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Abstract. Due to the rapid growth of multi-modal data, hashing meth-
ods for cross-modal retrieval have received considerable attention. How-
ever, finding content similarities between different modalities of data is
still challenging due to an existing heterogeneity gap. To further address
this problem, we propose an adversarial hashing network with an atten-
tion mechanism to enhance the measurement of content similarities by
selectively focusing on the informative parts of multi-modal data. The pro-
posed new deep adversarial network consists of three building blocks: (1)
the feature learning module to obtain the feature representations; (2) the
attention module to generate an attention mask, which is used to divide
the feature representations into the attended and unattended feature rep-
resentations; and (3) the hashing module to learn hash functions that
preserve the similarities between different modalities. In our framework,
the attention and hashing modules are trained in an adversarial way: the
attention module attempts to make the hashing module unable to pre-
serve the similarities of multi-modal data w.r.t. the unattended feature
representations, while the hashing module aims to preserve the similari-
ties of multi-modal data w.r.t. the attended and unattended feature repre-
sentations. Extensive evaluations on several benchmark datasets demon-
strate that the proposed method brings substantial improvements over
other state-of-the-art cross-modal hashing methods.

Keywords: Hashing · Adversarial learning · Attention mechanism
Cross modal retrieval

1 Introduction

Due to the rapid development of the Internet, different types of media data
are also growing rapidly, e.g., texts, images, and videos. Cross-modal retrieval,
which takes one type of data as the query and returns the relevant data of
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Fig. 1. Attention-aware deep adversarial hashing. To learn the attention masks, we
train the attention module and the hashing module in an adversarial way (II): (1) the
hashing module learns to preserve the similarities of multi-modal data, while (2) the
attention module attempts to generate attention masks that make the hashing module
unable to preserve the similarities of the unattended features.

another type, is increasingly receiving attention since it is a natural way to
search for multi-modal data. The solution methods can be roughly divided into
two categories [33]: real-valued representation learning and binary representation
learning. Because of the low storage cost and fast retrieval speed of the binary
representation, we only focus on cross-modal binary representation learning (i.e.,
hashing [17,31]) in this paper.

To date, various cross-modal hashing algorithms [3,8,15,19,36,40,41] have
been proposed for embedding correlations among different modalities of data.
In the cross-modal hashing procedure, feature extraction is considered the first
step for representing all modalities of data, and then, these multi-modal fea-
tures can be projected into a common Hamming space for future searches. Many
methods [8,40] use a shallow architecture for feature extraction. For example,
collective matrix factorization hashing (CMFH) [8] and semantic correlation
maximization (SCM) [40] use the hand-crafted features. Recently, deep learn-
ing has also been adopted for cross-modal hashing due to its powerful ability
to learn good representations of data. The representative work of deep-network-
based cross-modal hashing includes deep cross-modal hashing (DCMH) [15], deep
visual-semantic hashing (DVSH) [3], pairwise relationship guided deep hashing
(PRDH) [36], etc.

In parallel, the computational model of “attention”’ has drawn much interest
due to its impressive result in various applications, e.g., image caption [34]. It
is also desired for cross-modal retrieval problems. For example, as shown in
Fig. 1, given a query girl sits on donkey, if we can locate the more informative
regions in the image (e.g., the black regions), a higher degree of accuracy can be
obtained. To the best of our knowledge, the attention mechanism has not been
well-explored for cross-modal hashing.

In this paper, we propose an attention mechanism for cross-modal hashing.
The model first decides where (i.e., which region of multi-modal data) it should
attend to; then, the attended region should be favoured for retrieval. Based on
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this, an attention module is proposed to find the attended regions and a hashing
module is to learn the similarity-preserving hash functions. In the attention
module, the adaptive attention mask is generated for each data, which divides
the data into attended and unattended regions. Ideally, well-learned attention
masks should locate discriminative regions, which means that the unattended
regions of data are uninformative and difficult to preserve the similarities. Hence,
the attention module undergoes learning to make the hashing module unable to
preserve the similarities of the unattended regions of data. However, the learned
hash functions should preserve the similarities for both the attended (which can
be viewed as easy examples) and unattended (hard examples) regions of data to
enhance the robustness and performance. Thus, the hashing module undergoes
learning to preserve the similarities of both the unattended and attended regions
of data. Note that the attention module and the hashing module are trained in an
adversarial way: the attention module attempts to find the unattended regions in
which the hashing module fails to maintain the similarities, whereas the hashing
module aims to preserve the similarities of the multi-modal data.

