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Abstract. Modern CNN-based object detectors rely on bounding box
regression and non-maximum suppression to localize objects. While the
probabilities for class labels naturally reflect classification confidence,
localization confidence is absent. This makes properly localized bound-
ing boxes degenerate during iterative regression or even suppressed dur-
ing NMS. In the paper we propose IoU-Net learning to predict the IoU
between each detected bounding box and the matched ground-truth. The
network acquires this confidence of localization, which improves the NMS
procedure by preserving accurately localized bounding boxes. Further-
more, an optimization-based bounding box refinement method is pro-
posed, where the predicted IoU is formulated as the objective. Extensive
experiments on the MS-COCO dataset show the effectiveness of [oU-Net,
as well as its compatibility with and adaptivity to several state-of-the-art
object detectors.
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1 Introduction

Object detection serves as a prerequisite for a broad set of downstream vision
applications, such as instance segmentation [18,19], human skeleton [26], face
recognition [25] and high-level object-based reasoning [29]. Object detection com-
bines both object classification and object localization. A majority of modern
object detectors are based on two-stage frameworks [7-9,15,21], in which object

B. Jiang, R. Luo and J. Mao—Equal contribution.

© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11218, pp. 816-832, 2018.
https://doi.org/10.1007/978-3-030-01264-9_48


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01264-9_48&domain=pdf

Acquisition of Localization Confidence for Accurate Object Detection 817

detection is formulated as a multi-task learning problem: (1) distinguish fore-
ground object proposals from background and assign them with proper class
labels; (2) regress a set of coefficients which localize the object by maximizing
intersection-over-union (IoU) or other metrics between detection results and the
ground-truth. Finally, redundant bounding boxes (duplicated detections on the
same object) are removed by a non-maximum suppression (NMS) procedure.
Classification and localization are solved differently in such detection
pipeline. Specifically, given a proposal, while the probability for each class label
naturally acts as an “classification confidence” of the proposal, the bounding box
regression module finds the optimal transformation for the proposal to best fit
the ground-truth. However, the “localization confidence” is absent in the loop.
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(a) Demonstrative cases of the misalignment between classification confidence and localiza-
tion accuracy. The yellow bounding boxes denote the ground-truth, while the red and green
bounding boxes are both detection results yielded by FPN [16]. Localization confidence is
computed by the proposed IoU-Net. Using classification confidence as the ranking metric
will cause accurately localized bounding boxes (in green) being incorrectly eliminated in
the traditional NMS procedure. Quantitative analysis is provided in Section 2.1

Iterations

I:l Detection

Ground-truth Optimization-based Bounding Box Refine (Ours)

(b) Demonstrative cases of the non-monotonic localization in iterative bounding box
regression. Quantitative analysis is provided in Section 2.2.

Fig. 1. Visualization on two drawbacks brought by the absence of localization confi-
dence. Examples are selected from MS-COCO minival [16]. (Color figure online)

This brings about two drawbacks. (1) First, the suppression of duplicated
detections is ignorant of the localization accuracy while the classification scores
are typically used as the metric for ranking the proposals. In Fig. 1(a), we show
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a set of cases where the detected bounding boxes with higher classification con-
fidences contrarily have smaller overlaps with the corresponding ground-truth.
Analog to Gresham’s saying that bad money drives out good, the misalignment
between classification confidence and localization accuracy may lead to accu-
rately localized bounding boxes being suppressed by less accurate ones in the
NMS procedure. (2) Second, the absence of localization confidence makes the
widely-adopted bounding box regression less interpretable. As an example, pre-
vious works [3] report the non-monotonicity of iterative bounding box regres-
sion. That is, bounding box regression may degenerate the localization of input
bounding boxes if applied for multiple times (shown as Fig. 1(b)).

