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Abstract. Interest point descriptors have fueled progress on almost
every problem in computer vision. Recent advances in deep neural net-
works have enabled task-specific learned descriptors that outperform
hand-crafted descriptors on many problems. We demonstrate that com-
monly used metric learning approaches do not optimally leverage the
feature hierarchies learned in a Convolutional Neural Network (CNN),
especially when applied to the task of geometric feature matching. While
a metric loss applied to the deepest layer of a CNN, is often expected
to yield ideal features irrespective of the task, in fact the growing recep-
tive field as well as striding effects cause shallower features to be better
at high precision matching tasks. We leverage this insight together with
explicit supervision at multiple levels of the feature hierarchy for better
regularization, to learn more effective descriptors in the context of geo-
metric matching tasks. Further, we propose to use activation maps at
different layers of a CNN, as an effective and principled replacement for
the multi-resolution image pyramids often used for matching tasks. We
propose concrete CNN architectures employing these ideas, and evaluate
them on multiple datasets for 2D and 3D geometric matching as well
as optical flow, demonstrating state-of-the-art results and generalization
across datasets.
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1 Introduction

The advent of repeatable high curvature point detectors [24,37,40] heralded a
revolution in computer vision that shifted the emphasis of the field from holistic
object models and direct matching of image patches [67], to highly discriminative
hand-crafted descriptors. These descriptors made a mark on a wide array of
problems in computer vision, with pipelines created to solve tasks such as optical
flow [9], object detection [18], 3D reconstruction [51] and action recognition [55].
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Fig. 1. Our hierarchical metric learning retains the best properties of various levels
of abstraction in CNN feature representations. For geometric matching, we combine
the robustness of deep layers that imbibe greater invariance, with the localization
sensitivity of shallow layers. This allows learning better features, as well as a better
correspondence search strategy that progressively exploits features from higher recall
(robustness) to higher precision (spatial discrimination).

The current decade is witnessing as wide-ranging a revolution, brought about
by the widespread use of deep neural networks. Yet there exist computer vision
pipelines that, thanks to extensive engineering efforts, have proven impervious to
end-to-end learned solutions. Despite some recent efforts [8,28,54], deep learning
solutions do not yet outperform or achieve similar generality as state-of-the-
art methods on problems such as structure from motion (SfM) [56] and object
pose estimation [44]. Indeed, we see a consensus emerging that some of the
systems employing interest point detectors and descriptors are here to stay, but
it might instead be advantageous to leverage deep learning for their individual
components.

Recently, a few convolutional neural network (CNN) architectures [16,58,
61,65] have been proposed with the aim of learning strong geometric feature
descriptors for matching images, and have yielded mixed results [6,49]. We posit
that the ability of CNNs to learn representation hierarchies, which has made
them so valuable for many visual recognition tasks, becomes a hurdle when it
comes to low-level geometric feature learning, unless specific design choices are
made in training and inference to exploit that hierarchy. This paper presents
such strategies for the problem of dense geometric correspondence.
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Most recent works employ various metric learning losses and extract feature
descriptors from the deepest layers [16,58,61,65], with the expectation that the
loss would yield good features right before the location of the loss layer. On the
contrary, several studies [64,68] suggest that deeper layers respond to high-level
abstract concepts and are by design invariant to local transformations in the
input image. However, shallower layers are found to be more sensitive to local
structure, which is not exploited by most deep-learning based approaches for geo-
metric correspondence that use only deeper layers. To address this, we propose
a novel hierarchical metric learning approach that combines the best character-
istics of various levels of feature hierarchies, to simultaneously achieve robust-
ness and localization sensitivity. Our framework is widely applicable, which we
demonstrate through improved matching for interest points in both 2D and 3D
data modalities, on KITTI Flow [42] and 3DMatch [65] datasets, respectively.

Further, we leverage recent studies that highlight the importance of carefully
marshaling the training process: (i) by deeply supervising [31,33] intermediate
feature layers to learn task-relevant features, and (ii) on-the-fly hard negative
mining [16] that forces each iteration of training to achieve more. Finally, we
exploit the intermediate activation maps generated within the CNN itself as
a proxy for image pyramids traditionally used to enable coarse-to-fine match-
ing [17]. Thus, at test time, we employ a hierarchical matching framework, using
deeper features to perform coarse matching that benefits from greater context
and higher-level visual concepts, followed by a fine grained matching step that
involves searching for shallower features. Figure 1 illustrates our proposed app-
roach.

