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Abstract. Helping user identify the ideal results of a manageable size
k from a database, such that each user’s ideal results will take a big pic-
ture of the whole database. This problem has been studied extensively in
recent years under various models, resulting in a large number of inter-
esting consequences. In this paper, we introduce the concept of mini-
mum happiness ratio maximization and show that our objective func-
tion exhibits the property of monotonictity. Based on this property, two
efficient polynomial-time approximation algorithms called Lazy NWF-
Greedy and Lazy Stochastic-Greedy are developed. Both of them are
extended to exploit lazy evaluations, yielding significant speedups as
to basic RDP-Greedy algorithm. Extensive experiments on both syn-
thetic and real datasets show that our Lazy NWF-Greedy achieves the
same minimum happiness ratio as the best-known RDP-Greedy algo-
rithm but can greatly reduce the number of function evaluations and
our Lazy Stochastic-Greedy sacrifices a little happiness ratio but signif-
icantly decreases the number of function evaluations.

Keywords: Minimum happiness ratio · Representative skyline
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1 Introduction

When users query the entire database trying to find an item that they are inter-
ested in, they may not be willing to search through all of the results storing a
multitude of items. Given this, multiple operators have been proposed to reduce
output size of query results while still effectively representing the entire database.
Among these, top-k [1–4] and skyline [5–9] are two well-studied operators that
can effectively reduce output size of query results. Top-k operator takes as input
a dataset, a utility function and a user-specified value k, then outputs k data
points with the highest utility scores. In other words, top-k returns a customized
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set of data points to users. Unlike top-k operator, skyline returns a set of inter-
esting data points without the need to appoint a utility function. The concept
of domination is crucial in skyline operator. In fact, skyline returns data points
that are not dominated by any other point in the database. Specifically, a point
p dominates another point q if p is as good or better in all dimensions, and
strictly better in at least one dimension. However, both operators suffer from
some drawbacks. Top-k operator asks for users to specify their utility functions
and the size of the result set, but users may not provide their utility functions
precisely. Skyline operator finds all points that are not dominated by other points
in the database, so the exact number of results is uncontrollable, and cannot be
foreseen before the whole database is accessed. In addition, the output size of
skyline operator will increase rapidly with the dimensionality.

Fortunately, Nanongkai et al. [10] first introduced k-regret query and devel-
oped the best-known algorithm based on the framework of Ramer–Douglas–
Peucker algorithm. We called the Greedy algorithm proposed in [10] RDP-
Greedy. Given an integer k and a database D, RDP-Greedy algorithm returns
a set S of k skyline points of D that minimizes the maximum regret ratio of
S. However, as k-regret query exploits linear utility function space to simulate
all possible utility functions that users may have, it has a side effect of per-
forming too many function evaluations through Linear Programming (LP). In
general, the number of function evaluations of RDP-Greedy is nk, where n is the
size of whole database. Besides, for RDP-Greedy, LP for function evaluations is
the overwhelming majority of the running time. Thus, reducing the number of
function evaluations by LP should speed up the algorithm to a great extent.

Table 1(a) shows the classic skyline example of best hotels for a sample set of
hotels where each hotel has two attributes, namely Distance and Price. Suppose
that user’s utility functions are the class of U = {u(0.4,0.6), u(0.5,0.5), u(0.6,0.4)}
where u(x,y) = x · Distance + y · Price. The utilities of each hotel are shown in
Table 1(b). Given k = 3, the k-regret query will report a solution S = {p8, p1, p5}
under the aforementioned class of utility functions U . The implementation of k-
regret query is as follows, it picks the point that maximizes the first coordinate
and then iteratively adds the worst point, i.e., the point that is still outside
the current solution and contributes the most to the maximum regret ratio of
current solution. Unfortunately, even in this simple example, k-regret query per-
forms 13 times of function evaluations and each function evaluation results in
O(k2d) running time by LP [11]. However, the maximum regret ratio obtained
by adding a point to a larger set isn’t greater than adding the same point to
a smaller set. The process of RDP-Greedy algorithm doesn’t take this property
into consideration thus resulting in an unnecessary function evaluation to p7
which occurs to the selection of the 3rd point. For further explanation, please
refer to Example 2 in Sect. 5.1 for details.

