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Abstract. We introduce a novel method for robust and accurate 3D
object pose estimation from a single color image under large occlusions.
Following recent approaches, we first predict the 2D projections of 3D
points related to the target object and then compute the 3D pose from
these correspondences using a geometric method. Unfortunately, as the
results of our experiments show, predicting these 2D projections using
a regular CNN or a Convolutional Pose Machine is highly sensitive to
partial occlusions, even when these methods are trained with partially
occluded examples. Our solution is to predict heatmaps from multiple
small patches independently and to accumulate the results to obtain
accurate and robust predictions. Training subsequently becomes chal-
lenging because patches with similar appearances but different positions
on the object correspond to different heatmaps. However, we provide a
simple yet effective solution to deal with such ambiguities. We show
that our approach outperforms existing methods on two challenging
datasets: The Occluded LineMOD dataset and the YCB-Video dataset,
both exhibiting cluttered scenes with highly occluded objects.

Keywords: 3D object pose estimation - Heatmaps + Occlusions

1 Introduction

3D object pose estimation from images is an old but currently highly researched
topic, mostly due to the advent of Deep Learning-based approaches and the
possibility of using large datasets for training such methods. 3D object pose
estimation from RGB-D already has provided compelling results [1-4], and the
accuracy of methods that only require RGB images recently led to huge progress
in the field [2-8]. In particular, one way to obtain an accurate pose is to rely on
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a Deep Network to initially predict the 2D projections of some chosen 3D points
and then compute the 3D pose of the object using a PnP method [9]. Such an
approach has been shown to be more accurate than the approach of directly
predicting the pose used in [5-7], and, therefore, we used the former approach
in the research described in this paper.
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Fig. 1. Overview of our method. (a) Given an image region centered on the target
object, we sample image patches from which we predict heatmaps for the 2D projections
of the corners of the object’s 3D bounding box. This prediction is done by a Deep
Network fo(-). We aggregate the heatmaps and extract the global maxima for each
heatmap, from which we compute the 3D object pose using a PnP algorithm. We
show that fo(-) can be trained simply and efficiently despite the ambiguities that may
arise when using small patches as input. (b) To obtain the image region centered on
the object, we apply the predictor in a sliding window fashion and accumulate the
heatmaps for the full camera frame. We keep the image region with the largest values
after accumulation.

However, while Deep Learning methods allow researchers to predict the pose
of fully visible objects, they suffer significantly from occlusions, which are very
common in practice: Parts of the target object can be hidden by other objects
or by a hand interacting with the object. A common ad hoc solution is to train
the network with occluded objects in the training data. As the results of our
experiments presented in this paper show, the presence of large occlusions and
unknown occluders still decrease the accuracy of the predicted pose.

Instead of using the entire image of the target object as input to the network,
we consider image patches, as illustrated in Fig. 1, since at least some of these
are not corrupted by the occluder. Using an image patch as input, our approach
learns to predict heatmaps over the 2D projections of 3D points related to the
target object. By combining the heatmaps predicted from many patches, we
obtain an accurate 3D pose even if some patches actually lie on the occluder or
the background instead of on the object.

When moving to an image patch as input, the prediction becomes multi-
modal. This is shown in Fig.2: Some patches may appear on different parts of
the target object but look similar. These patches are ambiguous, as they can cor-
respond to different predictions. In such a case, we would like to predict heatmaps
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with multiple local maxima, one for each possible prediction. The main challenge
is that the ambiguities are difficult to identify: This would require us to identify
the patches that have similar appearances, from all the possible viewpoints and
at all the possible positions on the object.

Expected

Predicted

(a) (b)

(d)

Fig. 2. Predicting heatmaps from image patches. In this example, we consider predict-
ing the projection of the 3D corner highlighted in (a) for the tuna fish can object of the
YCB-Video dataset [3]. The red boxes show the input patch of the predicted heatmap.
(b) shows a patch from which the projection can be predicted unambiguously. (c) shows
two patches that are located in two different positions on the can (notice that the can
is flipped and rotated between the two images) while having a similar appearance. In
presence of such patches, it is only possible to predict a distribution over the possi-
ble locations for the projection. (d) shows a patch on the background, from which we
predict a uniform heatmap as it does not provide additional information. See text for
details.

