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Abstract. We propose a general formulation, called Multi-X, for multi-
class multi-instance model fitting – the problem of interpreting the
input data as a mixture of noisy observations originating from multiple
instances of multiple classes. We extend the commonly used α-expansion-
based technique with a new move in the label space. The move replaces a
set of labels with the corresponding density mode in the model parameter
domain, thus achieving fast and robust optimization. Key optimization
parameters like the bandwidth of the mode seeking are set automatically
within the algorithm. Considering that a group of outliers may form spa-
tially coherent structures in the data, we propose a cross-validation-based
technique removing statistically insignificant instances. Multi-X outper-
forms significantly the state-of-the-art on publicly available datasets for
diverse problems: multiple plane and rigid motion detection; motion seg-
mentation; simultaneous plane and cylinder fitting; circle and line fitting.
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1 Introduction

In multi-class fitting, the input data is interpreted as a mixture of noisy
observations originating from multiple instances of multiple model classes, e.g.
k lines and l circles in 2D edge maps, k planes and l cylinders in 3D data,
multiple homographies or fundamental matrices from correspondences from a
non-rigid scene (see Fig. 1). Robustness is achieved by considering assignment to
an outlier class.

Multi-model fitting has been studied since the early sixties, the Hough-
transform [1,2] being the first popular method for extracting multiple instances
of a single class [3–6]. A widely used approach for finding a single instance is
RANSAC [7] which alternates two steps: the generation of instance hypotheses
and their validation. However, extending RANSAC to the multi-instance case
has had limited success. Sequential RANSAC detects instance one after another
in a greedy manner, removing their inliers [8,9]. In this approach, data points
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Fig. 1. Multi-class multi-instance fitting examples. Results on simultaneous plane and
cylinder (1st), line and circle fitting (2nd), motion (3rd) and plane segmentation (4th).

are assigned to the first instance, typically the one with the largest support for
which they cannot be deemed outliers, rather than to the best instance. Multi-
RANSAC [10] forms compound hypothesis about n instances. Besides requiring
the number n of the instances to be known a priori, the approach increases the
size of the minimum sample and thus the number of hypotheses that have to be
validated.

Most recent approaches [11–15] focus on the single class case: finding multi-
ple instances of the same model class. A popular group of methods [11,16–19]
adopts a two step process: initialization by RANSAC-like instance generation
followed by a point-to-instance assignment optimization by energy minimization
using graph labeling techniques [20]. Another group of methods uses preference
analysis, introduced by RHA [21], which is based on the distribution of residuals
of individual data points with respect to the instances [12,13,15].

The multiple instance multiple class case considers fitting of instances that
are not necessarily of the same class. This generalization has received much less
attention than the single-class case. To our knowledge, the last significant con-
tribution is that of Stricker and Leonardis [22] who search for multiple paramet-
ric models simultaneously by minimizing description length using Tabu search.
Preference-based methods [12–14] are not directly applicable to the problem
since after calculating the preference vectors (or sets), using class-specific dis-
tances (or preferences) is not addressed, the type of the distance is thus not
maintained. Consequently, instances with “fuzzy” classes, e.g. half line half cir-
cle, may emerge.

The proposed Multi-X method finds multiple instances of multiple model
classes drawing on progress in energy minimization extended with a new move
in the label space: replacement of a set of labels with the corresponding density
mode in the model parameter domain. Mode seeking significantly reduces the
label space, thus speeding up the energy minimization, and it overcomes the
problem of multiple instances with similar parameters, a weakness of state-of-
the-art single-class approaches. The assignment of data to instances of differ-
ent model classes is handled by the introduction of class-specific distance func-
tions. Multi-X can also be seen as an extension or generalization of the Hough
transform: (i) it finds modes of the parameter space density without creating
an accumulator and locating local maxima there, which is prohibitive in high
dimensional spaces, (ii) it handles multiple classes – running Hough transform
for each model type in parallel or sequentially cannot easily handle competition



Multi-X 231

for data points, and (iii) the ability to model spatial coherence of inliers and to
consider higher-order geometric priors is added.

Most recent papers [12,14,23] report results tuned for each test case sepa-
rately. The results are impressive, but input-specific tuning, i.e. semi-automatic
operation with multiple passes, severely restricts possible applications. We pro-
pose an adaptive parameter setting strategy within the algorithm, allowing the
user to run Multi-X as a black box on a range of problems with no need to set
any parameters. Considering that outliers may form structures in the input, as
a post-processing step, a cross-validation-based technique removes insignificant
instances.