In summary, our contributions include:

– We demonstrate that while in theory metric learning should produce good
features irrespective of the layer the loss is applied to, in fact shallower fea-
tures are superior for high-precision geometric matching tasks, whereas deeper
features help obtain greater recall.

– We leverage deep supervision [31,33] for feature descriptor learning, while
employing hard negative mining at multiple layers.

– We propose a CNN-driven scheme for coarse-to-fine hierarchical matching, as
an effective and principled replacement for conventional pyramid approaches.

– We experimentally validate our ideas by comparing against state-of-the-art
geometric matching approaches and feature fusion baselines, as well as per-
form an ablative analysis of our proposed solution. We evaluate for the tasks
of 2D and 3D interest point matching and refinement, as well as optical flow,
demonstrating state-of-the-art results and generalization ability.

We review literature in Sect. 2 and introduce our framework in Sect. 3. We
discuss experimental results in Sect. 4, concluding the paper in Sect. 5.
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2 Related Work

With the use of deep neural networks, many new ideas have emerged both per-
taining to learned feature descriptors and directly learning networks for low-level
vision tasks in an end-to-end fashion, which we review next.

Hand-Crafted Descriptors. SIFT [40], SURF [7], BRISK [32] were
designed to complement high curvature point detectors, with [40] even propos-
ing its own algorithm for such a detector. In fact, despite the interest in learned
methods, they are still the state-of-the-art for precision [6,49], even if they are
less effective in achieving high recall rates.

Learned Descriptors. While early work [36,39,59] leveraged intermediate
activation maps of a CNN trained with an arbitrary loss for keypoint matching,
most recent methods rely on an explicit metric loss [16,22,60,61,63,65,66] to
learn descriptors. The hidden assumption behind using contrastive or triplet loss
at the final layer of a CNN is that this explicit loss will cause the relevant features
to emerge at the top of the feature hierarchy. But it has also been observed that
early layers of the CNN are the ones that learn local geometric features [64].
Thus, many of these works show superior performance to handcrafted descriptors
on semantic matching tasks but often lag behind on geometric matching.

Matching in 2D. LIFT [61] is a moderately deep architecture for end-to-
end interest point detection and matching, which uses features at a single level
of hierarchy and does not perform dense matching. Universal Correspondence
Network (UCN) [16] combines a fully convolutional network in a Siamese setup,
with a spatial transformer module [26] and contrastive loss [15] for dense cor-
respondence, to achieve state-of-the-art on semantic matching tasks but not on
geometric matching. Like them, we use GPU to speed up k-nearest neighbour
for on-the-fly hard negative mining, albeit across multiple feature learning lay-
ers. Recently, AutoScaler [58] explicitly applies a learned feature extractor on
multiple scales of the input image. While this takes care of the issue that a deep
layer may have an unnecessarily large receptive field when learning on the basis
of contrastive loss, we argue that it is more elegant for the CNN to “look at the
image” at multiple scales, rather than separately process multiple scales.

Matching in 3D.Descriptors for matching in 3D voxel grid representations
are learned by 3DMatch [65], employing a Siamese 3D CNN setup on a 30×30×
30 cm3 voxel grid with a contrastive loss. It performs self-supervised learning by
utilizing RGB-D scene reconstructions to obtain ground truth correspondence
labels for training, outperforming a state-of-the-art hand-crafted descriptor [48].
Thus, 3DMatch provides an additional testbed to validate our ideas, where we
report positive results from incorporating our hierarchical metric learning and
matching into the approach.

Learned Optical Flow.Recent works achieve state-of-the-art results on
optical flow by training CNNs in an end-to-end fashion [20,25], followed by
Conditional Random Field (CRF) inference [45] to capture detailed boundaries.
We also demonstrate the efficacy of our matching on optical flow benchmarks.
However, we do not use heavily engineered or end-to-end learning for minimiz-
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ing flow metrics, rather we show that our matches along with an off-the-shelf
interpolant [45] already yield strong results.

Deep Supervision. Recent works [31,33,34] suggest that providing explicit
supervision to intermediate layers of a CNN can yield higher performance on
unseen data, by regularizing the training process. However, to the best of our
knowledge, the idea has neither been tested on the task of keypoint matching
nor had the learned intermediate features been evaluated. We do both in our
work.

