

Incomplete data set with a low missing data rate

CC 1 CC 2 CC 3 CC 4

Comparison 0.9043192 0.6146330 0.6006710 0.2170920

Conventional CCA approach (list-wise deleted 2 rows)

CCs 0.9087407 0.6219618 0.6010693 0.1897089

X weight coefficients

x1 −0.06327686 0.17569498 0.004242995 −0.188044446

x2 0.02134795 0.01551462 −0.067030627 0.001588004

x3 −0.03586083 0.15391983 0.148485233 0.109242135

x4 −0.03866504 −0.08987870 −0.082728889 0.013705469

Y weight coefficients

y1 0.001561968 0.009242501 −0.029999995 −0.012767573

y2 −0.010386245 −0.039743075 0.008410371 0.001850001

y3 0.011987609 0.002319815 −0.036737540 0.045260595

y4 0.015148173 0.003549510 −0.014191275 −0.001864996

y5 0.007087851 −0.007386586 −0.010261669 −0.016143496

y6 0.001289599 0.016196617 −0.002156951 −0.006530064

y7 −0.002102193 0.002134729 0.001071663 0.001353122
1SEM approach (maximum likelihood estimation)

CCs −0.908 −0.610 0.601 −0.221

X weight coefficients

x1 0.06751507 0.08217289 0.15733362 0.191548052

x2 −0.02402932 0.06672984 −0.01627857 −0.001123253

x3 0.04048745 −0.06213096 0.21458046 −0.111973065

x4 0.03687253 0.03637601 −0.12244213 −0.015435734

Y weight coefficients

y1 0.001802673 −0.0338834109 −0.004239946 −0.009487170

y2 −0.008230510 0.0250239975 −0.024062211 −0.022063925

y3 0.013328787 −0.0314414361 −0.012483106 0.034006327

y4 0.016692642 −0.0142463283 0.002086912 −0.012493371

y5 0.007160468 −0.0060517848 −0.012211561 −0.012308026

y6 0.001410465 −0.0089522936 0.014622376 −0.006871182

y7 −0.002219914 0.0002349608 0.001901922 0.002054829

The conventional CCA conducts list-wise deletion by removing 22/374 = 5.88% values
Note
1. We use the R package “Lavaan”. The results obtained from other EM software (such as Mplus,
EQS, and AMOS) are similar
2. The number of participants is 34, with 11 variables per participant. There are 2 missing values
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Table 3 The canonical correlations (CCs) and the weights of X and Y obtained from the conven-
tional CCA and from the SEM approach for incomplete data with a missing values of 15/374 =
4.01%

Incomplete data set with a medium missing data rate

CC 1 CC 2 CC 3 CC 4

Comparison 0.9043192 0.6146330 0.6006710 0.2170920

Conventional CCA approach (list-wise deleted 15 rows)

CCs 0.9149477 0.8187605 0.5383546 0.2265207

X weight coefficients

x1 −0.04392676 −0.23192330 0.12099261 0.08540134

x2 0.02505721 −0.03346917 −0.04630575 0.04324767

x3 −0.04887578 −0.08238440 0.04787394 −0.29222197

x4 −0.04661994 0.04619791 −0.07644999 0.06891641

Y weight coefficients

y1 0.001039012 0.0060461986 −0.0069094429 −0.001279544

y2 −0.015564818 0.0348745930 0.0196639634 −0.022117996

y3 0.008573322 0.0108939840 −0.0246776487 −0.043771060

y4 0.011827655 −0.0068842057 −0.0022723941 0.013402196

y5 0.006898159 0.0239773050 0.0056175616 −0.000405460

y6 0.005220909 0.0007958232 0.0191657900 −0.009592668

y7 −0.001759073 −0.0033829867 0.0001747579 0.002154686
1SEM approach (maximum likelihood estimation)

CCs 0.927 −0.680 0.518 −0.260

X weight coefficients

x1 0.06701171 0.18565004 −0.07916582 −0.258910462

x2 −0.02552725 0.05235413 0.04158887 −0.000710222

x3 0.04204198 0.05693106 −0.23114617 0.066594721

x4 0.03748437 −0.01937753 0.12101047 0.037188424

Y weight coefficients

y1 −0.002750679 −0.0261097945 0.024482275 −0.001842484

y2 0.012843298 0.0250536632 0.008895954 0.045124906

y3 −0.011470019 −0.0261439348 −0.001397013 −0.021463728

y4 −0.017037333 −0.0208146911 0.007571625 0.022986906

y5 −0.007151805 0.0044416329 0.018233471 −0.006383037

y6 −0.003264085 −0.0120543186 −0.006458153 0.002366780

y7 0.001938246 −0.0009951285 −0.002568367 −0.002137180

The conventional CCA conducts list-wise deletion by removing 165/374 = 44.12% values
Note
1. We use the R package “Lavaan”. The results obtained from other EM software (such as Mplus,
EQS, and AMOS) are similar
2. The number of participants is 34, with 11 variables per participant. There are 15 missing values
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Small-Variance Priors Can Prevent
Detecting Important Misspecifications
in Bayesian Confirmatory Factor
Analysis

Terrence D. Jorgensen, Mauricio Garnier-Villarreal,
Sunthud Pornprasermanit and Jaehoon Lee

Abstract We simulated Bayesian CFA models to investigate the power of PPP to
detect model misspecification by manipulating sample size, strongly and weakly
informative priors for nontarget parameters, degree of misspecification, and whether
data were generated and analyzed as normal or ordinal. Rejection rates indicate that
PPP lacks power to reject an inappropriate model unless priors are unrealistically
restrictive (essentially equivalent to fixing nontarget parameters to zero) and both
sample size and misspecification are quite large. We suggest researchers evaluate
global fit without priors for nontarget parameters, then search for neglected param-
eters if PPP indicates poor fit.

Keywords Structural equation modeling · Confirmatory factor analysis ·
Bayesian inference · Model evaluation · Model modification

Bayesian structural equation modeling (BSEM) has recently received substantial
attention within psychology and the social sciences as an increasingly viable alter-
native to traditional frequentist SEM techniques (MacCallum, Edwards,&Cai, 2012;
Muthén & Asparouhov, 2012; Rindskopf, 2012), such as maximum likelihood (ML)
estimation. Bayesian estimates of model parameters are based on a sampling plausi-
ble parameter values from the posterior distribution of the model parameters, which
is estimated using Markov chain Monte Carlo (MCMC) estimation (see Muthén &
Asparouhov, 2012, for details). Programs available for analyzing a BSEM include
Amos (Arbuckle, 2012), Mplus (Muthén &Muthén, 2012), and more recently the R
(R Core Team, 2018) package blavaan (Merkle & Rosseel, 2018), which utilizes the
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more general Bayesian modeling software JAGS (Plummer, 2003) and Stan (Car-
penter et al., 2017).

An important step in fitting BSEMs (or models in general) is to investigate how
well the hypothesized model can reproduce the observed data, for which posterior
predictive model checking (PPMC; Gelman, Meng, & Stern, 1996) was developed
(see Levy, 2011, for a review of PPMC specifically for BSEM). PPMC is not a
test statistic per se, but it can be based on a test statistic, such as the traditional χ2

test of exact fit derived from theML discrepancy function (although any discrepancy
measure of interest can be used, such as the SRMRfit index; Levy, 2011). PPMCuses
the samples from the joint posterior distribution to check data–model correspondence
by comparing observed data to expected data. For the sampled parameters at one
iteration of a Markov chain (after the burn-in iterations), a random sample of N
observations is simulated from the population with those parameters. The simulated
sample’s sufficient statistics (means and covariances) are calculated and compared
(using theMLdiscrepancy function)with the sufficient statistics implied by themodel
parameters drawn from the posterior distribution at that iteration; likewise, the same
discrepancy is calculated comparing the sufficient statistics of the observed data to
the model-implied sufficient statistics at that iteration. This results in a discrepancy
measure both for the observed data and for the simulated data. A score of 1 is assigned
if the observed data have less discrepancy (i.e., fit better) than the simulated data;
otherwise, a score of 0 is assigned—this score can be considered as a Bernoulli
random variable. These binary numbers are averaged across all iterations sampled
from the posterior distribution. The average is referred to as the posterior predictive
p value (PPP).

Naturally, themodel should fit well to the simulated data at every iteration because
simulated data are drawn from those population parameters. If the hypothesized
model is an appropriate approximation of the population process from which the
real data was sampled, then the model should fit the real data often, too. On average,
an appropriate model will fit the real data better than the simulated data about as
often as the other way around, so the mean of this Bernoulli random variable is
50%, the expected value of PPP when the target model is approximately correct. The
probability will decrease as the appropriateness of the hypothesized model decreases
in its ability to explain the phenomena under investigation. That is, if the model is
grossly inappropriate, the model will continue to fit well to the simulated data drawn
from those population parameters, but it will rarely fit well to the real data, so the
expected value of PPP will approach 0%.

There is no theoretical cutoff for how low PPP must be to indicate unignorable
misfit, nor is there a consensus about how applied users should interpret PPP (e.g.,
treat it like a frequentist p value and compare it to an alpha level, or use as a fit index).
Muthén and Asparouhov (2012) recently suggested after their initial simulations
that the traditional approach of using “posterior predictive p values of 0.10, 0.05, or
0.01 appears reasonable” (p. 315), with the caveat that further investigations were
needed to establish how these methods behave in practice with various models and
data. Depaoli (2012) already began to address that gap in a recent Monte Carlo
simulation study of PPP values in the context of growthmixture modeling, and found
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that PPP and graphical PPMC were only likely to identify extremely misspecified
growth mixture models. We use a Monte Carlo simulation study to investigate (a)
the sensitivity of PPP to varying levels of misspecification in confirmatory factor
analysis (CFA) models, as well as (b) how consistently Muthén and Asparouhov’s
guidelines would apply across varying samples sizes and different informative priors.

1 Method

1.1 Continuous (Standard Normal) Indicators

Using the MONTECARLO command in Mplus (version 6.11 for Linux; Muthén &
Muthén, 2002), we simulated a two-factor CFA with three indicators per factor. In
each of the four populationmodels, factors were standard normal (μ = 0, σ = 1), with
a factor correlation = 0.25, factor loadings = 0.70, indicator intercepts = 0.0, and
indicator residual variances= 0.51; thus, indicators had unit variance. To vary levels
of misspecification of the analysis model, the third indicator of the first factor was
specified to have a cross-loading on the second factor (λ32) in the population. The
magnitude of λ32 was 0.0, 0.2, 0.5, or 0.7 in the population, but was constrained to be
close to zero in the analysismodel using informative priors. For ease of interpretation,
we refer to λ32 = 0.2 as minor misspecification (using α = 0.05, the ML χ2 test has
80% power when N > 500, RMSEA = 0.06, SRMR = 0.03, CFI = 0.98), λ32 = 0.5
as severe misspecification (80% power when N > 150, RMSEA = 0.12, SRMR =
0.07, CFI = 0.92), and λ32 = 0.7 as very severe misspecification (80% power when
N > 100, RMSEA = 0.14, SRMR = 0.07, CFI = 0.89).

In the analysis model, we specified noninformative priors for all target parame-
ters (primary loadings, residual variances, and the factor covariance) using Mplus
defaults—for example, factor loadings ~N(μ = 0, σ2 = “infinity”). For all cross-
loadings, we specified normally distributed priors with four levels of informative
variance, chosen to correspond approximately with the prior belief in a 95% prob-
ability that the cross-loadings are within approximately ±0.01, ±0.10, ±0.20, or
±0.30 of zero (i.e., σ = 0.005, 0.05, 0.10, and 0.15, or equivalently σ2 = 0.000025,
0.0025, 0.01, and 0.0225). In each condition, sample sizes of N = 50–500 were
drawn in increments of 25, along with an asymptotic condition of N = 1000. We
drew 200 samples from each of 320 conditions (20 sample sizes, four levels of CL,
and four prior variances) with normally distributed indicators.

Following Muthén and Asparouhov’s (2012) advice, we kept 100,000 iterations
from the MCMC chains after thinning every 100th iteration. Over 99% of models
converged on a proper solution, yielding 63,480 (out of 64,000) PPP values for
analysis. Convergence in each condition was at least 98% except when sample size
was small (N < 100) and CL was large (λ32 > 0.5). The smallest convergence rate
was 82% (N = 50, λ32 = 0.7).
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1.2 Categorical Indicators

Because behavioral data are so often measured using discrete scales rather than truly
continuous data, we also simulated binary and ordinal data. Rhemtulla, Brosseau-
Liard, and Savalei’s (2012) simulation results suggest that when ordinal variables
have at least five categories, robust estimation methods for nonnormal data provide
similar conclusions as estimation for categorical data. For few categories, we were
interested in how PPP and constrained nontarget parameters would be affected by the
data distribution. Thus, we manipulated the same conditions as for normal indicators
described above, but we additionally varied the number of categories (from two to
five) and how the data were analyzed (appropriately as ordinal or inappropriately as
normal). Thresholds were not manipulated, but were chosen to mimic a unimodal
symmetric distribution: 0 for binary; ± 0.8 for three categories; −1, 0, and 1 for four
categories; and −1.6, −0.8, 0.8, and 1.6 for five categories. Whereas 100% of the
models converged when the indicators were analyzed as ordinal, when the indicators
were analyzed as normal, convergence rates were 94.78, 97.34, 98.45, and 98.13%
for 2, 3, 4, and 5 categories, respectively.

2 Results

For each model, we investigate the sampling variability of PPP across conditions,
and calculate power and Type I error1 rates using traditional cutoff values (α = 0.10,
0.05, or 0.01) for PPP to identify “significant” misfit.

2.1 Sampling Variability of PPP

Table 1 shows the effect sizes for each model under investigation. Using Cohen’s
(1988) criteria for interpreting the size of η2 (negligible < 0.01 < small < 0.06 <mod-
erate < 0.14 < large), N had a negligible effect on PPP when normal or ordinal data
were analyzed assuming normality, but N explained 4% of variance in PPP when
data were analyzed as ordinal. PPP values were largely influenced by the magnitude
of the neglected cross-loading (CL), but much more so for normal data (η2 = 34.2%)
than for categorical data analyzed as normal (η2 = 17.1%) or as ordinal (η2 = 18%).
The magnitude of prior variance for estimating nontarget CLs had a large effect on
PPP when normal (η2 = 22.1%) or categorical (η2 = 20.9%) data were analyzed as
normal, but only a moderate effect when categorical data were analyzed as ordinal
(η2 = 7%). When categorical data were analyzed as ordinal, the number of cate-

1We use the term “Type I error” when referring to any model that does not omit a substantial param-
eter, although in the categorical data conditions, the model contains another type of misspecification
(incorrect likelihood) when analyzed as though the data were normally distributed.
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Table 1 Proportions of variance (η2) of PPP explained by Monte Carlo factors

How data were generated (and analyzed)

Normal data (as
normal)

Categorical data (as
normal)

Categorical data (as
ordinal)

N 0.002 0.001 0.040

Prior variance 0.221 0.209 0.070

Misfit 0.343 0.171 0.180

Number of categories
(#CAT)

0.019 0.072

N × Prior 0.014 0.024 0.018

N × Misfit 0.002 0.003 0.021

Prior × Misfit 0.103 0.096 0.023

N × #CAT 0.000 0.001

Prior × #CAT 0.010 0.008

Misfit × #CAT 0.013 0.017

N × Prior × Misfit 0.009 0.010 0.012

N × Prior × #CAT 0.001 0.001

N × Misfit × #CAT 0.000 0.001

Prior × Misfit ×
#CAT

0.008 0.003

N × Prior × Misfit ×
#CAT

0.002 0.001

NoteMedium and large effect sizes using Cohen’s (1988) criteria (i.e., effect explains at least 6% of
variance) are in bold font. Data generated as continuous did not have varying numbers of categories,
so cells involving the #CAT effect are blank

gories also had a moderate effect of PPP (η2 = 7.2%). The only substantial two-way
interactions were found between prior variance and magnitude of neglected CL, for
normal data (η2 = 10.3%) and for categorical data analyzed as normal (η2 = 9.6%).
All other interactions effects were negligible or small (η2 ≤ 4%). The effect of N in
most conditions appears approximately linear in Fig. 1 (and Figs. A1–A8 provided
in the online2 supplemental materials), so we treated N as a continuous3 covariate to
calculate η2.

Figure 1 (online supplemental material) reveals the nature of the interaction
betweenmagnitude of prior variances and of the neglected parameter (λ32) in normal-
data conditions. When λ32 = 0 (no misspecification), the average PPP value is con-
sistent with its expected value of 50%, regardless of the magnitude of prior variance.
As the magnitude of the neglected population parameter increases, the average PPP
decreases, but PPP shows more sensitivity to misspecification when prior variances
are restrictive than when only weakly informative. Figure 1 plots PPP values only

2The online supplemental materials can be retrieved at the following URL: https://osf.io/buhvg/.
3Treating N as a categorical factor showed no substantial difference in the effect sizes.

https://osf.io/buhvg/
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Fig. 1 Variability of PPP as a function of sample size, plotted separately for each condition of
prior variance and magnitude of neglected cross-loading (λ32). There is a smoothed regression line
indicating how the mean PPP changes, and the horizontal dashed line in each cell at PPP = 50%
refers to the expected value under the null hypothesis of no misfit

for the normal-data conditions, but this two-way interaction is characterized by sim-
ilar patterns in all categorical-data conditions, with the exception that PPP appears
less sensitive for two-category data, especially when analyze as ordinal (see Figures
A1–A4 in the online appendix). PPP is also less variable when categorical data have
fewer categories and are analyzed as ordinal, so PPP’s distribution resembles even
less the expected uniform [0, 1] distribution of traditional p values (Hoijtink & van
de Schoot, 2018).

2.2 Detecting Misfit

Figure 2 (and online supplemental material) plots the rejection rates for normal-data
models against N, with separate panels for each magnitude of prior variance and
misspecification. We used three different criteria for rejecting a model due to lack of
fit: PPP < 0.10, 0.05, or 0.01, to evaluate Muthén and Asparouhov’s (2012, p. 315)
suggestion. Rejection rates in the bottom row of Fig. 2 represent Type I error rates
because the model is not misspecified (i.e., λ32 = 0), whereas rejection rates in the
top two rows represent power (i.e., when λ32 = 0.5 or 0.7). Rejection rates in the
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Fig. 2 Rejection rates as a function of sample size, plotted separately across conditions of varying
priors andmagnitude of neglected cross-loading (λ32). The dashed horizontal line at 80% represents
acceptable power, and the dotted vertical line at N = 250 is for convenience when judging sample
sizes required for adequate power

row labeled “Minor Misfit” correspond to λ32 = 0.2 and could be classified as Type
I errors or power, depending on the whether the analyst wishes to test exact fit or
close fit (Browne & Cudeck, 1992). That is, a researcher might consider a neglected
cross-loading of 0.2 to be of little substantive consequence, so the analysis model
would be considered to correspond closely enough to the population model that it
should not be rejected.

Consistentwith prior research showing that PPP ismore conservative thannominal
error rates (Gelmanet al., 1996;Levy, 2011), theType I error rate is near zero in almost
every condition, much lower than nominal levels using any of the three rejection
criteria. However, power rarely exceeds 80% (a commonly preferred minimum)
unless the neglected parameter is quite large or the prior variance is quite small (or
both). Depending on the rejection criterion, power exceeds 80% when N > 200–300
when using the most restrictive priors. This suggests that with sufficient sample size,
researchers could only be confident about detecting misfit by specifying priors so
informative that their 95% confidence limits are approximately ±0.01—so strongly
informative that the model bears little practical distinction from one in which no
informative priors are specified for cross-loadings. Using more realistic informative
priors with 95% confidence limits approximately ±0.1, power only exceeded 80%
for the most severe level of misspecification (λ32 = 0.7). Perhaps most noteworthy,
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power was close to zero to detect severe misspecification (λ32 = 0.5) at any N
when using Muthén and Asparouhov’s (2012) suggested priors (95% confidence
limits approximately ±0.2). Similar results were found for categorical data (see
Figs. A9–A16), although power was even lower when data with fewer categories
were analyzed as ordinal (e.g., power remained nearly zero in all binary conditions;
see Fig. A9).

3 Discussion

The assessment of fit and detection of misspecification in SEM is no less important
in a Bayesian context than in a traditional frequentist paradigm, but tools currently
available in BSEM are few, and their behavior is largely unknown. In the conditions
we investigated, PPP lacks power unless N > 200–300, misspecification is severe,
and priors for nontarget parameters are highly (even unrealistically) restrictive. This
implies that informative priors for nontarget parameters should be chosen very care-
fully. Asparouhov, Muthén, and Morin (2015) suggested a data-driven sensitivity
analysis to choose priors that balanced detecting substantial misfit and allowing neg-
ligiblemisfit.More recently, Cain and Zhang (in press) found larger Type I error rates
with simulated 3-factor models than we did with 2-factor models, and they recom-
mended different PPP criteria for models with different numbers of indicators. This
calls into question whether any uniform cutoffs can be expected to perform con-
sistently across conditions with different data and model characteristics. Because
power to detect substantial misspecification only appears adequate when priors are
so restrictive that they are nearly equivalent to fixing the nontarget parameters to
zero, we suggest researchers simply evaluate global fit without priors for nontarget
parameters, then search for neglected parameters only if PPP indicates poor fit. But
because even minor misspecification can be detected with great power in asymptoti-
cally large samples (Hoofs, van de Schoot, Jansen, & Kant, 2018), the development
of complementary fit indices for evaluating BSEMs (similar to those used in SEM)
would be a welcome and useful addition to the researcher’s toolbox. The BRMSEA
(Hoofs et al., 2018) is the first such attempt, and it appears promising, but further
development is needed.
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Measuring the Heterogeneity
of Treatment Effects with Multilevel
Observational Data
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Abstract Multilevel latent class analysis and mixture propensity score models have
been implemented to account for heterogeneous selectionmechanisms and for proper
causal inference with observational multilevel data (Kim & Steiner in Quantitative
Psychology Research. Springer, Cham, pp. 293–306, 2015). The scenarios imply the
existence of multiple selection classes, and if class membership is unknown, homo-
geneous classes can be usually identified via multilevel logistic latent class mod-
els. Although latent class random-effects logistic models are frequently used, linear
models and fixed-effects models can be alternatives for identifying multiple selec-
tion classes and estimating class-specific treatment effects (Kim&Suk in Specifying
Multilevel Mixture Models in Propensity Score Analysis. International Meeting of
Psychometric Society, New York, 2018). Using the Korea TIMSS 2015 eighth-grade
student data, this study examined the potentially heterogeneous treatment effects of
private science lessons by inspecting multiple selection classes (e.g., different moti-
vations to receive the lessons) using four types of selection models: random-effects
logistic, random-effects linear, fixed-effects logistic, and fixed-effects linear mod-
els. Implications of identifying selection classes in casual inference with multilevel
assessment data are discussed.
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1 Heterogeneous Treatment Effects in Assessment Data

Measuring causal treatment effects has been studied extensively both in random-
ized control trials and observational studies. The term “treatment” came from early
experiments in the fields of agriculture and medicine, and is now widely used
in different fields of natural and social sciences, including education, psychol-
ogy, economics, and political science. A treatment (e.g., therapy, private tutor-
ing) is provided to some units, called a treated/treatment group, but not others,
called an untreated/control/comparison group (Holland, 1986; Imai, King, & Stuart,
2008). In the randomized experimental design, treatment assignment is controlled by
researchers. This means that there is no treatment selection bias in the design if treat-
ment assignment is implemented in a proper way. However, in observational studies,
treatment selection is determined by factors beyond researchers’ control—why did
some students receive the treatment and not others? Does the treated group have any
systematic difference from the untreated group?This selection bias is a main obstacle
to estimating treatment effects (e.g., difference in outcome between the treated group
and untreated group). To remove the selection bias, we can use propensity score (PS)
analysis; PS is one of the balancing scores that allow the conditional distribution of
observed covariates to be identical for treated and untreated groups (Rosenbaum &
Rubin, 1983). PS is defined as a unit’s conditional probability of belonging to the
treatment group given observed covariates, and it is estimated most commonly in
logistic regression models.

Discovering heterogeneous treatment effects has been necessary when subpopu-
lations have differential gains after receiving a treatment in observational assessment
data. Treatment effects may differ from individual to individual and from subgroup
to subgroup. In case we suspect heterogeneous treatment effects, a small sample
size may hinder the estimation of treatment effect heterogeneity (Wager & Athey,
2018). However, large-scale assessment data, such as the National Assessment of
Educational Progress (NAEP), the Program for International Student Assessment
(PISA), and the Trends in International Mathematics and Science Study (TIMSS),
tends to come with large sample sizes, so sample size may not be an obstacle to
exploring treatment effect heterogeneity. Another obstacle to the estimation of het-
erogeneous treatment effects in assessment data comes from the heterogeneity of
treatment selection bias. Since treatment selection in observational assessment data
is not random and could be heterogeneous, we need to eliminate selection bias that
could vary depending on subpopulations (Kim & Steiner, 2015). For example, stu-
dents in some schools receive the treatment of private lessons because they easily
have access to the lessons, whereas students in other schools receive them mainly
due to the poor quality of school lessons. These distinct selection scenarios imply the
existence of multiple selection groups and produce heterogeneous treatment effects.
Furthermore, when assessment data has clustered structures, it requires additional
corrections to accurately remove the selection bias. In a way, mixture multilevel PS
models allow us to account for both heterogeneity and intra-cluster correlation.
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To capture the heterogeneity of average treatment effects (ATE) using multilevel
assessment data, multilevel PS matching techniques have gained popularity (e.g.,
Kim&Suk, 2018; Leite, 2016).Whenwe suspect heterogeneous selection processes,
we can apply within-class matching (Kim & Steiner, 2015; Kim, Steiner, & Lim,
2016), which requires matches (between the treated group and untreated group)
across clusters but within homogeneous groups of clusters, referred to as “classes.”
When the class membership is unknown (e.g., unknown selection groups of private
lessons), unknown classes can be identified via finitemixturemodeling (Clogg, 1995;
McLachlan & Peel, 2000) where a latent class random-effects logistic regression
model is commonly used (Kim & Steiner, 2015).

A few studies explored alternative models besides latent class random-effects
logistic regression models, in order to improve the quality of classification and esti-
mate unbiased, heterogeneous treatment effects (e.g., Kim& Suk, 2018; Suk &Kim,
2018). When using within-class matching, the choice of Level-1 model (e.g., logistic
vs. linear) and Level-2 model (e.g., random effects vs. fixed effects) may influence
the estimation of heterogeneous treatment effects through a series of analysis proce-
dures (e.g., extraction of the number of latent classes, classification, ATE estimation).
Therefore, to demonstrate, this study investigated heterogeneous treatment effects,
particularly the effects of private science lessons, with the Korea TIMSS 2015 data
by using different multilevel mixture selection models, where a latent class random-
effects logistic model is the baseline.

2 Multilevel Mixture Selection Models in Propensity Score
Analysis

Multilevel PS matching techniques can be explained using a multilevel matching
continuum. The two extremes of the continuum are within-cluster matching and
across-cluster matching. Within-cluster matching requires matches between treated
and untreated units for each cluster separately, while across-clustermatching requires
matches for all clusters at once (Hong & Raudenbush, 2006). With sufficient overlap
of PS within clusters, within-cluster matching would be suitable, while without suffi-
cient overlap, across-cluster matching can be used. However, pooling all the clusters
may be harmful if distinctive selection processes exist across clusters.

As a continuum between the two extremes, Kim and Steiner (2015) proposed
within-class matching, incorporating the advantages of within-cluster matching and
across-cluster matching and remedying their shortcomings. The basic idea is to iden-
tify homogeneous groups of clusters regarding the selection model and to pool units
across clusters but within homogeneous groups of clusters or “classes.” If member-
ship is known, we use manifest classes (e.g., types, regions), and if membership is
unknown, we can identify homogeneous latent classes using mixture modeling (Kim
et al., 2016).
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Within-class matching strategy gains three obvious advantages against within-
cluster and across-cluster matching. First, the selection processes become more
homogeneous within classes than across all clusters; therefore, it is better to cap-
ture the heterogeneity of the true selection models by using the class-specific PS
model specifications. Second, more overlap of PS can be achieved within homoge-
neous classes than within clusters because within-class matching can find matches
across clusters that belong to the same class. Third, we can directly examine het-
erogeneous treatment effects depending on heterogeneous selection classes because
distinctive selection mechanisms may lead to treatment effect heterogeneity (Kim
et al., 2016).

It is true that latent classes can be identified at either the cluster level or individ-
ual level. When we classify clusters into classes, called cluster-level classification,
strictly nested structures are formed in data: individuals nestedwithin clusters, nested
within classes. We can also classify individuals into classes, called individual-level
classification. The model specification of individual-level classification changes as
clusters are unlikely to be nested within classes and individuals of each cluster can
belong to different classes. The multilevel mixture approach for cluster-level and
individual-level classifications requires different assumptions and modeling. This
paper centers on cluster-level classification where clusters are strictly nested within
classes (Kim et al., 2016).

Whenwe do cluster-level classification using a latent class random-effects logistic
model as a selection model, the model can be written as follows:

logit
(
πi js

) = αs + X ′
i jsβ js + W ′

jsγs + XW ′
i jsδ js + Tjs (1)

where i = 1, . . . , n js , j = 1, . . . , Ms , s = 1, 2 denote individual, cluster, and
class, respectively; πi js is the propensity of belonging to the treatment group for
an individual i in cluster j in class s; Xi js , Wjs , and XWi js are individual-level
covariates, cluster-level covariates, and their cross-level interactions, respectively;
Tjs are random effects for cluster j; αs are class-specific intercepts; β js , γs and
δ js are class-specific individual-level regression coefficients, cluster-level regression
coefficients, and interaction coefficients, respectively.

Recently, alternatives to random-effects logistic models have been explored in
multilevel mixture selection models (Suk & Kim, 2018; Kim & Suk, 2018). These
two studies provided evidence that, through simulation studies, linear regression
models determined the number of latent classes more accurately than logistic models
did. Extracting latent classes correctly is very important when using the within-
class matching strategy, because treatment effects based on incorrectly extracted
subpopulations are unlikely to be informative. Kim and Suk (2018) also revealed
that fixed-effects models outperformed random-effects logistic models regarding the
unbiased estimation of ATE with a small cluster size of 20 on average. These results
indicate that although random-effects logistic models have been used as a common
extension of logistic regression with multilevel-structured data, alternative models
produce different benefits depending on the specific conditions of given data. For
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real data study with unknown selectionmechanisms, specifying different models and
comparing results are of help to assess the validity of assumptions and reinforce our
inference.

3 TIMSS Data Analysis: The Effects of Private Science
Lessons

This current study investigated the heterogeneity of theATEof private science lessons
on students’ science achievement scores with TIMSS data. To demonstrate, we com-
pared three alternatives—random-effects linear, fixed-effects logistic, fixed-effects
linear—with random-effects logisticmodels formultilevel mixture selectionmodels.

3.1 Korea TIMSS 2015 Data

TIMSS, sponsored by the International Association for the Evaluation of Educational
Achievement (IEA), is an educational international study investigating students’
achievement progresses in mathematics and science. TIMSS has been conducted
for students at Grades 4 and 8, every four years, since 1995 first administered the
test to more than 40 countries. The most recent TIMSS data were collected in 2015
across more than 60 countries and other education systems. The data are from a
two-stage stratified cluster sample. Specifically, schools were selected first given
important demographic variables (e.g., in Korea, their location and/or their gender
type), and then one or more intact classrooms were randomly selected within each
school (Martin, Mullis, & Hooper, 2016).

Using Korea TIMSS 2015 data of 8th graders, we examined the heterogeneous
effects of private science lessons for selection classes across schools since we sus-
pected different selection processes. The data included 5309 students from 150 mid-
dle schools where the school sizes varied and the minimum number of students
amounted to only six (a range of 6–75; mean 35.4; median 32). We deleted cases of
students who gave inconsistent responses regarding their attendance of private sci-
ence lessons and who had missing values in 12 covariates used in selection models:
six student-level covariates and six school-level covariates. Student-level covariates
included the sex of students (Male), their fathers’ highest education level (Dad.edu,
with three levels of no college graduates, college graduates, and no idea), the num-
ber of books at home (Books25, with two levels of greater than 25, and less than
or equal to 25), the number of home study supports (Home.spprt, with three levels
of 0, 1, and 2), students’ confidence in science (Stu.conf.sci), and value in science
(Value.sci). School-level covariates included school type by gender (Gender.type,
with three levels of all-boys, all-girls, co-education), the percentage of economically
disadvantaged students (Pct.disad, with four levels of 0–10%, 11–25%, 26–50% and
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more than 50%), the area of school location (City.size, with four levels of urban,
suburban, medium size city, and small town), school emphasis on academic suc-
cess (Aca.emph), instruction affected by science resource shortage (Res.short), and
school discipline problems (Dscpn). As a result, the final sample was 4875 students
(91.8% of the initial) from 149 schools.

3.2 Methods

With the average school size being 35, it is hard to achieve sufficient overlap within
clusters for capturing the distinctive effects within schools. Therefore, we applied
within-class matching to estimate the heterogeneous effects depending on homoge-
neous selection classes via four types of multilevel latent class modeling: random-
effects logistic (RE LOGIT), random-effects linear (RE LINEAR), fixed-effects
logistic (FE LOGIT), and fixed-effects linear models (FE LINEAR).

We compared four estimation models regarding the extraction of latent classes,
classification, and the performance of ATE estimates. Among a variety of PS tech-
niques (e.g., matching, stratification, inverse-propensity weighting), we applied the
marginal mean weighting through stratification (MMW-S), suggested by Hong and
Hong (2009). Because some of the predicted values from linear probability models
were outside the range of (0, 1), inverse-propensity weighting could not be applied
in those cases. Instead, stratification techniques can be used due to the robustness to
nonsense prediction. Therefore, we usedMMW-S as our balancing score adjustment
in this study.

The model specification of RE LOGIT is the same as in the data generating model
in Eq. (1), and RE LINEAR’s specification is as follows:

RE LINEAR: Zi js = αs + X ′
i jsβ js + W ′

jsγ js + Tjs + εi js (2)

where εi js are random errors for an individual i in cluster j in class s, and other
notations are the same as in Eq. (1).

FE LOGIT and FE LINEAR specifications are:

FE LOGIT: logit
(
πi js

) = αs + X ′
i jsβ js + D′

jsγs + Tjs (3)

FE LINEAR: Zi js = αs + X ′
i jsβ js + D′

jsγs + Tjs + εi js (4)

where Djs is a dummy variable for each cluster j > 1 (omitting the last cluster because
of singularity), and there are no level-2 covariates,Wjs . Other notations are the same
with Eqs. (1) and (2).

To extract the optimal number of latent classes, we compared the model fit indices
(here, Akaike information criterion; AIC) by increasing the number of latent classes
in each multilevel mixture selection model. We used Mplus8 (Muthén & Muthén,
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1998–2017) and R with the flexmix package to identify latent classes, and with the
lme4 package to estimate class-specific balancing scores via four selection models.
To check covariate balance, as a rule of thumb, we considered absolute standardized
mean differences (between the treated and control groups) smaller than 0.1 standard
deviations (SD) and variance ratios greater than 4/5 and smaller than 5/4 as good
balance for each covariate (Steiner & Cook, 2013).

We used the first plausible value of science achievement scores as our outcome
variable, as the purposeof this paperwas to applywithin-classmatchingwith different
multilevel mixture selection models in practice rather than to interpret the estimates
of parameters. Much more care would be required regarding plausible values, final
sampleweights, and replicate weights to interpret descriptive statistics and parameter
estimates (Martin et al., 2016).

3.3 Applications of Multilevel Mixture Selection Models

After checking the optimal number of latent classes using four different models, one
homogeneous model was preferred over multiple-class models based on FE LOGIT
andFELINEARmodels,while two-classmodelswere preferred based onRELOGIT
and RE LINEAR. Because FE models underestimated the number of latent classes
with small cluster sizes according to the simulation study of Kim and Suk (2018),
we chose two latent classes, relying more on the results of the two RE models.

Assuming the existence of two selection classes, we investigated class member-
ship across different selection models. Class sizes differed from model to model
as seen from Table 1, and consistency rates varied across models. Since we do not
know true class membership, it was hard to solve the label switching problem, but we
determined class labels of each model in a way that optimized the global consistency
across models. As a result, we found that RE LINEAR and FE LINEAR resulted
in similar class sizes, whereas the class sizes for RE LOGIT and FE LOGIT were
unevenly distributed with the first class being rather small in RE LOGIT and the
reverse being true for FE LOGIT. In addition, the class membership of FE LOGIT
was least consistent with other models’ class membership. Besides FE LOGIT, the
other three models showed around 70% consistency rates.

Table 2 summarizes the descriptive statistics of selection classes identified by the
four model approaches. Means are given for continuous variables, while proportions
are provided for binary or categorical variables. Not all covariates in the selection
models are given, and yet additional information such as math achievement scores
andmath private lessons are provided in Table 2.We found that school type by gender
(Gender.type) and the area of school location (City.size) were common variables of
which proportions were substantively different across classes within approaches.
However, there were also model-specific variables whose means (or proportions)
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Table 1 Consistency rates (%) in class membership across four models

Models RE LOGIT RE LINEAR FE LOGIT FE LINEAR

(Class
size)

Class 1
(28.2%)

Class 2
(71.8%)

Class I
(48.7%)

Class II
(51.3%)

Class A
(79.6%)

Class B
(20.4%)

Class X
(43.6%)

Class Y
(56.4%)

RE
LOGIT

72.78 46.13 72.62

RE
LIN-
EAR

53.83 68.25

FE
LOGIT

61.37

Note LOGIT and LINEAR indicate latent class logistic and linear models, respectively. RE rep-
resents random effects, and FE represents fixed effects. Artificial number/characters are given for
class names

varied depending on classes.1 Among the variables, school-level covariates such
as Pct.disad and Dscpn were different across classes in three approaches of the
four. This implies that school-level covariates are important in explaining treatment
selection heterogeneity. In addition, a few variables (Sci.ach, Math.ach, Aca.emph)
were flagged as dissimilar across classes only in FE LOGIT. This indicates that the
classes identified by FELOGIT could differ from those estimated by the othermodels
more qualitatively.

3.4 Covariate Balance Evaluation

Figure 1 displays covariate balance plots before and after balancing score adjustment
for the first class of eachmodel as well as for one homogeneous model. One homoge-
neous model assumed no subpopulations, and its PS was estimated via one class RE
LOGIT. As seen from Fig. 1, one homogeneous model had less initial imbalanced
covariates, and achieved equivalence between the treated and untreated groups in
baseline covariates after MMS-W adjustment. For the two-class approaches, initial
imbalanced covariates differed from class to class, and from model to model. After
adjusting MMS-W, the four different approaches provided good covariate balance.
FE LINEAR (far right bottom in Fig. 1) achieved covariate balance almost perfectly,
while with FE LOGIT approach, one variable was still imbalanced in terms of its
variance.

1In addition to Gender.type and City.size, model specific variables that differ between classes are
PL.sci, PL.math, and Dscpn in RE LOGIT; PL.sci, PL.math, Male, Dscpn, and Pct.disad in RE
LINEAR; Sci.ach, Math.ach, Dad.edu, Pct.disad, Aca.emph, and Res.short in FE LOGIT; Sci.ach,
Pct.disad, Res.short, and Dscpn in FE LINEAR.
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Table 2 Descriptive statistics (mean or proportion) of selection classes

Variables RE LOGIT RE LINEAR FE LOGIT FE LINEAR

Class 1 Class 2 Class I Class II Class A Class B Class X Class Y

Level-1

Sci.ach 557.70 555.99 559.14 553.93 554.63 563.66 554.32 558.13

Math.ach 608.25 605.11 609.88 602.30 603.79 614.58 603.13 608.21

Stu.conf.sci 8.61 8.64 8.72 8.56 8.62 8.68 8.62 8.65

Value.sci 8.93 8.95 8.99 8.89 8.93 9.00 8.88 8.98

PL.sci 0.42 0.29 0.42 0.23 0.33 0.31 0.37 0.28

PL.math 0.74 0.69 0.74 0.67 0.70 0.72 0.71 0.70

Male 0.52 0.49 0.55 0.45 0.49 0.52 0.49 0.50

Dad.edu

_college 0.40 0.43 0.42 0.41 0.41 0.46 0.39 0.44

_noidea 0.32 0.31 0.31 0.31 0.31 0.29 0.30 0.31

Books25 0.86 0.86 0.86 0.86 0.86 0.87 0.85 0.87

Level-2

Aca.emph 11.82 11.75 11.73 11.80 11.87 11.33 11.89 11.68

Res.short 11.17 11.10 11.14 11.10 11.07 11.31 11.04 11.17

Dscpn 10.66 11.16 10.71 11.31 11.06 10.92 11.06 11.02

Gender.type

_Girlsch 0.16 0.22 0.13 0.26 0.21 0.17 0.23 0.18

_Coedu 0.63 0.59 0.65 0.56 0.62 0.55 0.57 0.62

Pct.disad

_11–25% 0.32 0.36 0.36 0.34 0.34 0.38 0.43 0.30

_26–50% 0.24 0.25 0.22 0.28 0.28 0.10 0.28 0.23

_ > 50% 0.11 0.11 0.07 0.14 0.09 0.17 0.03 0.16

City.size

_Urban 0.39 0.36 0.39 0.35 0.36 0.41 0.26 0.44

_Subur-
ban

0.03 0.11 0.12 0.06 0.09 0.07 0.08 0.09

_Medium 0.34 0.27 0.32 0.26 0.28 0.31 0.34 0.25

Note Means are given for continuous variables, whereas proportions are provided for binary or
categorical variables. Artificial numbers/characters are given for class names
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Table 3 ATE estimates of private science lessons

Estimates RE LOGIT RE LINEAR FE LOGIT FE LINEAR

Class 1 Class 2 Class I Class II Class A Class B Class X Class Y

Prima
facie
(SE)

15.86*
(4.13)

20.76*
(2.83)

20.23*
(3.14)

16.81*
(3.62)

16.15*
(2.58)

31.52*
(5.24)

12.21*
(3.37)

26.36*
(3.21)

MMS-
W
(SE)

12.20*
(4.05)

2.19*
(2.76)

8.52*
(3.06)

2.80*
(3.51)

6.31*
(2.52)

−1.69*
(5.19)

7.05*
(3.30)

4.64*
(3.11)

Note LOGIT and LINEAR indicate latent class logistic and linear models, respectively. RE rep-
resents random effects, and FE represents fixed effects. SE indicates standard errors. MMS-W
indicates marginal mean weighting through stratification
*Indicates that coefficients are statistically significant at the 0.05

3.5 ATE Within Classes

Prima facie effects are unadjusted mean differences between the treated and control
groups. For the one homogeneous class model where we assume the homogenous
selection processes across schools, the prima facie effect amounted to 19.10 points.
After adjusting MMS-W, the effect decreased to 2.58 points, which was not signif-
icant. The one-class approach provided evidence that there was no effect of private
science lessons overall.