The authors of [10] faced a similar problem in the context of 2D object
detection when aiming to localize semantic parts from feature vectors of a con-
volutional layer computed by a CNN. As we discuss in Sect. 2, the method they
proposed is complex both for training and inference, and also inaccurate. The
solution we propose is much simpler yet efficient: We train a network to predict
heatmaps corresponding to a single solution for training image patches using a
least-squares loss function. Thanks to the properties of the least-squares loss,
this makes the network naturally predict the average of the possible heatmap
solutions for a given patch. This is exactly what we want, because it is the best
information we can obtain from a single patch even if the information remains
ambiguous. We then follow an ensemble approach and take the average of the
heatmaps predicted for many patches, which allows us to resolve the ambiguities
that arise with individual patches. We finally extract the global maximum from
this average as the final 2D location.
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Our main contribution is, therefore, a simple method that can be used to
accurately predict the 3D pose of an object under partial occlusion. We also
considered applying Transfer Learning to exploit additional synthetic training
data and improve performances. However, as we show, if the input to a network
contains an occluder, the occlusion significantly influences the network output
even when the network has been trained with occlusion examples and simply
adding more training data does not help. In our case, some of the input patches
used by our method will not contain occluders, and Transfer Learning becomes
useful. In practice, we use the Feature Mapping described in [11], which can
be used to map the image features extracted from real images to corresponding
image features for synthetic images. This step is not needed for our method to
outperform the state-of-the-art but allows us to provide an additional perfor-
mance boost.

In the remainder of this paper, we first discuss related work, then present our
approach, and finally evaluate it and compare it to the state-of-the-art methods
on the Occluded LineMOD [12] and the YCB-Video [3] datasets.

2 Related Work

The literature on 3D object pose estimation is extremely large. After the popular-
ity of edge-based [13] and keypoint-based methods [14] waned, Machine Learning
and Deep Learning became popular in recent years for addressing this prob-
lem [2-8,15]. Here, we will mostly focus on recent work based on RGB images.
In the Evaluation section, we compare our method to recent methods [3-5,7].

[4,8] proposed a cascade of modules, whereby the first module is used to local-
ize the target objects, and the second module, to regress the object surface 3D
coordinates. These coordinates then are used to predict the object pose through
hypotheses sampling with a pre-emptive RANSAC [9]. Most importantly, we do
not directly predict 3D points but average 2D heatmaps. Predicting 3D points
for corresponding 2D points seems to be much more difficult than predicting
2D points for 3D points, as discussed in [3]. Also, surface coordinates are not
adapted to deal with symmetric objects. In [5] the target object was also first
detected, then the 2D projections of the corners of the object’s 3D bounding
boxes were predicted and, finally, the 3D object pose from their 3D correspon-
dences was estimated using a PnP algorithm. [7] integrated this idea into a
recent object detector [16] to predict 2D projections of the corners of the 3D
bounding boxes, instead of a 2D bounding box. Similarly, in [6], 2D keypoints
were predicted in the form of a set of heatmaps as we do in this work. However,
it uses the entire image as input and, thus, performs poorly on occlusions. It also
requires training images annotated with keypoint locations, while we use virtual
3D points. In [17], 2D keypoint detection was also relied upon. The authors
considered partially occluded objects for inferring the 3D object location from
these keypoints. However, their inference adopted a complex model fitting and
required the target objects to co-occur in near-regular configuration.

In [2], the SSD architecture [18] was extended to estimate the objects’ 2D
locations and 3D rotations. In a next step, the authors used these predictions
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together with pre-computed information to estimate the object’s 3D pose. How-
ever, this required a refinement step to get an accurate pose, which was influenced
by occlusions. The objects were segmented in [3], and an estimate of their 3D
poses was made by predicting the translation and a quaternion for the rotation,
refined by ICP. Segmenting objects makes their approach robust to occlusions
to some extent, however, it requires the use of a highly complex model. In [15],
object parts were considered to handle partial occlusion by predicting a set of
2D-3D correspondences from each of these parts. However, the parts had to be
manually picked, and it is not clear which parts can represent objects such as
those we evaluate in this paper.