In this paper we introduce IoU-Net, which predicts the IoU between detected
bounding boxes and their corresponding ground-truth boxes, making the net-
works aware of the localization criterion analog to the classification module.
This simple coefficient provides us with new solutions to the aforementioned
problems:

1. ToU is a natural criterion for localization accuracy. We can replace classifica-
tion confidence with the predicted IoU as the ranking keyword in NMS. This
technique, namely IoU-guided NMS, help to eliminate the suppression failure
caused by the misleading classification confidences.

2. We present an optimization-based bounding box refinement procedure on par
with the traditional regression-based methods. During the inference, the pre-
dicted IoU is used as the optimization objective, as well as an interpretable
indicator of the localization confidence. The proposed Precise Rol Pooling
layer enables us to solve the IoU optimization by gradient ascent. We show
that compared with the regression-based method, the optimization-based
bounding box refinement empirically provides a monotonic improvement on
the localization accuracy. The method is fully compatible with and can be
integrated into various CNN-based detectors [3,9,15].

2 Delving into Object Localization

First of all, we explore two drawbacks in object localization: the misalign-
ment between classification confidence and localization accuracy and the non-
monotonic bounding box regression. A standard FPN [15] detector is trained on
MS-COCO trainval35k as the baseline and tested on minival for the study.

2.1 Misaligned Classification and Localization Accuracy

With the objective to remove duplicated bounding boxes, NMS has been an indis-
pensable component in most object detectors since [4]. NMS works in an iterative
manner. At each iteration, the bounding box with the maximum classification
confidence is selected and its neighboring boxes are eliminated using a predefined
overlapping threshold. In Soft-NMS [2] algorithm, box elimination is replaced by
the decrement of confidence, leading to a higher recall. Recently, a set of learning-
based algorithms have been proposed as alternatives to the parameter-free NMS
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Fig. 2. The correlation between the IoU of bounding boxes with the matched ground-
truth and the classification/localization confidence. Considering detected bounding
boxes having an IoU (>0.5) with the corresponding ground-truth, the Pearson correla-
tion coefficients are: (a) 0.217, and (b) 0.617. (a) The classification confidence indicates
the category of a bounding box, but cannot be interpreted as the localization accuracy.
(b) To resolve the issue, we propose IoU-Net to predict the localization confidence for
each detected bounding box, i.e., its IoU with corresponding ground-truth.

and Soft-NMS. [23] calculates an overlap matrix of all bounding boxes and per-
forms affinity propagation clustering to select exemplars of clusters as the final
detection results. [10] proposes the GossipNet, a post-processing network trained
for NMS based on bounding boxes and the classification confidence. [11] proposes
an end-to-end network learning the relation between detected bounding boxes.
However, these parameter-based methods require more computational resources
which limits their real-world application.

In the widely-adopted NMS approach, the classification confidence is used
for ranking bounding boxes, which can be problematic. We visualize the distri-
bution of classification confidences of all detected bounding boxes before NMS,
as shown in Fig.2(a). The x-axis is the IoU between the detected box and its
matched ground-truth, while the y-axis denotes its classification confidence. The
Pearson correlation coefficient indicates that the localization accuracy is not well
correlated with the classification confidence.

We attribute this to the objective used by most of the CNN-based object
detectors in distinguishing foreground (positive) samples from background (neg-
ative) samples. A detected bounding box boxget is considered positive during
training if its IoU with one of the ground-truth bounding box is greater than a
threshold (2;,.4;n. This objective can be misaligned with the localization accu-
racy. Figure 1(a) shows cases where bounding boxes having higher classification
confidence have poorer localization.