Table 3 summarizes class-specific ATE estimates obtained by multilevel mix-
ture modeling approaches. After estimating ATE within selection classes via four
approaches, we found the unadjusted prima facie effects were significantly positive
both in the first class of each approach and the second class of each approach. For
example, the prima facie effects amounted to 15.86 and 20.76 for Classes 1 and 2,
respectively in RE LOGIT. After MMW-S adjustment, the effect in the first class
was still significantly positive, but reduced, whereas the adjusted effect in the sec-
ond class was non-significant. Specifically, the adjusted effect of Class 1 was 12.20
points, which was significantly positive, whereas Class 2’s effect of 2.19 points was
not significant. Similar patterns were found in the other three approaches. These
results imply that our within-class matching technique was very effective in practice
to reveal distinctive effects for selection classes. Ignoring the existence of multiple
selection classes may result in producing a misleading ATE that hides much of what
goes on in subgroups.

However, the class size and class-specific treatment effects differed depending on
the estimation models; when focusing on the first class of each model, the smallest
class size for the first class, 28.2% in RE LOGIT, showed the largest estimate of
12.20 points, while the largest class size for the first class, 79.6% in FE LOGIT,
showed the smallest estimate of 6.31 points. That is, we found that as the sample size
in a positive-effects group increased, the corresponding ATE estimate decreased.
Although the details on selection classes and the heterogeneity of ATE may be
different depending on the chosen selection models, their pivotal conclusions did
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not disagree with each other: the existence of a positive effect group and no-effect
group, resulting from heterogeneous selection mechanisms.

4 Discussion and Conclusions

Wedemonstrated four types ofmultilevel mixturemodels for identifying latent selec-
tion classes and estimating PS in a case study where the TIMSS dataset was used
for examining the discovery of the heterogeneous effects of private science lessons.
More specifically, class sizes, covariate balance, and treatment effect estimates were
compared across different models using RE LOGIT as the baseline.

When using one homogeneous model that did not reflect the existence of multiple
latent classes, we found no effect of private science lessons. Thus, we might con-
clude that private science lessons were not a useful resource for students to improve
their science achievement scores on average. As the result shows, this across-cluster
matching approach is not capable of discovering both selection mechanism hetero-
geneity and treatment effect heterogeneity. On the other hand, within-class matching
with multilevel mixture selection models is effective in identifying homogeneous
selection classes and naturally examining heterogeneous treatment effects for classes.
Our multilevel mixture selection model approaches all reached the conclusion that
some students got benefits from receiving private science lessons, while the others
had no gains. We admitted that class sizes and class-specific estimates could vary
depending on selection models, but treatment effect heterogeneity of each model
could be explained by their distinctive motivation towards private science lessons of
each.

In summary, this paper addresses selection model heterogeneity and treatment
effect heterogeneity in PS analysis as a problem of subpopulations that may behave
in selection processes differently and receive benefits of a treatment differently.
The problem of selection model heterogeneity is closely associated with a prob-
lem of model specifications of latent class multilevel modeling. At present, the main
approach to addressing themodel specifications of latent class multilevel modeling is
through exploring three alternatives to the conventional RE LOGIT. Thus, our paper
accomplishes two goals. First, we provide an empirical example when within-class
matching effectively worked. Again, the within-class matching retains the advan-
tages of within-cluster and across-cluster matching and minimizes the disadvantages
of both. This within-class matching is capable of explaining what is going on in sub-
groups more informatively. Second, we provide empirical evidence for Kim and Suk
(2018)’s alternative model approaches of multilevel mixture selection models in PS
analysis by addressing the problem of model specification for within-class matching.
Using alternatives and comparing themwith a baseline are of help to the estimation of
heterogeneous treatment effects with multilevel assessment data, which is our goal.
To conclude, we offer a multilevel mixture modeling approach in PS analysis that
accounts for selection model heterogeneity and the corresponding treatment effect



Measuring the Heterogeneity of Treatment Effects … 277

heterogeneity and that can be adopted by those who wish to do causal inference with
multilevel assessment data.
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Specifying Multilevel Mixture Selection
Models in Propensity Score Analysis
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Abstract Causal inferencewith observational data is challenging, as the assignment
to treatment is often not random and people may have different reasons to receive or
to be assigned to the treatment. Moreover, the analyst may not have access to all of
the important variables and may face omitted variable bias as well as selection bias
in nonexperimental studies. It is known that fixed effects models are robust against
unobserved cluster variables while random effects models provide biased estimates
of model parameters in the presence of omitted variables. This study further investi-
gates the properties of fixed effects models as an alternative to the common random
effects models for identifying and classifying subpopulations or “latent classes”
when selection or outcome processes are heterogeneous. A recent study by Suk and
Kim (2018) found that linear probability models outperform standard logistic selec-
tion models in terms of the extraction of the correct number of latent classes, and
the authors continue to search for optimal model specifications of mixture selection
models across different conditions, such as strong and weak selection, various num-
bers of clusters and cluster sizes. It is found that fixed-effects models outperform
random effects models in terms of classifying units and estimating treatment effects
when cluster size is small.
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1 Heterogeneous Selection Processes

In multilevel observational data, treatment assignment is often not random, and treat-
ment can be implemented at different levels (e.g., school-, class-, student-level, or
time-varying treatments). Moreover, there may exist different reasons why some
receive or are assigned to treatment, implying heterogeneity in treatment selection
processes. Different motivations or selection criteria may result in different effects
even if the received treatment is the same. It is thus important to account for the
potential heterogeneity of the selection processes when making causal inferences
with observational data.

Because unadjusted mean differences contain selection bias due to non-random
assignment in addition to treatment effects, we need to remove selection bias to eval-
uate treatment effects properly. One of the most widely-used methods across various
disciplines for making causal inference in observational studies is propensity score
(PS) analysis (Rosenbaum&Rubin, 1983). A PS is a unit’s conditional probability of
receiving treatment Zi j (1 = treated vs. 0 = untreated): PS = Pr

(
Zi j = 1|X i j ,W j

)

where X i j and W j are individual-level and cluster-level covariates, respectively, in
two-level data where individual i is nested within cluster j. After a successful PS
adjustment, the conditional distribution of baseline covariates would be similar for
treated and untreated groups as in a randomized control trial.

Despite the common application of PS, removing selection bias is not straight-
forward and becomes more challenging when selection mechanisms differ across
subgroups. Kim and colleagues (Kim & Steiner, 2015; Kim, Steiner, & Lim, 2016)
presented a method to deal with heterogeneous selection processes by matching
cases within homogeneous groups that share similar selection mechanisms. These
homogeneous groups of individuals or clusters are referred to as “classes”. The class
membership might be known, for example, if the membership is related to mea-
surable variables such as regions, districts, or the adoption of particular policies or
practices. In those cases, the known class membership does not imply or require that
the actual selection processes be known, as we can estimate selection processes for
each class. For clustered data,multilevel logisticmodels are routinely used to estimate
the selection process to account for the nesting and binary selection simultaneously.
When class membership is unknown, the number and proportions of classes can be
estimated using finite mixture modeling or latent class approaches (Clogg, 1995;
McLachlan & Peel, 2000). Specifically, latent-class multilevel logistic models can
be used as selection models to identify classes, classify members, and estimate PSs.
Then treated and untreated cases are matched based on their estimated PSs. Finally,
multilevel outcome models can be fitted for each class to estimate class-specific
treatment effects (Kim & Steiner, 2015; Kim et al., 2016).

Logistic regression has predominantly been used for estimating selection models
for multilevel logistic models where the random effects of clusters are natural exten-
sions when data are clustered or nested. However, random-effects logistic models
are not always optimal or superior to alternative approaches. Simulation studies on
PS estimation with multilevel data revealed that both random-effects logistic models
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and fixed-effects logistic models are effective to estimate unbiased treatment effects
(Arpino & Mealli, 2011; Leite et al., 2015; Thoemmes & West, 2011). Recently,
Suk and Kim (2018) explored the potential of linear probability models as selection
models and compared linear models with logistic models in multilevel PS analysis
combined with heterogeneous treatment selection scenarios. They found that linear
probability models outperformed logistic models in terms of identifying the correct
number of latent classes, which is fundamental for estimating selection models and
treatment effects. The current study extends this line of research by considering
another type of model specification; that is, fixed-effects models for mixture selec-
tion models, and compares their properties with the commonly-used random effects
models in multilevel data.

2 The Rubin Causal Model and Balancing Scores

TheRubin causalmodel (Rubin, 1974)was defined in the single-level data framework
and has been extended to multilevel data (Hong & Raudenbush, 2006). In multilevel
data, for example, Yi j (1) is the potential treatment outcome if individual i in cluster
j is to be treated (Zi j = 1), while Yi j (0) is the potential control outcome if untreated
(Zi j = 0). As only one of the two potential outcomes can be observed in reality,
it is impossible to estimate an individual treatment effect τi j . However, the average
treatment effect (ATE) can be defined as follows:

τAT E = E(Yi j (1)) − E(Yi j (0)), (1)

and this average effect can be estimated under the strong ignorability assumption,
also called the conditional independence assumption, which is satisfied if all con-
founding covariates aremeasured validly and reliably, and if a conditional probability
of being in the treatment group, given observed covariates, is strictly between zero
and one (Rosenbaum&Rubin, 1983; Steiner &Cook, 2013). Under the strong ignor-
ability assumption, potential outcomes are independent of treatment assignment after
conditioning on all the confounding covariates:

(
Yi j (1),Yi j (0)

)⊥Zi j |X i j ,W j , (2)

where X i j and W j are observed level-1 and level-2 covariates, respectively.
Rosenbaum and Rubin (1983) also introduced balancing scores in a single-level

setting. A balancing score, b(X i ), is a function of observed covariates X i such that
the conditional distribution of X i given b(X i ) is identical for treated and untreated
groups; that is,

X i⊥Zi |b(Xi ). (3)
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Balancing scores can be any scores satisfying the condition in Eq. (3); they can be
covariates themselves (the finest balancing scores) or a PS (the coarsest). The PS is
the conditional probability that an individual receives the treatment and is bounded
below by zero and above by one (i.e., 0 < PS < 1). However, we use linear models
as alternatives to logistic models, and they can produce predicted values outside the
[0, 1] range, so we use balancing scores, more general forms than propensity scores,
for our linear selection models. Rosenbaum and Rubin’s balancing scores can be
extended to multilevel data:

X i jW j⊥Zi j |b
(
X i j ,W j

)
,

and we use this multilevel version of balancing scores for linear selection models.

3 Mixture Selection Models Specifications

Multilevel PS matching techniques can be explained using a multilevel matching
continuum (Kim et al., 2016). The two extremes of the continuum are within-
clustermatching and across-clustermatching.Within-clustermatching findsmatches
between treated and control units for each cluster separately, only using individual-
level covariates, whereas across-cluster matching finds matches for all clusters at
once. Althoughwithin-clustermatching has a number of important theoretical advan-
tages, such as no need to balance on cluster-level covariates andweaker identification
assumptions, the idea of localmatchingwithin each cluster is not always plausible for
real data due to the lack of overlap for some or most clusters in practice, particularly
with small cluster sample sizes or strong treatment selection.

To overcome insufficient overlap within clusters, one can “borrow” treated or
control units from other clusters, and this is the concept of across-cluster matching.
In across-cluster matching, both individual-level and cluster-level covariates affect
the selection process, and thus covariates at both levels should be measured reliably
and specified correctly in the selection model. Across-cluster matching is proper and
effective when clusters are similar to each other and have homogeneous selection
processes. However, when distinctive selection processes exist across clusters, imple-
menting across-matching implies the violation of the strong ignorability assumption
and can be misleading and detrimental (Kim, Lubanski, & Steiner, 2018).

Kim and Steiner (2015) presented a new matching technique by pooling units
within homogeneous groups of clusters or classes. If membership is known, matches
can be made by pooling units within manifest classes (e.g., types, divisions, sectors),
and if membership is unknown, homogeneous latent classes can be found using
mixture modeling. Homogeneous classes, ether known or estimated, can be defined
in both selection and outcome models. Compared to within-cluster matching, this
matching strategy is beneficial in that we can obtain larger samples for the homoge-
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neous groups, thus increasing the overlap between the treated and control units (Kim
et al., 2016).

Suk and Kim (2018) explored alternatives to logistic models as a multilevel mix-
ture selection model. They found that linear probability models extracted the num-
ber of latent classes more accurately than logistic models. As an extension of this
research, we proposed using fixed effects (FE) models for specifying level-2 models.
It is well-known that random effects (RE) are frequently incorporated into various
forms of regression models, to account for correlated responses within clusters and
multiple sources of variance. RE is efficient and frequently preferred over FE. How-
ever, the use of RE is valid if the underlying assumptions hold; one of the assumptions
is that the cluster-specific effects are not correlated with independent variables in
the model. If the RE assumption is satisfied, RE models are more efficient, whereas
when not satisfied, REmodels are not consistent (Cameron&Trivedi, 2005; Nerlove,
2005). Since Hausman’s model specification test in 1978, FE has been compared to
RE repeatedly (Gui, Meierer, & Algesheimer, 2017; Hausman & Taylor, 1981; Kim
& Frees, 2007), and this comparison is grounded on the fact that RE is more efficient
while FE is more consistent. In PS analysis, since prediction accuracy of selection
models is a priority over efficiency, it would be valuable to explore the potential of
FE in PS analysis, particularly when selection scenarios are not simple (e.g., het-
erogeneous selection processes). Therefore, this paper investigated the performance
of the two alternatives—RE linear and FE logistic models—for mixture selection
models with simulated multilevel data, by comparing them with RE logistic models
as a baseline.

Our investigation of FE models is rooted in their desirable properties against
omitted variable bias. Hausman (1978) compared FE with RE models for panel
data and developed an omitted variable test between the robust FE and efficient RE
estimators. Hausman’s test has been used and modified for the past 40 years (Gui
et al., 2017; Hausman & Taylor, 1981; Kim & Frees, 2007). The comparison is
based on the theoretical properties of the RE estimator being consistent and most
efficient in the absence of omitted confounders but unfortunately sensitive to omitted
variables. On the other hand, the FE estimator is robust against time-constant omitted
confounders but is inefficient compared to the RE estimator and thus not always
preferred, especially when model parsimony and efficiency is desired.

As prediction accuracy is a critically important quality for selectionmodels, while
efficiency and parsimony is usually not, it is reasonable and seems natural to use FE
selection models, especially when selection mechanisms are complex and heteroge-
neous. Therefore, this study examines and compares three model specifications of
mixture selection models with multilevel observational data: the common RE logis-
tic modeling is considered as the baseline, and Suk and Kim’s RE linear probability
modeling and FE logistic modeling as two alternatives to RE logistic modeling. For
FE logistic modeling, latent-class logistic models with dummy variables for clusters
are used.
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4 Simulation Design and Data Generating Model

Simulation data were generated with two selection classes in multilevel structures.
In the simulation design, a random sample of J clusters with N = n1 +n2 +· · ·+nJ

individual units was generated based on RE linear models for the outcome model
with a continuous outcome Yi j and RE logistic models for the selection model with a
binary treatment Zi j . Both models included two level-1 covariates (X1, X2) and two
level-2 covariates (W1,W2). Level-1 covariates depended on level-2 covariates in the
underlyingmodel. The first selection class, Class 1, had non-zero effects of covariates
in the selectionmodel and positive effects of the treatment in the outcomemodel. The
second selection class, Class 2, had no effects of covariates in the selectionmodel and
no treatment effects in the outcome model. Each unit’s treatment status (Zi js = 1 or
0) was randomly assigned from aBernoulli distributionwith the selection probability
πi js , Zi js ∼ Bernoulli

(
πi js

)
. The true selection probability was generated through

the following RE logistic regression model:

logit
(
πi js

) = αs + X ′
i jsβ js + W ′

jsγs + Tjs (4)

where i = 1, . . . , n js, j = 1, . . . , Ms, s = 1, 2 denote level-1 unit, cluster, and
class, respectively; πi js is the propensity of receiving a treatment for a level-1 unit
i in cluster j in class s; Xi js and Wjs are level-1 covariates and level-2 covariates,
respectively; Tjs are random effects for cluster j; αs are class-specific intercepts;
β js and γs are class-specific level-1 regression coefficients and level-2 regression
coefficients, respectively.

The simulation study was conducted with five factors hypothesized to influence
the performance of the estimators: (1) the estimationmodels (random-effects logistic,
random-effects linear, fixed-effects logistic models; RE LOGIT, RE LINEAR, FE
LOGIT), (2) class size (equal, unequal), (3) number of clusters (small, large), (4)
cluster size (small, medium, large) and (5) strength of selection (strong, moderate,
weak).

The first factor was the estimation model specification with RE LOGIT, RE LIN-
EAR, and FE LOGIT as the three levels of the factor. The first model RE LOGIT is
the data generating model in Eq. (4). The model specification of RE LINEAR is as
follows:

Zi js = αs + X ′
i jsβ js + W ′

jsγs + Tjs + εi js (5)

where Zi js is the treatment assignment variable for a level-1 unit i in cluster j in class
s, Zi js ∈ 0, 1 (0 = untreated; 1 = treated); εi js is the individual-specific random
effect for a level-1 unit i in cluster j in class s, and the other notations are the same
as in Eq. (4).

FE LOGIT is specified as follows:

logit
(
πi js

) = αs + X ′
i jsβ js + D′

jsγs + Tjs (6)
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where Djs is a dummyvariable for each cluster j > 1 (omitting one of cluster dummies
because of multicollinearity), and there are no level-2 covariates, Wjs . The other
notations are the same as in Eq. (4).

We identified latent classes using the Mplus8 program (Muthén & Muthén,
1998–2017) and used a “class assignment-based” algorithm to solve the label switch-
ing problem (Tueller, Drotar, & Lubke, 2011).We obtained propensity and balancing
scores estimated by RE LOGIT, RE LINEAR, and FE LOGIT using the R program
(R Core Team, 2017) with the lme4 package as follows:

In addition, we obtained the treatment effects before and after balancing score
adjustment, respectively. Particularly, as our balancing score adjustment, we applied
Hong and Hong (2009)’s marginal mean weighting through stratification.

The second factor was class size, considered at equal and unequal levels. For
the equal condition, the sample size proportions of Class 1, nC1, and Class 2, nC2,
were 50% versus 50%, while for the unequal condition, the proportions were 70%
versus 30%. The third factor was the number of clusters, nC (= nC1 + nC2), con-
sidered at levels of 50 and 100. The fourth factor was cluster size, which is the
number of level-1 units, nI. It had three levels of 20, 30, and 50 where each level
follows a normal distribution with varying mean and standard deviation: N(20, 3),
N(30, 5), and N(50, 10). The fifth factor was the strength of selection, considered at
levels of strong, moderate, and weak levels; strong selection had 70–75% average
within-cluster overlap, while moderate selection had 75–80% and weak selection
had 80–85% average within-cluster overlap, respectively.

The performance of the ATE estimates was evaluated with respect to the absolute
value of the remaining bias, simulation standard deviation (SD) and mean squared
error (MSE). For R simulation replications (r = 1,…, R), the three criteria with
estimated treatment effect θ̂r and true treatment effect τ are defined as follows:

|Bias| =
∣∣∣∣∣
1

R

R∑

r=1

θ̂r − τ

τ

∣∣∣∣∣
,

SD =
√√
√√ 1

R − 1

R∑

r=1

(
θ̂r − ¯̂

θr

)2
,

and
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MSE = 1

R

R∑

r=1

(
θ̂r − τ

)2
.

When the true treatment effect is zero (τ = 0), bias is defined by the average of
the estimated treatment effects θ̂r across the replications.

5 Simulation Results

5.1 Extraction of Latent Classes

Figure 1 summarizes extraction results under two different selection processes
(Classes 1 & 2) using the RE LOGIT, RE LINEAR, and FE LOGIT approaches.
The proportions (%) of correct extraction were calculated on the basis of Akaike
information criterion (AIC) with 200 replications. There were two types of incorrect
extraction: over-extraction and under-extraction. Over-extraction represents when
the model fit indexes favored models with more than two classes. Under-extraction
represents when the model fit indexes favored the one class model. The three panels
in Fig. 1 depict the effects of the specification of estimation model (RE LOGIT,
RE LINEAR, FE LOGIT), cluster sizes (20, 30, 50), and selection strength (Strong,
Moderate, Weak). Separate plotting points in the same color for the Strong, Moder-
ate, andWeak selection conditions within the panels represent the four combinations
of the number of clusters between two classes for each estimation model; (nC1, nC2)
= (25, 25), (35, 15), (50, 50), and (70, 30). The effects of the cluster sizes are found
in the expected direction (larger performs better), but sometimes the differences were
minimal and the results overlapped in these conditions.

One of the major findings from the simulation is that the estimation model is
the most important factor influencing the extraction of the correct number of latent
classes; RE LINEAR outperformed the baseline RE LOGIT in terms of extraction
across the simulation conditions in the study. FE LOGIT showed under-extraction
in most conditions, especially with small cluster sizes or weak selection. Only when
the cluster size is 50 and the selection is strong, FE LOGIT extracted the correct
number of latent classes. We also found that the proportions of correct extraction
were generally higher in the strong selection condition than in the weak selection
condition, but the effects of the strength of selection and cluster sizes were not always
consistent, suggestingmoderating effects among the five factors.Whereas FELOGIT
frequently under-extracted the number of latent classes, RE LOGIT was incorrect in
the opposite direction and showed a tendency to over-extract the number of latent
classes. Therefore, among the three estimation models, RE LINEAR appears to be
the best option regarding class extraction and shows more consistent performance
than the other models with over 80% correct extraction in many and over 90% in
some conditions. The proportion of correct extraction for RE LINEARwas as low as
only 50% when selection is weak, the number of individuals within cluster is small
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Fig. 1 Extraction accuracy in various combinations of estimation models, selection strength, and
cluster sizes

(cluster size = nI = 20), and the number of clusters is no more than 25 per class
and 50 in total (nC = nC1 + nC2 = 25 + 25 = 50). Even in this condition, RE
LINEAR performed better than RE LOGIT and FE LOGIT, indicating that correct
class extraction is difficult when selection is weak and cluster size is small.

We also found that, cluster size (# level-1 units) and the number of clusters (#
level-2 units) have an interaction effect on class extraction; while the two factors
do not affect each other clearly when the number of clusters is relatively small
(nC = 50), large cluster sizes result in over-extraction of latent classes when the
number of clusters is large (nC = 100). Although over-extraction of latent classes
with large samples is not an ideal character of selection models, having multiple
latent classes with similar selection processes is generally less problematic than an
inability to identify distinctive selection processes with respect to understanding
causal mechanism.

5.2 Classification of Units into Latent Classes

Figure 2 summarizes the proportions (%) of correct classification with 100 replica-
tions, where correct classification implies cluster membership was accurately esti-
mated using latent class models by the highest posterior probabilities. As a correct
classification cannot be made with an incorrect number of latent classes, we only
considered cases where the extraction of two latent classes was achieved first.

We found that the differences among the three estimation models were relatively
small with respect to classification compared to the large variation in class extraction
in Fig. 1. Although the main effect of the estimation models was insignificant, we
found interesting interaction effects between themodels and the other factors. Specif-
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Fig. 2 Classification accuracy in various combinations of estimation models, selection strength,
and cluster sizes

ically, FE LOGIT was more accurate than the baseline RE LOGIT in classification
when class sizes were unequal (70% vs. 30%). Moreover, the difference between FE
LOGIT and RE LOGIT with unequal class sizes became greater in smaller cluster
sizes, indicating the choice of the estimation model is especially important when the
sizes of subpopulations are not similar, and cluster sizes are small.

Clear patterns in Fig. 2 demonstrate that correct classification is largely affected by
the strength of selection and cluster sizes. Classificationwasmost accurate, over 95%,
with strong selection and large cluster size (50). Proportions of correct classification
were 80%or higher across conditions except when the selectionwasweak and cluster
size is not large (20 or 30). It is understandable that classification is more difficult
when selection is weak and the characteristics of the two classes are rather similar,
as in a mixture normal distribution with a large overlap in the middle. In this case,
identifying two heterogeneous subpopulations is not as critical compared to two
classes with vastly different characteristics, supporting this ideal property of latent
class models.

5.3 Estimation of Average Treatment Effects

Figure 3 summarizes the results of ATE estimation after balancing score adjustment
in Class 1, where the selection is not random and the true treatment effect is positive.
To make the comparisons across the conditions interpretable, the results are based
on 100 replications where the number of latent classes, two, is correctly identified.
As expected, balancing score adjustment removed most bias when the cluster size is
large, selection is weak, and the number of clusters is large. In comparing the three
estimation models, RE LINEAR performed similarly to or better than the baseline
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Fig. 3 The bias, SD, and MSE of the average treatment effect (ATE) estimates in various combi-
nations of estimation models, selection strength, and cluster sizes

RELOGIT in terms of bias removal across the simulation conditions. It is noteworthy
that FE LOGIT removed more bias than RE LOGIT in most conditions, particularly
so in the (1) small cluster size and (2) large cluster size combinedwith weak selection
conditions.

The SD and MSE decreased as sample size increased at varying degrees. The
biggest difference was found in the cluster sizes between 20 and 30, while the dif-
ference was rather small between 30 and 50. The number of clusters also affected
SD and MSE, and RE LOGIT showed much larger MSE than the others when the
number of clusters and cluster size were both small. FE LOGIT had smallest bias,
SD, and MSE in most conditions. The effects of class proportions and the number
of clusters were found to be minimal when the cluster size reached 50. These results
imply that RE LOGIT needs a large sample size to obtain unbiased ATE estimates
with high precision, compared to the other models we examined, RE LINEAR and
FE LOGIT. With small numbers of clusters and individuals in particular, FE LOGIT
can be an effective alternative to the standard RE LOGIT in removing selection bias.
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6 Conclusions

We investigated the properties of three model specifications for multilevel mixture
selection models and compared their relative performances across plausible settings
in practice. Although random-effects logistic models (RE LOGIT) are routinely used
in multilevel PS analysis, their popularity does not guarantee that RE LOGIT is an
optimal choice. Our simulation study supports the main finding by Suk and Kim
(2018) in that RE LOGIT tends to overestimate the number of latent classes, and
linear probability models at level 1 (RE LINEAR) exhibit greater consistency and
accuracy in terms of class extraction than RE LOGIT. Incorrect identification of
latent classes is a critical issue for within-class matching strategies, because the
further analyses of PS adjustment and ATE estimation are greatly affected by class
extraction.

This study also emphasizes the properties of fixed-effects specification of clusters
at level 2 (FE LOGIT) and found that FE LOGIT classifies units correctly more
often than RE LOGIT when class sizes were unequal and cluster sizes are small.
Differences among RE LOGIT, RE LINEAR, and FE LOGIT were small with large
cluster sizes. The choice of the selection model also affects the ATE estimation,
the ultimate goal of PSA. We found that RE LOGIT requires large sample sizes to
estimate unbiased ATE with small MSE, and is more sensitive to small sample sizes
than the other models. On the other hand, FE LOGIT showed small remaining bias
and MSE with small numbers of clusters and cluster sizes.

In conclusion, althoughRELOGIT has been used as a natural extension of logistic
regression for multilevel data, we can consider other approaches given the specific
conditions of the data, such as heterogeneous selection or outcome processes, known
or unknownhomogenous groupmemberships, relative sizes of latent classes, strength
of selection, the number of clusters, and cluster sizes.Wecan also use differentmodels
for the different steps of PSA; for example, RE LINEAR for class extraction and FE
LOGIT for classification of units as different specifications have specific strengths.
Finally, for real data analysis where the true selection mechanism is unknown, we
can implement several specifications of models to compare their results, evaluate
the validity of assumptions, and strengthen our inferences. For an empirical exam-
ple of applying different multilevel mixture selection models to identify potentially
heterogeneous ATEs, we refer to Suk and Kim in this volume.
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The Effect of Using Principal
Components to Create Plausible Values

Tom Benton

Abstract In all large scale educational surveys such as PISA and TIMSS the dis-
tribution of student abilities is estimated using the method of plausible values. This
method treats student abilities within each country as missing variables that should
be imputed based upon both student responses to cognitive items and a condition-
ing model using background information from questionnaires. Previous research has
shown that, in contrast to creating single estimates of ability for each individual stu-
dent, this technique will lead to unbiased population parameters in any subsequent
analyses, provided the conditioning model is correctly specified (Wu in Studies in
Educational Evaluation 31:114–128, 2005). More recent research has shown that,
even if the conditioning model is incorrectly specified, the approach will provide a
good approximation to population parameters as long as sufficient cognitive items
are answered by each student (Marsman, Maris, Bechger, & Glas in Psychometrika
81:274–289, 2016). However, given the very large amount of background informa-
tion collected in studies such as PISA, background variables are not all individually
included in the conditioning model, and a smaller number of principal components
are used instead. Furthermore, since no individual student answers cognitive items
from every dimension of ability, we cannot rely on sufficient items having been
answered to ignore possible resulting misspecification in the conditioning model.
This article uses a simple simulation to illustrate how relying upon principal compo-
nents within the conditioning model could potentially lead to bias in later estimates.
A real example of this issue is provided based upon analysis of regional differences
in performance in PISA 2015 within the UK.
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1 Introduction

The Programme for International Student Assessment (PISA) is an international
survey run once every three years since 2000 by the Organization for Economic Co-
operation and Development (OECD). It aims to evaluate education systems around
the world by testing the skills and knowledge of 15-year-old students. Detailed infor-
mation on the methodology used within the latest PISA study (PISA 2015) is given
in OECD (2017). This paper will focus upon one particularly part of the methodol-
ogy—the use of plausible values.

Within each PISA study, across a number of different countries, samples of stu-
dents attempt to answer sets of items testing their skills in math, reading and sci-
ence. This allows a comparison of student abilities on a common basis across differ-
ent countries. In the PISA data sets, estimates of students’ abilities, based on their
responses to the cognitive items, are recorded in the form of plausible values.

Plausible values are used within PISA, as well as other international surveys such
as PIRLS and TIMSS, to overcome the ubiquitous problem of measurement error
in educational assessments (Laukaityte & Wiberg, 2017). Measurement error in this
context refers to the fact that the performance of individuals can vary depending upon
the precise selection of items to which they are asked to respond. Whilst this type of
variation is acknowledged in educational research, often it is not formally accounted
for. In contrast, within international surveys, through the use of plausible values,
all published estimates of the distributions of abilities within different subgroups of
students are designed to have fully accounted for the possible influence of measure-
ment error. Failing to account for measurement error can lead to underestimating the
size of the differences between different subgroups (Von Davier, Gonzalez, & Mis-
levy, 2009). With this and several other technical considerations in mind, it has been
asserted that the use of plausible values remains “the state-of-the-art for secondary
analyses” of the PISA databases (Braun & Von Davier, 2017).

The motivation for this research came from finding a clash between the optimism
of the technical research cited above and some confusing results found in practice
during secondary analysis of the PISA 2015 data in the UK. The beginnings of
this concern are illustrated in Fig. 1. This figure, which was produced by collating
information from Jerrim andShure (2016a) and Jerrim andShure (2016b), shows how
the difference between top performers in reading (i.e., those at the 90th percentile)
in Northern Ireland and England (two separate parts of the UK) has changed over
time.

As can be seen, Fig. 1 indicates that, whilst from 2006 to 2012 there was little
difference in the scores of top performers between England and Northern Ireland, in
2015 a large gap appeared. This could be taken as an indicator that Northern Ireland is
no longer getting the best performance out of its most able students. Similar results
were found for both math and science (Jerrim & Shure, 2016b, pp. 52 and 88).
Although not shown here, the published results also seemed to indicate that amongst
the lowest performers (i.e., those at the 10th percentile) Northern Ireland’s scores
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Fig. 1 The 90th percentile of reading scores in England and Northern Ireland between 2006 and
2015. Error bars indicate 95% confidence intervals for each estimate

Fig. 2 Comparing distributions of reading ability between England and Northern Ireland using the
official plausible values and using unidimensional EAP estimates

had substantially increased between 2009 and 2015 (Jerrim & Shure, 2016b pp. 55,
91 and 107).

Another way to illustrate this same issue is in Fig. 2. As can be seen, the official
PISA plausible values (the left-hand side) suggested that the distribution of reading
ability is narrower in Northern Ireland than it is in England. However, if single ability
estimates are calculated for each student based purely upon their performance on the
reading items (EAP estimates), no major difference in the spread of ability can be
seen between England and Northern Ireland.

Of course, these results do not prove that the official plausible values are incor-
rect. As discussed, existing technical literature provides good reasons why plausible
values are used rather than simple individual estimates of ability for each student.
Nonetheless, it was of interest to investigate the source of the discrepancy.
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The aim of this paper is to investigate how differences in results derived from
plausible values and those derived from point estimates of student abilities, such as
those shown above,might occur in practice. The paperwill also showhow the detailed
method used to create plausible values, and the use of principal components analysis
as a data reduction technique within this process in particular, could potentially lead
to bias in parameter estimates for particular subgroups of students. For example,
it will show that the methodology could potentially produce the impression of a
reduced spread of abilities within Northern Ireland even if, in fact, none existed.

2 How Are Plausible Values Produced and Why May It Be
a Problem?

In almost all psychometric work, it is realized that a student’s ability in a partic-
ular domain is a latent trait that cannot be directly observed. That is, ability is an
unobserved missing variable. What is observed is each student’s performance in a
particular assessment. We use these observations to infer the likely location of their
ability.

At this point there are two approaches. Often, analysts create a single estimate
of each student’s ability on some scale. For example, in simple cases this might be
achieved by adding up their scores from each item in a test. In other cases, such as
computer adaptive tests, where different students attempt different sets of items, item
response theory (IRT) or Rasch analysis might be used to produce scores. Having
done this, the fact that the students might have achieved slightly differently given
a different set of items to answer (i.e., measurement error) is simply acknowledged
as a caveat and results reporting continues. In contrast, plausible values handle this
missing data problem explicitly through the process of multiple imputation. Rather
than assigning a single value to each student, several values are imputed fromamongst
the likely range of actual abilities.

In the international surveys, plausible value imputation is done using a combi-
nation of two elements: a multidimensional IRT model, and a conditioning model.
The IRT element captures the fact that the greater a student’s ability in each domain,
the greater their chances of answering items correctly. As such, information from
item scores can be used within the imputation process; students who have answered
a greater number of items correctly are likely to have higher ability values imputed.
Alongside this, a conditioning model uses latent regression to estimate the relation-
ship between a range of background factors and ability within each participating
country. The coefficients of this model are used to inform the imputation process to
ensure that later estimates of the relationship between background variables (e.g.,
student gender) and abilities are unbiased. More details of this process are given in
Wu (2005).

Very briefly, and following the notation ofWu (2005), the procedure is as follows.
First, we denote the vector of item responses toM items in a test for the ith student as
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xi = {x1i , . . . , xMi }. The vector of abilities associated with this student is denoted
as θ i . Note that if we are dealing with a unidimensional test, then θ i will be a single
number whereas, if it is multidimensional, it will be a vector. The probability of the
student’s set of item responses is given by f (xi |θ i ) = ∏

m fm(xmi |θ i ). In the case
of PISA 2015, each fm is defined according to the generalized partial credit model
(see OECD, 2015, p. 143). We denote the vector of background information about
each student, containing information such as indicators of the school they attend,
and their responses to questions in the student questionnaire, as yi . The conditional
distribution of θ i dependent upon the background data is given by the following
formula.

g(θ i

∣
∣ yi ) ∼ N

(
yTi �,�

)
(1)

In Eq. (1), � denotes a matrix of latent regression coefficients, and � denotes the
joint residual variance matrix of θ i . If we are dealing with a unidimensional test, then
� will simply be a single number (usually denoted σ 2). The number of columns of
� will be equal to the number of dimensions of the test being analyzed.

The item parameters in each item response probability function fm , and the latent
regression parameters� and� canbe estimated using amaximum likelihoodmethod.
Once this has been done, the posterior distribution of each student’s θ i vector is given
by the equation below.

h(θ i

∣
∣ yi , xi ) = f(xi |θ i )g(θ i

∣
∣ yi )

∫ f(xi |θ i )g(θ i

∣
∣yi )dθ i

(2)

Rather than calculating a single estimate of θ i for each student, the plausible
values methodology samples several values (typically 5 or 10) from this posterior
distribution. In some cases, the posterior distribution may be approximated by a
multivariate normal distribution to simplify the process of sampling plausible values
(OECD, 2017, p. 147). Procedures for producing plausible values in this way are
now included as a standard feature of many IRT software packages including the R
packages TAM (Robitzsch, Kiefer, & Wu, 2017) and mirt (Chalmers, 2012).

In the case of PISA 2015, the conditioning model aims to include a huge number
of background variables that are collected in accompanying questionnaires. Further-
more, before use in the conditioning model each of these variables is contrast coded
so that, for example, rather than including a single variable for student age, 14 vari-
ables are created denoting whether each student is below 15.25 years of age, whether
they are between 15.25 and 15.33, whether they are between 15.33 and 15.42 and so
on. In fact, if information from all PISA questionnaires is available within a country,
around 3000 indicators are included in the conditioning model.

Because, for most countries, the number of variables included in such a model
would actually be of a similar order of magnitude to the number of sampled students
in the country, the resulting coefficients would be highly unstable if the condition-
ing model were fitted directly. To address this, before applying the conditioning
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model, the thousands of indicators are condensed using principal components analy-
sis (PCA). This classical statistical technique is designed to retain as much informa-
tion as possible from the original data but using a much smaller number of variables.
That is, the full vector of background characteristics ( yi ) in Eqs. (1) and (2) is
replaced by a much shorter vector of principal component scores (t i ) and the condi-
tional distribution of θ i dependent upon the background information is estimated as
g∗(θ i |t i ) ∼ N

(
tTi �∗, �∗). In the case of PISA, the number of covariates is reduced

to a number of principal components sufficient to retain 80% of the variance in the
original full set of indicators or so that the number of retained components does not
exceed 5% of the sample size within a country (OECD, 2017, p. 182). From this
author’s attempt to recreate the process with the UK’s data, this results in the thou-
sands of background indicators being compressed down into roughly 250 principal
components.

Amongst the thousands of variables in the conditioningmodel that are compressed
by the PCA, are indicators of the school that each student attends. These variables
are of particular interest for this research study as they are the only part of the
conditioning model that indicates the region of the UK in which each student attends
school. Thus, along with all the other variables, information about whether a student
attends school in England or in Northern Ireland will not be retained directly but will
instead be condensed into the principal components.

Crucially, it should be noted that the PCA is conducted using weighted data and
based upon a covariance rather than a correlation matrix. This means that retaining
data from background indicators that are prevalent in the sample but, after weighting,
are not estimated to be prevalent in the full population will be considered a lower
priority. This distinction is important for thinking about the analysis of data from
Northern Ireland. Students from Northern Ireland are deliberately oversampled so
that whilst 2401 students from Northern Ireland participated in PISA 2015 (around
17% of the UK’s sample), using the official weights in the PISA data, Northern
Ireland’s students are only estimated to comprise 3% of the UK’s 15-year-old school
population. Thus, after weighting, an indicator variable of attendance at a particular
school in Northern Ireland will have an extremely low mean (and variance). This
fact leads to a risk that the PCA will assign little priority to retaining information
about attendance at schools withinNorthern Ireland. As such, the conditioningmodel
may end up including information about individual schools within England, but not
account for the effect of individual schools in Northern Ireland. This could, in theory,
lead to an underestimation of the variation in student abilities in Northern Ireland
as multiple imputation based upon the conditioning model essentially assumes that
such effects have somewhat been accounted for when, in fact, they have not.

The remainder of this paper comprises a simulation study to illustrate this possible
effect and empirical analysis showing the difference it makes to Northern Ireland’s
results if the principal components step in creating plausible values is avoided. Note
that, prior to PISA 2015, school IDs were explicitly included in the conditioning
model without being preprocessed using PCA (OECD, 2014, p. 157). Thus, the
findings in this paper do not relate to the PISA datasets from 2012 or earlier.
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3 Simulation Study

A simulation study was used to illustrate the possible effect of using principal com-
ponents upon background variables including school IDs as a precursor to fitting the
conditioning model. For simplicity, the simulation is based on measurement from a
unidimensional test. To begin with, the abilities of students (θ_ijk) were simulated
according to the following set of equations:

θi jk ∼ N
(
μ jk + yi jk, 0.65

)
(3)

μ jk ∼ N (βk, 0.25) {β0 = 0.0, β1 = 0.2} (4)

yi jk = N (0, 0.10) (5)

In the above formulae, θi jk represents the ability of the ith student in the jth school
within the kth region, μ jk is the effect of the jth school in the kth region on ability,
and βk is the mean school effect within the kth region. Only two regions are included
in the simulation so that k can take the values 0 or 1. In region 0, the mean school
effect is set to be zero, and in region 1, the mean school effect is set to be 0.2. yi jk
is a continuous background variable that explains a small proportion of the variation
in the abilities of students within schools. Abilities were simulated for 25 students
in each of 300 schools in region 0 and 100 schools in region 1. This means that
the simulated data set contained 7500 students in region 0 and 2500 in region 1.
Throughout the analysis, data within region 0 was given 10 times as much weight as
in region 1.

The way this simulation study was set up was chosen to broadly reflect the com-
bined PISA data set in England and Northern Ireland. For example, the real PISA
2015 data set contained 2400 students from Northern Ireland and just over 5000
from England (plus just over 3000 from Wales which, in practice, are also analyzed
concurrently). Similarly, the combined data was drawn from 95 schools in Northern
Ireland and over 200 in England (plus more than 100 in Wales). Again, the mean
student weight from PISA 2015 students in England is 12 times that from students
in Northern Ireland. Equations 3–5 also imply that the overall variance in ability will
be 1 and that the intraschool correlation in ability will be roughly 0.25. This is very
close to the estimated value of the intraschool correlation in England in the real PISA
data.

