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Abstract. Fine-Grained Visual Classification (FGVC) datasets con-
tain small sample sizes, along with significant intra-class variation and
inter-class similarity. While prior work has addressed intra-class varia-
tion using localization and segmentation techniques, inter-class similarity
may also affect feature learning and reduce classification performance. In
this work, we address this problem using a novel optimization procedure
for the end-to-end neural network training on FGVC tasks. Our proce-
dure, called Pairwise Confusion (PC) reduces overfitting by intention-
ally introducing confusion in the activations. With PC regularization,
we obtain state-of-the-art performance on six of the most widely-used
FGVC datasets and demonstrate improved localization ability. PC is
easy to implement, does not need excessive hyperparameter tuning dur-
ing training, and does not add significant overhead during test time.

1 Introduction

The Fine-Grained Visual Classification (FGVC) task focuses on differentiat-
ing between hard-to-distinguish object classes, such as species of birds, flowers,
or animals; and identifying the makes or models of vehicles. FGVC datasets
depart from conventional image classification in that they typically require
expert knowledge, rather than crowdsourcing, for gathering annotations. FGVC
datasets contain images with much higher visual similarity than those in large-
scale visual classification (LSVC). Moreover, FGVC datasets have minute inter-
class visual differences in addition to the variations in pose, lighting and view-
point found in LSVC [1]. Additionally, FGVC datasets often exhibit long tails
in the data distribution, since the difficulty of obtaining examples of different
classes may vary. This combination of small, non-uniform datasets and subtle
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inter-class differences makes FGVC challenging even for powerful deep learning
algorithms.

Most of the prior work in FGVC has focused on tackling the intra-class
variation in pose, lighting, and viewpoint using localization techniques [1–5],
and by augmenting training datasets with additional data from the Web [6,7].
However, we observe that prior work in FGVC does not pay much attention
to the problems that may arise due to the inter-class visual similarity in the
feature extraction pipeline. Similar to LSVC tasks, neural networks for FGVC
tasks are typically trained with cross-entropy loss [1,7–9]. In LSVC datasets such
as ImageNet [10], strongly discriminative learning using the cross-entropy loss is
successful in part due to the significant inter-class variation (compared to intra-
class variation), which enables deep networks to learn generalized discriminatory
features with large amounts of data.

We posit that this formulation may not be ideal for FGVC, which shows
smaller visual differences between classes and larger differences within each class
than LSVC. For instance, if two samples in the training set have very similar
visual content but different class labels, minimizing the cross-entropy loss will
force the neural network to learn features that distinguish these two images
with high confidence—potentially forcing the network to learn sample-specific
artifacts for visually confusing classes in order to minimize training error. We
suspect that this effect would be especially pronounced in FGVC, since there
are fewer samples from which the network can learn generalizable class-specific
features.

Based on this hypothesis, we propose that introducing confusion in output
logit activations during training for an FGVC task will force the network to
learn slightly less discriminative features, thereby preventing it from overfitting
to sample-specific artifacts. Specifically, we aim to confuse the network, by min-
imizing the distance between the predicted probability distributions for random
pairs of samples from the training set. To do so, we propose Pairwise Confusion
(PC)1, a pairwise algorithm for training convolutional neural networks (CNNs)
end-to-end for fine-grained visual classification.

In Pairwise Confusion, we construct a Siamese neural network trained with
a novel loss function that attempts to bring class conditional probability distri-
butions closer to each other. Using Pairwise Confusion with a standard network
architecture like DenseNet [11] or ResNet [12] as a base network, we obtain
state-of-the-art performance on six of the most widely-used fine-grained recogni-
tion datasets, improving over the previous-best published methods by 1.86% on
average. In addition, PC-trained networks show better localization performance
as compared to standard networks. Pairwise Confusion is simple to implement,
has no added overhead in training or prediction time, and provides performance
improvements both in FGVC tasks and other tasks that involve transfer learning
with small amounts of training data.

1 Implementation available at https://github.com/abhimanyudubey/confusion.

https://github.com/abhimanyudubey/confusion
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2 Related Work

Fine-Grained Visual Classification: Early FGVC research focused on meth-
ods to train with limited labeled data and traditional image features. Yao et
al. [13] combined strongly discriminative image patches with randomization
techniques to prevent overfitting. Yao et al. [14] subsequently utilized template
matching to avoid the need for a large number of annotations.

Recently, improved localization of the target object in training images has
been shown to be useful for FGVC [1,15–17]. Zhang et al. [15] utilize part-based
Region-CNNs [18] to perform finer localization. Spatial Transformer Networks [2]
show that learning a content-based affine transformation layer improves FGVC
performance. Pose-normalized CNNs have also been shown to be effective at
FGVC [19,20]. Model ensembling and boosting has also improved performance
on FGVC [21]. Lin et al. [1] introduced Bilinear Pooling, which combines pairwise
local feature sets and improves classification performance. Bilinear Pooling has
been extended by Gao et al. [16] using a compact bilinear representation and
Cui et al. [9] using a general Kernel-based pooling framework that captures
higher-order interactions of features.