Image Pyramids and Hierarchical Fusion. Downsampling pyramids
have been a steady fixture of computer vision for exploiting information across
multiple scales [41]. Recently, many techniques have been developed for fus-
ing features from different layers within a CNN and producing output at high
resolution, e.g. semantic segmentation [12,23,43,46], depth estimation [21], and
optical flow [20,25]. Inspired by [17] for image alignment, we argue that the grow-
ing receptive field in deep CNN layers [64] provides a natural way to parse an
image at multiple scales. Thus, in our hierarchical matching scheme, we employ
features extracted from a deeper layer with greater receptive field and higher-
level semantic notions [68] for coarsely locating the corresponding point, followed
by shallower features for precise localization. We show gains in correspondence
estimation by using our approach over prior feature fusion methods, e.g. [23,43].
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Fig. 2. One instantiation of our proposed ideas. Note that the hard negative mining
and CCL losses (red blocks) are relevant for training, and matching (blue blocks)
for testing. Convolutional blocks (green) in the left and right Siamese branches share
weights. ‘S’ and ‘D’ denote striding and dilation offsets.

3 Method

In the following, we first identify the general principles behind our framework,
then propose concrete neural network architectures that realize them. In this
section, we limit our discussion to models for 2D images. We detail and validate
our ideas on the 3DMatch [65] architecture in Sect. 4.3.
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3.1 Hierarchical Metric Learning

We follow the standard CNN-based metric learning setup proposed as the
Siamese architecture [15]. This involves two Fully Convolutional Networks
(FCN) [38] with tied weights, parsing two images of the same scene. We extract
features out of the intermediate convolutional layer activation maps at the loca-
tions corresponding to the training points, and after normalization obtain their
Euclidean distance. At training time, separate contrastive losses are applied to
multiple levels in the feature hierarchy to encourage the network to learn embed-
ding functions that minimizes the distance between the descriptors of matching
points, while maximizing the distance between unmatched points.

Correspondence Contrastive Loss (CCL). We borrow the correspon-
dence contrastive loss formulation introduced in [16], and adapted from [15].
Here, φI

l (x) represents the feature extracted from the l-th feature level of the
reference image I at a pixel location x; similarly, φI′

l (x′) represents the feature
extracted from the l-th feature level of the target image I ′ at a pixel location
x′. Let D represent a dataset of triplets (x, x′, y), where x is a location in the
reference image I, x′ is a location in the target image I ′, and y ∈ {0, 1} is 1 if
and only if (x, x′) are a match. Let m be a margin parameter and c be a window
size. We define:

φ̂I
l (x) :=

φI
l (x)

‖φI
l (x)‖2 , dl(x, x′) := ‖φ̂I

l (x) − φ̂I′
l (x′)‖2. (1)

Then, our training loss, L, sums CCL losses over multiple levels l:

L :=
L∑

l=1

∑

(x,x′,y)∈D
y . d2l (x, x′) + (1 − y) . (max(0,m − dl(x, x′)))2. (2)

Deep Supervision. Our rationale in applying CCL losses at multiple levels
of the feature hierarchy is twofold. Recent studies [31,33] indicate that deep
supervision contributes to improved regularization, by encouraging the network
early on to learn task-relevant features. Secondly, both deep and shallow layers
can be supervised for matching simultaneously within one network.

Hard Negative Mining. Since our training data includes only positive
correspondences, we actively search for hard negative matches “on-the-fly” to
speed up training and to leverage the latest instance of network weights. We
adopt the approach of UCN [16], but in contrast to it, our hard negative mining
happens independently for each of the feature levels being supervised.

Network Architectures. We visualize one specific instantiation of the
above ideas in Fig. 2, adapting the VGG-M [11] architecture for the task. We
retain the first 5 convolutional layers, initializing them with weights pre-trained
for ImageNet classification [47]. We use ideas from semantic segmentation liter-
ature [12,62] to increase the resolution of the intermediate activation maps by
(a) eliminating down-sampling in the second convolutional and pooling layers
(setting their stride value to 1, down from 2) (b) increasing the pooling window
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size for the second layer from 3 × 3 to 5 × 5 and (c) dilating [62] the subse-
quent convolutional layers (conv3, conv4 and conv5 ) to retain their pretrained
receptive fields.

At training, the network is provided with a pair of images and a set of point
correspondences. The network is replicated in a Siamese scheme [15] during
training (with shared weights) where each sub-network processes one image from
the pair; and thus after each feed-forward pass, we have 4 feature maps: 2 shallow
ones and 2 deep ones, respectively from the second and fifth convolutional layers
(conv2, conv5 ). We apply supervision after these same layers (conv2, conv5 ).