As mentioned in the introduction, our method is related to that described
in [10]. In the context of 2D object detection, semantic parts are localized as
in [10] from neighboring feature vectors using a spatial offset map. The offset
maps are accumulated in a training phase. However, they need to be able to
identify which feature vectors support a semantic part from these maps, and
complex statistical measures are used to identify such vectors. Our method is
significantly simpler, as the mapping between the input patches and the 2D
projections does not have to be established explicitly.

The authors of [19] already evaluated CNNs trained on occlusions in the
context of 2D object detection and recognition and proposed modifying training
to penalize large spatial filters support. This yields better performance; however,
this does not fully cancel out the influence of occlusions. Some recent work also
describes explicitly how to handle occlusions for 3D pose estimation when dealing
with 3D or RGB-D data: Like us, [20] relied on a voting scheme to increase
robustness to occlusions; [21] first segmented and identified the objects from
an RGB-D image. They then performed an extensive randomized search over
possible object poses by considering physical simulation of the configuration.
In [22], holistic and local patches were combined for object pose estimation,
using a codebook for local patches and applying a nearest-neighbor search to
find similar poses, as in [23,24]. In contrast to these methods, we use only color
images.

Our method is also related to ensemble methods and, in particular, the Hough
Forests [25], which are based on regression trees. Hough Forests also predict 2D
locations from multiple patches and are multimodal. Multimodal prediction is
easy to perform with trees, as the multiple solutions can be stored in the tree
leaves. With our method, we aim to combine the ability of Hough Forests for
multimodal predictions and the learning power of Deep Learning. [26] already
reformulated a Hough Forest as a CNN by predicting classification and regression
for patches of the input image. However, this method required to handle the
detection separately, and each patch regressed a single vector, which was not
multimodal and required clustering of the predicted vectors. In this paper, we
show that carrying out a multimodal prediction with Deep Networks to address
our problem is, in fact, simple.
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Fig. 3. Effect of occlusions on the feature maps of Deep Networks. (a) Input image
without (top) and with (bottom) partial occlusion. (b-Top) Sums of absolute differences
between the feature maps with and without occlusions for a CNN trained without
occlusions. (b-Bottom) Same when the network is trained with occlusion examples. (c)
Same for a Convolutional Pose Machine. The influence of the occlusion increases with
the layers’ depths, as receptive fields are larger in the deeper layers than in the first
layers, even when the method is trained with occlusion examples. For more details we
refer to the supplementary material.

3 Influence of Occlusions on Deep Networks

In this section, we describe how we evaluate how much a partial occlusion
influences a Deep Network, whether it is a standard Convolutional Neural Net-
work (CNN) or a Convolutional Pose Machine (CPM) [27]. Specifically, a CPM is
a carefully designed CNN that predicts dense heatmaps by sequentially refining
results from previous stages. The input features are concatenated to intermedi-
ary heatmaps in order to learn spatial dependencies.

For this experiment, depicted in Fig.3, we use an image centered on an
object as input to a network—here, the Cat object from the Occluded LineMOD
dataset [12]. We then compare the layer activations in the absence of occlusion,
and when the object is occluded by an artificial object (here, a striped triangle).
We consider two networks: A standard CNN trained to predict the 2D projections
of 3D points as a vector [5], and a CPM [27] with 3 stages trained to predict
a heatmap for each of the same 2D projections. For the 3D points, we use the
corners of the 3D bounding box of the object.