The difference between regions (0.2) was chosen to be reasonably large in order
to make any bias in the estimated difference in means visible against the likely
standard errors. The background variable yi jk was included as it would be highly
unusual to apply PCA to a data set with just a single categorical variable (school
ID). The variance of yi jk was chosen to yield a correlation between yi jk and ability
of just above 0.3; a similar value to, for example, the correlation between socio-
economic status and reading performance in PISA (OECD, 2013, p. 175). Only a
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single background variable was included in the simulation study in order to keep this
illustrative example as simple as possible.

Using the simulated abilities, scores on 30 dichotomous items were simulated
for each student using a standard Rasch model. Item difficulties were set up to be
equally spaced between −1 and +1. The number of items was chosen to be roughly
the same as the number taken by students within each PISA domain (if they take any
within the domain at all). The reliability of the simulated test scores was found to
be roughly 0.85 (using coefficient alpha) which is similar to the level of reliability
reported for PISA test scores (OECD, 2017, p. 231).

Now using data from the item scores, as well as (optionally) the background
information (school IDs and the values from yi jk), the aim of analysis was to compare
the distribution of estimated abilities between regions. Five methods of analysis were
used:

1. Direct latent variable regression to estimate the relationship between region and
ability. For the purposes of the charts this method is denoted “LV”. Specifically
the likelihood of each student’s set of item responses (xi j k) was defined by the
equation below where the item difficulty parameters (dm) were fixed at their
known values.

f
(
xi j k

∣
∣θi jk

) =
∏

m

fm
(
xmi jk

∣
∣θi jk

) =
∏

m

exp
(
θi jk − dm

)xmi jk

1 + exp
(
θi jk − dm

) (6)

The likelihood values for each student across a range of abilities were estimated
in R using the function “IRT.likelihood” from the package TAM (Robitzsch et al.,
2017). Once this was done, it was possible to directly estimate a latent variable
regression using the function “tam.latreg” using the formula given below.

θi jk = βk

∧

+ εi jk, εi jk ∼ N
(
0, σ̂ 2

)
(7)

The βk

∧

coefficients are used to provide a direct estimate of the mean difference
between regions.

2. Use of IRT to produce a singleEAPestimate of each student’s ability and compare
these EAP scores between regions. This method is denoted “EAP”. The EAP
estimates were derived by combining the likelihood function defined in Eq. (6)
with a normally distributed prior for ability. The mean and standard deviation of
this prior were estimated using the function “tam.mml”.

3. Analysis of plausible values produced using IRT combined with a conditioning
model relating ability to school IDs and to the background variable. This method
is denoted “PV-FULL”. For this method, the likelihood was defined as in Eq. (6)
but a latent regression model was used to account for the effect of school IDs
(not just regions) and the background variable using the formula below.

θi jk = μ jk
∧ + α̂yi jk + εi jk, εi jk ∼ N

(
0, σ̂ 2

)
(8)
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The likelihood and the estimated regression parameters were jointly used to
produce plausible values using the function “tam.pv”. Five plausible values were
created for each student.

4. Analysis of plausible values produced using IRT combined with conditioning
model relating ability to principal components of (indicators of) school IDs and
to the background variable designed so that 80% of the original variance is
retained. This method is denoted “PV-PCA”. For this method, the set of school
IDs were contrast coded to create 400 indicator variables. The variable yi jk was
also contrast coded into quintiles to create five further indicator variables. Con-
trast coding was used as it reflects the way most variables are handled in the
conditioning model used in PISA (OECD, 2017, p. 182). The covariance matrix
for the resulting 405 variables was calculated using weighted data and sufficient
principal components (which we will denote t i j k) were extracted to explain 80%
of the variance. A latent regression model was estimated using the equation
below.

θi jk = μ0
∧ + tTi j k�

∧

+ εi jk, εi jk ∼ N
(
0, σ̂ 2) (9)

The likelihood and the estimated regression parameters were jointly used to
produce plausible values using the function “tam.pv”. Five plausible values were
created for each student.

5. Analysis of plausible values produced from IRTwithout including any covariates
at all in the conditioning model. This method is denoted “PV-NULL”. For this
method, five plausible values were generated for each student based upon com-
bining the likelihood function with the (very) simple latent regression equation
defined below.

θi jk = μ0
∧ + εi jk, εi jk ∼ N

(
0, σ̂ 2

)
(10)

For the purposes of this analysis, all IRT models were fitted using marginal max-
imum likelihood (MML) estimation. The simulated data was created 1000 times
including the simulation of students’ abilities (Eqs. 3–5) and item scores. All five
forms of analysis were applied to each of these 1000 simulated data sets.

The results of the analysis are shown in Figs. 3 and 4. Figure 3 shows the dis-
tribution of the estimated mean differences between regions from the five methods
across the 1000 simulations. The dotted line represents the true value of this dif-
ference used within simulations of 0.2. As can be seen, both direct latent variable
modelling and the use of plausible values derived using a full conditioning model
produced approximately unbiased estimates overall. In contrast, each of the other
three methods yielded estimated differences in means that are biased downwards.
However, it is interesting to note that, in this case the approach based upon EAP
ability estimates is no worse than using plausible values either from the reduced
model (using principal components only) or without including any covariates in the
conditioning model at all. These results are not unexpected. Indeed, the results here
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Fig. 3 Distribution of estimated mean differences in ability between regions using five different
methods across 1000 simulations

Fig. 4 Distribution of estimated standard deviations of ability in each region using five different
methods across 1000 simulations

illustrate why it is important that a conditioning model is used in the way it is in
the PISA studies. Failing to use a conditioning model leads to underestimating the
difference between regions. Also, as suspected, due to the weighting of the data,
the PCA fails to capture attendance at schools in region 1. As such, this reduced
conditioning model does no better job at producing unbiased estimates than omitting
all covariates from the conditioning model.

Figure 4 shows the distribution of estimated standard deviationswithin each region
from each method. All methods, with the exception of using EAP, provide approxi-
mately unbiased estimates of the standard deviation of abilities within region 0. Three
of the methods (direct latent regression, plausible values based on a full model, and
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plausible values with no covariates in the conditioning model) also provide unbi-
ased estimates within region 1. Note that, in this analysis, the direct latent regression
model only estimates one variance parameter and so always estimates the same vari-
ance within each region—a fact that is advantageous in this simulation but may not
be in others.

Of most interest for our research paper, is the fact that, as expected, the method
where PCA is used a precursor to the conditioning model badly underestimates the
standard deviation of ability within region 1. This is because, due to the weighting of
the data, the PCA fails to capture information about which schools students attend
within region 1. As such, school effects are included in imputation to some extent
within region 0 but hardly included within region 1. This results in an additional
spread of plausible values between schools in region 0 but not in region 1.

Note that, although the EAP method clearly underestimates the true standard
deviation in abilitywithin each region, at least it is consistent. In particular, it correctly
identifies that there is no substantive difference in the spread of abilities between the
two regions. This is important, as it is the comparison between countries, regions
and over time that is likely to be of substantive interest to policy makers. As long
as whatever method we use treats these different entities consistently, we may not
care if it is biased in a strictly psychometric sense. In this example, the substantive
question iswhether the spread of abilities differs between regions. The actual standard
deviation of abilities is on a fairly arbitrary IRT scale, and it does not matter whether
the actual values match those used to create the simulation.

4 The Effect of the Conditioning Model on Comparisons
of England and Northern Ireland

Finally, we examined the actual empirical item-level data from PISA 2015 to see
if different approaches to creating ability estimates might change the conclusions
around the spread of ability inNorthern Ireland as compared to England. In particular,
it was of interest to explorewhether generating reading plausible valueswithout using
PCA as a precursor to the conditioning model might yield a different set of results.

The analysis compared estimates of the mean, 10th percentile and 90th percentile
of ability using the official PISA plausible values to four further ways of creating
ability estimates:

1. An attempt to, as far as possible, recreate the methodology described in OECD
(2017). This included contrast coding of all background variables, PCA and
multidimensional IRT using a conditioning model. The major difference was
that analysis was completed in R using the package TAM (Robitzsch et al.,
2017). The purpose of including these ability estimates was to ensure that other
reported differences were indeed due to the approach to the conditioning model
rather than due to changes in software.
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Table 1 Estimatedmeans and percentiles of PISA reading abilities in England andNorthern Ireland

Method Mean 10th percentile 90th percentile

Eng. Nor.
Ire.

Eng. Nor.
Ire.

Eng. Nor.
Ire.

Official PVs 499.6 497.0 371.2 385.0 625.2 604.8

PVs—recreated methodology 500.9 498.9 377.7 387.0 621.6 609.4

PVs—no conditioning, separate
countries

499.5 501.8 376.8 385.0 618.7 615.4

PVs—conditioning on school IDs
only

500.5 503.9 375.5 381.9 620.3 625.6

EAP ability estimates 500.5 504.7 384.2 388.4 612.1 614.6

2. Plausible values derived without any conditioning model, but with the central
IRT model fitted separately for England and Northern Ireland. This is the most
direct approach to estimating separate ability distributions in each country.

3. Plausible values based on a conditioning model without preprocessing using
PCA. Note that avoiding using PCAmeans that we cannot include all of the pos-
sible background variables in the conditioning model and instead limit ourselves
to including school IDs only.

4. EAP estimates of ability based upon unidimensional IRT and no conditioning
model. These estimates are the closest we get to simply using a single test score
for each student. Note that each student must have answered at least one item in
a domain in order to be included in the estimate of the ability distribution.

The results of analysis are shown in Table 1. Although multidimensional IRT was
used in the generation of all plausible values, for brevity, only the results for reading
are shown. To begin with, we note that, for England, all methods produced very
similar estimates of mean ability. It can also be seen that the attempt to reproduce
the official methodology resulted in statistics fairly close to the official ones both for
the mean and at the two percentiles of interest.

All three of the alternative methods resulted in slightly higher mean abilities in
Northern Ireland for reading. This may be because each of these methods avoided
the inference that because, as is a fact, Northern Ireland performed worse in science
than England, it must also perform worse in reading and math.

As expected, both alternative methods of producing plausible values led to larger
differences between the 10th and 90th percentile in Northern Ireland. This may be
because either separate estimation in each region, or using the school IDs as a direct
conditioning variable without preprocessing using PCA, allows a greater degree of
between-school variation to be retained in the imputations. In particular, the abilities
of students in Northern Ireland at the 90th percentile are substantially higher using
either of these alternative approaches to producing plausible values. This suggests
that the current process based on a combination of PCA and a conditioning model
may have led to biased estimates of these percentiles in Northern Ireland.
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5 Discussion

This paper has explored the impact of the use of principal components analysis
as a pre-cursor to the production of plausible values in PISA. It has shown that,
in very particular circumstances, this can potentially lead to bias in the estimated
distributions of ability. The findings may have particular substantive importance for
secondary analysis of subpopulations that are deliberately oversampled in the PISA
studies.

These findings contrast with the generally positive tone regarding plausible values
in the psychometric literature (e.g., Braun & Von Davier, 2017, Marsman et al.,
2016). The results show how this well-designedmethodology, that provides excellent
performance in simulation studies, may fail to retain all of its desired properties when
faced with real, large-scale data sets and the associated challenges of these, such as
the need for data reduction.

Having said the above, the motivation for using a combination of PCA and a
conditioning model within the PISA studies is correct. The use of a conditioning
model has theoretical benefits in ensuring the accuracy of ability estimates but can-
not be completed without PCA given the vast amount of background information
collected on each student. As such, this paper is not intended as a criticism of the
core methodology that has been adopted in PISA. However, it is clear that in some
cases, minor methodological details can have an influence upon substantive results.
With this in mind, it is important that analysts understand these methodologies and
the alternative approaches that are available to them. It is notable that while a great
many software tools have been produced to facilitate the analysis of plausible val-
ues, far less has been done to help analysts create them in their own contexts. This
becomes a particularly important issue if PISA data is matched to other sources of
information that were not included in the main conditioning model.

It may be that expecting data analysts around the world to become comfortable
with creating their own sets of plausible values is asking toomuch.With this in mind,
a sensible recommendation for analysts would be that it is worth checking surprising
results from the PISA studies against simpler measures of ability such as EAP ability
estimates.
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Adopting the Multi-process Approach
to Detect Differential Item Functioning
in Likert Scales

Kuan-Yu Jin, Yi-Jhen Wu and Hui-Fang Chen

Abstract The current study compared the performance of the logistic regression
(LR) and the odds ratio (OR) approaches in differential item functioning (DIF)
detection in which the three processes of an IRTree model were considered in a
five-point response scale. Three sets of binary pseudo items (BPI) were generated to
indicate an intention of endorsing the midpoint response, a positive/negative attitude
toward an item, and a tendency of using extreme category, respectively. Missing val-
ues inevitably appeared in the last two sets of BPI. We manipulated the DIF patterns,
the percentages of DIF items, and the purification procedure (with/without). The
results suggested that (1) both the LR and OR performed well in detecting DIF when
BPI did not include missing values; (2) the OR method generally outperformed the
LR method when BPI included missing values; (3) the OR method performed fairly
well without a purification procedure, but the purification procedure improved the
performance of the LR approach, especially when the number of DIF was large.

Keywords IRTree · Differential item functioning · Logistic regression · Odds
ratio · Purification · Missing data

1 Introduction

Item response tree (IRTree)models (Böckenholt, 2012) havebecomepopular recently
because of two appealing features. First, IRTree models apply an intuitive approach
by visualizing underlying response processes through tree-like structures. Second,
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IRTree models simultaneously model both the content-related trait and different
types of response processes, and make it possible to investigate more than one type
of response process at a time (Plieninger & Heck, 2018; Zettler, Lang, Hülsheger, &
Hilbig, 2016).

To the best of our knowledge, researchers have not yet addressed differential item
function (DIF) issues under the IRTree framework. By recognizing the popularity of
non-IRT approaches to identifying DIF in missing data (Emenogu, Falenchuck, &
Childs, 2010; Jin,Chen,&Wang, 2018), this study aimed to compare the performance
of the logistic regression (LR; Rogers & Swaminathan, 1993) and the odds ratio (OR;
Jin et al., 2018) approaches to identify DIF in the IRTree models. Because a five-
point response scale is commonly used in self-reported instruments, we focused on
this format throughout the study.

1.1 IRTree Model

We adopted the three-process IRTree model (Böckenholt, 2012) as an example
(Fig. 1). The observed response on an item is derived from multiple processes that
give a rise to the selection of one of response categories. Each process is assumed to
measure a latent variable and modeled by a binary pseudo item (BPI). A BPI has two
branches attached with transition probabilities: Pr and 1 − Pr. In Process I, referred
to indifferences, individuals decide if they have an opinion to an item or want to
express their attitude. If respondents do not have a clear opinion or refuse to indicate
their attitudes, they would endorse the midpoint (i.e. neutral) and stop at Process I.
A transition probability of Process I is denoted as Pr1. Those who do not endorse the
midpoint would keep proceeding to Process II and Process III. At Process II, indi-
cating direction, individuals decide to agree or disagree with an item. If participants
hold a positive attitude, they would endorse the item and a transition probability
is Pr2. If individuals have a negative attitude, they would choose disagreement and
the transition probability of Process II is 1 − Pr2. Lastly, in Process III, individuals
decide the intensity of attitude (i.e. strongly agree vs. agree or strongly disagree vs
disagree) and then endorse the extreme or less extreme category. Participants with a
strong attitude would choose the extreme category, and a transition probability is Pr3;
whereas the ones with a weak attitude would endorse the less extreme response, and
a transition probability is 1 − Pr3. Given the assumption of local independence, the
probability of a final observable response is obtained by multiplying three transition
probabilities.

The left half of Table 1 depicts how original responses are decomposed into three
BPI. It is noticeable that missing values inevitably occur in Process II and Process III.
For example, an individual endorses the category 2, and his or her response process
will not proceed Process II and Process III. Consequently, no information is available
on BPI of Process II and Process III, respectively.
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Fig. 1 The tree-structure for an itemwith a five-point response scale (0 to 4; Strongly disagreement
to Strongly agreement)

Table 1 Pseudo-items of the five-point response scale

BPI coding

Response I II III Probability

0 0 0 1
1

1+exp
(
θIi−βIj+γIj

) × 1

1+exp
(
θIIi −βIIj +γIIj

) × exp
(
θIIIi −βIIIj +γIIIj

)

1+exp
(
θIIIi −βIIIj +γIIIj

)

1 0 0 0 1

1+exp
(
θIi−βIj+γIj

) × 1

1+exp
(
θIIi −βIIj +γIIj

) × 1

1+exp
(
θIIIi −βIIIj +γIIIj

)

2 1 * * exp
(
θIi−βIj+γIj

)

1+exp
(
θIi−βIj+γIj

)

3 0 1 0
1

1+exp
(
θIi−βIj+γIj

) × exp
(
θIIi −βIIj +γIIj

)

1+exp
(
θIIi −βIIj +γIIj

) × 1

1+exp
(
θIIIi −βIIIj +γIIIj

)

4 0 1 1
1

1+exp
(
θIi−βIj+γIj

) × exp
(
θIIi −βIIj +γIIj

)

1+exp
(
θIIi −βIIj +γIIj

) × exp
(
θIIIi −βIIIj +γIIIj

)

1+exp
(
θIIIi −βIIIj +γIIIj

)

Note An asterisk represents missing values. θIi , θ
II
i , and θIIIi are the three latent traits of individual i

on the BPI. βIi , β
II
i , and βIIIi are the difficulties of BPI of virtual item i; and γIIj , γ

II
j , and γIIIj are the

DIF parameters, which are the item difficulty differences between the focal group and the reference
group on BPI
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1.2 DIF in the IRTree Model

DIF analyses methods are used to investigate if an item is measuring different profi-
ciencies for respondents of separate groups. In a traditional practice, researchers are
interested in whether respondents from a reference group get a higher (or lower) item
score than others from a focal group, given that they have the same proficiency level.
However, it is commonly relatively difficult to understand why a DIF item is unfair
to one group. In IRTree models nuisance factors correlated with the group mem-
bership may influence the response processes of endorsing the midpoint response,
exhibiting the direction of attitude toward the statement, and choosing the extreme
or less extreme category. Fortunately, the IRTree modelling provides more detailed
information for possible sources of DIF for those response process. One can exam-
ine if multiple BPI, which present different response processes, are invariant across
groups. A simpler case is that only one BPI is suspected of functioning differentially
in one response process with respect to the group membership (e.g., gender). On the
other hand, the group membership might be a crucial factor inducing DIF in more
than one response processes. Either DIF patterns are of concern in this study.

Theoretically, DIF denotes that an additional dimension is not considered, and
different groups of respondents have unequal means on the additional dimension
(Walker & Sahin, 2017). The right half of Table 1 shows that γI

j , γ
II
j , and γIII

j are the
DIF parameters indicating group differences in the latent trait distributions for the
additional dimension(s) on BPI; θIi , θIIi , and θIIIi are the latent traits of individual i
measured by the corresponding BPI; and βIi , β

II
i , and βIIIi are the difficulties of BPI of

an item j for the reference group. In this case, eight (= 23) possible combinations of
DIF may occur (Table 2). When γI

j = γII
j = γIII

j = 0, suggesting that none of BPI
is flagged as DIF (i.e., Pattern 1), the detected item is deemed DIF-free. An item is
classified as distinct DIF when one of the γ-parameters of item i is not zero (i.e.,
Patterns 2–4); and an item is classified as coincided DIF when more than one BPI is
variant between groups (i.e., Patterns 5–8).

Table 2 Overview of DIF
conditions in the IRTree
framework

BPI coding

Pattern Situation I II III

1 DIF-free 0 0 0

2 Distinct DIF 1 0 0

3 Distinct DIF 0 1 0

4 Distinct DIF 0 0 1

5 Coincided DIF 1 1 0

6 Coincided DIF 1 0 1

7 Coincided DIF 0 1 1

8 Coincided DIF 1 1 1

Note 1 represents as the occurrence of DIF and 0 otherwise
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1.3 DIF Approaches

Two schools of approaches have been proposed to detect DIF, including the IRT and
non-IRT approach. Although both approaches performwell, non-IRT approaches are
easily implemented in empirical studies (Lei, Chen, & Yu, 2006; Jin et al., 2018) and
they are the focus of the present study.

Studies have reported that the performance of non-IRT approaches might be influ-
enced bymissing data (Emenogu et al., 2010). Severalmethods have been proposed to
enhance their performance in missing data, such as listwise deletion and imputation.
However, the two methods may not work well in missing data in DIF assessments
(Jin et al., 2018), and we did not delete or impute data in Process II or III.

1.3.1 The Logistic Regression (LR) Approach

In the LR approach, coefficients for test scores (X), the group variable (G= 0 for the
reference group and G = 1 for the focal group) and their interaction (XG) are tested
for uniform and non-uniform DIF:

log

(
Pi1
Pi0

)
= b0i + b1 j X + b2 j G + b3 j XG, (1)

where Pj1 and Pj0 are the probabilities of success and failure on item j, respectively;
b0j is an intercept for the item j; b1j is the effect of test scores on item j; b2j is used to
capture a grouping impact as uniformDIF; and a significant b3j signifies non-uniform
DIF. The present study only focused on uniform DIF.

1.3.2 The Odds Ratio (OR) Approach

In the OR method, λ̂ j represents the logarithm of the OR of success over failure on
item i for the reference group and the focal group as following:

λ̂ j = log

(
nR1 j/nR0 j
nF1 j/nF0 j

)
, (2)

where nR1 j and nR0 j are the number of individuals answering item j correctly and
incorrectly in the reference group; nF1 j and nF0 j are the number of individuals answer-
ing item j correctly and incorrectly in the focal group. λ̂ j follows a normal distribution
asymptotically, with a mean of λ and standard deviation of

σ
(
λ̂ j

)
=

√
n−1
R1 j + n−1

R0 j + n−1
F1 j + n−1

F0 j . (3)
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Given a nominal level of α, the confidence interval of λ̂ j (given a nominal level of
α) is used to examine if an item j has DIF. If λ̂ j ±zα/2×σ(λ̂ j ) does not containλ, item
j is deemed as having DIF. Jin et al. (2018) recommended the sample median of λ̂ j

as the estimator of λ. Consequently, an extreme large λ̂ j indicates that item i favors
the reference group, whereas an extreme small λ̂ j indicates item j favors the focal
group. Note that the value of σ(λ̂ j ) is dependent of the size of non-missing data. The
more the missing data (i.e. Process II or III) occur, the larger the confidence interval
of λ̂ j would be. This feature helps the ORmethod be less influenced bymissing data.

2 Simulation Study

2.1 Methods

A total of 1000 respondents (500 in the focal group and 500 in the reference group)
were simulated to answer 30five-point response scale items. Four factorsweremanip-
ulated: (1) the percentage of DIF items: 10%, 20%, and 30%, (2) the pattern of DIF
on BPI: distinct or coincided, (3) DIF direction: bilateral or unilateral, (4) purifica-
tion procedure: with or without. In the bilateral condition, two thirds of DIF items
favored the reference group, and one third of DIF items favored the focal group. In
the unilateral condition, all DIF items favored the reference group. The purification
procedure is an iterative procedure to identify DIF items until the identified DIF
items at two successive iterations are identical (Wang & Su, 2004). A total of 100
replications were conducted under each condition.

The three traits (θIi , θ
II
i , and θIIIi ) for the reference and focal groups were generated

from an identical multivariate normal distribution, where µ′ = [0, 0, 0] and � =⎢⎢⎢⎣
1 −0.2 −0.2

−0.2 1 0.2
−0.2 0.2 1

⎥⎥⎥⎦, in which θIi negatively correlated with θIIi and θIIIi and θIi and θIIi

were positively correlated. Item responseswere generated in accordancewithTable 1.
Item difficulties followed a uniform distribution between 1.5 and -1.5. The DIF sizes
were set as 0.25. The performance of the LR and ORmethods were evaluated via the
false positive rate (FPR) and the true positive rate (TPR). FPR is that a DIF-free item
was mistakenly identified as a DIF item, and TPR is that a DIF item was correctly
identified as a DIF item. The LR method was implemented with the difLogistic
function from the difR package (Magis, Béland, Tuerlinckx, & De Boeck, 2010) in
R version 3.2.5 (R Core Team, 2016). The OR method was implemented by writing
an R script, which is available from the first author upon request.
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2.2 Results

2.2.1 The Unilateral DIF Conditions

FPR substantially inflated in the LR as the number of DIF items increased, especially
when 30% DIF occurred in the coincided DIF conditions (Fig. 2a, b). Although
the purification procedure helped reduce FPR, the corrected FPR were above the
nominal level of .05. The purification procedure worked well to reduce FPR in
Process I because the sum score of BPI was not affected by missing data. The OR
yielded satisfactory FPR across conditions, although FPRwere slightly inflatedwhen
there were 30% DIF items in the coincided and distinct DIF conditions (Fig. 2c,
d). Likewise, the OR yielded lower FPR in Process I than in Processes II and III.
Furthermore, the effectiveness of a purification procedure was only noticeable in the
conditions when 30% of items were coincided and distinct DIF items in Process I.
In sum, the efficiency of the purification procedure was more salient in the LR.

The LR and OR yielded similar TPR in most conditions (Fig. 2e–h). As the
number of DIF items increased, TPR decreased. Especially, both methods yielded
the lowest TPR when there were 30% DIF items in the distinct DIF conditions.
Artificial missingness in Processes II and III caused limited information for DIF
detection and resulted in lower TPR than in Process I.

2.2.2 The Bilateral DIF Conditions

When DIF items did not uniformly favor one group, both the LR and OR yielded
FPR close to .05 with and without the purification procedure (Fig. 3a–d). That is, to
some extent the influence of DIF was canceled out in the bilateral DIF conditions
and did not lead to inflated FPR. The OR yielded more conservative FPR than the
LR. Although higher FPR appeared in the LR when 30% DIF items were generated,
the magnitude of inflation was acceptable.

Overall, the TPR were higher in the coincided DIF conditions for the LR and the
OR (Fig. 3e–h), which suggested that both methods were more efficient to detect
the coincided DIF compared to the distinct DIF. The higher TPR were observed in
Process I in both methods because the first set of BPI did not have missing values.
In addition, the LR yielded higher TPR than the OR in most conditions.

3 Discussion

The current study filled the knowledge gap in IRTree models whereby we compared
the performance of the LR and the OR methods in detecting DIF items in BPI. The
findings showed that the OR yielded satisfactory performance in most conditions
than the LR did. Specifically, the OR yielded well-controlled FPR in the uniliteral
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conditions, but the LR did not. Although the LR could benefit from the purification
procedure when a test contained 30% or above DIF items, the efficiency of a purifica-
tion procedure was only salient in Process I. The low effectiveness of the purification
procedure in Processes II and III is due to the joint occurrence of missingness and a
large amount of DIF items. Regarding TPR, the OR and the LR had similar results
in the uniliteral conditions; however, TPR was lowest in both methods when a test
had 30% DIF.

The LR and OR yield satisfactory performance of FPR irrespective of the number
of DIF items in the bilateral conditions. In the bilateral conditions where some DIF
items favor the focal group and some DIF items favor the reference group, the effects
of contamination on test scores were canceled out. In Process II or III, the sum of
BPI was a valid indicator to match subjects in the LR, even though the number of
DIF items is high (Wang & Su, 2004).

This study is not free of limitations. We only adopted the five-point response
scale to evaluate the performance of the LR and OR methods in DIF detection.
Future research should consider other situations, such like a four- or seven-point
scale. Secondly, we only focused on the effect of uniform DIF on the BPI. To inves-
tigate nonuniform DIF, one can replace the item response function of BPI by the
two-parameter logistic model, and then examine if the slope function differentially
between groups. Lastly, the difference of latent proficiency between the two groups
was not manipulated. Further studied should investigate whether or not the DIF
detection result would be affected by unequal latent proficiency distributions.
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Detection of Differential Item
Functioning via the Credible Intervals
and Odds Ratios Methods

Ya-Hui Su and Henghsiu Tsai

Abstract Differential item functioning (DIF) analysis is an essential procedure for
educational and psychological tests to identify items that exhibit varying degrees of
DIF. DIF means that the assumption of measurement invariance is violated, and then
test scores are incomparable for individuals of the same ability level from different
groups, which substantially threatens test validity. In this paper, we investigated the
credible intervals (CI) and odds ratios (OR)methods to detect uniformDIFwithin the
framework of the Rasch model through a series of simulations. The results showed
that the CI method performed better than the ORmethod to identify DIF items under
the balanced DIF conditions. However, the CI method yielded inflated false positive
rates under the unbalancedDIF conditions. The effectiveness of these two approaches
was illustrated with an empirical example.

Keywords Credible interval · Odds ratio · DIF ·Markov chain Monte Carlo · IRT

1 Introduction

Differential item functioning (DIF) analysis is an essential procedure for educational
and psychological tests. DIF occurs when individuals from different groups (such
as gender, ethnicity, country, or age) have different probabilities of endorsing or
accurately answering a given item after controlling for overall test scores. It violates
the assumption of measurement invariance and the test scores become incomparable
for individuals of the same ability level from different groups, which substantially
threatens test validity. DIF detection can examine how test scores are affected by
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external variables that are not related to the construct (Glas, 1998). Therefore, it is
important to know if items are subject to DIF; that is, to know if the examinees are
fairly measured.

Many approaches have been developed to perform DIF detection, and they can
be classified into two categories (Magis, Béland, Tuerlinckx, & De Boeck, 2010):
item response theory (IRT)-based and non-IRT-based approaches. The IRT-based
approaches include the Lagrange multiplier test (Glas, 1998), the likelihood ratio
test (Cohen, Kim, & Wollack, 1996), Lord’s chi-square test (Lord, 1980), Raju’s
(1988) signed area method, etc. The IRT-based approaches require estimating item
parameters for different groups. After comparing these item parameters of different
groups, an item is identified as a DIF item if the item parameters are significantly
different between groups. By contrast, the non-IRT-based approaches require neither
specific forms for the IRTmodels nor large sample sizes (Narayanon&Swaminathan,
1996). The non-IRT-based approaches include theMantel-Haenszel (MH;Holland&
Thayer, 1988), logistic regression (LR; Rogers & Swaminathan, 1993), simultaneous
item bias test (SIBTEST; Shealy & Stout, 1993) methods, etc.

Among the non-IRT-based approaches, the MH and LR methods perform well in
flagging DIF items when the percentage of DIF items is not very high and there is
no mean ability difference between groups (French & Maller, 2007; Narayanon &
Swaminathan, 1996). A common feature of these twomethods is that examinees from
different groups are placed on a common metric based on the test scores, which are
usually calledmatching variables. The use of thematching variables is critical forDIF
detection (Kopf, Zeileis, & Strobl, 2015). If the matching variables are contaminated
(i.e., consisting of DIF items), examinees with the same ability levels would not be
matched well, and the subsequent DIF detection would be biased (Clauser, Mazor,
& Hambleton, 1993). In practice, it is challenging to identify a set of DIF-free items
as the matching variables for DIF detection, especially when the percentage of DIF
items is high or when DIF magnitudes are large (Narayanon & Swaminathan, 1996;
Rogers & Swaminathan, 1993).

To overcome this difficulty, the odds ratios (OR; Jin, Chen,&Wang, 2018)method
was proposed to detect uniform DIF under various manipulated variables, such as
different DIF pattern, impact, sample size, and with/without purification. Jin, Chen,
and Wang (2018) found that the OR method without a purification procedure out-
performed the MH and LR methods in controlling false positive rates (FPR) and
obtaining high true positive rates (TPR) when tests contained high percentages of
DIF items. Another recently developed IRT-based DIF detection method was the
credible interval (CI) method proposed by Su, Chang, & Tsai (2018) to detect uni-
form and non-uniform DIF items under the Bayesian framework. Su et al (2018)
found that the CI method performed well; however, only unbalanced DIF conditions
and no impact (i.e., mean ability difference between the reference and focal groups
was zero) were considered in their study.

A common feature of the CI and OR methods is that both methods perform
DIF detection after constructing intervals. The OR method follows the frequen-
tist approach, and constructs the confidence interval for the mean ability difference
between the reference and focal groups. By contrast, the CI method follows the
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Bayesian approach, and constructs the credible interval for the item difficulty dif-
ference between the reference and focal groups. See next section for more details.
Because of the nature of the Bayesian framework, the CI method would need more
time to perform DIF examination. Besides, the CI method assumes Rasch (1960)
model is a correct model for the data. By contrast, the OR method does not require
the specification of an IRT model; however, this method may not work when the
number of examinees of any group is very small. Given the very different nature of
these two newly developed methods, it is interesting to compare these two methods
under the Rasch model. In this paper, we investigated the performance of the CI
and OR methods to detect uniform DIF within the framework of the Rasch model
through a series of simulation studies. The effectiveness of these two approaches was
illustrated with an empirical example.

2 The CI and OR DIF Detection Methods

2.1 The CI Method

We first review the CI method proposed by Su, Chang, and Tsai (2018). Let Ypj be
the dichotomous response of examinee p on item j, where p= 1,…, P, and j = 1,…,
J. Denote b j and θp as the difficulty parameter for item j and the examinee ability
parameter for examinee p, respectively. In the Rasch (1960) model, the probability
of examinee p getting a correct response on item j is given by

πpj = P
(
Ypj = 1|θp, b j

) = 1

1 + e−θp+b j
. (1)

An item is flagged as DIF if the probability of answering the item correctly dif-
fers across different groups after controlling for the underlying ability levels. The CI
method was proposed to perform DIF detection under a Bayesian estimation frame-
work (Su et al., 2018). Consider the simplest case of two groups, hence, examinee
p either belongs to the reference group (gp = 0) or to the focal group (gp = 1).
Furthermore, each group has its own difficulty parameter. Then, Eq. (1) becomes

πpj = P
(
Ypj = 1

∣∣gp, θp, b j , d j
) =

{
1

1+e−θp+b j
, gp = 0,

1
1+e−θp+d j

, gp = 1,
(2)

where b j and d j are the difficulty parameters for the reference and the focal groups,
respectively. Alternatively, the notations of Glas (1998) is adopted to rewrite Eq. (2)
as

πpj = P
(
Ypj = 1

∣∣gp, θp, b j , δ j
) =

{
1

1+e−θp+b j
, gp = 0,

1
1+e−θp+b j+δ j

, gp = 1.
(3)
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Equation (3) implies that the responses of the focal group need an additional
difficulty parameter δj. Therefore, the following hypothesis is considered:

H0 : δ j = 0 versus H1 : δ j �= 0.

Due to the complexity of the likelihood function, a Bayesian estimation method
is used. Specifically, we follow closely the Bayesian approaches proposed by Chang,
Tsai, and Hsu (2014), Chang, Tsai, Su, and Lin (2016), and Su et al. (2018). In par-
ticular, a two-layer hierarchical prior is assumed for the model parameters to reduce
the impact of the prior settings on the posterior inference. For model identification,
we follow Frederickx, Tuerlinckx, de Boeck, and Magis (2010)’s paper by assuming
that the marginal distribution of θp is normal:

θp ∼
{
N

(
0, σ 2

r

)
, gp = 0,

N
(
μ f , σ

2
f

)
, gp = 1.

For the first-layer prior settings for the parameters, we assume

b j ∼ N
(
μb, σ

2
b

)
,

d j ∼ N
(
μd , σ

2
d

)
.

Given the first-layer prior, we assume the second-layer prior to be

μ f ∼ N
(
μ1, σ

2
1

)
,

μb ∼ N
(
μ2, σ

2
2

)
,

μd ∼ N
(
μ3, σ

2
3

)
,

σ 2
r ∼ Inv-Gamma(α1, β1),

σ 2
f ∼ Inv-Gamma(α2, β2),

σ 2
b ∼ Inv-Gamma(α3, β3),

σ 2
d ∼ Inv-Gamma(α4, β4).

All parameters in the second-layer priors,

(μ1, μ2, μ3, σ
2
1 , σ 2

2 , σ 2
3 , α1, α2, α3, α4, β1, β2, β3, β4),

are assigned in a reasonable way. Furthermore, we also assume that all the priors are
independent.

More specifically, the CI method proceeds as follows. There are J items in the
test, and each of the J items in the test is examined one at a time. For item j, a size
α test of δj = 0 is constructed. Let item j follow Eq. (3) and the other items follow
Eq. (1). That is, item j is tested if the responses of the focal group need an additional
parameter δj. The Bayesian analysis via the Markov chain Monte Carlo (MCMC)
scheme is implemented to construct the equal-tailed 1 − α credible interval for the
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parameter δj. If the interval includes 0, then δj = 0 is not rejected. Otherwise, δj =
0 is rejected, and hence item j is considered a DIF item.

2.2 The OR Method

The OR method was proposed by Jin, Chen, and Wang (2018) to detect uniform
DIF. Let nR1j and nR0j be the numbers of examinees for the reference group who
answer item j correctly and incorrectly, respectively; and let nF1j and nF0j be the
numbers of examinees for the focal groupwho answer item j correctly and incorrectly,
respectively. For item j, let λ̂ j denote the logarithm of the OR of success over failure
for the reference and focal groups:

λ̂ j = log

(
nR1 j/nR0 j

nF1 j/nF0 j

)
, (4)

which follows a normal distribution asymptotically (Agresti, 2002) with mean λ and
standard deviation

σ(λ̂ j ) =
(
n−1
R1 j + n−1

R0 j + n−1
F1 j + n−1

F0 j

)1/2
, (5)

where λ is the mean ability difference between the reference and focal groups. For
each item j, λ̂ j , σ(λ̂ j ), and λ̂ j ± zα/2 × σ(λ̂ j ) are computed. Then, find the median
for λ̂1, λ̂2, . . . , and λ̂J . An item j is flagged as a DIF item if λ̂ j ± zα/2 × σ(λ̂ j ), the
1−α confidence interval of item j, does not cover the median of λ̂1, λ̂2, . . . , and λ̂J .
Note that this method may not work when the number of examinees are very small
because the values of λ̂ j cannot be computed when any numbers in Eq. (4) is zero.
The scale purification procedures can easily be implemented with the ORmethod; all
that is necessary is the precomputation of the sample median based on presumably
DIF-free items. See Jin, Chen, and Wang (2018) for the details.

3 Simulation Study

3.1 Design

In this section, the simulation studies were conducted to compare the performance
of the CI and OR methods. In each experiment, we simulated a test consisting of
20 items (i.e., J = 20). The number of examinee (P) is 1000. Specifically, we were
interested in the comparisons based on the five factors, which were also considered in
Simulation Study I of Jin et al. (2018). They were (a) equal and unequal sample sizes
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of the reference and focal groups (500/500 and 800/200), (b) percentages of DIF
items (0, 10, 20, 30 and 40%), (c) DIF patterns: balanced and unbalanced, (d) impact
(0 and 1), and (e) purification procedure (with or without). Under the balanced DIF
conditions, some DIF items favored the reference group and the other items favored
the focal group. By contrast, under the unbalanced DIF conditions, all DIF items
favored the reference group.

Item responses were generated according to Eq. (3). The true values of difficulty
parameters b j were generated identically and independently from a uniform distri-
bution between −1.5 and 1.5. The true values of examinee ability parameters θp for
the reference group (gp = 0) were generated from the standard normal distribution.
When impact = 0, the true values of θp for the focal group (gp = 1) were also gen-
erated from the standard normal distribution; when impact = 1, they were generated
from the normal distribution with mean −1 and variance 1. Under the unbalanced
DIF conditions, d j − b j = 0.5 for all DIF items; under the balanced DIF conditions,
d j − b j = 0.5 for the first half of the DIF items and d j − b j = −0.5 for the second
half of the DIF items. We fixed α, the Type-I error of each test, to 0.05.

To construct the credible intervals, we produced 11,000 MCMC draws with the
first 1000 draws as burn-in. A total of 100 replications were carried out under each
condition. The performance of these two methods was compared in terms of the FPR
and TPR. The FPRwas the rate that DIF-free items were misclassified as having DIF
whereas the TPRwas rate that DIF items were correctly classified as having DIF. The
averaged FPR across the DIF-free items and averaged TPR across the DIF items for
these two methods were reported. Both the OR and CI methods were implemented
by using FORTRAN code with IMSL subroutines, and are available upon request.

3.2 Results

The averaged FPR and TPR of two DIF detection methods for equal (500/500) and
unequal (800/200) sample sizes list in Tables 1 and 2, respectively. As expected, both
methods yieldedwell-controlled FPR under the no-DIF (0%DIF items) and balanced
DIF conditions, although the OR method was slightly conservative. Similar to Jin,
Chen, and Wang (2018)’s study, the FPR larger than or equal to 7.5% was defined as
the inflated FPR in the present study. Under the unbalanced DIF conditions, the OR
method yielded slightly inflated FPR only when tests had 40% or more DIF items.
However, the CI method yielded inflated FPR when tests had 20% or more DIF
items under the unbalanced DIF conditions. The TPR of the CI method was higher
than that of the OR methods under two following conditions: (i) the balanced DIF
conditions and (ii) the unbalanced DIF conditions with 10%DIF items. Furthermore,
under these two conditions, the ratio of the TPR of the CI method to that of the OR
method with scale purification procedure ranged from 1.01 to 1.27, and it was larger
for unequal (800/200) sample sizes than that for equal (500/500) sample sizes. When
the total sample size is 1000, the TPR for equal (500/500) sample sizes was higher
than that for unequal (800/200) sample sizes. In general, both the FPR and TPR
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increased with the percentages of DIF items. The TPR for the balanced DIF was
higher than that for the unbalanced DIF, except for the OR method when Impact =
0 with equal (500/500) sample size. In general, the TPR was higher when Impact
= 0 than that when Impact = 1. The purification procedure increased the TPR for
the unbalanced DIF condition, and the higher the percentage of the DIF items, the
higher the ratio of the TPR of the OR method with scale purification to that of the
OR method without scale purification. By contrast, the purification procedure did
not increase the TPR for the balanced DIF condition.

4 Application

In this section, the CI and OR methods described in the previous sections were
applied to the data of the physics examination of the 2010 Department Required Test
for college entrance in Taiwan provided by the College Entrance Examination Center
(CEEC). Each examinee was required to answer 26 questions within 80 min. The 26
questions were further divided into three parts. The total score was 100, and the test
was administered under the formula-scoring directions. For the first part, there were
20 multiple-choice questions, and the examinees had to choose one correct answer
out of 5 possible choices. For each correct answer, 3 points were granted, and 3/4
point was deducted from the raw score for each incorrect answer. The second part
consisted of 4 multiple-response questions, and each question consisted of 5 choices,
examinees needed to select all the answer choices that apply. The choices in each item
were knowledge-related, but were answered and graded separately. For each correct
choice, 1 point was earned, and for each incorrect choice 1 point was deducted from
the raw score. The final adjusted scores for each of these two parts started from 0.
The last part consisted of 2 calculation problems, and deserved 20 points in total.

