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Abstract. Deep convolutional neural networks have liberated its
extraordinary power on various tasks. However, it is still very challeng-
ing to deploy state-of-the-art models into real-world applications due to
their high computational complexity. How can we design a compact and
effective network without massive experiments and expert knowledge?
In this paper, we propose a simple and effective framework to learn and
prune deep models in an end-to-end manner. In our framework, a new
type of parameter – scaling factor is first introduced to scale the outputs
of specific structures, such as neurons, groups or residual blocks. Then
we add sparsity regularizations on these factors, and solve this optimiza-
tion problem by a modified stochastic Accelerated Proximal Gradient
(APG) method. By forcing some of the factors to zero, we can safely
remove the corresponding structures, thus prune the unimportant parts
of a CNN. Comparing with other structure selection methods that may
need thousands of trials or iterative fine-tuning, our method is trained
fully end-to-end in one training pass without bells and whistles. We eval-
uate our method, Sparse Structure Selection with several state-of-the-art
CNNs, and demonstrate very promising results with adaptive depth and
width selection. Code is available at: https://github.com/huangzehao/
sparse-structure-selection.

Keywords: Sparse · Model acceleration · Deep network structure
learning

1 Introduction

Deep learning methods, especially convolutional neural networks (CNNs) have
achieved remarkable performances in many fields, such as computer vision, nat-
ural language processing and speech recognition. However, these extraordinary
performances are at the expense of high computational and storage demand.
Although the power of modern GPUs has skyrocketed in the last years, these
high costs are still prohibitive for CNNs to deploy in latency critical applications
such as self-driving cars and augmented reality, etc.

Recently, a significant amount of works on accelerating CNNs at inference
time have been proposed. Methods focus on accelerating pre-trained models
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include direct pruning [9,13,24,27,29], low-rank decomposition [7,20,49], and
quantization [6,31,44]. Another stream of researches trained small and efficient
networks directly, such as knowledge distillation [14,33,35], novel architecture
designs [15,18] and sparse learning [1,25,43,50]. In spare learning, prior works
[25] pursued the sparsity of weights. However, non-structure sparsity only pro-
duce random connectivities and can hardly utilize current off-the-shelf hardwares
such as GPUs to accelerate model inference in wall clock time. To address this
problem, recently methods [1,43,50] proposed to apply group sparsity to retain
a hardware friendly CNN structure.

In this paper, we take another view to jointly learn and prune a CNN. First,
we introduce a new type of parameter – scaling factors which scale the outputs of
some specific structures (e.g., neurons, groups or blocks) in CNNs. These scaling
factors endow more flexibility to CNN with very few parameters. Then, we add
sparsity regularizations on these scaling factors to push them to zero during
training. Finally, we can safely remove the structures correspond to zero scaling
factors and get a pruned model. Comparing with direct pruning methods, this
method is data driven and fully end-to-end. In other words, the network can
select its unique configuration based on the difficulty and needs of each task.
Moreover, the model selection is accomplished jointly with the normal training
of CNNs. We do not require extra fine-tuning or multi-stage optimizations, and
it only introduces minor cost in the training.

To summarize, our contributions are in the following three folds:

– We propose a unified framework for model training and pruning in CNNs.
Particularly, we formulate it as a joint sparse regularized optimization prob-
lem by introducing scaling factors and corresponding sparse regularizations
on certain structures of CNNs.

– We utilize a modified stochastic Accelerated Proximal Gradient (APG)
method to jointly optimize the weights of CNNs and scaling factors with spar-
sity regularizations. Compared with previous methods that utilize heuristic
ways to force sparsity, our methods enjoy more stable convergence and better
results without fine-tuning and multi-stage optimization.

– We test our proposed method on several state-of-the-art networks, PeleeNet,
VGG, ResNet and ResNeXt to prune neurons, residual blocks and groups,
respectively. We can adaptively adjust the depth and width accordingly. We
show very promising acceleration performances on CIFAR and large scale
ILSVRC 2012 image classification datasets.