Pairwise Learning: Chopra et al. [22] introduced a Siamese neural network for
handwriting recognition. Parikh and Grauman [23] developed a pairwise ranking
scheme for relative attribute learning. Subsequently, pairwise neural network
models have become common for attribute modeling [24–27].

Learning from Label Confusion: Our method aims to improve classification
performance by introducing confusion within the output labels. Prior work in
this area includes methods that utilize label noise (e.g., [28]) and data noise
(e.g., [29]) in training. Krause et al. [6] utilized noisy training data for FGVC.

Table 1. A comparison of fine-grained visual classification (FGVC) datasets with large-
scale visual classification (LSVC) datasets. FGVC datasets are significantly smaller and
noisier than LSVC datasets.

Dataset Num.classes Samples per class

Flowers-102 [32] 102 10

CUB-200-2011 [33] 200 29.97

Cars [34] 196 41.55

NABirds [35] 550 43.5

Aircrafts [36] 100 100

Stanford Dogs [37] 120 100

CIFAR-100 [38] 100 500

ImageNet [10] 1000 1200

CIFAR-10 [38] 10 5000

SVHN [39] 10 7325.7
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Neelakantan et al. [30] added noise to the gradient during training to improve
generalization performance in very deep networks. Szegedy et al. [31] introduced
label-smoothing regularization for training deep Inception models.

In this paper, we bring together concepts from pairwise learning and label
confusion and take a step towards solving the problems of overfitting and sample-
specific artifacts when training neural networks for FGVC tasks.

3 Method

FGVC datasets in computer vision are orders of magnitude smaller than LSVC
datasets and contain greater imbalance across classes (see Table 1). Moreover,
the samples of a class are not accurately representative of the complete variation
in the visual class itself. The smaller dataset size can result in overfitting when
training deep neural architectures with large number of parameters—even with
preliminary layers being frozen. In addition, the training data may not be com-
pletely representative of the real-world data, with issues such as more abundant
sampling for certain classes. For example, in FGVC of birds, certain species from
geographically accessible areas may be overrepresented in the training dataset.
As a result, the neural network may learn to latch on to sample-specific arti-
facts in the image, instead of learning a versatile representation for the target
object. We aim to solve both of these issues in FGVC (overfitting and sample-
specific artifacts) by bringing the different class-conditional probability distribu-
tions closer together and confusing the deep network, subsequently reducing its
prediction over-confidence, thus improving generalization performance.

Let us formalize the idea of “confusing” the conditional probability distri-
butions. Consider the conditional probability distributions for two input images
x1 and x2, which can be given by pθ(y|x1) and pθ(y|x2) respectively. For a
classification problem with N output classes, each of these distributions is an
N-dimensional vector, with each element i denoting the belief of the classifier in
class yi given input x. If we wish to confuse the class outputs of the classifier for
the pair x1 and x2, we should learn parameters θ that bring these conditional
probability distributions “closer” under some distance metric, that is, make the
predictions for x1 and x2 similar.

While KL-divergence might seem to be a reasonable choice to design a loss
function for optimizing the distance between conditional probability distribu-
tions, in Sect. 3.1, we show that it is infeasible to train a neural network when
using KL-divergence as a regularizer. Therefore, we introduce the Euclidean Dis-
tance between distributions as a metric for confusion in Sects. 3.2 and 3.3 and
describe neural network training with this metric in Sect. 3.4.

3.1 Symmetric KL-Divergence or Jeffrey’s Divergence

The most prevalent method to measure dissimilarity of one probability distri-
bution from another is to use the Kullback-Liebler (KL) divergence. However,
the standard KL-divergence cannot serve our purpose owing to its asymmetric
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nature. This could be remedied by using the symmetric KL-divergence, defined
for two probability distributions P,Q with mass functions p(·), q(·) (for events
u ∈ U):

DJ(P,Q) �
∑

u∈U

[
p(u) · log

p(u)
q(u)

+ q(u) · log
q(u)
p(u)

]
= DKL(P ||Q)+DKL(Q||P ) (1)

This symmetrized version of KL-divergence, known as Jeffrey’s divergence [40],
is a measure of the average relative entropy between two probability distribu-
tions [41]. For our model parameterized by θ, for samples x1 and x2, the Jeffrey’s
divergence can be written as:

DJ(pθ(y|x1), pθ(y|x2)) =
N∑

i=1

[
(pθ(yi|x1) − pθ(yi|x2)) · log

pθ(yi|x1)
pθ(yi|x2)

]
(2)

