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Abstract. Visual dialog entails answering a series of questions grounded
in an image, using dialog history as context. In addition to the challenges
found in visual question answering (VQA), which can be seen as one-
round dialog, visual dialog encompasses several more. We focus on one
such problem called visual coreference resolution that involves determin-
ing which words, typically noun phrases and pronouns, co-refer to the
same entity/object instance in an image. This is crucial, especially for
pronouns (e.g., ‘it ’), as the dialog agent must first link it to a previous
coreference (e.g., ‘boat’ ), and only then can rely on the visual grounding
of the coreference ‘boat’ to reason about the pronoun ‘it ’. Prior work
(in visual dialog) models visual coreference resolution either (a) implic-
itly via a memory network over history, or (b) at a coarse level for the
entire question; and not explicitly at a phrase level of granularity. In
this work, we propose a neural module network architecture for visual
dialog by introducing two novel modules—Refer and Exclude—that per-
form explicit, grounded, coreference resolution at a finer word level. We
demonstrate the effectiveness of our model on MNIST Dialog, a visually
simple yet coreference-wise complex dataset, by achieving near perfect
accuracy, and on VisDial, a large and challenging visual dialog dataset
on real images, where our model outperforms other approaches, and is
more interpretable, grounded, and consistent qualitatively.

1 Introduction

The task of Visual Dialog [11,40] involves building agents that ‘see’
(i.e.understand an image) and ‘talk’ (i.e.communicate this understanding in a
dialog). Specifically, it requires an agent to answer a sequence of questions about
an image, requiring it to reason about both the image and the past dialog his-
tory. For instance, in Fig. 1, to answer ‘What color is it?’, the agent needs to
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Fig. 1. Our model begins by grounding entities in the caption (C), boat (brown) and
dragon head (green), and stores them in a pool for future coreference resolution in
the dialog (right). When asked ‘Q1: Is the boat on water?’, it identifies that the boat
(known entity) and water (unknown entity) are crucial to answer the question. It then
grounds the novel entity water in the image (blue), but resolves boat by referring back
to the pool and reusing the available grounding from the caption, before proceeding
with further reasoning. Thus, our model explicitly resolves coreferences in visual dialog.

reason about the history to know what ‘it’ refers to and the image to find out the
color. This generalization of visual question answering (VQA) [6] to dialog takes
a step closer to real-world applications (aiding visually impaired users, intelli-
gent home assistants, natural language interfaces for robots) but simultaneously
introduces new modeling challenges at the intersection of vision and language.
The particular challenge we focus on in this paper is that of visual coreference
resolution in visual dialog. Specifically, we introduce a new model that performs
explicit visual coreference resolution and interpretable entity tracking in visual
dialog.

It has long been understood [16,31,44,46] that humans use coreferences, dif-
ferent phrases and short-hands such as pronouns, to refer to the same entity or
referent in a single text. In the context of visually grounded dialog, we are inter-
ested in referents which are in the image, e.g. an object or person. All phrases in
the dialog which refer to the same entity or referent in the image are called visual
coreferences. Such coreferences can be noun phrases such as ‘a dragon head’, ‘the
head’, or pronouns such as ‘it’ (Fig. 1). Especially when trying to answer a ques-
tion that contains an anaphora, for instance the pronoun ‘it’, which refers to its
full form (the antecedent) ‘a dragon head’, it is necessary to resolve the corefer-
ence on the language side and ground it to the underlying visual referent. More
specifically, to answer the question ‘What color is it?’ in Fig. 1, the model must
correctly identify which object ‘it’ refers to, in the given context. Notice that a
word or phrase can refer to different entities in different contexts, as is the case
with ‘it’ in this example. Our approach to explicitly resolve visual coreferences
is inspired from the functionality of variables or memory in a computer program.
In the same spirit as how one can refer back to the contents of variables at a later
time in a program without explicitly re-computing them, we propose a model
which can refer back to entities from previous rounds of dialog and reuse the
associated information; and in this way resolve coreferences.
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Prior work on VQA [2,13,28] has (understandably) largely ignored the prob-
lem of visual coreference resolution since individual questions asked in isolation
rarely contain coreferences. In fact, recent empirical studies [1,15,20,47] sug-
gest that today’s vision and language models seem to be exploiting dataset-level
statistics and perform poorly at grounding entities into the correct pixels. In
contrast, our work aims to explicitly reason over past dialog interactions by
referring back to previous references. This allows for increased interpretability
of the model. As the dialog progresses (Fig. 1), we can inspect the pool of entities
known to the model, and also visualize which entity a particular phrase in the
question has been resolved to. Moreover, our explicit entity tracking model has
benefits even in cases that may not strictly speaking require coreference resolu-
tion. For instance, by explicitly referring ‘dragon’ in Q3 (Fig. 1) back to a known
entity, the model is consistent with itself and (correctly) grounds the phrase in
the image. We believe such consistency in model outputs is a strongly desirable
property as we move towards human-machine interaction in dialog systems.