Recall that in traditional NMS, when there exists duplicated detections for
a single object, the bounding box with maximum classification confidence will
be preserved. However, due to the misalignment, the bounding box with bet-
ter localization will probably get suppressed during the NMS, leading to the
poor localization of objects. Figure 3 quantitatively shows the number of posi-
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Fig. 3. The number of positive bounding boxes after the NMS, grouped by their loU
with the matched ground-truth. In traditional NMS (blue bar), a significant portion of
accurately localized bounding boxes get mistakenly suppressed due to the misalignment
of classification confidence and localization accuracy, while IoU-guided NMS (yellow
bar) preserves more accurately localized bounding boxes. (Color figure online)

tive bounding boxes after NMS. The bounding boxes are grouped by their IoU
with the matched ground-truth. For multiple detections matched with the same
ground-truth, only the one with the highest score is considered positive. There-
fore, No-NMS could be considered as the upper-bound for the number of positive
bounding boxes. We can see that the absence of localization confidence makes
more than half of detected bounding boxes with IoU >0.9 being suppressed in
the traditional NMS procedure, which degrades the localization quality of the
detection results.

2.2 Non-monotonic Bounding Box Regression

In general, single object localization can be classified into two categories: bound-
ing box-based methods and segment-based methods. The segment-based meth-
ods [9,12,18,19] aim to generate a pixel-level segment for each instance but
inevitably require additional segmentation annotation. This work focuses on the
bounding box-based methods.

Single object localization is usually formulated as a bounding box regression
task. The core idea is that a network directly learns to transform (i.e., scale
or shift) a bounding box to its designated target. In [7,8] linear regression or
fully-connected layer is applied to refine the localization of object proposals gen-
erated by external pre-processing modules (e.g., Selective Search [27] or Edge-
Boxes [32]). Faster R-CNN [22] proposes region proposal network (RPN) in which
only predefined anchors are used to train an end-to-end object detector. [13,31]
utilize anchor-free, fully-convolutional networks to handle object scale variation.
Meanwhile, Repulsion Loss is proposed in [28] to robustly detect objects with
crowd occlusion. Due to its effectiveness and simplicity, bounding box regression
has become an essential component in most CNN-based detectors.
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Fig. 4. Optimization-based v.s. Regression-based BBox refinement. (a) Compari-
son in FPN. When applying the regression iteratively, the AP of detection results
firstly get improved but drops quickly in later iterations. (b) Comparison in Cascade
R-CNN. Iteration 0, 1 and 2 represents the 1st, 2nd and 3rd regression stages in Cascade
R-CNN. For iteration i > 3, we refine the bounding boxes with the regressor of the
third stage. After multiple iteration, AP slightly drops, while the optimization-based
method further improves the AP by 0.8%.

A broad set of downstream applications such as tracking and recognition
will benefit from accurately localized bounding boxes. This raises the demand
for improving localization accuracy. In a series of object detectors [5,6,20,30],
refined boxes will be fed to the bounding box regressor again and go through
the refinement for another time. This procedure is performed for several times,
namely iterative bounding box regression. Faster R-CNN [22] first performs the
bounding box regression twice to transform predefined anchors into final detected
bounding boxes. [14] proposes a group recursive learning approach to iteratively
refine detection results and minimize the offsets between object proposals and
the ground-truth considering the global dependency among multiple proposals.
G-CNN is proposed in [17] which starts with a multi-scale regular grid over the
image and iteratively pushes the boxes in the grid towards the ground-truth.
However, as reported in [3], applying bounding box regression more than twice
brings no further improvement. [3] attribute this to the distribution mismatch
in multi-step bounding box regression and address it by a resampling strategy
in multi-stage bounding box regression.

We experimentally show the performance of iterative bounding box regres-
sion based on FPN and Cascade R-CNN frameworks. The Average Precision
(AP) of the results after each iteration are shown as the blue curves in Fig. 4(a)
and (b), respectively. The AP curves in Fig.4 show that the improvement on
localization accuracy, as the number of iterations increase, is non-monotonic for
iterative bounding box regression. The non-monotonicity, together with the non-
interpretability, brings difficulties in applications. Besides, without localization
confidence for detected bounding boxes, we can not have fine-grained control
over the refinement, such as using an adaptive number of iterations for different
bounding boxes.
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3 IoU-Net

