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Abstract. Video objection detection is challenging in the presence of
appearance deterioration in certain video frames. One of typical solutions
is to enhance per-frame features through aggregating neighboring frames.
But the features of objects are usually not spatially calibrated across
frames due to motion from object and camera. In this paper, we pro-
pose an end-to-end model called fully motion-aware network (MANet),
which jointly calibrates the features of objects on both pixel-level and
instance-level in a unified framework. The pixel-level calibration is flexi-
ble in modeling detailed motion while the instance-level calibration cap-
tures more global motion cues in order to be robust to occlusion. To our
best knowledge, MANet is the first work that can jointly train the two
modules and dynamically combine them according to the motion pat-
terns. It achieves leading performance on the large-scale ImageNet VID
dataset.

Keywords: Video object detection · Feature calibration · Pixel-level
Instance-level · End-to-end

1 Introduction

Object detection is a fundamental problem in image understanding. Deep con-
volutional neural networks have been successfully applied to this task, includ-
ing [2,18–22,29]. Although they have achieved great success in object detection
from static image, video object detection remains a challenging problem. Frames
in videos are usually deteriorated by motion blur or video defocus, which are
extremely difficult for single-frame detectors.

To tackle the challenges in deteriorated frames, one of straightforward solu-
tions is to consider the spatial and temporal coherence in videos and lever-
age information from nearby frames. Following this idea, [5,8,14,15] explore
hand-crafted bounding box association rules to refine the final detection results.
As post-processing methods, those rules are not jointly optimized. As contrast,
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FGFA [30] attempts to leverage temporal coherence on feature level by aggregat-
ing features of nearby frames along the motion paths. They use flow estimation
to predict per-pixel motion which is hereinafter referred to as pixel-level fea-
ture calibration. However, such pixel-level feature calibration approach would
be inaccurate when appearance of objects dramatically changes, especially as
objects are occluded. With inaccurate flow estimation, the flow-guided warping
may undesirably mislead the feature calibration, failing to produce ideal results.
Thus, the robustness of feature calibration is of great importance.

Fig. 1. Examples of occlusion in video object detection. When the bus is occluded by
a passing car, the single frame detector fails to produce an accurate box. Pixel-level
calibration can help improve the results but it is still influenced due to occlusions.
Instance-level calibration performs the best among these results.

In this paper, our philosophy is that accurate and robust feature calibration
across frames plays an important role in video object detection. Besides existing
pixel-level methods, we propose an instance-level feature calibration method. It
estimates the motion of each object along time in order to accurately aggregate
features. Specifically, for each proposal in the reference frame, the correspond-
ing motion features are extracted to predict the relative movements between
nearby frames and the current frame. According to the predicted relative move-
ments, the features of the same object in nearby frames are RoI-pooled and
aggregated for better representation. Compared to the pixel-level calibration,
the instance-level calibration is more robust to large temporal appearance varia-
tions such as occlusions. As shown in Fig. 1, when the bus in the reference frame
is occluded, the flow estimation fails to predict such detailed motion. The warped
features of nearby frames can be used to improve the current result, but they
are still affected by occluded pixels. In contrast to the pixel-level calibration, the
instance-level calibration considers an object as a whole and estimate the motion
of the entire object. We argue that such high-level motion is more reliable to use
especially when the object is occluded.

Moreover, taking a closer look at above two calibration, we find the pixel-level
and instance-level calibration can work collaboratively depending on different
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motion patterns. The former one is more flexible for modeling non-rigid motion,
particularly for some tiny animals. And high-level motion estimation can well
describe regular motion trajectory (e.g. car). On the basis of observation, we
develop a motion pattern reasoning module. If the motion pattern is more likely
to be non-rigid and any occlusion does not occur, the final result relies more
on the pixel-level calibration. Otherwise, it depends more on the instance-level
calibration. All above modules are integrated in a unified framework that can
be trained end-to-end.

In terms of the baseline model R-FCN, the proposed instance-level calibration
and the MANet improve the mAP 3.5% and 4.5%, respectively, on ImageNet VID
dataset.

In summary, the contributions of this paper include:

– We propose an instance-level feature calibration method by learning instance
movements through time. The instance-level calibration is more robust to
occlusions and outperforms pixel-level feature calibration.

– By visualizing typical samples and conducting statistical experiments, we
develop a motion pattern reasoning module to dynamically combine pixel-
level and instance-level calibration according to the motion. We show how to
jointly train them in an end-to-end manner.