As mentioned above, the deficiency of k-regret query is performing too many
function evaluations. Motivated by this, in this paper, the concept of happiness
ratio is first introduced. The utility provided by the best hotel in the result is
user’s happiness and the happiness ratio is by dividing happiness by the util-
ity of her ideal hotel. The minimum happiness ratio is a measurement which
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Table 1. Hotel example

(a) Hotel database

Hotel Distance Price
p1 125 1000
p2 250 800
p3 312.5 750
p4 375 650
p5 562.5 625
p6 625 450
p7 750 250
p8 1000 75

(b) Hotel utilities

Hotel u(0.4, 0.6) u(0.5, 0.5) u(0.6, 0.4)
p1 650 562.5 475
p2 580 525 470
p3 575 531.25 487.5
p4 540 512.5 485
p5 600 593.75 587.5
p6 520 537.5 555
p7 450 500 550
p8 445 537.5 630

measures how happy the user will be after displaying k hotels instead of the
whole database. Our purpose is to select k hotels that maximize the minimum
happiness ratio of a user. Moreover, we demonstrate that our objective function
for maximizing the minimum happiness ratio exhibits the property of monotonic-
ity. Based on this property, two efficient algorithms by extending to exploit lazy
evaluations, yielding significant speedups, called Lazy NWF-Greedy and Lazy
Stochastic-Greedy are proposed. The former is an improvement of RDP-Greedy
and the latter essentially follows the lazier idea of [12]. In our extensive experi-
ments, Lazy NWF-Greedy achieves the same minimum happiness ratio as RDP-
Greedy but can greatly reduce the number of function evaluations and Lazy
Stochastic-Greedy sacrifices a little happiness ratio but significantly decreases
the number of function evaluations.

The main contributions of this paper are listed as follows:

1. We propose the concept of minimum happiness ratio maximization1 and show
that our objective function for maximizing the minimum happiness ratio is a
monotone non-decreasing function.

2. Based on the monotonicity of our objective function, we introduce two
efficient greedy algorithms called Lazy NWF-Greedy and Lazy Stochastic-
Greedy respectively. The former achieves the same minimum happiness ratio
as RDP-Greedy but runs much faster, the latter sacrifices a little happiness
ratio but offers a tradeoff between minimum happiness ratio and the number
of function evaluations.

3. Extensive experiments on both synthetic and real datasets are conducted to
evaluate our methods and the experimental results confirm that both of our
proposed algorithms are superior to RDP-Greedy algorithm proposed by [10].

1 Our minimum happiness ratio maximization is consistent with the k-regret pro-
posed in [10]. However, k-regret denotes different things by Nanongkai et al. [10]
and Chester et al. [13]. In the former, k-regret is the representative set of k objects,
whereas in the latter, k-regret is used to denote the regret between the scores of top
1 and top k. To avoid confusion, we refer k-regret in [13] to kRMS.
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The remainder of this paper is organized as follows. In Sect. 2, previous work
related to this paper is described. The formal definitions of our problem are given
in Sect. 3. In Sect. 4, important properties which are applied in our algorithms
are discussed. Followed by two accelerated greedy algorithms in Sect. 5. The
performance of our algorithms on synthetic and real datasets is presented in
Sect. 6. Finally, Sect. 7 concludes this paper and points out our future work.

2 Related Work

Top-k [1–4] and skyline [5–9] operators have received considerable attentions
during last two decades as they play an important role in multi-criteria decision
making. However, top-k operator requires users to specify their utility functions
and it may be too hard for users to specify their utility functions precisely while
skyline operator has a potential large output problem which may make users
feel overwhelmed. Motivated by the deficiencies of these two operators, a lot of
alternatives have been proposed in recent years.

From top-k perspective, Mindolin et al. [8] asked users to specify a small
number of possible weights each indicating the importance of a dimension. Lee
et al. [4] asked users to specify some pair-wise comparisons between two dimen-
sions to decide whether a dimension was more important than the other for a
comparison. However, these studies ask users to specify their utility functions,
which may be a heavy burden on users. In [7], skyline points were ranked accord-
ing to the skyline frequency, which was a measure of how often points appear as
skyline points in each particular subspace. The frequency ranking skyline query
thus returned the k skyline points with the highest skyline frequency. However,
this sort of quality measure is highly subjective and hard to verify.

