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Abstract. This paper proposes a novel approach to generate multiple
color palettes that reflect the semantics of input text and then colorize
a given grayscale image according to the generated color palette. In con-
trast to existing approaches, our model can understand rich text, whether
it is a single word, a phrase, or a sentence, and generate multiple possible
palettes from it. For this task, we introduce our manually curated dataset
called Palette-and-Text (PAT). Our proposed model called Text2Colors
consists of two conditional generative adversarial networks: the text-to-
palette generation networks and the palette-based colorization networks.
The former captures the semantics of the text input and produce rele-
vant color palettes. The latter colorizes a grayscale image using the gen-
erated color palette. Our evaluation results show that people preferred
our generated palettes over ground truth palettes and that our model
can effectively reflect the given palette when colorizing an image.

1 Introduction

Humans can associate certain words with certain colors. The real question is, can
machines effectively learn the relationship between color and text? Using text
to express colors can allow ample room for creativity, and it would be useful
to visualize the colors of a certain semantic concept. For instance, since colors
can leave a strong impression on people [19], corporations often decide upon the
season‘s color theme from marketing concepts such as ‘passion.’ Through text
input, even people without artistic backgrounds can easily create color palettes
that convey high-level concepts. Since our model uses text to visualize aesthetic
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Fig. 1. Colorization results of Text2Colors given text inputs. The text input
is shown above the input grayscale image, and the generated palettes are on the right
of the grayscale image. The color palette is well-reflected in the colorized image when
compared to the ground truth image. Our model is applicable to a wide variety of
images ranging from photos to patterns (top right).

concepts, its range of future applications can encompass text to even speech
(Fig. 1).

Previous methods have a limited range of applications as they only take a
single word as input and can recommend only a single color or a color palette
in pre-existing datasets [8,12,15,25]. Other studies have further attempted to
link a single word with a multi-color palette [21,36] since multi-color palettes
are highly expressive in conveying semantics [18]. Compared to these previous
studies, our model can generate multiple plausible color palettes when given rich
text input, including both single- and multi-word descriptions, greatly increasing
the boundary of creative expression through words.

In this paper, we propose a novel method to generate multiple color palettes
that convey the semantics of rich text and then colorize a given grayscale image
according to the generated color palette. Perception of color is inherently mul-
timodal [4], meaning that a particular text input can be mapped to multiple
possible color palettes. To incorporate such multimodality into our model, our
palette generation networks are designed to generate multiple palettes from a
single text input. We further apply our generated color palette to the coloriza-
tion task. Motivated from previous user-guided colorizations that utilize color
hints given by users [42,44], we design our colorization networks to utilize color
palettes during the colorization process. Our evaluation demonstrates that the
colorized outputs do not only reflect the colors in the palette but also convey
the semantics of the text input (Fig. 2).
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Fig. 2. How Text2Colors works. Our model can produce a diverse selection of
palettes when given a text input. Users can optionally choose which palette to be
applied to the final colorization output.

The contribution of this paper includes:

(1) We propose a novel deep neural network architecture that can generate mul-
tiple color palettes based on natural-language text input.

(2) Our model is able to use the generated palette to produce plausible coloriza-
tions of a grayscale image.

(3) We introduce our manually curated dataset called Palette-and-Text (PAT),
which includes 10,183 pairs of a multi-word text and a multi-color palette.1

2 Related Work

Color Semantics. Meanings associated with a color are both innate and
learned [9]. For instance, red can make us instinctively feel alert [9]. Since
color has a strong association with high-level semantic concepts [10], produc-
ing palettes from text input is useful in aiding artists and designers [18] and
allows automatic colorization from palettes [5,42]. A downside to using text to
choose a filter is that filter names do not usually convey the filter’s colors [21],
thus making it difficult for users to find the filter that matches their taste just
by looking at filter names. To bridge this discrepancy between color palettes
and their names, palette recommendation based on user text input has long
been studied. Query-based methods [21,36] use text inputs to query an image
from an image dictionary where colors are extracted from the queried image to
make an associated palette. This method is problematic in that the text input
is mapped to the image content of the queried image rather than the color
that the text implies. Instead of looking for a target directly, learning-based
approaches [14,23,27] match color palettes to their linguistic descriptions by
learning their semantic association from large-scale data. However, our model is
the only generative model that supports phrase-level input.