The data from1000 randomly sampled examinees contained the original responses
and nonresponses information, but we treated both nonresponses and incorrect
answers the same way and coded them as Ypj = 0 as Chang et al. (2014) sug-
gested. As for the calculation part, the response Ypj was coded as 1 whenever the
original score was more than 7.5 out of 10 points, and zero otherwise (see also Chang
et al., 2014). Here, we considered male and female as the reference and focal groups,
respectively. Among the 1000 examinees, 692 of themweremale and the others were
female.

We made more MCMC draws than that in Sect. 3. Specifically, we produced
40,000 MCMC draws with the first 10,000 draws as burn-in. Then we tested δj = 0,
for j = 1, …, 26. Again, we considered α = 0.05. The intervals of λ̂ j ± zα/2 ×σ(λ̂ j )

for the OR method, which were the same for both with and without purification, and
the credible intervals obtained from the real data were summarized in Table 3. Note
that the median of λ̂1, λ̂2, . . . , and λ̂J before and after purification were 0.5687 and
0.6163, respectively, so the OR method identified Items 3, 5, 8, 19 and 23 as DIF
items, which were underlined and bolded in Table 3. Table 3 also showed that the
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Table 3 The intervals of the
OR and CI methods for the
real data

Item no. OR CI

1 (0.195, 0.7438) (−0.247, 0.372)

2 (0.391, 1.102) (−0.650, 0.121)

3 (−0.396, 0.399) (0.196, 1.034)

4 (0.233, 1.012) (−0.481, 0.357)

5 (−0.203, 0.426) (0.138, 0.846)

6 (0.567, 1.112) (−0.738, −0.111)

7 (0.377, 0.993) (−0.564, 0.122)

8 (−0.168, 0.454) (0.111, 0.812)

9 (0.312, 0.860) (−0.404, 0.214)

10 (0.484, 1.210) (−0.783, −0.001)

11 (0.296, 0.850) (−0.396, 0.232)

12 (0.403, 0.993) (−0.570, 0.100)

13 (0.219, 0.910) (−0.431, 0.335)

14 (0.374, 0.925) (−0.494, 0.127)

15 (0.135, 0.736) (−0.243, 0.426)

16 (0.168, 0.717) (−0.228, 0.394)

17 (0.459, 1.246) (−0.798, 0.044)

18 (0.523, 1.235) (−0.829, −0.027)

19 (−0.261, 0.300) (0.305, 0.942)

20 (0.125, 0.677) (−0.180, 0.447)

21 (0.345, 0.888) (−0.445, 0.166)

22 (0.193, 0.858) (−0.365, 0.362)

23 (−0.164, 0.421) (0.158, 0.804)

24 (−0.339, 1.256) (−0.770, 0.855)

25 (0.529, 2.395) (−1.915, −0.052)

26 (−0.149, 1.210) (−0.700, 0.734)

CI method identified not only Items 3, 5, 8, 19 and 23 as DIF items, but also Items
6, 10, 18 and 25. Based on the result from the OR method, the real data could be
contaminated with unbalanced DIF items because the intervals of the identified DIF
items all fell on the same side of the median. According to the simulation results
in Tables 1 and 2, the CI method yielded inflated FPR when test had 20% or more
unbalanced DIF items.

To reduce the inflated FPR of the CI method, we proposed a two-stage CI method
to detectDIF items,whichwas implemented as follows.At the first stage, we detected
the DIF items by using the CI method. Suppose {i1, i2, . . . , ik} were the collection
of the DIF items identified by the CI method. At the second stage, we check, for
j = 1, …, k, if item ik is a real DIF item by deleting the other DIF items, and use
only item ik and the other non-DIF items to fit the Rasch model and then to detect
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if item ik is a DIF item based on the CI method again. Based on the two-stage CI
method, the identified DIF items were Items 3, 5, 6, 8, 19, 23 and 25, the credible
intervals of these items were underlined and bolded in Table 3. Items 10 and 18 were
identified as DIF items at the first stage, but were not identified as DIF items at the
second stage, and the credible intervals of these two items were marked in italic and
underlined in Table 3.

5 Concluding Remarks

In this article, we compared the finite sample performance of the CI and ORmethods
for detecting the need of an additional difficulty parameter for the responses of the
focal group when the data follow the Rasch model. Simulation studies showed that
the CI method worked better than the ORmethod under the balanced DIF conditions.
However, the CI method yielded inflated FPR under the unbalanced DIF condition.
The two methods were then applied to an empirical example. Comparisons of these
two methods to other IRT models will be an interesting future line of research.
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Psychometric Properties of the Highest
and the Super Composite Scores

Dongmei Li

Abstract For students who took college admissions testsmultiple times, institutions
may have different policies of utilizing the multiple sets of test scores for decision
making. For example, somemay use themost recent, and others may use the average,
the highest, or even the super composite scores by combining the highest subject
test scores from each administration. Previous research on these different score use
policies mainly focused on their predictive validity with little discussion about their
psychometric properties. Through both theoretical and empirical investigations, this
study showed how the bias, the standard error of measurement, and the reliability of
scores for these different policies compare with each other and how these properties
change for each score type as the number of test events increased.

Keywords Super composite · Reliability · Standard error of measurement ·
Sample maxima

1 Introduction

Academic achievement test programs often report scores on each subject test as
well as a composite score based on all the subject test scores. For tests that are
used for college admission purposes, students may choose to take the test multiple
times if retesting is allowed. Therefore, institutions may receive score reports for a
student from multiple test administrations. Different institutions may have different
policies regarding how to use these multiple scores for decision making. Whereas
some might choose to use the most recent or the average of the scores from different
administrations, others might choose to use the highest reported composite scores or
even the super composite scores, which are obtained by re-calculating the composite
scores using the highest subject test scores from each test event.

There is no consensus in the literature (Boldt, 1977; Boldt, Gentra, & Courtney,
1986; Linn, 1977; Mattern, Radunzel, Bertling, & Ho, 2018; Patterson, Mattern, &
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Swerdzewski, 2012; Roszkowski & Spreat, 2016) regarding which is the best way
to treat scores from multiple test administrations for college admission purposes.
Whereas the average score was often found to have slightly higher correlation with
college grades than the other scoring methods, it was also found to have the greatest
extent of underprediction of the outcome variable (Boldt, Centra, & Courtney, 1986).
Though there are cautions against their potential to maximize positive measurement
error (e.g. ACT, 2018), super composite scores were also found to slightly better
predict college first-year grade point average (FYGPA) than other scoring methods
(Mattern,Radunzel,Bertling,&Ho, 2018).Theuseof super composite scores are also
more controversial than others because it causes more fairness concerns if students
do not have the same opportunity to retest.

Most of the previous research about the different scoring policies focused on
their predictive validity. Little can be found in the literature about the psychometric
properties of the scores resulting from these different scoring polices, especially for
the highest and the super composite scores. Though it is a standard practice for test
programs to report the standard error of measurement (SEM) and the reliability of
reported test scores, these psychometric propertieswill changewhendecisionmaking
is based on scores from multiple test administrations, whether by taking the average
or the highest or a combination of the highest of each subject test. Furthermore,
psychometric properties of test scores are known to affect their predictive validity.
For example, the predictive strength of a variable will decrease as its reliability gets
lower due to theweakening effect ofmeasurement error (Spearman, 1904). Therefore,
a better understanding of the psychometric properties of scores from these different
scoring policies is needed in order to inform the evaluation of these approaches.
The purpose of this study is to investigate the psychometric properties of the highest
scores and the super composite scores and compare them with those of the average
scores and scores from a single administration.

Four approaches of utilizing multiple sets of scores were investigated in the study:
the most recent, the average, the highest, and the super composite scores. Their psy-
chometric properties, including systematic error (i.e. bias), SEM, and reliability,
were investigated both theoretically and empirically. The theoretical investigation
was done under the assumptions of classical test theory utilizing statistical proper-
ties of samplemeans and samplemaxima. The purpose of the theoretical investigation
was to derive relationships that can be used to predict psychometric properties of
the highest and the super composite scores based on the reported SEM or reliability,
which are meant to apply only to scores based on a single test administration. A
simulation study was then conducted to empirically compare these properties for
the four types of scores and to confirm the relationships derived from the theoreti-
cal investigation. Both the theoretical and the empirical investigations in this study
were conducted under the assumptions of classical test theory and also under the
assumption that no real ability changes occurred across the different test events.
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2 Theoretical Investigation

To facilitate discussions, the four types of composites are defined in more detail
through mathematical expressions, and measurement error and reliability are then
described under the assumptions of classical test theory. After that, the expected
values and variances of sample means and sample maxima are used to derive rela-
tionships that can be used to predict the psychometric properties of scores from the
different scoring policies.

2.1 Mathematical Expressions of the Four Types
of Composites

Let C1,C2, . . . . . .CM represent composite scores from test administrations 1
throughM, each composite score from administrationm(Cm) being a function (f ) of
the N subject test scores represented by S1m, S2m, . . . . . . SNm , that is,

Cm = f (S1m, S2m, . . . . . . SNm). (1)

Let Crec, Cavg, Cmax, Csup represent the most recent, the average, the highest,
and the super composite score from M test administrations. These scores can be
expressed as

Crec = CM = f (S1M , S2M , . . . . . . SNM), (2)

Cavg = 1

M

(∑M

m=1
Cm

)
= 1

M

(∑M

m=1
f (S1m, S2m, . . . . . . SNm

)
, (3)

Cmax = max(C1,C2, . . . . . .CM), and (4)

Csup = f (max(S11, S12, . . . . . . S1M),max(S21, S22, . . . . . . S2M), . . . . . . ,

max(SN1, SN2, . . . . . . SNM)). (5)

To make it simple, the composite score in this study is defined as the average of
all the subject test scores. That is, the composite score from a test administration m
is

Cm = f (S1m, S2m, . . . . . . SNm) =
∑N

1 Snm
N

. (6)
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2.2 Measurement Error and Reliability Under Classical Test
Theory Assumptions

Classical test theory (Lord & Novick, 1968) assumes that all observed test scores
(X) are composed of true scores (T) and errors (E) (i.e. X = T + E), where true
scores are defined as the expected value of observed scores over an infinite number
of replications. Errors are assumed to be independent of true scores, and the expected
value of errors across an infinite number of replications is 0. Therefore, the observed
score variance from a population of examinees is composed of true score variance
and error variance, which can be expressed as

σ 2
X = σ 2

T + σ 2
E . (7)

Classical test theory defines reliability as the correlation of observed scores
between two parallel test forms (denoted as ρXX ′), which can be calculated either as
the squared correlation between true and observed scores or as the ratio of true score
variance and observed score variance, i.e.,

ρXX ′ = ρ2
XT = σ 2

T

σ 2
X

= σ 2
T

σ 2
T + σ 2

E

. (8)

2.3 Distributions of Sample Means and Psychometric
Properties of the Average Scores

Psychometric properties of the different statistics of multiple scores can be derived
using properties of the sampling distributions of these statistics. In fact, the statistical
properties of sample means are well known and have long been used in the derivation
of psychometric properties of mean scores, though they are seldom used to discuss
such properties of the average composite scores in the context of admission deci-
sions with multiple sets of scores. This section shows how the well-known statistical
properties of sample means can be used to understand the psychometric properties
of the average composite scores, which is not new except for the application in this
context but will be helpful for discussions in the next section about the highest and
the super composite scores.

For a random sample of size n from the distribution of a variable X, the expected
value of the sample mean X is

E
(
X

) = E(X), (9)

and its variance is
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σ 2
X

= σ 2
X

n
. (10)

Applying Eq. (9) in the context of the expected value of measurement error for
the average composite score as defined in Eq. (3), it follows that the average is an
unbiased estimate of the true scores because its expected value of measurement error
is

E
(
Eavg

) = E
(
E

) = E(E) = 0. (11)

Applying Eq. (10) in the context of error variance, the error variance of the average
composite score is

σ 2
Eavg

= σ 2
E

n
. (12)

Therefore, the reliability of the average composite score can be expressed as

ρXX ′
avg

= σ 2
T

σ 2
T + σ 2

Eavg

= σ 2
T

σ 2
T + σ 2

E/n
. (13)

Dividing the denominator and numerator of the last part of Eq. (13) by σ 2
X , it can

be easily proven that the reliability of average scores can be expressed as

ρXX ′
avg

= nρXX ′

1 + (n − 1)ρXX ′
, (14)

which is the Spearman-Brown formula and allows the prediction of reliability for the
average composite scores across n test events based on the known reliability ρXX ′

reported for the composite scores of the test.
The next section shows that utilizing the statistical properties of sample maxima,

similar predictions can be made for the highest and the super composite scores.

2.4 Distributions of Sample Maxima and Psychometric
Properties of the Highest and the Super Composite Scores

The statistical properties of sample maxima are far less well known for psychometric
researchers than those of sample means because they often involve integration and
cannot be expressed in a nice simple formula. Probably that is one of the reasons that
the psychometric properties of the highest or the super composite scores are seldom
discussed. Fortunately, Chen and Tyler (1999) provided an accurate approximation
for the expected values and the standard deviations of the maxima of samples from
standard normal distributions. They showed that the expected value of the sample
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maxima can be accurately approximated by the expression �−1(0.52641/n), where
n is the sample size and �−1 is the inverse of the Gaussian cumulative distribution
function, and that the standard deviation of sample maxima can be approximated by
the expression 0.5[�−l(0.88321/n) − �−1(0.21421/n)].

Applying these approximations in the context of measurement error, which is
assumed to be normally distributed with a mean of 0 and a standard deviation of σE

for the composite scores, or equivalently if it is assumed that the measurement errors
for the subject test scores are uncorrelated and normally distributed with a mean of
0 and a standard deviation of σEsi

, then the expected value of measurement error for
the highest scores can be expressed by

E(Emax ) = σE f (n) = f (n)

√∑N
i σ 2

Esi

N
, (15)

where

f (n) = �−1
(
0.5264

1
n

)
, (16)

and the error variance of the highest scores is

σ 2
Emax

= σ 2
E [g(n)]2, (17)

where

g(n) = 0.5
[
�−1

(
0.8832

1
n

)
− �−1

(
0.2142

1
n

)]
. (18)

Therefore, the reliability of the highest composite score is

ρXX ′
max

= σ 2
T

σ 2
T + σ 2

Emax

= σ 2
T

σ 2
T + σ 2

E [g(n)]2
. (19)

By diving the denominator and numerator of the last part of Eq. (19) by σ 2
X , it can

be easily proven that the reliability of the highest scores can be predicted by

ρXX ′
max

= ρXX ′

ρXX ′ + (1 − ρXX ′)[g(n)]2
. (20)

Equation (20) in combination with Eq. (18) can be used to predict the reliability
of the highest composite scores based on any number of administrations given the
reported reliability of composite scores for a test.

For the super composite scores as defined in Eq. (5), the expected value of mea-
surement errors (i.e. bias) is
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E
(
Esup

) = f (n)

∑N
i σEsi

N
. (21)

When composite scores are defined as the average of the component tests, the
error variance of super composite scores is

σ 2
Esup

=
∑N

1 σ 2
EmaxSi

N 2
=

∑N
1 σ 2

ESi
[g(n)]2

N 2
= σ 2

E [g(n)]2 = σ 2
Emax

. (22)

The reliability of the super composite scores is then

ρXX ′
sup

= σ 2
T

σ 2
T + σ 2

Esup

= σ 2
T

σ 2
T + σ 2

Emax

= ρXX ′
max

. (23)

By comparing Eq. (21) with Eq. (15), it can be shown that the expected error of
super composite scores is higher than that of the highest composite scores. That is
to say, both the highest and the super composite scores are biased estimates of true
composite scores, but the super composite scores are more biased than the highest
composite scores. Equations (22) and (23) show that the error variance of super
composite scores and that of the highest composite scores are mathematically equal
to each other, under the condition that composite scores are defined as the average
of the subject test scores. That is to say, when composite scores are defined as the
simple average of the subject test scores, Eq. (20) in combination with Eq. (18)
can also be used to predict the reliability of super composite scores based on any
number of administrations. These equations also show that as the number of test
events increases, the bias and reliability will both increase for the highest and the
super composite scores. Whereas bias increases faster for super composite scores
than for the highest scores, reliability increases at the same rate for the highest and
super composite scores.

3 Empirical Investigation

3.1 Data Simulation

To illustrate the relationships discussed above, true scores for four subject tests were
generated for 10,000 examinees from a multivariate normal distribution based on
means, variances, and covariances of the ACT test (ACT, 2014). Measurement errors
for 10 test events were generated from normal distributions with a mean of 0 and a
standard deviation of 2. The composite score was defined as the simple average of
the four subject test scores. The true composite score is the average of the four true
subject test scores. Observed scores for each examinee from each test event were
calculated as the sum of the true score and the measurement error. Then scores based
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on the four different scoring policies (the most recent, the average, the highest, and
the super composite scores) were calculated for each examinee based on 1 through
10 test events, respectively.

Two sets of observed scores were used for all analysis: one was the unrounded
scores generated above and the other is the rounded and truncated versions of the
above scores to mimic normal score reporting. Following the practice of the ACT
test, observed scores were rounded to whole numbers and truncated to be within
ranges of 1 to 36 for the four subject tests and for the composite scores. The reason
for doing this is that some of the predictions may work well only for the unrounded
and untruncated scores.

3.2 Indices of Psychometric Properties

The following statistics were calculated for scores based on each scoring policy for
both the unrounded and the rounded and truncated scores: (1) bias, the overall mean
difference between the observed composite scores and the true composite scores
across all examinees; (2) SEM, the standard deviation of the differences between
each observed composite scores and the true composite scores across all examinees;
and (3) reliability defined as the squared correlation of the observed composite scores
and the true composite scores as shown in Eq. (8).

Meanwhile, these statistics were predicted for the average, the highest, and the
super composite scores based on relevant equations presented in Sects. 2.3 and 2.4.
Equation (15) in combination with Eq. (16) were used to calculate the predicted
bias for the highest composite scores, and Eq. (21) in combination with Eq. (16)
were used to predict the expected bias for the super composite scores. Equation (17)
in combinations with Eq. (18) were used to calculate the predicted values of the
SEMs of both the highest and the super composite scores, and Eq. (12) was used
to predict the SEMs of the average composite scores. Equation (20) in combination
with Eq. (18) were used to predict the reliability of both the highest and the super
composite scores, and Eq. (14) was used to predict the reliability of the average
composite scores.

3.3 Results

Results on bias, SEM, and reliability are presented in Figs. 1, 2, and 3, respectively.
In these figures, the horizontal axes represent the number of test events, and the
horizontal axes represent the statistic of interest. Each figure is composed of two
parts: Figure (a) presents results calculated from the simulated data, and Figure (b)
overlays curves representing the predicted values upon the curves shown in Figure
(a). When the predictions are accurate, the curves representing the calculated values
and those representing the predicted values overlap.
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Fig. 1 Bias of various scoring type for different numbers of test events

(a)                                                                              (b)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10

Average Highest

Recent Super

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10

Average Highest Recent

Super Pre_highest Pre_avg

Fig. 2 SEM of various scoring type for different numbers of test events
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Fig. 3 Reliability of various scoring types for different numbers of test events
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Figure 1 shows the bias of the four types of composite scores as the number of test
events increases. Figure 1a shows their biases calculated based on the simulated data.
As expected, biases for the average scores and the most recent scores were both 0
regardless of the number of test events, so the lines of these two scores overlap. Both
the highest and the super composite scores had positive biases thus overestimated
the true composite. The extent of their overestimation increased as the number of test
events increased, but the super composite scores overestimated to a greater extent
than the highest composite. Figure 1b added to what has been shown in Fig. 1a the
predicted bias for the highest scores (Pre_highest) and that for the super composite
scores (Pre_super). The fact that the curves for the predicted values overlap with the
curves calculated from data indicates that the predictions were very accurate.

Figure 2 presents the SEMs of the four types of composite scores. Figure 2a, based
on results calculated from data, shows that SEMs for the average are the smallest
of the four, and that the SEMs for the most recent are the largest. The SEMs for
the highest and the super composite scores are the same with overlapping curves,
and they are higher than those of the average scores but lower than the most recent.
Figure 2b added two series to those in Fig. 2a—the predicted SEMs for the highest
(Pre_highest), which are equal to those of the super composite, and the predicted
SEMs for the average (Pre_avg). The curves for the predicted values overlapped with
the curves calculated based on empirical data, indicating that the predictions were
accurate.

Figure 3 presents the reliability for the four score types as the number of test events
increases. Figure 3a, based on results calculated from the simulated data, shows that
the average composite had the highest reliability, followed by the highest and super
composite with overlapping curves. The results being the same for the highest and
the super composite scores were expected because of how the composite score was
defined. The most recent had the lowest reliability among the four. Figure 3b added
the predicted reliability for the highest and the super composite scores (Pre_highest)
as well as that for the average (Pre_avg). Again, the prediction worked very well.

3.4 Effects of Rounding and Truncation

As mentioned earlier, all the above analyses were also conducted for the integer
test scores obtained through rounding and truncating the continuous scores to whole
numbers within a fixed range. Results showed that the rounding and truncation did
affect the SEM and reliability of all four types of scores, though their bias was not
affected. The SEM for the integer scores is higher and the reliability is lower than
that of the continuous scores. Though the predictions worked almost perfectly for
the unrounded and untruncated scores, they underpredicted SEM and overpredicted
reliability of the average or the highest and the super composite scoreswhen rounding
and truncation were involved. Figure 4 shows the reliability estimates based on the
integer scores calculated from the simulated data, and the reliability predictions for
the average and the highest scores. A preliminary follow up research showed that
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Fig. 4 Reliability of various
types of scoring when scores
are rounded and truncated
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truncation affected the range of observed scores and caused errors to be negatively
correlated with true scores, which may be a reason for the diminished reliability of
the truncated scores. However, more research is needed to understand exactly how
the rounding and truncation process affects measurement error and reliability.

4 Conclusion and Discussion

Through theoretical and empirical investigations, this study has shown that when no
real ability changes occur between testing, the highest and the super composite scores
are biased estimates of true scores and they tend to overestimate more as the number
of test events increases. However, both the highest and the super composite scores are
more reliable than the most recent when scores from multiple test events are taken
into account. The study also shows that though super composite scores overestimate
to a larger extent than the highest composite scores, their SEM and reliability are
both equivalent when composite score is a simple average of the component scores.
Furthermore, the study not only showed that the Spearman-Brown formula can be
used to predict reliability of the average composite scores but also derived formulas
to predict the bias, the SEM, and the reliability of the highest and the super composite
scores. The predictions worked very well when scores were not rounded or truncated,
but rounding and truncation was shown to have an impact on SEM and reliability
which needs further study.

Findings from this study have practical implications. First, the impact of bias of
the highest and the super composite scores should be taken into consideration to
ensure fairness in decision making. If all students were tested the same number of
times, then scores for all would have been inflated to the same extent, then fairness
is not threatened. However, if students have different opportunities for re-testing,
then those who tested more times could be potentially advantaged when decisions
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are based on the highest and especially the super composite scores. Second, the fact
that the highest and the super composite scores do have higher reliability than the
most recent indicates that the highest or super composite scores may have stronger
predictive power than the most recent, though lower than the average. Therefore,
higher correlations with criterion scores could be observed for the highest and super
composite scores than the most recent, as has been shown in some earlier referenced
studies. However, because the highest and the super composite scores are positively
biased estimates of true scores, predicted criterion scores with these scores through
linear regression are expected to be lower than that based on the recent scores. When
a different pattern is found in empirical studieswith real data (e.g.Mattern, Radunzel,
Bertling, & Ho, 2018), it is a strong indication that factors other than measurement
error are involved.

Results from this study should be interpreted keeping in mind the assumptions
and the limitations of the study. One limitation was that the study did not take into
account potential real ability changes across test events, and only showed results
when everyone had the same number of test events. The reality of testing is much
more complicated. For example, it is often not known who would choose to retest
and why they retested. Institutions need to make decisions for students potentially
with different opportunities, differentmotivations, and different reasons for retesting.
Nevertheless, the psychometric properties revealed in this study can provide useful
information in the evaluation of different score use policies.
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A New Equating Method Through
Latent Variables

Inés Varas, Jorge González and Fernando A. Quintana

Abstract Comparability ofmeasurements is an important practice in different fields.
In educational measurement, equatingmethods are used to achieve the goal of having
comparable scores from different test forms. Equated scores are obtained using the
equating transformation which maps the scores on the scale of one test form into
their equivalents on the scale of another for the case of sum scores. Such transfor-
mation has been typically computed using continuous approximations of the score
distributions, leading to equated scores that are not necessarily defined on the original
discrete scale. Considering scores as ordinal random variables, we propose a latent
variable formulation based on a flexible Bayesian nonparametricmodel to perform an
equipercentile-like equating that is capable to produce equated scores on the original
discrete scale. The performance of our model is assessed using simulated data under
the equivalent groups equating design. The results show that the proposed method
has better performance with respect to a discrete version of estimated equated scores
from traditional equating methods.
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1 Introduction

The purpose of test equating methods is to allow the scores on different test forms to
be used interchangeably (González & Wiberg, 2017; Kolen & Brennan, 2014; von
Davier, Holland, & Thayer, 2004). Let X and Y be two test forms, and X and Y
the score random variables defined on sample spacesX and Y , respectively, which
correspond to the score scales (González &Wiberg, 2017). Let us denote by GX and
GY the cumulative distribution functions (cdf) associated to each of these random
variables.

An equated score on the scale Y is the result of applying an equating transfor-
mation ϕ : X �→ Y to a score x in X , so that x is mapped into its equivalent, y�,
on the scale Y . The commonly used equipercentile equating transformation (Braun
& Holland, 1982) is obtained when scores x and y� are considered to be equated if
GX (x) = GY (y�). Using this relation, the equipercentile function becomes

ϕY (x) = G−1
Y (GX (x)) . (1)

It is well known in the equating literature that (1) is an ill-defined transformation
because most of the times X and Y are subsets of the integers number set.1 With
discrete scale scores, both cdfs GX and GY are discrete and GX (x) will not coincide
withGY (y) for any possible score onY . The common approach to solve this problem
is to “continuize” the discrete score distributions GX and GY in order to use (1)
in a proper way. Examples of equating transformations computed in this way are
the percentile-rank and the kernel equating (von Davier, Holland, & Thayer, 2004)
transformations, which use linear interpolation and Gaussian kernel smoothing for
continuization, respectively.

A common feature of all equating methods based on the continuization of GX

and GY is that y� /∈ Y , i.e., equated scores are not integer values anymore. Our
approach aims at developing an equating method that respects the discrete nature of
test scores and thus gives as a result an equated score value that is properly defined
on Y . We propose a model where test scores are modeled as a latent representation
of discrete ordinal random variables. The latent representation is based on a flexible
Bayesian nonparametric model (Kottas, Muller, & Quintana, 2005). Because the
latent variables are continuous, an equipercentile-like equating method as defined in
(1) can be performed, and the latent representation used to obtain equated scores on
the original scale.

The paper is organized as follows. The latent representation for ordinal variables,
the nonparametric Bayesian models, and the latent equating method (LE) are de-
scribed in Sect. 2. In Sect. 3, the performance of the proposed equating method
is evaluated in a simulation study. Conclusions and further work are discussed in
Sect. 4.

1Equating methods for continuous-type scores, such that those obtained using an IRT model, have
been developed but will not be considered in this paper.
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2 Latent Modeling Approach

In this section we give a brief description of the latent formulation for ordinal random
variables as well as the basics of Bayesian nonparametric models that are used in the
proposed method. The new equating method is described at the end of this section.

2.1 Ordinal Random Variables

Ordinal categorical variables arise frequently in different fields such as health and
social sciences research. In the former, it is of interest to link some factors on the
severity of a disease, whereas in the latter, one might be interested, for instance, in
analyzing the relationship between the mother’s education level and the student’s
achievement. Different statistical models have been developed for the analysis of
this type of variables, most of them in the context of regression models.

Let W be an ordinal random variable with support given by {w0, w1, . . . , wNW }
such thatw0 < w1 < · · · < wNW . Consider a random sampleW1, . . . ,Wn ofW . The
latent response formulation (Pearson, 1901) assumes that each response Wi is the
partial observation of a continuous latent variable W �

i . For an ordinal variable this
relation can be written as

Wi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0 if �0 < W �
i ≤ �1

w1 if �1 < W �
i ≤ �2

...
...

...

wNW if �NW < W �
i < �NW+1

, (2)

where {�0, �1, . . . , �NW , �NW+1} are thresholds parameters such that −∞ = �0 <

�1 < . . . < �NW < �NW+1 = +∞. In a regression context, W �
i = ηi + εi , where ηi

is a linear predictor and εi is an error term. If a normal distribution is assumed for εi ,
then the ordinal probit model is obtained (Aitchison & Silvey, 1957; McKelvey &
Zavoina, 1975). Instead, if the error term is assumed to have a logistic distribution,
the ordinal logit model is obtained (McCullagh, 1980).
Using the representation in (2), it follows that the probability distribution of Wi is
specified in terms of the probability distribution of W �

i , showing that:

P(Wi = wik) = P(W �
i ≤ �k+1) − P(W �

i ≤ �k) k = 0, . . . , NW . (3)

2.2 Bayesian Nonparametric Models

Bayesian nonparametric models are based on random probability measures (RPM)
which act as prior probability models defined over distribution functions (Ghosh &
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Ramamoorthi, 2003). The Dirichlet process (DP) prior (Ferguson, 1973) is arguably
the most used RPM in this framework. A random distribution function F that comes
from a DP with mass parameter M and baseline probability measure G0, written as
F ∼ DP(M,G0), can be described using its stick breaking representation (Sethura-
man, 1994) in the followingway. Let θ j ( j = 1, 2, . . .) be independent and identically
distributed randomvariables from a distribution functionG0, and νi (i = 1, 2, . . .) in-
dependent and identically distributed variables from a beta distribution Beta(1, M).
Then, the stick breaking representation of F is written as:

F(·) =
∞∑

j=1

p jδθ j (·), (4)

where p1 = ν1, p j = ν j
∏

i< j (1 − νi ), and δ(·) denotes a point mass at θ j . From this
representation, any realization from a DP is discrete with probability 1 (Blackwell &
MacQueen, 1973). Ishwaran and James (2001) proposed several alternative RPMs
using the stick breaking representation. One of them is defined by truncating the
countable sum in (4) at a truncation level of N terms with vN = 1 and pN = 1 −∑

i<N pi . Posterior computations under this prior model are implemented by using
the blocked Gibbs sampler algorithm (Ishwaran & James, 2001).

Nonparametric Bayesian models are commonly used in density estimation. How-
ever, as a consequence of the discrete nature of distribution functions sampled from a
DP, models based on DP priors are no longer useful in the context of continuous den-
sity estimation. To deal with this problem, the DP mixture model (DPM) has been
proposed as a mixture of a smooth continuous density and a DP prior (Ferguson,
1983; Lo, 1984). Let us consider Z as a continuous random variable with density
f (z) defined by a DPM. Then,

f (z) =
∫

p(z | θ)G(dθ) (5)

G ∼ DP(M,G0) , (6)

where for every θ ∈ Θ , p(z | θ) is a continuous density function, Θ ⊂ Rp and G is
a DP defined on Θ .

The latent formulation for ordinal randomvariables described in Sect. 2.1 has been
useful in density estimation (Shah&Madden, 2004; Ghosh, Burns, Prager, Zhang, &
Hui, 2018). Kottas et al. (2005) considered aDPMmodel for the latent variableW �

i in
the context of modeling multivariate ordinal data. This approach is more convenient
than other alternatives because it approximates any probability distribution of ordinal
variables. As pointed out by Kottas et al. (2005), this approximation is not based on
random thresholds so there is no loss of generality in assuming them to be fixed.
From a practical perspective, this means that thresholds need not be estimated, but
rather they are considered as fixed known values.

Bayesian nonparametric models have also been used in test equating. Karabat-
sos and Walker (2009) argued that continuous approximations of the discrete score
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distributions GX and GY for traditional methods such as the percentile-rank equat-
ing, the linear equating, the mean equating (Kolen & Brennan, 2014) and the kernel
equating (vonDavier, Holland, &Thayer, 2004)methods, are all based on parametric
assumptions to build a continuous version of the cdfs of X and Y . These authors pro-
posed a nonparametric Bayesian model for the score distributions using Bernstein
polynomials process priors. González, Barrientos, and Quintana (2015) extended
this model and considered a nonparametric Bayesian model that allows the use of
covariates. However, as it is the case for traditional methods, neither of these two
approaches produce equated scores that are properly defined on the original discrete
scale. We propose an alternative equating method that tackles this issue by using a
latent representation of scores. This method is developed by considering a Bayesian
nonparametric model for the latent variable associated to the ordinal score random
variable. The use of the latent formulation strategy in density estimation as applied
for the estimation of score distributions is explained in the following section.

2.3 Bayesian Nonparametric Latent Approach for Score
Distributions

Let X1, . . . , XnX and Y1, . . . ,YnY be two random samples of sizes nX and nY , respec-
tively.Weassume that the scales scores of X andY are definedbyX = {x0, . . . , xNX }
and Y = {y0, . . . , yNY }. Because both X and Y define an order relation between
scores we consider X and Y as ordinal random variables. Under this assumption we
develop an equating method based on the latent representation of ordinal variables
described in Sect. 2.1.

Before defining the equating method, we describe the proposed model for the
scores distributions. We define the model only for X scores but a similar formulation
can bemade for Y . Let us consider X �

1, . . . , X
�
nX

the latent variable associated to each
Xi from the latent formulation (2). Following ideas found in Kottas et al. (2005), we
propose a DPM model for the latent variable X �

i based on a finite DP prior which
considers the number of possible scores of the test X as the truncation level. The
proposed model can be written as follows:

Xi = xh ⇔ �h < X �
i ≤ �h+1 i = 1, . . . , nX , xh ∈ X (7)

X �
i | θ, Ki

ind∼ N (x�
i | μKi , 1/σ

2
Ki

) (8)

Ki | p i id∼
NX+1∑

k=1

pkδk(Ki ) (9)

θ j | ψ ∼ N (μ j | λ, τ/σ 2
j )Gamma(σ 2

j | α0, β) (10)

where (�0, �1, . . . , �NX ) is the vector offixed thresholds, θ j = (μ j , σ
2
j ), θ = (θ1, . . . ,

θKX+1), ψ = (λ, τ, β) and NX + 1 is the truncation point of the DP prior. The full
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model is completed assigning priors on ψ and M , the latter being the parameter that
controls the DP prior. In this case we consider:

λ ∼ N (q0, Q0)

τ ∼ I nvGam(w0,W0)

β ∼ Gamma(c0,C0)

M ∼ Gamma(a0, b0) .

Hyperparameters were chosen as in Kottas et al. (2005) and set to q0 = 0, Q0 =
W0 = 49, α0 = w0 = 3, c0 = 4, C0 = 2 and a0 = b0 = 1. This choice is motivated
due to the fact that marginal prior moments for the parameters are finite and spread
distributions for the parameters in the mixing distribution are obtained.

All posterior conditional distributions are readily sampled by the implementation
of a blocked Gibbs sampler algorithm (Ishwaran & James, 2001). After L iterations
of the algorithm, we obtain posterior samples of all parameters in the model. In par-
ticular, in each iteration we obtain samples from the posterior predictive distribution
of X � which has the following structure

F (l)
X � (x�) =

∫ x�

−∞

NX+1∑

k=1

p(l)
k N (t | μ

(l)
k , 1/σ 2(l)

k )dt , (11)

where {(μ(l)
k , σ

2(l)
k ), l = 1, . . . , L} are the sampled parameters from the posterior

distribution. As mentioned before, a similar formulation is used to obtain F (l)
Y � (y�).

2.4 The Proposed Equating Method

After the estimation of the model proposed in the previous subsection, we obtain L
samples from the posterior distribution of the cdfs of X � and Y �. These estimations
allow to obtain samples from the equipercentile function

{ϕ(l)
Y � (·) = F−1(l)

Y � (F (l)
X � (·)), l = 1, . . . , L} . (12)

Given that each equipercentile function is computed from continuous cdfs, let us
denote by xs0, . . . , x

s
NX

the original scores of test X rescaled into the support of

the latent variable X �. Each of these rescaled scores are evaluated on ϕ
(l)
Y � (·) for

l = 1, . . . , L , thus obtaining L continuous equated scores for each xsk , i.e.

Z �
Y �,xsk

= {ϕ(l)
Y � (xsk ), l = 1, . . . , L} . (13)
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Finally, the equated discrete score for the score xk is the score y j , for some j ∈
{0, . . . , NY }, associated to the range (� j ; � j+1] (by means of Eq. (2)) that has the
highest probability on the distribution of values (13). Thus, if ϕY (xk) is the discrete
equated score of xk in the scale Y , then:

ϕY (xk) = y j ⇔ j = max
i∈{0,...,NY } P

(
Z �
Y �,xsk

∈ (�i ; �i+1]
)

(14)

Note that thismodel guarantees the symmetry property of equating functions because
the equipercentile function is applied using continuous distribution functions.

3 Simulation Study

To illustrate the performance of the proposed equating method, we carried out a
simulation study. In this section we describe how discrete test scores were simulated
and how true discrete equated scores were obtained. Several simulated dataset were
used in the simulation study. On each dataset we applied the proposed latent equat-
ing method and two traditional equating methods (Gaussian kernel equating and
Equipercentile equating). Because these latter methods provide continuous equated
scores, we define a method to make results comparable with discrete scores obtained
from our latent equating method.

Under an equivalent group design, we considered tests with twenty items such
that NX = NY = N = 20. Scores X and Y were simulated considering the latent
representation for ordinal variables described in Sect. 2.1. A mixture of two normal
distributions was assumed for both latent variables ZX and ZY . Discrete scores were
obtained using the relation (2) where thresholds values were fixed to equidistant val-
ues between �0 = −10 and �N+1 = 10. There is no loss of generality by considering
the same thresholds values for both score test X and Y . This asseveration is based
on the fact that both tests have the same number of items, and, because the fitting of
the DPM model proposed for the latent variables in the model is independent of the
thresholds values (Kottas, Muller, & Quintana, 2005).

Keeping in mind that latent variables considered in the simulation process were
continuous random variables, we have a “real” version of the equipercentile function
ϕZY (zx ). Using this function, true discrete equated values were obtained as the result
of ϕZY (γi ) where γi is the midpoint of the interval (�i ; �i+1] for i = 0, . . . , N .

Results shown in this paper are based on datasets simulated under the previous
structure. Different sample sizes n = (nX , nY ) were evaluated with n1 = (80, 100),
n2 = (500, 500) and n3 = (1500, 1450). We simulated 100 replicates for each sam-
ple size. For each replicate, threeMarkov chains were generated, starting from differ-
ent initial values. After completing a total number of 60000 iterations and a burn-in
period of 30000 iterations, each chain was subsampled every 15 iterations. Combin-
ing these chains resulted in one chain of length 6000. The convergence of the chains
was analyzed by computing the R̂ statistic (Brooks & Gelman, 1998; Gelman & Ru-
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bin, 1992) which assess the between- and within-sequence variances of the chains. In
addition, we also consider the effective sample size (Kass, Carlin, Gelman, & Neal,
1998). Results, not shown here, suggested convergence of the chains.

Model performance is summarized by computing the expectation, with respect to
the sampling distribution, of the L2-norm distance between the vector of true discrete
equated scores (W ) and the vector of estimated discrete scores (Ŵ ). This quantity
was approximated using the Monte Carlo method and the 100 replicates generated
for each sample size,

Ψ2 = E[‖W − Ŵ‖2] ≈ 1

100

100∑

i=1

‖W − Ŵ(i)‖2 , (15)

where Ŵ(i) is the vector of estimated discrete scores Ŵ at the i−th replicate.
To compare the proposed method with current equating methods, the statistics Ψ2

was also computed for equipercentile equating (EQ) and Gaussian kernel equating
(KE). As already pointed out, because these methods produce equated scores that are
actually continuous (i.e., not defined in the original discrete scale), in the evaluation
of Ψ2 we consider a discrete version of them using the largest integer number not
greater than the corresponding continuous equated score. As a consequence, the
discrete versions of traditional equated values can be properly compared with those
obtained under the latent equating method.

The statistic Ψ2 summarizes information over the whole score scale of the tests.
To further analyze the performance of the proposed method, we also consider to
evaluate the LE method among each possible value of the scale score. In order to do
that, we compare true discrete equated scores and those obtained by the LE approach
on each value of the scale score. Let us consider x j a possible scale score on test X,
for j = 0, . . . , NX . We computed the expected value of the difference between the
true discrete equated score associated to the score x j an its estimated discrete equated
score under the proposed method. This expectation was approximated by using the
100 replicates for each sample size. To compare the proposedmethodwith traditional
equating methods, we also evaluate this quantity using both equipercentile equating
and Gaussian kernel equating. Discrete equated scores estimated from traditional
equating methods were obtained as the largest integer number not greater than the
corresponding continuous equated score for each method.

3.1 Results

We summarize the results of applying the latent equating method on simulated data
as described at the begining of this section. The evaluation of the proposed method
is made over the whole scale score of the test as well as on each possible value of
the scale score.
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Values of the statistic Ψ2 are summarized in Table1 where it can be found the
results of the latent equating method (LE), the equipercentile equating method (EQ)
and the Gaussian kernel equating method (KE). On average, better estimations of
the discrete equated scores were obtained using the proposed method. It can be seen
that, for all samples sizes, our method outperforms the traditional equating methods.
Note that these results are a summary of the performance of the proposed method
and traditional equating methods on the estimation of discrete equated scores in the
whole scale score.

To obtain a more detailed analysis of the proposed method’s performance, we
evaluated discrete equated scores estimated by themodel on each possible score value
on the scale. The same evaluation was made for the traditional equating methods EQ
and KE but considering a discrete version of equated scores obtained under these
methods. Results of this evaluation are summarized in Fig. 1. It can be seen that for
almost all values on the score scale, equated values obtained using our method are
much closer to the true equated values than those obtained from traditional equating
methods.

