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Abstract. Effectively measuring the similarity between two human
motions is necessary for several computer vision tasks such as gait anal-
ysis, person identification and action retrieval. Nevertheless, we believe
that traditional approaches such as L2 distance or Dynamic Time Warp-
ing based on hand-crafted local pose metrics fail to appropriately capture
the semantic relationship across motions and, as such, are not suitable for
being employed as metrics within these tasks. This work addresses this
limitation by means of a triplet-based deep metric learning specifically
tailored to deal with human motion data, in particular with the problem
of varying input size and computationally expensive hard negative min-
ing due to motion pair alignment. Specifically, we propose (1) a novel
metric learning objective based on a triplet architecture and Maximum
Mean Discrepancy; as well as, (2) a novel deep architecture based on
attentive recurrent neural networks. One benefit of our objective func-
tion is that it enforces a better separation within the learned embedding
space of the different motion categories by means of the associated dis-
tribution moments. At the same time, our attentive recurrent neural
network allows processing varying input sizes to a fixed size of embed-
ding while learning to focus on those motion parts that are semantically
distinctive. Our experiments on two different datasets demonstrate sig-
nificant improvements over conventional human motion metrics.

1 Introduction

In image-based human pose estimation, the similarity between two predicted
poses can be precisely assessed through conventional approaches that either eval-
uate the distance between corresponding joint locations [8,28,43] or the average
difference of corresponding joint angles [24,37]. Nevertheless, when human poses
have to be compared across a temporal set of frames, the assessment of the
similarity between two sequences of poses or motion becomes a non-trivial prob-
lem. Indeed, human motion typically evolves in a different manner on different
sequences, which means that specific pose patterns tend to appear at different
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Fig. 1. When asked to measure the similarity to a query sequence (“Walking”, top),
both the L2 and the DTW measures judge the unrelated sequence (“Standing”, bot-
tom) as notably more similar compared to a semantically correlated one (“Walking”,
middle). Conversely, our learned metric is able to capture the contextual information
and measure the similarity correctly with respect to the given labels.

time instants on sequences representing the same human motion: see, e.g., the
first two sequences in Fig. 1, which depict two actions belonging to the same class.
Moreover, these sequences result also in varying length (i.e., a different num-
ber of frames), this making the definition of a general similarity measure more
complicated. Nevertheless, albeit challenging, estimating the similarity between
human poses across a sequence is a required step in human motion analysis tasks
such as action retrieval and recognition, gait analysis and motion-based person
identification.

Conventional approaches deployed to compare human motion sequences are
based on estimating the L2 displacement error [23] or Dynamic Time Warp-
ing (DTW) [42]. Specifically, the former computes the squared distance between
corresponding joints in the two sequences at a specific time t. As shown by
Martinez et al. [23], such measure tends to disregard the specific motion char-
acteristics, since a constant pose repeated over a sequence might turn out to
be a better match to a reference sequence than a visually similar motion with
a different temporal evolution. On the other hand, DTW tries to alleviate this
problem by warping the two sequences via compressions or expansions so to
maximize the matching between local poses. Nevertheless, DTW can easily fail
in appropriately estimating the similarity when the motion dynamic in terms of
peaks and plateaus exhibits small temporal variations, as shown in [18]. As an
example, Fig. 1 illustrates a typical failure case of DTW when measuring the sim-
ilarity among three human motions. Although the first two motions are visually
similar to each other while the third one is unrelated to them, DTW estimates a
smaller distance between the first and the third sequence. In general, neither the
DTW nor the L2 metrics can comprehensively capture the semantic relationship
between two sequences since they disregard the contextual information (in the
temporal sense), this limiting their application in the aforementioned scenarios.

