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Abstract. Attention-based learning for fine-grained image recognition
remains a challenging task, where most of the existing methods treat each
object part in isolation, while neglecting the correlations among them.
In addition, the multi-stage or multi-scale mechanisms involved make
the existing methods less efficient and hard to be trained end-to-end. In
this paper, we propose a novel attention-based convolutional neural net-
work (CNN) which regulates multiple object parts among different input
images. Our method first learns multiple attention region features of each
input image through the one-squeeze multi-excitation (OSME) module,
and then apply the multi-attention multi-class constraint (MAMC) in a
metric learning framework. For each anchor feature, the MAMC func-
tions by pulling same-attention same-class features closer, while push-
ing different-attention or different-class features away. Our method can
be easily trained end-to-end, and is highly efficient which requires only
one training stage. Moreover, we introduce Dogs-in-the-Wild, a com-
prehensive dog species dataset that surpasses similar existing datasets
by category coverage, data volume and annotation quality. Extensive
experiments are conducted to show the substantial improvements of our
method on four benchmark datasets.

Keywords: Fine-grained classification · Metric learning
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1 Introduction

In the past few years, the performances of generic image recognition on large-
scale datasets (e.g., ImageNet [8], Places [56]) have undergone unprecedented
improvements, thanks to the breakthroughs in the design and training of deep
neural networks (DNNs). Such fast-pacing progresses in research have also drawn
attention of the related industries to build software like Google Lens on smart-
phones to recognize everything snapshotted by the user. Yet, recognizing the
fine-grained category of daily objects such as car models, animal species or food
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Fig. 1. Two distinct dog species from the proposed Dogs-in-the-Wild dataset. Our
method is capable of capturing the subtle differences on the head and tail without
manual part annotations.

dishes is still a challenging task for existing methods. The reason is that the
global geometry and appearances of fine-grained classes can be very similar, and
how to identify their subtle differences on the key parts is of vital importance.
For instance, to differentiate the two dog species in Fig. 1, it is important to
consider their discriminative features on the ear, tail and body length, which is
extremely difficult to notice even for human without domain expertise.

Thus the majority of efforts in the fine-grained community focus on how
to effectively integrate part localization into the classification pipeline. In the
pre-DNN era, various parametric [9,24,29] and non-parametric [25] part models
have been employed to extract discriminative part-specific features. Recently,
with the popularity of DNNs, the tasks of object part localization and feature
representation can be both learned in a more effective way [2,18,22,48,49]. The
major drawback of these strongly-supervised methods, however, is that they
heavily rely on manual object part annotations, which is too expensive to be
prevalently applied in practice. Therefore, weakly-supervised frameworks have
received increasing attention in recent researches. For instance, the attention
mechanism can be implemented as sequential decision processes [27] or multi-
stream part selections [10] without the need of part annotations. Despite the
great progresses, these methods still suffer several limitations. First, their addi-
tional steps, such as the part localization and feature extraction of the attended
regions, can incur expensive computational cost. Second, their training proce-
dures are sophisticated, requiring multiple alternations or cascaded stages due to
the complex architecture designs. More importantly, most works tend to detect
the object parts in isolation, while neglect their inherent correlations. As a con-
sequence, the learned attention modules are likely to focus on the same region
and lack the capability to localize multiple parts with discriminative features
that can differentiate between similar fine-grained classes.
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From extensive experimental studies, we observe that an effective visual
attention mechanism for fine-grained classification should follow three criteria:
(1) The detected parts should be well spread over the object body to extract non-
correlated features; (2) Each part feature alone should be discriminative for sep-
arating objects of different classes; (3) The part extractors should be lightweight
in order to be scaled up for practical applications. To meet these demands, this
paper presents a novel framework that contains two major improvements. First,
we propose one-squeeze multi-excitation module (OSME) to localize different
parts inspired by the latest ImageNet winner SENet [13]. It is fully differen-
tiable and can directly extract part features with budgeted computational cost.
Second, inspired by metric learning loss, we propose the multi-attention multi-
class constraint (MAMC) to coherently enforce the correlations among different
parts in training. In addition, we have released a large scale dog species dataset
named Dogs-in-the-Wild, which exhibits higher category coverage, data volume
and annotation quality than similar public datasets. Experimental results show
that our method achieves substantial improvements on four benchmark datasets.
Moreover, our method can be easily trained end-to-end, and unlike many exist-
ing methods that require multiple feedforward processes for feature extraction
[41,52] or multiple alternative training stages [10,31], only one stage and one
feedforward are required for each training step.