A new deep adversarial hashing for cross-modal retrieval is illustrated in
Fig. 2. It consists of three major components: (1) a feature learning module
that uses CNN or MLP to extract high level semantic representations for the
multi-modal data; (2) an attention module that generates the adaptive attention
masks and divides the feature representations into the attended and unattended
feature representations; and (3) a hashing module that focuses on learning the
binary codes for the multi-modal data. The adversarial retrieval loss and the
cross-modal loss are proposed to obtain good attention masks and powerful hash
functions.

The main contributions of our work are three-fold. First, we propose an
attention-aware method for the cross-modal hashing problem. It is able to detect
the informative regions of multi-modal data, which is helpful for identifying
content similarities between different modalities of data. Second, we propose
a deep adversarial hashing for learning effective attention masks and compact
binary codes simultaneously. Third, we quantitatively evaluate the usefulness of
attention in cross-modal hashing, and our method yields better performances in
comparison with several state-of-the-art methods.

2 Related Work

2.1 Cross-Modal Hashing

According to the utilized information for learning the common representations,
cross-modal hashing can be categorized into three groups [33]: (1) the unsu-
pervised methods [29], (2) the pairwise-based methods [21,41] and (3) the
supervised methods [4,39]. The unsupervised methods only use co-occurrence
information to learn hash functions for multi-modal data. For instance, cross-
view hashing (CVH) [27] extends spectral hashing from uni-modal to multi-
modal scenarios. The pairwise-based methods use both the co-occurrence infor-
mation and similar/dissimilar pairs to learn the hash functions. Bronstein et
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al. [11] proposed cross-modal similarity sensitive hashing (CMSSH), which learns
the hash functions to ensure that if two samples (with different modalities)
are relevant/irrelevant, their corresponding binary codes are similar/dissimilar.
The supervised methods exploit label information to learn more discriminative
common representation. Semantic correlation maximization (SCM) [40] uses
a label vector to obtain the similarity matrix and reconstruct it through the
binary codes. Xu et al. [35] proposed discrete cross-modal hashing (DCH), which
directly learns discriminative binary codes with the discrete constraints. Most
of these works are based on hand-crafted features.

The deep learning with neural networks has shown that this approach can
effectively discover the correlations across different modalities. The deep cross-
modal hashing (DCMH) [15] integrates feature learning and hash-code learning
into the same framework. Cao et al. [3] proposed deep visual-semantic hash-
ing (DVSH), which utilizes both a convolutional neural network (CNN) and
long short-term memory (LSTM) to separately learn the common representa-
tions for each modality. Pairwise relationship guided deep hashing (PRDH) [36]
also adopts deep CNN models to learn feature representations and hash codes
simultaneously.

2.2 Generative Adversarial Network

Recently, generative adversarial networks (GANs) [10] have received a lot of
attention and achieved impressive results in various applications, including
image-to-image translation [42], image generation [1,23] and representation
learning [22,24]. GANs have also been applied to retrieval problem. IRGAN [32]
is a recently proposed method for information retrieval, in which the genera-
tive retrieval focuses on predicting relevant documents and the discriminative
retrieval focuses on predicting relevancy given a query document pair. IRGAN
is designed for uni-modal retrieval. While we focus on cross-modal retrieval in
this paper.

Very recently, Wang et al. [28] present an adversarial cross-modal retrieval
(ACMR) method to seek an effective common subspace based on adversarial
learning: the modality classifier distinguishes the samples in terms of their modal-
ities, and the feature projector generates modality-invariant representations that
confuse the modality classifier. Both the ACMR and the proposed method use
the adversarial learning, the main difference is that ACMR seeks to learn com-
mon subspace for the multi-modal data, while the adversarial learning in the
proposed method is tailored to explicitly handle the attention-aware networks
for cross-modal hashing. In addition, the ACMR falls into the category of real-
valued approaches, while our method belongs to binary approaches. Further, Li
et al. [18] present a self-supervised adversarial hashing (SSAH) for cross-modal
retrieval.