1 Dataset and codes are publicly available at https://github.com/awesome-davian/
Text2Colors/.

https://github.com/awesome-davian/Text2Colors/
https://github.com/awesome-davian/Text2Colors/
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Conditional GANs. Conditional generative adversarial networks (cGAN) are
GAN models that use conditional information for the discriminator and the
generator [24]. cGANs have drawn promising results for image generation from
text [31,32,43] and image-to-image translation [7,13,16]. StackGAN [43] is the
first model to use conditional loss for text to image synthesis. Our model is
the first to utilize the conditioning augmentation technique from StackGAN to
output diverse palettes even when given the same input text.

Interactive Colorization. Colorization is a multimodal task and desired col-
orization results for the same object may vary from person to person [4]. A
number of studies introduce interactive methods that allow users to control the
final colorization output [20,44]. In these models, users directly interact with the
model by pinpointing where to color. Even though these methods achieve satis-
factory results, a limitation is that users need to have a certain level of artistic
skill. Thus instead of making the user directly color an image, other studies take
a more indirect approach by utilizing color palettes to recolor an image [3,5].
Palette-based filters of our model are an effective way for non-experts to recolor
an image [3].

Sequence-to-Sequence with Attention. Recurrent Neural Networks
(RNNs) are a popular tool due to their superior ability to learn from sequential
data. RNNs are used in various tasks including sentence classification [39], text
generation [37], and sequence-to-sequence prediction [38]. Incorporating atten-
tion into a sequence-to-sequence model is known to improve the model perfor-
mance [22] as networks learn to selectively focus on parts of a source sentence.
This allows a model to learn relations between different modalities as is done by
our model (e.g., text - colors, text - action [1], and English - French [40]).

3 Palette-and-Text (PAT) Dataset

This section introduces our manually curated dataset named Palette-and-Text
(PAT). PAT contains 10,183 text and five-color palette pairs, where the set of
five colors in a palette is associated with its corresponding text description as
shown in Figs. 3(b)–(d). Words vary with respect to their relationships with
colors; some words are direct color words (e.g., pink, blue, etc.) while others
evoke a particular set of colors (e.g., autumn or vibrant). To the best of our
knowledge, there has been no dataset that matches a multi-word text and its
corresponding 5-color palette. This dataset allows us to train our models for
predicting semantically consistent color palettes with textual inputs.

Other Color Datasets. Munroe‘s color survey [26] is a widely used large-
scale color corpus. Based on crowd-sourced user judgment, it matches a text to
a single color. Another dataset, Kobayashi‘s Color Image Scale [18], is a well-
established multi-color dataset. Kobayashi only uses 180 adjectives to express
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Fig. 3. Our Palette-and-Text (PAT) dataset. On the left are diverse text-palette
pairs included in PAT. PAT has a very wide range of expression, especially when
compared to existing datasets. Our dataset is designed to address rich text and mul-
timodality, where the same word can be mapped to a wide range of possible colors.
(Color figure online)

1170 three-color palettes, which greatly limits its range of expression. In con-
trast, our dataset is made up of 4,312 unique words. This includes much more
text that was not traditionally used to express colors. Our task requires a more
sophisticated dataset like PAT, that matches a text to multiple colors and is
large enough for a deep learning model to learn from.

Data Collection. We generated our PAT dataset by refining user-named
palette data crawled from a community website called color-hex.com. Thousands
of users upload custom-made color palettes on color-hex, and thus our dataset
was able to incorporate a wide pool of opinions. We crawled 47,665 palette-text
pairs and removed non-alphanumerical and non-English words. Among them, we
found that users sometimes assign palette names in an arbitrary manner, missing
their semantic consistency with their corresponding color palettes. Some names
are a collection of random words (e.g., ‘mehmeh’ and ‘i spilled tea all over my
laptop rip’), or are riddled with typos (e.g., ‘cause iiiiii see right through you
boyyyyy’ and ‘greene gardn’). Thus, using unrefined raw palette names would
hinder model performances significantly.

To refine the noisy raw data, four annotators voted whether the text paired
with the color palette properly matches its semantic meanings. We then used
only the text-palette pairs in which at least three annotators out of four agreed
that semantic matching exists between the text and color palette. Including text-
palette pairs in the dataset only when all four annotators agree was found to be
unnecessarily strict, leaving not much room for personal subjectivity. Annota-
tor’s perception is inherently subjective, meaning that a text-palette pair per-
fectly plausible to one person may not be agreeable to another. We wanted to
incorporate such subjectivity by allowing a diverse selection of text-palette pairs.
Mis-spelling and punctuation errors were manually corrected after the annota-
tors finished sorting out the data.
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Fig. 4. Overview of our Text2Colors architecture. During training, generator G0

learns to produce a color palette ŷ given a set of conditional variables ĉ processed from
input text x = {x1, · · · , xT }. Generator G1 learns to predict a colorized output of a
grayscale image L given a palette p extracted from the ground truth image. At test
time, the trained generators G0 and G1 are used to produce a color palette from given
text and then colorize a grayscale image reflecting the generated palette.