2 Related Work

2.1 Fine-Grained Image Recognition

In the task of fine-grained image recognition, since the inter-class differences are
subtle, more specialized techniques, including discriminative feature learning and
object parts localization, need to be applied. A straightforward way is supervised
learning with manual object part annotations, which has shown promising results
in classifying birds [2,9,48,49], dogs [16,25,29,48], and cars [17,20,24]. However,
it is usually laborious and expensive to obtain object part annotations, which
severely restricts the effectiveness of such methods.

Consequently, more recently proposed methods tend to localize object parts
with weakly-supervised mechanisms, such as the combination of pose alignment
and co-segmentation [18], dynamic spatial transformation of the input image for
better alignment [14], and parallel CNNs for bilinear feature extraction [23].

Compared with previous works, our method also takes a weakly-supervised
mechanism, but can directly extract the part features without cropping them
out, and is highly efficient to be scaled up with multiple parts.

In recent years, more advanced methods emerge with improved results. For
instance, the bipartite-graph labeling [57] leverages the label hierarchy on the
fine-grained classes, which is less expensive to obtain. The work in [51] exploit
unified CNN framework with spatially weighted representation by the Fisher vec-
tor [30]. [3] and [45] incorporate human knowledge and various types of computer
vision algorithms into a human-in-the-loop framework for the complementary
strengths of both ends. In [34], the average and bilinear pooling are combined
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to learn the pooling strategy during training. [6] uses the dataset bootstrap-
ping with the help of human. And the work in [50], the structures of label are
exploited. These techniques can also be potentially combined with our method
for further works.

2.2 Visual Attention

The aforementioned part-based methods have shown strong performances in fine-
grained image recognition. Nevertheless, one of their major drawbacks is that
they need meaningful definitions of the object parts, which are hard to obtain
for non-structured objects such as flowers [28] and food dishes [1]. Therefore,
the methods enabling CNN to attend loosely defined regions for general objects
have emerged as a promising direction.

For instance, the soft proposal network [58] combines random walk and CNN
for object proposals. The works in [52] and [26] introduce long short-term mem-
ory [12] and reinforcement learning to attention-based classification, respectively.
And the class activation mapping [55] generates the heatmap of the input image,
which provides a better way for attention visualization. On the other hand, the
idea of multi-scale feature fusion or recurrent learning has become increasingly
popular in recent works. For instance, the work in [31] extends [55] and estab-
lishes a cascaded multi-stage framework, which refines the attention region by
iteration. The residual attention network [41] obtains the attention mask of input
image by up-sampling and down-sampling, and a series of such attention mod-
ules are stacked for feature map refinement. And the recurrent attention CNN
[10] alternates between the optimization of softmax and pairwise ranking losses,
which jointly contribute to the final feature fusion. Even an acceleration method
[21] with reinforcement learning is proposed particularly for the recurrent atten-
tion models above.

In parallel to these efforts, our method not only automatically localizes the
attention regions, but also directly captures the corresponding features without
explicitly cropping the ROI and feedforwarding again for the feature, which
makes our method highly efficient.

2.3 Metric Learning

Apart from the techniques above, deep metric learning aims at the learning
of appropriate similarity measurements between sample pairs, which provides
another promising direction to fine-grained image recognition. The pioneer work
of Siamese network [4] formulates the deep metric learning with a contrastive loss
that minimizes distance between positive pairs while keeps negative pairs apart.
Despite its great success on face verification [33], contrastive embedding requires
that training data contains real-valued precise pair-wise similarities or distances.
The triplet loss [32] addresses this issue by optimizing the relative distance of
the positive pair and one negative pair from three samples. It has been proven
that triplet loss is extremely effective for fine-grained product search [43]. Later,
triplet loss is improved to automatically search for discriminative patches [44].
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Fig. 2. Overview of our network architecture. Here we visualize the case of learning
two attention branches given a training batch with four images of two classes. The
MAMC and softmax losses would be replaced by a softmax layer in testing. Unlike
hard-attention methods like [10], we do not explicitly crop the parts out. Instead, the
feature maps (S1 and S2) generated by the two branches provide soft response for
attention regions such as the birds’ head or torso, respectively.