To quantitatively analyze the effectiveness of IoU prediction, we first present the
methodology adopted for training an IoU predictor in Sect. 3.1. In Sects. 3.2 and
3.3, we show how to use IoU predictor for NMS and bounding box refinement,
respectively. Finally in Sect.3.4 we integrate the IoU predictor into existing
object detectors such as FPN [15].
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Fig. 5. Full architecture of the proposed IoU-Net described in Sect. 3.4. Input images
are first fed into an FPN backbone. The IoU predictor takes the output features from
the FPN backbone. We replace the Rol Pooling layer with a PrRol Pooling layer
described in Sect.3.3. The IoU predictor shares a similar structure with the R-CNN
branch. The modules marked within the dashed box form a standalone IoU-Net.

3.1 Learning to Predict IoU

Shown in Fig.5, the IoU predictor takes visual features from the FPN and
estimates the localization accuracy (IoU) for each bounding box. We generate
bounding boxes and labels for training the IoU-Net by augmenting the ground-
truth, instead of taking proposals from RPNs. Specifically, for all ground-truth
bounding boxes in the training set, we manually transform them with a set of
randomized parameters, resulting in a candidate bounding box set. We then
remove from this candidate set the bounding boxes having an IoU less than
rain = 0.5 with the matched ground-truth. We uniformly sample training data
from this candidate set w.r.t. the IoU. This data generation process empirically
brings better performance and robustness to the IoU-Net. For each bounding
box, the features are extracted from the output of FPN with the proposed Pre-
cise Rol Pooling layer (see Sect.3.3). The features are then fed into a two-layer
feedforward network for the IoU prediction. For a better performance, we use
class-aware IoU predictors.

The IoU predictor is compatible with most existing Rol-based detectors. The
accuracy of a standalone IoU predictor can be found in Fig.2. As the training
procedure is independent of specific detectors, it is robust to the change of the
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Algorithm 1. IoU-guided NMS. Classification confidence and localization confi-
dence are disentangled in the algorithm. We use the localization confidence (the
predicted IoU) to rank all detected bounding boxes, and update the classification
confidence based on a clustering-like rule.
Input: B={b1,....,0n}, S, Z, Pnms

B is a set of detected bounding boxes.

S and 7 are functions (neural networks) mapping bounding boxes to their classifi-

cation confidence and IoU estimation (localization confidence) respectively.

2ums 1s the NMS threshold.
Output: D, the set of detected bounding boxes with classification scores.
:D—o
while B # @ do

bm «— argmaxZ(b;)

B — B\ {bm}

s — S(bm)

for b; € B do

if ToU(bm, bj) > Qnms then
s «— max(s,S(b;))
B — B\ {b;}
end if

11: end for
12: D —DU{(bm,s)}
13: end while
14: return D

—
=

input distributions (e.g., when cooperates with different detectors). In later sec-
tions, we will further demonstrate how this module can be jointly optimized in
a full detection pipeline (i.e., jointly with RPNs and R-CNN).

3.2 IoU-Guided NMS

We resolve the misalignment between classification confidence and localization
accuracy with a novel IoU-guided NMS procedure, where the classification con-
fidence and localization confidence (an estimation of the IoU) are disentangled.
In short, we use the predicted IoU instead of the classification confidence as the
ranking keyword for bounding boxes. Analog to the traditional NMS, the box
having the highest IoU with a ground-truth will be selected to eliminate all other
boxes having an overlap greater than a given threshold §2,,,5. To determine the
classification scores, when a box i eliminates box j, we update the classification
confidence s; of box ¢ by s; = max(s;,s;). This procedure can also be inter-
preted as a confidence clustering: for a group of bounding boxes matching the
same ground-truth, we take the most confident prediction for the class label.
A psuedo-code for this algorithm can be found in Algorithm 1.