Other works are in view of skyline operator. Researchers attempt to reduce
the output size of the skyline operator. The k representative skyline proposed
by Lin et al. [14] represented the whole skyline with only k skyline points which
dominated the most non-skyline points in the database. Tao et al. [15] demon-
strated the approach provided by [14] was not stable. Instead, they proposed
distance-based representative skyline borrowing the idea of solving the k-center
problem and provided a solution that the maximum distance from any skyline
point to its nearest representative skyline was minimized. This method captures
the contour of the full skyline well, but is not scale-invariant. Magnani et al. [16]
introduced an approach, which was trying to make the diversity of the k repre-
sentative skyline points returned as large as possible. A recent approach based
on the diversity measure was proposed by Søholm et al. [17], which returned the
k skyline points, such that the coverage was maximized. Also, [18] proposed a
new criterion to choose k skyline points as the k representative skyline for data
stream environments, termed the k largest dominance skyline. Unfortunately,
all these methods are not stable, scale-invariant or with deficiencies of top-k or
skyline operators.

To alleviate the burden of top-k for specifying accurate utility functions and
skyline operator for outputting too many results, regret-based k representative
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query was first proposed by Nanongkai et al. [10] to minimize user’s maximum
regret ratio. The stable, scale-invariant approach returned an approximation of
the contour of the full skyline without asking users to input their utility func-
tions. However, the approach proposed by them suffers from a heavy burden on
the function evaluations by Linear Programming to seek the point with maxi-
mum regret ratio in linear utility space. Several works extended Nanongkai et al.
[10] to some extent. Peng et al. [19] proposed the concept of happy points consid-
ered as candidate points for k-regret query and showed that happy points were
better used as candidate points compared with skyline points due to their small
size resulting in more efficient algorithms. However, the overall time complexity
of finding all happy points is O(d2n2) which is undesirable when n is very large.
To reduce the bounds of regret ratio, [20] combined user’s interactions into the
process of selection. [13] introduced the relaxation to k-regret minimizing sets,
[21] extended linear utility functions to non-linear utility functions for k-regret
queries and [22] proposed the metric of average regret ratio to measure user’s
satisfaction. Recently, [23] developed a compact set to efficiently compute the
k-regret minimizing set and [24] studied the kRMS, which returned r tuples
from the database which minimized the k-Regratio. [25] and [26] developed effi-
cient algorithms for kRMS. Rank-regret representative was proposed as a way
of choosing a small subset of the database guaranteed to contain at least one
good choice for every user in [27]. Xie et al. [28] proposed an elegant algorithm
which has a restriction-free bound on the maximum regret ratio. Our research
is from another respective: lazy evaluations by reducing LP calls thus improving
the efficiency.

3 Problem Definition

Let D be a set of n d-dimensional points over positive real values. Each point
in D can be regarded as a tuple in the database. For each point p ∈ D, the
value on the i-th dimension is represented as p[i]. We assume that users prefer
to the smaller values. Before we define our problem, some definitions of utility
function, happiness ratio and minimum happiness ratio are given.

Definition 1 (Utility Function). A utility function u is a mapping u: Rd
+ →

R+. The utility of a user with utility function u is u(p) for any point p and shows
how satisfied the user is with the point.

Definition 2 (Happiness Ratio). Given a dataset D, a set of S with points
in D and a utility function u. The happiness ratio of S, represented as HD(S, u),
is defined to be

HD(S, u) =
maxp∈S u(p)
maxp∈D u(p)

The happiness ratio is in the range (0, 1]. According to the definition of
happiness ratio, the larger the value of happiness ratio is, the happier the user
feels.
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Since we do not ask users for utility functions, we know nothing about users’
preferences for the attributes. For each user, she may have arbitrary utility func-
tion. In this paper, we assume that user’s utility functions are a class of functions,
denoted by U . Usually, four kinds of utility functions [21] are considered, which
are Linear, Convex, Concave and CES. In this paper, only the case of function
class U consisting of all liner utility functions is considered since it is widely used
in modeling user’s preferences.