2 Related Works

Network pruning was pioneered in the early development of neural network.
In Optimal Brain Damage [23] and Optimal Brain Surgeon [10], unimportant
connections are removed based on the Hessian matrix derived from the loss
function. Recently, Han et al. [9] brought back this idea by pruning the weights
whose absolute value are smaller than a given threshold. This approach requires
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iteratively pruning and fine-tuning which is very time-consuming. To tackle this
problem, Guo et al. [8] proposed dynamic network surgery to prune parameters
during training. However, the nature of irregular sparse weights make them only
yield effective compression but not faster inference in terms of wall clock time.
To tackle this issue, several works pruned the neurons directly [16,24,29] by
evaluating neuron importance on specific criteria. These methods all focus on
removing the neurons whose removal affect the final prediction least. On the
other hand, the diversity of neurons to be kept is also an important factor to
consider [28]. More recently, [27] and [13] formulate pruning as a optimization
problem. They first select most representative neurons and further minimize the
reconstitution error to recover the accuracy of pruned networks. While neuron
level pruning can achieve practical acceleration with moderate accuracy loss,
it is still hard to implement them in an end-to-end manner without iteratively
pruning and retraining. Very recently, Liu et al. [26] used similar technique as
ours to prune neurons. They sparsify the scaling parameters of batch normaliza-
tion (BN) [19] to select channels. Ye et al. [48] also adopted this idea into neuron
pruning. As discussed later, both of their works can be seen as a special case in
our framework.

Model structure learning for deep learning models has attracted increas-
ing attention recently. Several methods have been explored to learn CNN archi-
tectures without handcrafted design [2,32,51]. One stream is to explore the
design space by reinforcement learning [2,51] or genetic algorithms [32,46].
Another stream is to utilize sparse learning or binary optimization. [1,50] added
group sparsity regularizations on the weights of neurons and sparsified them in
the training stage. Lately, Wen et al. [43] proposed a more general approach,
which applied group sparsity on multiple structures of networks, including fil-
ter shapes, channels and layers in skip connections. Srinivas et al. [38] proposed
a new trainable activation function tri-state ReLU into deep networks. They
pruned neurons by forcing the parameters of tri-state ReLU into binary.

CNNs with skip connections have been the main stream for modern net-
work design since it can mitigate the gradient vanishing/exploding issue in ultra
deep networks by the help of skip connections [11,39]. Among these work, ResNet
and its variants [12,47] have attracted more attention because of their simple
design principle and state-of-the-art performances. Recently, Veit et al. [41] inter-
preted ResNet as an exponential ensemble of many shallow networks. They find
there is minor impact on the performance when removing single residual block.
However, deleting more and more residual blocks will impair the accuracy signif-
icantly. Therefore, accelerating this state-of-the-art network architecture is still
a challenging problem. In this paper, we propose a data-driven method to learn
the architecture of such kind of network. Through scaling and pruning residual
blocks during training, our method can produce a more compact ResNet with
faster inference speed and even better performance.
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3 Proposed Method

Notations. Consider the weights of a convolutional layer l in a L layers CNN
as a 4-dimensional tensor Wl ∈ R

Nl×Ml×Hl×Wl , where Nl is the number of
output channels, Ml represents the number of input channels, Hl and Wl are
the height and width of a 2-dimensional kernel. Then we can use Wl

k to denote
the weights of k-th neuron in layer l. The scaling factors are represented as a
1-dimensional vector λ ∈ R

s, where S is the number of structures we consider
to prune. λi refers to the i-th value of λ. Denote soft-threshold operator as
Sα(z)i = sign(zi)(|zi| − α)+.

Fig. 1. The network architecture of our method. F represents a residual function.
Gray block, group and neuron mean they are inactive and can be pruned since their
corresponding scaling factors are 0.