Our main technical contribution is a neural module network architecture for
visual dialog. Specifically, we propose two novel modules—Refer and Exclude—
that perform explicit, grounded, coreference resolution in visual dialog. In addi-
tion, we propose a novel way to handle captions using neural module networks at
a word-level granularity finer than a traditional sentence-level encoding. We show
quantitative benefits of these modules on a reasoning-wise complicated but visu-
ally simple MNIST dialog dataset [37], where achieve near perfect accuracy. On
the visually challenging VisDial dataset [11], our model not only outperforms
other approaches but also is more interpretable by construction and enables
word-level coreference resolution. Furthermore, we qualitatively show that our
model is (a) more interpretable (a user can inspect which entities were detected
and tracked as the dialog progresses, and which ones were referred to for answer-
ing a specific question), (b) more grounded (where the model looked to answer a
question in the dialog), (c) more consistent (same entities are considered across
rounds of dialog).

2 Related Work

We discuss: (a) existing approaches to visual dialog, (b) related tasks such as
visual grounding and coreference resolution, and (c) neural module networks.

Visual Dialog. Though the origins of visual dialog can be traced back to
[14,43], it was largely formalized by [11,40] who collected human annotated
datasets for the same. Specifically, [11] paired annotators to collect free-form
natural-language questions and answers, where the questioner was instructed to
ask questions to help them imagine the hidden scene (image) better. On the
other hand, dialogs from [40] are more goal driven and contain yes/no ques-
tions directed towards identifying a secret object in the image. The respective
follow up works used reinforcement learning techniques to solve this problem
[12,39]. Other approaches to visual dialog include transferring knowledge from
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a discriminatively trained model to a generative dialog model [27], using atten-
tion networks to solve visual coreferences [37], and more recently, a probabilistic
treatment of dialogs using conditional variational autoencoders [30]. Amongst
these, [37] is the closest to this work, while [27,30] are complementary. To solve
visual coreferences, [37] relies on global visual attentions used to answer previous
questions. They store these attention maps in a memory against keys based on
textual representations of the entire question and answer, along with the history.
In contrast, operating at a finer word-level granularity within each question, our
model can resolve different phrases of a question, and ground them to different
parts of the image, a core component in correctly understanding and grounding
coreferences. E.g., ‘A man and woman in a car. Q: Is he or she driving?’, which
requires resolving ‘he’ and ‘she’ individually to answer the question.

Grounding Language in Images and Video. Most works in this area focus
on the specific task of localizing a textual referential expression in the image [19,
22,29,32,35,41,46] or video [5,24,34,45]. Similar to these works, one component
of our model aims to localize words and phrases in the image. However, the key
difference is that if the phrase being grounded is an anaphora (e.g., ‘it’, ‘he’,
‘she’, etc.), our model first resolves it explicitly to a known entity, and then
grounds it by borrowing the referent’s visual grounding.

Coreference Resolution. The linguistic community defines coreference reso-
lution as the task of clustering phrases, such as noun phrases and pronouns,
which refer to the same entity in the world (see, for example, [8]). The task of
visual coreference resolution links the coreferences to an entity in the visual data.
For example, [33] links character mentions in TV show descriptions with their
occurrence in the video, while [22] links text phrases to objects in a 3D scene.
Different from these works, we predict a program for a given natural language
question about an image, which then tries to resolve any existing coreferences, to
then answer the question. An orthogonal direction is to generate language while
jointly grounding and resolving coreferences – e.g., [36] explore this for movie
descriptions. While out of scope for this work, it is an interesting direction for
future work in visual dialog, especially when generating questions.