Definition 3 (Linear Utility Function [10]). Assume that existing some non-
negative reals v1, v2, · · · , vd which denote the user’s preferences for the i-th
dimension, then a linear utility function can be represented as u(p) =

∑d
i=1 vi·p[i]

for any d-dimensional point with a liner utility function u. We can also say that a
linear utility function can be expressed as a weight vector, i.e. v = (v1, v2, ..., vd),
so the utility of any point p can be expressed as the dot product of v and p,
namely, u(p) = v · p.

The formal definition of minimum happiness ratio of a set S is as follows.

Definition 4 (Minimum Happiness Ratio). Given a dataset D, a set of S
with points in D and a class of utility functions U . The minimum happiness
ratio of S, represented as HD(S,U), is defined to be

HD(S,U) = inf
u∈U

HD(S, u) = inf
u∈U

maxp∈S u(p)
maxp∈D u(p)

Since U is allowed to be an infinite class of functions and the minimum value
may not exist, so we use inf(S,U) to represent the minimum happiness ratio.

Example 1. In the following, we present an example for the illustration. Con-
sider the hotel database containing 8 hotels as shown in Table 1(a) in the previ-
ous section. The utility function class U is {u(0.4,0.6), u(0.5,0.5), u(0.6,0.4)} where
u(x,y) = x · Distance + y · Price. The utilities of hotels for the utility functions
in U are shown in Table 1(b). Consider p1 in Table 1(b). Its utility for the utility
function u(0.4,0.6) is u(0.4,0.6) = 125 × 0.4 + 1000 × 0.6 = 650. The utilities of
the remaining points are computed in a similar way. Consider a selection set
S = {p3, p4}. Then, the maximum utility of S for the utility function u(0.4,0.6)

is 575 which is achieved by p3 while the maximum utility of whole database
is 650 which is achieved by p1. Then the happiness ratio of S for the utility
function u(0.4,0.6) is HD(S, u(0.4,0.6)) = 575/650 = 0.8846. Similarly, we can get
HD(S, u(0.5,0.5)) = 531.25/593.75 = 0.8947 and HD(S, u(0.6,0.4)) = 487.5/630 =
0.7738. Hence, the minimum happiness ratio of S is 0.7738.

Problem Definition: Given a dataset D, a positive integer k, our problem
of minimum happiness ratio maximization is trying to find a subset S of D
containing at most k points such that the minimum happiness ratio is maximized
while simultaneously keeping the number of Linear Programming as small as
possible.

Our aim is to maximize user’s minimum happiness ratio while reducing the
times of Linear Programming to return k representatives efficiently compared
with RDP-Greedy in [10].
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4 Properties of The Objective Function

The minimum happiness ratio function HD(S,U) has an intuitive and important
property which can be exploited to improve the efficiency while solving our
problem. First, when S = ∅, HD(S,U) = 0, this means that we do not obtain any
happiness if we do not select any point. Secondly, HD(S,U) is a non-decreasing
function, i.e., HD(S1, U) ≤ HD(S2, U) for all S1 ⊆ S2 ⊆ D. Hence, adding some
points into a subset can increase the happiness ratio or at least keep it unchanged
(not decreasing the minimum happiness ratio).

Definition 5 (Monotonicity). A set function f : 2D → R+ is monotone if
for every S1 ⊆ S2 ⊆ D, it holds that f(S1) ≤ f(S2). In addition, f(S) is non-
negative if f(S) ≥ 0 for any set S.

A set function satisfies the above properties, then we say it is a monotone
non-decreasing function.

Lemma 1. Our minimum happiness ratio maximization function is a monotone
non-decreasing function, namely, it satisfies the property of monotonicity.

The proof of monotonicity that our minimum happiness ratio maximization
function meets is given below.