– We demonstrate the MANet on the large-scale ImageNet VID dataset [23]
with state-of-the-art performance. Our code is available at: https://github.
com/wangshy31/MANet for Video Object Detection.git.

2 Related Work

2.1 Object Detection from Still Images

Existing state-of-the-art methods for general object detection are mainly based
on deep CNNs [1,10,11,16,25–27]. Based on such powerful networks, a lot of
works [2,3,6,7,18,22,24] have been done for further improvement in performance
of detection. [7] is a typical proposal based CNN detector by using Selective
Search [28] to extract proposals. Different from the above multi-stage pipeline,
[6] develops an end-to-end training method through applying spatial pyramid
pooling [9]. Faster R-CNN [22] further incorporates proposal generation proce-
dure into CNNs with most parameters shared, leading to much higher proposal
quality as well as computation speed. R-FCN [2] is another fully convolutional
detector. To address the lack of position sensitivity, R-FCN introduces position-
sensitive score maps and a position-sensitive RoI pooling layer. We use R-FCN
as our baseline and further extend it for video object detection.

2.2 Object Detection in Videos

Unlike those methods of object detection in still images, detectors for videos
should take the temporal information into account. One of the main-stream
approaches aims to explore bounding box association rules and apply heuristic
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post-processing. And the other stream of previous work is to leverage tempo-
ral coherence on feature level and seek to improve the detection quality in a
principled way.

For post-processing, the main idea is to use high-scoring objects from
nearby frames to boost scores of weaker detections within the same video. The
major difference among these methods is the mapping strategy of linking still
image detections to cross-frame box sequences. [8] links cross-frame bounding
boxes iff their IoU is beyond a certain threshold and generate potential link-
ages across the entire clip. Then they propose a heuristic method for re-ranking
bounding boxes called “Seq-NMS”. [14,15] focus on tubelet rescoring. Tubelets
are bounding boxes of an object over time. They apply an offline tracker to revisit
the detection results and then associate still-image object detections around the
tubelets. [15] presents a re-scoring method to improve the tubelets in terms of
temporal consistency. Moreover, [14] proposes multi-context suppression (MCS)
to suppress false positive detections and motion-guided propagation (MGP) to
recover false negatives. D&T [5] is the first work to jointly learn ROI tracker
along with detector. The cross-frame tracker is used to boost the scores for pos-
itive boxes. All above approaches focus on post-processing that can be further
collaborated with feature-level methods. We will prove it by combining Seq-NMS
[8] with our model to reinforce each other and further improve performance.

For feature-level learning, [13,30,31] propose end-to-end learning frame-
works to enhance the feature of individual frames in videos. [30] presents flow-
guided feature aggregation to leverage temporal coherence on feature level. In
order to spatially calibrate the features across frames, they apply an optical flow
network [4] to estimate the per-pixel motion between the nearby frames and the
reference frame. All the feature maps from nearby frames are then warped to
the reference frame so as to enhance the current representations. Similar to this
work, [31] also utilizes an optical flow network to model the correspondences
in raw pixels. The difference is that they use it to achieve significant speedup.
However, the low-level motion prediction is lack of robustness especially in the
presence of occlusion [12]. Such individual pixel-wise prediction without consid-
ering context may suffer from local consistency [17]. Different from still image
proposals, [13] provides a novel tubelet proposal network to efficiently generate
spatiotemporal proposals. The tubelet starts from static proposals, and extracts
multi-frame features, in order to predict the object motion patterns relative to
the spatial anchor. The detector extends 2-D proposals to spatiotemporal tubelet
proposals. All those methods will be our strong baselines.

3 Fully Motion-Aware Network

3.1 Overview

We first briefly overview the entire pipeline. Table 1 summarizes the main nota-
tions used in this paper. The proposed model is built on standard still image
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Table 1. Notations.

t − τ, t, t + τ Video frames index

i Proposal index

(x, y, w, h) Proposal location described by center (x, y), height and width

(Δx, Δy , Δw, Δh) normed proposal movements

I Video frame

p, q 2D location

f , s Output feature maps and score maps

Nfeat,Nrpn,Nrfcn CNNs for feature extractor, RPN and R-FCN

F Functions of flow estimation

W, G Bi-linear interpolation W with its kernel function G

φ, ψ ROI pooling and position-sensitive ROI pooling

detector which consists of the feature extractor Nfeat, the region proposal net-
work Nrpn [22] and the region-based detector Nrfcn [2]. The key idea of the
proposed model is to aggregate neighboring frames through feature calibration.

