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Abstract. It is desirable for detection and classification algorithms to
generalize to unfamiliar environments, but suitable benchmarks for quan-
titatively studying this phenomenon are not yet available. We present a
dataset designed to measure recognition generalization to novel environ-
ments. The images in our dataset are harvested from twenty camera
traps deployed to monitor animal populations. Camera traps are fixed
at one location, hence the background changes little across images; cap-
ture is triggered automatically, hence there is no human bias. The chal-
lenge is learning recognition in a handful of locations, and generalizing
animal detection and classification to new locations where no training
data is available. In our experiments state-of-the-art algorithms show
excellent performance when tested at the same location where they were
trained. However, we find that generalization to new locations is poor,
especially for classification systems.(The dataset is available at https://
beerys.github.io/CaltechCameraTraps/)
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1 Introduction

Automated visual recognition algorithms have recently achieved human expert
performance at visual classification tasks in field biology [1–3] and medicine [4,5].
Thanks to the combination of deep learning [6,7], Moore’s law [8] and very large
annotated datasets [9,10] enormous progress has been made during the past 10
years. Indeed, 2017 may come to be remembered as the year when automated
visual categorization surpassed human performance.

However, it is known that current learning algorithms are dramatically less
data-efficient than humans [11], transfer learning is difficult [12], and, anecdo-
tally, vision algorithms do not generalize well across datasets [13,14] (Fig. 1).
These observations suggest that current algorithms rely mostly on rote pattern-
matching, rather than abstracting from the training set ‘visual concepts’ [15]
that can generalize well to novel situations. In order to make progress we need
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datasets that support a careful analysis of generalization, dissecting the chal-
lenges in detection and classification: variation in lighting, viewpoint, shape,
photographer’s choice and style, context/background. Here we focus on the lat-
ter: generalization to new environments, which includes background and overall
lighting conditions.

Applications where the ability to generalize visual recognition to new environ-
ments is crucial include surveillance, security, environmental monitoring, assisted
living, home automation, automated exploration (e.g. sending rovers to other
planets). Environmental monitoring by means of camera traps is a paradigmatic
application. Camera traps are heat- or motion-activated cameras placed in the
wild to monitor and investigate animal populations and behavior. Camera traps
have become inexpensive, hence hundreds of them are often deployed for a given
study, generating a deluge of images. Automated detection and classification of
animals in images is a necessity. The challenge is training animal detectors and
classifiers from data coming from a few pilot locations such that these detectors
and classifiers will generalize to new locations. Camera trap data is controlled
for environment including lighting (the cameras are static, and lighting changes
systematically according to time and weather conditions), and eliminates pho-
tographer bias (the cameras are activated automatically).

Camera traps are not new to the computer vision community [2,16–27]. Our
work is the first to identify camera traps as a unique opportunity to study
generalization, and we offer the first study of generalization to new environ-
ments in this controlled setting. We make here three contributions: (a) a novel,
well-annotated dataset to study visual generalization across locations, (b) a
benchmark to measure algorithms’ performance, and (c) baseline experiments
establishing the state of the art. Our aim is to complement current datasets
utilized by the vision community for detection and classification [9,10,28,29]
by introducing a new dataset and experimental protocol that can be used to
systematically evaluate the generalization behavior of algorithms to novel envi-
ronments. In this work we benchmark the current state-of-the-art detection and
classification pipelines and find that there is much room for improvement.

2 Related Work

2.1 Datasets

The ImageNet [9], MS-COCO [10], PascalVOC [28], and Open Images [29]
datasets are commonly used for benchmarking classification and detection algo-
rithms. Images in these datasets were collected in different locations by differ-
ent people, which enables algorithms to average over photographer style and
irrelevant background clutter. However, as demonstrated in Fig. 1, the context
can be strongly biased. Human photographers are biased towards well-lit, well-
focused images where the subjects are centered in the frame [30,31]. Further-
more, the number of images per class is balanced, unlike what happens in the
real world [11].
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Fig. 1. Recognition algorithms generalize poorly to new environments. Cows
in ‘common’ contexts (e.g. Alpine pastures) are detected and classified correctly (A),
while cows in uncommon contexts (beach, waves and boat) are not detected (B) or
classified poorly (C). Top five labels and confidence produced by ClarifAI.com shown.

