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Abstract. We propose a method of learning suitable convolutional
representations for camera pose retrieval based on nearest neighbour
matching and continuous metric learning-based feature descriptors. We
introduce information from camera frusta overlaps between pairs of
images to optimise our feature embedding network. Thus, the final cam-
era pose descriptor differences represent camera pose changes. In addi-
tion, we build a pose regressor that is trained with a geometric loss to
infer finer relative poses between a query and nearest neighbour images.
Experiments show that our method is able to generalise in a meaningful
way, and outperforms related methods across several experiments.

1 Introduction

Robust 6-DoF camera relocalisation is a core component of many practical com-
puter vision problems, such as loop closure for SLAM [4,13,37], reuse a pre-built
map for augmented reality [16] or autonomous multi- agent exploration and nav-
igation [39].

Specifically, given some type of prior knowledge base about the world, the
relocalisation task aims to estimate the 6-DoF pose of a novel (unseen) frame
in the coordinate system given by the prior model of the world. Traditionally,
the world is captured using a sparse 3D map built from 2D point features and
some visual tracking or odometry algorithm [37]. To relocalise, another set of
features is extracted from the query frame and is matched with the global model,
establishing 2D to 3D correspondences. The camera pose is then estimated by
solving the perspective-n-point problem [29,30,32,47]. While this approach pro-
vides usable results in many scenarios, it suffers from exponentially growing
computational costs, making it unsuitable for large-scale applications.

More recently, machine learning methods, such as the random forest RGB-D
approach of [5] and the neural network RGB method of [25] have been shown to
provide viable alternatives to the traditional geometric relocalisation pipeline,
improving on both accuracy and range. However, this comes with certain down-
sides. The former approach produces state-of-the-art relocalisation results but
requires depth imagery and has only been shown to work effectively indoors. The
latter set of methods has to be retrained fully and slowly for each novel scene,
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which means that the learnt internal network representations are not transfer-
able, limiting its practical deployability.

Our method (Fig. 1) leverages the ability of neural networks to deal with
large-scale environments, does not require depth and aims to be transferable i.e.
produce accurate results on novel sequences and environments, even when not
trained on them. Inspired by the image retrieval literature, we build a database
of whole-image features, but, unlike in previous works, these are trained specifi-
cally for camera pose retrieval, and not holistic image retrieval. At relocalisation
time, a nearest neighbour is identified using simple brute-forcing of L2 distances.
Accuracy is further improved by feeding both the query image and the nearest
neighbour features, in a Siamese manner, to a neural network, that is trained
with a geometric loss and aims to regress the 6-DoF pose difference between the
two images.

Briefly, our main contributions are:

– we employ a continuous metric learning-based approach, with a camera frus-
tum overlap loss in order to learn global image features suitable for camera
relocalisation;

– retrieved results are further improved by being fed to a network regressing
pose differences, which is trained with exponential and logarithmic map lay-
ers directly in the pose homogeneous matrices space, without the need for
separate translation and orientation terms;

– we introduce a new RGBD dataset with accurate ground truth targeting
experiments in relocalisation.

The remainder of the paper is structured as follows: Sect. 2 describes related
work. Section 3 discusses our main contributions, including the train and test
methodologies and Sect. 4 shows our quantitative and qualitative evaluations.
We conclude in Sect. 5.

Fig. 1. Our system is able to retrieve a relevant item from a database, which presents
high camera frustum overlap with an unseen query. Subsequently, we can use the pose
information from the images stored in a database, to compute the pose of a previously
unseen query by applying a transformation produced by a deep neural network. Note
that the differential nature of our method enables the successful transfer of our learnt
representation to previously unseen novel sequences (best viewed on screen).



784 V. Balntas et al.

2 Related Work

Existing relocalisation methods can be generally grouped into five major cate-
gories: appearance similarity based, geometric, Hough transform, random forest
and deep learning approaches.