IoU-guided NMS resolves the misalignment between classification confi-
dence and localization accuracy. Quantitative results show that our method
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Algorithm 2. Optimization-based bounding box refinement

Input: B={bi,....bn}, F, T, \, (1, 2
B is a set of detected bounding boxes, in the form of (zo, Yo, Z1,y1)-
F is the feature map of the input image.
T is number of steps. A is the step size, and (2; is an early-stop threshold and
{2 < 0 is an localization degeneration tolerance.
Function PrPool extracts the feature representation for a given bounding box and
function IoU denotes the estimation of IoU by the IoU-Net.

Output: The set of final detection bounding boxes.

1. A—o
2: fori=1toT do
3: for b; € B and b; ¢ A do

4: grad — Vy;IoU(PrPool(F, b;))

5: PrevScore «— IoU(PrPool(F, b))

6: bj < bj + A * scale(grad, b;)

7 NewScore « IoU(PrPool(F, b;))

8: if |PrevScore — NewScore| < 21 or NewScore — PrevScore < {2, then
9: A— AU {b;}

10: end if

11: end for

12: end for

13: return B

outperforms traditional NMS and other variants such as Soft-NMS [2]. Using
ToU-guided NMS as the post-processor further pushes forward the performance
of several state-of-the-art object detectors.

3.3 Bounding Box Refinement as an Optimization Procedure

The problem of bounding box refinement can formulated mathematically as
finding the optimal ¢* s.t.:

¢* = arg min crit(transform(box g, ¢), box, ), (1)

where boxqet is the detected bounding box, boxg is a (targeting) ground-truth
bounding box and transform is a bounding box transformation function taking
c as parameter and transform the given bounding box. crit is a criterion mea-
suring the distance between two bounding boxes. In the original Fast R-CNN [5]
framework, crit is chosen as an smooth-L1 distance of coordinates in log-scale,
while in [31], crit is chosen as the —In(IoU) between two bounding boxes.
Regression-based algorithms directly estimate the optimal solution ¢* with a
feed-forward neural network. However, iterative bounding box regression meth-
ods are vulnerable to the change in the input distribution [3] and may result
in non-monotonic localization improvement, as shown in Fig. 4. To tackle these
issues, we propose an optimization-based bounding box refinement method uti-
lizing IoU-Net as a robust localization accuracy (IoU) estimator. Furthermore,
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ToU estimator can be used as an early-stop condition to implement iterative
refinement with adaptive steps.

IoU-Net directly estimates IoU(bozget, boxgt). While the proposed Precise
Rol Pooling layer enables the computation of the gradient of IoU w.r.t. bounding
box coordinates’, we can directly use gradient ascent method to find the optimal
solution to Eq. 1. Shown in Algorithm 2, viewing the estimation of the IoU as an
optimization objective, we iteratively refine the bounding box coordinates with
the computed gradient and maximize the IoU between the detected bounding
box and its matched ground-truth. Besides, the predicted IoU is an interpretable
indicator of the localization confidence on each bounding box and helps explain
the performed transformation.

In the implementation, shown in Algorithm 2 Line 6, we manually scale up
the gradient w.r.t. the coordinates with the size of the bounding box on that
axis (e.g., we scale up Vaq with width(b;)). This is equivalent to perform the
optimization in log-scaled coordinates (z/w,y/h,logw,logh) as in [5]. We also
employ a one-step bounding box regression for an initialization of the coordi-
nates.

1. Rol Pooling 2. RoI Align 3. PrRol Pooling
([z1], 1))
e e 000 e o 000
(iEl:yl) ______ ($1,y1) .:—.— —.— —.— ':. (ml,yl).:—.— —.— —.— -|I.
oo 000 oo 00
o P o o oo 0o 0o
—————— (952&,212) s 5 --.($2,y2) .'—;-;-;-.(x%y?)
([z21, [y21) (ai, bi)
[22] [y2] . N Y2 T2
il 2l S Flab)/N J 1. oo

(Tzo] = [21] + 1) x ([y2] = lya] + 1) P @ —20) % (g2 —o1)

Fig. 6. Illustration of Rol Pooling, Rol Align and PrRol Pooling.