4 Text2Colors: Text-Driven Colorization

Text2Colors consists of two networks: Text-to-Palette Generation Networks
(TPN) and Palette-based Colorization Networks (PCN). We train the first net-
works to generate color palettes given a multi-word text and then train the
second networks to predict reasonable colorizations given a grayscale image and
the generated palettes. We utilize conditional GANs (cGAN) for both networks.

4.1 Text-to-Palette Generation Networks (TPN)

Objective Function. In this section, we illustrate the Text-to-Palette Gener-
ation Networks shown in Figs. 4 and 5. TPN produces reasonable color palettes
associated with the text input. Let xi ∈ R

300 be word vectors initialized by
300-dimensional pre-trained vectors from GloVe [29]. Words not included in the
pre-trained set are initialized randomly. Using the CIE Lab space for our task,
y ∈ R

15 represents a 15-dimensional color palette consisting of five colors with
Lab values. After a GRU encoder encodes x into hidden states h = {h1, · · · , hT },
we add random noise to the encoded representation of text by sampling latent
variables ĉ from a Gaussian distribution N (μ(h), Σ(h)). The sequence of condi-
tioning vectors ĉ = {ĉ1, · · · , ĉT } is given as condition for the generator to output
a palette ŷ, while its mean vector c̄ = 1

T

∑T
i=1 ĉ is given as the condition for the

discriminator. Our objective function of the first cGAN can be expressed as

LD0 = Ey∼Pdata
[log D0(c̄, y)] + Ex∼Pdata

[log(1 − D0(c̄, ŷ))], (1)

LG0 = Ex∼Pdata
[log(1 − D0(c̄, ŷ))], (2)

where discriminator D0 tries to maximize LD0 against generator G0 that tries
to minimize LG0 . The pre-trained word vectors x and the real color palette y is
sampled from true data distribution Pdata.
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Fig. 5. Model architecture of a generator G0 that produces the t-th color in the palette
given a sequence of conditioning variables ĉ = {ĉ1, · · · , ĉT } processed from an input
text x = {x1, · · · , xT }. Note that randomness is added to the encoded representation
of text before it is passed to the generator.

Previous approaches have benefited from mixing the GAN objective with
L2 distance [28] or L1 distance [13]. We have explored previous loss options
and found the Huber (or smooth L1) loss to be the most effective in increasing
diversity among colors in generated palettes. The Huber loss is given by

LH(ŷ, y) =

{
1
2 (ŷ − y)2 for |ŷ − y| ≤ δ

δ |ŷ − y| − 1
2δ2 otherwise.

(3)

This loss term is added to the generator’s objective function to force the gen-
erated palette to be close to the ground truth palette. We also adopted the
Kullback-Leibler (KL) divergence regularization term [43], i.e.,

DKL(N (μ(h), Σ(h)) ‖ N (0, I)), (4)

which is added to the generator’s objective function to further enforce the
smoothness over the conditioning manifold. Our final objective function is

LD0 = Ey∼Pdata
[log D0(c̄, y)] + Ex∼Pdata

[log(1 − D0(c̄, ŷ))], (5)

LG0 = Ex∼Pdata
[log(1 − D0(c̄, ŷ))] + λHLH(ŷ, y)

+λKLDKL(N (μ(h), Σ(h)) ‖ N (0, I)),
(6)

λH and λKL are the hyperparameters to balance the three terms in Eq. 6. We
set δ = 1, λH = 100, λKL = 0.5 in our model.

Networks Architecture

Encoding Text Through Conditioning Augmentation. Learning a mapping from
text to color is inherently multimodal. For instance, a text ‘autumn’ can be
mapped to a variety of plausible color palettes. As text becomes longer, such
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as ‘midsummer to autumn’ or ‘autumn breeze and falling leaves’, the scope of
possible matching palettes becomes more broad and diverse. To appropriately
model the multimodality of our problem, we utilize the conditioning augmenta-
tion (CA) [43] technique. Rather than using the fixed sequence of encoded text
as input to our generator, we randomly sample latent vector ĉ from a Gaus-
sian distribution N (μ(h), Σ(h)) as shown in Fig. 5. This randomness allows our
model to generate multiple plausible palettes given same text input.