3.1 Sparse Structure Selection

Given a training set consisting of N sample-label pairs {xi,yi}1≤i≤N , then a L
layers CNN can be represented as a function C(xi,W), where W = {Wl}1≤l≤L

represents the collection of all weights in the CNN. W is learned through solving
an optimization problem of the form:

min
W

1
N

N∑

i=1

L(yi, C(xi,W)) + R(W), (1)

where L(yi, C(xi,W)) is the loss on the sample xi, R(·) is a non-structured
regularization applying on every weight, e.g. l2-norm as weight decay.

Prior sparse based model structure learning work [1,50] tried to learn the
number of neurons in a CNN. To achieve this goal, they added group sparsity
regularization Rg(·) on Wl

k into Eq. 1, and enforced entire Wl
k to zero during

training. Another concurrent work by Wen et al. [43] adopted similar method
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but on multiple different structures. These ideas are straightforward but the
implementations are nontrivial. First, the optimization is difficult since there are
several constraints on weights simultaneously, including weight decay and group
sparsity. Improper optimization technique may result in slow convergence and
inferior results. Consequently, there is no successful attempt to directly apply
these methods on large scale applications with complicated modern network
architectures.

In this paper, we address structure learning problem in a more simple and
effective way. Different from directly pushing weights in the same group to zero,
we try to enforce the output of the group to zero. To achieve this goal, we
introduce a new type of parameter – scaling factor λ to scale the outputs of
some specific structures (neurons, groups or blocks), and add sparsity constraint
on λ during training. Our goal is to obtain a sparse λ. Namely, if λi = 0,
then we can safely remove the corresponding structure since its outputs have no
contribution to subsequent computation. Figure 1 illustrates our framework.

Formally, the objective function of our proposed method can be formulated
as:

min
W,λ

1
N

N∑

i=1

L(yi, C(xi,W,λ)) + R(W) + Rs(λ), (2)

where Rs(·) is a sparsity regularization for λ with weight γ. In this work, we
consider its most commonly used convex relaxation l1-norm, which defined as
γ‖λ‖1.

For W, we can update it by Stochastic Gradient Descent (SGD) with momen-
tum or its variants. For λ, we adopt Accelerated Proximal Gradient (APG) [30]
method to solve it. For better illustration, we shorten 1

N

∑N
i=1 L(yi, C(xi,λ)) as

G(λ), and reformulate the optimization of λ as:

min
λ

G(λ) + Rs(λ). (3)

Then we can update λ by APG:

d(t) = λ(t−1) +
t − 2
t + 1

(λ(t−1) − λ(t−2)) (4)

z(t) = d(t) − η(t)∇G(d(t)) (5)
λ(t) = proxη(t)Rs

(z(t)), (6)

where η(t) is gradient step size at iteration t and proxηRs
(·) = Sηγ(·) since

Rs(λ) = γ‖λ‖1. However, this formulation is not friendly for deep learning
since additional to the pass for updating W, we need to obtain ∇G(d(t)) by
extra forward-backward computation, which is computational expensive for deep
neural networks. Thus, following the derivation in [40], we reformulate APG as
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a momentum based method:

z(t) = λ(t−1) + μ(t−1)v(t−1)

− η(t)∇G(λ(t−1) + μ(t−1)v(t−1)) (7)
v(t) = Sη(t)γ(z(t)) − λ(t−1) (8)

λ(t) = λ(t−1) + v(t), (9)

where we define v(t−1) = λ(t−1) − λ(t−2) and μ(t−1) = t−2
t+1 . This formulation is

similar as the modified Nesterov Accelerated Gradient (NAG) in [40] except the
update of vt. Furthermore, we simplified the update of λ by replacing λ(t−1) as
λ′
(t−1) = λ(t−1)+μ(t−1)v(t−1) following the modification of NAG in [4] which has

been widely used in practical deep learning frameworks [5]. Our new parameters
λ′

t updates become:

z(t) = λ′
(t−1) − η(t)∇G(λ′

(t−1)) (10)

v(t) = Sη(t)γ(z(t)) − λ′
(t−1) + μ(t−1)v(t−1) (11)

λ′
(t) = Sη(t)γ(z(t)) + μ(t)v(t) (12)

In practice, we follow a stochastic approach with mini-batches and set momen-
tum μ fixed to a constant value. Both W and λ are updated in each iteration.