We also experiment with a GoogLeNet [52] baseline as employed in UCN [16].
Specifically, we augment the network with a 1 × 1 convolutional layer and L2
normalization following the fourth convolutional block (inception 4a/output) for
learning deep features, as in UCN. In addition, for learning shallow features, we
augment the network with a 3 × 3 convolutional layer right after the second
convolutional layer (conv2/3 × 3), followed by L2 normalization, but before the
corresponding non-linear ReLU squashing function. We extract the shallow and
deep feature maps based on the normalized outputs after the second convolu-
tional layer conv2/3 × 3 and the inception 4a/output layers respectively. We
provide the detailed architecture of our GoogLeNet variant as supplementary
material.

Network Training. We implement our system in Caffe [27] and use
ADAM [29] to train our network for 50 K iterations using a base learning rate
of 10−3 on a P6000 GPU. Pre-trained layers are fine-tuned with a learning rate
multiplier of 0.1 whereas the weights of the newly-added feature-extraction layers
are randomly initialized using Xavier’s method. We use a weight decay parame-
ter of 10−4 and L2 weight regularization. During training, each batch consists of
three randomly chosen image pairs and we randomly choose 1K positive corre-
spondences from each pair. It takes the VGG-M variant of our system around 43
hours to train whereas it takes 30 hours to train our GoogLeNet-based variant.

3.2 Hierarchical Matching

We adapt and train our networks as described in the previous section, optimiz-
ing network weights for matching using features extracted from different layers.
Yet, we find that features from different depths offer complementary capabili-
ties as predicted by earlier works [64,68] and confirmed by our empirical eval-
uation in Sect. 4. Specifically, features extracted from shallower layers obtain
superior matching accuracies for smaller distance thresholds (precision), whereas
those from deeper layers provide better accuracies for larger distance thresholds
(recall). Such coarse-to-fine matching has been well-known in computer vision
[41], however recent work highlights how employing CNN feature hierarchies for
the task (at least in the context of image alignment [17]) is more robust.

To establish correspondences, we compare the deep and shallow features of
the input images I and I ′ as follows. Assuming the shallow feature coordinates
ps and the deep feature coordinates pd in the reference image I are related by
pd = ps ∗ 1/f with a scaling factor f , we first use the deep feature descriptor
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φI
d(pd) in the reference image I to find the point p′

d in the target image I ′

with φI′
d (p′

d) closest to φI
d(pd) with nearest neighbor search.1 Next, we refine

the location of p′
d by searching within a circle of a radius of 32 pixels around

p′
s = p′

d ∗ f (assuming input images have the same size, thus, f ′ = f) to find the
point p̂′

s whose shallow feature descriptor φI′
s (p̂′

s) is closest to φI
s(ps), forming a

correspondence (ps, p̂′
s).

Our proposed hierarchical matching is implemented on CUDA and run on
a P6000 GPU, requiring an average of 8.41 seconds to densely extract features
and compute correspondences for a pair of input images of size 1242 × 376.

4 Experiments

In this section, we first benchmark our proposed method for 2D correspondence
estimation against standard metric learning and matching approaches, feature
fusion, as well as state-of-the-art learned and hand-crafted methods for extract-
ing correspondences. Next, we show how our method for correspondence esti-
mation can be applied for optical flow and compare it against recent optical
flow methods. Finally, we incorporate our ideas in a state-of-the-art 3D fully
convolutional network [65] and show improved performance. In the following, we
denote our method as HiLM, which is short for Hierarchical metric Learning
and M atching.
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Fig. 3. One Siamese branch of two for baseline architectures in our evaluation. The
conv3-net (a) is obtained by truncating all layers after VGG-M conv3 in Fig. 2 and
adding a convolutional layer, L2 normalization and CCL loss. Other convi-net baselines
are obtained similarly. The 1 × 1 max pooling layer after conv1 in the hypercolumn-
fusion baseline (b) is added to down sample the conv1 feature map for valid concate-
nation with other feature maps. ‘S’ and ‘D’ denote striding and dilation offsets.

1 If pd is fractional, we use bilinear interpolation to compute φI
d(pd).
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Fig. 4. Accuracy of different CNN-based methods for 2D correspondence estimation
on KITTI Flow 2015.

4.1 2D Correspondence Experiments

We empirically evaluate our ideas against different approaches for dense
correspondence estimation. We first consider metric learning and matching
approaches based on feature sets extracted from a single convolutional layer2,
where we separately train five networks, based on the VGG-M baseline in Fig. 2.
Each one of the five networks has a different depth and we refer to the i-th
network by convi-net to indicate that the network is truncated at the i-th con-
volutional layer (convi), for i ∈ 1, 2, ..., 5. We train a convi-net network by adding
a convolutional layer, L2 normalization, and CCL loss after the output of the
last layer (convi). Figure 3 (a) shows one branch of the conv3-net baseline as an
example.