As can be seen in Fig. 3, the occlusion induces changes in the activations of all
the layers of both networks. For a standard CNN, the occlusion spreads to more
than 20% in the last feature map, and, beyond the first fully-connected layer,
more than 45% of all activations are changed. In this case, all the predictions
for the 2D projections, occluded or not, are inaccurate. A similar effect can be
observed for CPMs: Here, the altered activations are more specifically localized
to the occluded region due to the convolutions, with more than 29% of the
activations changed in the last feature map. In this case, the predictions of the
2D projections are inaccurate when the 3D points are occluded. When the 3D
points are not occluded, the predicted projections are sometimes correct, because
the influence of the occluder spreads less with a CPM than with a standard CNN.
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Fig. 4. Network architecture for fo(-). C denotes a convolutional layer with the number
of filters and the filter size inscribed; FC, a fully-connected layer with the number of
neurons; UP, an unpooling layer [28]; R, a residual module [29] with the number of filters
and filter size; and STL, a Spatial Transformation Layer [30] used for translation. All
layers have ReLLU activations, and the output of the last layer is linear.

4 Minimizing the Effect of Occlusions

In this section, we first describe our training procedure given an input image
region centered on the object, then the run-time inference of the pose. Finally,
we explain how we identify the input image region in practice.

4.1 Training

Datasets for 3D pose estimation typically provide training images annotated
with the objects’ poses and the 3Dlmodels of the objects. From this data, we
generate our training set {(I(9, {pj(.z)}j,M(i))}i, where I() is the i-th training

image; pgi), the 2D projection of the j-th 3D corner; and M the 2D mask of
the object in image ). This mask can be obtained by projecting the 3D object
model into the image using the object’s pose.

The Unambiguous Case. Let us first ignore the fact that some image patches
can be ambiguous and that the learning problem is actually multimodal. We train
a network fy(-) to predict a heatmap for each projection p;. The architecture
we use for this network is shown in Fig. 4. fy(-) takes an input patch of size
32 x 32px, and predicts a set of heatmaps of size 128 x 128px, and we train it
by minimizing:

min S [HO — Transl(fo(P(I, u,0)), =0, —v)|12, ®

i U,
where:

~ P(I®,u,v) is an image patch centered on location (u,v) in image I(;

— H™ is the set of expected heatmaps for P(I(i), u,v). It contains one heatmap
for each 2D projection pg-l). We describe how H(?) is defined in detail below;

— fo(P) returns a set of heatmaps, one for each 2D projection p‘g-l).

— Transl(H, —u, —v) translates the predicted heatmaps H by (—u,—v). fo()
learns to predict the heatmaps with respect to the patch center (u,v), and
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this translation is required to correctly align the predicted heatmaps together.
Such a translation can be efficiently implemented using a Spatial Transfor-
mation Layer [30], which makes the network trainable end-to-end.

The sum Z(WJ) is over 2D locations randomly sampled from the image. The

heatmaps in H* are defined as a Gaussian distribution with a small standard
deviation (we use o = 4pzx in practice) and centered on the expected 2D projec-
tions pg-l) when patch P(I(i), u,v) overlaps the object mask M@ The top row
of Fig. 2 shows examples of such heatmaps.

When the patch does not overlap the object mask, the heatmaps in H(® are
defined as a uniform distribution of value ﬁ, where W x H is the heatmap’s
resolution, since there is no information in the patch to predict the 2D pro-
jections. In addition, we use patches sampled from the ImageNet dataset [31]
and train the network to predict uniform heatmaps as well for these patches.
Considering these patches (outside the object’s mask or from ImageNet) during
training allows us to correctly handle patches appearing in the background or
on the occluders and significantly reduces the number of false positives observed

at run-time.

The Multimodal Case. Let us now consider the real problem, where the pre-
diction is multimodal: Two image patches such as the ones shown in Fig.2(c)
can be similar but extracted from different training images and, therefore, cor-
respond to different expected heatmaps. In other words, in our training set,
we can have values for samples i, ¢’ and locations (u,v) and (u’,v’) such that
PID u,v) ~ P o/ v') and HO £ HE,

It may seem as though, in this case, training given by Eq. (1) would fail
or need to be modified. In fact, Eq. (1) remains valid. This is because we use
the least-squares loss function: For image patches with similar appearances that
correspond to different possible heatmaps, fy(-) will learn to predict the average
of these heatmaps, which is exactly what we want. The bottom row of Fig. 2
shows such heatmaps. At run-time, because we will combine the contribution of
multiple image patches, we will be able to resolve the ambiguities.