The implementation of APG is very simple and effective after our modifica-
tion. In the following, we show it can be implemented by only ten lines of code
in MXNet [5].

MXNet implementation of APG

import mxnet as mx
def apg_updater(weight, lr, grad, mom, gamma):

z = weight - lr * grad
z = soft_thresholding(z, lr * gamma)
mom[:] = z - weight + 0.9 * mom
weight[:] = z + 0.9 * mom

def soft_thresholding(x, gamma):
y = mx.nd.maximum(0, mx.nd.abs(x) - gamma)
return mx.nd.sign(x) * y

In our framework, we add scaling factors to three different CNN micro-structures,
including neurons, groups and blocks to yield flexible structure selection. We will
introduce these three cases in the following. Note that for networks with BN, we
add scaling factors after BN to prevent the influence of bias parameters.

3.2 Neuron Selection

We introduce scaling factors for the output of channels to prune neurons. After
training, removing the filters with zero scaling factor will result in a more com-
pact network. A recent work proposed by Liu et al. [26] adopted similar idea for
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network slimming. They absorbed the scaling parameters into the parameters of
batch normalization, and solve the optimization by subgradient descent. Dur-
ing training, scaling parameters whose absolute value are lower than a threshold
value are set to 0. Comparing with [26], our method is more general and effective.
Firstly, introducing scaling factor is more universal than reusing BN parameters.
On one hand, some networks have no batch normalization layers, such as AlexNet
[22] and VGG [37]; On the other hand, when we fine-tune pre-trained models
on object detection or semantic segmentation tasks, the parameters of batch
normalization are usually fixed due to small batch size. Secondly, the optimiza-
tion of [26] is heuristic and need iterative pruning and retraining. In contrast,
our optimization is more stable in an end-to-end manner. Above all, [26] can
be seen as a special case of our method. Similarly, [48] is also a special case
of our method. The difference between Ye et al. [48] and Liu et al. [26] is Ye et
al. adopted ISTA [3] to optimize scaling factors. We will compare these different
optimization methods in our experiments.

3.3 Block Selection

The structure of skip connection CNNs allows us to skip the computation of
specific layers without cutting off the information flow in the network. Through
stacking residual blocks, ResNet [11,12] can easily exploit the advantage of very
deep networks. Formally, residual block with identity mapping can be formulated
by the following formula:

ri+1 = ri + F i(ri,Wi), (13)

where ri and ri+1 are input and output of the i-th block, F i is a residual function
and Wi are parameters of the block.

To prune blocks, we add scaling factor after each residual block. Then in our
framework, the formulation of Eq. 13 is as follows:

ri+1 = ri + λiF i(ri,Wi). (14)

As shown in Fig 1, after optimization, we can get a sparse λ. The residual
block with scaling factor 0 will be pruned entirely, and we can learn a much
shallower ResNet. A prior work that also adds scaling factors for residual in
ResNet is Weighted Residual Networks [36]. Though sharing a lot of similarities,
the motivations behind these two works are different. Their work focuses on
how to train ultra deep ResNet to get better results with the help of scaling
factors. Particularly, they increase depth from 100+ to 1000+. While our method
aims to decrease the depth of ResNet, we use the scaling factors and sparse
regularizations to sparsify the output of residual blocks.
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3.4 Group Selection

Recently, Xie et al. introduced a new dimension – cardinality into ResNets and
proposed ResNeXt [47]. Formally, they presented aggregated transformations as:

A(x) =
C∑

i=1

T i(x,Wi), (15)

where T i(x) represents a transformation with parameters Wi, C is the cardinal-
ity of the set of T i(x) to be aggregated. In practice, they use grouped convolution
to ease the implementation of aggregated transformations. So in our framework,
we refer C as the number of group, and formulate a weighted A(x) as:

A(x) =
C∑

i=1

λiT i(x,Wi) (16)

After training, several basic cardinalities are chosen by a sparse λ to form the
final transformations. Then, the inactive groups with zero scaling factors can
be safely removed as shown in Fig 1. Note that neuron pruning can also seen
as a special case of group pruning when each group contains only one neuron.
Furthermore, we can combine block pruning and group pruning to learn more
flexible network structures.