To obtain the conditioning variable ĉ = {ĉ1, · · · , ĉT }, the pre-trained word
vectors x = {x1, · · · , xT } are first fed into a GRU encoder to compute hidden
states h = {h1, · · · , hT }. This text representation is fed into a fully-connected
layer to generate μ and σ (the values in the diagonal of Σ) for the Gaussian
distribution N (μ(h), Σ(h)). Conditioning variable ĉ is computed by ĉ = μ+σ�ε,
where � is the element-wise multiplication and ε ∼ N (0, I). The resulting set of
vectors ĉ = {ĉ1, · · · , ĉT } will be used as condition for our generator.

Generator. We design our generator G0 as a variant of a GRU decoder with
attention mechanism [2,6,22]. The i-th color of the palette ŷi is computed as

ŷi = f(si) where si = g(ŷi−1, ci, si−1). (7)

si is a GRU hidden state vector for time i, having the previously generated color
ŷi−1, the context vector ci, and the previous hidden state si−1 as input. The
GRU hidden state si is given as input to a fully-connected layer f to output
the i-th color of the palette ŷi ∈ R

3. The resulting five colors are combined to
produce a single palette output ŷ.

The context vector ci depends on a sequence of conditioning vectors ĉ =
{ĉ1, · · · , ĉT } and the previous hidden state si−1. The context vector ci is com-
puted as the weighted sum of these conditions ĉi’s, i.e.,

ci =
T∑

j=1

αij ĉj . (8)

The weight αij of each conditional variable ĉj is computed by

αij =
exp(eij)

∑T
k=1 exp(eik)

where eij = a (si−1, ĉj) . (9)

a (si−1, ĉj) = wTσ(Wssi−1 + Wĉĉj), (10)

where σ(·) is a sigmoid activation function and w is a weight vector. The additive
attention [2] a (si−1, ĉj) computes how well the j-th word of the text input
matches the i-th color of the palette output. The score αij is computed based on
the GRU hidden state si−1 and the j-th condition ĉj . The attention mechanism
enables the model to effectively map complex text input to the palette output.

Discriminator. For the discriminator D0, the conditioning variable c̄ and the
color palette are concatenated and fed into a series of fully-connected layers. By
jointly learning features across the encoded text and palette, the discriminator
classifies whether the palettes are real or fake.
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4.2 Palette-Based Colorization Networks (PCN)

Objective Function. The goal of the second networks is to automatically
produce colorizations of a grayscale image guided by the color palette as a con-
ditioning variable. The inputs are a grayscale image L ∈ R

H×W×1 representing
the lightness in CIE Lab space and a color palette p ∈ R

15 consisting of five
colors in Lab values. The output Î ∈ R

H×W×2 corresponds to the predicted ab
color channels of the image. The objective function of the second model can be
expressed as

LD1 = EI∼Pdata
[log D1(p, I)] + EÎ∼PG1

[log(1 − D1(p, Î))], (11)

LG1 = EÎ∼PG1
[log(1 − D1(p, Î))] + λHLH(Î , I). (12)

D1 and G1 included in the equation are shown in Fig. 4. We have also added the
Huber loss to the generator’s objective function. In other words, the generator
learns to be close to the ground truth image with plausible colorizations, while
incorporating palette colors to the output image to fool the discriminator. We
set λH = 10 in our model.

Networks Architecture

Generator. The generator consists of two sub-networks: the main colorization
networks and the conditioning networks. Our main colorization networks adopts
the U-Net architecture [33], which has shown promising results in colorization
tasks [13,44]. The skip connections help recover spatial information [33], as the
input and the output images share the location of prominent edges [13].

The role of the conditioning networks is to apply the palette colors to the
generated image. During training, the networks are given a palette p ∈ R

15

extracted from the ground truth image I. We utilize the Color Thief2 function
to extract a palette consisting of five dominant colors of the ground truth image.
Similar to the previous work [44], the conditioning palette p is fed into a series of
1 × 1 conv-relu layers as shown in Fig. 4. The feature maps in layers 1, 2, and 4
are duplicated spatially to match the spatial dimension of the conv9, conv8, and
conv4 features in the main colorization networks and added in an element-wise
manner. The palette p is fed into upsampling layers with skip connections as
well as the middle of the main networks. This allows the generator to detect
prominent edges and apply palette colors to suitable locations of the image.
During test time, we use the generated palette ŷ from the first networks (TPN)
as the conditioning variable, colorizing the grayscale image with the predicted
palette colors.

