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Abstract. We present a flexible framework for robust computed tomog-
raphy (CT) reconstruction with a specific emphasis on recovering thin 1D
and 2D manifolds embedded in 3D volumes. To reconstruct such struc-
tures at resolutions below the Nyquist limit of the CT image sensor, we
devise a new 3D structure tensor prior, which can be incorporated as
a regularizer into more traditional proximal optimization methods for
CT reconstruction. As a second, smaller contribution, we also show that
when using such a proximal reconstruction framework, it is beneficial to
employ the Simultaneous Algebraic Reconstruction Technique (SART)
instead of the commonly used Conjugate Gradient (CG) method in the
solution of the data term proximal operator. We show empirically that
CG often does not converge to the global optimum for tomography prob-
lem even though the underlying problem is convex. We demonstrate that
using SART provides better reconstruction results in sparse-view settings
using fewer projection images. We provide extensive experimental results
for both contributions on both simulated and real data. Moreover, our
code will also be made publicly available.
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1 Introduction

X-ray tomography is a popular imaging technique used for reconstructing vol-
umetric properties for a large range of objects [1]. For example, it is used for
industrial inspection, luggage inspection, research and development in mechan-
ical engineering and material sciences, biomedical diagnosis and treatment, and
it serves as an input to many computer vision algorithms, including methods for
automatic segmentation, detection, and recognition. As with all imaging meth-
ods, an important goal in CT is to maximize the amount of information about a
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target while minimizing the number of measurements, and therefore reducing the
acquisition time, memory consumption, and (in the case of CT) radiation dose.
This general desire comes in two variants: (a) reducing the number of projections
needed for a detailed 3D reconstruction, and (b) resolving fine structures, ideally
beyond the Nyquist limit of the individual projection images. In this paper, we
tackle both problems in a proximal operator framework respectively with a new
solver for the data term, and a new regularizer for volumes with thin sheets and
tube-like structures.

Fig. 1. Five datasets with thin 2D (a-c) and 1D (d-e) structures embedded in 3D vol-
umes. Top row: scanned objects. Middle row: representative projection images. Bottom
row: rendering results of volumes reconstructed by our method.

State of the art robust CT reconstruction usually employs iterative meth-
ods [1,2] and poses the problem as an optimization problem of the form

min
x

f(x)
︸︷︷︸

data fidelity

+ g(Mx)
︸ ︷︷ ︸

regularizer

, (1)

where x ∈ R
n is the unknown 3D reconstruction volume, f(·) is the data fidelity

term that measures how well the volume fits the measured input projections, and
is usually of the form f(x) = ‖Ax − b‖22, where A describes the projection geom-
etry, and b represents the observed projection images. g(Mx) is the regularizer
consisting of a loss function g(.) and a linear operator M that transforms the
volume x into a sparse domain (e.g. for Total Variation, g(.) = ‖.‖1 and M is the
volume gradient operator). Problem (1) is a general model, and can incorporate
many noise models, e.g. Poisson [3,4] or Gaussian noise [5]; and regularizers, e.g.
�1 [6] or Total Variation (TV) [7]. Such optimization problems are commonly
solved with proximal algorithms [8–10], which allow the decomposition of (1)
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into independent proximal operators, one for the linear least squares data term,
and one for the non-linear regularizer.

The regularizer can be used to enforce specific prior information about the
reconstructed volume. Our major contribution is to show that enforcing sparsity
on the eigenvalues of the 3D structure tensor allows for super-resolved recon-
struction of thin structures such as thin sheets or tubes, see for example Fig. 1.
The intuition is that the 3D structure tensor should have two zero eigenvalues
on a 2D manifold embedded into a 3D volume, since the volume will only vary
along the normal direction. Likewise, for curves embedded in 3D, one of the
eigenvalues is expected to be zero.

The linear least squares problem in the data term requires a matrix-free solver
in order to control memory consumption, and Conjugate Gradients is frequently
used for this purpose [11,12]. In this work we show that using the Simultaneous
Algebraic Reconstruction Technique (SART, [13,14]) for this problem yields bet-
ter results, especially in reconstructions from a sparse numbers of projections.
While SART has historically played an important role in solving the unregular-
ized CT problem [15,16], we demonstrate how to use it for solving the data term
proximal operator, which to our knowledge has not been done before.