The contributions of the paper are: (i) A general formulation is proposed
for multi-class multi-instance model fitting which, to the best of our knowledge,
has not been investigated before. (ii) The commonly used energy minimizing
technique, introduced by PEARL [11], is extended with a new move in the label
space: replacing a set of labels with the corresponding density mode in the model
parameter domain. Benefiting from this move, the minimization is speeded up,
terminates with lower energy and the estimated model parameters are more
accurate. (iii) The proposed pipeline combines state-of-the-art techniques, such
as energy-minimization, median-based mode-seeking, cross-validation, to achieve
results superior to the recent multi-model fitting algorithms both in terms of
accuracy and processing time. Proposing automatic setting for the key opti-
mization parameters, the method is applicable to various real world problems.

2 Multi-class Formulation

Before presenting the general definition, let us consider a few examples of multi-
instance fitting: to find a pair of line instances h1, h2 ∈ Hl interpreting a set
of 2D points P ⊆ R

2. Line class Hl is the space of lines Hl = {(θl, φl, τl), θl =
[α c]T} equipped with a distance function φl(θl, p) = | cos(α)x + sin(α)y + c|
(p = [x y]T ∈ P) and a function τl(p1, ..., pml

) = θl for estimating θl from
ml ∈ N data points. Another simple example is the fitting n circle instances
h1, h2, · · · , hn ∈ Hc to the same data. The circle class Hc = {(θc, φc, τc), θc =
[cx cy r]T} is the space of circles, φc(θc, p) = |r−√

(cx − x)2 + (cy − y)2| is a
distance function and τc(p1, ..., pmc

) = θc is an estimator. Multi-line fitting is the
problem of finding multiple line instances {h1, h2, ...} ⊆ Hl, while the multi-class
case is extracting a subset H ⊆ H∀, where H∀ = Hl∪Hc∪H.∪· · · . The set H∀ is
the space of all classes, e.g. line and circle. The formulation includes the outlier
class Ho = {(θo, φo, τo), θo = ∅} where each instance has constant but possibly
different distance to all points φo(θo, p) = k, k ∈ R

+ and τo(p1, ..., pmo
) = ∅.

Note that considering multiple outlier classes allows interpretation of outliers
originating from different sources.

Definition 1 (Multi-class Model). The multi-class model is a space H∀ =⋃ Hi, where Hi = {(θi, φi, τi) | di ∈ N, θi ∈ R
di , φi ∈ P × R

di → R, τi : P∗ →
R

di} is a single class, P is the set of data points, di is the dimension of parameter
vector θi, φi is the distance function and τi is the estimator of the ith class.
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The objective of multi-instance multi-class model fitting is to determine a set
of instances H ⊆ H∀ and labeling L ∈ P → H assigning each point p ∈ P to an
instance h ∈ H minimizing energy E. We adopt energy

E(L) = Ed(L) + wgEg(L) + wcEc(L) (1)

to measure the quality of the fitting, where wg and wc are weights balancing
the different terms described bellow, and Ed, Ec and Eg are the data, complex-
ity terms, and the one considering geometric priors, e.g. spatial coherence or
perpendicularity, respectively.

Data term. Ed : (P → H) → R is defined in most energy minimization
approaches as

Ed(L) =
∑

p∈P
φL(p)(θL(p), p), (2)

penalizing inaccuracies induced by the point-to-instance assignment, where φL(p)

is the distance function of hL(p).

Geometric prior term. Eg considers spatial coherence of the data points,
adopted from [11], and possibly higher order geometric terms [17], e.g. perpen-
dicularity of instances. The term favoring spatial coherence, i.e. close points more
likely belong to the same instance, is defined as

Eg(L) : (P → H) → R =
∑

(p,q)∈N

wpq�L(p) �= L(q)�, (3)

where N are the edges of a predefined neighborhood-graph, the Iverson bracket
�.� equals to one if the condition inside holds and zero otherwise, and wpq is a
pairwise weighting term. In this paper, wpq equals to one. For problems, where
it is required to consider higher-order geometric terms, e.g. to find three perpen-
dicular planes, Eg can be replaced with the energy term proposed in [17].

A regularization of the number of instances is proposed by Delong
et al. [24] as a label count penalty Ec(L) : (P → H) → R = |L(P)|, where
L(P) is the set of distinct labels of labeling function L. To handle multi-class
models which might have different costs on the basis of the model class, we thus
propose the following definition:

Definition 2 (Weighted Multi-class Model). The weighted multi-class
model is a space Ĥ∀ =

⋃ Ĥi, where Ĥi = {(θi, φi, τi, ψi) | di ∈ N, θi ∈ R
di , φi ∈

P × R
di → R, τi : P∗ → R

di , ψi ∈ R} is a weighted class, P is the set of data
points, di is the dimension of parameter vector θi, φi is the distance function, τi

is the estimator, and ψi is the weight of the ith class.