To the best of our knowledge, the attention mechanism has not been well-
explored for cross-modal hashing. The attention mechanism has been proved to
be very powerful in many applications, such as image classification [2], image
caption [34], image question answering [38], video action recognition [25] and
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Fig. 2. Overview of our method. Above is the image modality branch, and below is
the text modality branch. Each branch is divided into three parts: the feature learning
module (including EI and ET ), the attention module (GI and GT ) and the hash-
ing module (DI and DT ). The feature learning module maps the input multi-modal
data into the high-level feature representations. Then, the attention module learns the
attention masks to divide the features representations into the attended and unat-
tended features. Finally, the hashing module encodes all features into binary codes
and learn similarity-preserving hash functions. We train the attention module and the
hashing module alternately.

etc. Inspired by that, in this paper, we carefully design an attention-aware deep
adversarial hashing network for cross-modal hashing.

3 Deep Adversarial Hashing for Cross-Modal Retrieval

3.1 Problem Definition

Suppose there are n training samples, each of which is represented in several
modalities, e.g., audio, video, image, and text. In this paper, we only focus on
two modalities: text and image. Note that our method can be easily extended to
other modalities. We denote the training data as {Ii, Ti}ni=1, where Ii is the i-th
image and Ti is the corresponding text description of image Ii. We also have a
cross-modal similarity matrix S, where S(i, j) = 1 means that the i-th image
and the j-th text are similar, while S(i, j) = 0 means that they are dissimilar.
The goal of cross-modal hashing is to learn two mapping functions to transform
images and texts into a common binary codes space, in which the similarities
between the paired images and texts are preserved. For instance, if S(i, j) = 1,
the Hamming distance between the generated binary codes of the i-th image and
the j-th text should be small. When S(i, j) = 0, the Hamming distance between
them should be large.
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Fig. 3. The attention module. It first generates the attention masks ZI and ZT . Then,
each feature is divided into the attended and the unattended two parts.

3.2 Network Architecture

The proposed deep adversarial hashing network contains three components: (1)
the feature learning module to obtain the high-level representations of the multi-
modal data; (2) the attention module to generate the attention masks, and (3)
the hashing module to learn the similarity-preserving hash functions.

Feature Learning Module: EI and ET . For the image modality, a convolu-
tional neural network is used to obtain the high-level representation of images.
Specifically, we use VGGNet [26] to extract the image feature maps, i.e., conv5 4
in VGGNet. For representing text instances, we use a well-known bag-of-words
(BOW) vector. Then, we utilize the two-layer feed-forward neural network (BOW
→ 8192 → 1000) to obtain the semantic text features. Let f I

i = EI(Ii) and
fT
i = ET (Ti) denote the image feature maps and the text feature vector, respec-

tively.

Attention Module: GI and GT . With the powerful image feature maps f I and
the text feature vector fT , we first feed them into a one-layer neural network,
i.e., a convolutional layer with a 1 × 1 kernel size for image feature maps and
a fully connected layer for the text feature vector, followed by softmax and
threshold functions to generate the attention distribution over the regions of
the multi-modal data. Then, the attention masks are used to divide the feature
representations into the attended and unattended feature representations.

More specifically, the detailed pipeline for processing the image modality is
shown on the left side of Fig. 3. Suppose f I

i ∈ R
H×W×C represents the feature

maps for the i-th image, where H, W and C are the height, weight and channels,
respectively. In the first step, we first use a convolutional layer to compress the
feature maps f I

i to a matrix M I
i = Conv(f I

i ), where M I
i ∈ R

H×W . In the second
step, the matrix M I

i goes through a softmax layer, and the output is the probabil-
ity matrix P I

i . In the third step, we add a threshold layer to obtain the attention
mask, which is defined as



620 X. Zhang et al.

Fig. 4. The hashing module for image modality DI and text modality DT .

ZI
i (h,w) =

{
1 P I

i (h,w) ≥ α

0 P I
i (h,w) < α,

(1)

where α is a predefined threshold. We set α = 1
H×W in our experiment. The

output of the threshold layer is a binary mask. Based on the binary mask, we
can calculate the attended and unattended feature maps for the i-th image by
multiplying the binary mask in element-wise, which is formulated as

f̆ I
i (h,w, c) = ZI

i (h,w) × f I
i (h,w, c), (attended)

f̂ I
i (h,w, c) =

(
1 − ZI

i (h,w)
)

× f I
i (h,w, c), (unattended)