Natural world datasets such as the iNaturalist dataset [1], CUB200 [32],
Oxford Flowers [33], LeafSnap [34], and NABirds700 [35] are focused on fine-
grained species classification and detection. Most images in these datasets are
taken by humans under relatively good lighting conditions, though iNaturalist
does contain human-selected camera trap images. Many of these datasets exhibit
real-world long-tailed distributions, but in all cases there is a large amount of
diversity in location and perspective.

The Snapshot Serengeti dataset [21] is a large, multi-year camera trap dataset
collected at 225 locations in a small region of the African savanna. It is the
single largest-scale camera trap dataset ever collected, with over 3 million images.
However, it is not yet suitable for controlled experiments. This dataset was
collected from camera traps that fire in sequences of 3 for each motion trigger,
and provides species annotation for groups of images based on a time threshold.
This means that sometimes a single species annotation is provided for up to 10
frames, when in fact the animal was present in only a few of those frames (no
bounding boxes are provided). Not all camera trap projects are structured in a
similar way, and many cameras take shorter sequences or even single images on
each trigger. In order to find a solution that works for new locations regardless
of the camera trap parameters, it is important to have information about which
images in the batch do or do not contain animals. In our dataset we provide
annotations on a per-instance basis, with bounding boxes and associated classes
for each animal in the frame.

2.2 Detection

Since camera traps are static, detecting animals in the images could be con-
sidered either a change detection or foreground detection problem. Detecting
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changes and/or foreground vs. background in video is a well studied problem
[36,37]. Many of these methods rely on constructing a good background model
that updates regularly, and thus degrade rapidly at low frame rates. [38] and
[39] consider low frame rate change detection in aerial images, but in these cases
there are often very few examples per location.

Some camera traps collect a short video when triggered instead of a sequence
of frames. [20,22,23] show foreground detection results on camera trap video.
Data that comes from most camera traps take sequences of frames at each trigger
at a frame rate of ∼1 frame per second. This data can be considered “video,”
albeit with extremely low, variable frame rate. Statistical methods for back-
ground subtraction and foreground segmentation in camera trap image sequences
have been previously considered. [16] demonstrates a graph-cut method that uses
background modeling and foreground object saliency to segment foreground in
camera trap sequences. [24] creates background models and perform a superpixel-
based comparison to determine areas of motion. [25] uses a multi-layer RPCA-
based method applied to day and night sequences. [26] uses several statistical
background-modeling approaches as additional signal to improve and speed up
deep detection. These methods rely on a sequence of frames at each trigger to
create appropriate background models, which are not always available. None of
these methods demonstrate results on locations outside of their training set.

2.3 Classification

A few studies tackle classification of camera trap images. [18] showed results
classifying squirrels vs. tortoises in the Mojave Desert. [17] showed classification
results on data that provides image sequences of 1̃0 frames. They do not consider
the detection problem and instead manually crop the animal from the frame and
balance the dataset, resulting in a total of 7,196 images across 18 species with
at least 100 examples each. [19] were the first to take a deep network approach
to camera trap classification, working with data from eMammal [40]. They first
performed detection using the background subtraction method described in [16],
then classified cropped detected regions, getting 38.31% top-1 accuracy on 20
common species. [27] show classification results on both Snapshot Serengeti and
data from jungles in Panama, and saw a boost in classification performance
from providing animal segmentations. [2] show 94.9% top-1 accuracy using an
ensemble of models for classification on the Snapshot Serengeti dataset. None of
the previous works show results on unseen test locations.

2.4 Generalization and Domain Adaptation

Generalizing to a new location is an instance of domain adaptation, where each
location represents a domain with its own statistical properties such as types
of flora and fauna, species frequency, man-made or other clutter, weather, cam-
era type, and camera orientation. There have been many methods proposed for
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domain adaptation in classification [41]. [42] proposed a method for unsuper-
vised domain adaptation by maximizing domain classification loss while min-
imizing loss for classifying the target classes. We generalized this method to
multi-domain for our dataset, but did not see any improvement over the base-
line. [43] demonstrated results of a similar method for fine-grained classification,
using a multi-task setting where the adaptation was from clean web images to
real-world images, and [44] investigated open-set domain adaptation.