Nevertheless, compared with softmax loss, triplet loss is difficult to train due to
its slow convergence. To alleviate this issue, the N-pair loss [37] is introduced to
consider multiple negative samples in training, and exhibits higher efficiency and
performance. More recently, the angular loss [42] enhances N-pair loss by inte-
grating high-order constraint that captures additional local structure of triplet
triangles.

Our method differs previous metric learning works in two aspects: First,
we take object parts instead of the whole images as instances in the feature
learning process; Second, our formulation simultaneously considers the part and
class labels of each instance.

3 Proposed Method

In this section, we present our proposed method which can efficiently and accu-
rately attend discriminative regions despite being trained only on image-level
labels. As shown in Fig. 2, the framework of our method is composed by two
parts: (1) A differentiable one-squeeze multi-excitation (OSME) module that
extracts features from multiple attention regions with a slight increase in com-
putational burden. (2) A multi-attention multi-class (MAMC) constraint that
enforces the correlation of the attention features in favor of the fine-grained
classification task. In contrast to many prior works, the entire network of our
method can be effectively trained end-to-end in one stage.

3.1 One-Squeeze Multi-excitation Attention Module

There have been a number of visual attention models exploring weakly super-
vised part localization, and the previous works can be roughly categorized in
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two groups. The first type of attention is also known as part detection, i.e.,
each attention is equivalent to a bounding box covering a certain area. Well-
known examples include the early work of recurrent visual attention [27], the
spatial transformer networks [14], and the recent method of recurrent attention
CNN [10]. This hard-attention setup can benefit a lot from the object detection
community in the formulation and training. However, its architectural design is
often cumbersome as the part detection and feature extraction are separated in
different modules. The second type of attention can be considered as imposing a
soft mask on the feature map, which origins from activation visualization [46,54].
Later, people find it can be extended for localizing parts [31,55] and improving
the overall recognition performance [13,41]. Our approach also falls into this cat-
egory. We adopt the idea of SENet [13], the latest ImageNet winner, to capture
and describe multiple discriminative regions in the input image. Compared to
other soft-attention works [41,55], we build on SENet because of its superiority
in performance and scalability in practice.

As shown in Fig. 2, our framework is a feedforward neural network where
each image is first processed by a base network, e.g., ResNet-50 [11]. Let x ∈
R

W ′×H′×C′
denote the input fed into the last residual block τ . The goal of SENet

is to re-calibrate the output feature map,

U = τ(x) = [u1, · · · ,uC ] ∈ R
W×H×C , (1)

through a pair of squeeze-and-excitation operations. In order to generate P
attention-specific feature maps, we extend the idea of SENet by performing
one-squeeze but multi-excitation operations.

In the first one-squeeze step, we aggregate the feature maps U across spatial
dimensions W × H to produce a channel-wise descriptor z = [z1, · · · , zC ] ∈ R

C .
The global average pooling is adopted as a simple but effective way to describe
each channel statistic:

zc =
1

WH

W∑

w=1

H∑

h=1

uc(w, h). (2)

In the second multi-excitation step, a gating mechanism is independently
employed on z for each attention p = 1, · · · , P :

mp = σ
(
Wp

2δ(W
p
1z)

)
= [mp

1, · · · ,mp
C ] ∈ R

C , (3)

where σ and δ refer to the Sigmod and ReLU functions respectively. We adopt
the same design of SENet by forming a pair of dimensionality reduction and
increasing layers parameterized with Wp

1 ∈ R
C
r ×C and Wp

2 ∈ R
C× C

r . Because of
the property of the Sigmod function, each mp encodes a non-mutually-exclusive
relationship among channels. We therefore use it to re-weight the channels of
the original feature map U,

Sp = [mp
1u1, · · · ,mp

CuC ] ∈ R
W×H×C . (4)
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To extract attention-specific features, we feed each attention map Sp to a
fully connected layer Wp

3 ∈ R
D×WHC :

fp = Wp
3 vec(Sp) ∈ R

D, (5)

where the operator vec(·) flattens a matrix into a vector.
In a nutshell, the proposed OSME module seeks to extract P feature vectors

{fp}Pp=1 for each image x by adding a few layers on top of the last residual block.
Its simplicity enables the use of relatively deep base networks and an efficient
one-stage training pipeline.