(2)

for all h,w and c. For ease of representation, we denote the whole procedures as
[f̆ I

i , f̂ I
i ] = GI(f I

i ).
For the text modality, we imitate the pipeline of the image modality, which

is shown on the right hand of Fig. 3:

MT
i = fc(fT

i ),

PT
i = softmax(MT

i ),

ZT
i = threshold(PT

i ),

f̆T
i (j) = ZT

i (j) × fT
i (j), (attended)

f̂T
i (j) =

(
1 − ZT

i (j)
)

× fT
i (j), (unattended)

(3)

where fc is a fully connected layer, and Z(j) is the j-th value of the vector Z.
We denote [f̆T

i , f̂T
i ] = GT (fT

i ) as the attended and unattended features for the
i-th text.

Directly taking the derivative of the threshold function is incompatible with
the back-propagation in training. To address this issue, we follow the idea pro-
posed in [7], which uses the straight-through estimator to propagate the gradients
of the threshold function.
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Hashing Module: DI and DT . For the image modality, since we adopt
VGGNet as our basic architecture, we also use the last fully connected lay-
ers, i.e., fc6 and fc7 1. Then, we add a fully connected layer with q dimensional
features and a tanh layer that restricts the values in the range [−1, 1] as shown
on the left side of Fig. 4. Let the outputs of the discriminator be (1) the attended
features HI

i = DI(f̆ I
i ) and (2) the unattended features ĤI

i = DI(f̂ I
i ).

For the text modality, we also add a fully connected layer and a tanh layer
to encode the text features into q bits as shown on the right side of Fig. 4. The
outputs are (1) the attended features HT

i = DT (f̆T
i ) and (2) the unattended

features ĤT
i = DT (f̂T

i ).

3.3 Hashing Objectives

Our objectives contain two terms: (1) the cross-modal retrieval loss that cor-
responds to learning to preserve the similarities between different modalities of
data and (2) the adversarial retrieval loss that corresponds to the hashing mod-
ule aiming to preserve the similarities of the unattended binary codes, while
the attention module tries to make the hashing module fails to maintain the
similarities of the unattended binary codes.

Cross-modal Retrieval Loss. The aim of the cross-modal loss function is to
keep the similarities between images and texts. The inter-modal ranking loss and
the intra-modal ranking loss are used to preserve the similarities. That is, the
hash codes from different modalities should preserve the semantic similarities,
and the hash codes from the same modality should also preserve the semantic
similarities. Hence, the cross-modal retrieval loss can be formulated as

min FT→I + FI→T + FI→I + FT→T , (4)

where the first two terms are used to preserve the semantic similarities between
different modalities, and the last two terms are used to preserve the similarities
in their own modality. The symbol A → B denotes the A modality is taken as
the query to retrieve the relevant data of the B modality, where A ∈ {T, I} and
B ∈ {T, I}. FA→B is the loss function for the A modality as the query and B
modality as the database, which is defined as

FA→B =
∑

〈i,j,k〉
max{0, ε + ||HA

i − HB
j || − ||HA

i − HB
k ||}

s.t. ∀〈i, j, k〉, S(i, j) > S(i, k),
(5)

where 〈i, j, k〉 is the triplet form and ε is the margin. The objective is the triplet
ranking loss [16], which shows effectiveness in the retrieval problem.

1 The last fully connected layer (i.e., fc8) is removed since it is for classification prob-
lems.
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Adversarial Retrieval Loss. Inspired by the impressive results of the genera-
tive adversarial network, we adopt it to generate the attention distributions and
learn the binary codes. Take the text → image as an example, which is also shown
in Fig. 1. Given a query HT

i , the hashing and the attention modules are trained
in an adversarial way: (1) the hashing module preserves the semantic similarity
between the query and the unattended features of the image modality, that is HT

i

is closer to ĤI
j than to ĤI

k when S(i, j) > S(i, k); (2) the attention module tries
to find the unattended regions of the images in which the hashing module fails to
preserve the similarities, that is HT

i is closer to ĤI
k but not to ĤI

j . The objective
can be defined as FT→Î =

∑
〈i,j,k〉 max{0, ε + ||HT

i − ĤI
j || − ||HT

i − ĤI
k ||}. The

hashing module tries to minimize the objective, while the attention module tries
to maximize it. The same process for the image → text. Thus, the loss can be
expressed as