Neural Module Networks. [4] are an elegant class of models where an
instance-specific architecture is composed from neural ‘modules’ (or building
blocks) that are shared across instances. The high-level idea is inspired by
‘options’ or sub-tasks in hierarchical RL. They have been shown to be success-
ful for visual question answering in real images and linguistic databases [3] and
for more complex reasoning tasks in synthetic datasets [18,21]. For this, [18,21]
learn program prediction and module parameters jointly, end-to-end. Within this
context, our work generalizes the formulation in [18] from VQA to visual dialog
by introducing a novel module to perform explicit visual coreference resolution.

3 Approach

Recall that visual dialog [11] involves answering a question Qt at the cur-
rent round t, given an image I, and the dialog history (including the image
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caption) H = ( C
︸︷︷︸

H0

, (Q1, A1)
︸ ︷︷ ︸

H1

, · · · , (Qt−1, At−1)
︸ ︷︷ ︸

Ht−1

), by ranking a list of 100 candi-

date answers At = {A
(1)
t , · · · , A

(100)
t }. As a key component for building better

visual dialog agents, our model explicitly resolves visual coreferences in the cur-
rent question, if any.

Fig. 2. Overview of our model architecture. The question Qt (orange bar) is encoded
along with the history H through a memory augmented question encoder, using which
a program (Refer Describe) is decoded. For each module in the program, an attention
αti over Qt is also predicted, used to compute the text feature xtxt. For Qt, attention
is over ‘it’ for Refer and ‘What color’ for Describe, respectively (orange bars with red
attention). Refer module uses the coreference pool Pref , a dictionary of all previously
seen entities with their visual groundings, resolves ‘it’, and borrows the referent’s visual
grounding (boat in this case). Finally, Describe extracts the ‘color’ to produce ct used
by a final decoder to pick the answer At from the candidate pool At.

Towards this end, our model first identifies relevant words or phrases in
the current question that refer to entities in the image (typically objects and
attributes). The model also predicts whether each of these has been mentioned
in the dialog so far. Next, if these are novel entities (unseen in the dialog history),
they are localized in the image before proceeding, and for seen entities, the model
predicts the (first) relevant coreference in the conversation history, and retrieves
its corresponding visual grounding. Therefore, as rounds of dialog progress, the
model collects unique entities and their corresponding visual groundings, and
uses this reference pool to resolve any coreferences in subsequent questions.

Our model has three broad components: (a) Program Generation (Sect. 3.3),
where a reasoning pathway, as dictated by a program, is predicted for the current
question Qt, (b) Program Execution (Sect. 3.4), where the predicted program
is executed by dynamically connecting neural modules [3,4,18] to produce a
context vector summarizing the semantic information required to answer Qt

from the context (I,H), and lastly, (c) Answer Decoding (Sect. 3.4), where the
context vector ct is used to obtain the final answer Ât. We begin with a general
characterization of neural modules used for VQA in Sect. 3.1 and then discuss our
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novel modules for coreference resolution (Sect. 3.2) with details of the reference
pool. After describing the inner working of the modules, we explain each of the
above three components of our model.

3.1 Neural Modules for Visual Question Answering

The main technical foundation of our model is the neural module network (NMN)
[4]. In this section, we briefly recap NMNs and more specifically, the attentional
modules from [18]. In the next section, we discuss novel modules we propose to
handle additional challenges in visual dialog.

For a module m, let xvis and xtxt be the input image and text embeddings,
respectively. In particular, the image embeddings xvis are spatial activation maps
of the image I from a convolutional neural network. The text embedding xtxt is
computed as a weighted sum of embeddings of words in the question Qt using the
soft attention weights α predicted by a program generator for module m (more
details in Sect. 3.3). Further, let {ai} be the set of nm single-channel spatial
maps corresponding to the spatial image embeddings, where nm is the number
of attention inputs to m. Denoting the module parameters with θm, a neural
module m is essentially a parametric function y = fm(xvis, xtxt, {ai}nm

i=1; θm).
The output from the module y can either be a spatial image attention map
(denoted by a) or a context vector (denoted by c), depending on the module.
The output spatial attention map a feeds into next level modules while a con-
text vector c is used to obtain the final answer At. The upper part of Table 1
lists modules we adopt from prior work, with their functional forms. We shortly
summarize their behavior. A Find module localizes objects or attributes by pro-
ducing an attention over the image. The Relocate module takes in an input
image attention and performs necessary spatial relocations to handle relation-
ships like ‘next to’, ‘in front of’, ‘beside’, etc.. Intersection or union of attention
maps can be obtained using And and Or, respectively. Finally, Describe, Exist,
and Count input an attention map to produce the context vector by describing
an attribute, checking for existence, or counting, respectively, in the given input
attention map. As noted in [18], these modules are designed and named for a
potential ‘atomic’ functionality. However, we do not enforce this explicitly and
let the modules discover their expected behavior by training in an end-to-end
manner.