Jeffrey’s divergence satisfies all of our basic requirements of a symmetric diver-
gence metric between probability distributions, and therefore could be included
as a regularizing term while training with cross-entropy, to achieve our desired
confusion. However, when we learn model parameters using stochastic gradient
descent (SGD), it can be difficult to train, especially if our distributions P,Q
have mass concentrated on different events. This can be seen in Eq. 2. Consider
Jeffrey’s divergence with N = 2 classes, and that x1 belongs to class 1, and x2

belongs to class 2. If the model parameters θ are such that it correctly identifies
both x1 and x2 by training using cross-entropy loss, pθ(y1|x1) = 1 − δ1 and
pθ(y2|x2) = 1 − δ2, where 0 < δ1, δ2 < 1

2 (since the classifier outputs correct
predictions for the input images), we can show:

DJ(pθ(y|x1), pθ(y|x2)) ≥ (1 − δ1 − δ2) · (2 log(1 − δ1 − δ2) − log(δ1δ2)) (3)

Please see the supplementary material for an expanded proof.
As training progresses with these labels, the cross-entropy loss will moti-

vate the values of δ1 and δ2 to become closer to zero (but never equaling zero,
since the probability outputs pθ(y|x1), pθ(y|x2) are the outputs from a soft-
max). As (δ1, δ2) → (0+, 0+), the second term − log(δ1δ2) on the R.H.S. of
inequality (3) typically grows whereas (1 − δ1 − δ2) approaches 1, which makes
DJ(pθ(y|x1), pθ(y|x2)) larger as the predictions get closer to the true labels. In
practice, we see that training with DJ(pθ(y|x1), pθ(y|x2)) as a regularizer term
diverges, unless a very small regularizing parameter is chosen, which removes
the effect of regularization altogether.

A natural question that can arise from this analysis is that cross-entropy
training itself involves optimizing KL-divergence between the target label dis-
tribution and the model’s predictions, however no such divergence occurs. This
is because cross-entropy involves only one direction of the KL-divergence, and
the target distribution has all the mass concentrated at one event (the correct
label). Since (x log x)|x=0 = 0, for predicted label vector y′ with correct label
class c, this simplifies the cross-entropy error LCE(pθ(y|x),y′) to be:
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LCE(pθ(y|x),y′) = −
N∑

i=1

y′
i log(

pθ(yi|x)
y′

i

) = − log(pθ(yc|x)) ≥ 0 (4)

This formulation does not diverge as the model trains, i.e. pθ(yc|x) → 1. In
some cases where label noise is added to the label vector (such as label smooth-
ing [28,42]), the label noise is a fixed constant and not approaching zero (as in
the case of Jeffery’s divergence between model predictions) and is hence feasible
to train. Thus, Jeffrey’s Divergence or symmetric KL-divergence, while a seem-
ingly natural choice, cannot be used to train a neural network with SGD. This
motivates us to look for an alternative metric to measure “confusion” between
conditional probability distributions.

3.2 Euclidean Distance as Confusion

Since the conditional probability distribution over N classes is an element within
R

N on the unit simplex, we can consider the Euclidean distance to be a metric
of “confusion” between two conditional probability distributions. Analogous to
the previous setting, we define the Euclidean Confusion DEC(·, ·) for a pair of
inputs x1,x2 with model parameters θ as:

DEC(pθ(y|x1), pθ(y|x2)) =
N∑

i=1

(pθ(yi|x1) − pθ(yi|x2))2 = ‖pθ(y|x1) − pθ(y|x2)‖22
(5)

Unlike Jeffrey’s Divergence, Euclidean Confusion does not diverge when used as
a regularization term with cross-entropy. However, to verify this unconventional
choice for a distance metric between probability distributions, we prove some
properties that relate Euclidean Confusion to existing divergence measures.

Lemma 1. On a finite probability space, the Euclidean Confusion DEC(P,Q)
is a lower bound for the Jeffrey’s Divergence DJ(P,Q) for probability measures
P,Q.

Proof. This follows from Pinsker’s Inequality and the relationship between �1
and �2 norms. Complete proof is provided in the supplementary material.

By Lemma 1, we can see that the Euclidean Confusion is a conservative estimate
for Jeffrey’s divergence, the earlier proposed divergence measure. For finite prob-
ability spaces, the Total Variation Distance DTV(P,Q)2 = 1

2‖P − Q‖1 is also a
measure of interest. However, due to its non-differentiable nature, it is unsuit-
able for our case. Nevertheless, we can relate the Euclidean Confusion and Total
Variation Distance by the following result.

Lemma 2. On a finite probability space, the Euclidean Confusion DEC(P,Q) is
bounded by 4DTV(P,Q)2 for probability measures P,Q.