4 Experiments

In this section, we evaluate the effectiveness of our method on three standard
datasets, including CIFAR-10, CIFAR-100 [21] and ImageNet LSVRC 2012 [34].
For neuron pruning, we adopt VGG16 [37], a classical plain network to validate
our method. As for blocks and groups, we use two state-of-the-art networks,
ResNet [12] and ResNeXt [47] respectively. To prove the practicability of our
method, we further experiment in a very lightweight network, PeleeNet [42].

Fig. 2. Error vs. number of parameters and FLOPs after SSS training for VGG on
CIFAR-10 and CIFAR-100 datasets.
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Fig. 3. Error vs. number of parameters and FLOPs after SSS training for ResNet-20
and ResNet-164 on CIFAR-10 and CIFAR-100 datasets.

For optimization, we adopt NAG [4,40] and our modified APG to update
weights W and scaling factors λ, respectively. We set weight decay of W to
0.0001 and fix momentum to 0.9 for both W and λ. The weights are initialized
as in [11] and all scaling factors are initialized to be 1. All the experiments are
conducted in MXNet [5].

4.1 CIFAR

We start with CIFAR dataset to evaluate our method. CIFAR-10 dataset consists
of 50K training and 10K testing RGB images with 10 classes. CIFAR-100 is
similar to CIFAR-10, except it has 100 classes. As suggested in [11], the input
image is 32 × 32 randomly cropped from a zero-padded 40 × 40 image or its
flipping. The models in our experiments are trained with a mini-batch size of 64
on a single GPU. We start from a learning rate of 0.1 and train the models for
240 epochs. The learning rate is divided by 10 at the 120-th,160-th and 200-th
epoch.

VGG: The baseline network is a modified VGG16 with BN [19]1. We remove
fc6 and fc7 and only use one fully-connected layer for classification. We add scale
factors after every batch normalization layers. Figure 2 shows the results of our
method. Both parameters and floating-point operations per second (FLOPs)2

are reported. Our method can save about 30% parameters and 30% - 50% com-
putational cost with minor lost of performance.

ResNet: To learn the number of residual blocks, we use ResNet-20 and
ResNet-164 [12] as our baseline networks. ResNet-20 consists of 9 residual blocks.

1 Without BN, the performance of this network is very worse in CIFAR-100 dataset.
2 Multiply-adds.



326 Z. Huang and N. Wang

Fig. 4. Error vs. number of parameters and FLOPs with SSS training for ResNeXt-20
and ResNeXt-164 on CIFAR-10 and CIFAR-100 datasets.

Fig. 5. Top-1 error vs. number of parameters and FLOPs for our SSS models and
original ResNets on ImageNet validation set.

Each block has 2 convolutional layers, while ResNet-164 has 54 blocks with bot-
tleneck structure in each block. Figure 3 summarizes our results. It is easy to see
that our SSS achieves better performance than the baseline model with similar
parameters and FLOPs. For ResNet-164, our SSS yields 2.5x speedup with about
2% performance loss both in CIFAR-10 and CIFAR-100. After optimization, we
found that the blocks in early stages are pruned first. This discovery coincides
with the common design that the network should spend more budget in its later
stage, since more and more diverse and complicated pattern may emerge as the
receptive field increases.

ResNeXt: We also test our method on ResNeXt [47]. We choose ResNeXt-
20 and ResNeXt-164 as our base networks. Both of these two networks have
bottleneck structures with 32 groups in residual blocks. For ResNeXt-20, we
focus on groups pruning since there are only 6 residual blocks in it. For ResNeXt-
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Table 1. Network architectures of ResNet-50 and our pruned ResNets for ImageNet.√
represents that the corresponding block is kept while × denotes that the block is

pruned.