It is worth to clarify that the SENet is originally not designed for learning
visual attentions. By adopting the key idea of SENet, our proposed OSME mod-
ule implements a lightweight yet effective attention mechanism that enables an
end-to-end one-stage training on large-scale fine-grained datasets.

3.2 Multi-attention Multi-class Constraint

Apart from the attention mechanism introduced in Sect. 3.1, the other crucial
problem is how to guide the extracted attention features to the correct class
label. A straightforward way is to directly evaluate the softmax loss on the
concatenated attention features [14]. However, the softmax loss is unable to
regulate the correlations between attention features. As an alternative, another
line of research [10,26,27] tends to mimic human perception with a recurrent
search mechanism. These approaches iteratively generate the attention region
from coarse to fine by taking previous predictions as references. The limita-
tion of them, however, is that the current prediction is highly dependent on the
previous one, thereby the initial error could be amplified by iteration. In addi-
tion, they require advanced techniques such as reinforcement learning or careful
initialization in a multi-stage training. In contrast, we take a more practical app-
roach by directly enforcing the correlations between parts in training. There has
been some prior works like [44] that introduce geometrical constraints on local
patches. Our method, on the other hand, explores much richer correlations of
object parts by the proposed multi-attention multi-class constraint (MAMC).

Suppose that we are given a set of training images {(x, y), · · · } of K fine-
grained classes, where y = 1, · · · ,K denotes the label associated with the image
x. To model both the within-image and inter-class attention relations, we con-
struct each training batch, B = {(xi,x+

i , yi)}Ni=1, by sampling N pairs of images1

similar to [37]. For each pair (xi,x+
i ) of class yi, the OSME module extracts P

attention features {fpi , fp+i }Pp=1 from multiple branches according to Eq. 5.
Given 2N samples in each batch (Fig. 3a), our intuition comes from the nat-

ural clustering of the 2NP features (Fig. 3b) extracted by the OSME modules.
By picking fpi , which corresponds to the ith class and pth attention region as the
anchor, we divide the rest features into four groups:
1 N stands for the number of sample pairs as well as the number of classes in a

mini-batch. Limited by GPU memory, N is usually much smaller than K, the total
number of classes in the entire training set.
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– same-attention same-class features, Ssasc(f
p
i ) = {fp+i };

– same-attention different-class features, Ssadc(f
p
i ) = {fpj , fp+j }j �=i;

– different-attention same-class features, Sdasc(f
p
i ) = {fqi , fq+i }q �=p;

– different-attention different-class features Sdadc(f
p
i ) = {fqj , fq+j }j �=i,q �=p.

Our goal is to excavate the rich correlations among the four groups in a
metric learning framework. As summarized in Fig. 3c, we compose three types
of triplets according to the choice of the positive set for the anchor fpi . To keep
notation concise, we omit fpi in the following equations.

Same-attention same-class positives. The most similar feature to the
anchor fpi is fp+i , while all the other features should have larger distance to the
anchor. The positive and negative sets are then defined as:

Psasc = Ssasc, Nsasc = Ssadc ∪ Sdasc ∪ Sdadc. (6)

Same-attention different-class positives. For the features from different
classes but extracted from the same attention region, they should be more similar
to the anchor than the ones also from different attentions:

Psadc = Ssadc, Nsadc = Sdadc. (7)

Different-attention same-class positives. Similarly, for the features from
same class but extracted from different attention regions, we have:

Pdasc = Sdasc, Ndasc = Sdadc. (8)

For any positive set P ∈ {Psasc,Psadc,Pdasc} and negative set N ∈ {Nsasc,
Nsadc,Ndasc} combinations, we expect the anchor to be closer to the positive
than to any negative by a distance margin m > 0, i.e.,

‖fpi − f+‖2 + m ≤ ‖fpi − f−‖2, ∀f+ ∈ P, f− ∈ N . (9)