In addition, we also compare our method against two alternatives for fus-
ing features from different layers inspired by ideas from semantic segmenta-
tion [23,43]. One is hypercolumn-fusion – Fig. 3 (b), where feature sets from
all layers (first through fifth) are concatenated for every interest point and a
set of 1x1 convolution kernels are trained to fuse features before L2 normaliza-
tion and CCL loss. Instead of upsampling deeper feature maps as in [23], we
extract deep features at higher resolution by setting the stride of multiple con-
volutional/pooling layers to 1 while dilating the subsequent convolutions appro-
priately as shown in Fig. 3. Another approach we consider is topdown-fusion,
where refinement modules similar to [43] are used to refine the top-level conv5
features gradually down the network by combining with lower-level features till
conv2 (please see supplementary material for details).

We evaluate on KITTI Flow 2015 [42] where all networks are trained on 80%
of the image pairs and the remaining 20% are used for evaluation. For a fair
comparison, we use the same train-test split for all methods and train each with

2 LIFT [61] is not designed for dense matching and hence not included in our experi-
ments. Note that LIFT also uses features from only a single convolutional layer.
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Fig. 5. Accuracy of CNN-based and hand-crafted methods for 2D correspondence esti-
mation on KITTI Flow 2015.

1K correspondences per image pair and for 50K iterations. During testing, we
use the correspondences {(xi, x

′
i)} in each image pair (obtained using all non-

occluded ground truth flows) for evaluation. Specifically, each method predicts a
point x̂′

i in the target image that matches the point xi from the reference image
∀i.

Evaluation Metric. Following prior works [16,39,58], we use Percentage of
Correct Keypoints (PCK) as our evaluation metric. Given a pixel threshold θ,
the PCK measures the percentage of predicted points x̂′

i that are within θ pixels
from the ground truth corresponding point x′

i (and so are considered as correct
matches up to θ pixels).

Single-Layer and Feature Fusion Descriptors. We plot PCK curves
obtained for all methods under consideration in Fig. 4 where we split the graph
into sub-graphs based on the pixel threshold range. These plots reveal that, for
smaller thresholds, shallower features (e.g. conv2-net with 73.89% @ 5 pixels)
provide higher PCK than deeper ones (e.g. conv5-net with 61.78% @ 5 pixels),
with the exception of conv1-net which performs worst. Contrarily, deeper fea-
tures have better performance for higher thresholds (e.g. conv5-net with 87.57%
versus conv2-net with 81.36% @ 15 pixels). This suggests that, for best per-
formance, one would need to utilize the shallower as well as deeper features
produced by the network rather than just the output of the last layer.

The plot also indicates that while baseline approaches for fusing features
improve the PCK for smaller thresholds (e.g. hypercolumn-fusion with 69.41%
versus conv5-net with 61.78% @ 5 pixels), they do not perform on par with the
simple conv2 -based features (e.g. conv2-net with 73.89% @ 5 pixels).

Different variants of our full approach achieve the highest PCK for smaller
thresholds (e.g. HiLM (conv2+conv4 ) with 80.17% @ 5 pixels), without losing
accuracy for higher thresholds. In fact, our method is able to outperform the
conv2 features (e.g. conv2-net with 73.89% @ 5 pixels) although it uses them
for refining the rough correspondences estimated by the deeper layers. This is



842 M. E. Fathy et al.

explained by the relative invariance of deeper features to local structure, which
helps to avoid matching patches that have similar local appearance but rather
belong to different objects.

Generalization. We also perform experiments on cross-domain generaliza-
tion ability. Specifically, we train HiLM (conv2+conv5 ) on MPI Sintel [10] and
evaluate it on KITTI Flow 2015 as the previous experiment, plotting the result
in Fig. 4 (black curve). As expected the Sintel model is subpar compared to
the same model trained on KITTI (72.37% vs. 79.11% @ 5 pixels), however
it outperforms both hypercolumn-fusion (69.41%) and topdown-fusion (63.14%)
trained on KITTI, across all PCK thresholds. Similar generalization results are
obtained when cross-training with HPatches [6] (please see supplementary mate-
rial for details).

Hand-Crafted Descriptors. We also compare the performance of (a)
our HiLM (conv2+conv5, VGG-M), (b) a variant of our method based on
GoogLeNet/ UCN (described in Sect. 3), (c) the original UCN [16], and (d) the
following hand-crafted descriptors: SIFT [40], KAZE [2], DAISY [53]. We use
the same KITTI Flow 2015 evaluation set utilized in the previous experiment.
To evaluate hand-crafted approaches, we use them to compute the descriptors at
test pixels in the reference image (for which ground truth correspondences are
available) and match the resulting descriptors against the descriptors computed
on the target image over a grid of 4 pixel spacing in both directions.