FT→Î + FI→T̂ =
∑

〈i,j,k〉
max{0, ε + ||HT

i − ĤI
j || − ||HT

i − ĤI
k ||}

+
∑

〈i,j,k〉
max{0, ε + ||HI

i − ĤT
j || − ||HI

i − ĤT
k ||},

(6)

where ĤT and ĤI are the unattended features defined in Sect. 3.2. The first
term corresponds to taking the text modality as the query to retrieve the unat-
tended features of the image modality. The second term corresponds to the
image modality being taken as the query to retrieve the unattended features of
the text modality. GI , GT attempt to maximize the loss and DI ,DT to minimize
the objective:

min
DI ,DT

max
GI ,GT

FT→Î + FI→T̂ . (7)

Full Objective. Our full objective is

F(EI , ET , GI , GT ,DI ,DT ) = FT→Î + FI→T̂

+ FT→I + FI→T + FI→I + FT→T .

We train our model alternatively. The parameters in GI and GT are fixed,
while the other parameters are trained:

min
EI ,ET ,DI ,DT

F(EI , ET , GI , GT ,DI ,DT ). (8)

Then EI , ET ,DI , and DT are fixed and the attention models are updated:

max
GI ,GT

FT→Î + FI→T̂ . (9)

4 Experiments

In this section, we evaluate the performance of our proposed methods on three
datasets and compare it to the performance of several stage-of-the-art algo-
rithms.
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4.1 Experimental Settings

Datasets. We choose three benchmark datasets: IAPR TC-12 [9], MIR-Flickr
25K [13] and NUS-WIDE [6].

• IAPR TC-12 [9]: This dataset consists of 20,000 images taken from loca-
tions around the world. Each image is associated with a text caption, e.g., a
sentence. The image-text pairs are annotated using 255 labels. For the text
modality, each sentence is represented as a 2,912-dimensional bag-of-words
vector 2.

• MIR-Flickr 25K [13]: This dataset contains 25,000 multi-label images
downloaded from the Flickr 3 photo-sharing website. Each image is associated
with several textural tags. For a fair comparison, we follow the settings in [15]
to use the subset of the image-text pairs with at least 20 textual tags. For
the text modality, the textural tags are represented as a 1,386-dimensional
bag-of-words vector.

• NUS-WIDE [6]: This dataset consists of 269,648 images collected from
Flickr. Each image is associated with one or multiple textural tags in 81
semantic concepts. We evaluate the performance on 195,834 image-text pairs
belonging to the 21 most frequent labels, as suggested by [15]. The text is
represented as a 1,000-dimensional bag-of-words vector.

We follow the settings of DCMH [15] to construct the query sets, training
sets, and retrieval databases. The randomly sampled 2,000 image-text pairs are
constructed as the query set for IAPR TC-12 and MIR-Flickr 25K. For the
NUS-WIDE dataset, we randomly sample 2,100 image-text pairs as the query
set. For all datasets, the remaining image-text pairs are used as the databases
for retrieval. For all supervised methods, we also sample 10,000 pairs from the
retrieval set as the training set for IAPR TC-12 and MIR-Flickr 25K, as well as
10,500 pairs from the retrieval set as the training set for NUS-WIDE.

Note that the representations of text are not the focus of this paper. Since the
most related works, e.g., DCMH [15], use bag-of-words, we also use bag-of-words
for a fair comparison.

Implementation details. We implement our codes based on the open source
caffe [14] framework. In training, the networks are updated alternatively through
the stochastic gradient solver, i.e., ADAM (α = 0.0002, β1 = 0.5). We alter-
nate between four steps of optimizing E,D and one step of optimizing G. For
the image modality, the weights of VGGNet are initialized with the pre-trained
model that learns from the ImageNet dataset. For text modality, all parameters
are randomly initialized with a Gaussian with mean zero and standard deviation
0.01. The batch size is 64, and the total epoch is 100. The base learning rate is
0.005, and it is changed to one-tenth of the current value after every 20 epochs.
In testing, we use only the attended features of the data to construct the binary
codes.
2 We follow the settings of DCMH [15] for a fair comparison
3 www.flickr.com
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Fig. 5. Precision-recall curves on three datasets. The length of hash code is 16.

Evaluation Measures. To evaluate the performance of hashing models, we use
two metrics: the mean average precision (MAP) [20] and precision-recall curves.
The MAP is a standard evaluation metric for information retrieval.