Proof. Suppose that there exist two arbitrary non-empty subsets S1, S2 where
S1 ⊆ S2 ⊆ D. According to Definition 4, we have

HD(S1, U) = inf
u∈U

maxp1∈S1 u(p1)
maxp1∈D u(p1)

HD(S2, U) = inf
u∈U

maxp2∈S2 u(p2)
maxp2∈D u(p2)

Since S1 ⊆ S2, it’s obvious that the minimum happiness ratio of S1 is not greater
than that of S2, i.e., HD(S1, U) ≤ HD(S2, U). �

The calculation of the maximum regret ratio based on the method introduced
in [10] has to run LP at most nk times. In practice, an LP solver (such as
variations of the Simplex method) will result in O(k2d) running time per LP
call and hence O(nk3d) for the RDP-Greedy. This, however, can be improved
using the property of monotonicity of our objective function. Detailed description
is presented in the following section.

5 Proposed Algorithms

We are ready to present our algorithms, Lazy NWF-Greedy and Lazy Stochastic-
Greedy, both of them are boosted in performance compared with RDP-Greedy.
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5.1 Lazy NWF-Greedy Algorithm

The RDP-Greedy introduced in [10] picks the point that maximizes the first
coordinate and adds the point that currently contributes the most to the max-
imum regret ratio in the subsequent iterations. Unfortunately, evaluating the
minimum happiness ratio or the maximum regret ratio is time-consuming, in
this section, we introduce Lazy NWF-Greedy which is an improvement of the
RDP-Greedy, providing the same greedy solution since they actually share a
same selection strategy. But Lazy NWF-Greedy is with fewer function evalua-
tions of the minimum happiness ratio compared with RDP-Greedy as some lazy
strategies are exploited.

Algorithm 1. Lazy-Evaluation(D,Si−1, i, {ρ(pj)})
Input: A set of n d-dimensional points D = {p1, p2, · · · , pn}, a current solution Si−1, an

integer i(the current number of points to find), and a list stored the minimum
happiness ratio of each point pj ∈ D\Si−1.

Output: A point p∗, where ρ(p∗) is minimized.

1 let h = 1 and p∗ = NULL;
2 ρ(pj0 ) = minpj∈D\Si−1{ρ(pj)};
3 if pj0 has already been selected at step i then
4 h = ρ(pj0 );

5 if h < 1 then
6 p∗ = pj0 ;

7 return p∗;

8 else
9 calculate the value of HSi−1∪{pj0

}(Si−1, U) using Linear Programming;

10 h = HSi−1∪{pj0
}(Si−1, U);

11 ρ(pj0 ) = h;

12 if h > minpj∈D\Si−1,pj �=pj0
{ρ(pj)} then

13 Lazy-Evaluation(D, Si−1, i, {ρ(pj)});
14 else
15 if h < 1 then
16 p∗ = pj0 ;

17 return p∗;

Speeding up Lazy NWF-Greedy with lazy evaluations. Since we have
no idea of user’s utility functions, the number of utility functions is infinite in
the linear utility space. In order to estimate the maximum regret ratio or the
minimum happiness ratio of a subset when we add a point into, a large num-
ber of function evaluations by Linear Programming need to be performed when
we run RDP-Greedy algorithm. Fortunately, monotonicity of our minimum hap-
piness ratio maximization function can be exploited algorithmically to imple-
ment an accelerated variant of RDP-Greedy to reduce the number of function
evaluations. In each iteration i, RDP-Greedy must identify the point p whose
HSi−1∪{p}(Si−1, U) is minimized(equivalent to maximizing the maximum regret
ratio), where Si−1 is the set of points selected in the previous iterations. The key
insight from the monotonicity of H, the minimum happiness ratio obtained by
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any fixed point p ∈ D is monotonically non-decreasing during the iterations of
adding points, i.e.,HD(Si ∪ {p}, U) ≤ HD(Sj ∪ {p}, U), whenever i ≤ j. Instead
of recomputing for each point p ∈ D, we can use lazy evaluations to maintain a
list of lower bounds {ρ(p)} on the minimum happiness ratio sorted in ascending
order. Then in each iteration, the accelerated algorithm needs to extract the min-
imal point p ∈ arg minp′ :Si−1∪{p}{ρ(p

′
)} from the ordered list and then updates

the bound ρ(p) ← HSi−1∪{p}(Si−1, U). After this update, if ρ(p) ≤ ρ(p
′
), then

HSi−1∪{p}(Si−1, U) ≤ HSi−1∪{p′}(Si−1, U) for all p 
= p
′
, and therefore we have

identified the point that contributes the least to the minimum happiness ratio,
without having to compute HSi−1∪{p′}(Si−1, U) for a potentially large number of
point p