Stage Output ResNet-50 ResNet-26 ResNet-32 ResNet-41

conv1 112×112 7×7, 64, stride 2

conv2 56×56 3×3 max pool, stride 2⎡
⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎦ × 3 × × × × × √ × × ×

conv3 28×28

⎡
⎢⎣

1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎦ × 4 ×√√× √√√√ √√√√

conv4 14×14

⎡
⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎦ × 6 ×√√√√√ √√√ × ×√ √√√√√√

conv5 7×7

⎡
⎢⎣

1 × 1, 512

3 × 3, 512

1 × 1, 2048

⎤
⎥⎦ × 3

√ × × √ × × √√√

1×1 global average pool 1000-d FC, softmax

164, we add sparsity on both groups and blocks. Figure 4 shows our experiment
results. Both groups pruning and block pruning show good trade-off between
parameters and performance, especially in ResNeXt-164. The combination of
groups and blocks pruning is extremely effective in CIFAR-10. Our SSS saves
about 60% FLOPs while achieves 1% higher accuracy. In ResNeXt-20, groups
in first and second block are pruned first. Similarly, in ResNeXt-164, groups in
shallow residual blocks are pruned mostly.

4.2 ImageNet LSVRC 2012

To further demonstrate the effectiveness of our method in large-scale CNNs,
we conduct more experiments on the ImageNet LSVRC 2012 classification task
with VGG16 [37], ResNet-50 [12] and ResNeXt-50 (32 × 4d) [47]. We do data
augmentation based on the publicly available implementation of “fb.resnet” 3.
The mini-batch size is 128 on 4 GPUs for VGG16 and ResNet-50, and 256 on 8
GPUs for ResNeXt-50. The optimization and initialization are similar as those
in CIFAR experiments. We train the models for 100 epochs. The learning rate
is set to an initial value of 0.1 and then divided by 10 at the 30-th, 60-th and
90-th epoch. All the results for ImageNet dataset are summarized in Table 2.

VGG16: In our experiments of VGG16 pruning, we find the results of prun-
ing all convolutional layers were not promising. This is because in VGG16, the
3 https://github.com/facebook/fb.resnet.torch

https://github.com/facebook/fb.resnet.torch
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Table 2. Results on ImageNet dataset. Both top-1 and top-5 validation errors (single
crop) are reported. Number of parameters and FLOPs for inference of different models
are also shown. Here, M/B means million/billion (106/109), respectively

Model Top-1 Top-5 #Parameters #FLOPs

VGG-16 27.54 9.16 138.3M 30.97B

VGG-16 31.47 11.8 130.5M 7.667B

ResNet-50 23.88 7.14 25.5M 4.089B

ResNet-41 24.56 7.39 25.3M 3.473B

ResNet-32 25.82 8.09 18.6M 2.818B

ResNet-26 28.18 9.21 15.6M 2.329B

ResNeXt-50 22.43 6.32 25.0M 4.230B

ResNeXt-41 24.07 7.00 12.4M 3.234B

ResNeXt-38 25.02 7.50 10.7M 2.431B

ResNeXt-35-A 25.43 7.83 10.0M 2.068B

ResNeXt-35-B 26.83 8.42 8.50M 1.549B

computational cost in terms of FLOPs is not equally distributed in each layer.
The number of FLOPs of conv5 layers is 2.77 billion in total, which is only
9% of the whole network (30.97 billion). Thus, we consider the sparse penalty
should be adjusted by computational cost of different layers. Similar idea has
been adopted in [29] and [13]. In [29], they introduce FLOPs regularization to the
pruning criteria. He et al. [13] do not prune conv5 layers in their VGG16 exper-
iments. Following [13], we set the sparse penalty of conv5 to 0 and only prune
conv1 to conv4. The results can be found in Table 2. The pruned model save
about 75% FLOPs, while the parameter saving is negligible. This is due to that
fully-connected layers have a large amount of parameters (123 million in original
VGG16), and we do not pruned fully-connected layers for fair comparison with
other methods.