The term controlling the number of instances is

Êc(L) =
∑

l∈L(P)

ψl, (4)

instead of Ec, where ψl is the weight of the weighted multi-class model referred by
label l. Eqs. 2, 3, 4 lead to overall energy Ê(L) = Ed(L)+wgEg(L)+wcÊc(L).
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3 Replacing Label Sets

For the optimization of the previously described energy, we build on and extend
the PEARL algorithm [11]. PEARL generates a set of initial instances applying
a RANSAC-like randomized sampling technique, then alternates two steps until
convergence:
(1) Application of α-expansion [25] to obtain labeling L minimizing overall
energy Ê w.r.t. the current instance set.
(2) Re-estimation of the parameter vector θ of each model instance in H w.r.t. L.
In the PEARL formulation, the only way to remove a label, i.e. to discard an
instance, is to assign it to no data points. Experiments show that (i) this removal
process is often unable to delete instances having similar parameters, (ii) and
makes the estimation sensitive to the choice of label cost wc. We thus propose a
new move in the label space: replacing a set of labels with the density mode in
the model parameter domain.

Multi-model fitting techniques based on energy-minimization usually gen-
erate a high number of instances H ⊆ H∀ randomly as a first step [11,17]
(|H| � |Hreal|, where Hreal is the ground truth instance set). Therefore, the
presence of many similar instances is typical. We assume, and experimentally
validate, that many points supporting the sought instances in Hreal are often
assigned in the initialization to a number of instances in H with similar param-
eters. The cluster around the ground truth instances in the model parameter
domain can be replaced with the modes of the density (see Fig. 2).

−4 −3 −2 −1 0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

4

Fig. 2. (Left) Three lines each generating 100 points with zero-mean Gaussian noise
added, plus 50 outliers. (Right) 1000 lines generated from random point pairs, the
ground truth instance parameters (red dots) and the modes (green) provided by Mean-
Shift shown in the model parameter domain: α angle – vertical, offset – horizontal axis.
(Color figure online)

Given a mode-seeking function Θ : H∗
∀ → H∗

∀, e.g. Mean-Shift [26], which
obtains the density modes of input instance set Hi in the ith iteration. The
proposed move is as

Hi+1 :=

{
Θ(Hi) ifE(LΘ(Hi)) ≤ E(Li),
Hi otherwise,

(5)
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where Li is the labeling in the ith iteration and LΘ(Hi) is the optimal labeling
which minimizes the energy w.r.t. to instance set Θ(Hi). It can be easily seen,
that Eq. 5 does not break the convergence since it replaces the instances, i.e.
the labels, if and only if the energy does not increase. Note that clusters with
cardinality one – modes supported by a single instance – can be considered
as outliers and removed. This step reduces the label space and speeds up the
process.

4 Multi-X

The proposed approach, called Multi-X, combining PEARL, multi-class models
and the proposed label replacement move, is summarized in Algorithm1. Next,
each step is described.

Algorithm 1 Multi-X
Input: P – data points
Output: H∗ – model instances, L∗ – labeling

1: H0 := InstanceGeneration(P ); i := 1;
2: repeat
3: Hi := ModeSeeking(Hi−1); � by Median-Shift
4: Li := Labeling(Hi, P ); � by α-expansion
5: Hi := ModelFitting(Hi, Li, P ); � by Weiszfeld
6: i := i + 1;
7: until !Convergence(Hi, Li)
8: H∗ := Hi−1, L∗ := Li−1;
9: H∗, L∗ := ModelValidation(H∗, L∗) � Algorithm 2

1. Instance generation step generates a set of initial instances before the
alternating optimization is applied. Reflecting the assumption that the data
points are spatially coherent, we use the guided sampling of NAPSAC [27]. This
approach first selects a random point, then the remaining ones are chosen from
the neighborhood of the selected point. The same neighborhood is used as for
the spatial coherence term in the α-expansion. Note that this step can easily be
replaced by e.g. PROSAC [28] for problems where the spatial coherence does
not hold or favors degenerate estimates, e.g. in fundamental matrix estimation.
2. Mode-Seeking is applied in the model parameter domain. Suppose that a set
of instances H is given. Since the number of instances in the solution – the modes
in the parameter domain – is unknown, a suitable choice for mode-seeking is the
Mean-Shift algorithm [26] or one of its variants. In preliminary experiments, the
most robust choice was the Median-Shift [29] using Weiszfeld- [30] or Tukey-
medians [31]. There was no significant difference, but Tukey-median was slightly
faster to compute. In contrast to Mean-Shift, it does not generate new elements
in the vector space since it always return an element of the input set. With
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the Tukey-medians as modes, it is more robust than Mean-Shift [29]. However,
we replaced Locality Sensitive Hashing [32] with Fast Approximated Nearest
Neighbors [33] to achieve higher speed.