To better understand the three constraints, let’s consider the synthetic exam-
ple of six feature points shown in Fig. 4. In the initial state (Fig. 4a), the Ssasc

feature point (green hexagon) stays further away from the anchor fpi at the center
than the others. After applying the first constraint (Eq. 6), the underlying feature
space is transformed to Fig. 4b, where the Ssasc positive point (green �) has been
pulled towards the anchor. However, the four negative features (cyan rectangles
and triangles) are still in disordered positions. In fact, Ssadc and Sdasc should
be considered as the positives compared to Sdadc given the anchor. By further
enforcing the second (Eq. 7) and third (Eq. 8) constraints, a better embedding
can be achieved in Fig. 4c, where Ssadc and Sdasc are regularized to be closer to
the anchor than the ones of Sdadc.

3.3 Training Loss

To enforce the triplet constraint in Eq. 9, a common approach is to minimize the
following hinge loss:

[
‖fpi − f+‖2 − ‖fpi − f−‖2 + m

]

+
. (10)
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Fig. 3. Data hierarchy in training. (a) Each batch is composed by 2N input images in
N-pair style. (b) OSME extracts P features for each image according to Eq. 5. (c) The
group of features for three MAMC constraints by picking one feature fpi as the anchor.

Fig. 4. Feature embedding of a synthetic batch. (a) Initial embedding before learning.
(b) The result embedding by applying Eq. 6. (c) The final embedding by enforcing
Eqs. 7 and 8. See text for more details.

Despite being broadly used, optimizing Eq. 10 using standard triplet sampling
leads to slow convergence and unstable performance in practice. Inspired by the
recent advance in metric learning, we enforce each of the three constraints by
minimizing the N-pair loss2 [37],

Lnp =
1
N

∑

fpi ∈B

{ ∑

f+∈P
log

(
1 +

∑

f−∈N
exp(fpTi f− − fpTi f+)

)}
. (11)

In general, for each training batch B, MAMC jointly minimizes the softmax
loss and the N-pair loss with a weight parameter λ:

Lmamc = Lsoftmax + λ
(
Lnp
sasc + Lnp

sadc + Lnp
dasc

)
. (12)

Given a batch of N images and P parts, MAMC is able to generate 2(PN −
1) + 4(N − 1)2(P − 1) + 4(N − 1)(P − 1)2 constraints of three types (Eqs. 6
2 It is worth to point out that the implementation of MAMC is independent to the use

of N-pair loss, as MAMC is a general framework that can be combined with other
triplet-based metric learning loss as well. The N-pair loss is taken as a reference
because of its robustness and good convergence in practice.



Multi-Attention Multi-Class Constraint for Fine-grained 843

to 8), while the N-pair loss can only produce N − 1. To put it in perspective,
we are able to generate 130× more constraints than N-pair loss with the same
data under the normal setting where P = 2 and N = 32. This implies that
MAMC leverages much richer correlations among the samples, and is able to
obtain better convergence than either triplet or N-pair loss.

4 The Dogs-in-the-Wild Dataset

Large image datasets (such as ImageNet [8]) with high-quality annotations
enables the dramatic development in visual recognition. However, most datasets
for fine-grained recognition are out-dated, non-natural and relatively small (as
shown in Table 1). Recently, there are several attempts such as Goldfinch [19] and
the iNaturalist Challenge [38] in building large-scale fine-grained benchmarks.
However, there still lacks a comprehensive dataset with large enough data vol-
ume, highly accurate data annotation, and full tag coverage of common dog
species. We hence introduce the Dogs-in-the-Wild dataset with 299,458 images
of 362 dog categories3, which is 15× larger than Stanford Dogs [16]. We generate
the list of dog species by combining multiple sources (e.g., Wikipedia), and then
crawl the images with search engines (e.g., Google, Baidu). The label of each
image is then checked with crowd sourcing. We further prune small classes with
less than 100 images, and merge extremely similar classes by applying confu-
sion matrix and manual validation. The whole annotation process is conducted
three times to guarantee the annotation quality. Last but not least, since most of
the experimental baselines are pre-trained on ImageNet, which has substantial
category overlap with our dataset, we exclude any image of ImageNet from our
dataset for fair evaluation.