We provide the following contributions:

1. We introduce a 3D structure tensor prior into tomographic reconstruction
problems, derive its proximal operator, and show its effectiveness in recon-
structing specific structural features.

2. We show how to use SART for solving the proximal operator for the data
term, and demonstrate improvements in sparse-view reconstructions.

3. We validate the efficacy of our algorithm and show superior reconstruction
quality compared to existing popular methods and software packages.

2 Related Work

X-ray tomography reconstruction has received extensive attention since the first
practical medical CT device was invented in the early 1970s by Hounsfield.
There are two general approaches for tomography reconstruction: transform-
based methods and iterative methods [1,2]. Transform-based methods rely on
the Radon transform and its inverse, introduced in 1917. The most widely used
3D cone beam reconstruction method is the filtered backprojection algorithm
introduced by Feldkamp, Davis, and Kress and known as FDK [17]. Transform
methods are usually viewed as much faster than iterative methods, and have
therefore been the method of choice for X-ray scanner manufacturers [18].

Iterative methods on the other hand use algebraic techniques to solve the
reconstruction problem. They generally model the problem as a linear system and
solve it using established numerical linear algebraic methods [2]. One challenge
for using iterative methods in computed tomography is the memory consumption
of the system matrix. This limits the range of available algorithms to matrix-
free solvers, in which the data fidelity term is represented procedurally instead of
explicitly. The Algebraic Reconstruction Technique (ART) and its many variants
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are among the best known iterative reconstruction algorithms [13,14,19–22].
They use variations of the projection method of Kaczmarz, have modest memory
requirements, and have been shown to yield better reconstruction results than
transform-based methods. They are matrix free, and work without having to
explicitly store the system matrix.

The importance of priors for state-of-the-art CT reconstruction cannot be
overstated, especially for sparse-view and super-resolution reconstruction. In this
setting, the number of pixels in the projection image is significantly lower than
the number of voxels in the volume to be reconstructed, so the system Ax = b
is under-determined, and the un-regularized least squares problem is ill-posed.
Regularizers (priors) are needed to restrict the solution space to a single point,
but also the choice of solver can influence which solution within the null space
of AT A is preferred.

Proximal algorithms have been widely used in many problems in machine
learning and signal processing [8,9,23,24]. In particular, they have also been used
in tomography reconstruction. For example, [11] used the Alternating Direction
Method of Multipliers (ADMM) [8] with a Total Variation prior, where the data
term was optimized using Conjugate Gradient (CG) [25]. [6] discussed using the
Chambolle-Pock algorithm [26] for tomography reconstruction with different pri-
ors. [27] used ADMM with Preconditioned Conjugate Gradients [25] for optimiz-
ing the weighted least squares data term. [28] used Linearized ADMM [9] (also
known as Inexact Split Uzawa [29]) with Ordered Subset-based methods [30] for
optimizing the data term and FISTA [31] for optimizing the prior term. However,
none of these methods used SART as their data term solver within a proximal
framework. In this article, we demonstrate several advantages of using SART
over CG for this subproblem, including most notably an improved reconstruc-
tion quality.

Recently, some methods based on deep learning have been developed for
CT reconstruction problems [32–35]. While some promising initial results have
been demonstrated, current versions are strongly data dependent, e.g. with
respect the noise level in the input. We also note that many applications of
CT require a fairly conservative behavior of the reconstruction algorithm, i.e.
algorithms should not “invent” structures. We are not aware of deep learning
approaches that can make such guarantees, while regularizers for optimization-
based approaches (including the structure tensor prior in this work) can easily
be designed to favor the “simplest” reconstruction that satisfies the observed
measurements.