4.2 Comparison with State-of-the-Art Methods

The first set of experiments is to evaluate the performance of the proposed
method and compare it with the performance of several state-of-the-art algo-
rithms 4: CCA [12], CMFH [40], SCM [8], SMTH [30], SePH [19], DCMH [15],
and PRDH [37]. The results of CCA, CMFH, SCM, STMH, SePH and DCMH are
directly cited from [15] published in CVPR17 5. Since the experimental settings
of PRDH in [37] are different from those of the proposed method, we carefully
implement PRDH using the same CNN network and the same settings for a fair
comparison.

The comparison results of the search accuracies on all three datasets are
shown in Table 1. We can see that our method outperforms other baselines and
achieves excellent performance. For example, on IAPR TC-12, the MAP of our
method is 0.5439, compared to the value of 0.5135 for the second best algorithm
(PRDH), on 64 bits when taking the image as the query to retrieve text. The
precision-recall curves are also shown in Fig. 5. It can be seen that our method
shows comparable performance to the existing baselines.
4 Note that IRGAN is designed for uni-modal retrieval. ACMR is a cross-modal

retrieval method that falls in the category of real-valued approaches. In this paper,
we only focus on cross-modal hashing.

5 Table 4 in http://openaccess.thecvf.com/content cvpr 2017/papers/Jiang Deep
Cross-Modal Hashing CVPR 2017 paper.pdf

http://openaccess.thecvf.com/content_cvpr_2017/papers/Jiang_Deep_Cross-Modal _Hashing_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Jiang_Deep_Cross-Modal _Hashing_CVPR_2017_paper.pdf
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Table 1. MAP of Hamming ranking w.r.t. different numbers of bits on three datasets.

Task IAPR TC-12 MIR-Flickr 25k NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Text ↓
Image

CCA 0.3493 0.3438 0.3378 0.5742 0.5713 0.5691 0.3731 0.3661 0.3613

CMFH 0.4168 0.4212 0.4277 0.6365 0.6399 0.6429 0.5031 0.5187 0.5225

SCM 0.3453 0.3410 0.3470 0.6939 0.7012 0.7060 0.5344 0.5412 0.5484

STMH 0.3687 0.3897 0.4044 0.6074 0.6153 0.6217 0.4471 0.4677 0.4780

SePH 0.4423 0.4562 0.4648 0.7216 0.7261 0.7319 0.5983 0.6025 0.6109

DCMH 0.5185 0.5378 0.5468 0.7827 0.7900 0.7932 0.6389 0.6511 0.6571

PRDH 0.5244 0.5434 0.5548 0.7890 0.7955 0.7964 0.6527 0.6916 0.6720

Ours 0.5358 0.5565 0.5648 0.7922 0.8062 0.8074 0.6789 0.6975 0.7039

Image
↓ Text

CCA 0.3422 0.3361 0.3300 0.5719 0.5693 0.5672 0.3742 0.3667 0.3617

CMFH 0.4189 0.4234 0.4251 0.6377 0.6418 0.6451 0.4900 0.5053 0.5097

SCM 0.3692 0.3666 0.3802 0.6851 0.6921 0.7003 0.5409 0.5485 0.5553

STMH 0.3775 0.4002 0.4130 0.6132 0.6219 0.6274 0.4710 0.4864 0.4942

SePH 0.4442 0.4563 0.4639 0.7123 0.7194 0.7232 0.6037 0.6136 0.6211

DCMH 0.4526 0.4732 0.4844 0.7410 0.7465 0.7485 0.5903 0.6031 0.6093

PRDH 0.5003 0.4935 0.5135 0.7499 0.7546 0.7612 0.6107 0.6302 0.6276

Ours 0.5293 0.5283 0.5439 0.7563 0.7719 0.7720 0.6403 0.6294 0.6520

Since the code of DVSH is not publicly available and it is difficult to
re-implement the complex algorithm, we utilize the same experimental settings
used in DVSH for our method. The results of DVSH are directly cited from [3]
for a fair comparison. The top-500 MAP results on IAPR TC-12 are shown in
Table 2. Moreover, we make a comparison with DCMH under the same settings.
Please note that DVSH adopts the LSTM recurrent neural network for text
representation, while DCMH and our method only use bag-of-words. From the
table, we can see that our methods can achieve better performance than the
baselines in most cases, even we use the weak representations of text.

