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Abstract. Visual attention has shown usefulness in image captioning,
with the goal of enabling a caption model to selectively focus on regions
of interest. Existing models typically rely on top-down language informa-
tion and learn attention implicitly by optimizing the captioning objec-
tives. While somewhat effective, the learned top-down attention can fail
to focus on correct regions of interest without direct supervision of atten-
tion. Inspired by the human visual system which is driven by not only
the task-specific top-down signals but also the visual stimuli, we in this
work propose to use both types of attention for image captioning. In
particular, we highlight the complementary nature of the two types of
attention and develop a model (Boosted Attention) to integrate them for
image captioning. We validate the proposed approach with state-of-the-
art performance across various evaluation metrics.
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1 Introduction

Image captioning aims at generating fluent language descriptions on a given
image. Inspired by the human visual system, in the past few years, visual atten-
tion has been incorporated in various image captioning models [21,26,32,33].
Attention mechanisms encourage models to selectively focus on specific regions
while generating captions instead of scanning through the whole image, avoiding
information overflow as well as highlighting visual regions related to the task.

Following the success made in [32], visual attention in most conventional
image captioning models is developed in a top-down fashion on a word basis.
That is, visual attention is computed for each generated word based on visual
information from the image and the partially generated natural language descrip-
tion. While such mechanism (i.e., top-down attention) aims at connecting natu-
ral language and visual content, without prior knowledge on the visual content
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Fig. 1. Top-down attention may fail to focus on objects of interest. (a): original image
with human-generated caption, (b–c) two top-down attention maps and their cor-
responding model-generated captions, and (d) stimulus-based attention map for the
image. Words related to the top-down attention maps are colored in red. (Color figure
online)

in terms of salient regions (i.e., stimulus-based attention), the computed visual
attention can fail to concentrate on objects of interest and attend to irrelevant
regions. As shown in Fig. 1, a model with only top-down attention focuses on non-
salient regions in the background (Fig. 1(c)) and does not capture salient objects
in the image, i.e., bulldog and teddy bear according to the human-generated cap-
tion.

Human attention is driven by both task-specific top-down signals and task-
independent visual stimuli. For visual tasks such as image captioning, humans
would naturally deploy their gaze based on both top-down and stimulus-based
information during the exploration. As a result, the objects being mentioned
in the same image by different people are largely consistent and correlated
with the objects highlighted by the stimulus-based attention [35]. Therefore,
we propose that the visual stimuli can be a reasonable source for locating salient
regions in image captioning, which can also complement top-down attention that
relates to specific tasks. In Fig. 1(d), we see that stimulus-based attention suc-
cessfully attends to regions corresponding to objects of interest as mentioned in
the human-generated caption.

In this work, we conduct qualitative analyses to understand the role of human
stimulus-based attention in image captioning. We then present a Boosted Atten-
tion method that leverages stimulus-based attention for image captioning. More
specifically, we combine the stimulus-based attention with top-down caption-
ing attention to construct a novel attention mechanism that encourages models
to attend to visual features based on task-specific top-down signals from nat-
ural language while at the same time focusing on salient regions highlighted
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by task-independent stimulus. Quantitative results on the Microsoft COCO [19]
(MSCOCO) and Flickr30K [24] datasets show that incorporating stimulus-based
attention is able to significantly improve the model performance across vari-
ous evaluation metrics. We also visualize the results to qualitatively illustrate
the complementary role of the two types of attention in image captioning. Our
method is general and works with various image captioning models.

2 Related Works

Image Captioning. Generating natural language description based on a still
image has gained increasing interest in the recent years. To generate captions,
[4,14,17] first extract a set of attributes related to elements within an image
and then generate language description based on the detected attributes. Sev-
eral works [6,9,22] view image captioning as a ranking description problem and
tackle the problem by conducting a query to retrieve descriptions lies close to
an image on embedding space. With the successes of Deep Neural Networks
(DNNs), a number of works [2,5,12,20,25,31,32] have developed neural network
based methods to generate image captions. Typically, these methods use Con-
volutional Neural Networks (CNNs) as visual encoder to extract visual features
and generate captions with Recurrent Neural Networks (RNNs) such as Long
Short Term Memory (LSTM) [8].

Top-down Attention in Captioning. Top-down visual attention has been
widely used on various image captioning models in order to allow models to
selectively concentrate on objects of interest. Xu et al. [32] combine the memory
vector of LSTM with visual features from CNN and feed the fused features to an
attention network to compute the weights for features at different spatial loca-
tions. Yang et al. [33] propose a reviewer module that applies the visual attention
mechanism for multiple times during generating the next word. In [21], an adap-
tive mechanism is proposed that assigns weights not only to visual features but
also to a feature vector obtained based on the memory state of LSTM, since it is
unnecessary to attend to the visual features for generating specific words such as
‘the’ and ‘a’. Besides applying the attention mechanism on the spatial domain,
Chen et al. [2] introduce channel-wise attention which is operated on different fil-
ters within a convolutional layer. Most of these models generate visual attention
in a top-down fashion using the original visual features and top-down language
information from the partially generated caption. Without direct supervision or
prior knowledge with stimulus-based attention from the images, however, the
computed top-down attention can fail to concentrate on the correct objects of
interest and attend to irrelevant background.