Discriminator. As our discriminator D1, we use a variant of the DCGAN archi-
tecture [30]. The image and conditioning variable p are concatenated and fed into
a series of conv-leaky relu layers to jointly learn features across the image and
the palette. Afterwards, it is fed into a fully-connected layer to classify whether
the image is real or fake.
2 http://lokeshdhakar.com/projects/color-thief/.

http://lokeshdhakar.com/projects/color-thief/
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Fig. 6. Comparison to baselines and qualitative analysis on multimodality:
Our TPN generates appealing color palettes that reflect all details of the text input.
Also our model can generate multiple palettes with the same text input (three rows from
bottom). In comparison, Heer and Stone [12]’s model frequently generates unrelated
colors and has deterministic outputs.

4.3 Implementation Details

We first train D0 and G0 of TPN for 500 epochs using the PAT dataset. We then
train D1 and G1 of the PCN for 100 epochs, using the extracted palette from
a ground truth image. Finally, we use the trained generators G0 and G1 during
test time to colorize a grayscale image with generated palette ŷ from a text input
x. All networks are trained using Adam optimizer [17] with a learning rate of
0.0002. Weights were initialized from a Gaussian distribution with zero mean and
standard deviation of 0.05. We set other hyper parameters as δ = 1, λH = 100,
and λKL = 0.5.

5 Experimental Results

This section presents both quantitative and qualitative analyses of our proposed
model. We evaluate the TPN (Sect. 4.1) based on our PAT dataset. For the
training of the PCN (Sect. 4.2), we use two different datasets, CUB-200-2011
(CUB) [41] and ImageNet ILSVRC Object Detection (ImageNet dataset) [34].

5.1 Analysis on Multimodality and Diversity of Generated Palettes

This section discusses the evaluation on multimodality and diversity of our gen-
erated palettes. Multimodality refers to how many different color palettes a single
text input can be mapped to. In other words, if a single text can be expressed
with more color palettes, the more multimodal it is. As shown in Fig. 6, our
model is multimodal, while previous approaches are deterministic, meaning that
it generates only a particular color palette when given a text input. Diversity
within a palette refers to how diverse the colors included in a single palette are.
Following the current standard for perceptual color distance measurement, we
use the CIEDE2000 [35] on CIE Lab space to compute a model’s multimodal-
ity and diversity. To measure multimodality, we compute the average minimum
distances between colors from different palettes. To measure diversity of a color
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Fig. 7. Attention analysis. Attention scores measured by the TPN for two text input
samples. Each box color (in green) denotes the attention score computed in producing
the corresponding color shown on top. The dashed-line boxes indicate the word that
each color output attended to. (Color figure online)

palette, we measure the average pairwise distance between the five colors within
a palette. All measurements are computed based on the test dataset.

Results. Table 1 shows the multimodality and diversity measurement among the
variants of our model. The CA module (Sect. 4.1) enables our networks to sug-
gest multiple color palettes when given the same text input. The model variant
without CA (the first row in Table 1) results in zero multimodality, indicating
that the networks generate identical palettes for the same text input. Another
palette generation model by Heer and Stone [12] also has zero multimodality.
This shows that TPN is the only existing model that can adequately express mul-
timodality, which is crucial in the domain of colors. Although Heer and Stone’s
model has higher diversity than TPN, Fig. 6 shows that their palettes contain
irrelevant colors that may increase diversity but decrease palette quality. On the
other hand, TPN creates those palettes containing colors that well match each
other. Results on the fooling rate will be further illustrated in Sect. 5.3.

5.2 Analysis on Attention Outputs

The attention module (Sect. 4.1) plays a role of attending to particular words in
text input to predict the most suitable colors for the text input. Figure 7 illus-
trates how the predicted colors are influenced by attention scores. The green-
colored boxes show attention scores computed for each word token when pre-
dicting each corresponding color in the palette. Higher scores are indicated by
dashed-line boxes. We observe that three colors generated by attending to ghoul
are all dark and gloomy, while the other two colors attending to fun are bright.
This attention mechanism enables our model to thoroughly reflect the semantics
included in text inputs of varying lengths (Fig. 8).

5.3 User Study

We conduct a user study to reflect universal user opinions on the outputs of our
model. Our user study is composed of two parts. The first part measures how
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Fig. 8. Qualitative analysis on semantic context. Our model reflects subtle
nuance differences in the semantic context of a given text input in the color palette
outputs. Except for the first column, all the text combinations shown here are unseen
data.