Appearance similarity based approaches rely on a method to measure the
similarity between pairs of images, such as Normalised Cross Correlation [15],
Random Ferns [16] and bag of 2D features [14]. The similarity measurement can
identify one or multiple reference images that match the query frame. The pose is
then be estimated e.g. by a linear combination of poses from multiple neighbours,
or simply by using the pose corresponding to the best match. However, these
methods are often not accurate if the query frame is captured from a viewing pose
that is far from those in the reference database. For this reason, similarity-based
approaches, such as DBoW [14], are usually used as an early warning system
to trigger a geometric approach for pose estimation [37]. The first stage of our
own work is inspired by this category of methods, with pose-specific descriptors
representing the database and query images.

Geometric relocalisation approaches [6,21,30] tackle the relocalisation
problem by solving either the absolute orientation problem [1,20,31,35,41] or
the perspective-n-point problem [29,32,47] given a set of point correspondences
between the query frame and a global reference model. The correspondences are
usually provided using 2D or 3D local feature matching. Matching local features
can be noisy and unreliable, so pairwise information can be utilised to reduce
feature matching ambiguity [30]. Geometric approaches are simple, accurate and
especially useful when the query pose has large SE(3) distance to the reference
images. However, such methods are restricted to a relatively small working space
due to the fact that matching cost, depending on the matching scheme employed,
can grow exponentially with respect to the number of key points. In contrast,
our approach scales (i) linearly with the amount of training data, since each
image needs a descriptor built, and (ii) logarithmically with the amount of test
data, since database searches can usually be done with logarithmic complexity.

Hough Transform methods [2,11,40] rely entirely on pairwise information
between pairs of oriented key points, densely sampled on surfaces. The pose
is recovered by voting in the Hough Space. Such approaches do not depend
on textures, making them attractive in object pose estimation for minimally-
textured objects [40]. However, sampling densely on a 3D model for the point
pair features is computationally expensive and not scalable. In addition, since
the pose relocalisation requires both a dense surface model and a depth map, it
is unsuitable for vison-only sensors. In contrast, our method only requires RGB
frames for both training and testing.

Random forest based methods [17,42,45] deliver state-of-the-art accuracy,
by regressing the camera location for each point in an RGBD query frame.
Originally, such approaches required expensive re-training for each novel scene,
but [5] showed that this can be limited to the leaf nodes of the random forest,
which allowed for real-time performance. However, depth information is still
required for accurate relocalisation results.
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Convolutional neural network methods, starting with PoseNet [25],
regress camera poses from single RGB images. Subsequent works (i) examined
the use of recurrent neural networks (i.e. LSTMs) to introduce temporal infor-
mation to the problem [7,46], and (ii) trained the regression with geometric
losses [24].

Most similar to our own approach are the methods of [28,44], with the former
assuming the two frames are given, and regressing depth and camera pose jointly,
and the later using ImageNet-trained ResNet feature descriptor similarity to
identify the nearest neighbouring frame.

Compared to these approaches, we use a simpler geometric pose loss, and
introduce a novel continuous metric learning method to train full frame descrip-
tors specifically for camera pose-oriented retrieval.

3 Methodology

In this section, we present a complete overview of our method (Fig. 2), consisting
of learning (i) robust descriptors for camera pose-related retrieval, and (ii) a
shallow differential pose regressor from pairs of images.

Fig. 2. (left) Training stage. We use a Siamese architecture to train global feature
descriptors driven by a continuous metric learning loss based on camera frustum over-
laps. This forces the representations that are learnt to be relevant to fine-grained camera
pose retrieval. In addition, a final query pose is learnt based on a loss on a subsequent
set of layers which are trained to infer the differential pose between two inputs. (right)
Inference stage. Given an unseen image, and its nearest neighbour retrieved using our
optimised frustum feature descriptors, we are able to compute a pose estimation for
the unseen query based on the output of our differential pose network, and the stored
nearest neighbour pose.