There are currently a number of open source software packages for tomog-
raphy reconstruction. SNARK09 [36] is one of the oldest. It has several algo-
rithms implemented for 2D reconstruction, but very little support for 3D recon-
struction. The Reconstruction ToolKit (RTK) [12] is a high performance C++
toolkit focusing on 3D cone beam reconstruction that is based on the image
processing package Insight ToolKit (ITK). It includes implementations of sev-
eral algorithms, including FDK, SART, and an ADMM TV-regularized solver
with CG [11]. The ASTRA toolbox [37] is a Matlab-based GPU-accelerated
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toolbox for tomography reconstruction. It includes implementations of several
algorithms, including SART, SIRT, FDK, FBP, among others. However, neither
of these packages uses SART for the data term, or supports structure tensor reg-
ularization. We demonstrate that the combination of these two methods results
in marked improvements for the reconstruction of thin features.

3 Review of Proximal Methods

With the CT reconstruction problem expressed as an optimization problem
(1), we turn to the question of finding appropriate solvers. Like several recent
approaches, we rely on proximal algorithms [8], namely the first-order primal-
dual algorithm proposed by Chambolle and Pock [26] (henceforth referred to as
the CP algorithm). Proximal algorithms are able to solve complex optimization
problems by splitting them into several smaller and easier sub-problems, that
are solved independently, and then combined to find a solution to the original
problem.

These simple sub-problems take the form of proximal operators [8]:

proxζh(u) � argmin
x

h(x) +
1
2ζ

‖x − u‖22, (2)

where u ∈ R
n is the input to the function and ζ ∈ R is a weighting parameter.

For the CP algorithm to work, we need to determine and implement two prox-
imal operators: The proximal operator for the data term: proxτf (u), and the
proximal operator for the convex conjugate [38] function g∗(·) of g(·) defined as:
proxμg∗(u). By using different regularization functions g(·) and matrices M , we
can plug in different priors based on different models of what the reconstructed
volume should look like.

4 Method

4.1 Motivation and Overview

The main components of our proximal framework are the regularization term
and the data term.

Regularization Term. Our framework can easily incorporate different regular-
izers that have been used before in tomography reconstruction, e.g. Anisotropic
Total Variation (ATV), Isotropic Total Variation (ITV), and Sum of Absolute
Differences (SAD). Please see the supplement for more details on these. In addi-
tion, in Sect. 4.2, we propose a new 3D structure tensor prior to better handle
thin structures.
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Data Term. The proximal operator for the data term proxτf (u) has tradi-
tionally been solved using Conjugate Gradient (CG) [27]. In particular, it can
be cast as a least squares problem, and solved using CGLS [39]. However, we find
that CG does not in general converge to the global optimum for the tomography
data term proximal operator, although it is a convex problem (see supplemental
material and [40] for experiments with two different implementations of CG as
well as the tomography system itself). These problems can be traced back to
two factors, that are both related to the size of the linear system in computed
tomography problems:

– CG in general is known to have issues with large systems [41,42]. Then, it
requires a good preconditioner for large and sparse systems. For tomography,
preconditioning is usually not an option, since it is infeasible to store the
system matrix A, and CG is instead used in a matrix-free fashion. In fact
support for matrix-free operation is one of the primary motivators for using
CG in this context, but it limits the choice of preconditioner to e.g. Jacobi
preconditioning, which is not very effective for tomography matrices.

– As another consequence of needing to operate in matrix free mode, the matri-
ces themselves are laden with numerical noise. Specifically, solving the least
squares problem with a system matrix ATA requires the procedural imple-
mentation of two operations: A · x (projection) and AT · y (backprojection),
where x is a volume and y is the set of projection images. Because of slight
numerical discrepancies between the implementations of these two procedural
operators, the resulting matrices are not generally exact transposes of each
other. CG does tend to be more sensitive to this issue than other solvers.

4.2 Structure Tensor Prior (STP)

The structure tensor [43] SK(xi) ∈ S
3
+ for a 3D volume at voxel i is a 3 × 3

positive semi-definite matrix that captures the local structure around a voxel,
and is defined as:

SK(xi) =
∑

j∈N (qi)

K(qj − qi)
(∇xj∇xT

j

)

, (3)

where qi = [i1, i2, i3]T ∈ R
3 is the coordinate vector of voxel i, K(qj − qi) :

R
3 → R is a 3D rotationally-symmetric smoothing kernel that down-weights

the contributions of voxel j in the set N (qi) of the l neighbors of the voxel i
and ∇xj ∈ R

3 is the local gradient at voxel j. So we can regard the structure
tensor as a weighted average of the outer product of the local gradients at the
neighborhood of the voxel.