3.2 Neural Modules for Coreference Resolution

We now introduce novel components and modules to handle visual dialog.

Reference Pool (Pref ). The role of the reference pool is to keep track of entities
seen so far in the dialog. Thus, we design Pref to be a dictionary of key-value
pairs (xtxt, a) for all the Find modules instantiated while answering previous
questions (Qi)t−1

i=1. Recall that Find localizes objects/attributes specified by xtxt,
and thus by storing each output attention map y, we now have access to all the
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Table 1. Neural modules used in our work for visual dialog, along with their inputs,
outputs, and function formulations. The upper portion contains modules from prior
work used for visual question answering, while the bottom portion lists our novel mod-
ules designed to handle additional challenges in visual dialog.

Name Inputs Output Function

Neural modules for VQA [18]

Find xvis, xtxt attention y = conv2(conv1(xvis � Wxtxt))

Relocate a, xvis, xtxt attention ỹ = W1sum(a � xvis)

y = conv2(conv1(xvis) � ỹ � W2xtxt)

And a1, a2 attention y = min{a1, a2}
Or a1, a2 attention y = max{a1, a2}
Exist a, xvis, xtxt context y = WT vec(a)

Describe a, xvis, xtxt context y = WT
1 (W2sum(a � xvis) � W3xtxt)

Count a, xvis, xtxt context y = WT
1 ([vec(a), max{a}, min{a}])

Neural modules for coreference resolution (Ours)

Not a attention y = normL1(1 − a)

Refer xtxt, Pref attention (see text for details, (3))

Exclude a, xvis, xtxt attention y = And[Find[xvis, xtxt], Not[a]]

entities mentioned so far in the dialog with their corresponding visual ground-
ings. Interestingly, even though xtxt and y are intermediate outputs from our
model, both are easily interpretable, making our reference pool a semantic dic-
tionary. To the best of our knowledge, our model is the first to attempt explicit,
interpretable coreference resolution in visual dialog. While [37] maintains a dic-
tionary similar to Pref , they do not consider word/entity level coreferences nor
do their keys lend similar interpretability as ours. With Pref = {(x(i)

p , a
(i)
p )}i as

input to Refer, we can now resolve references in Qt.

Refer Module. This novel module is responsible for resolving references in the
question Qt and ground them in the conversation history H. To enable grounding
in dialog history, we generalize the above formulation to give the module access
to a pool of references Pref of previously identified entities. Specifically, Refer
only takes the text embedding xtxt and the reference pool Pref as inputs, and
resolves the entity represented by xtxt in the form of a soft attention α over Qt.
in this section after introducing Pref . For the example shown in Fig. 2, α for
Refer attends to ‘it’, indicating the phrase it is trying to resolve.

At a high level, Refer treats xtxt as a ‘query’ and retrieves the most likely
match from Pref as measured by some similarity with respect to keys {x

(i)
p }i

in Pref . The associated image attention map of the best match is used as the
visual grounding for the phrase that needed resolution (i.e.‘it’ ). More concretely,
we first learn a scoring network which when given a query xtxt and a possible
candidate x

(i)
p , returns a scalar value si indicating how likely these text features

refer to the same entity (1). To enable Refer to consider the sequential nature
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of dialog when assessing a potential candidate, we additionally provide Δit, a
measure of the ‘distance’ of a candidate x

(i)
p from xtxt in the dialog history,

as input to the scoring network. Δit is formulated as the absolute difference
between the round of xtxt (current round t) and the round when x

(i)
p was first

mentioned. Collecting these scores from all the candidates, we apply a softmax
function to compute contributions s̃i from each entity in the pool (2). Finally,
we weigh the corresponding attention maps via these contributions to obtain the
visual grounding aout for xtxt (3).

si = MLP([xtxt, x
(i)
p ,Δit]) (1)

s̃i = Softmax(si) (2)

aout =
|Pref |
∑

i=1

s̃ia
(i)
p (3)

Not Module. Designed to focus on regions of the image not attended by the
input attention map a, it outputs y = normL1(1−a), where normL1(.) normalizes
the entries to sum to one. This module is used in Exclude, described next.