Proof. This follows directly from the relationship between �1 and �2 norms. Com-
plete proof is provided in the supplementary material.
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3.3 Euclidean Confusion for Point Sets

In a standard classification setting with N classes, we consider a training set
with m =

∑N
i=1 mi training examples, where mi denotes the number of training

samples for class i. For this setting, we can write the total Euclidean Confusion
between points of classes i and j as the average of the Euclidean Confusion
between all pairs of points belonging to those two classes. For simplicity of
notation, let us denote the set of conditional probability distributions of all
training points belonging to class i for a model parameterized by θ as Si =
{pθ(y|xi

1), pθ(y|xi
2), ..., pθ(y|xi

mi
)}. Then, for a model parameterized by θ, the

Euclidean Confusion is given by:

DEC(Si, Sj ; θ) � 1

mimj

( mi,mj∑
u,v

DEC(pθ(y|xi
u), pθ(y|xj

v))
)

(6)

We can simplify this equation by assuming an equal number of points n per
class:

DEC(Si,Sj ; θ) =
1
n2

( n,n∑

u,v

‖pθ(y|xi
u) − pθ(y|xj

v)‖22
)

(7)

This form of the Euclidean Confusion between the two sets of points gives us
an interesting connection with another popular distance metric over probability
distributions, known as the Energy Distance [43].

Introduced by Gabor Szekely [43], the Energy Distance DEN(F,G) between
two cumulative probability distribution functions F and G with random vectors
X and Y in R

N can be given by

DEN(F,G)2 � 2E‖X − Y ‖ − E‖X − X ′‖ − E‖Y − Y ′‖ ≥ 0 (8)

where (X,X ′, Y, Y ′) are independent, and X ∼ F,X ′ ∼ F, Y ∼ G,Y ′ ∼ G. If we
consider the sets Si and Sj , with a uniform probability of selecting any of the n
points in each of these sets, then we obtain the following results.

Lemma 3. For sets Si, Sj and DEC(Si,Sj ; θ) as defined in Eq. (7):

1
2DEN(Si,Sj ; θ)2 ≤ DEC(Si,Sj ; θ)

where DEN(Si,Sj ; θ) is the Energy Distance under Euclidean norm between Si

and Sj (parameterized by θ), and random vectors are selected with uniform prob-
ability in both Si and Sj.

Proof. This follows from the definition of Energy Distance with uniform proba-
bility of sampling. Complete proof is provided in the supplementary material.

Corollary 1. For sets Si, Sj and DEC(Si,Sj ; θ) as defined in Eq. (7), we have:

DEC(Si,Si; θ) + DEC(Sj ,Sj ; θ) ≤ 2DEC(Si,Sj ; θ)

with equality only when Si = Sj.
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Proof. This follows from the fact that the Energy Distance DEN(Si,Sj ; θ) is
0 only when Si = Sj . The complete version of the proof is included in the
supplement.

With these results, we restrict the behavior of Euclidean Confusion within
two well-defined conventional probability distance measures, the Jeffrey’s diver-
gence and Energy Distance. One might consider optimizing the Energy Distance
directly, due to its similar formulation and the fact that we uniformly sample
points during training with SGD. However, the Energy Distance additionally
includes the two terms that account for the negative of the average all-pairs
distances between points in Si and Sj respectively, which we do not want to
maximize, since we do not wish to push points within the same class further
apart. Therefore, we proceed with our measure of Euclidean Confusion.

3.4 Learning with Gradient Descent

We proceed to learn parameters θ∗ for a neural network, with the following learn-
ing objective function for a pair of input points, motivated by the formulation
of Euclidean Confusion:

θ∗ = argmin
θ

N,N
n,n∑

i=1,j �=i
u,v

[
LCE(pθ(y|xi

u),y
i
u) + LCE(pθ(y|xj

v),y
j
v) +

λ

n2
DEC(pθ(y|xj

v), pθ(y|xi
u))

]

(9)
This objective function can be explained as: for each point in the training set, we
randomly select another point from a different class and calculate the individual
cross-entropy losses and Euclidean Confusion until all pairs have been exhausted.
For each point in the training dataset, there are n·(N − 1) valid choices for the
other point, giving us a total of n2·N ·(N − 1) possible pairs. In practice, we
find that we do not need to exhaust all combinations for effective learning using
gradient descent, and in fact we observe that convergence is achieved far before

ce(x1,y1; )

ce(x2,y2; )

p(x1,y1, x2,y2; )

x1

x2

p (y|x1)

p (y|x2)

shared 
weights

split 
batch

training batch

Fig. 1. CNN training pipeline for Pairwise Confusion (PC). We employ a Siamese-like
architecture, with individual cross entropy calculations for each branch, followed by a
joint energy-distance minimization loss. We split each incoming batch of samples into
two mini-batches, and feed the network pairwise samples.
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all observations are observed. We simplify our formulation instead by using the
following procedure described in Algorithm1.