The STP regularizer was introduced by [44,45]. It includes the standard TV
as a special case, when the smoothing kernel is a Dirac delta i.e. it is a local
structure tensor at each voxel [45]. Intuitively, the STP tries to estimate the
volume such that its structure tensor is low rank, by minimizing the deviation
of voxel values in the region around it. We will introduce the STP and develop
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its solver by extending it from the case of images in [44,45] to 3D volumes and
by employing more efficient proximal algorithms for its computation.

The STP at a voxel i is defined as the �p norm of the square roots of the
eigenvalues of the structure tensor SK(xi) defined in Eq. (3). Let Λ (SK(xi)) ∈ R

3

be the vector of eigenvalues of SK(xi):

STPp(xi) = ‖
√

Λ (SK(xi))‖p (4)

To represent the STP in a form that fits Eq. (1), we define the “patch-based
Jacobian” [45] as a linear map JK : Rn → R

nl×3 between the space of volumes
and a set of weighted gradients that are computed from the l-neighborhood
of each of the n voxels. We can write the patch-based Jacobian at voxel i as
JK(xi) ∈ R

l×3 by stacking the weighted local gradients side-by-side:

JK(xi) =
[

κj1∇xj1 · · · κjl∇xjl

]T ∈ R
l×3, (5)

where {j1, . . . , jl} = N (qi) denotes the indices of the neighbors of voxel i (includ-
ing i itself), and κjk =

√

K(qi − qjk). The patch-based Jacobian for the whole
volume JKx ∈ R

nl×3 is now formed by stacking “local” components JK(xi) on
top of each other. Using this linear operator JK , Eq. (3) can be rewritten as
follows:

SK(xi) = JK(xi)T JK(xi), (6)

which means that the singular values of JK(xi) are actually equal to the square
root of the eigenvalues of SK(xi) in Eq. (4).

Thus we get the definition of STPp as

STPp(x) =
n

∑

i=1

‖JK(xi)‖Sp
, (7)

where ‖ · ‖Sp
is the Schatten p−norm. In our experiments, we set p = 1 which is

equivalent to the nuclear norm.
We can write this regularizer in a more compact compound norm STPp(x) =

‖JKx‖1,p where the mixed norm �1 − Sp or (1, p)-norm is defined for a matrix
J = JKx ∈ R

nl×3 as follows:

‖J‖1,p = ‖JKx‖1,p =
n

∑

i=1

‖Ji‖Sp
, (8)

where Ji ∈ R
l×3 represents the patch-based Jacobian at some voxel i. With q

satisfying 1
p + 1

q = 1, the mixed norm (∞, q) is the dual norm of the mixed norm
(1, p). We can rewrite the Eq. (8) as in [46]:

‖J‖1,p = max
H∈B∞,q

〈H,J〉Rnl×3 = max
H∈B∞,q

∑

i

tr(HT
i Ji) (9)

where B∞,q is the (∞, q) unit-norm ball.
Now, we define the regularizer function g(·) as:

g(JKx) = λ‖J‖1,p = max
H∈λB∞,q

〈H,J〉Rnl×3 (10)
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where: λB∞,q refers to the (∞, q)-norm ball with a radius of λ. Thus, the opti-
mization problem in Eq. (1) can be rewritten as follows:

min
x

[

‖Ax − b‖22 + max
H∈λB∞,q

〈H,J〉Rnl×3

]

(11)

where H,J ∈ R
nl×3. This formulation is equivalent to:

min
x

max
H

[‖Ax − b‖22 + 〈H,J〉Rnl×3 − ıλB∞,q
(H)

]

(12)

where: ıλB∞,q
(H) is the indicator function of the ball λB∞,q. Otherwise the

convex conjugate of the STP regularizer g(·) is defined by:

g∗(H) = max
J∈Rnl×3

〈H,J〉 − g(J), (13)

From Eqs. (12) and (13), we deduce that g∗(·) is equal to the indicator function
ıλB∞,q(·). Thus, the proximal operator of g∗(·) is the projection on the convex
ball λB∞,q:

proxηg∗(H) = ΠλB∞,q (H) , (14)

In our case p = 1 and q = ∞, so that the projection is simply performed by soft
thresholding the singular values of each component of H.