The goal of this work is to introduce a novel metric for estimating the similar-
ity between two human motion sequences. Our approach relies on deep metric
learning that uses a neural network to map high-dimensional data to a low-
dimensional embedding [31,33,35,45]. In particular, our first contribution is to
design an approach so to map semantically similar motions over nearby loca-
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tions in the learned embedding space. This allows the network to express a
similarity measure that strongly relies on the motion’s semantic and contextual
information. To this end, we employ a novel objective function based on the
Maximum Mean Discrepancy (MMD) [14], which enforces motions to be embed-
ded based on their distribution moments. The main advantage with respect to
standard triplet loss learning is represented by the fact that our approach, being
based on distributions and not samples, does not require hard negative mining
to converge, which is computationally expensive since finding hard negatives in
a human motion datasets requires the alignment of sequence pairs, which has an
O(n2) complexity (n being the sequence length). As our second main contribu-
tion, we design a novel deep learning architecture based on attentive recurrent
neural networks (RNNs) which exploits attention mechanisms to map an arbi-
trary input size to a fixed sized embedding while selectively focusing on the
semantically descriptive parts of the motion.

One advantage of our approach is that, unlike DTW, we do not need any
explicit synchronization or alignment of the motion patterns appearing on the
two sequences, since motion patterns are implicitly and semantically matched
via deep metric learning. In addition, our approach can naturally deal with
varied size input thanks to the use of the recurrent model, while retaining the
distinctive motion patterns by means of the attention mechanism. An example is
shown in Fig. 1, comparing our similarity measure to DTW and L2. We validate
the usefulness of our approach for the tasks of action retrieval and motion-
based person identification on two publicly available benchmark datasets. The
proposed experiments demonstrate significant improvements over conventional
human motion similarity metrics.

2 Related Work

In recent literature, image-based deep metric learning has been extensively stud-
ied. However, just a few works focused on metric learning for time-series data, in
particular human motion. Here, we first review metric learning approaches for
human motion, then follow up with recent improvements in deep metric learning.

Metric Learning for Time Series and Human Motion. We first review metric
learning approaches for time series, then focus only on works related on human
motion analysis. Early works on metric learning for time series approaches mea-
sure the similarity in a two steps process [4,9,30]. First, the model determines
the best alignment between two time series, then it computes the distance based
on the aligned series. Usually, the model finds the best alignment by means of the
DTW measure, first by considering all possible alignments, then ranking them
based on hand-crafted local metric. These approaches have two main drawbacks:
first, the model yields an O(n2) complexity; secondly, and most importantly,
the local metric can hardly capture relationship in high dimensional data. In
order to overcome these drawbacks, Mei et al. [25] propose to use LogDet diver-
gence to learn a local metric that can capture the relationship in high dimen-
sional data. Che et al. [5] overcome the hand crafted local metric problem by
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using a feed-forward network to learn local similarities. Although the proposed
approaches [5,25] learn to measure the similarity between two given time series
at time t, the relationship between two time steps is discarded. Moreover, find-
ing the best alignment requires to search for all possible alignments. To address
these problems, recent work focused on determining a low dimensional embed-
ding to measure the distance between time series. To this goal, Pei et al. [29]
and Zheng et al. [46] used a Siamese network which learns from pairs of inputs.
While Pei et al. [29] trained their network by minimizing the binary cross entropy
in order to predict whether the two given time series belong to the same clus-
ter or not, Zheng et al. [46] propose to minimize a loss function based on the
Neighbourhood Component Analysis (NCA) [32]. The main drawback of these
approaches is that the siamese architecture learns the embedding by considering
only the relative distances between the provided input pairs.

As for metric learning for human motion analysis, they mostly focus on
directly measuring the similarity between corresponding poses along the two
sequences. Lopez et al. [22] proposed a model based on [10] to learn a distance
metric for two given human poses, while aligning the motions via Hidden Markov
Models (HMM) [11]. Chen et al. [6] proposed a semi-supervised learning app-
roach built on a hand-crafted geometric pose feature and aligned via DTW.
By considering both the pose similarity and the pose alignment in learning,
Yin et al. [44] proposed to learn pose embeddings with an auto-encoder trained
with an alignment constraint. Notably, this approach requires an initial align-
ment based on DTW. The main drawback of these approaches is that their
accuracy relies heavily on the accurate motion alignment provided by HMM or
DTW, which is computationally expensive to obtain and prone to fail in many
cases. Moreover, since the learning process considers only single poses, they lack
at capturing the semantics of the entire motion.