Training Procedure: As described in Algorithm 1, our learning procedure is
a slightly modified version of the standard SGD. We randomly permute the
training set twice, and then for each pair of points in the training set, add
Euclidean Confusion only if the samples belong to different classes. This form of
sampling approximates the exhaustive Euclidean Confusion, with some points
with regular gradient descent, which in practice does not alter the performance.
Moreover, convergence is achieved after only a fraction of all the possible pairs
are observed. Formally, we wish to model the conditional probability distribution
pθ(y|x) over the p classes for function f(x; θ) = pθ(y|x) parameterized by model
parameters θ. Given our optimization procedure, we can rewrite the total loss
for a pair of points x1,x2 with model parameters θ as:

Lpair(x1,x2,y1,y2; θ) =

2∑
i=1

[LCE(pθ(y|xi),yi)] + λγ(y1,y2)DEC(pθ(y|x1), pθ(y|x2))

(10)
where, γ(y1,y2) = 1 when yi �= yj , and 0 otherwise. We denote training with
this general architecture with the term Pairwise Confusion or PC for short.
Specifically, we train a Siamese-like neural network [22] with shared weights,
training each network individually using cross-entropy, and add the Euclidean
Confusion loss between the conditional probability distributions obtained from
each network (Fig. 1). During training, we split an incoming batch of training
samples into two parts, and evaluating cross-entropy on each sub-batch iden-
tically, followed by a pairwise loss term calculated for corresponding pairs of
samples across batches. During testing, only one branch of the network is active,
and generates output predictions for the input image.

Algorithm 1. Training Using Euclidean Confusion
Training data D, Test data D̂, parameters θ, hyperparameters θ̂
for epoch ∈ [0,max epochs]) do

D1 ⇐ shuffle(D)
D2 ⇐ shuffle(D)
for i ∈ [0,num batches] do

Lbatch = 0
for (d1, d2) ∈ batch i of (D1, D2) do

γ ⇐ 1 if label(d1) �= label(d2), 0 otherwise
Lpair ⇐ LCE(d1; θ) + LCE(d2; θ) + λ · γ · DEC(d1, d2; θ)
Lbatch ⇐ Lbatch + Lpair

end for
θ ⇐ Backprop(Lbatch, θ, θ̂)

end for
θ̂ ⇐ ParameterUpdate(epoch, θ̂)

end for
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CNN Architectures: We experiment with VGGNet [44], GoogLeNet [42],
ResNets [12], and DenseNets [11] as base architectures for the Siamese network
trained with PC to demonstrate that our method is insensitive to the choice of
source architecture.

4 Experimental Details

We perform all experiments using Caffe [45] or PyTorch [46] over a cluster of
NVIDIA Titan X, Tesla K40c and GTX 1080 GPUs. Our code and models
are available at github.com/abhimanyudubey/confusion. Next, we provide brief
descriptions of the various datasets used in our paper.

Table 2. Pairwise Confusion (PC) obtains state-of-the-art performance on six widely-
used fine-grained visual classification datasets (A-F). Improvement over the baseline
model is reported as (Δ). All results averaged over 5 trials.

Method Top-1 Δ Method Top-1 Δ Method Top-1 Δ

(A) CUB-200-2011 (B) Cars (C) Aircrafts

Gao et al. [16] 84.00 - Wang et al. [17] 85.70 - Simon et al. [49] 85.50 -

STN [2] 84.10 - Liu et al. [48] 86.80 - Cui et al. [9] 86.90 -

Zhang et al. [47] 84.50 - Lin et al. [8] 92.00 - LRBP [50] 87.30 -

Lin et al. [8] 85.80 - Cui et al. [9] 92.40 - Lin et al. [8] 88.50 -

Cui et al. [9] 86.20 -

ResNet-50 78.15 (2.06) ResNet-50 91.71 (1.72) ResNet-50 81.19 (2.21)

PC-ResNet-50 80.21 PC-ResNet-50 93.43 PC-ResNet-50 83.40

Bilinear CNN [1] 84.10 (1.48) Bilinear CNN [1] 91.20 (1.25) BilinearCNN [1] 84.10 (1.68)

PC-BilinearCNN 85.58 PC-Bilinear CNN 92.45 PC-BilinearCNN 85.78

DenseNet-161 84.21 (2.66) DenseNet-161 91.83 (1.03) DenseNet-161 86.30 (2.94)

PC-DenseNet-161 86.87 PC-DenseNet-161 92.86 PC-DenseNet-161 89.24

(D) NABirds (E) Flowers-102 (F) Stanford dogs

Branson et al. [19] 35.70 - Det.+Seg. [51] 80.66 - Zhang et al. [3] 80.43 -

Van et al. [35] 75.00 - Overfeat [52] 86.80 - Krause et al. [6] 80.60 -

ResNet-50 63.55 (4.60) ResNet-50 92.46 (1.04) ResNet-50 69.92 (3.43)