Reflecting the fact that a general instance-to-instance distance is needed, we
represent instances by point sets, e.g. a line by two points and a homography
by four correspondences, and define the instance-to-instance distance as the
Hausdorff distance [34] of the point sets. Even though it yields slightly more
parameters than the minimal representation, thus making Median-Shift a bit
slower, it is always available as it is used to define spatial neighborhood of
points. Another motivation for representing by points is the fact that having a
non-homogeneous representation, e.g. a line described by angle and offset, leads
to anisotropic distance functions along the axes, thus complicating the distance
calculation in the mode-seeking.

There are many point sets defining an instance and a canonical point set
representation is needed. For lines, the nearest point to the origin is used and
a point on the line at a fixed distance from it. For a homography H, the four
points are H[0, 0, 1]T, H[1, 0, 1]T, H[0, 1, 1]T, and H[1, 1, 1]T. The matching step
is excluded from the Hausdorff distance, thus speeding up the distance calcula-
tion significantly.1

The application of Median-Shift Θmed never increases the number of instances
|Hi|: |Θmed(Hi)| ≤ |Hi|. The equality is achieved if and only if the distance
between every instance pair is greater than the bandwidth. Note that for each
distinct model class, Median-Shift has to be applied separately. According to
our experience, applying this label replacement move in the first iteration does
not make the estimation less accurate but speeds it up significantly even if the
energy slightly increases.
3. Labeling assigns points to model instances obtained in the previous step.
A suitable choice for such task is α-expansion [25], since it handles an arbi-
trary number of labels. Given Hi and an initial labeling Li−1 in the ith iter-
ation, labeling Li is estimated using α-expansion minimizing energy Ê. Note
that L0 is determined by α-expansion in the first step. The number of the
model instances |Hi| is fixed during this step and the energy must decreases:
Ê(Li,Hi) ≤ Ê(Li−1,Hi). To reduce the sensitivity on the outlier threshold (as
it was shown for the single-instance case in [35]), the distance function of each
class is included into a Gaussian-kernel.
4. Model Fitting re-estimates the instance parameters w.r.t. the assigned
points. The obtained instance set Hi is re-fitted using the labeling provided
by α-expansion. The number of the model instances |Hi| is constant. L2 fit-
ting is an appropriate choice, since combined with the labeling step, it can be
considered as truncated L2 norm.

The overall energy Ê can only decrease or stay constant during this step since
it consists of three terms: (1) Ed – the sum of the assignment costs minimized,

1 Details on the choice of model representation are submitted in the supplementary
material.
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(2) Eg – a function of the labeling Li, fixed in this step and (3) Êc – which
depends on |Hi| so Êc remains the same. Thus

Ê(Li,Hi+1) ≤ Ê(Li,Hi). (6)

5. Model Validation considers that a group of outliers may form spatially
coherent structures in the data. We propose a post-processing step to remove
statistically insignificant models using cross-validation. The algorithm, summa-
rized in Algorithm 2, selects a minimal subset t times from the inlier points I. In
each iteration, an instance is estimated from the selected points and its distance
to each point is computed. The original instance is considered stable if the mean
of the distances is lower than threshold γ. Note that γ is the outlier threshold
used in the previous sections. Automatic parameter setting is crucial for
Multi-X to be applicable to various real world tasks without requiring the user
to set most of the parameters manually. To avoid manual bandwidth selection
for mode-seeking, we adopted the automatic procedure proposed in [36] which
sets the bandwidth εi of the ith instance to the distance of the instance and its
kth neighbor. Thus each instance has its own bandwidth set automatically on
the basis of the input.

Algorithm 2 Model Validation.
Input: I – inlier points, t – trial number,
γ – outlier threshold � default t = 100
Output: R ∈ {true, false} – response

1: ̂D := 0
2: for i := 1 to t do
3: MSS := SelectMinimalSubset(I)
4: H := ModelEstimation(MSS)

5: ̂D := ̂D+ MeanDistanceFromPoints(H, I) /t

6: R := ̂D < γ

Label cost wc is set automatically using the approach proposed in [17] as
follows: wc = m log(|P|)/hmax, where m is the size of the minimal sample to
estimate the current model, |P| is the point number and hmax is the maximum
expected number of instances in the data. Note that this cost is not required to be
high since mode-seeking successfully suppresses instances having similar param-
eters. The objective of introducing a label cost is to remove model instances with
weak supports. In practice, this means that the choice of hmax is not restrictive.