First, Nfeat will simultaneously receive three frames It−τ , It and It+τ as
input, and produce the intermediate features ft−τ , ft and ft+τ . As shown in
Fig. 2, the horizontal line running through the middle of the diagram produces
the reference features ft. The top and bottom lines are nearby features ft−τ

and ft+τ . These single frame features will be spatially calibrated through the
following two steps.

Second, the pixel-level calibration will be first applied to calibrate ft−τ and
ft+τ , generating ft−τ→t and ft+τ→t. These features are then aggregated as
fpixel. The elaborated formulations are in Sect. 3.2. fpixel is subsequently deliv-
ered to Nrpn to produce proposals, as well as Nrfcn, waiting to be further com-
bined with instance-level calibrated features.

Third, the instance-level calibration is conducted on the position-sensitive
score maps in Nrfcn. Specialized convolutional layers are applied on ft−τ , ft

and ft+τ to produce a bank of k2 position-sensitive score maps st−τ , st and
st+τ . For the i-th proposal (xi

t, y
i
t, w

i
t, h

i
t) of st, we introduce a procedure to

regress the corresponding proposal location (xi
t−τ , yi

t−τ , wi
t−τ , hi

t−τ ) for st−τ and
(xi

t+τ , yi
t+τ , wi

t+τ , hi
t+τ ) for st+τ . As formulated in Sect. 3.3, with these predicted

proposal, features in nearby frames are RoI-pooled and aggregated as si
insta.

At last, motion pattern reasoning is carried out to decide how to combine
the different calibrated features. Since fpixel is also fed into Nrfcn, it produces
si

pixel for the i-th proposal. Such module is designed to combine si
insta and si

pixel

according to dynamic motion pattern. It is described in Sect. 3.4.
In our method, all the modules, including feature extractor Nfeat, Nrpn,

Nrfcn, pixel-level calibration, instance-level calibration and motion pattern rea-
soning are trained end-to-end.
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Fig. 2. (Better viewed in color) The overall framework of the proposed fully motion-
aware network (MANet). It composes the four steps below: (a) single frame feature
extraction and flow estimation whose results are fed to the next two steps; (b) the
pixel-level calibration by per-pixel warping; (c) the instance-level calibration through
predicting instance movements; (d) the motion pattern based feature combination.

3.2 Pixel-Level Calibration

As motivated by [30,31], given a reference frame It and a neighbor frame It−τ (or
It+τ ), we can model the pixel-level calibration through optical flow estimation.
Let F be a flow estimation algorithm, such as FlowNet [4], and F(It−τ , It)
indicates the flow field estimated through such network from frame It to It−τ .
Then we can warp the feature maps from the neighbor frames to the current
frame as follows:

ft−τ = Nfeat(It−τ )
ft−τ→t = W(ft−τ ,F(It−τ , It))

(1)

where ft−τ denotes feature maps extracted by Nfeat and ft−τ→t is the warped
features from time t − τ to time t. The warping operation W is implemented by
bi-linear function which is applied on each location for all the feature maps. It
projects a location p + Δp in the nearby frame t − τ to the location p in the
current frame. We formulate it as:

Δp = F(It−τ , It)(p)

ft−τ→t(p) =
∑

q

G(q,p + Δp)ft−τ (q) (2)

where Δp is the output of flow estimation at location p. q enumerates all spatial
locations in the feature maps ft−τ , and G(·) denotes bi-linear interpolation kernel
as follow:

G(q,p + Δp) = max(0, 1 − ||q − (p + Δp)||) (3)

After obtaining calibrated features of nearby frames, we average these fea-
tures as the low-level aggregation for the updated reference features:

fpixel =

∑t+τ
j=t−τ fj→t

2τ + 1
(4)
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where fpixel is generated by the nearby frames from time t − τ to time t + τ .
[30] proposes an adaptive weight to combine those nearby features. But we find
that averaging motion guided features has the similar performance with less
computation cost. As a result, we adopt average operation in our model.

Through the pixel-wise calibration, the features of nearby frames are
spatially-temporally calibrated so as to provide diverse information for the ref-
erence frame. It alleviates several challenges in videos such as motion blur and
video defocus.