′
. We set Si ← Si−1∪{p} and repeat until there is no further feasible point

which can be added. This idea of using lazy evaluations is useful to our algorithm
and can lead to orders of magnitude performance speedups. The pseudocodes of
lazy evaluation and Lazy NWF-Greedy are shown in Algorithms 1 and 2 respec-
tively. Example 2 is given to show how to combine the procedure of calculating
minimum happiness ratio with lazy evaluations to boost the performance of our
Lazy NWF-Greedy.

Algorithm 2. Lazy NWF-Greedy(D, k)
Input: A set of n d-dimensional points D = {p1, p2, · · · , pn} and an integer k, which is the

desired output size.
Output: A result set S, |S| = k.

1 Initially, let S1 = {p∗
1}, where p∗

1 = argmaxp∈D p[1];
2 for (i = 2; i ≤ k; i + +) do
3 let p∗ = NULL;
4 if i = 2 then
5 for each pj ∈ D\Si−1 do
6 calculate the value of HSi−1∪{pj}(Si−1, U) using Linear Programming;

7 ρ(pj) = HSi−1∪{pj}(Si−1, U);

8 p∗ =Lazy-Evaluation(D, Si−1, i, {ρ(pj)});
9 if p∗ = NULL then

10 return Si−1;

11 else
12 Si = Si−1 ∪ {p∗};

13 return Sk;

Example 2. Consider the example in Table 1, we want to select 3 points among
8 points and first pick p8 into the current solution S1, namely S1 = {p8}. In next
iteration, we have a list on the minimum happiness ratio sorted in ascending
order as shown in Table 2. The second point Lazy NWF-Greedy selects is p1 as
HS1∪{p1}(S1, U) is the minimum, then HS1∪{p1}(S1, U) will remove from the list
and S2 = {p8, p1}. After this operation, the algorithm begins to select the third
point. As HS1∪{p5}(S1, U) is the minimum in the current list, so Lazy NWF-
Greedy computes the minimum happiness ratio p5 will obtain if it is added to
S2 and gets that HS2∪{p5}(S2, U) is 0.947 which is not the minimum in the list as
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HS1∪{p2}(S1, U) to HS1∪{p6}(S1, U) are all less than HS2∪{p5}(S2, U), hence the
minimum happiness ratio obtained by adding them to S2 should be calculated. In
our example, they are all equal to 1. At this moment, this algorithm can directly
get the smallest minimum happiness ratio is 0.947 which is achieved by p5 with
no need to compute HS2∪{p7}(S2, U) since HS2∪{p7}(S2, U) ≥ HS1∪{p7}(S1, U) =
0.989. In Example 2, Lazy NWF-Greedy reduces the function evaluations for 1
time. Obviously, in the settings of large datasets, our Lazy NWF-Greedy can
reduce overall times of function evaluations dramatically compared with RDP-
Greedy.

Table 2. HSi∪{p}(Si, U) for iteration i

Points p1 p5 p2 p3 p4 p6 p7

HS1{p}(S1, U) 0.685 0.742 0.767 0.774 0.824 0.856 0.989

HS2{p}(S2, U) × 0.947 1 1 1 1 ×

5.2 Lazy Stochastic-Greedy Algorithm

As described in Sect. 5.1, Lazy NWF-Greedy identifies an ideal point from
D\Si−1 which is almost the whole dataset. When k points need to be picked
out, the algorithm has to go through the whole dataset for k times. In this
section, we show how the performance of Lazy NWF-Greedy can be boosted by
a random sampling phase thus leading to a randomized greedy algorithm called
Lazy Stochastic-Greedy. Lazy Stochastic-Greedy essentially follows the frame-
work of STOCHASTIC-GREEDY algorithm proposed in [12]. The algorithm
offers a tradeoff between minimum happiness ratio and the number of function
evaluations. It means that this algorithm sacrifices a little happiness ratio while
reducing the number of LPs to improve its efficiency.