4.2 Run-Time Inference

At run-time, given an input image I, we extract patches from randomly selected
locations from the input image and feed them into the predictor fy(-). To combine
the contributions of the different patches, we use a simple ensemble approach and
average the predicted heatmaps for each 2D projection. We take the locations
of the global maxima after averaging them as the final predictions for the 2D
projections.

More formally, the final prediction p; for the 2D projection p; is the location
of the global maximum of °,  Transl(fs(P(I,u,v)), —u, —v)[j], the sum of the
heatmaps predicted for the j-th projection, translated such that these heatmaps
align correctly. The sum is performed over randomly sampled patches. An eval-
uation of the effect of the number of samples is provided in the supplementary
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material. To compute the pose, we use a PnP estimation with RANSAC [9] on
the correspondences between the corners of the object’s 3D bounding box and
the p; locations.

4.3 Two-Step Procedure

In practice, we first estimate the 2D location of the object of interest, using
the same method as in the previous subsection, but instead of sampling random
locations, we apply the network fy(+) in a sliding window fashion, as illustrated
in Fig. 1 (b). For each image location, we compute a score by summing up the
heatmap values over a bounding box of size 128 x 128 and over the 8 corners for
each object, which is done efficiently using integral images. We apply Gaussian
smoothing and thresholding to the resulting score map. We use the centers-of-
mass of the regions after thresholding as the centers of the input image I. Finally,
we use this image as input to the method described in the previous subsection.
We use a fixed size for this region as our method is robust to scale changes.

5 Evaluation

In this section, we evaluate our method and compare it to the state-of-the-
art. For this, we use two datasets: The Occluded LineMOD dataset [12], and
the YCB-Video dataset [3]. Both datasets contain challenging sequences with
partially occluded objects and cluttered backgrounds. In the following, we first
provide the implementation details, the evaluation metrics used and then present
the results of evaluation of the two datasets, including the results of an ablative
analysis of our method.

5.1 Implementation Details

Training Data: The training data consist of real and synthetic images with anno-
tated 3D poses and object masks, as was also the case in [3]. To render the syn-
thetic objects, we use the models that are provided with the datasets. We crop
the objects of interest from the training images and paste them onto random
backgrounds [32] sampled from ImageNet [31] to achieve invariance to different
backgrounds. We augment the dataset with small affine perturbations in HSV
color space.

Network Training: The network is optimized using ADAM [33] with default
parameters and using a minibatch size of 64, a learning rate of 0.001, and 100k
iterations. We train one network per object starting from a random initialization.

Symmetric Objects: We adapt the heatmap generation to symmetric objects
present in the two datasets. For rotationally symmetric objects, e.g., cylindrical
shapes, we only predict a single position around the rotation axis. For mirror-
symmetric objects, we only train on half the range of the symmetry axis, as was
performed in [5].
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Feature Mapping: Optionally, we apply the Feature Mapping method as
described in [11] to compensate for a lack of real training data. We apply the
mapping between the FC1 and FC2 layers shown in Fig. 4. The mapping network
uses the same architecture as described in [11], but the weight for the feature
loss is significantly lower (107°).

5.2 Evaluation Metrics

We consider the most common metrics. The 2D Reprojection error [8] computes
the distances between the projections of the 3D model points when projected
using the ground truth pose, and when using the predicted pose. The ADD
metric [34] calculates the average distance in 3D between the model points,
after applying the ground truth pose and the predicted pose. For symmetric
objects, the 3D distances are calculated between the closest 3D points, denoted
as the ADI metric. Below, we refer to these two metrics as AD{D|I} and use the
one appropriate to the object. The exact formulas for these metrics are provided
in the supplementary material.

5.3 Occluded LineMOD Dataset

The Occluded LineMOD dataset [12] consists of a sequence of 1215 frames, each
frame labeled with the 3D poses of 8 objects as well as object masks. The objects
show severe occlusions, which makes pose estimation extremely challenging. The
sequences were captured using an RGB-D camera with 640 x 480px images,
however, we use only the color images for our method and all results reported.