3.3 Instance-Level Calibration

The pixel-level feature calibration is flexible for modeling non-rigid motion,
which needs precise per-pixel correspondence. But the low-level calibration may
be inaccurate when object is occluded. In this subsection, we extend it to
instance-level motion modeling which has much more tolerance of occlusions.

The instance-level calibration is conducted on score maps of R-FCN. R-FCN
uses specialized convolutional layers to produce position-sensitive score maps
st. In order to aggregate scores for the i-th proposal si

t, we should obtain the
st−τ , st+τ and proposal movements. st−τ and st+τ can be easily yielded by
feeding ft−τ and ft+τ to the R-FCN. The problem is how to learn the rela-
tive movements of the i-th proposal, which is the prerequisites for calibrating
instance-level features.

We employ the flow estimation and proposals of reference frame as input, and
produce movements of each proposal between the neighboring frame and the
current frame. The relative movements require motion information. Although
per-pixel motion prediction by FlowNet is not accurate due to occlusion, it is
capable of describing the motion tendency. We use this motion tendency as input,
and output the movements of the entire object. Similar to the Sect. 3.2, we only
formulate the relationship between It−τ and I, and It+τ is in a similar way.

First, we utilize the RoI pooling operation to generate the pooled features
mi

t−τ of the i-th proposal at location (xi
t, y

i
t, h

i
t, w

i
t):

mi
t−τ = φ(F(It−τ , It), (xi

t, y
i
t, h

i
t, w

i
t)) (5)

where φ(·) indicates the RoI pooling [6] and F(It−τ , It) is the flow estimation
produced by shared FlowNet in Sect. 3.2. RoI pooling uses max pooling to con-
vert the features inside any valid region of interest into a small feature map with
fixed spatial extent.

Then regression network R(·) is exploited to estimate the movement of the
i-th proposal between the frame t − τ and t according to the mi

t−τ :

(Δi
xt−τ

,Δi
yt−τ

,Δi
wt−τ

,Δi
ht−τ

) = R(mi
t−τ ) (6)

where (Δi
xt−τ

,Δi
yt−τ

,Δi
wt−τ

,Δi
ht−τ

) is relative movements and R(·) is imple-
mented by a fully connected layer. The remaining problem is how to design
proper supervisions for learning the relative movements. Since we have the track-
id of each object within a video, we are able to generate the relative movements in
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terms of the ground-truth bounding boxes. We believe that the proposals should
have consistent movement with the ground-truth objects. Thus, the above regres-
sion target is assigned the ground-truth box movement if the proposal overlaps
with a ground-truth at least by 0.5 in intersection-over-union (IoU). In other
word, only the positive proposals will learn to regress the movements among
consecutive frames. We use the normed relative movements as regression tar-
gets.

Once we obtain the relative movements, we are able to calibrate the features
across time and aggregate them to enhance the feature of the current frame. The
proposal of frame It−τ can be inferred as:

xi
t−τ = Δi

xt−τ
× wi

t + xi
t yi

t−τ = Δi
yt−τ

× hi
t + yi

t

wi
t−τ = exp(Δi

wt−τ
) × wi

t hi
t−τ = exp(Δi

ht−τ
) × hi

t

(7)

Based on the estimated proposal locations for nearby frames, the aggregated
feature of the i-th proposal can be calculated as:

si
insta =

∑t+τ
j=t−τ ψ(sj , (xi

j , y
i
j , h

i
j , w

i
j))

2τ + 1
(8)

where sj denotes the neighboring score maps, ψ indicates position-sensitive pool-
ing layer introduced by [2], and si

insta is the instance-level calibrated feature of
the i-th proposal.

Discussion about the regression of relative movements. In [13], they have
the similar movement regression problem when generating tubelets. They utilize
pooled multi-frame visual features from the same spatial location of proposals to
regress the movements of the objects. However, these features within the same
location across time without explicit motion information make the regression
difficult for training. In our instance-level movements learning, we use flow esti-
mation as input to predict movements. It can regress the movements of all the
proposals simultaneously without any extra initialization tricks. [5] proposes a
correlation based regression. Compared to this additional correlation operation,
we adopt a shared FlowNet to model two kinds of motions (both pixel-level and
instance-level) simultaneously. This brings two advantages: (1) the feature shar-
ing saves computation cost (shown in Sect. 4.6). (2) the supervision for instance-
level movement regression provides additional motion information and improves
flow estimation as well.