We present our Lazy Stochastic-Greedy algorithm in Algorithm3. Initially,
similar to our Lazy NWF-Greedy algorithm, the algorithm starts with a set
containing the point that maximizes the first coordinate, then adds a point
to our solution whose minimum happiness ratio is minimized. Note that the
difference between Lazy Stochastic-Greedy and Lazy NWF-Greedy is that Lazy
NWF-Greedy finds a point from p ∈ D\Si−1 directly, but Stochastic-Greedy
samples a subset R of size (n/k)log(1/ε)(ε > 0 is an arbitrarily small constant)
from D\Si−1 randomly and then finds the point in R whose minimum happiness
ratio is minimized. We can combine the the random sampling procedure with lazy
evaluations to speed up the implementation of the algorithm as the randomly
sampled sets can overlap and we can exploit the previously evaluated minimum
happiness ratio. Hence in line 9 of Algorithm 3 we can apply lazy evaluations as
described in Sect. 5.1.

Lazy Stochastic-Greedy has two important features. The first feature is that
it is almost identical to Lazy NWF-Greedy in terms of minimum happiness ratio.
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Algorithm 3. Lazy Stochastic-Greedy(D, k)
Input: A set of n d-dimensional points D = {p1, p2, · · · , pn} and an integer k, which is the

desired output size.
Output: A result set S, |S| = k.

1 Initially, let’s S1 = {p∗
1}, where p∗

1 = argmaxp∈D p[1];
2 for (i = 2; i ≤ k; i + +) do
3 let p∗ = NULL;
4 obtain a random subset R by sampling s random points from D\Si−1;
5 for each pj ∈ R do
6 if pj has not been sampled then
7 calculate the value of HSi−1∪{pj}(Si−1, U) using Linear Programming;

8 ρ(pj) = HSi−1∪{pj}(Si−1, U);

9 p∗ =Lazy-Evaluation(R, Si−1, i, {ρ(pj)});
10 if p∗ = NULL then
11 return Si−1;

12 else
13 Si = Si−1 ∪ {p∗};

14 return Sk;

The second feature is that it is more efficient than Lazy NWF-Greedy, let alone
the best-known algorithm, RDP-Greedy.

Theorem 1. Suppose that the size of random sampling set R is s =
(n/k)log(1/ε), then Lazy Stochastic-Greedy provides a greedy solution to our
minimum happiness ratio maximization problem with at most O(nlog(1/ε)) func-
tion evaluations of the minimum happiness ratio H.

Since there are k − 1 iterations in total and at each iteration we have
(n/k)log(1/ε) points, the total number of function evaluations cannot be more
than (k − 1) × (n/k)log(1/ε) ≤ k × (n/k)log(1/ε) = nlog(1/ε).

6 Experimental Results

In this section we show the performance of the proposed algorithms via experi-
ments. All algorithms were implemented in C++ and the experiments were all
conducted on a 64-bit 3.3 GHz Intel Core machine which was running Ubuntu
14.04 LTS operating system.

We ran our experiments on both synthetic and real datasets. The synthetic
datasets were created using the dataset generator of [5]. Unless otherwise stated,
our synthetic dataset consists of a 6-dimensional anti-correlated dataset of 10,000
points. The real-world dataset we have used are a 6-dimensional Household of
127,391 points, an 8-dimensional NBA of 17,265 points and a 9-dimensional
Color of 68,040 points. Moreover, like studies in the literature [10,19–21], we
computed the skyline first and our queries on these datasets returned anywhere
from 10 to 60 points and evaluated the minimum happiness ratio using Linear
Programming implemented in the GUN Linear Programming Kit2.
2 https://www.gnu.org/software/glpk/.

https://www.gnu.org/software/glpk/
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In our experiments, we consider both Lazy NWF-Greedy and Lazy
Stochastic-Greedy algorithms introduced in this paper. To verify the superiority
of our proposed algorithms, we compared them with RDP-Greedy [10]. Due to
the number of function evaluations by Linear Programming accounting for the
majority of the total time of RDP-Greedy, we measure the computational cost in
terms of the number of function evaluations by Linear Programming performed
instead of the running time of CPU. In addition, for Lazy Stochastic-Greedy,
different values of ε(ε = 0.01, 0.1, 0.3) have been chosen. In the following experi-
mental result figures, we abbreviate RDP-Greedy as RDP, Lazy NWF-Greedy as
LNWF, Lazy Stochastic-Greedy as LS1 when ε = 0.1, Lazy Stochastic-Greedy
as LS2 when ε = 0.01, Lazy Stochastic-Greedy as LS3 when ε = 0.3.
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Fig. 1. Function evaluations for anti-correlated data
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Fig. 2. Minimum happiness ratio for anti-correlated data