Precise Rol Pooling. We introduce Precise Rol Pooling (PrRol Pooling, for
short) powering our bounding box refinement?. It avoids any quantization of
coordinates and has a continuous gradient on bounding box coordinates. Given
the feature map F before Rol/PrRol Pooling (e.g. from Conv4 in ResNet-50),
let w; j be the feature at one discrete location (¢, ) on the feature map. Using

! We prefer Precise Rol-Pooling layer to Rol-Align layer [9] as Precise Rol-Pooling
layer is continuously differentiable w.r.t. the coordinates while Rol-Align is not.
2 The code is released at: https://github.com/vacancy/PreciseRoIPooling.


https://github.com/vacancy/PreciseRoIPooling

826 B. Jiang et al.

bilinear interpolation, the discrete feature map can be considered continuous at
any continuous coordinates (z,y):

flz,y) = ZIC(x,y,i,j) X w; j, (2)
i

where IC(z,y,1,7) = max(0,1— |x —i|) x max(0,1— |y — j|) is the interpolation
coefficient. Then denote a bin of a Rol as bin = {(x1,y1), (x2,y2)}, where (z1,y1)
and (z2,y2) are the continuous coordinates of the top-left and bottom-right
points, respectively. We perform pooling (e.g., average pooling) given bin and
feature map F by computing a two-order integral:

Y2 pa2
/ fz,y) dedy
yl

T2 — xl) (Y2 — y1)

PrPool(bin, F) = (3)

For a better understanding, we visualize Rol Pooling, Rol Align [9] and our
PrRol Pooing in Fig. 6: in the traditional Rol Pooling, the continuous coordinates
need to be quantized first to calculate the sum of the activations in the bin; to
eliminate the quantization error, in Rol Align, N = 4 continuous points are
sampled in the bin, denoted as (a;,b;), and the pooling is performed over the
sampled points. Contrary to Rol Align where N is pre-defined and not adaptive
w.r.t. the size of the bin, the proposed PrRol pooling directly compute the two-
order integral based on the continuous feature map.

Moreover, based on the formulation in Eq. 3, PrPool(Bin, F) is differentiable
w.r.t. the coordinates of bin. For example, the partial derivative of PrPool(B, F)
w.r.t. 1 could be computed as:

OPrPool(bin, F)  PrPool(bin, )  Jyi f(a1,)dy

0z T2 — X1 (392*331) X (y2*yl).

(4)

The partial derivative of PrPool(bin, F) w.r.t. other coordinates can be com-
puted in the same manner. Since we avoids any quantization, PrPool is contin-
uously differentiable.

3.4 Joint Training

The IoU predictor can be integrated into standard FPN pipelines for end-to-end
training and inference. For clarity, we denote backbone as the CNN architecture
for image feature extraction and head as the modules applied to individual Rols.

Shown in Fig. 5, the IoU-Net uses ResNet-FPN [15] as the backbone, which
has a top-down architecture to build a feature pyramid. FPN extracts features
of Rols from different levels of the feature pyramid according to their scale. The
original Rol Pooling layer is replaced by the Precise Rol Pooling layer. As for
the network head, the IoU predictor works in parallel with the R-CNN branch
(including classification and bounding box regression) based on the same visual
feature from the backbone.
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We initialize weights from pre-trained ResNet models on ImageNet [24]. All
new layers are initialized with a zero-mean Gaussian with standard deviation
0.01 or 0.001. We use smooth-L1 loss for training the IoU predictor. The train-
ing data for the IoU predictor is separately generated as described in Sect. 3.1
within images in a training batch. IoU labels are normalized s.t. the values are
distributed over [—1,1].

Input images are resized to have 800 px along the short axis and a maximum
of 1200 px along the long axis. The classification and regression branch take 512
Rols per image from RPNs. We use a batch size 16 for the training. The network
is optimized for 160k iterations, with a learning rate of 0.01 which is decreased
by a factor of 10 after 120k iterations. We also warm up the training by setting
the learning rate to 0.004 for the first 10k iteration. We use a weight decay of
le-4 and a momentum of 0.9.