Recent Improvements in Deep Metric Learning. Metric learning with deep
networks started with Siamese architectures that minimize the contrastive
loss [7,15]. Schroff et al. [33] suggest using a triplet loss to learn the embeddings
on facial recognition and verification, showing that it performs better than con-
trastive loss to learn features. Since they conduct hard-negative mining, when the
training set and the number of different categories increase, searching for hard-
negatives become computationally inefficient. Since then, research mostly focus
on carefully constructing batches and using all samples in the batch. Song et
al. [36] proposed the lifted loss for training, so to use all samples in a batch.
In [35], they further developed the idea and propose an n-pair loss that uses
all negative samples in a batch. Other triplet-based approaches are [26,40]. In
[31], the authors show that minimizing the loss function computed on individ-
ual pairs or triplets does not necessarily enforce the network to learn features
that represent contextual relations between clusters. Magnet Loss [31] address
some of these issues by learning features that compare the distributions rather
than the samples. Each cluster distribution is represented by the cluster centroid
obtained via k-means algorithm. A shortcoming of this approach is that comput-
ing cluster centers requires to interrupt training, this slowing down the process.
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Proxy-NCA [27] tackle this issue by designing a network architecture that learns
the cluster centroids in an end-to-end fashion, this avoiding interruptions during
training. Both the Magnet Loss and the Proxy-NCA use the NCA [32] loss to
compare the samples. Importantly, they both represent distributions with clus-
ter centroids which do not convey sufficient contextual information of the actual
categories, and require to set a pre-defined number of clusters. In contrast, we
propose to use a loss function based on MMD [14], which relies on distribution
moments that do not need to explicitly determine or learn cluster centroids.

3 Metric Learning on Human Motion

The objective is to learn an embedding for human motion sequences, such that
the similarity metric between two human motion sequences X := {x1, x2, ..., xn}
and Y := {y1, y2, ..., ym} (where xt and yt represent the poses at time t) can be
expressed directly as the squared Euclidean distance in the embedding space.
Mathematically, this can be written as

d(f(X), f(Y )) = ‖f(X) − f(Y )‖2 (1)

where f(·) is the learned embedding function that maps a varied-length motion
sequence to a point in a Euclidean space, and d(·, ·) is the squared Euclidean
distance. The challenge of metric learning is to find a motion embedding function
f such that the distance d(f(X), f(Y )) should be inversely proportional to the
similarity of the two sequences X and Y . In this paper, we learn f by means
of a deep learning model trained with a loss function (defined in Sect. 4) which
is derived from the integration of MMD with a triplet learning paradigm. In
addition, its architecture (described in Sect. 5) is based on an attentive recurrent
neural network.

4 Loss Function

Following the standard deep metric learning approach, we model the embedding
function f by minimizing the distance d(f(X), f(Y )) when X and Y belong to
the same category, while maximizing it otherwise. A conventional way of learning
f would be to train a network with the contrastive loss [7,15].

Lcontrastive = (r)
1
2
d + (1 − r)

1
2
[max(0, αmargin − d)]2 (2)

where r ∈ {1, 0} indicates whether X and Y are from the same category or
not, and αmargin defines the margin between different category samples. Dur-
ing training, the contrastive loss penalizes those cases where different category
samples are closer than αmargin and when the same category samples have a
distance greater than zero. This equation shows that the contrastive loss only
takes into account pairwise relationships between samples, thus only partially
exploiting relative relationships among categories. Conversely, triplet learning
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better exploit such relationships by taking into account three samples at the
same time, where the first two are from the same category while the third is
from a different one. Notably, it has been shown that exploiting relative rela-
tionships among categories play a fundamental role in terms of the quality of
the learned embedding [33,45]. The triplet loss enforces embedding samples from
the same category with a given margin distance with respect to samples from a
different category. If we denote the three human motion samples as X, X+ and
X−, the commonly used ranking loss [34] takes the form of

Ltriplet = max(0, ‖f(X) − f(X+)‖2 − ‖f(X) − f(X−)‖2 + αmargin) (3)

where X and X+ represent the motion samples from the same category and
X− represents the sample from a different category. In literature X, X+, and
X− are often referred to as anchor, positive, and negative samples, respec-
tively [31,33,35,45].