Results on Synthetic Datasets: The effects on function evaluations and min-
imum happiness ratio on anti-correlated datasets for different k are presented
in log scale in Figs. 1(a) and 2(a) respectively. Lazy NWF-Greedy and Lazy
Stochastic-Greedy have negligible number of function evaluations which do not
increase with k and keep a relative small stable number of evaluations even for
very large inputs. However, RDP-Greedy performs linear function evaluations
as k increases, that’s because it performs all possible evaluations of user’s util-
ities, namely, for a total of nk times. The minimum happiness ratio of Lazy
NWF-Greedy is the same as that of RDP-Greedy as they share the same greedy



Speed-Up Algorithms for Happiness-Maximizing Representative Databases 333

103

104

105

106

10 20 30 40 50 60

Fu
nc

tio
n 

ev
al

ua
tio

ns

k

RDP
LNWF
LS1
LS2
LS3

(a) Household

103

104

105

106

10 20 30 40 50 60

Fu
nc

tio
n 

ev
al

ua
tio

ns

k

RDP
LNWF
LS1
LS2
LS3

(b) NBA

103

104

105

10 20 30 40 50 60

Fu
nc

tio
n 

ev
al

ua
tio

ns

k

RDP
LNWF
LS1
LS2
LS3

(c) Color

Fig. 3. Function evaluations on real datasets
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Fig. 4. Minimum happiness ratio on real datasets

skeleton and increases when k increases, appearing to much above the theoret-
ical bound proposed by [10]. For Lazy Stochastic-Greedy, different values of ε
result in a performance close to that of Lazy NWF-Greedy. It means that Lazy
Stochastic-Greedy provides very compelling tradeoffs between the number of
function evaluations and minimum happiness ratio compared with RDP-Greedy
and our Lazy NWF-Greedy.

We varied the number of dimensions on anti-correlated data when the number
of points was fixed to n = 10, 000 and k = 10. As illustrated in Fig. 1(b) and
in Fig. 2(b), the number of function evaluations increases with the increase of
dimensions, but our proposed algorithms still have less function evaluations than
RDP-Greedy since they are extended with lazy evaluations. Due to the curse
of dimensionality, the minimum happiness ratio resulted in by all algorithms
decreases with the increase of d. In Figs. 1(c) and 2(c), the effects of varying n
are presented. The effects are similar to those of varying dimensions.

Results on Real Datasets: Figs. 3(a), (b) and (c) show that the number of
function evaluations of RDP-Greedy increases dramatically with k, but our pro-
posed algorithms keep much less function evaluations and maintain a stable level.
The minimum happiness ratio of all algorithms are shown in Figs. 4(a), (b) and
(c) respectively. We observe similar trends. Besides, similar to the experiments
on synthetic datasets, Lazy Stochastic-Greedy achieves near-maximal minimum
happiness ratio with substantially less function evaluations compared with the
other algorithms.
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7 Conclusions

In this paper, we introduce minimum happiness ratio and propose two algorithms
called Lazy NWF-Greedy and Lazy Stochastic-Greedy to speed up RDP-Greedy,
both of them are extended from basic greedy algorithms by exploiting lazy eval-
uations. Experiments on real and synthetic datasets verify that our Lazy NWF-
Greedy achieves the same minimum happiness ratio as the best-known RDP-
Greedy algorithm, but can lead to orders of magnitude speedups and our Lazy
Stochastic-Greedy sacrifices a little happiness ratio but significantly decreases
the number of function evaluations compared with RDP-Greedy or Lazy NWF-
Greedy. Our future work considers CONVEX, CONCAVE and CES utility func-
tions with the framework of our algorithms.
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