3.1 Learning Camera Pose Descriptors for Retrieval Using Camera
Frustum Overlaps

The first part of our method deals with learning suitable feature descriptors for
retrieval of nearest neighbours that are consistent with the camera movement.
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Motivation. Several methods use pre-trained models for retrieval of relevant
images, because such models are trained on large datasets such as ImageNet [9] or
Places [48], and are able to capture relevant image features in their penultimate
layers. With no significant effort, such models can be used for several other
transfer learning scenarios. However, such features are trained for detection and
recognition of final objectives, and might not be directly relevant to our problem,
i.e. understanding the camera movement.

Recent work has shown that features that are learnt guided from object
poses [3] can lead to a more successful object pose retrieval. To tackle the equiv-
alent issue in terms of camera poses, we make use of the camera frustum overlaps
as described below.

Frustum Overlap Loss. To capture relevant features in the layers of our
network, our main idea is to use a geometric quantity, which is the overlap
between two camera frusta. Retrieval of nearest neighbours with high overlap
will improve results of high-accuracy methods that are based on appearance
matching such as [31], since there is a stronger probability that a consistent set
of feature points will be visible in both images.

Given a pair of images, {x,y}, with known poses {Mx ,My}, and camera
internal parameters K, the geometry of frusta can be calculated efficiently by
sampling a uniform grid of voxels. Based on this, we compute a camera frustum
overlap distance ξ according to Algorithm 1. Thus, we can define a frustum-
overlap based loss, as follows

Lfrustum = {||φ(x) − φ(y)||22 − ξ}2 (1)

Intuitively, this loss aims to associate camera frusta overlaps between two
frames, with their respective distance in the learnt embedding space.

Some sample pairs of images from random sequences (e.g. taken from the
ScanNet Dataset [8]), which are similar to the ones that are used in our optimi-
sation process, are shown in Fig. 3. We can observe that the frustum intersection
ratio is a very good proxy for visual image similarity. Note that the number
written below each image pair is the frustum overlap ratio (1 − ξ), and not the
frustum overlap distance (ξ). The results in Fig. 3 are computed with D being 4
meters which is a reasonable selection for indoors scenes. The selection of D is
dependent on the scale of the scene since the camera frustum clipping plane is
related to the distance of the camera to the nearest object. Thus, if this method
is to be applied on outside large-scale scenes, this parameter would need to be
adjusted accordingly.

3.2 Pose Regression

While retrieval of nearest neighbours is the most important step in our pipeline,
it is also crucial to refining the estimations that are given by the neighbours to
improve the final inference stage of the unknown query pose.
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Algorithm 1: Frustum overlap distance between a pair of camera poses
Input : Relative pair pose M ∈ SE(3), camera intrinsics K , maximum clipping depth

D, sampling step τ

1 Use K to sample a uniform grid V of voxels with size τ inside the first frustum with
max clipping distance D.

2 Compute the subset of voxels V+ ⊆ V which lie inside the second frustum.

Return: Frustum overlap distance ξ = 1 − |V+|
|V| , with ξ ∈ [0, 1]

Fig. 3. Samples of our frustum overlap score that is inverted and used as a loss function
for learning suitable camera pose descriptors for retrieval. We show pairs of images,
together with their respective frustum overlap scores, and two views of the 3D geometry
of the scene that lead to the RGB image observations. We can observe that the frustum
overlap score is a good indicator of the covisibility of the scenes, and thus a meaningful
objective to optimise.

To improve the estimation that is given from the retrieved nearest neighbours,
we add a shallow neural network on top of the feature network, that is trained
for regressing differential camera poses between two neighbouring frames.

The choice of the camera pose representation is very important, but the
literature finds no ideal candidate [26]: unit quaternions were used in [24,25],
axis-angle representations in [33,44] and Euler angles [34,36].