Algorithm 1 outlines the overall steps to solve the tomography problem with
the STP prior as defined in Eq. (1), where f(x) is the data term and g(Mx) is the
STP regularizer. Detailed derivations of the structure tensor prior are provided
in the supplement.

Algorithm 1 Tomography with STP regularizer
Require: λ, η, τ, θ ∈ R, b ∈ R

m, l ∈ N

1: Initialize: x̄(0) = 0
2: for t = 1 . . . T do
3: Solve

Y t+1 = proxηg∗
(
Y t + ηJK x̄t) = ΠλB∞,q

(
Y t + ηJK x̄t)

using Eq. (14).
4: Solve

xt+1 = proxτf

(
xt − τJ∗

KY t+1)

using Algorithm 2 with input u = xt − τJ∗
KY t+1 and parameter τ .

5: Update
x̄t+1 = xt+1 + θ

(
xt+1 − xt)

6: end for
return volume reconstruction x ∈ R

N = argminx ‖Ax − b‖2
2 + λSTPp(x).
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4.3 SART For The Data Term

We now show how to use the SART algorithm to solve the data term proximal
operator proxλf (u). In particular, we want to solve:

proxλf (u) = argmin
x

‖Ax − b‖22 +
1
2λ

‖x − u‖22. (15)

Recall that SART solves a minimum norm problem. By introducing new
variables: y =

√
2λ(b − Ax) and z = x − u, and after further manipulations, it

can be shown that solving the optimization problem in Eq. (15) is equivalent to
solving:

miny,z

∥

∥

∥

∥

[

y
z

]∥

∥

∥

∥

2

2

subject to:
[

I
√

2λA
]

[

y
z

]

=
√

2λ (b − Au) , (16)

which can be written as:

minx̃ ‖x̃‖22 subject to: Ãx̃ = b̃, (17)

where x̃ ∈ R
m+n, Ã ∈ R

m×m+n, and b̃ ∈ R
m. This is now an under-determined

linear system, and can be solved using SART.
Algorithm 2 summarizes the steps for the modified SART to solve the prox-

imal operator.

Algorithm 2 SART For Solving The Data Term
Require: A ∈ R

m×n, u ∈ R
n, λ ∈ R, α ∈ R, b ∈ R

m

1: b =
√

2λb, A =
√

2λA
2: Initialize: y(0) = 0, x(0) = u
3: for t = 1 . . . T do
4: for projections S ∈ S1 . . . SN do

y
(t+1)
j = y

(t)
j + αc

(t)
j for j ∈ S

b̂
(t+1)
i =

∑

k

aikx
(t)
k + y

(t)
i

c
(t+1)
i =

bi − b̂
(t+1)
i∑

k aik + 1

x
(t+1)
j = x

(t)
j + α

∑
i∈S c

(t+1)
i aij∑

i∈S aij
for j = 1 . . . n

5: end for
6: end for

return volume reconstruction x ∈ R
n
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5 Experiments

The experiments were run on a machine with two Intel Xeon E5-2697 processors
(56 cores overall) and 128 GB of RAM. We present two kinds of experiments:

1. focusing on sparse view reconstruction using the 3D Shepp-Logan phantom
and the scans of the rose in Fig. 1(c).

2. focusing on super resolution using a simulated 3D Fresnel zone plate, scans of
the artificial rose, the plumeria flower, and the toothbrush((a), (b), and (d)
in Fig. 1, respectively).