Table 2. The comparison results w.r.t. the top-500 MAP on the IAPR TC-12 dataset.

Task Methods 16 bits 32 bits 64 bits

Text →Image DVSH 0.6037 0.6395 0.6806

DCMH 0.6594 0.6744 0.6905

Ours 0.7018 0.6893 0.6941

Image→Text DVSH 0.5696 0.6321 0.6964

DCMH 0.5780 0.6061 0.6310

Ours 0.6464 0.6373 0.6668

We also explore the effects of small network architecture in the feature learn-
ing module for the image modality since VGGNet is a large deep network. In
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Fig. 6. Some image and mask samples. The first line represents the original images,
the masks are shown in the second line, and the combinations are shown in the last
two lines.

Fig. 7. Different attention mechanisms.

Table 3. MAP on IAPR TC-12 dataset with different networks.

Task Networks 16 bits 32 bits 64 bits

Text → Image VGG 0.5358 0.5565 0.5648

CNN-F 0.5267 0.5459 0.5538

Image→ Text VGG 0.5293 0.5283 0.5439

CNN-F 0.5211 0.5168 0.5208

this experiment, we select CNN-F [5] as the basic network for the image modal-
ity. The comparison results are shown in Table 3. We can see that VGGNet
performs better than CNN-F while our method using CNN-F also achieves good
performance compared to other state-of-the-art baselines.

The main reason for the good performance of our method is that we can
obtain attended regions for the multi-modal data. Figure 6 shows some examples
of the image modality. Note that it is difficult to visualize the text modality (the
networks for the text modality are the fully connected layers instead of the CNN.
The order of words in the sentence are changed after going through the fully
connected layers), thus, we do not show the masks learned in the text network.

4.3 Comparison with Different Attention Mechanisms

In this section, we present an ablation study to clarify the impact of each part
of the attention modules on the final performance.

To provide an intuitive comparison of our method, we compare it with the
following baselines. In the first baseline, we do not use any attention mechanism
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as shown on the left side of Fig. 7. It is also the traditional deep cross-modal
hashing. In the second baseline, we only apply the visual attention mechanism as
seen in the middle of Fig. 7. Similarly, the last baseline is to explore the textural
attention mechanism as shown on the right side of Fig. 7. Note that all baselines,
as well as our method, use the same network. The only differences are the use
of the different attention mechanisms. These comparisons can show whether the
proposed attention mechanism can contribute to the accuracy.

Table 4 shows the comparison results with respect to the MAP. The results
show that our proposed attention mechanism can achieve better performance
than the baselines that are lacking attention mechanisms. The main reason for
this is that our method can focus on the most discriminative regions of the data.

Table 4. The comparison results for different attention mechanisms.

Task Attn. IAPR TC-12 MIR-Flickr 25k NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Text ↓
Image

No 0.5039 0.5250 0.5258 0.7758 0.7801 0.7742 0.6476 0.6824 0.6733

Visual 0.5294 0.5474 0.5576 0.7894 0.7925 0.7906 0.6723 0.6839 0.6984

Textual 0.5334 0.5382 0.5469 0.7885 0.7867 0.7831 0.6648 0.6851 0.6867

Both 0.5358 0.5565 0.5648 0.7922 0.8062 0.8074 0.6789 0.6975 0.7039

Image
↓ Text

No 0.4903 0.5001 0.5175 0.7347 0.7482 0.7495 0.6150 0.6178 0.6311

Visual 0.5267 0.5173 0.5285 0.7466 0.7601 0.7584 0.6314 0.6260 0.6425

Textual 0.5279 0.5232 0.5304 0.7520 0.7673 0.7717 0.6384 0.6227 0.6459

Both 0.5293 0.5283 0.5439 0.7563 0.7719 0.7720 0.6403 0.6294 0.6520

5 Conclusion

In this paper, we proposed a novel approach called deep adversarial hashing for
cross-modal hashing. The proposed method contains three major components: a
feature learning module, an attention module, and a hashing module. The fea-
ture learning module learns powerful representations for the multi-modal data.
The attention module and the hashing module are trained in an adversarial
way, in which the hashing module tries to minimize the similarity-preserving
loss functions, while the attention module aims to find the unattended regions
of data that maximize the retrieval loss. We performed our method on three
datasets, and the experimental results demonstrate the appealing performance
of our method.
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