Few methods have been proposed for domain adaptation outside of classifica-
tion. [45–47] investigate methods of domain adaptation for semantic segmenta-
tion, focusing mainly on cars and pedestrians and either adapting from synthetic
to real data, from urban to suburban scenes, or from PASCAL to a camera on-
board a car. [48–52] look at methods for adapting detectors from one data source
to another, such as from synthetic to real data or from images to video. Raj, et.
al., [53] demonstrated a subspace-based detection method for domain adaptation
from PASCAL to COCO.

3 The Caltech Camera Traps Dataset

The Caltech Camera Traps (CCT) dataset contains 243,187 images from 140
camera locations, curated from data provided by the USGS and NPS. Our goal
in this paper is to specifically target the problem of generalization in detection
and classification. To this end, we have randomly selected 20 camera locations
from the American Southwest to study in detail. By limiting the geographic
region, the flora and fauna seen across the locations remain consistent. The
current task is not to deal with entirely new regions or species, but instead to be
able to recognize the same species of animals in the same region with a different
camera background. In the future we plan to extend this work to recognizing
the same species in new regions, and to the open-set problem of recognizing
never-before-seen species. Examples of data from different locations can be seen
in Fig. 2.

Camera traps are motion- or heat-triggered cameras that are placed in loca-
tions of interest by biologists in order to monitor and study animal populations
and behavior. When a camera is triggered, a sequence of images is taken at
approximately one frame per second. Our dataset contains sequences of length
1–5. The cameras are prone to false triggers caused by wind or heat rising from
the ground, leading to empty frames. Empty frames can also occur if an animal
moves out of the field of view of the camera while the sequence is firing. Once
a month, biologists return to the cameras to replace the batteries and change
out the memory card. After it has been collected, experts manually sort camera
trap data to categorize species and remove empty frames. The time required to
sort and label images by hand severely limits data scale and research produc-
tivity. We have acquired and further curated a portion of this data to analyze
generalization behaviors of state-of-the-art classifiers and detectors.

The dataset in this paper, which we call Caltech Camera Traps-20 (CCT-20),
consists of 57, 868 images across 20 locations, each labeled with one of 15 classes
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(or marked as empty). Classes are either single species (e.g. “Coyote” or groups
of species, e.g. ”Bird”). See Fig. 4 for the distribution of classes and images across
locations. We do not filter the stream of images collected by the traps, rather
this is the same data that a human biologist currently sifts through. Therefore
the data is unbalanced in the number of images per location, distribution of
species per location, and distribution of species overall (see Fig. 4).

Fig. 2. Camera trap images from three different locations. Each row is a dif-
ferent location and a different camera type. The first two cameras use IR, while the
third row used white flash. The first two columns are bobcats, the next two columns
are coyotes. (Color figure online)

3.1 Detection and Labeling Challenges

The animals in the images can be challenging to detect and classify, even for
humans. We have determined that there are six main nuisance factors inherent
to camera trap data, which can compound upon each other. Detailed analysis of
these challenges can be seen in Fig. 3. When an image is too difficult to classify
on its own, biologists will often refer to an easier image in the same sequence
and then track motion by flipping between sequence frames in order to generate
a label for each frame (e.g. is the animal still present or has it gone off the image
plane?). We account for this in our experiments by reporting performance at
the frame level and at the sequence level. Considering frame level performance
allows us to investigate the limits of current models in exceptionally difficult
cases.
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Fig. 3. Common data challenges: (1) Illumination: Animals are not always salient.
(2) Motion blur: common with poor illumination at night. (3) Size of the region
of interest (ROI): Animals can be small or far from the camera. (4) Occlusion: e.g.
by bushes or rocks. (5) Camouflage: decreases saliency in animals’ natural habitat.
(6) Perspective: Animals can be close to the camera, resulting in partial views of the
body.

3.2 Annotations

We collected bounding box annotations on Amazon Mechanical Turk, procuring
annotations from at least three and up to ten MTurkers for each image for
redundancy and accuracy. Workers were asked to draw boxes around all instances
of a specific type of animal for each image, determined by what label was given to
the sequence by the biologists. We used the crowdsourcing method by Branson et
al. [54] to determine ground truth boxes from our collective annotations, and to
iteratively collect additional annotations as necessary. We found that bounding
box precisions varied based on annotator, and determined that for this data the
PascalVOC metric of IoU≥ 0.5 is appropriate for the detection experiments (as
opposed to the COCO IoU averaging metric).