ResNet-50: For ResNet-50, we experiment three different settings of γ to
explore the performance of our method in block pruning. For simplicity, we
denote the trained models as ResNet-26, ResNet-32 and ResNet-41 depending
on their depths. Their structures are shown in Table 1. All the pruned models
come with accuracy loss in certain extent. Comparing with original ResNet-
50, ResNet-41 provides 15% FLOPs reduction with 0.7% top-1 accuracy loss
while ResNet-32 saves 31% FLOPs with about 2% top-1 loss. Figure 5 shows
the top-1 validation errors of our SSS models and ResNets as a function of the
number of parameters and FLOPs. The results reveal that our pruned models
perform on par with original hand-crafted ResNets, whilst requiring less param-
eters and computational cost. For example, comparing with ResNet-34 [12], both
our ResNet-41 and ResNet-32 yield better performances with less FLOPs.

ResNeXt-50: As for ResNeXt-50, we add sparsity constraint on both resid-
ual blocks and groups which results in several pruned models. Table 2 summa-
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rizes the performance of these models. The learned ResNeXt-41 yields 24% top-1
error in ILSVRC validation set. It gets similar results with the original ResNet50,
but with half parameters and more than 20% less FLOPs. In ResNeXt-41, three
residual blocks in “conv5” stage are pruned entirely. This pruning result is some-
what contradict to the common design of CNNs, which worth to be studied in
depth in the future.

4.3 Pruning Lightweight Network

Adopting lightweight networks, such as MobileNet [15], ShuffleNet [45] for fast
inference is a more effective strategy in practice. To future prove the effectiveness
of our method, we adopt neuron pruning in PeleeNet [42], which is a state-of-the-
art efficient architecture without separable convolution. We follow the training
settings and hyper-parameters used in [45]. The mini-batch size is 1024 on 8
GPUs and we train 240 epoch. Table 3 shows the pruning results of PeleeNet.
We adopt different settings of γ and get three pruned networks. Comparing to
baseline, Our purned PeleeNet-A save about 14% parameters and FLOPs with
only 0.4% top-1 accuracy degradation.

Table 3. Results of PeleeNet on ImageNet dataset

Model Top-1 Top-5 #Parameters #FLOPs

PeleeNet (Our impl.) 27.47 9.15 2.8M 508M

PeleeNet-A 27.85 9.34 2.4M 436M

PeleeNet-B 30.87 11.38 1.6M 293M

PeleeNet-C 32.81 12.69 1.4M 236M

4.4 Comparison with Other Methods

We compare our SSS with other pruning methods, including SSL [43], filter
pruning [24], channel pruning [13], ThiNet [27,29] and [48]. We compare SSL
with our method in CIFAR10 and CIFAR100. All the models are trained from
scratch. As shown in Fig. 6, our SSS achieves much better performances than
SSL, even SSL with finetune. Table 4 shows the pruning results on the ImageNet
LSVRC2012 dataset. To the best of our knowledge, only a few works reported
ResNet pruning results with FLOPs. Comparing with filter pruning results, our
ResNet-32 performs best with least FLOPs. As for channel pruning, with similar
FLOPs4, our ResNet-32 yields 1.88% lower top-1 error and 1.11% lower top-
5 error than pruned ResNet-50 provided by [13]. As for [48], our ResNet-41
achieves about 1% lower top-1 error with less computation budge. We also show
comparison in VGG16. All the method including channel pruning, ThiNet and

4 We calculate the FLOPs of He’s models by provided network structures.
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our SSS achieve significant improvement than [29]. Our VGG16 pruning result
is competitive to other state-of-the-art.

We further compare our pruned ResNeXt with DenseNet [17] in Table 5.
With 14% less FLOPs, Our ResNeXt-38 achieves 0.2% lower top-5 error than
DenseNet-121.