3.4 Motion Patten Reasoning and Overall Learning Objective

Sections 3.2 and 3.3 give two motion estimation methods. Since they have respec-
tive advantages on different motion, the key issue of combination is to mea-
sure the non-rigidity of the motion pattern. Intuitively, when the boundingbox’s
aspect ratio xi

t

yi
t

changes rapidly across time, the motion pattern is more likely

to be non-rigid. Thus, we use the central-difference δ(xi
t

yi
t
) to express the change
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rate of aspect ratio at current time. In order to provide more stable estimates,
we use average operation over a short snippet to produce the final descriptor of
motion pattern:

δ(
xi

t

yi
t

) = (
xi

t+1

yi
t+1

− xi
t−1

yi
t−1

)/2

pi
nonri =

∑t+τ−1
j=t−τ+1 δ(xi

j

yi
j
)

2τ − 1

(9)

where pi
nonri is the motion pattern descriptor for the i-th proposal. The corre-

sponding proposals in the nearby frames can be obtained from Sect. 3.3.
Additionally, occlusion is another important factor when combining these

two calibrations. We exploit the visual feature within the proposal to predict
the probability of the object being occluded:

pi
occlu = R(φ(ft, (xi

t, y
i
t, h

i
t, w

i
t))) (10)

where R(·) is also implemented by a fully connected layer and pi
occlu is the

probability of occlusion for the i-th proposal. Notice that Eq. 10 is similar to
Eq. 6, but Eq. 6 uses motion features from FlowNet to regress movements while
Eq. 10 adopts visual features to predict occlusion. It is mainly due to the fact
that occlusion is more related to appearance.

Considering these two factors, we use learnable soft weights to combine the
two calibrated features:

si
com = si

insta × α(
pi

occlu

pi
nonri

) + si
pixel × (1 − α(

pi
occlu

pi
nonri

)) (11)

where α(·) : R → [0, 1] is the mapping function that controls the adjustment
range for the weight.

The overall learning objective function is given as:

L(I) =
1
N

N∑

i=1

Lcls(pi, ci
gt)+

1
Nfg

N∑

i=1

1{cgt
i > 0}(Lreg(bi, bi

gt) + Lcls(pi
occlu, ci

o gt))+

λ
1

Ntr

Ntr∑

i=1

Ltr(Δi,Δi
gt)

(12)

where ci
gt is the ground-truth class label. pi and bi stand for the predicted

category-wise softmax score and bounding box regression based on si
com. pi

occlu

and Δi are occlusion probability and relative movement. 1{ci
gt > 0} denotes that

we only regress the foreground proposals and Ntr indicates that only positive
proposals will learn to regress the movement targets. Lcls is the cross-entropy
loss while Lreg and Ltr are defined as the smooth L1 function. The FlowNet is
supervised by both the movement targets and the final detection targets.
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Given the overall objective function, the whole architecture, including pixel-
level calibration, instance-level calibration, motion pattern reasoning, bounding
box classification and regression, is learned in an end-to-end way.

4 Experiments

4.1 Dataset Sampling and Evaluation Metrics

We evaluate the proposed framework on the ImageNet [23] object detection
from video (VID) dataset that contains 30 classes. It is split into 3862 training
videos and 555 validation videos. The 30 categories are labeled with ground-truth
bounding boxes and track IDs on all the video frames. We report all results on
the validation set and use the mean average precision (mAP) as the evaluation
metric by following the protocols in [13,30,31].

The 30 object categories in ImageNet VID are a subset of the 200 categories
in the ImageNet DET dataset. Although there are more than 112,000 frames
in VID training set, the redundancy among video frames make the training
procedure less efficient. Moreover, the quality of frames in video is much poorer
than the still images in DET dataset. Thus we follow previous approaches and
train our model on an intersection of ImageNet VID and DET set - 30 categories.
To sum up, we sample 10 frames from each video in VID dataset and at most
2 K images per class from DET dataset as our training samples.