Below, we adopt the matrix representation of rotation with its extension
to represent the SE(3) transformation space similarly to [18]. Specifically, M =(

R t
0 1

)
∈ SE(3) with R ∈ SO(3) and t ∈ R

3. We adopt the SE(3) matrix for both

transformation amongst different coordinate systems but also for measuring the
loss, which shows great convenience in training the network. In addition, since
our network directly outputs a camera pose, the validity of the regressed pose is
guaranteed, unlike the quaternion method used in [24,25] where a valid rotation
representation for a random q ∈ R

4 is enforced a-posteriori by normalising the
quaternion q to have unit norm.
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Our goal is to learn a differential pose regression that is able to use a pair
of feature descriptors in order to regress the differential camera poses between
them. To that end, we build our pose regression layers on top of the feature
layers of RelocNet allowing for a joint forward operation during inference, thus
significantly reducing computational time.

The D-dimensional feature descriptors that are extracted from the feature
layers of RelocNet, are concatenated into a single feature vector, and are for-
warded through a set of fully connected layers which performs a transformation
from R

D to R
6. Afterwards, we can use an exponential map layer to convert this

to an element in SE(3) [18].
Given an input image q, we can denote the computed output from the fully

connected layers as γ(φ(q), φ(t)) = (ω,u) ∈ R
6, where φ(q) and φ(t) are two

feature embeddings and (ω,u) is the relative motion from φ(t) to the query
image. Our next step is to convert this to a valid SE(3) pose matrix, which
we then use in the training process together with the loss introduced in Eq. 10.
By considering the SE(3) item for the final loss of the training process, the
procedure can be optimised for valid camera poses without needing to normalise
quaternions. To convert between se(3) items to SE(3) we utilise the following
two specialised layers:

expSE(3) layer. we implement an exponential map layer to regress valid
camera pose matrices. This accepts a vector (ω,u) ∈ R

6 and outputs a valid
M ∈ SE(3) by using the exponential map from the se(3) element δ to the SE(3)
element M and can be computed as follows [12]:

exp((ω,u)) =
[

R V u
0 1

]
(2)

with

θ =
√

ω�ω (3)

R = I +
sin(θ)

θ
[ω]× +

1 − cos(θ)
θ2

[ω]2× (4)

V = I +
1 − cos(θ)

θ2
[ω]× +

θ − sin(θ)
θ3

[ω]2× (5)

where [ω]× represents the skew symmetric matrix generator for the vector
ω ∈ R

3 [12].
Subsequently, we are able to do a forward pass in this layer, using the output

of the network γ(q, t) = (ω,u), and passing it through as per Eq. 2.
logSE(3) layer. To return from SE(3) items to se(3), we implement a loga-

rithmic map layer, which is defined as follows:

log(
[

R V u
0 1

]
) = (log(R),V −1u) (6)

log(R) =
θ

2 sin(θ)
(R − RT ) (7)
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As suggested by [12], the Taylor expansion of θ
2 sin(θ) should be used when

the norm of ω is below the machine precision. However, in our training process,
we did not observe elements suffering from this issue.

Joint Learning of Feature Descriptors and Poses with a Siamese
Network. As previously discussed, one of the main issues with the recent work
on CNN relocalisers is the need to use the global world coordinate system as
a training label. This strongly restricts the learning process and thus requires
re-training for each new sequence that the system encounters. To address this
issue, we instead propose to focus on learning a shallow differential pose regres-
sor, which returns the camera motion between two arbitrary frames of a sequence.
In addition, by expanding the training process to pairs of frames, we expand the
amount of information, since we can use exponentially more training samples
than when training with individual images. We thus design our training process
as a Siamese convolutional regressor [10].