Table 1 L2-norm distance between the vector of true discrete equated scores and the vector of
estimated discrete scores among three equating methods

Sample
size

n1 n2 n3

Method LE EQ KE LE EQ KE LE EQ KE

Ψ2 5.03 6.67 5.98 2.95 4.78 4.72 2.05 3.97 5.20

Fig. 1 Mean differences
between true equated values
and its estimations on each
possible scale score of test X
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4 Conclusions and Discussion

Different parametric, semiparametric and nonparametric models have been proposed
to estimate the equating transformation (González & von Davier, 2013). In all these
methods, the equating transformation gives as a result continuous equated scores
disregarding the fact that scores are actually defined on a discrete scale. In this
paper we introduced an equating method that produces equated scores that are prop-
erly defined on the original discrete scale. Specifically, we develop a nonparametric
Bayesian models for the score distributions through the use of a latent representa-
tion of ordinal variables. Results based on a simulation study have shown that, in
comparison with discrete versions of equated values obtained by traditional equating
methods, our approach has better performance in both the whole range of the scale
and on each possible test score.

Although other approaches based on a Bayesian nonparametric model have been
proposed (Karabatsos & Walker, 2009; González, Barrientos, & Quintana, 2015),
we take advantage of the idea of Kottas et al. (2005) to obtain equated scores that are
defined in the original scale of the tests. This idea, up to the best of our knowledge,
has not been developed before.

The proposed approach can be extended in different ways. TheDPMmodel can be
replaced by alternative models that lead to estimate continuous probability distribu-
tions, such as Polya trees processes (Mauldin, Sudderth & Williams, 1992; Lavine,
1992) and mixture of Polya trees (Hanson & Johnson, 2002). Extensions of the
proposed model could consider covariate-dependent Bayesian nonparametric mod-
els for the latent variables (MacEachern, 1999, 2000; De Iorio, Müller, Rosner, &
MacEachern, 2004).

The proposed equating method was developed for samples from an equivalent
group design. Extending the approach to other equating designs is a topic for future
research. Also, applications to real data are planned for future work.
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Comparison of Two Item Preknowledge
Detection Approaches Using Response
Time

Chunyan Liu

Abstract Response time (RT ) has been demonstrated to be effective in identifying
compromised items and test takers with item preknowledge. This study compared the
performance of the effective response time (ERT ) approach and the residual based
on the lognormal response time model (RES) approach in detecting the examinees
with item preknowledge using item response time in a linear test. Three factors
were considered in this study: the percentage of examinees with item preknowledge,
the percentage of breached items, and the percent decrease of response time of the
breached items. The results suggest that the RES approach not only controls the Type
I error rate below 0.05 for all investigated conditions, but also flag the examinees
with item preknowledge sensitively.

Keywords Response time · Compromised items · Item preknowledge

1 Introduction

Item information on an examination can be divulged to test takers in different ways
before they take the test. For example, previous test takers can share the items in
person with future test takers or post the items on the Internet. On the other hand,
examinees are motivated to obtain item information before the test because they tend
to not only perform better on those items for which they have preknowledge, but
they also tend to respond faster to those items, which will allow them more time to
answer the unexposed items. Therefore, in order to ensure the integrity and validity
of the test and to increase test security, it is necessary for test developers to accurately
flag breached items and identify examinees with item preknowledge, especially for
high-stakes examinations.

During computer-based testing (CBT) or computerized adaptive testing (CAT),
both the examinee responses and response times (RT ) are recorded.With the advance-
ment of the statistical and measurement models of RT, more studies focus on RT as
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an additional source of information in determining test speededness (Shao, Li, &
Cheng, 2016), examinee motivation (Wise, 2006; Wise & Kong, 2005), and detect-
ing aberrant examinee behavior (Meijer & Sotaridona, 2006; van der Linden & Guo,
2008; Qian, Staniewska, Reckase, & Woo, 2016). A correct response with an unex-
pected short amount of time may suggest that the examinee might have seen the item
before taking the test.

Based on the loglinear model (van der Linden & van Krimpen-Stoop, 2003),
Meijer and Sotaridona (2006) proposed the effective response time (ERT ) approach
to identify item preknowledge in CAT, in which the RTs for the able examinees’
correctly answered itemswere used to predict the expected time needed for each item
based on the examinees’ ability and slowness. The difference between the observed
and expected RT on the log scale was then used to flag examinees with aberrant
behavior. Through a simulation study, Meijer and Sotaridona (2006) concluded that
the higher the proportion of breached items and the greater the reduction of RT, the
higher the power of detecting examinees with item preknowledge.

A lognormal RT model was proposed by van der Linden (2006), where the log
scale of RT spent on each item were modeled as normally distributed. This model
defines the discrimination and intensity parameters ofRT for each item, and slowness
parameter for each examinee. The residual of the observed and expected RT on the
log scale from the model can be used to detect aberrant behavior. Qian et al. (2016)
applied the lognormal RT approach on one non-adaptive exam and one adaptive
exam. The residual of the log RT was used to detect the possible breached items and
examinees with item preknowledge, and two items were flagged as breached items
and two examinees were identified as potentially having item preknowledge. In this
study, this approach is referred to as the residual (RES) approach. Details of the ERT
and RES approaches are provided below.

1.1 Effective Response Time (ERT) Approach

Meijer and Sotaridona (2006) proposed the ERT approach to detect aberrant test
behavior based on the loglinear item RT model (van der Linden & van Krimpen-
Stoop, 2003), in which the log RT was defined as

lnti j = μ + δi + τ j + εi j , (1)

with εi j ∼ N
(
0, σ 2

)
, where μ is the grand mean of log RT for the population of

examinees on all items, δi is the RT parameter for item i, and τ j is the slowness of
the examinee j. Therefore, lnti j is normally distributed with a mean of (μ + δi + τ j )

and a standard deviation of σ . These parameters can be estimated as follows:

μ ≡ Ei j
(
lnti j

)
(2)
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δi ≡ E j
(
lnti j

) − μ (3)

τ j ≡ Ei
(
lnti j

) − μ (4)

Meijer and Sotaridona (2006) defined the ERT of an item as the time required by
an able examinee to answer the item correctly. In other words, the item RTs for those
less able examinees and those who answer the item incorrectly will not be used in
establishing the ERT for each item. The able examinees are selected such that the
probability of getting a specific item right (Pi j ) is larger than a prespecified cut value
(γ ), where Pi j is estimated based on the examinee’s proficiency (θ) and the known
item parameters for a given item response theory (IRT ) model. It needs to be pointed
out that the data used for estimating the ERT will be different for different items
because the able examinee group will be different for different items.

The effective RT for each item i is modeled as

lnti = β0 + β1θ + β2τ + ε, (5)

where θ and τ are vectors of examinee proficiency and examinee slowness, respec-
tively, and considered as the known values that have been estimated previously (τ
is estimated using equation [4]), β0, β1, and β2 are the regression coefficients, and ε

is the error, which is considered as normally distributed. Therefore, the expected RT
on the log scale can be estimated as the following:

ln
∧

ti = β0 + β1θ + β2τ . (6)

For a specific examinee, j, the standardized difference between the observed RT
and the expected RT on log scale for item i is considered to follow a standard normal
distribution, that is,

zi j = lnti j − ln
∧

ti j
σi

(7)

where

σi =
√

(Ji − 1)−1
∑Ji

j=1

(
lnti j − ln

∧

ti j
)2

(8)

is the standard deviation of the RT on log scale for item i, and Ji is the number of
examinees who took item i. Therefore, z2i j follows a chi-square distribution with one
degree of freedom, and the sum of the z2i j over all the items will follow a chi-square
distribution with the degree of freedom equal to the number of items (I), or, for each
examinee j,

X j =
∑I

i=1
z2i j ∼ χ2(I ). (9)
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The quantity of Pr
(
X j ≥ x

) = p can be used to flag examinees with item pre-
knowledge. If p is less than a prespecified significance level (eg, α = 0.05), the
examinee will be flagged as a possible candidate with item preknowledge.

1.2 Residual of Lognormal RT Approach

In the lognormal RT model (van der Linden, 2006), the log of the RT is considered
to be normally distributed with a mean of

(
βi − τ j

)
, which can be written as the

following:

f
(
ti j ; τ j , αi , βi

) = αi

ti j
√
2π

exp

{
−1

2

[
αi

(
lnti j − (

βi − τ j
))]

}
, (10)

where τ j represents the slowness of examinee j, αi represents the discrimination
parameter of item i, and βi is the time intensity of item i (similar to the δi in the
effective RT approach). For an examinee, the smaller the τ j , the longer it will take
him/her to respond to the item, and vice versa. These parameters can be estimated
using the MCMC method (van der Linden, 2006).

The residual of the logRT is approximately a standard normal distribution, or ei j =
αi

(
lnti j − (

βi − τ j
)) ∼ N (0, 1), which can be used to detect aberrant examinee

behavior (Qian et al., 2016). In general, a correct item response with a large negative
residue of the log RT may indicate that the examinee has preknowledge of this item.

Similar to the analogy in the ERT approach, the aberrant examinee behavior is
detected using the chi-square statistic with a significance level of 0.05 since the sum
of e2i j over all the items follows a chi-square distribution with the degree of freedom

equal to the number of items (I), or X j = ∑I
i=1 e

2
i j ∼ χ2(I ). If the probability of

Pr
(
X j ≥ x

) = p is less than 0.05, the examinee is flagged as having item preknowl-
edge. This approach is referred to as the residual (RES) approach in this study.

Both the ERT approach and the RES approach have been investigated to detect
item preknowledge. However, no studies have been conducted to compare these two
approaches in detecting item preknowledge. It is worth comparing the performance
of these two approaches in terms of Type I error and power of detecting examinees
with item preknowledge. More specifically, the following factors will be considered:
the percentage of test takers with item preknowledge, the percentage of breached
items, and the percent decrease of the RT of the breached items.

2 Data

The data used in this study are from a high-stakes medical licensure examination.
The test, administered in 2017, includes about 280 multiple-choice items, which are
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Table 1 Summary of the data Raw Score b α β Reliability

Mean 24.45 −0.01 1.44 4.29 0.76

SD 4.55 0.74 0.71 0.31

divided into seven 60-minute blocks. In the current study, only a subset of items (32
items) from one block were used (N = 6611). It needs to be noted that, considering
the test design, test administrations, form spiraling, and the comparison of examinee
performance with previous years, no clear evidence indicates examinees with item
preknowledge or collusion in this sample. In addition, given the fact that the test takers
have spent several years in medical school and are required to pass the examination
before being permitted to practice medicine, it is very unlikely that the test takers
have low motivation or rush to the end of the test by providing rapid guessing.

The items were calibrated using a 1-PL logistic IRT model. These item parameter
estimates were considered as known in this study. Table 1 provides the summary
statistics of the raw score, IRT difficulty estimates, α (discrimination parameter of
item response time) and β (time intensity) of item from the lognormal model, and
Cronbach’s alpha.

3 Methods

In this study, the ERT and RES approaches were compared in two situations in terms
of the item preknowledge detection: without item breach and with item breach. In
the situations with item breach, three factors were considered: (1) percentage of
examinees with item preknowledge (25, 50, and 75%), (2) percentage of breached
items (10, 25, and 50%), and (3) percent decrease of RT of the breached items (25,
50, 67, and 75%). In the situations with item breach, it needs to be pointed out that
only the RTs were manipulated because the purpose of this paper is to compare the
two approaches using RT only.

3.1 Situation Without Item Breach

For the situation without item breach, one thousand test takers were randomly drawn
without replacement from the original data. Both the ERT and RES approaches were
implemented to the sampled data to flag examinees with item preknowledge using a
significance level of 0.05. This process was repeated 100 times and the Type I error
is estimated as the average proportion of the flagged examinees.
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3.2 Situations With Item Breach

In this situation, the following steps were applied for each of the manipulated con-
ditions:

1. Randomly draw 1000 test takers without replacement from the original data.
2. Randomly sample examinees with item preknowledge without replacement from

the sample obtained in Step 1.
3. Randomly sample items that are breached without replacement.
4. Reduce the RT of the selected breached items for those examinees with pre-

knowledge based on the percent decrease of RT for a given condition.
5. Flag examinees with item preknowledge using both ERT and RES approaches.
6. Calculate the Type I error and power in flagging the examinees with item pre-

knowledge.
7. Repeat Steps one to six 100 times and calculate the average Type I error and

power.

In this study, the item and person parameters for the RES approach were esti-
mated using the MCMC sampling method with 6000 iterations through the LNIRT
R package (Fox, Entink, & Klotzke, 2017). For the ERT approach, the pre-specified
cut value (γ ) was set to be 0.4.

4 Results

In this section, the results of the log RT model fit are presented first, followed by
the results of the Type I error of the two approaches for the original data without
item breach. The comparison of the Type I error and power at different manipulated
conditions are provided last.

4.1 Model Fit of Log RT

Because both approaches assume that the log RT is normally distributed, the RT
was plotted first to examine whether the data can be fitted using the lognormal
model before evaluating the performance of the two approaches in detecting item
preknowledge. The fit of the lognormal model to RT was evaluated by examining (1)
the fit of the lognormal model to the frequency distribution of RT data, and (2) the
relationship of the observed and predicted cumulative distribution of the RT. If the
model fits the data perfectly, the curve of the observed versus predicted cumulative
distribution of RT should be identical to the identity line (van der Linden, 2006; van
der Linden & Guo, 2008).

Figure 1 provides the visualization of the distribution of RT for a typical item
(item 10) and the examination of the model fit using lognormal model (red dashed
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Fig. 1 Examination of lognormal model fit of item RT

line). The histogram of RT indicates that the distribution of RT is right skewed and
lognormal model can fit the data quite well for this item. Although not provided, the
plot of the observed versus predicted cumulative distribution of the log RT suggests
that the lognormal model fits this item almost perfectly because the observed cumu-
lative distribution and the predicted cumulative distribution are almost identical. In
addition, the Kolmogorov–Smirnov goodness-of-fit Test was also used to examine
model fit for all items. The results suggested that out of the 32 items, the response
times for 28 items can fit the lognormal distribution at a 0.05 significance level.
Overall, it is concluded that the lognormal model fits the log RT reasonably well for
all items, especially consider the large sample size.

4.2 Situation Without Item Breach

Using the original data without manipulation of the RT, the average Type I error was
0.130 and 0.014 for theERT and theRES approaches, respectively, when the nominal
significance level was 0.05. Therefore, it is concluded that the ERT approach cannot
control the Type I error rate and the RES approach is slightly conservative when no
item is breached. However, these results may be caused by the potential existence
of examinees with item preknowledge or rapid guessing in this real dataset, even
though there is no clear evidence of item breach or low examinee motivation.
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4.3 Situations With Item Breach

Under each of the conditions described in the Methods section, Type I error and
power of flagging examinees with item preknowledge were estimated for both ERT
and RES approaches. Figure 2 provides the comparison of Type I error rate (upper)
and power (lower) when 50% of the examinees have item preknowledge to some
items. The plots for other conditions are not presented but described below due to
the page limit.

Figure 2 suggests that when 50% of examinees have item preknowledge, the
Type I error is about 0.13 for the ERT approach and from 0.014 to 0.032 for the RES
approach. Although the Type I error tends to increase slightly with the increase of the
percentage of breached items and percent decrease of response time for bothERT and
RES approaches, the effect is small and almost negligible. The plot of power (bottom)
indicates that the RES approach is very sensitive to both the percentage of breached
items and percent decrease of response time. As the percent decrease of response
time increases, the power increases significantly. For example, the power is about
0.02, 0.10, 0.27, and 0.72 when the percent decrease ofRT is 25, 50, 67, and 75% and
the percentage of breached items is 25% (red line). Similarly, the power increases
as well when the percentage of breached items increases. These results suggest that,
for the RES approach, the more breached items and the more reduction of item RT
of the breached items, the more likely the examinees with item preknowledge will
be detected. However, the ERT approach is not sensitive in flagging examinees with
item preknowledge.

Although not presented in this paper, the results suggest that when 50% of the
items were breached, the Type I error for the ERT approach is larger than 0.12 for
all conditions, but the RES approach controls Type I error very well (<0.05). Type
I error tends to increase slightly with the increase of percentage of examinees with
item preknowledge and the percent decrease of RT for both methods. However, the
effect is not significant. In addition, the power of the RES approach is sensitive
to both the percentage of examinees with item preknowledge and percent decrease
of RT. The power increases as the percent decrease of RT and the percentage of
examinees with item preknowledge increase. More specifically, the power is about
0.03, 0.21, 0.65, and 0.99 when the percent decrease of RT is 25, 50, 67, 75 and 50%
of examinees with preknowledge. This result suggests that, for the RES approach,
the more examinees with item preknowledge and the more reduction of item RT of
the breached items, the more likely the examinees with item preknowledge will be
detected. However, this was not observed for the ERT approach.

The conclusions can be summarized as the following when the percent decrease
of RT is fixed at 67%: (1) the RES approach controls the Type I error very well,
but not the ERT approach; (2) the Type I error tends to increase slightly with the
increase of the percentage of examinees with item preknowledge and the increase of
the percentage of breached items for both approaches; (3) for the RES approach, the
power increases significantly with the increase of the percentage of breached items
but slightlywith the increase of the percentage of examineeswith itempreknowledge;
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Fig. 2 Comparison of type I error (upper) and power (lower)
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and (4) both the percentage of examinees with item preknowledge and the percentage
of breached items have little effect on power for the ERT approach.

5 Conclusion and Discussion

This study compares the performance of the ERT approach and the RES approach
in detecting the examinees with item preknowledge using item RT only for a linear
test. The results suggest that the RES approach not only controls the Type I error
below 0.05 for all investigated conditions, but also flags the examinees with item pre-
knowledge sensitively. More specifically, the RES approach is more likely to identify
examinees with item preknowledge when the sample contains a higher percentage
of examinees with item preknowledge, more breached items, and a greater reduction
of the RT for breached items.

In general, the power of identifying examinees with item preknowledge is the
most sensitive to the reduction of RT when items are breached. In the situations that
the percent decrease of RT of breached item is 50% or less than the original RT,
the power of correct detection of examinees with preknowledge is very low (<0.25).
However, the power can be as high as almost 1 when the percent decrease of RT
is 75%. The RES approach is also sensitive to the percentage of breached items.
If the number of breached items is less than 10%, the power is less than 0.2 for
all simulated conditions. As the percentage of breached items increases, the power
increases significantly. These conclusions make sense since the higher the reduction
of RT and the more breached items, the larger the difference between the observed
and expected log RT for the breached items and the larger the chi-square statistic.
The percentage of examinees with item preknowledge has relatively less impact on
the performance of the RES approach.

Meijer and Sotaridona (2006) concluded that the ERT approach was sensitive to
identify item preknowledge in CAT through a simulation study. They found that the
Type I error was below 0.05 and that the detection rate was about 0.95 and 0.5 in
the conditions where the RT of the breached items was 25 and 50% of the original
RT, respectively. However, this was not observed in the current study. This study
suggests that the ERT approach is not effective in identifying examinees with item
preknowledge since it can neither control the Type I error nor identify the examinees
with item preknowledge accurately. This might be due to the differences between
the Meijer and Sotaridona (2006) study and the current study. To summarize, the
Meijer and Sotaridona (2006) study used a computerized adaptive test setting where
items were administered to examinees with similar ability, and all examinees were
considered as having item preknowledge in all simulated conditions. In addition,
compared to the data used in this study, the ERT approach may fit the data much
better in the Meijer and Sotaridona (2006) study.

The current study evaluated the performance of two approaches in identifying
examinees with item preknowledge based on RT from real data only. The limitation
and future direction are summarized as follows. First, item responses can also provide
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more information about whether an examinee has preknowledge since it is more
likely that an examinee gets an item right if he/she was exposed to the item before
the test. Therefore, the combination of RT and item responses should be considered
for flagging examinees with preknowledge for future studies. Second, given the high-
stakes of the examination used in this study, we assumed that all examinees took the
exam with high motivation and didn’t consider faster RTs due to rapid guessing or
lost motivation. In the future study, the examinees associated with rapid guessing
or low motivation will be excluded. Third, given the existence of misfit of the RT
to the lognormal distribution and the potential examinees with rapid guessing, more
studies should be focused on simulated data, instead of real data.

Test security has gained a lot of attention from testing organizations. However,
it needs to be pointed out that even if an examinee is statistically flagged as having
preknowledge for some items, action needs to be taken prudently in practice. The
test organizations should consider the possible consequences, and possible legal and
practical implications when notify the examinees of their cheating behaviors.
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Identifying and Comparing Writing
Process Patterns Using Keystroke Logs

Mo Zhang, Mengxiao Zhu, Paul Deane and Hongwen Guo

Abstract There is a growing literature on the use of process data in digitally
delivered assessments. In this study, we analyzed students’ essay writing processes
using keystroke logs. Using four basic writing performance indicators, writers were
grouped into four clusters, representing groups from fluent to struggling. The clus-
ters differed significantly on the mean essay score, mean total time spent on task,
and mean total number of words in the final submissions. Two of the four clusters
were significantly different on the aforementioned three dimensions but not on typ-
ing skill. The higher scoring group even showed signs of less fluency than the lower
scoring group, suggesting that task engagement and writing efforts might play an
important role in generating better quality text. The four identified clusters further
showed distinct sequential patterns over the course of the writing session on three
process characteristics and, as well, differed on their editing behaviors during the
writing process.

Keywords Writing process · Keystroke logs · CBAL · Sequential pattern ·
Editing behavior

1 Background

Writing is an important skill that is taught in schools and valued in the workplace.
Writing tasks, such as the essay writing examined in this study, are frequently
included in standardized assessments, licensure qualification tests, placement tests,
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portfolio-based performance assessments, as well as in-class formative assessments.
Normally, essays are graded by human raters and/or automated scoring systems
based on a holistic scoring rubric. Despite the benefits and ubiquitous use, a holistic
score contains rather limited information and offers scant, if any, instructional feed-
back that can be returned to the test users (e.g., students, teachers, district officials,
admissions officers). In other words, holistic scores provide an overall evaluation
of the writing quality, but do not pinpoint the specific areas where a writer might
struggle. For digitally-delivered writing assessments, however, we can record the
moment-by-moment processes by which writers generate their responses through
keystroke logging. In contrast to a holistic score, much finer-grained information
about students’ writing proficiency can be obtained from analyzing the keystroke
logs. In addition to the usual types of feedback generated by automated scoring sys-
tems, which are often based the final product (e.g., a written text, a spoken response),
keystroke logs allow feedback given based on the item response process. From the
keystroke logs, one can identify, for example, whether a writer has spent sufficient
time and effort on the task, has trouble with spelling, encounters difficulties in typing
on the keyboard, or has edited what was written before turning in the response.

In this study, we used a keystroke logging system developed at Educational Test-
ing Service – one primarily intended for large-scale digital administrations to support
classroom instruction and educational assessment (Deane et al., 2016; Zhang, Ben-
nett, Deane & van Rijn, 2019). A well-designed keystroke logging system records
all the changes to the text buffer while a student is writing, along with associated
time stamps. Additional information that may be tracked include cursor movements,
mouse clicks, and access to resources outside the text entry window, such as time
spent reading external references and the use of editing tools supplied by the task-
delivery interface. The entire text production process can be reconstructed from the
keystroke log, although additional processing is required to extract meaningful infor-
mation from the raw keystroke log. Depending on the construct to be measured, it
may be necessary to identify linguistic features of the text using natural language
processing techniques and define appropriate classifiers with which to characterize
writer’s performance patterns. These classifiers, often called “features,” provide the
input for higher-level analyses of writing patterns. See Zhang, Hao, Li, and Deane
(2018) for an example of developing a “burst” measure of writing translation from
keystroke logs.

There is a sizable body of research that has applied keystroke logging to writing
research in general, but the research on the use of keystroke logs in the testing or
educational assessment context has just started to emerge. Sinharay, Zhang, and
Deane (2019) argue that feedback about students’ writing processes, summarized at
the group or individual levels, may help classroom teachers make their instructional
decisions. Previous research in the assessment context has reported that a number
of timing and process features, such as burst length, in-word typing speed, between-
word pause length, and initial pause time before typing a word, are indicative of
writing proficiency and worth reporting (Guo, Deane, van Rijn, Zhang, & Bennett,
2018; Zhang&Deane, 2015). Information about the writing processes revealed from
keystroke logs enhances the feedback given towriters by going beyond simply “high”
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and “low” scores, and potentially rendering rich profiles of their writing process and
proficiency on various dimensions (e.g., task planning, editing, fluency).

In this study, we addressed two research questions. The first research question
(RQ1) is: Can we identify students’ writing patterns by applying clustering tech-
niques to the most basic performance indicators (i.e., time spent on task, essay score,
number of keystrokes, and typing speed)? The second research question (RQ2) is:
How do students’ writing processes and editing behaviors differ across clusters?The
answers to these questions will have implications for the classification of students’
writing patterns and identifying possible weak areas in writing, particularly from the
perspective of editing behaviors, which can be useful information for the instructors
and writers/students for the improvement of teaching and learning of writing.

2 Methods

2.1 Participants and Instrument

We used a data set collected from a research program at Educational Testing Service,
the Cognitively Based Assessment of, for, and as Learning (CBAL®). The CBAL
summative writing assessment is a scenario-based assessment, in which the items are
designed around a unifying scenario and are sequenced according to a theoretically
determined order (Bennett, Deane, & van Rijn, 2016). In this study, we focus on the
timed culminating essay writing task. Students were given 35 min to complete their
essay, though they were allowed to submit sooner before the time ran out. The data
set was collected as part of an experimental study involving a number of schools
across the United States (van Rijn, Chen, & Yan-Koo, 2016; van Rijn and Yan-Koo,
2016). As an initial investigation, we used the data collected in one form, which
we will refer to by the shorthand label “Culture Fair,” since the assessment is built
around a scenario in which students must choose the best theme for their school’s
Culture Fair event.

After excluding a small number of responses where the keystroke logs were cor-
rupted due to system failure, and a small additional set of essay responses where stu-
dents submitted blank,meaningless, or off-topic responses, our final data set included
740 qualified essay responses submitted by 6th- to 8th-grade students. There were
276 male students and 285 female students. About 24% did not report their gender.
The majority of the students were English native speakers (62%). As for ethnicity,
52% were White, 17% Hispanic, 3% African American, 3% Asian, less than 1%
belonged to other groups, and (the same) 24% did not report on this question. All
responses were scored against two different rubrics: one focused on general writ-
ing quality and another focused on the quality of the content specific to the writing
genre. On each rubric, essays were double-scored by a pair of randomly-assigned,
trained raters, achieving an inter-rater reliability of 0.70 and 0.72 as measured by
quadratically-weighted kappa for the two rubrics, respectively, as reported in van
Rijn et al. (2016). For the purpose of analysis, we used the first human rating on each
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rubric, which is also a common practice. Finally, all the essay responses were parsed
by the ETS keystroke logging engine.

2.2 Clustering of Writing Logs (RQ1)

To address the first research question, we used four variables to characterize writ-
ing performance: essay score, total number of keystrokes, keyboarding speed, and
total time spent on task. These variables provide basic information about writing
performance. Specifically, these variables are straightforward and provide informa-
tion about related, but distinguishable, aspects of writing effort and fluency. Table 1
gives the inter-correlations between these variables in our data set. The essay score
represents the overall quality of the final response. It is calculated as the sum of
the two rubric scores, and is moderately related to the other variables. The total
number of keystrokes is, at least to some degree, a proxy for the overall effort that a
writer makes during the writing process. This count includes every action the writer
makes, including insertions, deletions, cuts, pastes, and jumps. The total time on
task is another indicator of writing effort. This variable is calculated as the total
time elapsed between the first and last keystrokes. However, it should be noted that
a longer time on task does not necessarily mean more keystrokes, or vice versa. The
Pearson’s correlation between the total number of keystrokes and total time on task,
in our data set, is 0.72 (p < 0.0001) (Table 1). Finally, the in-word keyboarding
speed represents the writer’s familiarity with the keyboard. It is measured in terms
of the characters produced per second while typing the most common English words
(Zhang, Feng, Deane, & Guo, 2018). This measure is defined using only common
words that were typed correctly without any editing, in order to obtain a purer mea-
sure of keyboarding skill. As a result, this speed is likely to be the upper-bound
of a writer’s typing speed. Typing speed, so defined, is only moderately related to
essay score (Pearson’s r = 0.31) and to the total number of keystrokes produced in
the writing process (Pearson’s r = 0.40), and, as expected, is weakly and negatively
related to total time spent on task (Pearson’s r = −0.07).

We clustered students on these four variables using Ward’s minimum-variance
method (Ward, 1963). The central notion inWard’smethod is tominimize thewithin-

Table 1 Pearson’s correlations between clustering input variables

Clustering variable 1 2 3

1. Essay score (2–10)

2. Number of keystrokes 0.59

3. Total time on task (in second) 0.45 0.72

4. In-word keyboarding speed (in character/second) 0.31 0.40 −0.07

Note All correlations are significant at p < 0.0001, N = 740
Copyright by Educational Testing Service, 2019 All rights reserved



Identifying and Comparing Writing Process Patterns … 371

cluster variance using a distance algorithm based on the sum of squares. Murtagh
and Legendre (2011, 2014) provide the algorithms and details of this method. Sev-
eral indices were considered to determine the optimal number of clusters. The cubic
clustering criterion (CCC) was computed, for which a local peak on CCC indicated
a good clustering. We also used the Pseudo F statistic for which the locally highest
value suggested the most desirable number of clusters. R-squared and semipartial
R-squared were also considered in making the decision. For clustering analyses, it is
helpful to visually examine the separation (or overlap) between the clusters’ locations
on a n-dimensional space, where n refers to the number of input variables. However, it
is impossible to project a n-dimensional space if n> 3. Canonical discriminant anal-
ysis, as a dimension reduction method, offers one solution to this problem (Rencher,
1992). Canonical discriminant analysis finds the linear combination of the input vari-
ables that can explain the largest proportion of the between-cluster variance. Cooley
and Lohnes (1971) gives the mathematical basis for the canonical discriminant anal-
ysis. In this study, we generated the scatter plot between the canonical variables and
visually examined the degree of separation between identified clusters. The analyses
were conducted using SAS®. Specifically, the function proc cluster was used with
method = ward and specifications of ccc, pseudo, and rsquare, as evaluation criteria;
and the function proc candisc was applied for the canonical discriminant analysis.
The identified clusters were then interpreted based the distributions of the cluster-
ing variables. MANOVA and Tukey’s post-hoc multiple comparisons were further
conducted to compare the means of input variables between clusters. The dependent
variables in MANOVA were the four clustering variables, and independent variable
was the cluster assignment. Pillai’s Trace and F statistics were used to evaluate the
model effect.

2.3 Comparing the Clusters (RQ2)

Once clusters were identified, we compared the clusters based on two aspects. First,
we compared the sequential patterns duringwriting across clusters. That is, we exam-
ined how the values of specific variables changed at different stages in the writing
process. We examined three specific variables (or characteristics): the median pause
interval between keystrokes (an indicator of fluency), the ratio of deletions to inser-
tions (an indicator of editing behavior), and general writing speed (total number of
keystrokes divided by time on task) as another indicator of fluency. These were the
features analyzed in Zhu, Zhang, and Deane (2019) where the authors studied the
sequential patterns on these features for different gender and ability groups. Sta-
tistical transformations were taken on two of the three features for the purpose of
normalization (Table 2).

To capture the changes in one’s writing process within a writing session, each
keystroke log sequence for each student was evenly divided into 30 segments, based
on the total active writing time (i.e., time between first and last keystrokes). This way,
each log sequence was reduced to 30 data-sampling points, each corresponding to a
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Table 2 Process variables used for analyses of sequential patterns

Short name Calculation Interpretation Transformation

MedIKI Median pause interval
between keystrokes

Overall composition
fluency

Median of Log(IKI)s

DIRatio Ratio of deletion over
insertion

Extent of editing of
any kind

Log((del +1)/ins)

GenSpeed Number of keystrokes
per second

General writing speed

Copyright by Educational Testing Service, 2019 All rights reserved

Table 3 Editing-related summary features

Summary editing feature Definition

AmountofDiscardedText Percentage of deleted characters as a function of total
number of keystrokes

RateTypoCorrection Log ratio of number of corrected typographical errors
over the number of uncorrected typographical errors

MedianJumpLength Median distance of all jumps

ProportionPreJump-PauseTime Percentage of time spent before making a jump as a
function of total time on task

MedMaxWordEdit-PauseTime Median length of the longest in-word pauses

ProportionEditedChunks Percentage of edited sequences in terms of number of
keystrokes produced as a function of total number of
keystrokes

ProportionEditedWords Percentage of words that were edited as a function of
total number of words written during text production
including those deleted later

ProportionMinorEdits Percentage of text that were edited with no more than
two characters as a function of total number of
keystrokes

ProportionMultiWord-Delete Percentage of deleted sequences that were edited with
no more than two characters as a function of total
number of keystrokes

Copyright by Educational Testing Service, 2019 All rights reserved

subsession in the writing process, which also allowed us to identify corresponding
points in the writing process across keystroke logs. We aggregated the data for each
cluster, and calculated the median value for each variable in Table 2 at each of the
30 sampling points for members of that cluster.

We ran a simple linear regression for each cluster by regressing the characteristic
of interest on the subsession sequence (1–30) and compared the intercepts and slopes
between the clusters. In cases where the trend was not linear, we also applied a non-
parametric approach – LOESS smoothing – to compare and visualize the trends
on each characteristic between clusters (Cleveland and William, 1979). The 95%
confidence interval bands were also generated. The SAS function proc loess with
smooth = 0.6 was used.
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In addition to the sequential patterns over time, we compared the clusters, based
on a number of selected summary features that were designed to characterize editing
behaviors. The summary features of interest are described in Table 3. The summary
features were computed based on the entire keystroke log (as opposed to by subses-
sion). We ran MANOVA with the independent variable being the cluster assignment
and dependent variables being the summary editing features. Tukey’s post-hocmulti-
ple comparisons were conducted to detect any significant mean differences between
clusters. This analysis would further assist us in explaining the differences between
clusters in a more substantive way from the perspective of text-editing behaviors.

3 Results

3.1 Clustering of Writing Logs (RQ1)

Based on the Ward’s minimum variance cluster analysis, all clustering criteria sug-
gested four clusters. Both the CCC and pseudo F statistics peaked at four clusters
(Fig. 1), while the four clusters explained 80% of the total variance. The elbow turn-
ing points for the R-squared and semipartial R-squared were also located at the four
clusters (not shown), suggesting that the increase in R-squared became small once
going beyond four clusters. Based on these results, we decided to move forward with
four clusters as the most parsimonious solution.

Canonical discriminant analysis was used to visually examine the separation
between the clusters. The result of the canonical discriminant analysis revealed that,
in our data, the first two canonical variables explained nearly 100% of the between-
cluster variance (Table 4). Hence it is reasonable to project the four clusters on a
two-dimensional plane. The scatter plot between the first and second canonical vari-
ables (Fig. 2) shows that the four clusters are rather separated from one another,
which further justifies the four cluster solution.

Fig. 1 Clustering criteria results. NoteCCC (left) and Pseudo F (right) statistics against the number
of clusters
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Table 4 Variance explained by canonical variables

Canonical variable Canonical correlation Squared canonical correlation

1 0.94 0.89

2 0.41 0.17

3 0.10 0.10

Copyright by Educational Testing Service, 2019 All rights reserved

Fig. 2 Two-dimensional plot between first and second canonical variables

To interpret the clusters, Table 5 gives the means of each clustering variable for
each cluster. MANOVA and post-hoc multiple comparisons were further carried out
to compare the means. MANOVA results indicated a statistically significant overall
effect for cluster, with theMANOVA test statistic Pillai’s Trace = 1.07, F(12, 2205) =
101.79, p < 0.0001. For each column in Table 5, the same letter superscription (in a
column) indicates that the means are not statistically different, whereas the different
letter superscription indicates that the means are significantly different.

The results show that the number of students falling into each cluster is relatively
even ranging from 103 to 217. The MANOVA analyses revealed that the four clus-
ters were significantly different on their mean essay scores, mean total number of
keystrokes produced during the text production, andmean total time spent onwriting.

Cluster 1 has the highest mean essay score (6.73 on the scale of 2–10), spends
on average the longest time on writing, produces the most number of keystrokes,
and shows the fastest keyboard typing speed. These patterns indicate that Cluster 1
consists of relatively more fluent and capable writers. Writers in Cluster 2 receive,
on average, lower essay scores than writers in Cluster 1; they also display a slower
typing speed and spend, on average, 3.4 min less on writing than writers assigned to
Cluster 1. It is noteworthy that Cluster 2writers produce significantly fewer keystroke
actions on average than Cluster 1 writers (1533 in Cluster 2 vs. 2426 in Cluster 1),
possibly because they are much less fluent typists. Cluster 3 – the next lower scoring
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Table 5 Results of clustering

Cluster N Essay score
(2 to 10)

Number of
keystrokes

Total time on
task (in second)

Keyboarding
speed (in
character/second)

1 103 6.73a 2426a 1402a 5.25a

2 216 6.04b 1533b 1198b 4.28b

3 204 5.32c 1105c 804c 4.42b

4 217 4.13d 596d 429d 4.05c

Note A different superscription letter in each column suggests a significant mean difference at p ≤
0.05 within a column
Copyright by Educational Testing Service, 2019 All rights reserved

group than Cluster 2 – spends, on average, 804 seconds (13.4 min) on writing,
significantly less than Clusters 1 and 2. Compared to the highest scoring group
Cluster 1, Cluster 3 writers produce less than half of the keystroke actions. Cluster
3 writers also produce fewer keystrokes than Cluster 2; however, their typing speed
is not significantly different from Cluster 2 writers. It is possible that the low mean
essay score for Cluster 3 writers is due to a lack of writing effort, low motivation,
problematic writing strategies, and/or other linguistic struggles. Finally, Cluster 4
writers appear to be struggling with the writing task: they have the lowest mean
human scores (4.13 on average), spend only on average 429 seconds (about 7 min)
on the task, demonstrate the slowest average in-word typing speed among the four
clusters, and produce only 596 keystrokes on average during the writing process.

In sum, findings in RQ1 show that, using the four basic writing performance
indicators, students’ logs can be grouped into four meaningful clusters, in which
higher scores correlate with more time on task, faster keystrokes, and a larger total
number of keystrokes produced. Additionally, writing efforts and motivation may
play a role in generating higher quality text.

3.2 Comparing Clusters (RQ2)

Next, we compared the four clusters based on two sets of features that were not
directly used for the clustering purpose. First, the clusters were compared based
on sequential patterns on three writing process characteristics. Second, the clusters
were compared based on a selected set of features that summarized different editing
behaviors.

Comparing Sequential Patterns. The sequential pattern over the course of writ-
ing process for each cluster was examined based on the estimated parameters of
intercept and slope using simple linear regression; that is, regressing the process
characteristics on writing subsessions 1–30. The trends were also visually examined
using non-parametric LOESS smoothing for each of the three characteristics. The
three characteristics were described earlier in Table 2: the median pause interval
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Table 6 Estimated parameters of simple linear regression

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(n = 103) (n = 216) (n = 204) (n = 217)

MedIKI

Intercept −1.386 (0.010)*** −1.197 (0.008)*** −1.234 (0.008)*** −1.167 (0.014)***

Slope −0.001 (0.001) −0.001 (0.000)* −0.000 (0.000)* −0.000 (0.000)

DIRatio

Intercept −1.918 (0.033)*** −2.084 (0.030)*** −2.226 (0.039)*** −2.547 (0.047)***

Slope −0.006 (0.002)* −0.009 (0.002)*** −0.005 (0.002)* 0.002 (0.003)

GenSpeed

Intercept 1.724 (0.034)*** 1.326 (0.036)*** 1.585 (0.048)*** 1.682 (0.055)***

Slope 0.005 (0.002)* 0.002 (0.002) 0.000 (0.003) −0.001 (0.003)

Note ***Statistically significant at p < 0.0001, **p < 0.001, *p ≤ 0.05. Standard errors are in
parentheses
Copyright by Educational Testing Service, 2019 All rights reserved

between keystrokes (logged), ratio of deletion over insertion (logged), and number
of keystrokes per second.

Table 6 presents the intercept and slope parameter estimates of the simple linear
regression. The regressions were run separately for each cluster. An assumption of
simple linear regression is that the relationship between time (writing subsessions
1–30) andwriting characteristic (i.e., MedIKI, DIRatio, and GenSpeed) is linear. The
patterns of their relationships can be directly observed, however, in the corresponding
plots (Fig. 3), which suggest a nonlinear trend in some cases.

For the MedIKI, the result indicates that Cluster 1 has much shorter median
IKIs throughout the writing process than the other clusters. The first panel in Fig. 3
shows that, for Cluster 1 (first left), the MedIKIs are slightly higher at the beginning
of writing, suggesting slower writing at the start of writing process. And the level
of fluency, as indicated by logged median pause intervals between keystrokes, is
increased in the middle and slightly dropped again towards the end of the writing
process. The result of the insignificant estimated slope parameter of the simple linear
regression (−0.001) is possibly due to this potential quadratic pattern. The quadratic
pattern between time and MedIKIs observed in Cluster 1 is not observed for Cluster
2. For Cluster 2, there appears to be an increasing trend on fluency (indicated by
MedIKI) as writing proceeds, based on the significant slope parameter estimate,
although the degree of the slope (−0.001) is rather minimal. It is fair to conclude
that, for Cluster 2, the level of fluency appears to be quite consistent over the course
of text production. Cluster 3 shows a similar pattern to Cluster 2 with a consistent
level of fluency over the course of the writing process. The level of fluency in Cluster
3 even appears to be slightly faster than Cluster 2. Cluster 4, in general, shows
the lowest level of fluency as measured by MedIKI among all clusters. As for the
sequential pattern, Cluster 4 does not exhibit either a linear or a quadratic trend. From
the far-right figure in the top panel in Fig. 3, a quarter into the writing process, the
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level of fluency in Cluster 4 appears to drop notably, but goes back on and remains
on that level throughout the remaining time of writing.