Figure 5 compares the resulting PCKs and shows that our HiLM (VGG-M)
outperforms UCN [16] for smaller thresholds (e.g. HiLM (VGG-M) with 43.26%
versus UCN with 29.38% @ 2 pixels). That difference in performance is not
the result of baseline shift since our GoogLeNet variant (same baseline network
as UCN) has similar or slightly better performance compared to our VGG-M
variant. The graph also indicates the relatively higher invariance of CNN-based
descriptors to local structure that allows them to obtain a higher percentage
of roughly-localized correspondences (e.g. UCN with 83.42%, HiLM (VGG-M)
with 85.08%, and HiLM (GoogLeNet) with 85.18%, all at 10 pixel threshold).

(a)

(c)

(b)

(d)

Fig. 6. Optical flow pipeline. (a) Input image. (b) Initial HiLM matches. (c) Filtered
matches after consistency checks and motion constraints. (d) After interpolation using
EpicFlow [45].
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Table 1. Quantitative results on KITTI Flow 2015. Following KITTI convention:
‘Fl-bl ’, ‘Fl-fg ’, and ‘Fl-all ’ represent the outlier percentage on background pixels, fore-
ground pixels and all pixels respectively. The methods are ranked by their ‘Fl-all ’ errors.
Bold numbers represent best results, while underlined numbers are second best ones.
Note that FlowNet2 [25] optimizes flow metric directly, while SDF [4] and SOF [50]
require semantic knowledge.

Method Fl-bg Fl-fg Fl-all

FlowNet2 [25] 10.75% 8.75% 10.41%

SDF [4] 8.61% 26.69% 11.62%

SOF [50] 14.63% 27.73% 16.81%

CNN-HPM [5] 18.33% 24.96% 19.44%

HiLM (Ours) 23.73% 21.79% 23.41%

SPM-BP [35] 24.06% 24.97% 24.21%

FullFlow [13] 23.09% 30.11% 24.26%

AutoScaler [58] 21.85% 31.62% 25.64%

EpicFlow [45] 25.81% 33.56% 27.10%

DeepFlow2 [59] 27.96% 35.28% 29.18%

PatchCollider [57] 30.60% 33.09% 31.01%

4.2 Optical Flow Experiments

In this section, we demonstrate the application of our geometric correspondences
for obtaining optical flows. We emphasize that the objective here is not to outper-
form methods that have been extensively engineered [4,25,50] for optical flows,
including minimizing flow metric (end-point error) directly, e.g. FlowNet2 [25].
Yet, we consider it useful to garner insights from flow benchmarks since the tasks
(i.e. geometric correspondence and optical flow) are conceptually similar.

Network Architecture. For dense optical flow estimation, we leverage
GoogLeNet [52] as our backbone architecture. However, at test time, we modify
the trained network to obtain dense per-pixel correspondences. To this end: (i)
we set the stride to 1 in the first convolutional and pooling layers (conv1 and
pool1 ), (ii) we set the kernel size of the first pooling layer (pool1 ) to 5 instead of
3, (iii) we set the dilation offset of the second convolutional layer (conv2 ) to 4,
and (iv) we set the stride of the second pooling layer (pool2 ) to 4. These changes
allow us to obtain our shallow feature maps at the same resolution as the input
images (W × H) and the deep feature maps at W/4 × H/4, and to obtain dense
per-pixel correspondences faster and with significantly fewer requirements on the
GPU memory as compared to an approach that would process the feature maps
at full resolution through all layers of the network.

Procedure. We first extract and match feature descriptors for every pixel in
the input images using our proposed method. These initial matches are usually
contaminated by outliers or incorrect matches. Therefore, we follow the protocol
of AutoScaler [58] for outlier removal. In particular, we enforce local motion
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constraints using a window of [−240, 240] × [−240, 240] and perform forward-
backward consistency checks with a threshold of 0 pixel. These filtered matches
are then fed to EpicFlow [45] interpolation for producing the final optical flow
output. Figure 6 illustrates an example of this procedure.

Fig. 7. Qualitative results on KITTI Flow 2015. First row: input images. Second row:
DeepFlow2 [59]. Third row: EpicFlow [45]. Forth row: SPM-BP [35]. Fifth row: HiLM.
Red colors mean high errors while blue colors mean low errors.