However, one of the main issue with the triplet loss is the parameterization of
αmargin. We can overcome this problem by using the Neighbourhood Components
Analysis (NCA) [32]. Thus, we can write the loss function using NCA as

LNCA =
exp(−‖f(X) − f(X+)‖2)

∑
X−∈C exp(−‖f(X) − f(X−)‖2) (4)

where C represents all categories except for that of the positive sample.
In the ideal scenario, when iterating over triplets of samples, we expect that

the samples from the same category will be grouped in the same cluster in the
embedding space. However, it has been shown that most of the formed triplets are
not informative and visiting all possible triplet combinations is infeasible. There-
fore, the model will be trained with only a few informative triplets [31,33,35]. An
intuitive solution can be formulated by selecting those negative samples that are
hard to distinguish (hard negative mining), although searching for a hard nega-
tive sample in a motion sequence dataset is computationally expensive. Another
issue linked with the use of triplet loss is that, during a single update, the positive
and negative samples are evaluated only in terms of their relative position in the
embedding: thus, samples can end up close to other categories [35]. We address
the aforementioned issue by pushing/pulling the cluster distributions instead of
pushing/pulling individual samples by means of a novel loss function, dubbed
MMD-NCA and described next, that is based on the distribution differences of
the categories.

4.1 MMD-NCA

Assuming that given two different distributions p and q, the general formulation
of MMD measures the distance between p and q while taking the differences of
the mean embeddings in Hilbert spaces, written as
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MMD[k, p, q]2=‖μq − μp‖2=Ex,x′ [k(x, x′)]−2Ex,y[k(x, y)]+Ey,y′ [k(y, y′)] (5)

where x and x′ are drawn IID from p while y and y′ are drawn IID from q, and
k represents the kernel function

k(x, x
′
) =

K∑

q=1

kσq
(x, x

′
) (6)

where kσq
is a Gaussian kernel with bandwidth parameter σq, while K (number

of kernels) is a hyperparameter. If we replace the expected values from the given
samples, we obtain

MMD[k,X, Y ]2=
1

m2

m∑

i=1

m∑

j=1

k(xi, x
′
j)−

2
mn

m∑

i=1

n∑

j=1

k(xi, yj)+
1
n2

n∑

i=1

n∑

j=1

k(yi, y
′
j)

(7)
where X := {x1, x2, . . . xm} is the sample set from p and Y := {y1, y2, . . . yn} is
the sample set from q. Hence, (7) allows us to measure the distance between the
distribution of two sets.

We formulate our loss function in order to force the network to decrease the
distance between the distribution of the anchor samples and that of the positive
samples, while increasing the distance to the distribution of the negative samples.

Therefore, we can rewrite (4) for a given number N of anchor-positive
sample pairs as {(X1,X

+
1 ), (X2,X

+
2 ), . . . , (XN ,X+

N )} and N × M nega-
tive samples from the M different categories C = {c1, c2, . . . , cM} as
{X−

c1,1,X
−
c1,2, . . . , X

−
c1,N , . . . , X−

cM ,N}; then,

LMMD-NCA =
exp(−MMD[k, f(X), f(X+)])

∑M
j=1 exp(−MMD[k, f(X), f(X−

cj )])
(8)

where X and X+ represent motion samples from the same category, while Xcj

represents samples from category cj ∈ C. Our single update contains M different
negative classes randomly sampled from the training data.

Since the proposed MMD-NCA loss minimizes the overlap between different
category distributions in the embedding while keeping the samples from the same
distribution as close as possible, we believe it is more effective for our task than
the triplet loss. We demonstrate this quantitatively and qualitatively in Sect. 7.

5 Network Architecture

Our architecture is illustrated in Fig. 2. This model has two main parts: the bidi-
rectional long short-term memory (BiLSTM) [16] and the self-attention mech-
anism. The reason for using the long short-term memory (LSTM) [16] is to
overcome the vanishing gradient problem of the recurrent neural networks. In
[12,13], they show that LSTM can capture long term dependencies. In the next
sections, we briefly describe the layer normalization mechanism and attention
mechanism that used in our architecture.
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Fig. 2. (a) The proposed architecture for sequence distance learning. (b) The proposed
attention-based model that uses layer normalization.