Exclude Module. To handle questions like ‘What other red things are present?’,
which seek other objects/attributes in the image than those specified by an
input attention map a, we introduce yet another novel module – Exclude. It
is constructed using Find, Not, and And modules as y = And[Find[xtxt, xvis],
Not[a]], where xtxt is the text feature input to the Exclude module, for example,
‘red things’. More explicitly, Find first localizes all objects instances/attributes
in the image. Next, we focus on regions of the image other than those specified
by a using Not[a]. Finally, the above two outputs are combined via And to obtain
the output y of the Exclude module.

3.3 Program Generation

A program specifies the network layout for the neural modules for a given ques-
tion Qt. Following [18], it is serialized through the reverse polish notation (RPN)
[9]. This serialization helps us convert a hard, structured prediction problem into
a more tractable sequence prediction problem. In other words, we need a pro-
gram predictor to output a series of module tokens in order, such that a valid
layout can be retrieved from it. There are two primary design considerations for
our predictor. First, in addition to the program, our predictor must also output
a soft attention αti, over the question Qt, for every module mi in the program.
This attention is responsible for the correct module instantiation in the current
context. For example, to answer the question ‘What color is the cat sitting next
to the dog?’, a Find module instance attending to ‘cat’ qualitatively serves a
different purpose than one attending to ‘dog’. This is implemented by using the
attention over Qt to compute the text embedding xtxt that is directly fed as an
input to the module during execution. Second, to decide whether an entity in
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Qt has been seen before in the conversation, it must be able to ‘peek’ into the
history H. Note that this is unique to our current problem and does not exist
in [18]. To this effect, we propose a novel augmentation of attentional recurrent
neural networks [7] with memory [42] to address both the requirements (Fig. 2).

The program generation proceeds as follows. First, each of the words in Qt

are embedded to give {wti}Ti=1, where T denotes the number of tokens in Qt. We
then use a question encoder, a multi-layer LSTM, to process wti’s, resulting in a
sequence of hidden states {ŵti}Ti=1 (4). Notice that the last hidden state hT is the
question encoding, which we denote with qt. Next, each piece of history (Hi)t−1

i=0

is processed in a similar way by a history encoder, which is a multi-layer LSTM
akin to the question encoder. This produces encodings (hi)t−1

i=0 (5) that serve as
memory units to help the program predictor ‘peek’ into the conversation history.
Using the question encoding qt, we attend over the history encodings (hi)t−1

i=0,
and obtain the history vector ĥt (6). The history-agnostic question encoding qt
is then fused with the history vector ĥt via a fully connected layer to give a
history-aware question encoding q̂t (7), which is fed into the program decoder.

Question Encoder

{ŵti} = LSTM({wti}) (4)
qt = ŵtT

History Memory

ĥi = LSTM(hi) (5)

βti = Softmax(qTt ĥi)

ĥt =
t−1
∑

i=0

βtiĥi (6)

q̂t = MLP([qt, ĥt]) (7)

Program Decoder

ũ
(j)
ti = Linear([ŵtj , dti])

u
(j)
ti = vT tanh(ũ(j)

ti )

α
(j)
ti = Softmax(u(j)

ti )

eti =
T

∑

j=1

α
(j)
ti ŵtj (8)

ẽti = MLP([eti, dti]) (9)

p(mi|{mk}i−1
k=1, Qt,H) = Softmax(ẽti) (10)

The decoder is another multi-layer LSTM network (with hidden states {dti})
which, at every time step i, produces a soft attention map αti over the input



Visual Coreference Resolution in Visual Dialog 169

sequence (Qt) [7]. This soft attention map for each module is used to compute the
corresponding text embedding, xtxt =

∑

j α
(j)
ti wtj . Finally, to predict a module

token mi at time step i, a weighted sum of encoder hidden states eti (8) and the
history-aware question vector q̂t are combined via another fully-connected layer
(9), followed by a softmax to give a distribution P (mi|{mk}i−1

k=1, Qt,H) over the
module tokens (10). During training, we minimize the cross-entropy loss Lprog

Q

between this predicted distribution and the ground truth program tokens. Fig.
2 outlines the schematics of our program generator.