Figure 5a and b qualitatively compare our dataset with the two most relevant
benchmarks, Stanford Dogs [16] and the dog section of Goldfinch [19]. It can
be seen that our dataset is more challenging in two aspects: (1) The intra-class
variation of each category is larger. For instance, almost all common patterns and
hair colors of Staffordshire Bull Terriers are covered in our dataset, as illustrated
in Fig. 5a. (2) More surrounding environment types are covered, which includes
but is not limited to, natural scenes, indoor scenes and even artificial scenes;
and the dog itself could either be in its natural appearance or dressed up, such
as the first Boston Terrier in Fig. 5a. Another feature of our dataset is that all
of our images are manually examined to minimize annotation errors. Although
Goldfinch has comparable class number and data volume, it is common to find
noisy images inside, as shown in Fig. 5b.

We then demonstrate the statistics of the three datasets in Fig. 5c and
Table 1. It is observed that our dataset is significantly more imbalanced in term
of images per category, which is more consistent with real-life situations, and
notably increases the classification difficulty. Note that the curves in Fig. 5c are
smoothed for better visualization. On the other hand, the average images per

3 http://ai.baidu.com/broad/subordinate?dataset=canine.

http://ai.baidu.com/broad/subordinate?dataset=canine
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Table 1. Statistics of the related datasets

Dataset #Class #Train #Test #Avg. Train/Class

CUB-200-2011 200 5,994 5,794 30

Stanford Dogs 120 12,000 8,580 100

Stanford Cars 196 8,144 8,041 42

Goldfinch 515 342,632 - 665

Dogs-in-the-Wild 362 258,474 40,984 714

Fig. 5. Qualitative and quantitative comparison of dog datasets. (a) Example images
from Stanford Dogs and Dogs-in-the-Wild; (b) Common bad cases from Goldfinch that
are completely non-dog. (c) Images per category distribution.

category of our dataset is higher than the other two datasets, which contributes
to its high intra-class variation, and makes it less vulnerable to overfitting.

5 Experimental Results

We conduct our experiments on four fine-grained image recognition datasets,
including three publicly available datasets CUB-200-2011 [39], Stanford Dogs [16]
and Stanford Cars [20], and the proposed Dogs-in-the-Wild dataset. The detailed
statistics including class numbers and train/test distributions are summarized
in Table 1. We adopt top-1 accuracy as the evaluation metric.

In our experiments, the input images are resized to 448×448 for both training
and testing. We train on each dataset for 60 epochs; the batch size is set to 10
(N=5), and the base learning rate is set to 0.001, which decays by 0.96 for every
0.6 epoch. The reduction ratio r of Wp

1 and Wp
2 in Eq. 3 is set to 16 in reference

to [13]. The weight parameter λ is empirically set to 0.5 as it achieves consistently
good performances. And for the FC layers, we set the channels C = 2048 and
D = 1024. Our method is implemented with Caffe [15] and one Tesla P40 GPU.

5.1 Ablation Analysis

To fully investigate our method, Table 2a provides a detailed ablation analysis
on different configurations of the key components.
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Base networks. To extract convolutional feature before the OSME module,
we choose VGG-19 [36], ResNet-50 and ResNet-101 [11] as our candidate base-
lines. Based on Table 2a, ResNet-50 and ResNet-101 are selected given their good
balance between performance and efficiency. We also note that although a bet-
ter ResNet-50 baseline on CUB is reported in [21] (84.5%), it is implemented in
Torch [5] and tuned with more advanced data augmentation (e.g., color jittering,
scaling). Our baselines, on the other hand, are trained with simple augmentation
(e.g., mirror and random cropping) and meet the Caffe baselines of other works,
such as 82.0% in [26] and 78.4% in [7].

Importance of OSME. OSME is important in attending discriminative
regions. For ResNet-50 without MAMC, using OSME solely with P = 2 can offer
3.2% performance improvement compared to the baseline (84.9% vs. 81.7%).
With MAMC, using OSME boosts the accuracy by 0.5% than without OSME
(using two independent FC layers instead, 86.2% vs. 85.7%). We also notice that
two attention regions (P = 2) lead to promising results, while more attention
regions (P = 3) provide slightly better performance.