Quantitative Evaluation. We tabulate our quantitative evaluation results
on KITTI Flow 2015 in Table 1. As mentioned earlier, our objective is not nec-
essarily to obtain the best optical flow performance, rather we wish to empha-
size that we are able to provide high-quality interest point matches. In fact,
many recent works [4,50] focus on embedding rich domain priors at the level of
explicit object classes into their models, which allows them to make good guesses
when data is missing (e.g. due to occlusions, truncations, homogenous surfaces).
Yet, we are able to outperform several methods in our comparisons except [25]
for foreground pixels (i.e. by Fl-fg, HiLM with 21.79% versus other methods
with 24.96–35.28%, excluding [25] with 8.75%). As expected, we do not get as
good matches in regions of the image where relatively less structure is present
(e.g. background), and for such regions methods [4,50] employing strong prior
models have significant advantages. However, even on background regions, we
are able to either beat or perform on par with most of our competitors (i.e. by Fl-
bg, 23.73% versus 18.33–30.60%), including machinery proposed for optical flows
such as [13,45,59]. Overall, we outperform 6 state-of-the-art methods evaluated
in Table 1 (i.e. by Fl-all), including the multi-scale correspondence approach
of [58].

Qualitative Evaluation. We plot some qualitative results in Fig. 7, to con-
trast DeepFlow2 [59], EpicFlow [45], and SPM-BP [35] against our method. As
expected from the earlier discussion, we observe superior results for our method
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on the image regions belonging to the vehicles, because of strong local structures,
whereas for instance in first column (fourth row) SPM-BP [35] entirely fails on
the blue car. We observe errors in the estimates of our method largely in regions
which are occluded (surroundings of other cars) or truncated (lower portion of
the images), where the competing methods also have high errors.

4.3 3D Correspondence Experiments

To demonstrate the generality of our contributions to different data modalities,
we now consider an extension of our proposed method in Sect. 3 to 3D correspon-
dence estimation. In the following, we first present the details of our network
architecture and then discuss the results of our quantitative evaluation.
Network Architecture. We use 3DMatch [65] as our baseline architecture. We
insert two 3×3×3 convolutional layers (stride of 2 each) and one 5×5×5 pooling
layer (stride of 1) after the second convolutional layer of 3DMatch to obtain a
512-dimensional vector, which serves as the shallow feature descriptor. Our deep
feature descriptor is computed after the eighth convolutional layer in the same
manner as 3DMatch. Our hierarchical metric learning scheme again employs
two CCL losses (Sect. 3.1) for learning shallow and deep feature descriptors
simultaneously. We disable hard negative mining in this experiment to enable a
fair comparison with 3DMatch. Our network is implemented in Marvin [1] and
trained with stochastic gradient descent using a base learning rate of 10−3 for
137 K iterations on a TITAN XP GPU. We use pre-trained weights provided by
3DMatch to initialize the common layers in our network, which have a learn-
ing rate multiplier of 0.1, whereas the weights of the newly added layers are
initialized using Xavier’s method and have a learning rate multiplier of 1.0. We
generate correspondence data for training using the same procedure as 3DMatch.
Protocol. 3DMatch evalutes classification accuracy of putative correspon-
dences, using fixed keypoint locations and binary labels. Since our method
enables refinement with shallow features and hence shifts hypothesized corre-
spondence location in space, we define a protocol suitable to measure refine-
ment performance. We employ PCK as our evaluation metric, similar to 2D
experiments. We generate test data consisting of 10 K ground truth correspon-
dences using the procedure of 3DMatch. We use a region of 30 × 30 × 30 cm3

centered on the reference keypoint (in the reference “image”) following [65] to
compute the reference descriptor. This is matched against putative keypoints in
a 60×60×60 cm3 region (in the target “image”), to refine this coarse prior esti-
mate3. Specifically, we divide this region into subvolumes of 30×30×30 cm3 and
employ our hierarchical matching approach to exhaustively search4 for the sub-
volume whose descriptor is most similar to the reference descriptor. In particular,
once the coarse matching using deeper feature descriptors yields an approximate

3 In fact, the ground truth keypoint correspondence lies at the center of this region,
but this knowledge is not available to the method in any way.