4.2 Training and Evaluation

Our model is trained by SGD optimization with momentum of 0.9. During the
training, we use a batch size of 4 on 4GPUs, where each GPU holds one mini-
batch. The two-phase training is performed. In the first phase, the model is
trained on the mixture of DET and VID for 12 K iterations, with learning rates
of 2.5×10−4 and 2.5×10−5 in the first 80 K and 40 K iterations, respectively. In
the second phase, the movement regression along with the R-FCN are learned
for another 30K iteration on VID dataset in order to be more adapted to VID
domain. The feature extractor ResNet101 model is pre-trained for ImageNet
classification as default. FlowNet (the “Simple” version) is also pre-trained on
synthetic Flying Chairs dataset in [4] in order to provide motion information.
They are jointly learned during the above procedure. In both training and test-
ing, we use single scale images with shorter dimension of 600 pixels. For testing
we aggregate in total of 12 frames nearby to enhance the feature of the current
frame by using the Eqs. 4 and 9. Non-maximum suppression (NMS) is applied
with intersection-over-union (IoU) threshold 0.7 in RPN and 0.4 on the scored
and regressed proposals.

4.3 Ablation Study

In this section, we conduct an ablation study so as to validate the effectiveness
of the proposed network. To make better analysis, we follow the evaluation pro-
tocols in [30] where the ground-truth objects are divided into three groups in
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Table 2. Accuracy of different methods on ImageNet VID validation, using ResNet-101
feature extraction networks.

Feature extractor ResNet-101

Methods (a) (b) (c) (d) (e)

Multi-frame feature aggregation?
√ √ √ √

Pixel-level Calibration?
√ √

Instance-level Calibration?
√ √

mAP(%) 73.6 73.4 ↓0.2 76.5 ↑2.9 77.1 ↑3.5 78.1 ↑4.5

mAP(%)(slow) 81.8 83.8 ↑2.0 85.0 ↑3.2 85.5 ↑3.7 86.9 ↑5.1

mAP(%)(medium) 71.3 75.7 ↑4.4 74.9 ↑3.6 76.1 ↑4.8 76.8 ↑5.5

mAP(%)(fast) 52.2 45.2 ↓7.0 56.6 ↑4.4 55.4 ↑3.2 56.7 ↑4.5

accordance with? their motion speed. They use object’ averaged intersection-
over-union(IoU) scores with its corresponding instances in the nearby frames
as measurement. It means that the lower the motion IoU(< 0.7) is , the faster
the object moves. Otherwise, the larger Motion IoU (score > 0.9) expresses the
object moves slowly. The rest is medium speed.

Method (a) is the single-frame baseline. It achieves 73.6% mAP by using
ResNet-101. All the other experiments keep the same setting as this baseline.
Note that we only use the single model and do not add bells and whistles.

Method (b) is carried out conducted by averaging multi-frame features.
Even we use the same feature extractor in an end-to-end training manner, the
model is even worse than our baseline result. It indicates the importance of
motion guidance.

Method (c) incorporates the pixel-level feature calibration. The pixel-wise
motion information effectively enhances the information from nearby frames in
feature aggregation.

Method (d) is the proposed the instance-level calibration. It aligns the
proposal features by predicting the movements among consecutive frames, and
finally aggregate them across time. It improve the overall performance by 3.5%,
even better than the pixel-wise motion guided features in Method (c).

Method (e) is conducted to prove the pixel-wise motion guided(Method
(c)) and the instance-wise motion guided features (Method (d)) are comple-
mentary and they are able to collaboratively improve the model. We utilize the
motion pattern reasoning (introduced by Sect. 3.4) to adaptively combine these
two kinds of calibrated features, and it helps to further enhance the performance
from 77.1% to 78.1%.

To sum up, aggregating the multi-frame features by explicitly modeling the
motion is quite necessary, and the combination of these two calibration modes is
capable of promoting the final feature representations collaboratively. Through
the above modules, the overall mAP is improved from 73.6% to 78.1%.
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Fig. 3. (Better viewed in color) Visualization of two typical examples: occluded and
non-rigid objects. They show respective strengths of the two calibration methods.

Table 3. Statistical analysis on different validation sets. The instance-level calibra-
tion is better when objects are occluded or move more regularly while the pixel-level
calibration performs well on non-rigid motion. Combination of these two module can
achieve best performance.