For training the Siamese architecture, a pair of images (qL, qR) is given as
input and the network outputs a single estimate M̃ ∈ SE(3). Intuitively, this M̃
represents the differential pose between the two pose matrices. More formally,
let MwL represent the pose of an image qL, and MwR the pose of an image qR,
with both poses representing the transformation from the camera coordinate
system to the world. The differential transformation matrix that transfers the
camera from R → L is given by MRL = M−1

wRMwL.
Assuming we have a set of K training items inside a mini-batch,

{q
(i)
L ,M

(i)
wL, q

(i)
R ,M

(i)
wR,M

(i)
RL, ξLR} i ∈ [1,K] (8)

we train our network with the following loss

L = αLSE(3) + βLfrustum (9)

with

LSE(3) =
K∑

i=0

||logSE(3){M̃ (i)−1
(M (i)−1

wR MwL)}||1 (10)

which considers the L1 norm of the logSE(3) map of the composition of the
inverse of the prediction M̃ and the ground truth M

(i)−1
wR MwL. Intuitively,

this will become 0 when the M
(i)−1
wR MwL becomes I4×4 due to the fact that the

logarithm of the identity element of SE(3) is 0. Note that we can extend the above
method, to focus on single image based regression, where for each training item
{qi,Mi} we infer a pose M̂i, and we instead modify the loss function to optimise
M̂−1

i Mi. We provide a visual overview of the training stage on Fig. 2 (left).

3.3 Inference Stage

In this section, we discuss our inference framework, starting by using one nearest
neighbour (NN) for pose estimation, and subsequently using multiple nearest
neighbours.
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Pose from a Single Nearest Neighbour. During inference, we assume that
there exists a pool of images in the database q

(i)
db , together with their corre-

sponding poses M
(i)
db for i ∈ [0, Ndb]. Let sNN1 represent the index of the nearest

neighbour in the D-dimensional feature space for the query qq, with unknown
pose Mq.

After computing the estimate M̃ = γ(qq, q
(NN1)
db ), we can infer a pose M̃db

for the unknown ground-truth pose Mdb by a simple matrix multiplication,
since M̃ = M−1

db M̃q. We provide a visual overview of the inference stage on
Fig. 2 (right).

Pose from Multiple Nearest Neighbours. We also briefly discuss a method
to infer a prediction from multiple candidates. As shown in Fig. 6, for each pose
query we can obtain top K-NN, and use each one of them to predict a distinct
pose for the query using our differential pose regressor. We aim to aggregate
these matrices into a single estimate M̃ (e).

We consider the (ω,u) representation of a pose matrix in se(3) as discussed
before, and compute

log(M̂ (e)) =
∑

k

βk log(M (k)) + k log(M (e))
∑
K

βk + k (11)

with βk =
√
2tr̂−t2

r̂ and r̂ = max(|| log(M (e)) − log(M̂ (e))||, t), resulting from
the robust Huber error norm, with t denoting the outlier threshold, and k the
number of nearest neighours that contribute to the estimation M (e). We then
use iteratively reweighted least squares, to estimate log(M (e)) and the inliers
amongst the set of the k neural network predictions [22,38]. For our implemen-
tation we use k = 5 and t = 0.5.

3.4 Training Process

We use ResNet18 [19] as a feature extractor, and we run our experiments for the
training of the retrieval stage with maximum clipping depth D = 4 m and grid
step 0.2 m. In addition, to avoid the fact that most pairs in a sequence are not
covisible, we limit our selection of pairs to cases where the translation distance
is below 0.3 m and the rotation is below 30◦.

We append three fully connected layers of sizes (512 → 512), (512 → 256)
and (256 → 6) to reduce the 512 dimensional output of the Siamese output
feature layer φ(x) − φ(y) of the network to a valid element in R

6. This is then
fed to the expSE(3) layer to produce a valid 4 × 4 pose matrix. For training,
we use Adam [27], with a learning rate of 10−4. We also use weight decay that
we set to 10−5. We provide a general visual overview of the training process in
Fig. 2 (left). For our joint training loss, we set a = 0.1 and β = 0.9.

4 Results

In this section, we briefly introduce the datasets that are used for evaluating our
method, and we then present experiments that show that our feature descriptors
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are significantly better at relocalisation compared to previous work. In addition,
we show that the shallow differential pose regressor is able to perform mean-
ingfully when transferred to a novel dataset, and is able to outperform other
methods when trained and tested on the same dataset.