Experiments show that the choice of the number of initial instances does
not affect the outcome of Multi-X significantly. In our experiments, the number
of instances generated was twice the number of the input points.

Spatial coherence weight wg value 0.3 performed well in the experiments.
The common problem-specific outlier thresholds which led to the most accurate
results was: homographies (2.4 pixels), fundamental matrices (2.0 pixels), lines
and circles (2.0 pixels), rigid motions (2.5), planes and cylinders (10 cm).
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5 Experimental Results

First we compare Multi-X with PEARL [11] combined with the label cost of [24].
Then the performance of Multi-X applied to the following Computer Vision prob-
lems is reported: 2D geometric primitive fitting, 3D plane and cylinder fitting to
LIDAR point clouds, multiple homography fitting, two-view and video motion
segmentation.
Comparison of PEARL and Multi-X. In a test designed to show the effect
of the proposed label move, model validation was not applied and both meth-
ods used the same algorithmic components described in the previous section. A
synthetic environment consisting of three 2D lines, each sampled at 100 random
locations, was created. Then 200 outliers, i.e. random points, were generated.
Finally, zero-mean Gaussian noise was added to the point coordinates with 3.0
pixel standard deviation.

The left column of Fig. 3a shows the probability of returning an instance
number for Multi-X (top-left) and PEARL (bottom-left) as the function of the
initial instance number (horizontal axis; ratio w.r.t. to the input point number;
calculated from 1000 runs on each). The numbers next to the vertical axis are the
numbers of returned instances. The curve on their right shows the probability
(∈ [0, 1]) of returning them. For example, the red curve of PEARL (top-left) on
the right of number 3 is close to the 0.1 probability, while for Multi-X (bottom-
left), it is approximately 0.6. Therefore, Multi-X returns the desired number of
instances (remember that the ground truth number is 3) in ≈60% of the cases if
as many instances are given as points. PEARL achieved ≈10%. The processing
times (top-right), and convergence energies (bottom-right) are also reported.
The standard deviation of the zero-mean Gaussian-noise added to the point
coordinates is 20 pixels. Reflecting the fact that the noise σ is usually not known
in real applications, we set the outlier threshold to 6.0 pixels. The maximum
model number of the label cost was set to the ground truth value, hmax = 3,
to demonstrate that suppressing instances only with label cost penalties is not
sufficient even with the proper parameters. It can be seen that Multi-X more
likely returns the ground truth number of models, both its processing time and
convergence energy are superior to that of PEARL.

For Fig. 3b, the number of the generated instances was set to twice the point
number and the threshold to 3 pixels. Each reported property is plotted as
the function of the noise σ added to the point coordinates. The same trend
can be seen as in Fig. 3a: Multi-X is less sensitive to the noise than PEARL.
It more often returns the desired number of instances, its processing time and
convergence energy are lower.
Synthetic multi-class fitting. In this paragraph, Multi-X is compared with
state-of-the-art multi-model fitting techniques on synthetically generated scenes
(see Fig. 4) consisting of 2D geometric entities, i.e. lines, parabolas and circles.
Each entity was sampled at 100 points and the outlier ratio was 0.33 in all scenes,
i.e. 50 outliers were generated for every 100 inliers. For plots (a-c), the task was
to find the generated parabolas, lines and circles. For (d), three types of circles
were generated: r1 = 200, r2 = 100 and r3 = 50. Different radii were considered



238 D. Barath and J. Matas

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Initial Instance Ratio

Pr
ob

ab
ili

ty
 fo

r e
ac

h 
In

st
an

ce
 N

um
be

r

Probability of the Output Instance Number of PEARL

0

10

10

10

10

10

10

10
1

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

Initial Instance Ratio

M
ea

n
 P

ro
ce

ss
in

g
 T

im
e 

(s
ec

s)

Processing Time

Multi−X
PEARL

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Initial Instance Ratio

Pr
ob

ab
ili

ty
 fo

r e
ac

h 
In

st
an

ce
 N

um
be

r

Probability of the Output Instance Number of Multi−X

0
10

10
10
10

10
10
10
1

0 5 10 15 20 25 30 35
2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

2.4

2.42 x 105

Initial Instance Ratio

M
ea

n
 P

ro
ce

ss
in

g
 T

im
e 

(s
ec

s)