5.1 Layer Normalization

In [7,26,27,36], they have shown that batch normalization plays a fundamental
role on the triplet model’s accuracy. However, its straightforward application to
LSTM architectures can decrease the accuracy of model [19]. Due to this, we
used the layer normalized LSTM [3].

Suppose that n time steps of motion X = (x1, x2, . . . , xn) are given, then the
layer normalized LSTM is described by

f t = σ(Wfhht−1 + Wfxxt + bf ) (9)
it = σ(Wihht−1 + Wixxt + bi) (10)
ot = σ(Wohht−1 + Woxxt + bo) (11)
c̃t = tanh(Wchht−1 + Wcxxt + bc) (12)
ct = f t � ct−1 + it � c̃t (13)

mt =
1
H

H∑

j

cj
t ,vt =

√
√
√
√ 1

H

H∑

j

(cj
t − mt)2 (14)

ht = ot � tanh(
γt

vt
� (ct − mt) + β) (15)

where ct−1 and ht−1 denotes the cell memory and cell state which comes from
the previous time steps, xt denotes the input human pose at time t. σ(·) and �
represent the element-wise sigmoid function and multiplication respectively, and
H denotes the number of hidden units in LSTM. The parameters W·,·, γ and β
are learned while γ and β has the same dimension of ht. Contrary to the standard
LSTM, the hidden state ht is computed by normalizing the cell-memory ct.
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5.2 Self-attention Mechanism

Intuitively, in a sequence of human motion, some poses are more informative than
others. Therefore, we use the recently proposed self-attention mechanism [21] to
assign a score for each pose in a motion sequence. Specifically, assuming that
the sequence of states S = {h1, h2, . . . , hn} computed from a motion sequence
X that consists of n time steps with (9) to (15), we can effectively compute the
scores for each of them by

r = Ws2 tanh(Ws1S
�) and ai = − log

(
exp(ri)∑
j exp(rj)

)

(16)

where ri is i-th element of the r while Ws1 and Ws2 are the weight matrices in
Rk×l and Rl×1, respectively. ai is the assigned score i-th pose in the sequence of
motion. Thus, the final embedding E can be computed by multiplying the scores
A = [a1, a2, . . . , an] and S, written as E = AS. Note that the final embedding
size only depends on the number of hidden states in the LSTM and Ws2. This
allows us to encode the varying size LSTM outputs to a fixed sized output. More
information about the self-attention mechanism can be found in [21].

6 Implementation Details

We use the TensorFlow framework [2] for all deep metric models that are
described in this paper. Our model has three branches as shown in Fig. 2.
Each branch consists of an attention based bidirectional layer normalized LSTM
(LNLSTM) (see Sect. 5.1). Bidirectional LNLSTM follows a forward and back-
ward passing of the given sequence of motion. We then denote st = [st,f , st,b]
such that st,f =

−−−−−−→
LNLSTM(wt, xt) for t ∈ [0, N ] and st,b =

←−−−−−−
LNLSTM(wt, xt) for

t ∈ [N, 0].
Given n time steps of a motion sequence X, we compute S = (s1, s2, . . . , sn)

where st is the concatenated output of the backward and forward pass of the
LNLSTM which has 128 hidden units. The bidirectional LSTM is followed by
the dropout and the standard batch normalization. The output of the batch
normalization layer is forwarded to the attention layer (see Sect. 5.2), which
produces the fixed size of the output. The attention layer is followed by the
structure: {FC(320,), dropout, BN, FC(320), BN, FC(128), BN, l2 Norm}, where
FC(m) means fully connected layer with m as the hidden units and BN means
batch normalization. All the FC layers are followed by the rectified linear units
except for the last FC layer. The self-attention mechanism is derived from the
implementation of [21]. Here, the Ws1 and Ws2 parameters from (16) have the
dimensionality of R200×10 and R10×1, respectively. We use the dropout rate of
0.5. The same dropout mask is used in all branches of the network in Fig. 2. In
our model, all squared weight matrices are initialized with random orthogonal
matrices while the others are initialized with uniform distribution with zero mean
and 0.001 standard deviation. The parameters γ and β in (15) are initialized with
zeros and ones, respectively.
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Kernel Designs. The MMD-NCA loss function is implicitly associated with a
family of characteristic kernels. Similar to the prior MMD papers [20,38], we
consider a mixture of K radial basis functions in (6). We fixed K = 5 and σq to
be 1, 2, 4, 8, 16.