TheDIRatio provides ameasure of the extent of awriter’s overall editing behavior.
Deletion, in the current context, captures most kinds of editing that a writer conducts.
Throughout the writing process, generally speaking, Cluster 1 shows more editing
behavior than Cluster 2; Cluster 2 shows similar extent of editing to Cluster 3,
although not with the same sequential pattern; and Cluster 4 shows the least extent
of editing behavior of all clusters (Fig. 3). This result is evident based on both the
intercept estimates (−1.918 for cluster 1, −2.084 for cluster 2, −2.226 for cluster 3,
and −2.547 for Cluster 4 in Table 6) and the trend lines in Fig. 3. For both Clusters 1
and 2, there is the greatest number of deletion actions relative to insertion actions at
the beginning of the writing process, with this relative deletion decreasing steadily
as writing proceeds. Simple linear regressions detect a statistically significant linear
trend for both Cluster 1 and Cluster 2 (Table 6). There is also a significant linear
trend detected for Cluster 3, for which the slope estimate is close to that of Cluster
1, suggesting that the relative number of deletions to insertions is greater at the
beginning of the writing and it becomes lower as time goes along. However, it is
observed (second panel in Fig. 3) that Cluster 3 writers appear to conduct somewhat
more deletion relative to insertion at the very end of the writing process. In contrast,
the trend for Cluster 4 (the lowest scoring, struggling group) is again quite distinctive
from that for the other three clusters. First, as mentioned earlier, Cluster 4 writers
show overall the least extent of editing behaviors; and second, their editing trend
across the writing process is not linear, but visually quadratic. Specifically, they
appear to conduct more editing in the middle of the writing process, and less editing
at the beginning and end of the writing process.

The number of keystrokes per second is an indication of a writer’s general writing
speed. Higher speed indicates greater fluency. It is not surprising that Cluster 1
showed notably the greatest speed and fluency, compared to Clusters 2, 3, and 4.
Cluster 1 further reveals a linear increase in general speed as writing proceeds. The
estimated slope parameter (0.005) is significant at p ≤ 0.5 level. It is interesting to
find that even though Cluster 2 has significantly higher average essay scores than
Clusters 3 and 4, the general writing speed for Cluster 2 is slower than those two
clusters. The estimated intercept of simple linear regression is 1.326 for Cluster 2,
which is more than 0.2 points lower than Cluster 3 (1.585, Table 6) and more than 0.3
points lower than Cluster 4 (1.682). This phenomenon is also apparent in the bottom
panel in Fig. 3 where the trend line is visibly lower for Cluster 2 than Clusters 3 and
4. When combined with the previously reported results, we speculate that Cluster
2 writers, compared to Clusters 3 and 4 writers, are more persistent writers, even
though they are not necessarily faster or more adept at keyboarding. Additionally, all
but Cluster 1 show a quadratic pattern on this general writing speed measure: higher
speed at the beginning and end of writing, and lower speed in the middle, although
the pattern is more visibly apparent for the two lower scoring groups – Clusters 3
and 4. This result is consistent with findings reported in Zhang, Hao, Li, & Deane
(2016) and Zhu et al. (2019).
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Fig. 3 Sequential patterns on writing characteristics across clusters. Note From top to bottom
panels: MedIKI, DIRatio, and GenSpeed. Values 1–30 on the X-axis represent the 30 subsessions
in each cluster
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Table 7 Comparison of clusters based on editing summary features

Summary editing feature Cluster 1 Cluster 2 Cluster 3 Cluster 4

(n = 103) (n = 216) (n = 204) (n = 217)

AmountofDiscardedText 0.36a 0.29b 0.23c 0.15d

RateTypoCorrection 4.08a 3.65b 3.33c 2.73d

MedianJumpLength 110a 67b 81ab 44c

ProportionPreJumpPauseTime 0.09a 0.08ab 0.07ab 0.06b

MedMaxWordEditPauseTime 0.69a 0.99ab 0.96b 1.09c

ProportionEditedChunks 0.001ab 0.001a 0.001ab 0.001b

ProportionEditedWords 0.018a 0.015b 0.014b 0.012c

ProportionMinorEdits 0.019a 0.017b 0.017b 0.016b

ProportionMultiWordDelete 0.007a 0.006ab 0.006b 0.005c

Note A different superscription letter in each row suggests a significant mean difference at p ≤ 0.05
within a column
Copyright by Educational Testing Service, 2019 All rights reserved

Comparing Editing Behaviors. Finally, we compared the four clusters based on
selected features that intended to characterize different kinds of editing behavior
(Table 7). MANOVA results indicate a significant overall model effect: Pillai’s Trace
value is 0.64, with F(27.2049) = 20.54, p < 0.0001.

Generally speaking, Cluster 1 showed the greatest extent of various editing behav-
iors during the writing process. Specifically, compared to the other clusters, Cluster 1
as the most proficient group discarded more of their text relative to what was inserted
during writing (which is consistent with the middle panel in Fig. 3); were more likely
to correct typos immediately during their writing process; conducted text changes
at places that were further from the previous cursor position; edited more words
relative to how much they wrote while having shorter in-word pause time during
the editing; and showed more small edits relative to how much they wrote. Cluster
4, as the lowest scoring group, showed the opposite pattern on all summary editing
features compared to Cluster 1. Clusters 2 and 3 fell somewhere in the middle.

4 Discussion

There is a growing literature on the use of process data in digitally-delivered assess-
ments (Ercikan and Pellegrino, 2017). This study represents our attempt to group
students into different writing proficiency clusters and analyze students’ editing
behaviors in the identified clusters during their writing process. The results of this
study can help inform the kinds of feedback that can be given to teachers and stu-
dents. This study analyzed the sequential patterns over the course of writing on three
process characteristics for the identified writer groups; namely, the median pause
interval between keystrokes, the ratio of deletion over insertion, and the number
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of keystrokes produced per second. As a follow-up study to Zhu et al. (2019), each
keystroke log sequence was evenly divided into 30 segments using total writing time,
representing different stages of the writing process.

The results showed that, using four basic performance indicators, four meaningful
clusters of writers could be identified. The four clusters differed significantly on their
essay quality andwriting processes. Theydiffered on themean essay score,mean total
time spent on task, andmean total number of words in the final response. Specifically,
the contrast between Clusters 2 and 3 is worth noting and discussing. These two
clusters were statistically different on the above-mentioned three dimensions (i.e.,
score, time, and length) but not on their keyboarding skill as measured by the in-word
typing speed. Results in RQ2 further revealed that Cluster 2 writers did not appear
to be more fluent than cluster 3 writers, but showed greater writing effort and more
engagement in the task than Cluster 3 writers. Cluster 2 writers spent more time on
writing and edited more during the writing process, even though their typing skill
was not statistically better and they appeared to be slower in general writing speed
than Cluster 3 writers. One hypothesis is that motivation and general effort played
a role in the detected differences between Clusters 2 and 3. A valuable follow-up
study would be to evaluate this hypothesis. The four identified clusters also showed
distinct sequential patterns over the course of writing on three process characteristics
and, as well, differed on their editing behaviors during text production. The results
of this study are largely consistent with previous findings that stronger writers tend
to manage their writing more efficiently, produce text more fluently, and engage
in more editing and revision. By contrast, weaker writers tend to produce text less
efficiently and pause more frequently in locations that suggest difficulties in typing,
spelling, word-finding and other transcription processes (Alves, Castro, de Sousa, &
Stromqvist, 2007; Stevenson, Schoonen, & de Glopper, 2006). A final note is that
the results of this study are limited to the writer population, which was comprised
of U.S middle school students. As for a future study, it will be of value to examine
whether the identified writer clusters hold across different writing genres and if the
cluster assignment interacts with writers’ demographic and social backgrounds.
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Modeling Examinee Heterogeneity
in Discrete Option Multiple
Choice Items
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Abstract A new format for computer-based administration of multiple- choice
items, the discrete option multiple choice (DOMC) item, is receiving growing at-
tention due to potential advantages related both to item security and control of test-
wiseness. A unique feature of the DOMC format is the potential for an examinee to
respond incorrectly to an item for different reasons—either failure to select a correct
response, or selection of a distractor response. This feature motivates consideration
of a new item response model that introduces an individual differences trait related
to general proclivity to select response options. Using empirical data from an actual
DOMC test, we validate the model by demonstrating the statistical presence of such
a trait and discuss its implications for test equity in DOMC tests and the potential
value for added item administration constraints.

Keywords Item response model · Discrete option multiple-choice items ·
Computer-based testing

1 Introduction

The multiple-choice (MC) item format is commonly used in large-scale educational
tests due to its simple and objective scoring. However, weaknesses of the MC format
such as a vulnerability to testwiseness and test security compromise threaten test
validity by increasing construct-irrelevant variance.Anew item format called discrete
option multiple choice (DOMC) was recently suggested as a potential alternative
(Foster & Miller, 2009).
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The DOMC item, which is typically administered by computer, presents an item
stem followed by a sequential and random presentation of response options rather
than presenting all options at once as in MC items. For example, an item asking
“Which determines the loudness of sound?” can have response options of (A) fre-
quency (B) period and (C) amplitude, where (C) is the answer. In DOMC format,
examinees are asked to choose “yes” or“no” to the question “Does this determine the
loudness of sound?” with each option randomly presented. An item may also have
more than one keyed option. The DOMC item is scored as correct if the examinee
correctly endorses all keyed option(s), but is scored as incorrect if the examinee
either fails to endorse a keyed option or endorses a distractor option. Because the ad-
ministration of response options ends as soon as either an incorrect response is made
or the last of the keyed response options is presented (except for the cases where an
additional unscored response option is presented, as DOMC randomly assigns it with
a fixed probability for purposes of masking the correctness of the final response), not
all response options are presented to all examinees. Therefore, DOMC protects item
security, and it also reduces the effect of testwiseness on test performance because
it presents response options to examinees one at a time (Foster & Miller, 2009).

The purpose of this paper is to propose a new item response model that potentially
provides a useful way to understand psychometric differences between DOMC and
MC items. We speculate that when presented a DOMC item, one challenge faced
by examinees will be a general uncertainty as to the degree of “correctness” for
an individually presented response option, and whether it is sufficient to warrant
endorsing it as a keyed response. How examinees deal with that uncertainty may
vary; some may adopt a lower threshold in what is viewed as correct, others a higher
threshold. The possibility of such an individual difference reflects a fundamental way
in which DOMC items may perform differently than MC items where all examinees
see all response options. Such an individual difference also ultimately affects the
correctness of items and has the potential to contribute to inequity because the options
are presented in randomorder in theDOMCformat.A complete randomization of key
location across items may lead to different average key location across examinees.
Examinees who have a high tendency to pick options may be disadvantaged if their
average key location is relatively late while those with a low tendency to pick would
be disadvantaged if the average key location is earlier.

In this respect, we propose an item response model that introduces an individual
differences trait related to a general proclivity to select response options. Using
empirical data from an actual DOMC test, we validate the model by demonstrating
the statistical presence of such a trait and discuss its implications for test equity in
DOMC tests in relation to key location. Finally, we consider use of the model as a
possible way to reduce the effect of this nuisance trait and key location on test scores.
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1.1 An Item Response Model for DOMC Items

In our proposed model, we consider an examinee’s responses to each presented
response option within and across items by treating each response option as though
they are separate “items”. For a response option (j) presented to examinee (i), we
model the probability of endorsing the option as:

P(Uij = 1|θi, ηi) = exp(ajθi + bj + ηi)

1 + exp(ajθi + bj + ηi)
(1)

where Uij = 1 implies that examinee i selects option j if presented, θi represents
an examinee’s proficiency on the skill of interest, and ηi represents an examinee’s
tendency to select an option (whether it is keyed or distractor). Positive and nega-
tive values of ηi reflect tendencies to over-select and under-select presented options,
respectively, irrespective of the correctness of those options. Table1 illustrates an
example of actual response patterns for examinees with a similar level of θ̂i but dif-
ferent levels of η̂i. The responses to options within each of the first 9 items presented
to each examinee are shown (items 1 through 9 for one examinee are not identical to
the items for the other because items are randomly administered in DOMC format).
The responses of 0 and 1 respectively represent the rejection and selection of the
option, and dots represent the options that are not presented to the examinees (due to
the fact that options are no longer presented once the examinee gets the item correct
or incorrect). The responses in the table show that the examinee with high η̂i tends
to endorse more often than the examinee with low η̂i while the examinee with low η̂i
tends to reject options more frequently than the examinee with high η̂i. The propor-
tions of selection (P(1)) and rejection (P(0)) also indicate that the examinee of high
η̂i endorsed most of the response options presented (about 76%) whereas the exam-
inee of low η̂i endorsed only about 36% and rejected 64% of the response options
presented. Interestingly, this difference in response behavior is apparent despite the
fact that the overall performance on the test is approximately the same (θ̂i = −.46,
−.48) for the two respondents.

The parameters aj and bj in equation (1) respectively represent discrimination
and difficulty parameters for option j. The aj estimates are positive for keyed and
negative for distractor options while the bj estimates are positive for more frequently
selected options and negative for less frequently selected options. An example of
these parameter estimates for options within items are presented in Table2. Items 1,
7, and 21 each has one, two and three keyed options, and items 1 and 7 have four

Table 1 An example of actual responses for different ηi levels

θ̂i η̂i i1 i2 i3 i4 i5 i6 i7 i8 i9 P(1) P(0)

−0.46 0.91 01 ·· 1 · · · 111 · 1 · · · 10 ·· 11 ·· 1 · · · 01 · · · 1 · · · 0.76 0.24

−0.48 −0.60 1· · · 000 · 0 · · · 000 · 0 · · · 0000 01 ·· 110 ·· 01 ·· 0.36 0.64
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Table 2 An example of item estimates for one, two, and three keyed items

Item option 1 option 2 option 3 option 4 option 5

number âj b̂j âj b̂j âj b̂j âj b̂j âj b̂j

1 1.49 0.98 −1.23 −1.92 −1.14 −1.23 −1.93 −1.90 · ·
7 0.46 0.53 0.14 0.39 −1.21 0.11 −0.90 0.18 · ·
21 0.88 2.50 0.99 1.99 0.38 0.16 −1.02 −1.23 −1.88 −1.21

possible options while item 21 has five possible options. Noting that option 1 is a
keyed option for item 1, options 1 and 2 are keyed for item 7, and options 1, 2,
and 3 are keyed for item 21, we can observe that aj estimates for keyed options are
positive and those for distractor options are negative. Such a property of aj having
both positive and negative values separates θi from ηi which has constant loadings
of 1 across all options and items.

2 Methods

The data we use are operational data from an information technology certification
test delivered in the DOMC format. The dataset has 648 examinees and a pool of
83 items (two test forms with 59 items each) where 54 items are single-keyed items,
24 items are two-keyed items, and 5 items are three-keyed items. Each examinee
is administered one of the 59-item forms. Items with one keyed option have three
incorrect response options, whereas all items with multiple keyed options have two
incorrect response options.

We fit the model using a Bayesian (Markov chain Monte Carlo) estimation algo-
rithm using WinBUGS1.4 (Lunn, Thomas, Best, & Spiegelhalter, 2000). For priors
of the option parameters, we assume a ∼ Normal(0, 1) and b ∼ Normal(0, 1). For
the examinee parameters, we assume θ ∼ Normal(0, 1) and η ∼ Normal(0, var)
where 1/var ∼ Gamma(1, 1).

We seek to validate the model in two ways. First, we compare model fit with a
model that excludes ηi using the Deviance Information Criterion (DIC) (Spiegelhal-
ter, Best, Carlin, & van der Linde, 2002). Second, we examine the predictive effects
of ηi on the resulting test score. Specifically, using ηi estimates from the WinBUGS
analysis, we examine the effects of η̂i and key location on the test score using re-
gression analysis. We define loci to be the average scheduled location of the last
key options across items for the examinee, a value determined from the randomly
assigned schedule of response options for the examinee. Then we fit

Xi = β0 + β1θ̂i + β2η̂i + β3loci + β4η̂iloci + ei, ei ∼ N (0,σ2) (2)
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where Xi is a total sum score for examinee i, loci is the average last key location for
all items presented to examinee i, and β4 represents the interaction effect between η̂i
and loci. Each of the variables (θ̂i, η̂i, and loci) were mean centered.

To evaluate implications for test inequity, we examine the distributions of true
scores for a hypothetical examinee at a specific level of θ and η from 1000 hy-
pothetical administrations of the DOMC test. We compare the resulting true score
distributions under two hypothetical test administration conditions, one based on
a constrained and one based on a complete randomization of key location. For a
constrained randomization condition, we fix the distribution of key locations across
examinees and randomize under that constraint. Specifically, we constrain 9, 10, 10,
and 9 single-keyed items to have key locations of 1, 2, 3, and 4, respectively; 5, 6,
and 6 two-keyed items to each have last key locations of 2, 3, and 4; and 1, 2, and 1
three-keyed items to have the last key locations of 3, 4, and 5, respectively. In current
practice, a complete randomization approach is used. We seek to demonstrate how a
constrained randomization approach may help protect against test inequity.

3 Results

3.1 Validation of the ηi Trait

Using the Deviance Information Criterion (DIC), we find the model in equation (1)
provides a better comparative fit to the empirical data than a model that excludes ηi
(Table3).

We also examined a scatterplot of the θi and ηi estimates. One of the features
of the η̂i trait is that its variability is greatest among low θ̂i examinees (see Fig. 1).
This result illustrates how the tendency to over- or under-select options could be
seen as a factor contributing to low ability estimates on DOMC tests. In this respect,
the ηi estimate also provides diagnostic information, as poor performance of the test
may often be due to tendencies to either over-select or under-select among response
options. Also, the correlation between η̂i and θ̂i turns out to be −0.146 which is
close to zero, indicating that a tendency to over- or under-select options does not
necessarily correlate with an examinee’s proficiency.

Table 3 A comparison of model fit

Models Dbar Dhat pD DIC

without ηi 94424.6 93166.9 1257.8 95682.4

with ηi 92271.5 90496.4 1802.1 94073.5
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Fig. 1 A plot of ηi estimates
by θi estimates
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3.2 Effects of η̂i and Key Location on Test Scores

Test scores for examinees with the same θi but different ηi can differ due to random
differences in the average scheduled key location. As noted earlier, examinees of
extreme positive ηi will be disadvantaged by later average key locations while those
with extreme negative ηi will be disadvantaged by earlier average key locations.
Figure2 shows how item difficulty changes differently in relation to key location
for examinees of positive η̂i versus negative η̂i. The graph reports the empirically
estimated item difficulty (item-level p-values) comparing examinees with either pos-
itive or negative η̂i. The lines for examinees of positive and negative η̂i are reversed
as the key location changes. Specifically, we can observe that early key locations
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make items more difficult for examinees of negative η̂i who tend to under-select re-
sponse options, whereas late key locations make items more difficult for examinees
of positive η̂i.

Table4 shows the result of our regression of test score on η̂i, the average last key
location, their interaction, and the examinee proficiency estimates. As expected, loci
has a negative effect, meaning a later average key location makes the test more diffi-
cult. In addition, the negative interaction implies that a more positive η̂ strengthens
this effect, making a later key location particularly disadvantageous for examinees
of high η̂. This also can be interpreted as implying that an earlier key location can be
advantageous for examinees of high η̂ while disadvantageous for examinees of low η̂.

The graphs in Fig. 3 illustrate the interaction effect between η̂i and key location
for low, average, and high ability groups. They suggest that the effects of η̂i can
yield different levels of bias depending on the average key location. The bias seems
to be larger in positive η̂i levels, and up to ±10 score points of bias can be created.
Specifically, for examinees with a high level of η̂i, those who are presented with early
and late key locations can respectively obtain scores 10 points higher and lower than
those who are presented items at the mean key location.

Table 4 Estimated effects of variables on test scores

Coef. S.E. t p-value

Const. 19.69 0.09 208.66 0.000

Theta(θ̂i) 10.26 0.10 105.60 0.000

Eta(η̂i) 2.22 0.23 9.56 0.000

Key loc. −7.51 0.70 −10.76 0.000

Eta x Key loc. −7.89 1.80 −4.39 0.000

Fig. 3 Interaction effects of η̂i and key location
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3.3 Constrained Administration of DOMC Items

The distributions of true scores under complete and constrained randomization of
key location were compared. The box plots in Fig. 4 illustrate the distributions of true
scores for examinees of θi = −0.5, 0.5, and θi = 1.5 at different levels of ηi for two
test forms (f1 and f2). The distributions of true scores under the complete randomiza-
tion condition (which is currently applied for DOMC items) has a large variability,
and the variance is substantially reduced under the constrained randomization con-
dition. This indicates that the effect of key location (including the interaction effect
between ηi and key location) is reduced when the distribution of key locations is
constrained to be equal across examinees. Such results suggest that a constrained
randomization of key location may significantly reduce test inequity effects of ηi
that currently exist.

4 Conclusions

Our results confirm a distinguishable tendency for examinees to over- and under-
select response options in DOMC items as captured by the ηi parameter. An addi-
tional goal in proposing a model attending to these effects is to study how ηi may
interact with the random administration of response options to increase variability
in the effects of ηi across administrations. Because the random administration of
response options does not guarantee equal average key location across examinees,
examinees’ different tendencies to endorse or not endorse response options when
uncertain about the options can create bias in test scores, which leads to a test in-
equity issue. Our study shows that such an interaction can be controlled through a
constrained randomization procedure that ensures a consistent distribution of last
key location across administrations, a constraint that should seemingly be easy to
implement and at little cost to test integrity. By controlling the distribution of key
locations, we can fix the average last key location across examinees and reduce the
effects of ηi due to different average key locations. Finally, the model may also serve
a diagnostic purpose, particularly for lower-ability examinees, in that estimates of
ηi can help identify respondents that are miscalibrated in terms of their response
behavior in the presence of uncertainty.

There are a number of potential directions for future work with this model and/or
DOMC items. For example, one question is whether examinee estimates of ηi remain
stable across administrations. It might be speculated that the variability in ηi should
diminish with increased examinee experience with DOMC items, as the format is
still relatively new to most respondents. Along these lines, it may even be useful to
study whether ηi changes within a single test administration. Given the length of the
current test, it is conceivable that examinees learn to adjust their response behavior
in productive ways before they reach the end of the test. Another area of potential
interest concerns item effects. Our analyses assume a consistency in the effects of
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Fig. 4 Box plots of true scores for complete and constrained randomization of key location
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ηi across items. It might be explored whether this is in fact the case, or whether
the behavior is more common with certain items or response options than others.
Moreover, we can also examine whether the effect of ηi changes across examinees’
ability levels. Though we did not consider the ηi effect to vary across ability levels in
our regression analysis, it is probable that examinees of low ability are more largely
affected by ηi (as seen from a larger variability of ηi for low θi levels in Fig. 1) because
they encounter an uncertainty more often. Another area of future research should
attend to methods for evaluating the absolute fit of the model. One complexity in
applying the types of posterior predictive checking (PPC) methods commonly used
with Bayesian estimation methods relates to the restrictions imposed on the item
response data structure due to the use of the DOMC format. Specifically, within
a common item, correct or incorrect responses to certain options will preclude the
ability to observe responses to other options within the same item (which will not
be administered as a result of the DOMC format). This problem seemingly applies
to all psychometric models that might be applied under the DOMC administration
format and may require creative solutions. Finally, the results of our model might be
informed by actual interviews with examinees administered the DOMC items. It is
unclear whether the variability we see is related to different beliefs about the relative
likelihoods of keyed/non-keyed response options on the test or is actually driven by
behavior that is inconsistent with probability theory.
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Simulation Study of Scoring Methods
for Various Multiple-Multiple-Choice
Items

Sayaka Arai and Hisao Miyano

Abstract Multiple-choice (MC) format is the most widely used format in objective
testing. The “select all the choices that are true” items, also called multiple-multiple-
choice (MMC) items, is a variation of the MC format, which gives no instructions
about how many correct choices may be selected. Although many studies have been
developed and various scoring methods for MMC items have been compared, the
results have often been inconsistent. Arai and Miyano (Bull Data Anal Japan Classif
Soc 6:101–112, 2017) proposed new scoring methods and compared their scoring
features by conducting numerical simulations of a few MMC item patterns. In this
study, we conducted numerical simulations of all other plausible MMC item patterns
to examine the relationships between examinees’ abilities (true scores) and scores
given by scoring methods. We illustrated the effects of the total number of choices
and correct choices for each scoring.

Keywords Multiple-multiple-choice items · Scoring method

1 Introduction

Multiple-choice format (MC) is the most widely used format in the field of objective
testing. It provides several choices and usually gives only one correct choice of
answers. In a typical MC format, examinees choose one answer. The scoring method
is a binary one that gives 1 point for a correct answer and 0 points for a wrong answer;
there is no middle ground between them.

However, there are also formats that havemultiple correct choices. In such formats,
partial points can be given in accordance with the choices examinees select. For
example, if the number of correct choices is indicated, it is possible to give a partial
point in an easy-to-understand manner such as making it proportional to the number
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of correct choices examinees have selected. On the other hand, if the number of
correct choices is not indicated, the number of correct choices becomes a part of
the question to be answered, so partial points cannot be given in such an easy-to-
understand way.

1.1 Multiple-Multiple-Choice (MMC) Items and Partial
Points

An MC format with no instructions on the number of correct choices is a variation
of the MC format. It is called “multiple-multiple-choice format”,“multiple-mark
format”, or “type X form.” It has also been categorized as a variation of the“multiple
true-false form” (Haladyna, 2004). In this study, we call it multiple-multiple-choice
(MMC) format.

A typical MMC format question is “select all answers that are true.” In the MMC
format, examinees need to judge correctness of all of the presented options. There-
fore, this format is said to be an effective way for measuring detailed knowledge
about a specific field. An example of the MMC format items is shown below (Tsai
& Suen, 1993).

MMC format example
As the sample size increases (select all that are true),
A. the sampling distribution of the mean is more like . . .

B. the t-distribution is more like a normal . . .
C. the number of degrees of freedom . . .

D. . . .

Although it is possible to give partial points in theMMC format, it is not simple to
decide how many points should be given as partial points. Let’s consider the case of
an item that has four choices with correct choices A and B. If the examinee’s answer
is “A and B”, the full score will be given. If the examinee’s answer is “A only” or “A,
B and C”, partial points should be given, but which answer should be given a higher
score? Or, if the examinee’s answer is “A, B, C, and D (all choices)”, should partial
points be given because the correct choices are included in the answer?

1.2 Scoring Method for MMC Format Items

Scoringmethods for theMMC format have been studied for a long time (for example,
Cronbach, 1941). Although many studies have developed and compared scoring
methods for the items of this type, the results have often been inconsistent, except
that giving partial points increases the reliability and validity of the test (Albanese
& Sabers, 1988; Domnich et al., 2015; Tsai & Suen, 1993).

Several scoring methods have been proposed so far. In what follows, we describe
five methods for which N is the total number of choices, nc is the number of correct
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choices, and ni is the number of incorrect choices (N = nc + ni ). Here, at least one
correct choice is assumed to be included, and the same is true for incorrect choices
(0 < nc, 0 < ni ). Also, it is assumed that examinees select xc choices from the
correct choices and xi choices from the incorrect choices (0 ≤ xc ≤ nc, 0 ≤ xi ≤ ni ).
Then it follows that the number of choices selected by examinees is xc + xi and the
number of correct responses (the number of matched pairs)m ism = xc + (ni − xi )
(0 ≤ m ≤ N ). Some of these notations are summarized in Table1 for reference.

Multiple-response (MR) method Only if all the responses are correct (m = N ), 1
point is given, otherwise it is 0 points. This method doesn’t give any partial points.

sMR =
{
1 (m = N )

0 (otherwise)

Count for n options correct (C1) method If all the responses are correct (m = N ),
1 point is given, if there is only one wrong response (m = N − 1), 0.5 points are
given, otherwise it is 0 points.

sC1 =
⎧⎨
⎩
1 (m = N )

0.5 (m = N − 1)
0 (otherwise)

Multiple true-false (MTF)method Consider each choice as an item for a true-false
item and give a partial point proportional to the number of correct responses. This
method has an easy-to-understand scoring policy and was used in many previous
studies.

sMT F = m

N

Jaccard coefficient (Jac) method This method was recently proposed by Arai and
Miyano (2017). It is based on the similarity between the response patterns and the
key patterns. Negative matches are excluded from the numerator. Among the indices
that do not include such a “negative match” in the similarity, the Jaccard coefficient
is the simplest one (Sokal & Sneath, 1963). The range of the score is 0 ≤ sJac ≤ 1.

sJac = xc
nc + xi

Table 1 Notation

Examinee

Select Not select Total

Correct choices xc nc − xc nc
Incorrect choices xi ni − xi ni
Total xc + xi N − (xc + xi ) N
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Negative marking (NM) method In this method, a penalty is given when an exam-
inee selects an incorrect choice. 1

nc
points are given when a correct choice is selected

and 1
ni
points are deducted when an incorrect choice is selected. We call this method

the “negative marking (NM) method” in this study. Giving scores proportional to the
number of correctly selected choices is the same as that used in the Ripkey method
(Ripkey, Case, & Swanson, 1996), but the process performed when incorrect choices
are selected is different. The score will be a negative value when xc < xi , so we set
sNM = 0 when sNM < 0.

sNM =
{ xc−xi

nc
(xc ≥ xi )

0 (otherwise)

1.3 Purpose of Study

Althoughmany studies have developed and compared scoring methods for theMMC
items, the results have often been inconsistent. Arai andMiyano (2017) proposed new
scoring methods and compared their scoring features using numerical simulations.
However, they showed only a few examples.

In this study, we conducted numerical simulations of other MMC item patterns
and examined the relationships between the examinees’ abilities (true score θ ) and
scores given by scoring methods. We illustrated the effects of the total number of
choices and correct choices on each scoring method.

2 Comparing Scoring Methods on the Basis of Desirable
Properties

2.1 Desirable Properties as Partial Points

Partial points should reflect the abilities of examinees properly; that is, it would be
desirable that partial points satisfy the following properties.

– Large number of steps to divide the scores finely;
– Easy-to-understand meaning of partial points, in particular, the meaning of
0 points;

– Low scores for guessing;
– No scores for selecting none or all choices.
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2.2 Properties of Scores and Their Illustrations

We illustrated the effects of the total number of choices and correct choices on each
scoring method (Figs. 1 and 2).

Figure1 shows the number of partial point steps. The Jac method has more steps
than other methods. The Jac method has many steps when nc is large.
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Fig. 2 Partial points in three extreme cases
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Figure2 shows the partial points given in extreme cases. The total number of
choices (N ) varied from 3 to 7. The number of correct choices (nc) varied from 1 to
(N − 1). Figure2a shows the partial points given when the examinees selected their
choices by guessing. The scores shown here are the average values obtained when
the examinees made their choices completely at random. In the MTF method, the
expected values were 0.5 constantly. In the Jac and NMmethods, the expected values
increased as nc increased. In the MR and C1 methods, the expected values were low
in most cases when N was larger than 3. Figure2b shows the partial points given
when the examinees did not select any choices. In theMR, Jac, and NMmethods, the
scores were 0 constantly. In the C1 method, 0.5 score was given when nc = 1. On
the other hand, in the MTF method, a score was given if the examinee did not select
any choices. Figure2c shows the partial points given when the examinees selected
all the choices. In this case, the scores were constantly 0 only for the MR method. In
particular, when nc = N − 1, 0.5 or more points were given for every method except
the MR method. In the MTF and Jac methods, the same points were scored, and the
scores were higher than in other methods.

We calculated the properties of each score from the definition formula for each
scoring method and summarized them in Table2.

Table 2 Score properties

Properties sMR sC1 sMT F sJac sNM

Range of
scores

0 or 1 0, 0.5, or 1 [0, 1] [0, 1] [0, 1]

Meaning of 0
points

m �= N , i.e.,
none of the
choices
selected are
correct

m < N − 1,
i.e., the
number of
incorrect
responses is 2
or more

m = 0, i.e., all
the responses
are incorrect

xc = 0, i.e., no
choices
selected from
correct choices

xc = xw , i.e.,
the number of
selected
correct choices
is the same as
the number of
selected
incorrect
choices

Meaning of 1
point

m = N , i.e., all the choices selected are correct and all the choices not selected are incorrect

Number of
steps

2 3 N + 1 1 + nc(nw +
1) at most

N + 1

No choices 0 points 0.5 points
(nc = 1), 0
points
(otherwise)

nw

N points 0 points 0 points

All choices 0 points 0.5 points
(nc = N − 1),
0 points
(otherwise)

nc
N points nc

N points 1 − ni
nc

points
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3 Simulations

We conducted numerical simulations of MMC items with N choices and nc correct
choices (3 ≤ N ≤ 7, 1 ≤ nc ≤ N − 1) to illustrate the effects of the total number of
choices and the correct choices on each scoring method.

3.1 Simulation Methods

Weassumed that each choice independently follows a one parameter logisticmodel (1
PLM)with its difficulty parameter being zero.Weassumed that the examinees’ θ (true
scores) were −2.7,−2.1,−1.5, . . . , 2.1, 2.7 (10 groups) and that there were 100
examinees in each group. Therefore, the total number of examinees was 100 × 10 =
1000. We generated 1000 examinees’ response patterns using the R package lazy.irt
(Mayekawa, 2018) and calculated scores using the five scoring methods.

For example, for N = 5 and nc = 2, we regarded five choices as five 1 PLM items
and generated five 0/1 item responses per examinee. We set the first two choices as
correct answers, i.e., “11000” is the key response (answer). An examinee’s response
“10100” means xc = 1 and xi = 1, so the examinee’s score is 0 in the MR method,
0 in the C1 method, 0.6 in the MTF method, 0.33 in the Jac method, and 0 in the NM
method.

We calculated Spearman’s rank correlation coefficient in each simulation as an
index representing the relationship between the ability values and the scores.

3.2 Simulation Results

Figure3 shows the simulation results when N = 5. The size of each filled circle
reflects the frequency of scores in each examinees’ group of ability θ . In the MR,
C1, and MTF methods, the relationship of partial points and ability were irrelevant
to the number of correct choices (nc). But in the Jac and NM methods, the number
of examinees obtaining partial points increased with nc.

The results obtained with the Spearman’s rank correlation coefficients are shown
in Fig. 4: in each case, the correlation coefficients in the MTF method were the
highest and those in the MR method were the lowest. Correlation coefficients in the
NM method were as low as those in the MR method when nc = 1.
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Fig. 3 Scatter plots of scores and θ (N = 5)
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4 Discussion

Wecomparedfive scoringmethods forMMCitems from the viewpoint of desirability.
Widely varying scores were obtained with the Jac method, which may reflect the fact
that it gives a large number of partial point steps. The scores obtained by guessing for
the MTFmethod were always 0.5. They were also high for the Jac and NMmethods,
with large nc. The MTF method gave partial points when no choices were selected
and all the scoring methods, except the MR method, gave partial points when all the
choices were selected.
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Scores obtained by guessing or by selecting none or all of the choices should be
low. In the MTF method, scores obtained by guessing were 0.5 and those obtained
by selecting no choices were also high. Although the simulation study results indi-
cated that scores in the MTF method were relevant to θ , the MTF method is not a
recommended method. Both the Jac method and the NM method were even better
than the MTFmethod, although the scores obtained by selecting all the choices were
rather high in both methods. On the other hand, the MR and C1 methods did not
have any such embarrassing features. However, the simulation results showed that
the MR method scores were less relevant to θ .

No single scoring method is optimal; rather, various factors need to be taken into
consideration. These include the purpose of the examination and the policy on giving
partial points, i.e., how many points are given to what kind of answers.

In this study, we compared five possible scoring methods for MMC items and
clarified their characteristics. It is our hope that the results we have described in this
paper will prove to be beneficial to other researchers doing work in this field.
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Additive Trees for Fitting Three-Way
(Multiple Source) Proximity Data

Hans-Friedrich Köhn and Justin L. Kern

Abstract Additive trees are graph-theoreticmodels that can be used for constructing
network representations of pairwise proximity data observed on a set of N objects.
Each object is represented as a terminal node in a connected graph; the length of the
paths connecting the nodes reflects the inter-object proximities. Carroll, Clark, and
DeSarbo (J Classif 1:25–74, 1984) developed the INDTREES algorithm for fitting
additive trees to analyze individual differences of proximity data collected from
multiple sources. INDTREES is a mathematical programming algorithm that uses a
conjugate gradient strategy for minimizing a least-squares loss function augmented
by a penalty term to account for violations of the constraints as imposed by the
underlying tree model. This article presents an alternative method for fitting additive
trees to three-way two-mode proximity data that does not rely on gradient-based
optimization nor on penalty terms, but uses an iterative projection algorithm. A
real-world data set consisting of 22 proximity matrices illustrated that the proposed
method gave virtually identical results as the INDTREES method.

Keywords Additive trees · Three-way data · Individual differences · Iterative
projection

1 Introduction

Additive trees are graph-theoretic models that can be used for constructing network
representations of pairwise proximity data observed on a set of N objects (see, e.g.,
Sattath & Tversky, 1977). Each object is represented as a terminal node in a con-
nected graph; the length of the paths connecting the nodes reflects the inter-object
proximities. Least-squares methods have been proposed for fitting additive trees to
N × N (two-way one-mode) proximity matrices such that the sum of the squared
discrepancies between the observed proximities and the corresponding estimates of
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the path lengths or tree-distances is minimized. Carroll et al. (1984; see also, De
Soete & Carroll, 1989) developed INDTREES, an algorithm for fitting additive trees
to three-way two-mode proximities as they may be collected from multiple data
sources within the context of cross-sectional and longitudinal studies. Individual
differences are modeled explicitly by constructing separate, source-specific additive
trees. INDTREES is a mathematical programming algorithm that uses a conjugate
gradient strategy forminimizing a least-squares loss function augmented by a penalty
term to account for violations of the constraints as imposed by the underlying tree
model.

In this article, an alternative method for fitting additive tree structures to three-
way two-mode proximity data is proposed that uses an iterative projection algorithm
(Deutsch, 2001;Dykstra, 1983;Hubert&Arabie, 1995;Hubert, Arabie,&Meulman,
2006) and does not rely on gradient-based optimization nor on penalty terms for min-
imizing a constrained least-squares loss function. Comparing the performance of the
iterative projection algorithm with that of INDTREES would be highly desirable—
unfortunately, INDTREES is not available as an executable program. Hence, the
INDTREES algorithm was reconstructed based on the original publication by Car-
roll et al. (1984) in the Journal of Classification and reprogrammed in R so that the
performance of both algorithms could be illustrated by analyzing a real-world data
set. (The R code is available from the authors upon request.)

2 Definitions and Concepts

2.1 Additive Trees and the Four-Point Condition

An additive tree is a weighted acyclic connected graph. The terminal nodes of an
additive tree represent a set of N objects O = {O1, . . . ,ON }. The weights along
the paths connecting objects Oi,Oj, with 1 ≤ i, j ≤ N—typically with a distance
interpretation—can be collected into an N × N matrix Δ = {δij}. As a necessary
and sufficient condition for a unique additive tree representation of Δ, the δij must
satisfy the additive inequality or four-point condition (Barthélemy & Guénoche,
1991; De Soete & Carroll, 1996; Semple & Steel, 2003):

δij + δkl ≤ max
{
δik + δjl, δjk + δil

}
for 1 ≤ i, j, k, l ≤ N (1)

or equivalently, for any object quadruple Oi, Oj, Ok , and Ol , the two largest sums of
path length distances δij + δkl , δik + δjl , and δjk + δil must be equal. The additive in-
equality is a generalization of the ultrametric inequality δij ≤ max

{
δik , δjk

}
for 1 ≤

i, j, k ≤ N . Equivalently, an ultrametric defined onΔ = {δij} for any object tripleOi,
Oj, and Ok , requires that the largest two path length distances among δij, δik , and δjk
be equal.
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2.2 The Ultrametric-Star-Tree Decomposition
of Additive Trees

Carroll (1976) discusses the decomposition of an additive tree distance into the
sum of an ultrametric and a centroid distance. The latter induces a star as its tree
representation, where one of the vertices, the center vc, is fixed. Distances for all vj,
vj′ , with j, j′ �= c, are obtained by passing through vc. Thus, any additive tree matrix
Δ can be decomposed into an ultrametric matrix U = {uij} and a centroid matrix
C = {cij}.

2.3 Constructing Additive Trees as a Constrained
Least-Squares Problem

Let P = {pij} denote an N × N square-symmetric (two-way one-mode) proximity
matrix. Finding an additive tree representation of P requires the estimation of path-
length distances δ̂ij = dij that minimize the constrained least-squares loss function
(see Barthélemy & Guénoche, 1991; De Soete & Carroll, 1996):

min
D

{L(D)} = min
D

{∑

i<j

(pij − dij)
2

}
= min

D

{
1

2
tr(P − D)(P − D)′

}
(2)

subject to

dij + dkl ≤ max
{
dik + djl, djk + dil

}
for 1 ≤ i, j, k, l ≤ N

(Note thatD = {dij}.) Conceptually, constructing an additive tree for a given proxim-
ity matrix is a constrained optimization problem that requires (a) to determine a par-
ticular topology, or branching pattern of the additive tree by establishing constraints
based on the additive inequality that most faithfully reflect the relations among the(N
4

)
quadruples of given proximities; (b) to estimate tree or path-length distances such

that L(D) is minimized subject to the specific constraints defining the additive tree
topology as identified in (a). Křivánek (1986) showed that constructing an additive
tree is NP-hard. Thus, currently available algorithms for constructing additive trees
are heuristics, with no guarantee of obtaining a globally-optimal solution.

2.4 Constructing Multiple Tree Structures

Carroll and Pruzansky (1980; see also, Carroll, 1976; De Soete & Carroll, 1996)
proposed constructing multiple additive tree structures to a given proximity matrix
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by means of successive residualization. As an example, consider representing P by
two additive trees (called a “bi-additive” tree structure): an initial additive tree D(1)

is constructed for P; then, a second structure D(2) is constructed for the residual
matrix P − D(1). In an attempt to further improve the fit of the resulting bi-additive
tree structure, the residuals P − D(1) − D(2) are added back to D(1), followed by (re-
)constructing D(1), potentially better fitting P − D(2), thereby producing a revised
residual matrix (P − D(2)) − D(1), and so on. The process continues by repetitively
fitting the residuals from the second additive tree by the first, and the residuals from
the first additive tree by the second, until the sequence converges.

3 The Algorithms: INDTREES and Iterative Projection

3.1 The INDTREES Algorithm

Carroll and Pruzansky (1980) proposed a mathematical programming algorithm for
constructing additive trees that uses the ultrametric-star-tree decomposition as a
vehicle for constructing an additive tree. INDTREES (Carroll et al., 1984) is a gen-
eralization of Carroll and Pruzansky (1980) algorithm to three-way data. Let Ps,
s = 1, 2, . . . , S, denote proximity matrices observed on S data sources. INDTREES
is initialized by identifying an ultrametric representation of the average of these
individual proximity matrices through hierarchical clustering. The topology of this
average ultrametric tree is then used for fitting the individual proximity matrices.
The same-topology condition is imposed through a penalty term enforcing that for
each object tripleOi,Oj,Ok , the same two pairs of distances be the largest two across
all sources. For each source, conformity of the distance estimates to the ultrametric
inequality—the two largest distances must be equal—is secured by a second penalty
term. The source-specific additive trees are constructed in fitting the residual proxim-
ities pij(s) − uij(s) by individual star components through least squares. INDTREES
iterates through these estimation steps until convergence; the (nonlinear) conjugate
gradient method by Fletcher and Reeves (1964) is used for minimizing the least-
squares loss function. INDTREES allows for fitting multiple tree structures through
the successive residualization of the input proximity data.