5.1 Sparse-View Reconstruction

We first validate our choice of SART as the solver for the data term in Eq. (1). We
run experiments comparing SART head-to-head with Conjugate Gradient (CG)
in a sparse-view setting, using the TV regularizer in both cases. In particular,
we show the reconstruction quality, measured in PSNR and SSIM, as a function
of the number of projections available. We use the implementation provided in
RTK and compare to our framework using the SART proximal operator solver.
The size of the 3D Shepp-Logan volume is 300 × 300 × 300 with voxel size of
1 × 1 × 1 mm, while the volume size of the rose is 436 × 300 × 365 with voxel
size of 0.3 × 0.3 × 0.3 mm.

Fig. 2. A sample slice with different number of projections from a 3D Shepp-Logan (a)
and scanned rose (b). The PSNR and SSIM values are shown at the top of each image.
For each data, we compare PCG-TV (top) with our proposed PSART-TV method
(bottom). For Shepp-Logan data, 90, 60, 45, and 30 projections as input. For the real
scanned rose, 90, 60, 45 were used projections as input. (Color figure online)

As Fig. 2 shows, SART as a solver for the data term provides better quality
than CG, which is expected given the known limitations of CG, whereby it is
prone to overfitting the projection noise in the data, which becomes even more
pronounced when the number of projections is smaller. For more details on the
experimental parameters and extensive experimental results, we refer readers to
the supplemental material.
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5.2 Super Resolution Experiments

Now we run experiments to compare the new regularizer in a super-resolution
setting. We chose the following algorithms for our comparison:

– PSART-STP: this is our complete framework using the Structure Tensor
prior.

– PSART-SAD: this is our framework with the previously used SAD (Sum of
Absolute Differences) prior [40]. It was shown before [47] that SAD performs
better than TV, and so we chose it as the best alternative prior to compare
to STP.

Fig. 3. 2D slice from the reconstructed 3D Fresnel zone plate (top) and its Sobel filtered
visualization (bottom). The green ring in each image represents the smallest feature
we can extract according to the Nyquist limit. PSNR and SSIM of slice images (top)
from (a) to (e): FDK (17.5978, 0.9354), SART (19.5440, 0.9582), PCG-TV (22.0659,
0.9756), PSART-SAD (22.6293, 0.9781), PSART-STP (24.8331, 0.9864), Refer-
ence volume. The display window is [0, 0.8]. For Sobel filtered images, smoother features
in the superresolution frequencies for the PSART results indicate a better suitability
for post-processing tasks such as segmentation. (Color figure online)

We compare results from our framework to state-of-the-art algorithms and
comparable implementations in RTK, namely:

– Cone Beam Filtered Back Projection (FDK) [17], as the FDK algorithm is
still the most commonly used method in practical CT scanners [18].

– Plain SART with no priors (SART).
– ADMM with ATV prior (PCG-TV) using Conjugate Gradient (CG) [11].

The initial volume for all methods is set to 0. For choosing the hyper parameters
in all the algorithms, we experiment with a range of values and pick the ones
with the best performance.
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First, we use a synthetic volume dataset to demonstrate the super-resolution
capabilities of the PSART framework. Specifically, we show a cone-beam tomo-
graphic reconstruction of a 3D version of the Fresnel zone “plate” (a 2D cross-
section is shown in Fig. 3(f)). After adding Gaussian noise with standard devia-
tion σ = 2, the projection images are downsampled with the scale factor as 6.4
using bicubic interpolation, which are the input for our experiments. We run the
SART algorithm with 180 projections with the original size until convergence
(15 iterations), and considered the resulting reconstruction the reference volume
for numerical comparisons. More details for the parameters can be found in the
supplement.

Fig. 4. RMSE of the reconstructed volume as a function of iteration (left) and running
time (right) for the various methods.

Fig. 5. a-f: Representative slice visualization in the sagittal plane for the volume and
its closeup view for the artificial flower data reconstructed by FDK, SART, PCG-TV,
PSART-SAD, PSART-STP, and the reference volume, respectively.