MAMC constraints. Applying the first MAMC constraint (Eq. 6) achieves
0.5% better performance than the baseline with ResNet-50 and OSME. Using all
of the three MAMC constraints (Eqs. 6 to 8) leads to another 0.8% improvement.
This indicates the effectiveness of each of the three MAMC constraints.

Complexity. Compared with the ResNet-50 baseline, our method provides
significantly better result (+4.5%) with only 30% more time, while a similar
method [10] offers less optimal result but takes 3.6× more time than ours.

5.2 Comparison with State-of-the-Art

Quantitative experimental results are shown in Table 2b–e.
We first analyze the results on the CUB-200-2011 dataset in Table 2b. It

is observed that with ResNet-101, our method achieves the best overall perfor-
mance (tied with MACNN) against state-of-the-art. Even with ResNet-50, our
method exceeds the second best method using extra annotation (PN-CNN) by
0.8%, and exceeds the second best method without extra annotation (RAM)
by 0.2%. For the weakly supervised methods without extra annotation, PDFR
and MG-CNN conduct feature combination from multiple scales, and RACNN is
trained with multiple alternative stages, while our method is trained with only
one stage to obtain all the required features. Yet our method outperforms all of
the the three methods by 2.0%, 4.8% and 1.2%, respectively. The methods B-
CNN and RAN share similar multi-branch ideas with the OSME in our method,
where B-CNN connects two CNN features with outer product, and RAN com-
bines the trunk CNN feature with an additional attention mask. Our method,
on the other hand, applies the OSME for multi-attention feature extraction in
one step, which surpasses B-CNN and RAN by 2.4% and 3.7%, respectively.

Our method exhibits similar performances on Stanford Dogs and Stanford
Cars, as shown in Table 2c and d. On Stanford Dogs, our method exceeds all
of the comparison methods except RACNN, which requires multiple stages for
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Table 2. Experimental results. “Anno.” stands for using extra annotation (bounding
box or part) in training. “1-Stage” indicates whether the training can be done in one
stage. “Acc.” denotes the top-1 accuracy in percentage
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Fig. 6. Visualization of the attention regions detected by the OSME. For each dataset,
the first column shows the input image, the second column shows the heatmap from
the last conv layer of the baseline ResNet-101; the third and fourth columns show the
heatmaps of the two detected attention regions via OSME.

feature extraction and is hard to be trained end-to-end. On Stanford Cars, our
method obtains 93.0% accuracy, outperforming all of the comparison methods.

Finally, on the Dogs-in-the-Wild dataset, our method still achieves the best
result with remarkable margins. Since this dataset is newly proposed, the results
in Table 2e can be used as baselines for future explorations. Moreover, by com-
paring the overall performances in Table 2c and e, we find that the accuracies
on Dogs-in-the-wild are significantly lower than those on Stanford Dogs, which
witness the relatively higher classification difficulty of this dataset.

By adopting our network with ResNet-101, we visualize the Sp in Eq. 4 of
each OSME branch (which corresponds to an attention region) as its channel-
wise average heatmap, as shown in the third and fourth columns of Fig. 6, .
In comparison, we also show the outputs of the last conv layer of the baseline
network (ResNet-101) as heatmaps in the second column. It is seen that the
highlighted regions of OSME outputs reveal more meaningful parts than those of
the baseline, that we humans also rely on to recognize the fine-grained label, e.g.,
the head and wing for birds, the head and tail for dogs, and the headlight/grill
and frame for cars.

6 Conclusion

In this paper, we propose a novel CNN with the multi-attention multi-class
constraint (MAMC) for fine-grained image recognition. Our network extracts
attention-aware features through the one-squeeze multi-excitation (OSME) mod-
ule, supervised by the MAMC loss that pulls positive features closer to the
anchor, while pushing negative features away. Our method does not require
bounding box or part annotation, and can be trained end-to-end in one stage.
Extensive experiments against state-of-the-art methods exhibit the superior per-
formances of our method on various fine-grained recognition tasks on birds, dogs
and cars. In addition, we have collected and released the Dogs-in-the-Wild, a
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comprehensive dog species dataset with the largest data volume, full category
coverage, and accurate annotation compared with existing similar datasets.
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