3.3 Data Split: Cis- and Trans-

Our goal is exploring generalization to new (i.e. untrained) locations. Thus, we
compare the performance of detection and classification algorithms when they
are tested at the same locations where they were trained, vs new locations. For
brevity, we refer to locations seen during training as cis-locations and locations
not seen during training as trans-locations.

From our pool of 20 locations, we selected 9 locations at random to use as
trans-location test data, and a single random location to use as trans-location
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Fig. 4. (Left) Number of annotations for each location, over 16 classes. The ordering of
the classes in the legend is from most to least examples overall. The distribution of the
species is long-tailed at each location, and each location has a different and peculiar
distribution. (Right) Visualization of data splits. “Cis” refers to images from locations
seen during training, and “trans” refers to new locations not seen during training.

validation data. From the remaining 10 locations, we use images taken on odd
days as cis-location test data. From within the data taken on even days, we
randomly select 5% to be used as cis-location validation data. The remaining
data is used for training, with the constraint that training and validation sets do
not share the same image sequences. This gives us 13, 553 training images, 3, 484
validation and 15, 827 test images from cis-locations, and 1, 725 val and 23, 275
test images from trans-locations. The data split can be visualized in Fig. 4. We
chose to interleave the cis training and test data by day because we found that
using a single date to split the data results in additional generalization challenges
due to changing vegetation and animal species distributions across seasons. By
interleaving, we reduce noise and provide a clean experimental comparison of
results on cis- and trans-locations.

4 Experiments

Current state-of-the-art computer vision models for classification and detection
are designed to work well on test data whose distribution matches the training
distribution. However, in our experiments we are explicitly evaluating the mod-
els on a different test distribution. In this situation, it is common practice to
employ early stopping [55] as a means of preventing overfitting to the train dis-
tribution. Therefore, for all classification and detection experiments we monitor
performance on both the cis- and trans-location validation sets. In each experi-
ment we save two models, one that we expect has the best performance on the
trans-location test set (i.e. a model that generalizes), and one that we expect
has the best performance on the cis-location test set (i.e. a model that performs
well on the train distribution).
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4.1 Classification

We explore the generalization of classifiers in 2 different settings: full images
and cropped bounding boxes. For each setting we also explore the effects of
using and ignoring sequence information. Sequence information is utilized in two
different ways: (1) Most Confident we consider the sequence to be classified
correctly if the most confident prediction from all frames grouped together is
correct, or (2) Oracle we consider the sequence to be correctly classified if any
frame is correctly classified. Note that (2) is a more optimistic usage of sequence
information. For all classification experiments we use an Inception-v3 [56] model
pretrained on ImageNet, with an initial learning rate of 0.0045, rmsprop with
a momentum of 0.9, and a square input resolution of 299. We employ random
cropping (containing at least 65% of the region), horizontal flipping, and color
distortion as data augmentation.

Table 1. Classification top-1 error across experiments. Empty images are removed for
these experiments.

Cis-locations Trans-locations Error increase

Sequence information Images Bboxes Images Bboxes Images Bboxes

None 19.06 8.14 41.04 19.56 115% 140%

Most confident 17.7 7.06 34.53 15.77 95% 123%

Oracle 14.92 5.52 28.69 12.06 92% 118%

Full Image. We train a classifier on the full images, considering all 15 classes as
well as empty images (16 total classes). On the cis-location test set we achieve a
top-1 error of 20.83%, and a top-1 error of 41.08% on the trans-location test set
with a 97% cis-to-trans increase in error. To investigate if requiring the classifier
to both detect and classify animals increased overfitting on the training location
backgrounds, we removed the empty images and retrained the classifiers using
just the 15 animal classes. Performance stayed at nearly the same levels, with
a top-1 error of 19.06% and 41.04% for cis- and trans-locations respectively.
Utilizing sequence information helped reduce overall error (achieving errors of
14.92% and 28.69% on cis- and trans-locations respectively), but even in the
most optimistic oracle setting, there is still a 92% increase in error between
evaluating on cis- and trans-locations. See Table 1 for the full results.