For training the heatmap predictors, we use the LineMOD dataset [34] that
contains the same objects as the Occluded LineMOD dataset. This protocol is
commonly used for the dataset [3-5,7], since the Occluded LineMOD dataset
only contains testing sequences. Figure 5 shows some of the qualitative results
obtained. We give an extensive quantitative evaluation in the following section.

Fig. 5. Some qualitative results on the Occluded LineMOD dataset [12]. We show the
3D bounding boxes of the objects projected onto the color image. Ground truth poses
are shown in green, and our predictions are shown in blue. More results are provided
in the supplementary material.
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Quantitative Results. Figure6 shows the fraction of frames where the 2D
Reprojection error is smaller than a given threshold, for each of the 8 objects
from the dataset. A larger area under the curve denotes better results. We com-
pare these results to those obtained from the use of several recent methods that
also work only with color images, namely, BB8 [5], PoseCNN [3], Jafari et al. [4],
and Tekin et al. [7]. Note that the method described in [5] uses ground truth
detection, whereas ours does not. Our method performs significantly more accu-
rately on all sequences. Notably, we also provide results for the Fggbor object,
which, so far, was not considered since it was too difficult to learn for [4,5,7].
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Fig. 6. Evaluation on the Occluded LineMOD dataset [12] using color images only.
We plot the fraction of frames for which the 2D Reprojection error is smaller than the
threshold on the horizontal axis. Our method provides results that significantly outper-
form those reported by previous work. “w/o FM” denotes without Feature Mapping.

Adding Feature Mapping [11] improves the 2D Reprojection error for a
threshold of 5px by 17% on average. We also tried Feature Mapping for the
approach of [5], but it did not improve the results because the occlusions influ-
ence the feature maps too greatly when the network input contains occluders,
as already discussed in the introduction.

Further quantitative results are given in Table 1, where we provide the per-
centage of frames for which the ADD or ADI metric is smaller than 10% of the
object diameter, as [3] reported such results on the Occluded LineMOD dataset.
This is considered a highly challenging metric. We also give the percentage of
frames that have a 2D Reprojection error of less than 5Hpx. Our method signifi-
cantly outperforms all other methods on these metrics by a large margin.
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The Effect of Seeing Occlusions During Training. We evaluate the impor-
tance of knowing the occluder in advance. [3,5,7] assumed that the occluder is
another object from the LineMOD dataset and only used occlusions from these
objects during training. However, in practice, this assumption does not hold,
since the occluder can be an arbitrary object. Therefore, we investigated how
the performance was affected by the use of occlusions during training.

We compare our results (without Feature Mapping) to two state-of-the-art
approaches: our reimplementations of BB8 [5] and CPM [27]. To avoid bias
introduced by the limited amount of training data in the Occluded LineMOD
dataset [12], we consider synthetic images both for training and for testing here.

We investigate three different training schemes: (a) No occlusions used for
training; (b) random occlusions by simple geometric shapes; (¢) random occlu-
sions with the same objects from the dataset, as described in [4,5,7]. We com-
pare the different training schemes in Fig. 7. Training without occlusions clearly
result in worse performance for BB8 and CPM, whereas our method is signifi-
cantly more robust. Adding random geometric occlusions during training slightly
increases the performance of BB8 and CPM, since the networks learn invariance
to occlusions, however, mainly for these specific occlusions, whereas our approach
maintains the accuracy compared to training without occlusions. Using occlud-
ers from the dataset gives the best results, since the networks learn to ignore
specific features from these occluders. This, however, is only possible when the
occluders are known in advance, which is not necessarily the case in practice.

Patch Size and Number of Patches. We evaluated the influence of the
patch size on the predicted pose accuracy. There is a range of sizes (25px to
40px) for which the performances stay very close to those presented in Table 1.
Small patches seem to lack discriminative power, the 2D Reprojection metric
gets 19% worse with 8px patches, and large patches are sensitive to occlusions,
which leads to a decrease in the 2D Reprojection metric of 5% for 128px patches.