Training. Our single batch consists of randomly selected categories where each
category has 25 samples. We selected 5 category as negative. Although the MMD
[14] metric requires a high number of samples to understand the distribution
moments, we found that 25 is sufficient for our tasks. Training each batch takes
about 10 s on a Titan X GPU. All the networks are trained with 5000 updates
and they all converged before the end of training. During training, analogous to
the curriculum learning, we start training on the samples without noise and then
added Gaussian noise with zero mean and increasing standard deviation. We use
stochastic gradient descent with the moment as an optimizer for all models. The
momentum value is set to 0.9, and the learning rate started from 0.0001 with
an exponential decay of 0.96 every 50 updates. We clip the whole gradients by
their global norm to the range of −25 and 25.

7 Experimental Results

We compare our MMD-NCA loss against the methods from DTW [42],
MDDTW [25], CTW [47] and GDTW [48], as well as four state-of-the-art deep
metric learning approaches: DCTW [41], triplet [33], triplet+GOR [45], and the
N -Pairs deep metric loss [14]. Primarily, these methods are evaluated through
action recognition task in Sect. 7.1. In order to look closely into the performance
of this evaluation, we analyze the actions retrieved by the proposed method in the
same section and the contribution of the self-attention mechanism from Sect. 5.2
into the algorithm in Sect. 7.3. Since one of the datasets [1] labeled the actions
with their corresponding subjects, we also investigate the possibility of perform-
ing a person identification task wherein, instead of measuring the similarity of
the pose, we intend to measure the similarity the actors themselves based on
their movement. To have a fair comparison, we only used our attention based
LSTM architecture for all methods and only changed the loss function except
the DCTW [41]. Prosed loss function in DCTW [41] requires the two sequences,
therefore we remove the attention layer and use only our LSTM model. Notably,
all deep metric learning methods are evaluated and trained with the same data
splits.

Performance Evaluation. We follow the same evaluation protocol as defined in
[36,45]. All models are evaluated for the clustering quality and false positive
rate (FPR) on the same test set which consists of unseen motion categories. We
compute the FPR for 90%, 80% and 70% true positive rates. In addition, we also
use the Normalized Mutual Information measure (NMI) and F1score to measure
the cluster quality where the NMI is the ratio between mutual information and
sum of class and cluster labels entropies while the F1score is the harmonic mean
of precision and recall.
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Datasets and Pre-processing. We tested the models on two different datasets:
(1) the CMU Graphics Lab motion capture database (CMU mocap) [1]; and,
(2) the Human3.6M dataset [17]. The former [1] contains 144 different subjects
where each subject performs natural motions such as walking, dancing and jump-
ing. Their data is recorded with the mocap system and the poses are represented
with 38 joints in 3D space. Six joints are excluded because they have no move-
ment. We align the poses with respect to the torso and, to avoid the gimbal lock
effect, the poses are expressed in the exponential map [39]. Although the original
data runs at 120 Hz with different lengths of motion sequences, we down-sampled
the data to 30 Hz during training and testing.

Furthermore, the Human3.6M dataset [17] consists of 15 different actions and
each action was performed by seven different professional actors. The actions
are mostly selected from daily activities such as walking, smoking, engaging in a
discussion, taking pictures and talking on the phone. We process the dataset in
the same way as the same as CMU mocap.

7.1 Action Recognition

In this experiment, we tested our model on both the CMU mocap [1] and the
Human3.6M [17] datasets for unseen motion categories. We categorize the CMU
mocap dataset into 38 different motion categories where the motion sequences
which contain more than one category are excluded. Among them, we selected
19 categories for training and 19 categories for testing. For the Human3.6M [17],

Table 1. False positive rate of action recognition for CMU mocap and Human3.6M
datasets.