Convergence Energy

Multi−X
PEARL
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Fig. 3. Comparison of PEARL and Multi-X. Three random lines sampled at 100 loca-
tions, plus 200 outliers. Parameters of both methods are: hmax = 3, and the outlier
threshold is (a) 6 and (b) 3 pixels.

as different class. The objective of (d) was slightly different than that of (a-c):
to find circles with r = 200 and r = 100 (±5 pixels), without applying a post-
processing step to remove circles with different radii. Therefore, other circles were
considered degenerate, and thus dropped, in the initial instance generation step
of all compared methods. Those methods are PEARL [11,16], T-Linkage [12]2

and RPA [13]3 since they can be considered as the state-of-the-art and their
implementations are available. PEARL and Multi-X used a fixed setting. Since
neither RPA nor T-Linkage are applicable to the multi-class problem, we applied
each of them sequentially in all possible ways (e.g. lines first, then circles and
parabolas) and selected the best solution. In contrast to PEARL and Multi-X,
we tuned the thresholds of RPA and T-Linkage for each problem separately to
achieve the best results.

The number of points (Point #), the initial instance number (Inst. #) and
fitting results on the problems of Fig. 4, i.e. misclassification error (ME), number
false positive (FP) and false negative (FN) instances, are reported in Table 1. The
initial instance numbers were calculated by the well-known formula, proposed
for RANSAC, from the ground truth inlier ratios requiring 99% confidence. It
can be seen that even though the per-problem tuning of RPA and T-Linkage,

2 http://www.diegm.uniud.it/fusiello/demo/jlk/.
3 http://www.diegm.uniud.it/fusiello/demo/rpa/.

http://www.diegm.uniud.it/fusiello/demo/jlk/
http://www.diegm.uniud.it/fusiello/demo/rpa/
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(a) (b) (c) (d)

Fig. 4. Estimating 2D geometric classes: lines, parabolas, and circles with radii in
given range (a-c) and with fixed radii of 100 and 200 (d); in (d) the small circles are
thus structured outliers. Data: 100 points, plus 50 outliers per instance. The Multi-X
assignment to instances is color-coded. Multi-X produces zero false negatives (FN) and
a single false positive (FP), in (c) (purple points). See Table 1 for results – competing
methods have higher FP and FN rates.

Table 1. Estimating 2D geometric classes: lines, parabolas, and circles. Misclassifica-
tion errors (ME, in %), number of false positive (FP), false negative (FN) instances,
and the processing time (T, in seconds) on the scenes of Fig. 4. Point (#) and initial
instance (Inst. #) numbers are shown in the 2nd and 3rd columns. PEARL, Multi-X
used fixed, and T-Linkage, RPA per-problem tuned parameters.

Figure 4 PEARL [11] T-Linkage [12] RPA [13] Multi-X

Point # Inst. # ME FP FN T ME FP FN T ME FP FN T ME FP FN T

(a) 450 926 10.6 0 0 88.2 9.9 0 0 19.5 23.6 0 1 61.1 9.8 0 0 4.1

(b) 450 926 2.3 0 0 283.5 6.4 0 0 24.5 4.2 0 0 221.7 2.3 0 0 4.6

(c) 750 8 275 16.4 2 0 1186.5 33.2 2 3 172.4 27.2 1 2 460.8 9.7 1 0 7.1

(d) 750 7 792 28.4 4 0 5.3 16.1 1 1 45.3 27.3 0 2 100.4 8.7 0 0 2.4

both PEARL and Multi-X outperformed them for this multi-class problem. Also,
Multi-X results are superior to that of PEARL with significant improvement in
processing time.
Multiple homography fitting is evaluated on the AdelaideRMF homogra-
phy dataset [37] used in most recent publications (see Fig.5a for examples).
AdelaideRMF consists of 19 image pairs of different resolutions with ground
truth point correspondences assigned to planes (homographies). To generate ini-
tial model instances the technique proposed by Barath et al. [19] is applied: a
single homography is estimated for each correspondence using the point loca-
tions together with the related local affine transformations. Table 2 reports the
results of PEARL [25], FLOSS [38], T-Linkage [12], ARJMC [39], RCMSA [18],
J-Linkage [15], and Multi-X. To allow comparison with the state-of-the-art, all
methods, including Multi-X, are tuned separately for each test and only the
same 6 image pairs are used as in [12].