Modules on Captions. As the image caption C is also a part of the dialog
(history H0 at round 0), it is desirable to track entities from C via the coref-
erence pool Pref . To this effect, we propose a novel extension of neural module
networks to captions by using an auxiliary task that checks the alignment of a
(caption, image) pair. First, we learn to predict a program from C, different from
those generated from Qt, by minimizing the negative log-likelihood Lprog

C , akin
to Lprog

Q , of the ground truth caption program. Next, we execute the caption
program on two images I+ = I and I− (a random image from the dataset), to
produce caption context vectors c+C and c−

C , respectively. Note that c+C and c−
C

are different from the context vector ct produced from execution of the question
program. Finally, we learn a binary classifier on top to output classes +1/ − 1
for c+C and c−

C , respectively, by minimizing the binary cross entropy loss Laux
C .

The intuition behind the auxiliary task is: to rightly classify aligned (C, I+) from
misaligned (C, I−), the modules will need to localize and focus on salient enti-
ties in the caption. These entities (specifically, outputs from Find in the caption
program) are then collected in Pref for explicit coreference resolution on Qt.

Entities in Answers. Using an analogous argument as above, answers from the
previous rounds {Ai}t−1

i=1 could have entities necessary to resolve coreferences in
Qt. For example, ‘Q: What is the boy holding? A: A ball. Q: What color is it?’
requires resolving ‘it’ with the ‘ball’ mentioned in the earlier answer. To achieve
this, at the end of round t − 1, we encode Ht−1 = (Qt−1, At−1) as href

t using a
multi-layer LSTM, obtain the last image attention map a fed to the last module
in the program that produced the context vector ct, and add (href , a) as an
additional candidate to the reference pool Pref . Notice that href contains the
information about the answer At−1 in the context of the question Qt−1, while a
denotes the image attention which was the last crucial step in arriving at At−1

in the earlier round. In resolving coreferences in Qt, if any, all the answers from
previous rounds now become potential candidates by virtue of being in Pref .

3.4 Other Model Components

Program Execution. This component takes the generated program and asso-
ciated text features xtxt for each participating module, and executes it. To do so,
we first deserialize the given program from its RPN to a hierarchical module lay-
out. Next, we arrange the modules dynamically according to the layout, giving
us the network to answer Qt. At this point, the network is a simple feed-forward
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neural network, where we start the computation from the leaf modules and feed
outputs activations from modules at one layer as inputs into modules at the next
layer (see Fig. 2). Finally, we feed a context vector ct produced from the last
module into the next answer decoding component.

Answer Decoding. This is the last component of our model that uses the
context vector ct to score answers from a pool of candidates At, based on their
correctness. The answer decoder: (a) encodes each candidate A

(i)
t ∈ At with a

multi-layer LSTM to obtain o
(i)
t , (b) computes a score via a dot product with

the context vector, i.e., cTt o
(i)
t , and (c) applies a softmax activation to get a

distribution over the candidates. During training, we minimize the negative log-
likelihood Ldec

A of the ground truth answer Agt
t . At test time, the candidate

with the maximum score is picked as At. Using nomenclature from [11], this is a
discriminative decoder. Note that our approach is not limited to a discriminative
decoder, but can also be used with a generative decoder (see supplement).

Training Details. Our model components have fully differentiable operations
within them. Thus, to train our model, we combine the supervised loss terms
from both program generation {Lprog

Q ,Lprog
C ,Laux

C } and answer decoding {Ldec
A },

and minimize the sum total loss Ltotal.

4 Experiments

We first show results on the synthetic MNIST Dialog dataset [37], designed to
contain complex coreferences across rounds while being relatively easy textually
and visually. It is important to resolve these coreferences accurately in order
to do well on this dataset, thus stress testing our model. We then experiment
with a large visual dialog dataset on real images, VisDial [11], which offers both
linguistic and perceptual challenge in resolving visual coreferences and grounding
them in the image. Implementation details are in the supplement.

4.1 MNIST Dialog Dataset

Dataset. The dialogs in the MNIST dialog dataset [37] are grounded in images
composed from a 4 × 4 grid of MNIST digits [23]. Digits in the grid have four
attributes—digit class (0 − 9), color, stroke, and background color. Each dia-
log has 10 question-answer pairs, where the questions are generated through
language templates, and the answers are single words. Further, the questions
are designed to query attributes of target digit(s), count digits with similar
attributes, etc., all of which need tracking of the target digits(s) by resolving
references across dialog rounds. Thus, coreference resolution plays a crucial part
in the reasoning required to answer the question, making the MNIST dataset
both interesting and challenging (Fig. 3). The dataset contains 30k training, 10k
validation, and 10k test images, with three 10-round dialogs for each image.