3.2 The Iterative Projection Algorithm

The iterative projection (IP) algorithm for constructing additive tree structures by
Hubert and Arabie (1995) is an adaptation of Dykstra’s (1983) general IP algorithm
for solving least squaresminimization problems, with side constraintsC representing
a closed convex set: given a vector x, find the best approximating vector x∗ ∈ C. In
theory, x∗ could be found directly by projecting x onto C (written as x∗ = PC(x)).
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In practice, however, this may pose extreme computational demands. As a solution,
Dykstra proposed to re-express the constraints as C = ⋂M

1 Cm �= ∅, which allows
for the decomposition of the (presumably) difficult computation x∗ = PC(x) into the
easier task of iteratively projecting x onto the M closed convex sets of constraints,
C1, . . . ,CM , thereby constructing a sequence xt , with t = 0, 1, 2, . . . that was proven
by Boyle and Dykstra (1985) to converge to x∗ ∈ C. The sequence xt is initialized by
setting x0 = x, followed by the projection of x0 onto C1, resulting in x1 that in turn
is projected onto C2, producing x2 to be projected onto C3, and so on. The difference
between consecutive projections xt−1 and xt is often called the increment, or residual.
The algorithm concludes its first cycle of projections onto sets C1, . . . ,CM , with the
projection of xM−1 ontoCM producing xM , the input vector for the second projection
cycle through C1, . . . ,CM . To guarantee convergence to x∗, from the second cycle
on, each time C1, . . . ,CM are revisited in subsequent cycles, the increment from the
previous cycle associated with that particular set must be removed from the vector
before actually proceeding with the projection.

An additive tree is determined by the collection of constraints, C1, . . . ,CM , as
defined by the four-point condition. Each Cm is associated with one of theM = (N

4

)

object quadruples, given N objects. For a specific quadruple m of objects Oi, Oj,Ok ,
and Ol , the four-point condition translates into three possible inequality constraints,
one of which must be satisfied by the six distances involved

δij + δkl ≤ δik + δjl = δjk + δil

δik + δjl ≤ δij + δkl = δil + δjk

δil + δjk ≤ δij + δkl = δik + δjl

These three constraints form the set Cm. Each constraint can be expanded into four
inequalities:

δij + δkl ≤ δik + δjl ⇔ δij + δkl − (δik + δjl) ≤ 0

δij + δkl ≤ δjk + δil ⇔ δij + δkl − (δjk + δil) ≤ 0

δik + δjl ≤ δjk + δil
δjk + δil ≤ δik + δjl

}
⇔ δik + δjl − (δjk + δil) = 0

The constraints C1,C2, . . . ,CM determine the topology of an additive tree. The tree
distances d∗ ∈ C = ⋂M

1 Cm are estimated such that the least squares loss function
(p − d)′(p − d) is minimized (p and d denote vectorizations of the matrices P and
D, respectively). After initializing d0 = p, the algorithm proceeds by checking for
each quadruple of objects whether the involved distances conform to the respective
constraints in Cm.

If a violation is encountered, the vector of distances is projected onto Cm, and the
particular distances are replaced by their projections (Dykstra, 1983; Han, 1988).
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The algorithm cycles through C1, . . . ,CM until convergence. The fit of an additive
tree structure is quantified by the variance-accounted-for criterion (VAF):

VAF = 1 −
∑

i<j(pij − d∗
ij )

2

∑
i<j(pij − p̄)2

with p̄ denoting the mean of the off-diagonal entries in P = {pij}.

4 Application: Judgments of Schematic Face Stimuli

A total of 22 graduate students in the Psychology department of the Univer-
sity of Illinois provided pairwise dissimilarity ratings of 12 schematic faces. The
twelve face stimuli were generated by completely crossing the three factors “Facial
Shape”,“Eyes”, and “Mouth” (see Fig. 1).

Data Analysis: Part 1. INDTREES and the iterative projection algorithm share
the rationale to model individual differences as deviations from a common frame
of reference. Hence, source-specific, individualized additive trees are all restricted
to have the same topology; individual variation is modelled through differential
shrinking or stretching of the tree branch lengths. The VAF criterion obtained for
each source serves as a fit index quantifying how closely the individual additive trees
reflect the properties of the shared topology. Remarkably, the results obtained for
INDTREES and the iterative projection algorithm were virtually indistinguishable.
Hence, due to space restrictions, only the results of the iterative projection algorithm
are reported.

Fig. 1 The construction of
schematic face stimuli

Facial Shape Eyes Mouth
smile flat frown

circle open

solid

oval open

solid
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First Structure Second Structure

Fig. 2 Biadditive reference tree representation (VAF = .8521)

Results: Part 1. A bi-additive tree was chosen as reference structure for the 22
individual proximitymatrices; the two trees are shown in Fig. 2. The first additive tree
structure identifies three segments of schematic faces based on the primary criterion
“emotional impression”, as implied by the factor “mouth” with its levels“frown”,
“flat”, and“smile”. Apparently, the three categories are not perceived as equally
distinct: “flat” and“smile” are merged, whereas “frown” is set apart. Within each
group, a secondary distinction into faces with “open” versus“solid” circled eyes can
be observed; the factor “facial shape” distinguishes between stimuli at a tertiary level.
The second additive tree structure produces a perfectly balanced grouping dominated
by “facial shape”; the contrast between “open” and“solid” circled eyes appears to be
a secondary criterion, whereas emotional impression serves as tertiary criterion.

For each of the 22 subjects, the VAF score was computed indicating how well
each subject’s data were actually represented by the bi-additive reference structure.
The 22 subjects were ranked according to their VAF scores. Based on this ranking,
the top-three subjects, who were especially well-represented by the bi-additive refer-
ence structure, and the bottom-three (i.e., worst-represented) subjects were collected
into two extreme groups that formed the focus of the subsequent analysis. (Com-
paring these two extreme groups mirrored a paradigm in experimental psychology
to emphasize the effect of a particular treatment under study.) The top-three group
consisted of Subjects 5, 12, and 17; the bottom-three group consisted of Subjects
1, 14, and 2. From the top-three group, only Subject 5 is further considered here
because her results are almost identical to those of Subjects 12 and 17. However,
Subjects 1, 14, and 2 are all considered here because the slight variations in the ad-
ditive tree representations of their data are instructive for further understanding how
the face stimuli were perceived. The additive tree graphs of Subjects 5, 1, 14, and 2
are presented below, split into two displays, Figs. 3 and 4. Due to space limitations,
only the first additive tree structures are shown.



410 H.-F. Köhn and J. L. Kern

Subject 5 (VAF = .857) Subject 2 (VAF = .580)

Fig. 3 Individual biadditive tree representations for selected subjects: first structure

Subject 14 (VAF = .469) Subject 1 (VAF = .104)

Fig. 4 Individual biadditive tree representations for selected subjects: first structure

Not surprising, Fig. 3 confirms that the tree of Subject 5 almost perfectly matches
the reference structure. Note that the tree structure of Subject 2 displays several ties
between face stimuli—indicated by horizontal bars joining more than two vertical
branches at a time. Ties can occur as a result of remedying violations of the four-
point condition by averaging the involved distances. Specifically, for Subject 2, the
“smile” segment conforms to the reference structure, whereas the “flat” and“frown”
categories are mingled such that the “frown” category is draped around the“flat”
segment.
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As Fig. 4 shows, similar observations can be made about the additive tree of
Subject 14: the faces in the “flat”,“smile”, and “frown” segments are not well
separated—apparently, conformity to the reference structure could only be enforced
through many tied distance estimates. Finally, the individual additive tree structure
obtained for Subject 1 is extremely distorted with its numerous ties; this tree is
essentially non-interpretable.

Data Analysis: Part 2. To further explore the seemingly deviant perceptions of the
face stimuli by Subjects 2, 14, and 1, their dissimilarity data were re-analyzed sep-
arately, without using the bi-additive reference structure from the previous analysis
step. Such an independent re-analysis of the data was supposed to clarify the question
whether the lack of fit observedwith Subjects 2, 14, and 1was due to (erratic) random
responses, or indicated a coherently different view on the face stimuli, driven by id-
iosyncratic criteria that simply did not match the rest of the sample. Each individual
proximity matrix was fitted by a bi-additive tree structure.

Results: Part 2. Due to space restrictions, displays only of the first additive tree
structures for Subjects 1 and 14 are presented here (see Fig. 5). The arrangement of
the face stimuli in the tree graph for Subject 1 does not reveal a discernable pattern,
which suggests that Subject 1 provided random judgments—a likely explanation,
given that subjects were required to participate in this study for credit. The tree
diagram of Subject 14 tells a different story. Compared to the reference tree, Subject
14 assigned different priorities to the criteria for judging the face stimuli: “eye shape”
is the primary criterion to distinguish between the twelve schematic faces, whereas
“facial shape” served as secondary criterion.

Subject 1 (VAF = .862) Subject 14 (VAF = .805)

Fig. 5 Independent biadditive tree representations for subjects 1 and 14: first structure
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5 Conclusion

A comprehensive evaluation of three additive tree fitting algorithms by Smith (1998)
showed that IP consistently outperformed ADDTREE (Corter, 1982; see also Sat-
tath & Tversky, 1977) and De Soete’s (1983) penalty function algorithm in finding
the best-fitting additive tree. The study presented in this paper appears to be the
first to compare the performance of IP in fitting additive tree structures to three-way
data with that of INDTREES, apparently the only extant penalty function algorithm
for fitting additive trees to three-way data. Both algorithms—although perhaps not
immediately obvious—rely on a principle common in statistics as well as of imme-
diate intuitive appeal, namely, to analyze individual variability against an average
reference structure. For the illustrative example chosen here, the results of the two al-
gorithms were indistinguishable. However, further research is needed to assess their
performance with a broader scope.

An another question is how the reference-structure approach might compare to
consensus tree modeling, an alternative way to analyze three-way data rooted in a
different philosophy. Initially, separate tree representations are fitted to each indi-
vidual data source, followed by an integrative step aimed at locating a prototypical
tree representation that captures a maximum of the individual variability observed
among the independent source trees, analogous to a majority voting rule.

As a final note, additive tree representations appear to have been under-used in
psychology as a data analytic tool. The reason might be the relative inaccessibility
of suitable software in the past. The situation is different today: the potential user
can choose among a variety of programs and software packages. For example, an
implementation of the ADDTREE algorithm is available in SYSTAT; Hubert et al.
(2006) provided MATLAB routines for fitting additive trees that have recently also
been made available in the R package clue (Hornik, 2018).

References

Barthélemy, J. P., & Guénoche, A. (1991). Tree and proximity representations. Chichester: Wiley.
Boyle, J. P., & Dykstra, R. L. (1985). A method for finding projections onto the intersection of
convex sets in Hilbert spaces. In R. L. Dykstra, R. Robertson, & F. T. Wright (Eds.), Advances
in order restricted inference, Lecture Notes in Statistics (Vol. 37, pp. 28–47). Berlin: Springer.

Carroll, J. D. (1976). Spatial, non-spatial and hybrid models for scaling. Psychometrika, 41, 439–
463.

Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling models. In E. Lantermann & H.
Feger (Eds.), Similarity and choice (pp. 108–139). Bern: Huber.

Carroll, J. D., Clark, L. A., & DeSarbo, W. S. (1984). The representation of three-way proximities
data by single and multiple tree structure models. Journal of Classification, 1, 25–74.

Corter, J. E. (1982). ADDTREE/P: A PASCAL program for fitting additive trees based on Sattath
and Tversky’s ADDTREE algorithm. Behavior ResearchMethods and Instrumentation, 14, 353–
354.

De Soete, G. (1983). A least-squares algorithm for fitting additive trees to proximity data. Psy-
chometrika, 48, 621–626.



Additive Trees for Fitting Three-Way (Multiple Source) Proximity Data 413

De Soete, G., &Carroll, J. D. (1989). Ultrametric tree representations of three-way three-mode data.
In R. Coppi & S. Belasco (Eds.), Analysis of multiway data matrices (pp. 415–426). Amsterdam:
North Holland.

De Soete, G., & Carroll, J. D. (1996). Tree and other network models for representing proximity
data. In P. Arabie, L. J. Hubert, &G. De Soete (Eds.),Clustering and classification (pp. 157–197).
River Edge, NJ: World Scientific.

Deutsch, F. (2001). Best approximation in inner product spaces. New York: Springer.
Dykstra, R. L. (1983). An algorithm for restricted least-squares regression. Journal of the American
Statistical Association, 78, 837–842.

Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer
Journal, 7, 149–154.

Han, S. P. (1988). A successive projection method. Mathematical Programming, 40, 1–14.
Hubert, L. J., & Arabie, P. (1995). Iterative projection strategies for the least-squares fitting of tree
structures to proximity data. British Journal of Mathematical and Statistical Psychology, 48,
281–317.

Hubert, L. J., Arabie, P., &Meulman, J. (2006). The structural representation of proximity matrices
with MATLAB. Philadelphia, PA: SIAM.

Hornik, K. (2018). clue: Cluster ensembles. R package version 0.3-56. Retrieved from the Com-
prehensive R Archive Network [CRAN] website https://cran.r-project.org/web/packages/clue/
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response process models for a trust in science measure developed from Thurstone’s
(Am J Sociol 33(4):529–554, 1928; Psychol Rev 36(3):222–241, 1929) scaling pro-
cedures. The trust in science scale was scored in four different ways: (1) a dominance
response approach using observed scores, (2) a dominance response approach using
model-based trait estimates, (3) an ideal-point response observed score approach
using Thurstone scoring, and (4) an ideal-point response approach using model-
based trait estimates. Comparisons were made between the four approaches in terms
of psychometric properties and correlations with political beliefs, education level,
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1 Introduction

1.1 Dominance Response Process

Classical test theory (CTT) has provided the most common approach for both devel-
oping and scoring psychological measures. Likert (1932) and Thurstone (1928) were
early pioneers on survey methodologies, although Likert’s graded response (agree-
disagree continuum) has persisted as the relative “gold standard” for constructing
psychological measures. Specifically, Likert’s (1932) approach involves selecting
items that show high item-to-total score correlations so that the measure demon-
strates high internal consistency and exhibits a single-factor solution. Importantly,
traditional approaches underlying the vast majority of Likert scales available in psy-
chometric literature assume amonotonic relationship between responses across item-
s—a dominance model. The dominance model proposes that high levels of a given
attribute result in higher probabilities of agreement across items. This results in an
item response function (IRF) that resembles a monotonically increasing S-shaped
curve and an item information function that is maxed at a single level of the latent
trait continuum.

Methods for scoring psychological scales using observed scores or model-
assigned latent trait estimates (i.e., item response theory or IRT) scores can be used
to reflect an individual’s standing on a trait using the dominance response process.
The vast majority of scoring procedures using observed scores reflect the dominance
approach by simply reverse-scoring any reverse coded items and then taking a mean
or sum of item responses. Higher scale scores reflect higher standing on the latent
trait. Item response theory (IRT)models use characteristics of items, such as an item’s
difficulty, discrimination, and guessability to establish a link between an individual’s
response pattern and their standing on the latent continuum. IRT models such as
the popular Rasch, two-parameter (2PL), and three-parameter (3PL) models, reflect
the dominance response model by assuming that higher standing on the latent trait
results in higher probabilities of endorsing items of the scale.

1.2 Ideal-Point Response Process

Although some attributes (e.g., cognitive ability) may be best measured via domi-
nance approaches, other attributes (e.g., personality or attitudes) may be more appro-
priately described by an ideal-point response process. The ideal-point response pro-
cess differs from the dominance approach with higher levels of an attribute not
necessarily resulting in higher endorsement across items. Instead, endorsement is
maxed around what later psychometricians would call an ideal-point, or a particular
area along a latent trait’s continuum that closely resembles the underlying level of the
responder’s attribute (Coombs, 1964). This results in an item response function that
is bell-shaped, such that the probability of endorsing an item is maxed at the appro-
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priate level of the latent trait. The probability of endorsing an item then decreases as
an individual’s latent trait level moves below and above the “ideal point” such that an
individual can have a low probability of endorsing an item because their standing on
the latent trait is “too high” or “too low.” This results in an item information function
that is bimodal because individuals can choose to not endorse an item due to having
too low of standing on the latent trait or having too high of standing on the latent trait.
For example, an item intended to measure conscientious such as “My room neatness
is about average” would receive endorsements from individuals in the middle of the
latent continuum. However, this itemmay also result in some individuals disagreeing
with item because they have below average room neatness (disagreeing from below)
and individuals disagreeing with the item because they have above average neatness
(disagreeing from above).

Just as observed and model-based scoring approaches exist for the dominance
approach, there are multiple ways to score psychological scales that reflect an ideal-
point approach. Thurstone’s (1928)method of scale development and scoring reflects
a method of assigning scores that take into account individuals disagreeing from
below and above by adding an extra step to the scale development process where
subject matter experts assign ratings to each item from 1 (extremely low on the
latent continuum) to n (n being the total number of items on the scale, reflecting
the most extreme items on the latent continuum). Subject matter expert ratings are
then averaged for each item to result in an expert-based trait score. Respondents
are assigned the highest trait score across all of the items they endorsed. Thus,
if a respondent disagreed with all items except for the most extreme item, which
they endorsed, they would still receive the highest score possible because of the
assumption that they disagreed from above with all of the less extreme items. An
example of a Thurstone scale can be seen in Roberts and Laughlin’s (1996) analysis
of an older Thurstone scale on attitudes toward capital punishment. Consistent with
Thurstone’s (1928) theory of scaling, Roberts andLaughlin considered extreme items
(e.g., “Capital punishment is never justified” or “Capital punishment should be used
more than it is”) and intermediate items (e.g., “I do not believe in capital punishment,
but it is not practically advisable to abolish it”).

Model-based approaches also exist for estimating an individual’s standing on
a latent trait under ideal-point assumptions. For example, the generalized graded
unfolding model (GGUM; Roberts, Donoghue, & Laughlin, 2000) allows for the
typical monotonic s-shaped IRF curve to “unfold,” resulting in a bell-shaped IRF
that reflects the probability of endorsing an item decreasing when either below or
above the ideal-point, in contrast to assuming the monotonically increasing IRF of
dominance approaches.
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1.3 Dominance Versus Ideal-Point Response Process
in Psychological Measurement

Despite the ability to capture a wide range of a latent continuum, Thurstone’s method
has not seen widespread use like Likert’s method, likely due to the added step during
scale development. This is unfortunate, given that that recent research has found
that a dominance model may not always be appropriate, especially when it comes to
personality and attitude data (Drasgow, Chernyshenko, & Stark, 2009; Roberts et al.,
2000). This is especially the case for neutral items such as “My room neatness is
about average” which are typically discarded from scales build under the dominance
approach due to poor item-total correlations (likely due to individuals disagreeing
with the item from below and above on the latent continuum). Indeed, most psy-
chological scales only contain either positively- or negatively-worded items (e.g.,
“Being neat is not exactly my strength”), resulting in higher internal consistency but
less representation of the full latent continuum.

Given that most of the research applying ideal-point analyses has used scales
developed through dominance response process assumptions, very little in known
as to how ideal-point analyses compare to dominance analyses for scales developed
from ideal-point procedures, such as scales developed using Thurstone’s method
of scale development. Indeed, Chernyshenko, Stark, Drasgow, and Roberts (2007)
mention the need for investigating scales built on the assumption of representing
an unfolding response process from inception, such as Thurstone scales. This paper
answers calls from the psychometric literature to investigate the utility of ideal-
point model assessment of measures developed with ideal-point scaling methods
(Chernyshenko et al., 2007; Drasgow et al., 2009; Stark, Cheryshenko, Dasgow, &
Williams, 2006).

1.4 The Present Study

The purpose of the current study is to compare whether a dominance approach or an
ideal-point approach is more appropriate for assessing an individual’s trust in sci-
ence, a measure developed using the Thurstone method (1928). Initial investigations
have demonstrated that dominance models may be inappropriate for analyzing some
attitude measures (Stark et al., 2006), yet there has been scant follow-up from psy-
chometricians in psychological fields (see Drasgow, Chernyshenko, & Stark, 2010
for a discussion). The implications of our investigation are two-fold.

First, many constructs that are important to psychologists entail wide-ranging
phenomena that may be more theoretically congruent with an ideal-point response
process than a dominance response process. That is, survey items requesting a respon-
dent’s agreement with a statement are likely to require a process of introspection
where proximity of the item to their actual, or latent, level of the attribute being mea-
sured. While this is implicit in the early psychometric approaches to survey response
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processes, subsequent cognitive approaches propose information processing mecha-
nisms that necessitate identification of an item along a continuum and a comparison
of one’s self with that item’s location (see Tourangeau, Rips, & Rasinski, 2000).

Second, psychologicalmeasures impact areas of life outside of the lab, such as per-
sonnel selection, training, clinical assessment, and many other applications. If scales
are developed and analyzed under the guidance of dominance process assumptions
while not meeting these assumptions, then both the science and practice of psycho-
logical measurement will be restricted in utility. Two areas that have recently made
strides in the use of ideal-point analyses are personality assessment and performance
evaluation. Specifically, forced-choice formats can be used to provide accurate mea-
sures of job performance (Borman, Penner, Allen, & Motowidlo, 2001) and per-
sonality (Chernyshenko et al., 2009). Ipsative properties of forced choice formats
common in personnel psychology are problematic (see Meade, 2004 for discussion),
and recent developments in ideal-point IRT analyses and computer adaptive testing
have potential to overcome these limitations.

In sum, assumptions of a dominance response process may not be suitable for
many common attitudinal surveys and an ideal-point process may be more favorable.
Further, little research has revisited the Thurstone method of scale construction with
ideal-point analyses, instead opting to apply these analyses to Likert-type scales
already in use. The current study examines four analytic techniques (CTT-dominance,
CTT-ideal-point, IRT-dominance, and IRT-ideal-point) to assess whether an ideal-
point or dominance process fits observed data better.

1.5 Hypotheses

As mentioned previously, researchers have only recently begun applying ideal-point
analyses but almost exclusively with established scales developed under dominance
frameworks. As an exception, Chernyshenko and colleagues (2007) developed a
measure of the conscientiousness facet order using an ideal-point process. These
authors found their ideal-point IRT analyses to provide a substantial improvement in
test information and measurement precision over dominance IRT and classical test
theory analyses. Provided the aforementioned theoretical assertions and this recent
empirical finding, we predict that ideal-point scoring of the trust in science scale will
outperform the traditional dominance approach to scoring in terms of item fit and
resulting relationships between trait estimates and convergent criteria.

Convergent criteria were selected on the basis of rational and empirical rela-
tionships with trust in science. These included, political beliefs, education level,
and several statements regarding beliefs in scientific conclusions (e.g., vaccines
cause autism). For example, a 2014 study from the Pew Research Center found
that democrats and liberals were more likely to agree with scientific consensus about
matters, such as climate change, than their conservative and republican counterparts
(Funk & Rainie, 2015). Furthermore, educational attainment, certainly in science-
based fields, may be somewhat related to trust in science as recent research has
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found that increased academic education has a positive effect on knowledge of cli-
mate change (McCright, 2010). Lastly, several statements about popular issues for
which scientific consensus exists were chosen as they represented several statements
reflecting beliefs that are (in)congruent with modern scientific findings.

2 Method

2.1 Sample

Our sample consisted of 401 respondentswhowere recruited to take the online survey
through posting the survey on various social media platforms across the 21 doctoral
students that contributed to item generation.

2.2 Measures

Trust in science. The Thurstone-type scale assessed in this study was developed to
create an instrument that wouldmeasure the extent to which an individual trusted sci-
ence. The scale consisted of nine statements that reflected attitudes towards science,
scientificmethod, and applications of science.The statementswere generated through
21 graduate students in psychology doctorate programs as part of a psychometrics
course. The professor of the course who led the scale development effort specialized
in psychometrics. In line with the procedures described by Thurstone (1928, 1932),
the scale development began with generating a large bank of statements that reflected
varying attitudes towards science. All statements were later evaluated by the gradu-
ate students and assigned a rating from 1 (people endorsing this item show the least
amount of trust in science) to 9 (people endorsing this item show the most amount of
trust in science). The final 9 items were chosen on the basis of (1) finding items that
had ratings along the entire continuum of 1–9 and (2) the level of consensus based
on the standard deviation in graduate student ratings for each item. The final nine
statements were presented to survey respondents along with asking if the respondent
(1) agreed or (0) disagreed with each statement.

Political beliefs. Political beliefs were assessed with a single item asked, “How
would you describe your political views?” on a five-point scale with 1 = “Very
liberal” to 5 = “Very conservative.”

Education level. Education level was assessed with a single item that asked,
“What is the highest level of school you have completed or the highest degree you
have achieved?” with options including 1 = high school, 2 = some college, 3 =
associate’s degree, 4 = bachelor’s degree, 5 = master’s degree, 6 = professional
degree (JD, MD), or doctoral degree.
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Beliefs in Scientific Consensus. To further examine the convergent validity of
the trust in science scale, six additional statements that were expected to show sig-
nificant correlations with trust in science were written by the authors and presented
to respondents. These statements reflected current issues for which there is scien-
tific consensus, such as whether vaccines cause autism and statements about climate
change (e.g., “Scientists do not agree on whether the planet is warming or not.”).
These items were scored on a scale of 1 = strongly disagree to 5 = strongly agree.

2.3 Scoring Procedure

The trust in science scale was scored in four different ways: (1) a dominance response
approach using observed scores, (2) a dominance response approach using model-
based trait estimates, (3) an ideal-point response observed score approach usingThur-
stone scoring, and (4) an ideal-point response approach using model-based trait esti-
mates. The first scoring approach reflected the traditional CTT order scale approach
to measurement by taking a summed score across the 9 statements. Items that were
negatively worded (e.g., “Science is a hoax”) were reverse scored such that all the
item-total correlations were positive. A total score was computed through summing
across all items despite low internal consistency. The second scoring approach used
the 2PL IRT model which estimates latent trait levels based on response patterns,
item difficulty, and item discrimination. The third scoring approach was based on the
scoring procedure described by Thurstone (1928). As mentioned earlier Thurstone
scaling approach assigns the mean rating from the graduate student ratings when a
respondent agrees with the statement. For example, if a respondent agrees to with
the statement “Only knowledge gained through the scientific method can be trusted,”
they receive the mean rating of 8.45 for that endorsement (Table 1).

The respondent’s final score was taken from their highest mean rating across the
items. The fourth scoring method was conducted using the dichotomous ideal-point

Table 1 Trust in science scalewithmean and standard deviations from subjectmatter expert ratings

Item Mean SD

1 Science is a hoax 1.15 .45

2 Scientific research does more harm than good 2.05 .60

3 Personal experience is more important than scientific findings 3.1 .72

4 Not all research is trustworthy 4.25 .72

5 Science is one source of knowledge among many 4.9 .37

6 Science can sometimes be helpful when making decisions 6 .65

7 Most research can be trusted 7.05 .76

8 Science is our best chance of solving the world’s problems 8.25 .85

9 Only knowledge gained through the scientific method can be trusted 8.45 .89
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IRT model (Maydeu-Olivares, Hernandez, & McDonald, 2006) as part of the ‘mirt’
package for IRT in R to generate trait estimates after fitting the data to an ideal-point
model.

2.4 Fit Analyses

Our first hypothesis predicted that the ideal-point model would fit the data better than
the two-parameter model. Before comparing models, two key assumptions must be
examined to have confidence in the parameters obtained from an IRT model: uni-
dimensionality and local independence. Whether these assumptions are met can be
examined by assessing item fit indices. Before examining these assumptions, three
items were dropped due to extreme response rates creating difficulty in estimating fit
(“Science is a hoax”, “Science can sometimes be helpful when making decisions”,
and “Not all research is trustworthy”). These three items had less than 2.5% of the
sample either agreeing or disagreeing. After discarding these three items, conforma-
bility to the IRT assumptions were examined using the S-X2 statistic to evaluate the
extent to which observed data matched what was expected by the model (Orlando
& Thissen, 2003). Within the ideal-point model, one item (“Scientific research does
more harm thangood”) demonstrated poorfit (S-X2=6.38,p< .05) andwas removed.

3 Results

Descriptive statistics for all trust in science scale items, political beliefs, education
levels, and beliefs in scientific consensus items are listed in Table 2. Respondents’
average political belief rating was 2.31, which is between 2 (liberal) and 3 (slightly
liberal). In terms of education attainment, 41.4% of participants listed a high school
degree as the highest education level attained, 42.64% indicated some college, and
15.96% reported having earned a graduate or professional degree.

3.1 Examining Model Fit

As seen in Table 3, all S-X2 values for the ideal-point model indicate all items show
adequate fit to the model. However, two items showed poor fit to the two-parameter
model. Despite the two poor-fitting items in the two-parameter model, additional
fit indices supported the data fitting both models overall, with the ideal-point M2
= 6.47, p = .26; RMSEA = .027; TLI = .97; CFI = .99 and the two-parameter
model M2 = 3.72, p = .59; RMSEA > .005; TLI = 1.02, CFI = 1.00. Thus, our
first hypothesis that predicted the ideal-point model would fit the data better than the
two-parameter model was only partially supported with the two-parameter fitting
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Table 2 Means and standard deviations for trust in science scale items, political beliefs, education
level, and beliefs about scientific consensus

Item Mean SD

Scientific research does more harm than good .08 .27

Most research can be trusted .70 .46

Science is one source of knowledge among many .90 .30

Science is a hoax .01 .10

Only knowledge gained through the scientific method can be trusted .17 .37

Science can sometimes be helpful when making decisions .99 .10

Not all research is trustworthy .98 .15

Personal experience is more important than scientific findings .19 .39

Science is our best chance of solving the world’s problems .64 .39

Political beliefs 2.31 1.11

Education level 2.68 2.74

I believe non-traditional approaches to medicine can be just as effective as
those based on scientific studies

3.01 1.26

You can’t trust information from the main stream media 3.42 1.20

Scientists do not agree on whether the planet is warming or not 2.06 1.31

Global warming is real, and it is caused by humans 4.23 1.04

I believe in the power of prayer to heal the body 2.82 1.51

Vaccines can cause autism 1.66 1.02

Table 3 Item parameters and fit statistics across the ideal-point model and two-parameter model

Item Ideal-point model Two-parameter
model

a b S-X2 a b S-X2

Most research can be trusted 1.30 5.01 1.18 1.34 −1.43 .12

Science is one source of knowledge among
many

2.36 2.49 .42 1.96 1.78 2.59

Only knowledge gained through the
scientific method can be trusted

.14 21.32 1.22 .28 −3.02 8.07**

Personal experience is more important than
scientific findings

2.25 −3.01 .16 2.12 −.46 4.38*

Science is our best chance of solving the
world’s problems

1.51 −5.00 1.29 1.61 1.42 .08

*p < .05, **p < .01

equally well, if not somewhat better overall, but demonstrating poor individual item
fit for two of the five items.
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Table 4 Means, standard
deviations, and bivariate
correlations for scores
generated across the different
scoring procedures

Scoring procedure Mean SD 1 2 3

1 Ideal-point
model

.00 .73 –

2 Two-parameter
model

.00 .76 .98** –

3 CTT scaling 5.53 1.22 .89** .88** –

4 Thurstone
scaling

7.74 .85 .79** .79** .73**

**p < .01

3.2 Comparison of Scoring Procedures

Our second hypothesis predicted that the ideal-point model theta estimates (i.e.,
latent trait estimates) and Thurstone-scaled scores would demonstrate stronger rela-
tionships with items that should be related to trust in science. To test this hypothesis,
bivariate correlations were examined between political affiliation, education, and
six statements about trust in science (Table 4). Significant correlations were found
between all four scoring procedures and political affiliation, with higher conserva-
tivism being associated with a lower trust in science. In addition, significant corre-
lations were found between all four scoring procedures and all of the related items
about trust in science. No significant correlations were found between the four score
sets and education level. As indicated in Table 4, very similar correlation coefficients
were found between the four scoring procedures and each item, with the exception
of “I believe in the power of prayer to heal the body” which both IRTmodels showed
notably larger correlations with than the classical test theory and Thustone scaling
scores. The few differences in magnitude across the four scoring methods did not
seem to have any other pattern. Thus, our second hypothesis was largely not sup-
ported. Examining the intercorrelations between the four sets of scores revealed that
the theta estimates from the two IRT models and the CTT-scaled scores had very
high similarity while the Thurstone scaling was less similar to the other three sets of
scores, although still strongly related (Table 4).

4 Discussion

This study aimed to examine a scale through ideal-point approaches and domi-
nance approaches. Within the ideal-point and dominance approaches, this study also
examined differences in using model-based measurement via ideal-point and two-
parameter IRT models and observed score-based measurement via classical test the-
ory scaling and Thurstone scaling. Results indicated that although the two-parameter
model fit just as well as the ideal-point model overall, two out of five items showed
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poor fit to the two-parameter model. Across the four scoring procedures, very lit-
tle difference was found in relationships with political affiliation, education, and six
statements about trust in science. The similarities in relationshipswith other variables
as well as both models fitting the data overall are better explained when examining
the item characteristic curves across both models (Fig. 1a, b).

Although the ideal-point model indicated a peak where the probability of endors-
ing the item would be maxed, this point was either far above or below reasonably
common theta levels. This resulted in an item response function that appeared similar
to a two-parameter model for actual observed levels of theta (Fig. 2). Despite this,
the fact that some individual items showed better fit to the ideal-point model may
suggest that the ideal-point model is more flexible at modeling both unfolding items
as well as dominance items, which is consistent with past conclusions from similar
research (Chernyshenko et al., 2007).

This study also suggests that, despite creating a scale through ideal-point assump-
tions, item characteristic curves consistent with the dominance assumptions of item
responding are still found. However, the Thurstone scaling, which represents ideal-
point assumptions, was found to correlate less with the other scoring procedures.
In addition, the Thurstone scaling explained unique variance with the other items
despite showing correlations with the other items similar in magnitude to the other
scoring procedures. This may suggest that the trust in science scale items do possess
some degree of unfolding that is not captured in the ideal-point IRT model.

However, the lack of unfolding occurring across levels of theta estimated from the
sample may be related to this study’s limitations. First, the sample that was collected
consisted of friends, family, and colleagues of 21 doctoral students. This approach
of sampling was not random and likely is biased to be higher educated and familiar
with science than a typical random sample. As a result, the range of theta examined
may not capture levels of theta that exist in the rest of the population. Theta levels
not captured in the present sample may exist at points where unfolding may occur
for some items. In addition, discarding some of the initial nine items due to extreme
ratios of agree/disagreewas also likely due to sample characteristics. Only examining
a final five items due to item removals prevented the number of unique theta levels
that could be estimated, further removing opportunities for any possible unfolding
to be captured.

Future research should address the limitations this study had to better examine
comparisons between ideal-point approaches and dominance approaches. Namely,
future research should administer scales developed from an ideal-point perspective,
such as Thurstone scales, to a large random sample where a wider range of latent
trait levels can be observed. In addition, future studies should attempt to begin with
larger banks of items in preparation for reducing the number of items due to poor fit,
such as in this study and prior research examining IRT models (Chernyshenko et al.,
2007; Roberts & Laughlin, 1996; Stark et al., 2006).

This study represented the first examination of a scale built from ideal-point
assumptions across several scoring procedures. In addition to providing additional
comparison across these scoring procedures, this study further demonstrates the
advantage of IRT in being able to examine item parameters and item-data fit to



426 S. Wilgus and J. Travis

Fig. 1 Item characteristic curves for Items 2, 3, 5, 8, and 9 a under the ideal-point model and
b under the two-parameter IRT model
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Fig. 2 Empirical observed versus expected plot for “Science is one source of knowledge among
many” across a the ideal-point model and b the two-parameter IRT model

identify items that should be discarded. Indeed, despite using less items, the theta
estimates from both IRT models demonstrated very similar, and at one time stronger
correlations with other items compared to the classical test theory and Thurstone
scaling approaches. This provides an advantage to IRT in being able to identify a
fewer set of items for use, which can have positive implications for reducing survey
length and subsequent respondent fatigue.
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Rumor Scale Development
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Abstract Rumor refers to unsubstantiated story or information being circulated.
Although the more the integrity of the source implies the more the reliability of
rumor, not all that seems reliable would be adjudged as valid. There has been cogent
need for rumor validity assessment, but dearth of construct-relevant scale hampers
empirical data collection. Considering that psychological scales are indispensable
for assessment, the present study developed a suitable and psychometrically sound
scale, using cross-sectional design and 570 randomly sampled participants. The psy-
chometric properties are based on reliability and validity. Reliability (£ = 0.78)
was determined by item-total statistics while validity was based on content validity
indexes, principal component analysis and the compatibility of factor model to the
data. Seven extracted factors accounted for 92% of the total scale variance. Rumor
intensity score (R = 80) corroborated the scale suitability. However, although the
newly developed 50-item Rumor Scale is suitable for adaptation among different
populations at various settings, there is need for confirmatory factor analysis (CFA)
which was not implemented in the initial scale development study. Further valida-
tions, suggested to include cross-cultural and trans-national adaptations using CFA
and other competing analysis models, can help to establish sufficient norms.
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1 Introduction

1.1 Background to the Study

We often hear people say “it is a rumor”, “stop spreading rumors” etc. Conceptually,
rumor refers to any unverified information being circulated among people to make
sense of an unclear situation or to manage any threat or potential threats (Matsumoto,
2009). Rumor, according to Allport & Postman (1947), Matsumoto (2009) and Ros-
now (1991), aims at making sense of an ambiguous situation or even managing
physical and psychological threats. The different types of rumors are grouped based
on subject matter as well as the rumor public and their object of collective concern
(Matsumoto, 2009). The definition of choice, as used in the present study, refers to
rumor as an unsubstantiated story or information being circulated consciously and or
unconsciously based on significant intensity (Gandi, Ibadin, Musa, Gana, & Saleh,
2018).

1.2 Statement of Problem and Purpose of the Study

Rumor is capable of affecting individuals or even societal values positively or nega-
tively (Willis, 2015). Although the more the integrity of rumor source the more the
perception of its reliability, not everything that is reliable would be adjudged as valid
(Cabera-Nguyen, 2010; Rao&Sinharay, 2007). There is cogent need for rumor valid-
ity empirical assessment but dearth of ‘construct-relevant’ and suitable scale hampers
it. Achieving such a need requires a more optimal model, not a nomenclatural mis-
nomer, to effectively drive the development of a suitable ‘construct-relevant’ scale.
The study, which developed suitable scale for rumor validity assessment, adopted
Gandi Psychometric Model (Gandi, 2018) on which the scale’s conceptual frame-
work was designed and operationalized.

1.3 Conceptual Framework Based on Gandi Psychometric
Model

The conceptual framework, in this case (Fig. 1), answered the “how and why” ques-
tions. It sets out how main stages through which the scale development process
moves, i.e. from left to right. It also reflects systematic sequence of the process,
from test conceptualization to scale validation, including “why” particular stage(s)
or variable(s) precedes or succeeds the other (Gandi, 2018).
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Fig. 1 Scale development framework based on Gandi psychometric model

2 Methods

2.1 Research Design and Study Setting

A cross-sectional design, considered suitable for scale development (Rivers, 2018),
was adopted. It captures specific point in time, proves/disproves assumptions, applies
to various types of research, and can create new theories for in-depth research. The
study was conducted at three settings which include a higher institution, a public
organization, and a community neighborhood setting within Jos, the capital city of
Plateau State, Nigeria. Research confederates and conditions within the study setting
helped to not only gauge but to also adequately prevent and avoid any perceived
social desirability or other unwanted influence(s) that could amount to raping the
psychometric quality of the scale in any way.

2.2 Target Population and Sample Participants

The study target population consists of members of staff at the selected higher insti-
tution and public organization as well as adult members of the selected community.
They included males and females with diverse religious affiliations, ethnic back-
grounds, and professional/occupational statuses. The sample size was determined
by applying the principle of person-to-item ratio (i.e. subject-variable ratio). Con-
sidering the lowest and highest ratios ever used (4:1 and 36:1) respectively and the
requirement of using not less than 10:1 for scale pilot-testing (Coaley, 2010; Gregory,
2000; Rosnow, 1991), the study used person-to-item ratio of 15:1. Since the scale
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has 50 items, the determined pilot sample size was 750 (i.e. 15× 50). However, only
570, including 52%male (n = 296) and 48% female (n = 274), actually participated
in the pilot study. The participants were selected by a stratified random sampling
method. This method helped to ensure adequate representativeness by using stratifi-
cation factors which include gender, religion, marital status, employment types, and
occupation in the sampling process.

2.3 Materials and Procedure

Materials. The required materials for implementing a comprehensive process of
scale development include relevant instruments and conditions in each case. Materi-
als used as relevant instruments include informed consent forms, interview schedule
forms, demographic data forms, focus group discussions checklist, expert reviews
rating rubrics, and cognitive testing feedback sheets. Others were video camera, writ-
ing materials, SPSS software, and the processing and analysis system (computer).
The materials used as conditions include the basic necessary and sufficient condi-
tions as well as a great deal of miscellaneous (Mackie, 1965) inus conditions, i.e.
“insufficient but non-redundant part of unnecessary but sufficient conditions (inus
conditions)”, based on need.

Procedure. Scale development process considered the purpose and type of scale as
well as suitable psychometric perspectives (Colton & Covert, 2007; Cohen, Swerd-
lik & Sturman, 2013; DeVellis, 2012). It was based on nine stages of the Gandi
psychometric model which include test conceptualization, item generation, scaling
methods, item pretesting, scoring models, test tryout, item analysis, test revisions,
and scale validation (Gandi, 2018).