4.1 Evaluation Datasets

We use two datasets to evaluate our methods, namely 7scenes [16], and our new
RelocDB which is introduced later in this paper. Training is done primarily on
the ScanNet dataset [8].

ScanNet. The ScanNet dataset [8] consists of over 1k sequences, with respective
ground truth poses. We keep this dataset for training since there do not exist
multiple sequences for each scene globally aligned such that they can be used
for relocalisation purposes. In addition, the size of the dataset makes it easy to
examine the generalisation capabilities of our method.

7Scenes. The 7Scenes dataset consists of 7 scenes each containing multiple
sequences that are split into train and test sets. We use the train set to gen-
erate our database of stored features, and we treat the images in the test set as
the set of unknown queries.

RelocDB Dataset. While 7Scenes has been widely used, is it significantly smaller
than ScanNet and other datasets that are suitable for training deep networks.
ScanNet aims to address this issue, however, it is not designed for relocalisa-
tion. To that end, we introduce a novel dataset, RelocDB that is aimed at
being a helpful resource at evaluating retrieval methods in the context of camera
relocalisation.

We collected 500 sequences with a Google Tango device, each split into train
and test parts. The train and test set are built by moving two times over a
similar path, and thus are very similar in terms of size. These sets are aligned to
the same global coordinate framework, and thus can be used for relocalisation.
In Fig. 4, we show some examples of sequences from our RelocDB dataset.

4.2 Frustum Overlap Feature Descriptors

Below we discuss several experiments demonstrating the retrieval performance
of our feature learning method. For each of these cases, the frusta descriptors
are trained on ScanNet and evaluated on 7Scenes sequences. In all cases, we use
relocalisation success rate as a performance indicator, which simply counts the
percentage of query items that were relocalised from the test set to the saved
trained dataset by setting a frustum overlap threshold.

We compare with features extracted from ResNet18 [19], VGG [43],
PoseNet [25], and a non-learning based method [16]. Fig. 5(a) indicates that the
size of the training set is crucial for the good generalisation of the learnt descrip-
tors for the heads sequence in 7Scenes. It is clear that descriptors that are learnt
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Fig. 4. Sample sequences from our RelocDB dataset.

with a few sequences quickly overfit and are not suitable for retrieval. In Fig. 5(b)
we plot the performance of our learnt descriptor across different frustum overlap
thresholds, where we can observe that our method outperforms other methods
across all precisions. It is also worth noting, that the features extracted from
the penultimate PoseNet layer does not seem to be relevant for relocalisation,
presumably due to the fact that they are trained for direct regression, and more
importantly are over-fitted to each specific training sequence. To test the effect
of the size of a training set that is used as a reference DB of descriptors in the
performance of our method, we increasingly reduce the number of items in the
training set, by converting the 1000 training frames to a sparser set of keyframes
based on removing redundant items, according to camera motion thresholds of
0.1 m, 10◦. Thus, the descriptor for a new frame will be added in the retrieval
descriptors pool, only if it presents larger values in both threshold than all of the
items already stored. In Fig. 5(c), we show results in terms of accuracy versus
retrieval pool size for our method compared to a standard pre-trained ImageNet
retrieval method. We can observe that our descriptor is more relevant across
several different keyframes training set sizes. We can also see that our method
is able to deal with smaller retrieval pools in a more efficient way.

In Table 1, we show a general comparison between several related methods.
As we can observe, our descriptors are very robust and can generalise in a mean-
ingful way between two different datasets. The low performance of the features
extracted from PoseNet is also evident here. It is also worth noting that our
method can be used instead of other methods in several popular relocalisers and
SLAM systems, such as [38], where Ferns [16] are used.