Table 1. Quantitative analysis results

Palette evaluation User study: part I

Model variations Diversity Multimodality Fooling rate (%)

Objective function CA Mean Std Mean Std Mean Std Max Min

Ours (TPN) X 19.36 8.74 0.0 0.0 - - - -

Ours (TPN) O 20.82 7.43 5.43 8.11 56.2 12.7 76.7 37.1

Heer and stone - 35.92 12.66 0.0 0.0 39.6 10.8 58.2 25.8

Ground truth palette - 32.60 21.84 - - - - - -

Fig. 9. Colorization performance comparisons. Mean and standard deviation val-
ues for each question are reported for the baseline [44] and our PCN. Our PCN scores
higher on all of the questions, showing that users are more satisfied with PCN.

the generated palettes match the text inputs. The second part is a survey that
compares the performance of our palette-based colorization model to another
state-of-the-art colorization model. 53 participants took part in our study.

Part I: Matching Between Text and Generated Palettes. Our goal is to
generate a palette with a strong semantic connection with the given text input.
A natural way to evaluate it is to quantify the degree of connection between
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the text input and the generated palette, in comparison to the same text input
and its ground truth palette. Given a text input, its generated palette, and the
ground truth palette, we ask human observers to select the palette that best suits
the text input. A fooling rate (FR) in this study indicates the relative number
of generated palettes chosen over ground truth palettes. More people choosing
the generated palette results in a higher FR. This measure has often been used
to assess the quality of colorization results [11,44]. We will use this metric to
measure how much a text input matches its generated palette.

Study Procedure. Users participate in the user study over TPN and Heer and
Stone’s model [12]. Each consists of 30 evaluations. We randomly choose a single
data item out of 992 test data and show the text input along with the generated
palette and the ground truth palette.

Results. In Table 1, we measure the FR score for each person and compute
the mean and the standard deviation (std) of all of the scores from participants.
Max and min scores represent the highest and the lowest FR scores, respectively,
recorded by a single person. While Heer and Stone’s model [12] shows low FR of
39.6%, our TPN has the FR of 56.2% while maintaining a high level of diversity
and multimodality. The FR of 56.2% indicates that the generated palettes are
indistinguishable to human eyes and sometimes even match the input text bet-
ter than the ground truth palettes. Note that the standard deviation of 12.7%
implies diverse responses to the same data pairs.

Fig. 10. We compare colorization results with previous work [44]. The five-color palette
used for colorization is shown next to the input grayscale image. Note that our PCN
performs better at applying various colors included in the palette.
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Part II: Colorization Comparisons. In this part of the user study, we con-
duct a survey on the performance of the PCN given palette inputs. Users are
asked to answer five questions based on the given grayscale image, the color
palette, and the colored image. For quantitative comparison, we set a state-of-
the-art colorization model [44] as our baseline. This model originally contains
local and global hint networks. In our implementation of the baseline model,
we utilize the global hint networks to infuse our generated palette to the main
colorization networks. Note that we modified the baseline model to fit our task.
Our novelty is the ability to produce high-quality colorization with only five col-
ors of a palette while our baseline [44] needs 313 bins of ab gamut. Our model
is able to colorize with limited information due to novel components such as the
conditional adversarial loss and feeding the palette into skip-connection layers.

Study Procedure. We show colorization results of our PCN and the baseline
model one-by-one in a random order. Then, we ask each participant to answer
five different questions (shown in Fig. 9) based on a five-point Likert scale. The
focus of our questions is to evaluate how well the palette was used in colorizing
the given grayscale image. The total number of data samples per test is 15.

Results. The resulting statistics are reported in Fig. 9. Our PCN achieves higher
scores than the baseline model across all the questions. We can infer that the
palettes generated by our model are preferred over palettes created by a human
hand. Since our model learns consistent patterns from a large number of human-
generated palette-text pairs, our model may have generated color palettes that
more users could relate to.

6 Conclusions

We proposed a generative model that can produce multiple palettes from rich
text input and colorize grayscale images using the generated palettes. Evalua-
tion results confirm that our TPN can generate plausible color palettes from
text input and can incorporate the multimodal nature of colors. Qualitative
results on our PCN also show that the diverse colors in a palette are effectively
reflected in the colorization results. Future work includes extending our model
to a broader range of tasks requiring color recommendation and conducting the
detailed analysis of our dataset.
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