Models and Baselines. Taking advantage of single-word answers in this
dataset, we simplify our answer decoder to be a N -way classifier, where N is
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Table 2. Answer accuracy on MNIST Dialog dataset. Higher the better. Our
CorefNMNoutperforms all other models with a near perfect accuracy on test set.

Model Acc.

I [37] 20.2

Q [37] 36.6

AMEM\Seq [37] 89.2

AMEM [37] 96.4

NMN [18] 23.8

CorefNMN\Seq 88.7

CorefNMN 99.3

Fig. 3. Illustration of explicit coreference resolution reasoning of our model on the
MNIST dialog dataset. For each question, a program and corresponding attentions
(α’s) over question words (hot matrix on the left) is predicted. A layout is unpacked
from the program, and modules are connected to form a feed-forward network used to
answer the question, shown in green to indicate correctness. We also visualize output
attention maps (right) from each participating module. Specifically, in Q1 and Q2,
Find localizes all violet digits and 4’s, respectively (indicated by the corresponding α).
In Q2, Refer resolves ‘them’ and borrows the visual grounding from previous question.

the number of possible answers. Specifically, the context vector ct now passes
through a fully connected layer of size N , followed by softmax activations to give
us a distribution over possible answer classes. At training time, we minimize the
cross-entropy Ldec

A of the predicted answer distribution with the ground truth
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answer, at every round. Note that single-word answers also simplify evaluation
as answer accuracy can now be used to compare different models. We further
simplify our model by removing the memory augmentation to the program gen-
erator, i.e., q̂t = qt (7), and denote it as CorefNMN. In addition to the full model,
we also evaluate an ablation, CorefNMN\Seq, without Δit that additionally cap-
tured sequential nature of dialog (see Refer description). We compete against
the explicit reasoning model (NMN) [18] and a comprehensive set of baselines
AMEM, image-only (I), and question-only (Q), all from [37].

Supervision. In addition to the ground truth answer, we also need program
supervision for questions to learn the program generation. For each of the 5
‘types’ of questions, we manually create one program which we apply as supervi-
sion for all questions of the corresponding type. The type of question is provided
with the question. Note that our model needs program supervision only while
training, and uses predictions from program generator at test time.

Results. Table 2 shows the results on MNIST dataset. The following are the
key observations: (a) The text-only Q (36.6%) and image-only I (20.2%) do not
perform well, perhaps as expected as MNIST Dialog needs resolving strong coref-
erences to arrive at the correct answer. For the same reason, NMN [18] has a
low accuracy of 23.8%. Interestingly, Q outperforms NMN by around 13% (both
use question and image, but not history), possibly due to the explicit reason-
ing nature of NMN prohibiting it from capturing the statistic dataset priors.
(b) Our CorefNMN outperforms all other models with near perfect accuracy of
99.3%. Examining the failure cases reveals that most of the mistakes made by
CorefNMN was due to misclassifying qualitatively hard examples from the origi-
nal MNIST dataset. (c) Factoring the sequential nature of the dialog additionally
in the model is beneficial, as indicated by the 10.6% improvement in CorefNMN,
and 7.2% in AMEM. Intuitively, phrases with multiple potential referents, more
often than not, refer to the most recent referent, as seen in Fig. 1, where ‘it’
has to be resolved to the closest referent in history. Figure 3 shows a qualitative
example.

4.2 VisDial Dataset

Dataset. The VisDial dataset [11] is a crowd-sourced dialog dataset on COCO
images [25], with free-form answers. The publicly available VisDial v0.9 contains
10-round dialogs on around 83k training images, and 40k validation images.
VisDial was collected from pairs of human workers, by instructing one of them
to ask questions in a live chat interface to help them imagine the scene better.
Thus, the dialogs contain a lot of coreferences in natural language, which need
to be resolved to answer the questions accurately.

Models and Baselines. In addition to the CorefNMN model described in
Sect. 3, we also consider ablations without the memory network augmented
program generator (CorefNMN\Mem) or the auxiliary loss Laux

C to train mod-
ules on captions (CorefNMN\Laux

C ), and without both (CorefNMN\Mem\Laux
C ).
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As strong baselines, we consider: (a) neural module network without history
[18] with answer generation, (b) the best discriminative model based on mem-
ory networks MN-QIH-D from [11], (c) history-conditioned image attentive
encoder (HCIAE-D-MLE) [26], and (d) Attention-based visual coreference model
(AMEM+SEQ-QI) [37]. We use ImageNet pretrained VGG-16 [38] to extract
xvis, and also ResNet-152 [17] for CorefNMN. Further comparisons are in sup-
plement.