Figure 3 (top) shows a visual comparison of the different reconstruction meth-
ods, together with the obtained PSNR and SSIM values. As can be seen, the
PSART framework, with SART as a solver for the data fidelity term outper-
forms the other state-of-the-art methods, even when used in combination with
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the SAD regularizer. The use of the STP provides an additional quality boost.
In particular, we note the improved reconstruction quality for frequencies above
the Nyquist limit for the 2D pixel sampling rate (green circle).

These results are further confirmed in Fig. 3 (bottom). Since tomographic
reconstruction is often just the first step in an image analysis pipeline, we tested
how robust and reliable the super-resolution information is for further processing
such as image segmentation. As a stand-in for more sophisticated segmentation
methods, we applied a 3D variant of the Sobel filter [48] to extract the boundaries
between the rings. Smoother results from the Sobel filter indicate that it will be
easier to trace thin structures through the volume in a segmentation process. We
can again see that PSART generates significant super-resolution information,
with PSART-STP performing best.

Figure 4 shows the evolution of the RMSE plotted against the iteration and
running time during the zone plate volume reconstruction for each method. The
PSART methods (PSART-SAD and PSART-STP) converge faster than PCG-
TV in terms of running time, and PSART-STP converges slower than PSART-
SAD but finds a solution with lower RMSE.

We ran another round of experiments on real datasets that were scanned
using a Nikon X ray CT, namely artificial flowers, a plumeria flower, and a
toothbrush. These objects have the structural features we are interested in mod-
eling i.e. thin sheets and thin tubes.

Fig. 6. Representative slice visualization in the axial plane for (f): the reference vol-
ume and (a)-(e): the volumes reconstructed by FDK, SART, PCG-TV, PSART-SAD,
and PSART-STP, respectively. From top to bottom: volume visualization, its edge
detection, and the closeup views.

The reconstructed volume size for artificial rose is 415 × 314 × 393. 120
original-size projection images are used as input for PSART-STP and the best
reconstructed result is used as the reference volume for our comparison. Figure 5
shows reconstruction results from different methods in the sagittal plane, and the
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edge detection results from applying Sobel filter are provided in the supplemen-
tary material. We can see clearly that our PSART-SAD and PSART-STP achieve
better performance than existing methods. Figure 6 shows the results in the axial
plane. The reconstructed volume size for the plumeria is 406×259×336. Figure 7
(a) shows the comparison to the state-of-the-art PCG-TV method. For better
visualization and comparisons, we generated a reference volume by running the
PSART-STP method with 360 original images as input until convergence.The
reconstructed volume size for the toothbrush is 690 × 668 × 776. Figure 7 (b)
shows the comparison between PCG-TV and the proposed PSART-STP. Again,
compared to PCG-TV, our method achieves shaper results.

Fig. 7. Reconstruction results for the real flower (a) and toothbrush (b) in the sagittal,
axial, and coronal planes, respectively.

In summary, for both simulated and real scanned data, our PSART recon-
structions (PSART-SAD and PSART-STP) consistently give better results than
the equivalent PCG-TV. PSART-SAD works better than PCG-TV, confirming
earlier results about the SAD regularizer [40,47]. Our PSART-STP method pro-
duces the best results in terms of both quantitative (PSNR and SSIM) and qual-
itative comparisons (visualization of volume and edge detection filter), allowing
for super-resolved reconstruction of thin structures shown in Fig. 1.

6 Conclusions and Future Work

We have presented a flexible proximal framework for robust 3D cone beam recon-
struction of super-resolved thin features. Our two main contributions are (a)
introduction of the 3D structure tensor as a regularizer for the tomographic
reconstruction problem, and (b) the use of SART for the data-fidelity subprob-
lem in the proximal framework. We have experimentally demonstrated that the
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3D structure tensor prior is best suited for reconstructing specific structural fea-
tures such as thin sheets and filaments, and that using SART provides better
reconstructions than other solvers, especially in the case of under-determined
tomographic reconstruction from a small number of projections.

We have experimentally compared our framework with the popular RTK
open-source software toolkit, both on real and simulated datasets, using different
state-of-the-art priors. We showed the robustness of our algorithms in terms of
reconstruction quality.

In the future, we plan to extend our framework by adding a GPU version
providing a higher level of parallelism.
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