PC-ResNet-50 68.15 PC-ResNet-50 93.50 PC-ResNet-50 73.35

BilinearCNN [1] 80.90 (1.11) BilinearCNN [1] 92.52 (1.13) BilinearCNN [1] 82.13 (0.91)

PC-BilinearCNN 82.01 PC-BilinearCNN 93.65 PC-BilinearCNN 83.04

DenseNet-161 79.35 (3.44) DenseNet-161 90.07 (1.32) DenseNet-161 81.18 (2.57)

PC-DenseNet-161 82.79 PC-DenseNet-161 91.39 PC-DenseNet-161 83.75

4.1 Fine-Grained Visual Classification (FGVC) Datasets

1. Wildlife Species Classification: We experiment with several widely-used
FGVC datasets. The Caltech-UCSD Birds (CUB-200-2011) dataset [33] has
5,994 training and 5,794 test images across 200 species of North-American
birds. The NABirds dataset [35] contains 23,929 training and 24,633 test
images across over 550 visual categories, encompassing 400 species of birds,
including separate classes for male and female birds in some cases. The Stan-
ford Dogs dataset [37] has 20,580 images across 120 breeds of dogs around

https://github.com/abhimanyudubey/confusion
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the world. Finally, the Flowers-102 dataset [32] consists of 1,020 training,
1,020 validation and 6,149 test images over 102 flower types.

2. Vehicle Make/Model Classification: We experiment with two common
vehicle classification datasets. The Stanford Cars dataset [34] contains 8,144
training and 8,041 test images across 196 car classes. The classes represent
variations in car make, model, and year. The Aircraft dataset is a set of
10,000 images across 100 classes denoting a fine-grained set of airplanes of
different varieties [36].

These datasets contain (i) large visual diversity in each class [32,33,37], (ii)
visually similar, often confusing samples belonging to different classes, and (iii)
a large variation in the number of samples present per class, leading to greater
class imbalance than LSVC datasets like ImageNet [10]. Additionally, some of
these datasets have densely annotated part information available, which we do
not utilize in our experiments.

Fig. 2. (left) Variation of test accuracy on CUB-200-2011 with logarithmic variation
in hyperparameter λ. (right) Convergence plot of GoogLeNet on CUB-200-2011.

5 Results

5.1 Fine-Grained Visual Classification

We first describe our results on the six FGVC datasets from Table 2. In all
experiments, we average results over 5 trials per experiment—after choosing the
best value of hyperparameter λ. Please see the supplementary material for mean
and standard deviation values for all experiments.

1. Fine-tuning from Baseline Models: We fine-tune from three base-
line models using the PC optimization procedure: ResNet-50 [12], Bilinear
CNN [1], and DenseNet-161 [11]. As Tables 2-(A-F) show, PC obtains sub-
stantial improvement across all datasets and models. For instance, a baseline
DenseNet-161 architecture obtains an average accuracy of 84.21%, but PC-
DenseNet-161 obtains an accuracy of 86.87%, an improvement of 2.66%.
On NABirds, we obtain improvements of 4.60% and 3.42% over baseline
ResNet-50 and DenseNet-161 architectures.
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2. Combining PC with Specialized FGVC Models: Recent work in FGVC
has proposed several novel CNN designs that take part-localization into
account, such as bilinear pooling techniques [1,9,16] and spatial transformer
networks [2]. We train a Bilinear CNN [1] with PC, and obtain an average
improvement of 1.7% on the 6 datasets.

We note two important aspects of our analysis: (1) we do not compare with
ensembling and data augmentation techniques such as Boosted CNNs [21] and
Krause, et al. [6] since prior evidence indicates that these techniques invariably
improve performance, and (2) we evaluate a single-crop, single-model evalua-
tion without any part- or object-annotations, and perform competitively with
methods that use both augmentations.

Choice of Hyperparameter λ: Since our formulation requires the selection of
a hyperparameter λ, it is important to study the sensitivity of classification per-
formance to the choice of λ. We conduct this experiment for four different mod-
els: GoogLeNet [42], ResNet-50 [12] and VGGNet-16 [44] and Bilinear-CNN [1]
on the CUB-200-2011 dataset. PC’s performance is not very sensitive to the
choice of λ (Fig. 2 and Supplementary Tables S1-S5). For all six datasets, the λ
value is typically between the range [10,20]. On Bilinear CNN, setting λ = 10 for
all datasets gives average performance within 0.08% compared to the reported
values in Table 2. In general, PC obtains optimum performance in the range of
0.05N and 0.15N , where N is the number of classes.