Motion pattern Pixel-level Instance-level Combine

Occlusion 73.0 74.1 75.3

Rigid 81.0 81.9 82.3

Non-rigid 52.8 51.6 53.2

4.4 Case Study and Motion Pattern Analysis

We attempt to take a deeper look at detection results. In order to prove that two
calibrated features have respective strengths, we split the validation dataset into
different subsets that include different typical samples. The first row in Table 3
shows the performance of occluded samples. We select 87,195 images from valida-
tion, where more than half bounding boxes are occluded. The instance-level cali-
bration achieves better performance (74.1%) than pixel-level calibration (73.0%).
In terms of motion pattern, we use pnonri to divide the dataset. The objects in
a snippet whose pnonri are greater than pre-define thresh will be considered as
non-rigid motion, otherwise the rigid motion. Thresh is set to 0.02 in our exper-
iments. From the second and third rows of Table 3, the instance-level calibration
is better for modeling rigid motion while pixel-level calibration has advantages
of modeling non-rigid patterns. In particular, the adaptive combination distills
their advantages and obtain the best performance.

We visualize the learned feature maps in order to better understand the
two calibration methods. Figure 3(a) show an occluded airplane which is at the
bottom of the current frame. When using a single frame detector, the confidence
of category “airplane” is 0.17. When applying pixel-level calibrated features,
it can be improved to 0.48 (the third column). However, due to the occluded
part, the quality of warped feature is undesirably reduced. The last column is
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instance-level calibration. Since it uses original feature maps of nearby frames,
the confidence of category “airplane” achieves 0.66. For non-rigid objects in
Fig. 3(b), both of the direction and trajectory are changed through the time,
and the parts of dogs may have different motion tendencies. So it is difficult
for instance-level module to produce correct movements of the whole dog. The
corresponding locations in the nearby frames are not accurate, leading to the
unsatisfactory score 0.59. By contrast, the pixel-level calibration is flexible of
modeling dog’s motion and appearance, so it can achieve higher confidence 0.71.

4.5 Comparison with State-of-the-art Systems

We compare our model to the existing state-of-the-art methods which can be
divided into two groups: end-to-end learned feature methods [2,13,30,31] and
post-processing based methods [5,14,15]. In terms of feature-level comparison,
the proposed MANet achieves the best performance among these methods. [13]
has the similar regression target with our instance movements learning. But it is
much inferior to our calibrated features. [30,31] are pixel-level feature aggrega-
tion and our model is better than these methods mainly due to the robustness
of motion prediction. It has been analysed in Sect. 4.4.

Since the MANet aims to improve the feature quality in video frames, it
can further incorporate bounding-box post-processing techniques to improve the
recognition accuracy. Thus using post-processing based methods and combined
with [8], the MANet achieves better performance (from 78.1% to 80.3%) that
still outperforms other strong baselines [5,14,15].

To sum up, the comparison among feature based methods is more related
to our motivation. Our model focuses on the end-to-end feature learning and
has obvious advantages among these methods. In addition, we also demonstrate
that the MANet can be further improved by post processing and achieves the
state-of-the art performance.

4.6 Performance and Time-Consuming Evaluation

Assume that O(·) is denoted as the time spent for the main model N (Nfeat +
Nrpn + Nrfcn), F as the flow estimation, W as the pixel-level feature warping,
Ins as the instance-level regression and Ocu as the occlusion predicting. When
aggregating 1 adjacent frame, we have:

O(N ) = (82.8ms) � O(F) = (6.8ms) >

O(Ocu) = (2ms) > O(Ins) = (1.5ms) > O(W) = (0.8ms)
(13)

where the aggregation modules take negligible time-consuming compared to N .
For testing, we aggregate k nearby frames to enhance the reference frame.

The performance and time for varying k are listed in Table 5. Notice that aggre-
gating nearby 4 frames, our model can achieve 77.58% mAP, which exceeds the
performance of [30] where nearby 20 frames are aggregated.
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Table 5. Results obtained by using different k in inference. The runtime contains data
processing which is measured on an NVIDIA Titan X Pascal GPU.

k 0 4 8 12 16 18

mAP(%) 73.57 77.58 77.96 78.09 78.08 78.07

Runtime(ms) 87.4 126.8 161.3 201.8 241.1 269.7

5 Conclusions

We propose an end-to-end learning framework for video object detection by
aggregating multi-frame features in a principled way. We model the motion
among consecutive frames in two different ways and combine them to further
improve the performance of the model. We conduct extensive ablation study to
prove the effectiveness of each module in our model. In addition, we also give
in-depth analysis of their respective strengths on modeling different motion. The
proposed model achieves 80.3% mAP on the large-scale ImageNet VID dataset
with backbone network ResNet101, which outperforms existing state-of-the-art
results.
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