During inference, we first apply bounding box regression for the initial coordi-
nates. To speed up the inference, we first apply IoU-guided NMS on all detected
bounding boxes. 100 bounding boxes with highest classification confidence are
further refined using the optimization-based algorithm. We set A = 0.5 as the
step size, 21 = 0.001 as the early-stop threshold, {25 = —0.01 as the localization
degeneration tolerance and 7' = 5 as the number of iterations.

4 Experiments

We perform experiments on the 80-category MS-COCO detection dataset [16].
Following [1,15], the models are trained on the union of 80k training images
and 35k validation images (trainval35k) and evaluated on a set of 5k validation
images (minival). To validate the proposed methods, in both Sects. 4.1 and 4.2,
a standalone IoU-Net (without R-CNN modules) is trained separately with the
object detectors. IoU-guided NMS and optimization-based bounding box refine-
ment, powered by the IoU-Net, are applied to the detection results.

4.1 ToU-Guided NMS

Table1 summarizes the performance of different NMS methods. While Soft-
NMS preserve more bounding boxes (there is no real “suppression”), ToU-guided
NMS improves the results by improving the localization of the detected bound-
ing boxes. As a result, IoU-guided NMS performs significantly better than the
baselines on high IoU metrics (e.g., APgp).

We delve deeper into the behavior of different NMS algorithms by analyzing
their recalls at different ToU threshold. The raw detected bounding boxes are
generated by a ResNet50-FPN without any NMS. As the requirement of local-
ization accuracy increases, the performance gap between IoU-guided NMS and
other methods goes larger. In particular, the recall at matching IoU Qest = 0.9
drops to 18.7% after traditional NMS, while the IoU-NMS reaches 28.9% and
the No-NMS “upper bound” is 39.7%.
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Table 1. Comparison of IoU-guided NMS with other NMS methods. By preserving
bounding boxes with accurate localization, IoU-guided NMS shows significant improve-
ment in AP with high matching IoU threshold (e.g., APgo).

Method +Soft-NMS | +1oU-NMS | AP | APso | APgo | AP7o | APgo | APgo
FPN 36.4 |58.0 | 53.1 |{44.9 31.2 |9.8
v 36.8 |57.5 |53.1 |45.7 32.3 |10.3
v 37.3|56.0 52.2 |[45.6 1 33.9 13.3
Cascade R-CNN 40.6 | 59.3 55.2 [49.1 |38.7 |16.7
v 40.9 | 58.2 | 54.7 {49.4 1 39.9 |17.8
v 40.7 |58.0 | 54.7 |49.2 1 38.8 |18.9
Mask-RCNN 37.5 | 58.6 | 53.9 |46.3 | 33.2 |10.9
v 37.9 58.2 |53.9 |47.1 |34.4 |11.5
v 38.1|56.4 | 52.7 |46.7 35.1 |14.6
0.9
0.8F
0.7}
0.6}
§0.5—
§0.4—
P4
0.3}
o02l[— Nms
— Soft-NMS
0.1}/ — loU-NMS
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Fig. 7. Recall curves of different NMS methods at different IoU threshold for matching
detected bounding boxes with the ground-truth. No-NMS (no box is suppressed) is
provided as the upper bound of the recall. The proposed IoU-NMS has a higher recall
and effectively narrows the gap to the upper-bound at high IoU threshold (e.g., >0.8).

Table 2. The optimization-based bounding box refinement further improves the per-
formance of several CNN-based object detectors.