4 We use a sampling gap of 3 cm along all three dimensions in searching for subvolumes
to reduce computational costs.
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location in the 60 × 60 × 60 cm3 region, we constrain the refinement by shallow
feature descriptors to a search radius of 15 cm around the approximate location
returned from the coarse matching.
Quantitative Evaluation. We compare our complete framework, namely,
HiLM (conv2+conv8 ) against variants which are trained with hierarchical met-
ric loss but rely either on deep or shallow features for matching (HiL (conv8 )
and HiL (conv2 ), respectively), and 3DMatch which use only deep features.
Figure 8 shows the PCK curves of all competing methods computed over 10K
test correspondences generated by the procedure of 3DMatch. From the results,
our shallow features trained with hierarchical metric learning are able to outper-
form their deep counterparts for most PCK thresholds (e.g. HiL (conv2 ) with
21.50% versus HiL (conv8 ) with 20.78% @ 9 cm). By utilizing both deep and
shallow features, our complete framework achieves higher PCK numbers than
its variants and outperforms 3DMatch across all PCK thresholds (e.g. HiLM
(conv2+conv8 ) with 24.36% versus 3DMatch with 22.04% @ 9 cm).
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Fig. 8. Accuracy of different CNN-based methods for 3D correspondence estimation.

5 Conclusion and Future Work

We draw inspiration from recent studies [64,68] as well as conventional intu-
itions about CNN architectures to enhance learned representations for dense 2D
and 3D geometric matching. Convolutional network architectures naturally learn
hierarchies of features, thus, a contrastive loss applied at a deep layer will return
features that are less sensitive to local image structure. We propose to remedy
this by employing features at multiple levels of the feature hierarchy for inter-
est point description. Further, we leverage recent ideas in deep supervision to
explicitly obtain task-relevant features at intermediate layers. Finally, we exploit
the receptive field growth for increasing layer depths as a proxy to replace con-
ventional coarse-to-fine image pyramid approaches for matching. We thoroughly
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evaluate these ideas realized as concrete network architectures, on challenging
benchmark datasets. Our evaluation on the task of explicit keypoint match-
ing outperforms hand-crafted descriptors, a state-of-the-art descriptor learning
approach [16], as well as various ablative baselines including hypercolumn-fusion
and topdown-fusion. Further, an evaluation for optical flow computation outper-
forms several competing methods even without extensive engineering or leverag-
ing higher-level semantic scene understanding. Finally, augmenting a recent 3D
descriptor learning framework [65] with our ideas yields performance improve-
ments, hinting at wider applicability. Our future work will explore applications
of our correspondences, such as flexible ground modeling [3,19,30] and geometric
registration [14,65].

References

1. Marvin: a minimalist GPU-only N-dimensional ConvNet framework. http://
marvin.is. Last accessed 2015 Nov 10

2. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A.,
Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol.
7577, pp. 214–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33783-3 16

3. Ansari, J.A., Sharma, S., Majumdar, A., Murthy, J.K., Krishna, K.M.: The earth
ain’t Flat: monocular reconstruction of vehicles on steep and graded roads from a
moving camera. In: ArXiv (2018)

4. Bai, M., Luo, W., Kundu, K., Urtasun, R.: Exploiting semantic information and
deep matching for optical flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9910, pp. 154–170. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46466-4 10

5. Bailer, C., Varanasi, K., Stricker, D.: CNN-based patch matching for optical flow
with thresholded hinge embedding loss. In: CVPR (2017)

6. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: HPatches: a benchmark and
evaluation of handcrafted and learned local descriptors. In: CVPR (2017)

7. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023 32

8. Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Frank Michel, S.G., Rother,
C.: DSAC - differentiable RANSAC for camera localization. In: CVPR (2017)

9. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in vari-
ational motion estimation. PAMI 33(3), 500–513 (2011)

10. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33783-3 44

11. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the
details: delving deep into convolutional nets. In: BMVC (2014)

12. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. PAMI (2017)

13. Chen, Q., Koltun, V.: Full flow: optical flow estimation by global optimization over
regular grids. In: CVPR (2016)

http://marvin.is
http://marvin.is
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-319-46466-4_10
https://doi.org/10.1007/978-3-319-46466-4_10
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/978-3-642-33783-3_44


848 M. E. Fathy et al.

14. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: CVPR
(2015)

15. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: CVPR (2005)

16. Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.: Universal correspondence
network. In: NIPS (2016)

17. Czarnowski, J., Leutenegger, S., Davison, A.J.: Semantic texture for robust dense
tracking. In: ICCVW (2017)

18. Dalal, N., Triggs, B.: Histogram of oriented gradients for human detection. In:
CVPR (2005)

19. Dhiman, V., Tran, Q.H., Corso, J.J., Chandraker, M.: A Continuous occlusion
model for road scene understanding. In: CVPR (2016)

20. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks.
In: ICCV (2015)

21. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. In: NIPS (2014)

22. Gadot, D., Wolf, L.: PatchBatch: a batch augmented loss for optical flow. In: CVPR
(2016)
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