Test Conceptualization. Conceiving an idea of the focal construct and what differ-
entiates the proposed scale fromotherswas cogent.Gregory (2000) andCripps (2017)
suggest that initial thoughts (or self-talk), such as “there ought to be a test designed
to measure …”, which led to creative and empirical conceptualization of the Rumor
Scale for measuring rumor validity. Confronted questions, as Cohen et al. (2013)
observed, include “what is the objective, content, and format of the Rumor Scale?”
Thinking-aloud-questions of this kind paved the way towards reviewing rumor lit-
erature which lends credence to the scale objective, content and format. Rumor was
therefore conceptualized as an unsubstantiated story or information being circulated
consciously and or unconsciously based on significant intensity (Gandi et al., 2018).
Equation 1, based on the formula by Allport and Postman (1947), determines rumor
intensity as a mathematical function:

R ∼ i × a (1)

where “R” is the rumor intensity which includes the reach and duration of the rumor,
“i” is the importance of the information in the rumor (to hearers or readers), and “a”
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is the ambiguity (or uncertainty) associated with the rumor and pictures the persis-
tence of particular pieces of gossip. Rumor intensity depends on the multiplicative
relationship between its importance and ambiguity.

Item Generation. Initial 38 items were deductively derived by conducting litera-
ture search and reviews (Fig. 1) as relates to the focal construct (which is “rumor”).
This process also provided further useful insights on the type of statements read-
ily comprehensible across the diverse study populations. Additional 36 items were
also inductively devised by conducting focus group discussions (FGD) with a cross-
section of the target population members referred to as FGD panelists (Colton &
Covert, 2007; Gandi, 2018). The 74 items were appropriately worded in line with
factors that constitute the term“rumor” and systematically formatted, by logical ques-
tion ordering, for suitability. Item selections were done based on the item content
validity index derivable from content validity ratio (CVR) of the subsequent retained
items in each case. The CVR for each item are calculated using the computation
formula by Lawshe (1975) as follows:

CV R = ne − N
2

N
2

(2)

where: ne is the number of FGD panelists who endorsed “essential”, N is the total
number of entire FGD panelists who participated, and 2 is a constant. Furthermore,
content validity index (CVI) is computed by finding the statistical mean of CVR
values of the entire scale items as follows:

CVI = sum of CV R

f requency
(3)

Scaling Methods. A suitable scaling method is a necessity for newly developed
scale (Rao & Sinharay, 2007). The optimally suitable method fall within the cate-
gory of selective response multiple choice scaling, typically the 5-point Likert scale
type (Likert, 1932; Worthington &Whittaker, 2006). Response options for the scale
include ‘strongly disagree, disagree, not sure, agree and strongly agree. The advan-
tages of and rationale for choosing Likert scale include ease of scoring, high compat-
ibility for assessment, convenience to participants, and a robust analysis that would
lead to appropriate interpretations.

Item Pretesting. 74 items earlier generated items were rigorously pretested by
subjecting them to expert reviews and cognitive testing interviews (Willis, 2015).
The reviewers include subject matter expert (1), content expert (1), methodology
expert (1), and target population experts (2). As scholars including Rao and Sinharay
(2007) and Ojedokun (2016) emphasized, “experts were asked to identify items that
they particularly view as important by indicating whether such items are essential,
good, or poor as relates to the focal construct”. The five expert reviewers rated each
item, considering the relevance and respectivematch (suitability) to the construct, and
their reviews reduced the 74 items to 53 items. The 53 items were further subjected
to cognitive testing interviews (CTI) which used 19 participants (M = male and F
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= female). They include representative sample of four academic staff (M = 2, F =
2), seven senior administrative staff (M = 4, F = 3), two clinical staff (M = 1, F
= 1), five field staff (M = 3, F = 2), and a social worker (F = 1). After the survey
completion, participants responded to a 7-item “cognitive testing follow-up sheet”,
in their ownwords. Three items were dropped while 50 were retained and considered
for the next but one stage (i.e. pilot study or test tryout).

Scoring Model. Suitability and ease of scoring are unavoidable features that
strengthen a good rating scale. Hence, the scoring model adopted for this study
was a cumulative scoring, being the very aspect which demonstrated that “the higher
the score on the test the higher the test-taker is on the ability/trait/other characteristic.
Scoring models must agree with corresponding methods of scaling (Mackie, 1965).
That was why the “considered advantages” of and rationale for choosing Likert scal-
ing method included ease of scoring, high compatibility for assessment, convenience
to participants, and a robust analysis that would lead to appropriate interpretations.

Test Tryout. The scale was tried out (Fig. 1) by conducting a pilot study using 570
persons, including 52% male (n = 296) and 48% female (n = 274), as participants.
Consent forms inwhich the participants demonstrated voluntarywillingness to partic-
ipate by appending signatures were provided. The form(s) explain the study need and
the participants’ expectation while issues of their confidentialities and privacies were
guaranteed. The demographic form, which consisted eight items, was administered
alongside the newly developed scale to gather descriptive information on gender, age,
marital status, religion, highest qualification, current employers, employment type,
and department/unit. The Rumor Scale items appear self-validating as they helped
to control any tendency for responses to reflect what could be presumed as being a
desired effect (i.e. social desirability bias).

ItemAnalysis. The studymaintained cogent culture of ascertaining item reliability
index, difficulty index, discrimination index and validity index which ensured sound-
ness of the scale. Item difficulty index and discrimination index were qualitatively
determined by employing the stated rigorous processes of item pretesting. The sta-
tistical analysis, i.e. quantitative method, was used for reliability index and validity
index of the retained items. Overall, the analyses conducted include content validity
index (CVI), item-total statistics, exploratory factor analysis (EFA), and principal
component analysis (PCA).

Test Revisions. Following the pilot study item analyses, the resulting outcomes
were reviewed and classified into two categories. Those items (n= 50) found suitable
and significant (labelled as category 1) were retained while those neither sound nor
significant (labelled as category 2) were deleted (discarded).

3 Results

The results of examining the content validity, based onEq. 3 formula, showedCVIs of
0.66, 0.69 and 0.72 (i.e. CVIs > 60) for item generation, expert review item pretesting
and cognitive interviews item pretesting. The CVI of 0.66 resulted from the sample
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size of focus group discussion (FGD) panelists (n = 18) which represent frequency
score in Eq. 3. The FGD (18) and the sum of CVR (12) therefore determined CVI to
0.66. Item pretesting, using expert reviewers (5) and the sum of their endorsements
CVR (3.45) determined the expert reviews content validity, CVI to 0.69. The 53
items with content validity of 0.69 (out of the 74 items) were retained while 21 items
with content validity below the adopted cutoff point of 0.60 were dropped. Again,
item pretesting with cognitive testing participants (n = 19) and the sum of their item
endorsements CVR (26.4) determined the cognitive testing content validity, CVI to
0.72. Based on the cognitive testing content validity (0.72), three of the items (CVI
< 0.60) were dropped while 50 items (CVI > 0.60) were retained. Overall, content
validity results shows 0.66, 0.69 and 0.72 based on item generation, expert review
pretesting and cognitive testing interview analyses.

Results of rumor intensity (R) computation of the data generated with the newly
developed scale, based on Eq. 1 formula, shows R = 0.8 (i.e. decimal of R = 80).
This is because the rumor importance (i) score was 10 while its ambiguity (a) score
was 8. Just as Eq. 1 noted that R ~ i × a, which means rumor intensity is the product
of its importance to the hearer (or reader) and its corresponding ambiguity, having
the importance (i) as 10 and the ambiguity (a) as 8 implies that the intensity (R)
is 80. It must therefore be noted that rumor intensity was computed according to
percentage model and the product (R = 80) is converted to a decimal (i.e. R = 80 =
0.8).

The 50 retained scale items, resulting from significant CVIs and construct-relevant
rumor intensity (R), explored had significant minimum mean (2.50) and maximum
mean (4.67) as well as the lowest standard deviation and highest standard deviation
(0.98 and 1.81 respectively). None of the retained items had absolute values of more
than 0.30 for skewness and or kurtosis.

Internal consistency reliability based on Cronbach’s alpha was £ = 0.78 and
the range of item correlation coefficients, based on Pearson, r = 0.45−0.71 (p <
0.01). The results, based on item-total statistics, indicated that all the items have
significant reliability. The analysis, as presented in Table 1, helped to check for
items that were inconsistent with the average behavior of other items on the scale.
The reliability (if item deleted) was based on scale mean, scale variance, corrected
item-total correlation, and Cronbach’s alpha (Table 1).

Scale mean refers to if item 1 (for instance) was removed and the remaining items
on the scale summed up for all 570 cases then 23.10 would be the mean of the
summated items. Scale variance shows that if item 1 (for instance) was removed and
the remaining items on the scale summed up for all 570 cases, then 23.02 would be
the variance of the summated items. In case of the corrected item-total correlation,
the correlation between (for instance) item 1and the summated score was 0.71, as
presented in the third column of Table 1. Cronbach’s alpha refers to if item 1 (for
instance) was removed the Cronbach’s alpha reliability coefficient would be 0.7744.
By investigating total correlations (see Table 1), only few items have been deleted
for failure to satisfy the requirements to be retained due to their low correlations
while 50 items that satisfied such requirements are retained. This further improved
the scale reliability which corroborated the internal consistency reliability (0.78).
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Table 1 Item-total statistics (showing “if item deleted”)

Scale
mean

Scale variance Corrected
item-total
correlation

Cronbach alpha
(£)

1 Uncertainty
about a situation
leads to rumor
transmission

23.10 23.02 0.71 .67

2 Rumor keeps
one alert and
helps to avoid
danger or
insecurity

23.68 21.13 0.60 .71

3 Lack of
evidence is a
key defining
feature of rumor

23.56 22.52 0.54 .68

4 A rumor may be
like “I heard that
the real reason
those in charge
were forced to
step down
include certain
controversial
comments they
made”

23.13 23.10 0.61 .69

5 Rumor refers to
unverified
information
being circulated

23.51 20.49 0.48 .77

6 Information
from a credible
source is more
believable than
those spread by
non-credible
sources

23.60 22.12 0.45 .73

7 Reducing
uncertainty or
anxiety helps in
manag-
ing/preventing
rumors

23.06 21.45 0.66 .76

8 Information
from an
uncertain source
destabilizes my
decision making

23.22 22.04 0.59 .70

(continued)
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Table 1 (continued)

Scale
mean

Scale variance Corrected
item-total
correlation

Cronbach alpha
(£)

9 Rumor affects
performance
positively

23.17 20.23 0.68 .63

10 Rumor is an
attempt to make
sense of unclear
situation or to
manage threats

23.10 23.02 0.71 .71

11 Rumor is
different from
gossip in every
sense

23.68 21.13 0.60 .69

12 It is okay to
share any
information
even without
evidence
supporting them

23.56 22.52 0.54 .67

13 Memory limits
can reduce
rumor
transmission

23.13 23.10 0.61 .68

14 I will not share
information that
seems not to
have any
evidence

23.51 20.49 0.48 .70

15 Uncertain events
are believed to
be sources of
anxiety

23.60 22.12 0.45 .74

16 Rumors in
agreement with
my current
attitudes are
more believable
than those that
disagree

23.06 21.45 0.66 .66

17 Reducing belief
in a rumor will
contribute to
managing it

23.22 22.04 0.59 .71

(continued)
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Table 1 (continued)

Scale
mean

Scale variance Corrected
item-total
correlation

Cronbach alpha
(£)

18 Rumor may read
“it is believe
that the main
opposition party
is behind the
ongoing
uncompromised
industrial
disharmony
against
government”

23.13 23.10 0.61 .72

19 Rumor affects
performance
negatively

23.51 20.49 0.48 .68

20 Anxiety
promotes rumor
among
individuals

23.60 22.12 0.45 .68

21 Any news that
turns out to
become a lie,
after
verification, is a
rumor

23.06 21.45 0.66 .67

22 Information
from unreliable
source has no
guarantee in life

23.22 22.04 0.59 .72

23 Uncertain
information
constitutes more
uneasiness or
significant stress

23.17 20.23 0.68 .62

24 A rumor may
read “have you
heard? … that
the businessman
in town is
rumored to be
the financier of
terrorists”

23.10 23.02 0.71 .67

(continued)
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Table 1 (continued)

Scale
mean

Scale variance Corrected
item-total
correlation

Cronbach alpha
(£)

25 Ambitious
anticipation is a
fertile ground
for rumor to
thrive

23.13 23.10 0.61 .64

26 A rumor being
circulated
repeatedly is
more believable
to me than those
heard just once

23.51 20.49 0.48 .67

27 Rumor spreads
like news if it is
still new or
current

23.60 22.12 0.45 .68

28 Rumor is not
like news if it is
never verified

23.06 21.45 0.66 .72

29 Rumor can
damage an
individual’s
reputation

23.22 22.04 0.59 .71

30 Rumor may
endear the
speaker to the
listener

23.17 20.23 0.68 .69

31 Rumor becomes
a fact whenever
it is found to be
true

23.10 23.02 0.71 .69

32 I feel relieved
when an
ambiguous
situation
suddenly
becomes clear

23.68 21.13 0.60 .66

33 There is
something
exciting about
being kept in
suspense

23.56 22.52 0.54 .61

(continued)
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Table 1 (continued)

Scale
mean

Scale variance Corrected
item-total
correlation

Cronbach alpha
(£)

34 Attempts to fact
finding attracts
rumor
mongering

23.13 23.10 0.61 .67

35 A rumor refers
to any well-
orchestrated
propaganda
being dished out

23.51 20.49 0.48 .66

36 Lack of having
all the
information I
need frustrates
me

23.60 22.12 0.45 .69

37 Rumor can
damage a
company’s
reputation

23.06 21.45 0.66 .70

38 Building trust
will contribute
to preventing
and managing
rumors

23.22 22.04 0.59 .75

39 Rumor is an
evaluative chat
about
individuals
which may or
may not be
verified

23.13 23.10 0.61 .65

40 Rumor keeps
people on their
toes for effective
prevention or
management of
threats

23.51 20.49 0.48 .64

41 A rumor is an
idle or
slanderous talk
about an
individual who
is not present

23.60 22.12 0.45 .67

(continued)
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Table 1 (continued)

Scale
mean

Scale variance Corrected
item-total
correlation

Cronbach alpha
(£)

42 Belief system
determines the
strength of
rumor
transmission

23.06 21.45 0.66 .77

43 Social status
contributes to
rumor
transmission

23.22 22.04 0.59 .75

44 Rumor can
foster hatred
among persons
or groups

23.17 20.23 0.68 .71

45 A story that
brings
uncertainty
easily
disorganizes me

23.10 23.02 0.71 .67

46 Falsification of
certain rumors
can reduce my
belief in similar
brand of rumors

23.13 23.10 0.61 .64

47 I get worried if
any sensitive
information I
was told
remains
uncertain

23.51 20.49 0.48 .67

48 Rumor may read
“be informed
that mindless
terrorists are
planning attacks
in town next
week”

23.60 22.12 0.45 .68

(continued)
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Table 1 (continued)

Scale
mean

Scale variance Corrected
item-total
correlation

Cronbach alpha
(£)

49 Enhancing
appropriate
communication
can prevent
rumors

23.06 21.45 0.66 .72

50 Rumor may be
circulated as “I
heard that 45
members of
staff will be laid
off from this
organization”

23.22 22.04 0.59 .71

Exploratory analysis and principal component analysis extracted seven factors
with respective itemmembership of 10, 8, 7, 10, 6, 5 and 4 which accounted for 92%
of the total scale variance (Table 2). These factors are factor 1 (rumor diagnostics),
factor 2 (rumor transmission), factor 3 (rumor impact/effect), factor 4 (response
attitude), factor 5 (rumor belief role), factor 6 (rumor type), and factor 7 (rumor
management). The Rumor Diagnostics Subscale consists of 10 items (3, 5, 10, 11,
21, 28, 31, 35, 39 and 44), Rumor Transmission Subscale has 8 items (1, 13, 20, 25,
27, 34, 42 and 43), Rumor Impact Subscale has 7 items (2, 9, 19, 29, 30, 37 and 40),
Rumor Response Attitude Subscale consists 10 items (8, 12, 14, 22, 23, 32, 33, 36,
45 and 47), Rumor Belief Subscale has 6 (6, 15, 16, 26, 41 and 46), Rumor Type
Subscale has 5 items (4, 18, 24, 48 and 50), and the Rumor Management Subscale
consists of 4 items (7, 17, 38 and 49).

4 Discussion

Psychological measurements are largely based on the nearest approximation of the
phenomenon being measured while psychometric scales are indispensable tools
needed for conducting such measurements. Scale development researchers, includ-
ing Morgado, Meireles, Neves, Amaral and Ferreira (2017), however decried lim-
itations resulting from previous scale developments which must be overcome to
ensure more optimal scale. The present study essentially developed a suitable scale,
referred to as the “Rumor Scale”, for an empirical rumor validity assessment based
on robust construct-relevant methodology (Gandi et al., 2018). Required optimality
was achieved by systematic and rigorous implementation of the empirically designed
Gandi Psychometric Model’s 9-stage process (Gandi, 2018). This made the Rumor
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Table 2 Factor loadings

Factors

1 2 3 4 5 6 7

1 Uncertainty about a situation leads to rumor
transmission

.61

2 Rumor keeps one alert and helps to avoid
danger or insecurity

.71

3 Lack of evidence is a key defining feature of
rumor

.60

4 A rumor may be like “I heard that the real
reason those in charge were forced to step
down include certain controversial comments
they made”

.60

5 Rumor refers to unverified information being
circulated

.88

6 Information from a credible source is more
believable than those spread by non-credible
sources

.65

7 Reducing uncertainty or anxiety helps in
managing/preventing rumors

.97

8 Information from an uncertain source
destabilizes my decision making

.96

9 Rumor affects performance positively .57

10 Rumor is an attempt to make sense of unclear
situation or to manage threats

.76

11 Rumor is different from gossip in every sense .69

12 It is okay to share any information even
without evidence supporting them

.77

13 Memory limits can reduce rumor transmission .78

14 I will not share information that seems not to
have any evidence

.71

15 Uncertain events are believed to be sources of
anxiety

.72

16 Rumors in agreement with my current attitudes
are more believable than those that disagree

.76

17 Reducing belief in a rumor will contribute to
managing it

.74

18 Rumor may read “it is believe that the main
opposition party is behind the ongoing
uncompromised industrial disharmony against
government”

.71

19 Rumor affects performance negatively .99

(continued)
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Table 2 (continued)

Factors

1 2 3 4 5 6 7

20 Anxiety promotes rumor among individuals .97

21 Any news that turns out to become a lie, after
verification, is a rumor

.75

22 Information from unreliable source has no
guarantee in life

.57

23 Uncertain information constitutes more
uneasiness or significant stress

.76

24 A rumor may read “have you heard? … that the
businessman in town is rumored to be the
financier of terrorists”

.88

25 Ambitious anticipation is a fertile ground for
rumor to thrive

.85

26 A rumor being circulated repeatedly is more
believable to me than those heard just once

.56

27 Rumor spreads like news if it is still new or
current

.95

28 Rumor is not like news if it is never verified .76

29 Rumor can damage an individual’s reputation .57

30 Rumor may endear the speaker to the listener .95

31 Rumor becomes a fact whenever it is found to
be true

.60

32 I feel relieved when an ambiguous situation
suddenly becomes clear

.91

33 There is something exciting about being kept
in suspense

.73

34 Attempts to fact finding attracts rumor
mongering

.85

35 A rumor refers to any well-orchestrated
propaganda being dished out

.71

36 Lack of having all the information I need
frustrates me

.94

37 Rumor can damage a company’s reputation .64 .63

38 Building trust will contribute to preventing and
managing rumors

.94

39 Rumor is an evaluative chat about individuals
which may or may not be verified

.83

40 Rumor keeps people on their toes for effective
prevention or management of threats

.70

(continued)
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Table 2 (continued)

Factors

1 2 3 4 5 6 7

41 A rumor is an idle or slanderous talk about an
individual who is not present

.78

42 Belief system determines the strength of rumor
transmission

.90

43 Social status contributes to rumor transmission .82

44 Rumor can foster hatred among persons or
groups

.79

45 A story that brings uncertainty easily
disorganizes me

.94

46 Falsification of certain rumors can reduce my
belief in similar brand of rumors

.95

47 I get worried if any sensitive information I was
told remains uncertain

.95

48 Rumor may read “be informed that mindless
terrorists are planning attacks in town next
week”

.99

49 Enhancing appropriate communication can
prevent rumors

.85

50. Rumor may be circulated as “I heard that 45
members of staff will be laid off from this
organization”

.89

Scale more construct-relevant and psychometrically sound than other scales not sub-
jected to such psychometric rigors.

Structurally, the study conceptual framework which shows empirical systematism
led to answering the “how” and “why” questions in the process of devising/deriving
needed items is of essence. The numerous materials adopted and used have been
helpful in effective generation and efficient tracking of data for evidential documen-
tation accuracy and analysis precision. Mackie (1974), as corroborated by Gandi
et al. (2018), believe that both necessary and inus conditions used have effectively
complemented those material instruments. Working with strictly representative sam-
ple of participants, as earlier observed (Morgado et al., 2017; Tabachnick & Fidell,
2007), has been rewarding in every sense as it contributes to ensuring that the newly
developed Rumor Scale is optimally construct-relevant (Gandi et al., 2018). The
implemented person-to-item ratio (i.e. subject-variable ratio) model at high signifi-
cance level have added value to the study sample optimality.

Using PCA does not imply being unmindful of the suggestion, as extended by
Cripps (2017), to avoid using PCA as a precursor to confirmatory factor analysis
(CFA). The uniqueness of using PCA at the scale development stage, in this case,
is that the use of CFA was not yet required at this level of the study (Gandi, 2018).
Reliabilitywas established based on findings from item-total statisticswhich checked
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items thatwere inconsistentwith the average behavior of other items.Critical analysis
and inspection of the scalemean, scale variance, and Cronbach’s alpha if item deleted
provided more insight which helped to avoid construct-irrelevant items by deleting
them.

Pretesting based on cognitive testing interviews, which helped in revising and
modifying certain items, has corroborated the improved suitability of the scale items
among target population. For Chi-Square tests for model goodness of fits, both par-
allel test and strict parallel test results presented the Rumor Scale as a significant
instrument that it is (Zhu & Liu, 2017). The assumption that the r population means
are not equal but all the r factor loadings and population unique factor variances are
equal was supported by the parallel test, while the assumption that all the r population
means, factor loadings, and unique factor variances was supported by strict parallel
test. The significant rumor intensity level elicited by the Rumor Scale, which sup-
ported reliability and validity, is a complementary empirical evidence of adequate
suitability for assessing rumor validity. This supports Gandi et al. (2018) who opine
that even as rumor predicts good news, it equally triggers distress. However, any dis-
tress resulting from conflicts and or trauma is avoidable if knowledge, skills, other
resources and support are appropriately deployed (Gandi & Wai, 2010). The Rumor
Scale elicits data that leads to such useful information.

Empirically, as Coaley (2010) emphasizes, the three major sources of validity
evidence are based on the content issues (content-related validity), the relationships
with measures of other variables (criterion-related validity), and the internal struc-
ture of the selection procedure (construct-related validity). However, validity of the
present scale was based more on content validity and construct validity at its devel-
opment phase. The main limitation was lack of using confirmatory factor analysis
in the present study (CFA). The scale will be further validated to establish norms
by implementing the CFA and other competing analysis models. Further valida-
tions, including cross-cultural and trans-national adaptations, which can sufficiently
establish diverse norm(s) are suggested.
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An Application of a Topic Model to Two
Educational Assessments

Hye-Jeong Choi, Minho Kwak, Seohyun Kim, Jiawei Xiong,
Allan S. Cohen and Brian A. Bottge

Abstract A topic model is a statistical model for extracting latent clusters or themes
from the text in a collection of documents. The purpose of this study was to apply
a topic model to two educational assessments. In the first study, the model was
applied to students’ written responses to an extended response item on an English
LanguageArts (ELA) test. In the second study, a topicmodelwas applied to the errors
students’ made on a fractions computation test. The results for the first study showed
five distinct writing patterns were detected in students’ writing on the ELA test. Two
of the patterns were related to low scores, two patterns were associated with high
scores and one pattern was unrelated to the score on the test. In the second study, five
error patterns (i.e., latent topics) were detected on the pre-test and six error patterns
were detected on the post-test for the fractions computation test. The results for Study
2 also yielded evidence of instructional effects on students’ fractions computation
ability. Following instruction,more students in the experimental instruction condition
made fewer errors than students in the business-as-usual condition.

Keywords Topic models · Extended response items · Error analysis

1 Introduction

Topic models are statistical models for extracting the latent themes or topics from the
texts in a collection of documents that best represents the thematic structure in the
collection (Blei, 2012; Blei et al., 2003; Griffiths & Steyvers, 2004). Topic modeling
has been widely used in a variety of areas. Lauderdale (2014), for example, used a
topic model for studying the policy orientation of a court’s opinions, and Grimmer
(2010) used it for studying priorities of legislators and other political actors. Lau et
al. (2012) used a topic model for analyzing thematic trends on twitter. Bisgin et al.
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(2011) used a topic model to study drug labeling with the objective of discovering
topics that can group drugs together based on similar safety concerns or therapeutic
uses, and Rhody (2012) discussed how a topic model can be applied for poems, or
figurative language.

To date, however, little research has been reported on analysis of the text of
answers to test questions on educational assessments. In educational assessments,
constructed response items are proposed for use in assessing higher order thinking
skills that are less amenable to testing via selected response type items (Brookhart,
2010). In their responses to these items, examinees construct answers using their own
words as compared to selecting an answer choice. Scores for students’ constructed
responses to these items are based on rubrics. These provide an estimate of examinee
ability but may not provide much information about students’ higher order thinking
skills. Using topic modeling, it may be possible for researchers to extract the latent
themes reflecting these thinking skills from students’ responses.

In this study, we applied a topic model in two studies to help in identifying the
primary latent topics contained in the text of students’ responses: In Study 1, we
analyzed responses to a formative assessment in English Language Arts (ELA) for
eighth grade students. In Study 2, we analyzed error patterns on a mathematics test
assessing knowledge of fractions for middle school students. Below, we provide a
brief description of a topic model and then illustrate how to apply this model to
students’ responses in educational assessments.

2 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA; Blei et al., 2003) is one of the simplest topic
models. Suppose that a corpus consisted of D documents with each indexed by d .
Each document can be presented as a vector of words, wd = (wd ,1, . . . , wd ,N )′,
where N is the number of words in document d .

In LDA, each document in a corpus is assumed to be a mixture of finite topics, and
each topic is considered a probability distribution over a fixed set of words, or amulti-
nomial distribution over words, with a vector of probabilities βk = (βk,1, . . . , βk,V )

for k = 1, . . . ,K , where V is the number of unique words, and K is the number of
topics. Each document has topic proportions, θd = (θ(d ,1), . . . , θ(d ,K))

′. Then, the
per-document topic distribution (θd ) and topic-words distribution (βk ) are assumed as

θd ∼ Dirichlet(α), βk ∼ Dirichlet(η),

where α and η indicate the parameters of the Dirichlet distribution.
Each word (w(d ,n)) in a document has a topic assignment (z(d ,n)) that shows which

topic the word is from, and the word is assumed to be drawn from the corresponding
topic. Topic assignments for each document, zd = (z(d ,1), . . . , z(d ,N ))

′, are deter-
mined by θd , meaning that z(d ,n) follows a multinomial distribution over topics with
probabilities of θd .
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In LDA, the order of the words and the grammatical role of the words in the
document do not matter (this is the “bag of words” assumption; Blei, 2012). The
observed variables are the words of documents, and the latent or hidden variables
are the topic structure (topic-words distribution, per-document topic distribution,
and topic assignments). And, finally, the joint distribution of β = {β1, . . . , βK },
θ = {θ1, . . . , θD}, z = {z1, . . . , zD}, and w = {w1, . . . , wD}, given the parameters
of α and η, can be written as follows (Blei et al., 2003; Blei, 2012):

P(β, θ, z, w|α, η) =
K∏

k=1

p(βk |η)

D∏

d=1

p(θd |α)[
N∏

n=1

p(wd ,n|zd ,n, β)p(zd ,n|θd )], (1)

where N is the number of word in each document which may be different across
documents.

In fitting LDA, there are multiple ways of extracting the latent topic structure.
Most common are by Gibbs sampling method (Steyvers & Griffiths, 2007) or by a
variational method (Blei et al., 2003).

In the next section, we applied LDA to two sets of education assessments. In
determining the number of topics, we fit the model with different number of topics,
from 2- to 10-topic models, and DIC (Spiegelhalter, 1998) and interpretability were
used formodel selection.As each topic is characterized by its distribution overwords,
we used the most probable words or terms in the topic for interpreting and labeling
each topic. To implement LDA, R packages topicmodels (Hornik &Grün, 2011) and
stm (Roberts, Stewart, Tingley, 2018) were used.

3 Study 1: Argumentative Writing

3.1 Assessment and Data

In Study 1, the data were taken from a formative assessment of English and Language
Arts (ELA) for Grade 8. The assessment consists of 6 items: three multiple choice,
one short answer and one extended response items. The non-linear reliability (Green
&Yang, 2009) of this assessment was 0.85. In this study, students’ extended response
to the extended item was analyzed. The item consisted of two passages: one passage
was about environmental facts and the other was about economic facts. Students were
instructed to write an argumentative essay indicating whether their congressional
representative should allow the protected forest to be developed into commercial
timberland.

Before fitting the LDA, words with a frequency of less than 10 and documents
with less than 2 words were excluded. Also, stop words were eliminated from the
documents as a preprocessing step as they carry little if any useful information about
the topic. Stop words for this item included such terms as am, is, are, a, the, and but.
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The final data set included 2230 students’ responses with a total of words 257,378 in
this corpus. The number of unique words was 1006 and the average answer length
was 115 words (SD=75 words). After the preprocessing step, LDA models were fit
with from 2 to 20 topic.

3.2 Results

DIC suggested a 5-topic model for the data. Figure1 presents a frequency-weighted
word cloud. Word clouds are commonly used to visually represent the words in a
corpus. The font size of a word in Fig. 1 is proportional to its importance in the
corpus.

Based on the 30 most probable words in each topic, the first and third topics were
characterized as indicating simple borrowing of words. That is, students borrowed
words from the stem for the first topic and from the passages for the second topic
without using them to support their argument. The second topic was characterized
as use of everyday language. In this topic, students used everyday language about
the topic but did not necessarily provide detailed support for their arguments.

The fourth and fifth topics were characterized as integrative borrowing. This was
actually what the item requested students to do. That is, students were specifically
instructed in the prompt to use words from the stem or the passages to support their
arguments. These two topics were characterized as well-integrated answers that used
words to present and support students’ arguments.
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Fig. 1 Word clouds for individual topics containing the 30most frequent words in students’ writing
for the ELA extended response item. The labels for individual topics are on top of individual word
clouds
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Correlations were calculated between the individual topics and the rubric based
scores: integrative borrowing topicswere significantly andpositively related to scores
(r= .31 for Topic 4, r= .25 for Topic 5); however, simple borrowing or usingEveryday
Language were negatively related to scores. In particular Topic 2 , Everyday Lan-
guage, was significantly and negatively related to scores (r=−.28). The following
are examples of students’ answers that are representative of each topic. The five most
frequent words are underlined for each topic.

Topic 1 Borrowing-Stem: “I do not believe that the congressional representative
should allow a small protected forest to become commercial timberland. I say this
because in the passage it quotes “Commercial timberland has acres and acres of
forest all over the state” So why would they need a small protected forest they
really don’t need the small protected forest because they already have enough land
as it is. Since they have all of that land they shouldn’t want a small forest for their
commercial timberland. I believe we barely will have enough to survive off of if
they keep cutting down all the trees for example using all the forest for commercial
timberland. They are using enough of our forest as it is. They really don’t even
need our small protected forest.”
Topic 2 Everyday Language: “They can make a small tree farm, but they have to
be careful on what they are doing just in case if there are any living animals living
in those trees. It is not fare for the animals to suffer without a home because we
took their home away. What happens if someone comes and destroys your house,
how would you feel, that’s how the animals feel when you take their homes and
make it into a pieces of paper. So they have to find a new home. Then they destroy
it again and the process keeps on going and going and going.”
Topic 3 Borrowing-Passage: “Sixty percent of Georgia’s coastal plain is covered
in forest. The forest is one of the most diverse ecosystems in America and includes
forest, grassland, sandhills, marsh, swamp, and coastal habitats. Several varieties
of pine and oak are the most common trees. The growth on the ground under the
longleaf pine forest contains 150–300 plant species per acre, more birds than any
other Georgia forest type, and 60% of the amphibian and reptile species found in
the Southeast.”
Topic 4 Integrative Borrowing: “Paper mills are the third largest polluters in the
U.S., releasing pollutants into the air, water, and soil. Dioxin, a common paper
bleaching chemical byproduct, is one of the most deadly pollutants. Though
Georgia still feels the effect of pollution from decades past, many paper mills
are working to reduce the amount of pollutants they produce today. Paper mills
can use alternative bleaching chemicals, treat their wastewater, and support paper
recycling to reduce the impact on the environment.”
Topic 5 Integrative Borrowing: “No Georgia should not make a timberland com-
mercial because according to passageB: There are some concerns about protecting
the natural resources in the coastal plains region, however. Georgia’s protected
forest lands are worth an estimated $37 billion annually to Georgia by remaining
undeveloped. The forests provide clean water, carbon storage, wildlife habitats,
and recreation sites for many people. Passage A: The effects of human activity
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could be costly, not only to animals and plants but to humans as well. On Geor-
gia’s Protected Species List there are 111 animals and 103 plants, the majority of
which live in the coastal plain ecosystem. The wetlands of the coastal plain reduce
floods by absorbing rain water and provide fresh water for local communities; they
are also able to absorb and filter some toxins and pollutants.”

3.3 Summary for Study 1

The five topics detected from the ELA responses were characterized as being either
simple borrowing of words from the prompt or passages and thus not responsive to
the instructions for the item (i.e., Topics 1 and 3), simply using everyday language
as opposed to use of the terms in the passages for the item (i.e., Topic 2), and
appropriately using borrowing of words to support the answer (i.e., Topics 4 and 5).
Thus, the results of the LDA analysis helped to amplify the information extracted
from students’ answers. It provided information about what kinds of responses were
likely to have higher scores and what kinds of answers were likely to have lower
scores. In this way, the topic modeling added to the information obtained from the
grading of students’ answers to help explain why students may have received lower
scores, as was the case for answers characterized by Topics 1 to 3, or why use of
Topics 4 and 5 was associated with higher scores.

4 Study 2: Errors on Fractions Computation

In the second study, we applied LDA to middle grades students’ errors on a fractions
computation test. As we show in this example, the results of the topic modeling
illustrate how LDA can be used to help investigate differential effects of instruction
on students’ learning.

4.1 Assessment and Data

Data. Participants included 756 middle school students in Grades 6 to 8. 433 of
the students had diagnosed learning disabilities, and the remaining 323 students were
considered as average achieving in mathematics. Individual classes were randomly
assigned to an experimental instructional condition (N=360) or to a business-as-
usual (BAU) condition (N=396).

Instructional Conditions. The experimental condition implemented was En-
hanced Anchored Instruction (EAI; Bottge et al., 2014). Teachers in the EAI condi-
tion asked probing questions and offered instructional guidance to students as they
viewed videos about the mathematics they were learning. Teachers also helped stu-
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dents identify relevant information in the videos to help them solve the problem.
This helped eliminate the need for reading, which is a skill many low-achieving
math students also lack. In the BAU condition, students received instruction over the
same mathematics as in the EAI condition, but teachers did not use supportive or
probing questions nor enhance instruction using videos explaining and illustrating
the mathematics being taught.

Fractions Computation Test. A Fractions Computation Test (FCT) designed by
Bottge et al. (2014) consisted of 20 items (14-addition and 6-subtraction items). The
FCT was administered for the pre-test and the post-test for investigating instruction
effects on students’ fractions computation ability. Math education experts identi-
fied 11 types of errors students made when incorrectly answering these items. A
description of each error is given below:

Combining (C): Student combines numerators and combines denominators, con-
sistently applying the same operation to numerator and denominator.
Select Denominator (SD): Student selects one of the denominators listed in the
problem and makes no attempt to make equivalent fraction. Denominator given in
the answer must be present in the problem.
No response (NR): Student leaves problem blank.
Add All (AA): Student separately adds together all the components of the fractions.
Equivalent Fraction Error (EQ): Student makes an error when attempting to rep-
resent an equivalent fraction.
Large-small (LS): Student subtracts smaller from larger fraction out of order. Or
student subtracts smaller part of fraction from larger part of fraction out of order
when combined with (C) error.
Computation Error (CE): Student makes an arithmetic error.
Adding Components (AC): Students adds the numerator and denominator of each
individual fraction together and those two sums are represented in the answer.
Wrong Operation (WO): Student adds given a subtraction problem or subtracts
given an addition problem.
Renaming (RN ): Student makes a mistake when renaming a whole number as a
mixed number; the student fails to borrow correctly from a whole number.
Other (O): Student makes error other than those listed above.

These errors reflect students’ misunderstandings about computing with fractions.
Table1 presents frequencies of individual errors on the pre-test and the post-test. In
that table, No-Error indicates that students correctly answered the item. The table
shows that the most common errors wereCombining (C) and Selecting Denominator
(SD). The remaining nine other types of errors occurred less frequently.

4.2 Results

LDA was used to analyze the errors in this data set. Models with from 2 to 10 topics
were fit to the error data. DIC suggested a 5-topic model for the pre-test and a 6-topic
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Table 1 Frequency of errors students made on the pre-test and the post-test

Error code (Quick description) Pre-test Post-test

NE (No-error) 3288 6172

C (Combining) 5290 3061

SD (Select denominator) 1287 1270

NR (No-response) 925 691

AA (Add all) 564 195

EQ (Equivalent fraction error) 475 725

LS (Large-small) 440 530

CE (Computation error) 150 358

AC (Adding components) 139 88

WO (Wrong operation) 80 109

RN (Renaming) 23 53

O (Other) 2459 1868

Total 15,120 15,120

model for the post-test to be the best fit of the candidate models considered. Figure2
shows mixtures of errors in each topic using a stacked bar plot. Error codes with
frequencies of greater than 20% are shown in the bar. The plot in the left panel is for
the pre-test and the plot in the right panel is for the post-test.

The plots illustrate differences in types of errors made by students on each of the
topics. Most topics on the pre-test and the post-test were relatively similar. Topic 1
consisted of mainly Other. Topic 2 consisted of Add all and No-response. Topic 3
was a mixture of Select Denominator and No-error. Topic 4 was mostly Combining
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Fig. 2 Topic structure characterized by errors students made on the fractions computation test: left
panel for the pre-test and right panel for the post-test
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errors. Topic 5wasmainlyNo-errorwhich is an indication of demonstrating fractions
computation ability. Topic 6 only appeared on the post-test and consisted of amixture
of Equivalent Fraction Error and No-error.

For all students in this study, the averaged topic proportion for Topic 5 No-Error
occurred in 24%of the answers on the pre-test and 35%on the post-test. This suggests
that students’ fractions computation ability increased following both BAU and EAI
instruction.

Figure3 presents comparisons of topic proportions averaged across students be-
tween BAU and EAI classes on the post-test. The plot in the upper panel is for
students in BAU classes and the plot in the lower panel is for students in EAI classes.
Distributions for Topic 5 on the post-test occurred in 47% of students’ answers in
the EAI group and 24% for students in the BAU group. In addition, distributions of
errors in the BAU condition indicated that, even after their normal math instruction,
students still made a Combining error about 30% of the time. In particular, students
combined numerators and combined denominators incorrectly.

The increase in Topic 5,No-Error is indicative of the EAI effect. A beta regression
analysis on Topic 5 was used to further investigate the EAI effect. Results indicated
that the odds of having a higher No-Error topic proportion in the EAI group was
2.07 times that for the BAU group ([exp(0.729) = 2.07(t = 9.11, p < .001, df =
753)]. In other words, after EAI instruction, students tended to better understand the
fractions computation material than students in the BAU group.

In addition to the document proportions, Table2 presents some of the students’
error patterns in the EAI condition to illustrate how students’ error patterns changed
from pre-test to post-test. Values in the parentheses are topic proportions for the six
topics for each document indicating that how much of each topic is present in each
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Table 2 Transitioning students’ errors from pre-test to post-test

Student ID Test (Topic proportion (%), θd )a Error code

734 Pre-test NE NE SD SD SD SD O O SD SD

(16,7,72,3,3, NA) SD SD SD SD WOWOWO WOWO
WO

Post-test NE NE NE NE NE NE NE NE NE NE

(2,2,2,2,80,11) NE NE NE CE NE NE NE LS NE CE

552 Pre-test C NE C C C C C C C C

(3,3,3,85,7, NA) C C C C C C C LS C C

Post-test NE NE NE NE NE NE NE NE NE NE

(2,2,2,2,90,2) NE NE NE CE NE NE NE RN NE LS

677 Pre-test NE NE O O O O O O O O

(55,3,11,3,29, NA) O O O O NE SD NE LS SD LS

Post-test NE NE NE NE NE NE NE NE NE NE

(2,2,2,2,90,2) NE NE NE NE NE NE NE NE NE LS
aThe order of topics is Other, Add all, Select Denominator, Combining, No-error,
and Equivalent Fraction error. The values in bold are for the most likely topic

document. Prior to instruction, on the pre-test, student ID=734 often made Select
Denominator errors and Wrong Operation errors. After EAI instruction, the same
student did not made any mistakes on 18 of the items and only made Large-Small
and Computation Error errors on the remaining items. Similarly, student ID=552
made Combining errors and student ID=677 made Other errors on the pre-test but
after instruction, neither of these kinds of errors were made on the post-test by either
student.

5 Conclusions and Discussion

LDA has been shown to be a useful tool for analyzing various types of data including
text, music, and images (Hu, 2009). In education assessment, the situation is different
in that constructed response test items ask for more focused types of responses from
students. Constructed response items, for instance, are often used to measure higher
order cognitive abilities. Rubric based scoring for these items does provide useful
information about the correctness of answers, but the scores alone do not provide
information that helps understand student’s thinking. LDA extracts latent themes in
text and, as a result, can be ameans of providing additional kinds of information about
students’ thinking as they answer constructed response items. One possibility is that
this kind of information can help describe how students use words in textual answers
and how this relates to better understanding the thinking they use in their answers.

In this study, we used LDA for analyzing students’ writing on an ELA test and
for analysis of error students made on a middle grades test of computing fractions.
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LDA identified distinct topics in both ELA and fractions computation tests. Further,
results for the fractions computation test showed instructional effects on students’
misconceptions of fractions computation. LDA appears to have the potential to be
useful for investigating students’ thinking as reflected in their textual answers and
patterns of errors. With respect to the patterns of errors, it was interesting to note that
these tended to be reflective of the effects of the instructional conditions in Study 2.
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