Evaluation. Evaluation in visual dialog is via retrieval of the ground truth
answer Agt

t from a pool of 100 candidate answers At = {A
(1)
t , · · · A(100)

t }.
These candidates are ranked based the discriminative decoder scores. We report
Recall@k for k = {1, 5, 10}, mean rank, and mean reciprocal rank (MRR), as
suggested by [11], on the set of 40k validation images (there is not test available
for v0.9).

Supervision. In addition to the ground truth answer Agt
t at each round, our

model gets program supervision for Qt, to train the program generator. We
automatically obtain (weak) program supervision from a language parser on
questions (and captions) [19] and supervision to predict for Refer from an off-
the-shelf text coreference resolution tool1, based on [10]. For questions that are
a part of coreference chain, we replace Find with Refer in the parser supervised
program. Our model predicts everything from the questions at test time.

Results. We summarize our observations from Table 3 below: (a) Our
CorefNMN outperforms all other approaches across all the metrics, highlight-
ing the importance of explicitly resolving coreferences for visual dialog. Specif-
ically, our R@k (k = 1, 2, 5) is at least 1 point higher than the best prior work

Table 3. Retrieval performance on the validation set of VisDial dataset [11] (discrim-
inative models) using VGG [38] features (except last row). Higher the better for mean
reciprocal rank (MRR) and recall@k (R@1, R@5, R@10), while lower the better for
mean rank. Our CorefNMNmodel outperforms all other models across all metrics.

Model MRR R@1 R@5 R@10 Mean

MN-QIH-D [11] 0.597 45.55 76.22 85.37 5.46

HCIAE-D-MLE [27] 0.614 47.73 77.50 86.35 5.15

AMEM+SEQ-QI [37] 0.623 48.53 78.66 87.43 4.86

NMN[18] 0.616 48.24 77.54 86.75 4.98

CorefNMN\Mem 0.618 48.56 77.76 86.95 4.92

CorefNMN\Laux
C 0.636 50.49 79.56 88.30 4.60

CorefNMN\Mem\Laux
C 0.617 48.47 77.54 86.77 4.99

CorefNMN 0.636 50.24 79.81 88.51 4.53

CorefNMN(ResNet-152) 0.641 50.92 80.18 88.81 4.45

1 https://github.com/huggingface/neuralcoref

https://github.com/huggingface/neuralcoref
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(AMEM+SEQ-QI), and almost 2 points higher than NMN. (b) Removing mem-
ory augmentation (CorefNMN\Mem) hurts performance uniformly over all met-
rics, as the model is unable to peek into history to decide when to resolve coref-
erences via the Refer module. Modules on captions seems to have varied effect
on the full model, with decrease in R@1, but marginal increase or no effect in
other metrics. (c) Fig. 4 illustrates the interpretable and grounded nature of our
model.

Fig. 4. Example to demonstrate explicit coreference resolution by our
CorefNMNmodel. It begins by grounding ‘dragon head’ from the caption C (shown
on top), and saves it in the coreference pool Pref (right). At this point however, it
does not consider the entity ‘boat’ important, and misses it. Next, to answer Q1,
it localizes ‘boat’ and ‘water’, both of which are ‘unseen’, and rightly answers with
Yes. The ground truth rank (1 for Q1) is shown in the brackets. Additionally, it also
registers these two entities in Pref for coreference resolution in future dialog. For Q2,
it refers the phrase ‘the head’ to the referent registered as C-1, indicated by attention
on the bar above Refer.

5 Conclusions

We introduced a novel model2 for visual dialog based on neural module net-
works that provides an introspective reasoning about visual coreferences. It
2 Code: https://github.com/facebookresearch/corefnmn/

https://github.com/facebookresearch/corefnmn/
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explicitly links coreferences and grounds them in the image at a word-level,
rather than implicitly or at a sentence-level, as in prior visual dialog work. Our
CorefNMN outperforms prior work on both the MNIST dialog dataset (close
to perfect accuracy), and on VisDial dataset, while being more interpretable,
grounded, and consistent by construction.
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