5.2 Additional Experiments

Since our method aims to improve classification performance in FGVC tasks
by introducing confusion in output logit activations, we would expect to see a
larger improvement in datasets with higher inter-class similarity and intra-class
variation. To test this hypothesis, we conduct two additional experiments.

In the first experiment, we construct two subsets of ImageNet-1K [10]. The
first dataset, ImageNet-Dogs is a subset consisting only of species of dogs
(117 classes and 116K images). The second dataset, ImageNet-Random con-
tains randomly selected classes from ImageNet-1K. Both datasets contain equal
number of classes (117) and images (116K), but ImageNet-Dogs has much
higher inter-class similarity and intra-class variation, as compared to ImageNet-
Random. To test repeatability, we construct 3 instances of Imagenet-Random, by
randomly choosing a different subset of ImageNet with 117 classes each time. For
both experiments, we randomly construct a 80–20 train-val split from the train-
ing data to find optimal λ by cross-validation, and report the performance on
the unseen ImageNet validation set of the subset of chosen classes. In Table 3,
we compare the performance of training from scratch with- and without-PC
across three models: GoogLeNet, ResNet-50, and DenseNet-161. As expected,
PC obtains a larger gain in classification accuracy (1.45%) on ImageNet-Dogs
as compared to the ImageNet-Random dataset(0.54% ± 0.28).

In the second experiment, we utilize the CIFAR-10 and CIFAR-100 datasets,
which contain the same number of total images. CIFAR-100 has 10× the number



Pairwise Confusion for Fine-Grained Visual Classification 83

of classes and 10% of images per class as CIFAR-10 and contains larger inter-
class similarity and intra-class variation. We train networks on both datasets
from scratch using default train-test splits (Table 3). As expected, we obtain
larger average gains of 1.77% on CIFAR-100, as compared to 0.20% on CIFAR-
10. Additionally, when training with λ = 10 on the entire ImageNet dataset, we
obtain a top-1 accuracy of 76.28% (compared to a baseline of 76.15%), which
is a smaller improvement, which is in line with what we would expect for a
large-scale image classification problem with large inter-class variation.

Moreover, while training with PC, we observe that the rate of convergence is
always similar to or faster than training without PC. For example, a GoogLeNet
trained on CUB-200-2011 (Fig. 2(right) above) shows that PC converges to
higher validation accuracy faster than normal training using identical learning
rate schedule and batch size. Note that the training accuracy is reduced when
training with PC, due to the regularization effect. In sum, classification problems
that have large intra-class variation and high inter-class similarity benefit from
optimization with pairwise confusion. The improvement is even more prominent
when training data is limited.

Table 3. Experiments with ImageNet and CIFAR show that datasets with large intra-
class variation and high inter-class similarity benefit from optimization with Pairwise
Confusion. Only the mean accuracy over 3 Imagenet-Random experiments is shown.

Network ImageNet-Random ImageNet-Dogs CIFAR-10 CIFAR-100

Baseline PC Baseline PC Baseline PC Baseline PC

GoogLeNet [42] 71.85 72.09 62.35 64.17 86.63 87.02 73.35 76.02

ResNet-50 [12] 82.01 82.65 73.81 75.92 93.17 93.46 72.16 73.14

DenseNet-161 [11] 78.34 79.10 70.15 71.44 95.15 95.08 78.60 79.56

Table 4. Pairwise Confusion (PC) improves localization performance in fine-grained
visual classification tasks. On the CUB-200-2011 dataset, PC obtains an average
improvement of 3.4% in Mean Intersection-over-Union (IoU) for Grad-CAM bound-
ing boxes for each of the five baseline models.

Method GoogLeNet VGG-16 ResNet-50 DenseNet-161 Bilinear-CNN

Mean IoU (Baseline) 0.29 0.31 0.32 0.34 0.37

Mean IoU (PC) - Ours 0.35 0.34 0.35 0.37 0.39

5.3 Improvement in Localization Ability

Recent techniques for improving classification performance in fine-grained recog-
nition are based on summarizing and extracting dense localization information
in images [1,2]. Since our technique increases classification accuracy, we wish to
understand if the improvement is a result of enhanced CNN localization abilities
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Fig. 3. Pairwise Confusion (PC) obtains improved localization performance, as demon-
strated here with Grad-CAM heatmaps of the CUB-200-2011 dataset images (left) with
a VGGNet-16 model trained without PC (middle) and with PC (right). The objects
in (a) and (b) are correctly classified by both networks, and (c) and (d) are correctly
classified by PC, but not the baseline network (VGG-16). For all cases, we consistently
observe a tighter and more accurate localization with PC, whereas the baseline VGG-16
network often latches on to artifacts, even while making correct predictions.

due to PC. To measure the regions the CNN localizes on, we utilize Gradient-
Weighted Class Activation Mapping (Grad-CAM) [53], a method that provides
a heatmap of visual saliency as produced by the network. We perform both
quantitative and qualitative studies of localization ability of PC-trained models.