Bounding Boxes. We train a classifier on cropped bounding boxes, excluding
all empty images (as there is no bounding box in those cases). Using no sequence
information we achieve a cis-location top-1 error of 8.14% and a trans-location
top-1 error of 19.56%. While the overall error has decreased compared to the
image level classification, the error increase between cis- and trans-locations is
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still high at 140%. Sequence information further improved classification results
(achieving errors of 5.52% and 12.06% on cis- and trans-locations respectively),
and slightly reduced generalization error, bringing the error increase down to
118% in the most optimistic setting. See Table 1 for the full results. Additional
experiments investigating the effect of number of images per location, number
of training locations, and selection of validation location can be seen in the
supplementary material.

Analysis. Figure 5 provides a high level summary of our experimental findings.
Namely, there is a generalization gap between cis- and trans-locations. Cropped
boxes help to improve overall performance (shifting the blue lines vertically
downward to the red lines), but the gap remains. In the best case scenario (red
dashed lines: cropped boxes and optimistically utilizing sequences) we see a 92%
increase in error between the cis- and trans-locations (with the same number of
training examples), and 20x increase in training examples to have the same error
rate. One might wonder whether this generalization gap is due to a large shift in
class distributions between the two locations types. However, Fig. 7 shows that
the overall distribution of classes between the locations is similar, and therefore
probably does not account for the performance loss.

Fig. 5. Classification error vs. number of class-specific training examples.
Error is calculated as 1 - AUC (area under the precision-recall curve). Best-fit lines
through the error-vs-n.examples points for each class in each scenario (points omitted
for clarity), with average r2 = 0.261. An example of line fit on top of data can be seen
in Fig. 7. As expected, error decreases as a function of the number of training examples.
This is true both for image classification (blue) and bounding-box classification (red)
on both cis-locations and trans-locations. However, trans-locations show significantly
higher error rates. To operate at an error rate of 5.33% on bounding boxes or 18%
on images at the cis-locations we need 500 training examples, while we need 10,000
training examples to achieve the same error rate at the trans-locations, a 20x increase
in data. (Color figure online)
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Fig. 6. Trans-classification failure cases at the sequence level: (Based on clas-
sification of bounding box crops) In the first sequence, the network struggles to distin-
guish between ‘cat’ and ‘bobcat’, incorrectly predicting ‘cat’ in all three images with
a mean confidence of 0.82. In the second sequence, the network struggles to classify a
bobcat at an unfamiliar pose in the first image and instead predicts ‘raccoon’ with a
confidence of 0.84. Little additional sequence information is available in this case, as
the next frame contains only a blurry tail, and the last frame is empty

Fig. 7. (Left) Distribution of species across the two test sets. (Right) An example of
line fit used to generate the plots in Fig. 5

4.2 Detection

We use the Faster-RCNN implementation found in the Tensorflow Object Detec-
tion code base [57] as our detection model. We study performance of the Faster-
RCNN model using two different backbones, ResNet-101 [58] and Inception-
ResNet-v2 with atrous convolution [57]. Similar to our classification experiments
we analyze the effects of using sequence information using two methods: (1)
Most Confident we consider a sequence to be labeled correctly if the most
confident detection across all frames has an IoU≥ 0.5 with its matched ground
truth box; (2) Oracle we consider a sequence to be labeled correctly if any
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frame’s most confident detection has IoU≥ 0.5 with its matched ground truth
box. Note that method (2) is more optimistic than method (1).

Our detection models are pretrained on COCO [10], images are resized to
have a max dimension of 1024 and a minimum dimension of 600; each experiment
uses SGD with a momentum of 0.9 and a fixed learning rate schedule. Starting at
0.0003 we decay the learning rate by a factor of 10 at 90 k steps and 120 k steps.
We use a batch size of 1, and employ horizontal flipping for data augmentation.
For evaluation, we consider a detected box to be correct if its IoU≥ 0.5 with a
ground truth box.

Results from our experiments can be seen in Table 2 and Fig. 9. We find
that both backbone architectures perform similarly. Without taking sequence
information into account, the models achieve ∼77% mAP on cis-locations and
∼71% mAP on trans-locations. Adding sequence information using the most con-
fident metric improves results, bringing performance on cis- and trans-locations
to similar values at ∼85%. Finally, using the oracle metric brings mAP into the
90 s for both locations. Precision-recall curves at the frame and sequence levels
for both detectors can be seen in Fig. 9.