4.3 Pose Regression Experiments

In Table 2 we show the results of the proposed pose regression method, com-
pared to several state-of-the-art CNN based methods for relocalisation. We
compare our work with the following methods: PoseNet [25] which uses a
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Fig. 5. (a) Relation of training dataset size and relocalisation performance. We can
observe that there is a clear advantage of using more training data for training
descriptors relevant to relocalisation (b) Relocalisation success rate in relation with
the frustum overlap threshold. Our RelocNet is able to outperform pre-trained meth-
ods with significantly more training data, due to the fact that it is trained with a
relevant geometric loss. (c) Relation of number of keyframes stored in the database
with relocalisation success rate. Our retrieval descriptor shows consistent performance
over datasets with different amounts of stored keyframes.

weighted quaternion and translation loss, the Bayesian and geometric exten-
sions to PoseNet [23,24] which uses geometric re-projection error for training,
and an approach that extends regression to the temporal domain using recurrent
neural networks [46]. We can observe that even by using the descriptors and the
pose regressors learnt on ScanNet, we are able to perform on par with methods
that are trained and tested on the same sequences. This is a significant result
as it shows the potential of large-scale training in relocalisation. In addition, we
can observe that when we apply our relocalisation training framework by train-
ing and testing on the same sequence as the other methods do, we are able to
outperform several related methods.

4.4 Fusing Multiple Nearest Neighbours

In Fig. 6 we show results comparing the single NN performance with the fusing
method from Eq. 11. We can observe that in most cases, fusing from multi-
ple NNs slightly improves the performance. The fact that the improvement is
not significant and consistent is potentially attributed to the way the nearest
neighbours are extracted from the dataset, which might lead to significantly
similar candidates. One possible solution to this, would be to actively enforce
some notion of dissimilarity between the retrieved nearest neighbours, therefore
ensuring that the fusion operates on a more diverse set of proposals.

4.5 Qualitative Examples

In the top two rows of Fig. 7, we show examples of a synthetic view of the
global scene model using the predicted pose from the first nearest neighbour,
while the bottom row shows the query image whose pose we are aiming to infer.
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Table 1. Nearest neighbour matching success rate using a brute force approach. We
show the success rate of relocalising when using a frustum overlap threshold of 0.7
across 7Scenes and sequences from our new RelocDB. We can observe that our feature
descriptors significantly outperform all other methods in terms of relocalisation success
rate, by a significant margin.

scene Diff. training NN Diff. training kNN

chess 0.12m, 4.14 ◦ 0.12m, 3.95 ◦

heads 0.14m, 10.5 ◦ 0.13m, 10.5 ◦

fire 0.26m, 10.4 ◦ 0.25m, 10.1 ◦

stairs 0.28m, 7.53 ◦ 0.27m, 7.31◦

Fig. 6. Effect of fusing multiple nearest neighbours. We can observe that we are able to
improve performance over single nearest neighbour, by incorporating pose information
from multiple nearest neighbours.

Note that for this experiment, we use the high accuracy per-database trained
variant of our network. From the figure, we can see that in most of the cases the
predicted poses are well aligned with the query image (first 5 columns). We also
show some failure cases for our method (last 3 columns). The failure cases might
be characterised by the limited overlap between the query and training frames,
something that is an inherent disadvantage of our method.

In Fig. 7 (bottom), we show typical cases of the camera poses of the nearest
neighbours (red) selected by the feature network, as well as the estimated query
pose for each nearest neighbour (cyan). Note that these results are sample test
images when using the network that is trained on the non-overlapping train set.
In addition, we show the ground truth query pose which is indicated by the
blue frustum. Surprisingly, we see that the inferred poses are significantly stable
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Table 2. Median localisation errors in the 7Scenes [42] dataset. We can observe that we
can outperform the original version of PoseNet even by training and testing on separate
datasets. This indicates the potential of our method in terms of transferability between
datasets. In addition, we can outperform other methods when we train and test our
method on the same datasets. Finally, it is also worth noting that the performance
boost from using temporal information (LSTM) is smaller than the one given by using
our method.

even for cases where the nearest neighbours that are retrieved are noisy (e.g.
1st and 2nd columns). In addition, we can observe that in the majority of the
cases, the predicted poses are significantly closer to the ground truth than the
retrieved poses of the nearest neighbours. Lastly, we show a failure case (last
column) where the system was not able to recover, due to the fact that the
nearest neighbour is remarkably far from the ground truth, something that is
likely due to the limited overlap between train and test poses.