Method +Refinement | AP | AP5o | APso | AP79 | APgo | APgo
FPN 36.4 | 58.0 53.1 [44.9 |31.2 |9.8
v 38.0 | 57.7 |53.1 |{46.1 34.3 |14.6
Cascade R-CNN 40.6 1 59.3 |55.2 49.1 |38.7 |16.7
v 41.4159.3 | 55.3 |49.6 39.4 19.5
Mask-RCNN 37.5 |58.6 | 53.9 [46.3 |33.2 |10.9
v 39.2 579 53.6 (47.4 | 36.5 16.4
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4.2 Optimization-Based Bounding Box Refinement

The proposed optimization-based bounding box refinement is compatible
with most of the CNN-based object detectors [3,9,15], as shown in Table 2.
Applying the bounding box refinement after the original pipelines with the stan-
dalone ToU-Net further improve the performance by localizing object more accu-
rately. The refinement further improves APgg by 2.8% and the overall AP by
0.8% even for Cascade R-CNN which has a three-stage bounding box regressor.

4.3 Joint Training

TIoU-Net can be end-to-end optimized in parallel with object detection frame-
works. We find that adding IoU predictor to the network helps the network
to learn more discriminative features which improves the overall AP by 0.6
and 0.4 percent for ResNet50-FPN and ResNet101-FPN respectively. The IoU-
guided NMS and bounding box refinement further push the performance forward.
We achieve 40.6% AP with ResNet101-FPN compared to the baseline 38.5%
(improved by 2.1%). The inference speed is demonstrated in Table 3, showing
that ToU-Net improves the detection performance with tolerable computation
overhead.

We mainly attribute the inferior results on APgq in Table 3 to the IoU esti-
mation error. When the bounding boxes have a lower IoU with the ground-truth,
they have a larger variance in appearance. Visualized in Fig. 2(b), the IoU esti-
mation becomes less accurate for boxes with lower IoU. This degenerates the
performance of the downstream refinement and suppression. We empirically find
that this problem can be partially solved by techniques such as sampling more
bounding boxes with lower IoU during the training (Table4).

Table 3. Final experiment results on MS-COCO. IoU-Net denotes ResNet-FPN
embedded with ToU predictor. We improve the FPN baseline by ~2% in AP.

Backbone | Method | +IoU-NMS | +Refine | AP | AP5o | APgo | AP79 | APgg | APgo
ResNet-50 | FPN 36.4 |58.0 |53.1 [449 |31.2 9.8
ToU-Net 37.0 | 58.3 |53.8 |45.7 |31.9 10.7

v 37.6 |56.2 524 46.0 |34.1 |14.0

v v 38.156.3 | 52.4 |46.3 | 35.1 15.5

ResNet-101 | FPN 38.5 160.3 ' 55.5 [47.6 |33.8 |11.3
ToU-Net 38.9 160.2 | 55.5 [47.8 |34.6 |12.0

v 40.0 | 59.0 |55.1 48.6 |37.0 |15.5

v v 40.6 | 59.0 |55.2 [49.0 38.0 |17.1
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Table 4. Inference speed of multiple object detectors on a single TITAN X GPU.
The models share the same backbone network ResNet50-FPN. The input resolution is
1200 x 800. All hyper-parameters are set to be the same.

Method FPN | Mask-RCNN | Cascade R-CNN | IoU-Net
Speed (sec./image) | 0.255 | 0.267 0.384 0.305

5 Conclusion

In this paper, a novel network architecture, namely IoU-Net, is proposed for accu-
rate object localization. By learning to predict the IoU with matched ground-
truth, IoU-Net acquires “localization confidence” for the detected bounding box.
This empowers an IoU-guided NMS procedure where accurately localized bound-
ing boxes are prevented from being suppressed. The proposed IoU-Net is intu-
itive and can be easily integrated into a broad set of detection models to improve
their localization accuracy. Experimental results on MS-COCO demonstrate its
effectiveness and potential in practical applications.

This paper points out the misalignment of classification and localization con-
fidences in modern detection pipelines. We also formulate an novel optimization
view on the problem of bounding box refinement, and the proposed solution sur-
passes the regression-based methods. We hope these novel viewpoints provide
insights to future works on object detection, and beyond.
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