Analysis. There is a significantly lower generalization error in our detection
experiments when not using sequences than what we observed in the classifica-
tion experiments (∼30% error increase for detections vs ∼ 115% error increase
for classification). When using sequence information, the generalization error for
detections is reduced to only ∼5%.

Qualitatively, we found the mistakes can often be attributed to nuisance
factors that make frames difficult. We see examples of all 6 nuisance fac-
tors described in Fig. 3 causing detection failures. The errors remaining at the
sequence level occur when these nuisance factors are present in all frames of a
sequence, or when the sequence only contains a single, challenging frame con-
taining an animal. Examples of sequence-level detection failures can be seen in
Fig. 8. The generalization gap at the frame level implies that our models are
better able to deal with nuisance factors at locations seen during training.

Table 2. Detection mAP at IoU = 0.5 across experiments.

Cis-locations Trans-locations Error increase

Sequence information ResNet Inception ResNet Inception ResNet Inception

None 77.10 77.57 70.17 71.37 30% 27.6%

Most confident 84.78 86.22 84.09 85.44 4.5% 5.6%

Oracle 94.95 95.04 92.13 93.09 55.8% 39.3%

Our experiments show that there is a small generalization gap when we use
sequence information. However, overall performance has not saturated, and cur-
rent state-of-the-art detectors are not achieving high precision at high recall
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values (1% precision at recall= 95%). So while we are encouraged by the results,
there is still room for improvement. When we consider frames independently, we
see that the generalization gap reappears. Admittedly this is a difficult case as it
is not clear what the performance of a human would be without sequence infor-
mation. However, we know that there are objects that can be detected in these
frames and this dataset will challenge the next generation of detection models
to accurately localize these difficult cases.

Fig. 8. Trans-detection failure cases at the sequence level: Highest-confidence
detection in red, ground truth in blue. In all cases the confidence of the detection was
lower than 0.2. The first two sequences have small ROI, compounded with challenging
lighting in the first and camouflaged birds in the second. In the third the opossum is
poorly illuminated and only visible in the first frame. (Color figure online)

5 Conclusions

The question of generalization to novel image statistics is taking center stage in
visual recognition. Many indicators point to the fact that current systems are
data-inefficient and do not generalize well to new scenarios. Current systems are,
in essence, glorified pattern-matching machines, rather than intelligent visual
learners.
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Fig. 9. Faster-RCNN precision-recall curves at an IoU of 0.5, by frame and by sequence,
using a confidence-based approach to determine which frame should represent the
sequence

Many problem domains face a generalization challenge where the test condi-
tions are potentially highly different than what has been seen during training.
Self driving cars navigating new cities, rovers exploring new planets, security
cameras installed in new buildings, and assistive technologies installed in new
homes are all examples where good generalization is critical for a system to
be useful. However, the most popular detection and classification benchmark
datasets [9,10,28,29] are evaluating models on test distributions that are the
same as the train distributions. Clearly it is important for models to do well on
data coming from the same distribution as the train set. However, we argue that
it is important to characterize the generalization behavior of these models when
the test distribution deviates from the train distribution. Current datasets do
not allow researchers to quantify the generalization behavior of their models.

We contribute a new dataset and evaluation protocol designed specifically to
analyze the generalization behavior of classification and detection models. Our
experiments reveal that there is room for significant improvement on the gen-
eralization of state-of-the-art classification models. Detection helps to improve
overall classification accuracy, and we find that while detectors generalize better
to new locations, there is room to improve their precision at high recall rates.

Camera traps provide a unique experimental setup that allow us to explore
the generalization of models while controlling for many nuisance factors. Our
current dataset is already revealing interesting behaviors of classification and
detection models. There is still more information that we can learn by expanding
our dataset in both data quantity and evaluation metrics. We plan to extend
this dataset by adding additional locations, both from the American Southwest
and from new regions. Drastic landscape and vegetation changes will allow us to
investigate generalization in an even more challenging setting. Rare and novel
events are frequently the most important and most challenging to detect and
classify, and while our dataset already has these properties, we plan to define
experimental protocols and data splits for benchmarking low-shot performance
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and the open-set problem of detecting and/or classifying species not seen during
training.
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