Fig. 7. (top 2 rows) Examples of the global map rendered using our predicted pose (top
1st row) compared to the actual ground truth view (top 2nd row) (bottom) Examples of
how our network “corrects” the poses of the nearest neighbours (red frusta) to produce
novel camera poses (cyan frusta). We can observe that in most cases, the corrected
poses are significantly closer to the ground truth (blue frustum). (Color figure online)
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5 Conclusions

We have presented a method to train a network using frustum overlaps that
is able to retrieve nearest pose neighbours with high accuracy. We show exper-
imental results that indicate that the proposed method is able to outperform
previous works, and is able to generalise in a meaningful way to novel datasets.
Finally, we illustrate that our system is able to predict reasonably accurate can-
didate poses, even when the retrieved nearest neighbours are noisy. Lastly, we
introduce a novel dataset specifically aimed at relocalisation methods, that we
make public.

For future work, we aim to investigate more advanced methods of training the
retrieval network, together with novel ways of fusing multiple predicted poses.
Significant progress can also be made in the differential regression stage to boost
the good performance of our fine-grained camera pose descriptors. In addition,
an interesting extension to our work would be to address the scene scaling issue,
using some online estimation of the scene, and adjusting the learning method
accordingly.

Acknowledgments. We gratefully acknowledge the Huawei Innovation Research Pro-
gram (HIRP) FLAGSHIP grant and the European Commission Project Multiple-
actOrs Virtual Empathic CARegiver for the Elder (MoveCare) for financially sup-
porting the authors for this work.

References

1. Arun, S.K., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets.
IEEE Trans. Pattern Anal. Machine Intell. (PAMI) 9, 698–700 (1987)

2. Hinterstoisser, S., Lepetit, V., Rajkumar, N., Konolige, K.: Going further with
point pair features. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9907, pp. 834–848. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46487-9 51

3. Balntas, V., Doumanoglou, A., Sahin, C., Sock, J., Kouskouridas, R., Kim, T.-K.:
Pose guided RGB-D feature learning for 3D object pose estimation. In: Proceedings
of International Conference on Computer Vision (ICCV) (2017)

4. Cadena, C., et al.: Simultaneous localization and mapping: present, future, and
the robust-perception age. IEEE Trans. Robot. (ToR), 1–27 (2016)

5. Cavallari, T., Golodetz, S., Lord, N.A., Valentin, J., Di Stefano, L., Torr, P.H.:
On-the-fly adaptation of regression forests for online camera relocalisation. In:
Proceedings of IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR) (2017)

6. Chekhlov, D., Pupilli, M., Mayol, W., Calway, A.: Robust real-time visual SLAM
using scale prediction and exemplar based feature description. In: Proceedings
of IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR) (2007)

7. Clark, R., Wang, S., Markham, A., Trigoni, N., Wen, H.: 6-DoF video-clip relo-
calization. In: Proceedings of IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR) (2017)

https://doi.org/10.1007/978-3-319-46487-9_51
https://doi.org/10.1007/978-3-319-46487-9_51


RelocNet: Continuous Metric Learning Relocalisation using Neural Nets 797

8. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
Net: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

9. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR) (2009)

10. Doumanoglou, A., Balntas, V., Kouskouridas, R., Kim, T.: Siamese regression net-
works with efficient mid-level feature extraction for 3D object pose estimation.
arXiv preprint arXiv:1607.02257 (2016)

11. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and
robust 3D object recognition. In: Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 998–1005 (2010)

12. Eade, E.: Lie Groups for 2D and 3D Transformations. Technical report, University
of Cambridge (2017)
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