Results using a fixed parameter setting are reported in Table 3 (results, except
that of Multi-X, copied from [13]). Multi-X achieves the lowest errors. Compared
to results in Table 2 for parameters hand-tuned for each problem, the errors are
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(a) AdelaideRMF (1-2) and Multi-H (3-4) ex-
amples. Colors indicate the planes Multi-X as-
signed points to.

(b) AdelaideRMF (1-2) and Hopkins (3-4) ex-
amples. Color indicates the motion Multi-X as-
signed a point to.

Fig. 5. Two-view geometry fitting. First images of the pairs.

significantly higher, but automatic parameter setting is the only possibility in
many applications. Moreover, per-image-tuning leads to overfitting.

Table 2. Misclassification error (%) for the two-view plane segmentation on Ade-
laideRMF test pairs: (1) johnsonna, (2) johnsonnb, (3) ladysymon, (4) neem, (5)
oldclassicswing, (6) sene.

Plane # PEARL [11] FLOSS [38] T-Lnkg [12] ARJMC [39] RCMSA [18] J-Lnkg [15] Multi-X

(1) 4 4.02 4.16 4.02 6.48 5.90 5.07 3.75

(2) 6 18.18 18.18 18.17 21.49 17.95 18.33 4.46

(3) 2 5.49 5.91 5.06 5.91 7.17 9.25 0.00

(4) 3 5.39 5.39 3.73 8.81 5.81 3.73 0.00

(5) 2 1.58 1.85 0.26 1.85 2.11 0.27 0.00

(6) 2 0.80 0.80 0.40 0.80 0.80 0.84 0.00

Avg. 5.91 6.05 5.30 7.56 6.62 6.25 1.37

Med. 4.71 4.78 3.87 6.20 5.86 4.40 0.00

Two-view motion segmentation is evaluated on the AdelaideRMF motion
dataset consisting of 21 image pairs of different sizes and the ground truth –
correspondences assigned to their motion clusters.

Figure 5b presents example image pairs from the AdelaideRMF motion
datasets partitioned by Multi-X. Different motion clusters are denoted by color.
Table 4 shows comparison with state-of-the-art methods when all methods are
tuned separately for each test case. Results are the average and minimum mis-
classification errors (in percentage) of ten runs. All results except that of Multi-X
are copied from [23]. For Table 5, all methods use fixed parameters. For both test
types, Multi-X achieved higher accuracy than the other methods.
Simultaneous plane and cylinder fitting is evaluated on LIDAR point cloud
data (see Fig. 6). The annotated database consists of traffic signs, balusters and
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Table 3. Misclassification errors (%, average and median) for two-view plane seg-
mentation on all the 19 pairs from AdelaideRMF test pairs using fixed parameters.

T-Lnkg [12] RCMSA [18] RPA [13] Multi-H [19] Multi-X

Avg. 44.68 23.17 15.71 14.35 9.72

Med. 44.49 24.53 15.89 9.56 2.49

Table 4. Misclassification errors (%) for two-view motion segmentation on the Adelai-
deRMF dataset. All the methods were tuned separately for each video by the authors.
Tested image pairs: (1) cubechips, (2) cubetoy, (3) breadcube, (4) gamebiscuit, (5)
breadtoycar, (6) biscuitbookbox, (7) breadcubechips, (8) cubebreadtoychips.

KF [40] RCG [41] T-Lnkg [12] AKSWH [42] MSH [23] Multi-X

Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min.

(1) 8.42 4.23 13.43 9.52 5.63 2.46 4.72 2.11 3.80 2.11 3.45 1.41

(2) 12.53 2.81 13.35 10.92 5.62 4.82 7.23 4.02 3.21 1.61 2.27 0.40

(3) 14.83 4.13 12.60 8.07 4.96 1.32 5.45 1.42 2.69 0.83 1.45 0.41

(4) 13.78 5.10 9.94 3.96 7.32 3.54 7.01 5.18 3.72 1.22 0.61 0.30

(5) 16.87 14.55 26.51 19.54 4.42 4.00 9.04 8.43 6.63 4.55 5.24 1.80

(6) 16.06 14.29 16.87 14.36 1.93 1.16 8.54 4.99 1.54 1.16 0.62 0.00

(7) 33.43 21.30 26.39 20.43 1.06 0.86 7.39 3.41 1.74 0.43 5.32 0.00

(8) 31.07 22.94 37.95 20.80 3.11 3.00 14.95 13.15 4.28 3.57 2.63 1.52

the neighboring point clouds truncated by a 3-meter-radius cylinder parallel to
the vertical axis. Points were manually assigned to signs (planes) and balusters
(cylinders). Multi-X is compared with the same methods as in the line and
circle fitting section. PEARL and Multi-X fit cylinders and planes simultaneously
while T-Linkage and RPA sequentially. Table 6 reports that Multi-X is the most
accurate in all test cases except one.