CMU Human3.6M

FPR-90 FPR-80 FPR-70 FPR-90 FPR-80 FPR-70

DTW [42] 47.98 42.92 37.62 49.64 47.96 44.38

MDDTW [25] 44.60 39.07 34.04 49.72 45.87 44.51

CTW [47] 46.02 40.96 39.11 47.63 43.10 42.18

GDTW [48] 45.61 39.95 35.24 46.06 42.72 40.04

DCTW [41] 40.56 38.83 26.95 41.39 39.18 36.71

Triplet [33] 39.72 33.82 28.77 42.78 40.15 36.01

Triplet + GOR [45] 40.32 33.97 27.78 42.03 37.61 33.95

N-Pair [35] 40.11 32.35 26.16 40.46 39.56 36.52

MMD-NCA (Ours) 32.66 25.66 20.29 38.42 36.54 33.13

– without Attention 41.22 35.36 30.04 45.03 42.07 41.01

– without LN 37.27 30.21 27.95 44.25 41.69 38.09

– Linear Kernel 39.80 33.92 29.00 46.35 41.68 37.69

– Polynomial Kernel 36.80 30.35 24.98 43.60 40.03 35.62
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Fig. 3. NMI and F1score for the action recognition task using the (a) CMU Mocap
and (b) Human3.6M datasets; and, (b) for person identification task.

we used all the given categories, and selected 8 categories for training and 7
categories for testing.

Although our model allows us to train with varying sizes of motion sequence,
we train with a fixed size, since varying sizes slow down the training process.
We divided the motion sequences into 90 consecutive frames (i.e. approximately
3 s) and leave a gap of 30 frames. However, at test time, we divided the motion
sequences only if it is longer than 5 s by leaving a 1-s gap; otherwise, we keep
the original motion sequence. We found this processing effective since we observe
that, in sequence of motions longer than 5 s, the subjects usually repeat their
action. We also consider training without clipping but it was not possible with
available the GPU resources.

False Positive Rate. The FPR at different percentages on CMU mocap and
Human3.6M are reported in Table 1. With a true positive rate of 70%, the learn-
ing approaches [33,35,41,45] including our approach achieve up to 17% improve-
ment in FPR relative to DTW [42], MDDTW [25], CTW [47] and GDTW [48].
Moreover, our approach further improves the results up to 6% and 0.8% for
CMU mocap and Human3.6m datasets, respectively, against the state-of-the-art
deep learning approaches [33,35,41,45].

NMI and F1Score. Figure 3(a) plots the NMI and F1score with varying size
of embedding for the CMU mocap dataset. In both the NMI and F1metrics,
our approach produces the best clusters at all the embedding sizes. Compared
to other methods, the proposed approach is less sensitive to the changes of
the embedding size. Moreover, Fig. 3(b) illustrates the NMI and F1score on
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Fig. 4. Comparison of cartwheel motion query on the CMU mocap dataset between
our approach and DTW [42]. The motion in the first row is query and the rest are four
nearest neighbors for each method, which are sorted by the distance.

Human3.6M dataset where we observe similar performance as the CMU mocap
dataset and acquire the best results.

Action Retrieval. In order to investigate further, we query a specific motion
from the CMU mocap test set, and compare the closest action sequences that
our approach and DTW [42] retrieve based on their respective similarity mea-
sure. In Fig. 4, we demonstrate this task as we query the challenging cartwheel
motion (see first row). Our approach successfully retrieves the semantically sim-
ilar motions sequences, despite the high variation on the length of sequences. On
the other hand, DTW [42] fails to match the query to the dataset because the
distinctive pose appears on a small portion of the sequence. This implies that the
large portion, where the actor stands, dominates the similarity measure. Note
that we do not have the same problem due to the self-attention mechanism from
Sect. 5.2 (see Sect. 7.3 for the evaluation).

7.2 Person Identification

Since the CMU mocap dataset also includes the specific subject associated to
each motion, we explore the potential application of person identification. In
contrast to the action recognition and action retrieval from Sect. 7.1 where the
similarity measure is calculated based on the motion category, this task tries to
measure the similarity with respect the actor. In this experiment, we construct
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Table 2. False positive rate of person identification for CMU mocap dataset.