Overlap in Localized Regions: To quantify the improvement in localization
due to PC, we construct bounding boxes around object regions obtained from
Grad-CAM, by thresholding the heatmap values at 0.5, and choosing the largest
box returned. We then calculate the mean IoU (intersection-over-union) of the
bounding box with the provided object bounding boxes for the CUB-200-2011
dataset. We compare the mean IoU across several models, with and without PC.
As summarized in Table 4, we observe an average 3.4% improvement across five
different networks, implying better localization accuracy.

Change in Class-Activation Mapping: To qualitatively study the improve-
ment in localization due to PC, we obtain samples from the CUB-200-2011
dataset and visualize the localization regions returned from Grad-CAM for both
the baseline and PC-trained VGG-16 model. As shown in Fig. 3, PC models pro-
vide tighter, more accurate localization around the target object, whereas some-
times the baseline model has localization driven by image artifacts. Figure 3-(a)
has an example of the types of distractions that are often present in FGVC
images (the cartoon bird on the right). We see that the baseline VGG-16 net-
work pays significant attention to the distraction, despite making the correct
prediction. With PC, we find that the attention is limited almost exclusively to
the correct object, as desired. Similarly for Fig. 3-(b), we see that the baseline
method latches on to the incorrect bird category, which is corrected by the addi-
tion of PC. In Figs. 3-(c-d), we see that the baseline classifier makes incorrect
decisions due to poor localization, mistakes that are resolved by PC.
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6 Conclusion

In this work, we introduce Pairwise Confusion (PC), an optimization proce-
dure to improve generalizability in fine-grained visual classification (FGVC)
tasks by encouraging confusion in output activations. PC improves FGVC per-
formance for a wide class of convolutional architectures while fine-tuning. Our
experiments indicate that PC-trained networks show improved localization per-
formance which contributes to the gains in classification accuracy. PC is easy
to implement, does not need excessive tuning during training, and does not add
significant overhead during test time, in contrast to methods that introduce com-
plex localization-based pooling steps that are often difficult to implement and
train. Therefore, our technique should be beneficial to a wide variety of special-
ized neural network models for applications that demand for fine-grained visual
classification or learning from limited labeled data.
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43. Székely, G.J., Rizzo, M.L.: Energy statistics: a class of statistics based on distances.

J. Stat. Plan. Infer. 143(8), 1249–1272 (2013)
44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)
45. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:

ACM International Conference on Multimedia, pp. 675–678 (2014)
46. Paskze, A., Chintala, S.: Tensors and dynamic neural networks in Python with

strong GPU acceleration. https://github.com/pytorch. Accessed 1 Jan 2017
47. Zhang, X., Xiong, H., Zhou, W., Lin, W., Tian, Q.: Picking deep filter responses

for fine-grained image recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1134–1142 (2016)

https://doi.org/10.1007/978-3-319-46466-4_45
https://doi.org/10.1007/978-3-319-46466-4_45
http://arxiv.org/abs/1412.6596
http://arxiv.org/abs/1511.06807
http://arxiv.org/abs/1306.5151
http://arxiv.org/abs/1409.1556
https://github.com/pytorch


88 A. Dubey et al.

48. Liu, M., Yu, C., Ling, H., Lei, J.: Hierarchical joint CNN-based models for fine-
grained cars recognition. In: International Conference on Cloud Computing and
Security, pp. 337–347 (2016)

49. Simon, M., Gao, Y., Darrell, T., Denzler, J., Rodner, E.: Generalized orderless
pooling performs implicit salient matching. In: International Conference on Com-
puter Vision (ICCV) (2017)

50. Kong, S., Fowlkes, C.: Low-rank bilinear pooling for fine-grained classification. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034
(2017)

51. Angelova, A., Zhu, S.: Efficient object detection and segmentation for fine-grained
recognition. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 811–818 (2013)

52. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-
shelf: an astounding baseline for recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition Workshops, June 2014

53. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-
cam: why did you say that? visual explanations from deep networks via gradient-
based localization. arXiv preprint arXiv:1610.02391 (2016)

http://arxiv.org/abs/1610.02391

	Pairwise Confusion for Fine-Grained Visual Classification
	1 Introduction
	2 Related Work
	3 Method
	3.1 Symmetric KL-Divergence or Jeffrey's Divergence
	3.2 Euclidean Distance as Confusion
	3.3 Euclidean Confusion for Point Sets
	3.4 Learning with Gradient Descent

	4 Experimental Details
	4.1 Fine-Grained Visual Classification (FGVC) Datasets

	5 Results
	5.1 Fine-Grained Visual Classification
	5.2 Additional Experiments
	5.3 Improvement in Localization Ability

	6 Conclusion
	References