Fig. 6. Error vs. FLOPs for our SSS models and SSL models

Table 4. Comparison among several state-of-the-art pruning methods on the ResNet
and VGG16 networks

Model Top-1 Top-5 #FLOPs

ResNet-34-pruned [24] 27.44 - 3.080B

ResNet-50-pruned-A [24] (Our impl.) 27.12 8.95 3.070B

ResNet-50-pruned-B [24] (Our impl.) 27.02 8.92 3.400B

ResNet-50-pruned (2×) [13] 27.70 9.20 2.726B

ResNet-32 (Ours) 25.82 8.09 2.818B

ResNet-101-pruned [48] 25.44 - 3.690B

ResNet-41 (Ours) 24.56 7.39 3.473B

VGG16-pruned [29] - 15.5 ≈8.0B

VGG16-pruned (5×) [13] 32.20 11.90 7.033B

VGG16-pruned (ThiNet-Conv) [27] 30.20 10.47 9.580B

VGG16-pruned (Ours) 31.47 11.80 7.667B

4.5 Choice of ifferent optimization methods

We compare our APG with other different optimization methods for optimizing
λ in our ImageNet experiments, including SGD adopted in [26] and ISTA [3]
used in [48]. We adopted ResNet-50 for block pruning and train it from scratch.
The sparse penalty γ is set to 0.005 for all optimization methods.
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Table 5. Comparison between pruned ResNeXt-38 and DenseNet-121

Model Top-1 Top-5 #FLOPs

DenseNet-121 [17] 25.02 7.71 2.834B

DenseNet-121 [17] (Our impl.) 25.58 7.89 2.834B

ResNeXt-38 (Ours) 25.02 7.50 2.431B

Table 6. Comparison between different optimization methods.

Model Top-1 Top-5 #FLOPs

ResNet-32-SGD 26.46 8.41 2.726B

ResNet-32-APG 25.82 7.39 2.818B

For SGD, since we can not get exact zero scale factor during training, a
extra hyper-parameter – hard threshold is need for the optimization of λ. In
our experiment, we set it to 0.0001. After training, we get a ResNet-32-SGD
network. As show in Table 6, the performance of our ResNet-32-APG is better
than ResNet-32-SGD.

For ISTA, we found the optimization of network could not converge. The rea-
son is that the converge speed of ISTA for λ optimization is too slow when train-
ing from scratch. Adopting ISTA can get reasonable results in CIFAR dataset.
However, in ImageNet, it is hard to optimize the λ to be sparse with small γ, and
larger γ will lead too many zeros in our experiments. [48] alleviated this problem
by fine-tunning from a pretrained model. They also adopted λ-W rescaling trick
to get an small λ initialization.

Comparing to ISTA, Our APG can be seen as a modified version of an
improved ISTA, namely FISTA [3], which has been proved to be significantly
better than ISTA in convergence. Thus the optimization of our method is effec-
tive and stable in both CIFAR and ImageNet experiments. The results described
in Table 4 also show the advantages of our APG method to ISTA. The per-
formance of our trained ResNet-41 is better than ResNet-101-pruned provided
by [48].

5 Conclusions

In this paper, we have proposed a data-driven method, Sparse Structure Selec-
tion (SSS) to adaptively learn the structure of CNNs. In our framework, the
training and pruning of CNNs is formulated as a joint sparse regularized opti-
mization problem. Through pushing the scaling factors which are introduced to
scale the outputs of specific structures to zero, our method can remove the struc-
tures corresponding to zero scaling factors. To solve this challenging optimization
problem and adapt it into deep learning models, we modified the Accelerated
Proximal Gradient method. In our experiments, we demonstrate very promising
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pruning results on PeleeNet, VGG, ResNet and ResNeXt. We can adaptively
adjust the depth and width of these CNNs based on budgets at hand and dif-
ficulties of each task. We believe these pruning results can further inspire the
design of more compact CNNs.

In future work, we plan to apply our method in more applications such as
object detection. It is also interesting to investigate the use of more advanced
sparse regularizers such as non-convex relaxations, and adjust the penalty based
on the complexity of different structures adaptively.
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