FPR-95 FPR-90 FPR-85 FPR-80 FPR-75 FPR-70

DTW [42] 46.22 43.19 38.70 32.36 27.61 22.85

MDDTW [25] 49.67 45.89 40.36 35.46 31.69 28.44

CTW [47] 45.23 40.14 35.69 29.50 25.91 20.35

GDTW [48] 44.65 40.54 35.03 28.07 24.31 19.32

DCTW [41] 32.45 20.24 18.15 15.91 13.78 10.31

Triplet [33] 22.58 18.13 11.30 9.63 8.36 6.51

Triplet + GOR [45] 28.37 16.69 10.27 8.64 7.28 4.38

N-Pair [35] 22.84 15.31 8.94 5.69 4.82 4.56

MMD-NCA (Ours) 19.31 10.42 8.26 5.62 3.91 2.55

– without Attention 36.10 26.15 22.48 20.94 19.21 16.78

– without LN 26.63 18.43 12.81 10.27 8.58 7.36

– Linear Kernel 35.75 30.97 25.93 15.13 11.93 10.42

– Polynomial Kernel 27.25 21.18 17.91 10.93 8.97 5.93

the training and test set in the same way as Sect. 7.1. We included the subjects
which have more than three motion sequences, which resulted in 68 subjects.
Among them, we selected 39 subjects for training and the rest of the 29 subjects
for testing.

Table 2 shows the FPR for the person identification task for varying per-
centages of true positive rate with embedding size of 64. Here, all deep met-
ric learning approaches including our work significantly improve the accuracy
against the DTW, MDDTW, CTW and GDTW. Overall, our method outper-
forms all the approaches for all FPR with a 20% improvement against DTW [42],
MDDTW [25], CTW [47] and GDTW [48], and a 2% improvement compared to
the state-of-the-art deep learning approaches [33,35,41,45]. Moreover, when we
evaluate the NMI and the F1score for the clustering quality in different embed-
ding sizes, Fig. 3(c) demonstrates that our approach obtains the state-of-the-art
results with a significant margin.

7.3 Attention Visualization

The objective of the self-attention mechanism from Sect. 5.2 is to focus on
the poses which are the most informative about the semantics of the motion
sequence. Thus, we expect our attention mechanism to focus on the descriptive
poses in the motion, which allows the model to learn more expressive embed-
dings. Based on the peaks of A which is composed of ai from (16), we illustrate
this behavior in Fig. 5 where the first two rows belong to the basketball sequence
while the third belong to the bending sequence. Notably, all the sequences have
different lengths.
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Fig. 5. Attention visualization: the poses in red show where the model mostly focused
its attention. Specifically, we mark as red those frames associated with each column-wise
global maximum in A, together with the previous and next 2 frames. For visualization
purposes, the sequences are subsampled by a factor of 4.

Despite the variations in the length of the motion, the model focuses when
the actor throws the ball which is the most informative part of the motion for
Fig. 5(a–b); while, for the bending motion in Fig. 5(c), it also focuses on the
distinctive regions of the motion sequence. Therefore, this figure illustrate that
the self-attention mechanism successfully focuses on the most informative part
of the sequence. This implies that the model discards the non-informative parts
in order to embed long motion sequences to a low dimensional space without
losing the semantic information.

8 Ablation Study

We evaluate our architecture with different configurations to better appreciate
each of our contributions separately. All models are trained with MMD-NCA loss
and with an embedding of size 128. Tables 1 and 2 show the effect of the layer
normalization [3], the self-attention mechanism [21] and the kernel selection in
terms of FPR. We use the same architecture for linear, polynomial, and MMD-
NCA and only change the kernel function in (6). Notably, the removal of the self-
attention mechanism yields the biggest drop in NMI and F1on all the datasets.
In addition, Both the layer normalization and the self-attention improve the
resulting FPR by 7% and 10%, respectively. In terms of kernel selection, the
results shows that selecting the kernel which takes into account higher moments
yields better results. Comparing the two tasks, the person identification is the
one that benefits from our architecture the most.

9 Conclusion

In this paper, we propose a novel loss function and network architecture to mea-
sure the similarity of two motion sequences. Experimental results on the CMU
mocap [1] and Human3.6M [17] datasets show that our approach obtain state-
of-the-art results. We also have shown that metric learning approaches based on
deep learning can improve the results up to 20% against metrics commonly used
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for similarity among human motion sequences. As future work, we plan to gen-
eralize the proposed MMD-NCA framework to time-series, as well as investigate
different types of kernels.
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