In the supplementary material, we provide a detail study of the influence of
the number of patches on the predicted pose accuracy. The main conclusions are
that the accuracy starts to flatten when more than 64 patches are used, and that
— if a preprocessing algorithm could be used to provide a segmentation mask
— we could reduce the number of patches to achieve the same level of accuracy.

Runtime. We implemented our method in Python on an Intel i7 with 3.2 GHz
and 64GB of RAM, using an nVidia GTX 980 Ti graphics card. Pose estimation
is 100ms for 64 patches, and detection takes 150ms on a 640 x 480 camera
frame. Predicting the heatmaps for a single patch takes 4ms, and the total run-
time could, thus, be significantly reduced by processing the individual patches
in parallel.

5.4 YCB-Video Dataset

The recently proposed YCB-Video dataset [3] consists of 92 video sequences,
where 12 sequences are used for testing and the remaining 80 sequences for
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Fig. 7. Evaluation of synthetic renderings of scenes from the Occluded LineMOD
dataset (see text) using the 2D Reprojection error. (a) Training without occlusions;
(b) training with random geometric occlusions; and (c) training with occluding objects
from the LineMOD dataset [34]. Knowing the occluders in advance significantly
improves the performances of BB8 [5] and CPM [27], however, this knowledge is often
not available in practice. Our method does not require this knowledge.

training. In addition, the dataset contains 80k synthetically rendered images,
which can be used for training as well. There are 21 objects in the dataset,
which are taken from the YCB dataset [35] and are publicly available for pur-
chase. The dataset is captured with two different RGB-D sensors, each providing
640 x 480 images, but we only use the color images. The test images are extremely
challenging due to the presence of significant image noise and different illumi-
nation levels. Each image is annotated with the 3D object poses, as well as the
objects’ masks. Figure8 shows some qualitative results. We give an extensive
quantitative evaluation in the following section.

Quantitative Results. We provide the 2D Reprojection error and the AD{D|I}
metrics averaged over all the objects in Table2. In [3], the area under the
accuracy-threshold curve was used as a metric, which we also provide.! Again,
our approach results in better performance according to these metrics.

Fig. 8. Qualitative results on the YCB-Video dataset [3]. The green bounding boxes
correspond to the ground truth poses, the blue ones to our estimated poses. More
results are provided in the supplementary material.

! The metrics are calculated from the results provided by the authors at their website.
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Table 2. Comparison on the YCB-Video dataset [3]. We refer to the supplementary
material for the object-specific numbers and additional plots. Our method clearly out-
performs the baseline.

Method | PoseCNN [3] Our method w/o FM Our method
AUC | AD{D|I}- | 2D Repr- | AUC | AD{D|I}- | 2D Repr- | AUC | AD{D|I}- |2D Repr-
10% 5px 10% 5px 10% 5px
Average | 61.0 | 21.3 3.72 61.4 | 33.6 238.1 72.8 | 53.1 39.4

6 Discussion and Conclusion

In this paper, we introduced a novel method for 3D object pose estimation
that is inherently robust to partial occlusions of the object. To do this, we
considered only small image patches as input and merged their contributions.
Because we chose to compute the pose by initially predicting the 2D projections
of 3D points related to the object, the prediction can be performed in the form
of 2D heatmaps. Since heatmaps are closely related to density functions, they
can be conveniently applied to capture the ambiguities that arise when using
small image patches as input. We showed that training a network to predict the
heatmaps in the presence of such ambiguities is much simpler than it may sound.
This resulted in a simple pipeline, which outperformed much more complex
methods on two challenging datasets.

Our approach can be extended in different ways. The heatmaps could be
merged in a way that is more robust to erroneous values than simple averaging.
The pose could be estimated by considering the best local maxima rather than
only the global maxima. Sampling only patches intersecting with the object
mask, which could be predicted by a segmentation method, would limit the
influence of occluders and background in the accumulated heatmaps even more.
Predicting the heatmaps could be performed in parallel.
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