Table 5. Misclassification errors (%, average and median) for two-view motion seg-
mentation on all the 21 pairs from the AdelaideRMF dataset using fixed parameters.

RPA [13] RCMSA [18] T-Lnkg [12] AKSWH [42] Multi-X

Avg. 5.62 9.71 43.83 12.59 2.97

Med. 4.58 8.48 39.42 11.57 0.00

Video motion segmentation is evaluated on 51 videos of the Hopkins
dataset [43]. Motion segmentation in video sequences is the retrieval of sets
of points undergoing rigid motions contained in a dynamic scene captured by
a moving camera. It can be considered as a subspace segmentation under the
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Fig. 6. Results of simultaneous plane and cylinder fitting to LIDAR point cloud in
two scenes. Segmented scenes visualized from different viewpoints. There is only one
cylinder on the two scenes: the pole of the traffic sign on the top. Color indicates the
instance Multi-X assigned a point to.

Table 6. Misclassification error (%) of simultaneous plane and cylinder fitting to
LIDAR data. See Fig. 6 for examples.

(1) (2) (3) (4) (5) (6) (7)

PEARL [11] 10.63 10.88 37.34 38.13 17.20 17.35 6.12

T-Lnkg [12] 57.46 41.79 52.97 38.91 51.83 61.77 12.49

RPA [13] 46.83 53.39 61.64 41.41 53.34 51.21 80.45

Multi-X 8.89 4.72 2.84 19.38 16.83 21.72 5.72

assumption of affine cameras. For affine cameras, all feature trajectories associ-
ated with a single moving object lie in a 4D linear subspace in R

2F , where F is
the number of frames [43].

Table 7. Misclassification errors (%, average and median) for multi-motion detection
on 51 videos of Hopkins dataset: (1) Traffic2 – 2 motions, 31 videos, (2) Traffic3 –
3 motions, 7 videos, (3) Others2 – 2 motions, 11 videos, (4) Others3 – 3 motions, 2
videos, (5) All – 51 videos.

SSC [44] T-Lnkg [12] RPA [13] Grdy-RC [14] ILP-RC [14] J-Lnkg [15] Multi-X

Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

(1) 0.06 0.00 1.31 0.00i 7.48 0.00 7.48 0.00 0.54 0.00 1.75 0.00 0.09 0.00

(2) 0.76 0.00 0.48 0.19 28.65 0.00 28.65 1.53 0.35 0.19 1.58 0.34 0.32 0.00

(3) 3.95 0.00 6.47 2.38 8.75 2.44 8.75 0.20 2.40 1.30 5.32 1.30 1.06 0.00

(4) 2.13 2.13 5.32 5.32 14.89 9.11 14.89 14.89 2.13 2.13 6.91 6.91 1.06 0.16

(5) 1.08 0.00 2.47 0.00 10.91 0.00 10.91 0.00 0.98 0.00 2.70 0.00 0.16 0.00

Table 7 shows that Multi-X outperforms the state-of-the-art: SSC [44],
T-Linkage [12], RPA [13], Grdy-RansaCov [14], ILP-RansaCov [14], and J-
Linkage [15]. Results, except for Multi-X, are copied from [14]. Figure 5b shows
two frames of the tested videos.
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6 Conclusion

A novel multi-class multi-instance model fitting method has been proposed. It
extends an energy minimization approach with a new move in the label space:
replacing a set of labels corresponding to model instances by the mode of the
density in the model parameter domain. Most of its key parameters are set adap-
tively making it applicable as a black box on a range of problems. Multi-X out-
performs the state-of-the-art in multiple homography, rigid motion, simultaneous
plane and cylinder fitting; motion segmentation; and 2D edge interpretation (cir-
cle and line fitting). Multi-X runs in time approximately linear in the number of
data points, it is an order of magnitude faster than available implementations
of commonly used methods.4

Limitations. The proposed formulation assumes “non-overlapping” instances,
i.e. no shared support, a point can be assigned to a single instance only. Thus,
for example, the problem of simultaneously finding a fundamental matrix F and
homographies consistent with it is not covered by the formulation. The problem
of fitting hierarchical models is complex, an instance can be supported by dif-
ferent classes, e.g. F by k planes or 7 points; or a rectangle may be supported
by line segments as well as points. Definition of all the cost functions and the
optimization procedure is beyond the scope of this work.

Acknowledgement. The authors were supported by the Czech Science Foundation
Project GACR P103/12/G084.
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