Stimulus-Based Attention in Captioning. To boost the performance of
image captioning models, a few works attempt to use human stimulus-based
attention. Sugano et al. [28] utilize ground truth human gaze to split top-down
attention for gazed and non-gazed regions. Cornia et al. [3] integrate human
attention in a captioning model similar as [28] but replace the human gaze
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with predicted saliency maps. In [29], Tavakoli et al. analyze the effects on
stimulus-based attention in captioning by substituting the top-down attention
with stimulus-based attention. While these models suggest that human atten-
tion can have positive effects on image captioning, they either incorporate only
stimulus-based attention or use stimulus-based attention to separate the top-
down attention at different locations, resulting in relatively marginal improve-
ment over corresponding baselines.

In this work, we propose a Boosted Attention method that incorporates
stimulus-based human attention with existing top-down visual attention. While
also using human attention, our method differs from the aforementioned works in
the following aspects: (1) Different from [29] which solely relies on stimulus-based
attention, we emphasize that it is necessary to integrate stimulus-based attention
with top-down attention. (2) Unlike [3,28] which utilize stimulus-based attention
to split top-down attention and extract features from regions either attended by
both attention (gazed) or not attended by stimulus-based attention (non-gazed),
our method extracts features from regions attended by either attention so both
contribute directly with an equal role, naturally enabling the two types of atten-
tion to complement each other. Experimental results validate the complemen-
tary nature of them, which contributes to the significant boost in captioning
performance. (3) Instead of using the spatial map for encoding stimulus-based
attention like [3,28,29], we integrate the attention via attentional CNN features.
Compared to spatial map, our features encode more abundant information and
introduce channel-wise attention in addition to spatial attention.

3 The Role of Stimulus-Based Attention in Image
Captioning

Though human-generated captions are relatively free-form, and with consider-
able inter-subject variance in descriptions, there exists a large degree of agree-
ment in what people describe (i.e., mentioned words in the captions) and what
people look (i.e., fixated objects with stimulus-based attention). In this section,
we explore the role of stimulus-based attention in image captioning. Specifi-
cally, we show the correlations between stimulus-based attention and captioning
attention by comparing them on the SALICON [11] dataset under different eval-
uation metrics. Note that to provide insights on how stimulus-based attention
could contribute to the captioning task, the captioning attention we use here
is derived from ground truth labels from MSCOCO and seen as ground truth
attention for generating the captions.

Similar to [29], we generate captioning attention using visual object category
to sentence’s noun (VOS) mapping (please refer to the supplementary materi-
als for details). The evaluation metrics used in the comparison include Coeffi-
cient Correlation (CC), Spearman’s Rank Correlation (Spearman) and Similar-
ity (SIM) [16]. Additionally, we also compute the probability of objects being
described given that they are fixated by stimulus-based attention, i.e., P (d|f).
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Fig. 2. Visualization for image captioning attention and stimulus-based attention.
From left to right: original images, ground truth image captioning attention maps,
stimulus-based attention maps. Captions are shown at the bottom of the images with
objects of interest mentioned in multiple captions highlighted by red color. (Color figure
online)

To compute this probability, we first set up a small threshold (i.e., 0.1) to fil-
ter out the false positive introduced during map re-scaling, then traverse all
saliency fixations within the captioning attention map. For each fixation, if the
attention value is above the predefined threshold, we consider at that fixation
the corresponding object is mentioned in the captions.

Quantitative evaluations show that the objects described in the captions are
likely to be fixated by stimulus-based attention with the probability P (d|f) =
0.465. According to [29], the probability of an object being mentioned given that
it exists (i.e. P (d|e)) is around 0.2, thus stimulus-based attention increases the
probability of selecting objects of interest by more than 2, providing reasonably
good prior knowledge of the objects of interest for image captioning. However,
note that since stimulus-based attention commonly attends to only parts of the
salient objects instead of covering all or sometimes even majority of the pixels
in the objects, the correlations between stimulus-based attention and captioning
attention are not high, with CC = 0.222, SIM = 0.353 and Spearman = 0.324.
Thus, even though stimulus-based attention is capable of partially capturing
objects of interest for image captioning, solely relying on stimulus-based atten-
tion may not be sufficient for an image captioning model. Figure 2 shows exam-
ples of captioning attention and corresponding stimulus-based attention. We
see that stimulus-based attention, while correctly locating objects of interest
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(i.e., cake, police car, man, remote and boy), it typically covers part of the
salient regions displayed in the captioning attention maps.

4 Boosted Attention Method

As mentioned in Sect. 3, on the one hand, objects of interest in stimulus-based
attention are reasonably consistent with objects of interest in image captioning,
suggesting that stimulus-based attention can be used to provide prior knowledge
for image captioning. On the other hand, however, with certain level of discrep-
ancy, in both location and coverage, stimulus-based attention alone could lead to
loss of visual information and thus decreasing the quality of generated captions.

We therefore propose a Boosted Attention method for image captioning that
incorporates stimulus-based attention into the conventional top-down attention
framework of a captioning model. The stimulus-based attention is combined
with top-down attention to construct a new attention mechanism called Boosted
Attention, which encourages the model to focus on certain visual features based
on top-down language signals while at the same time attending to the salient
regions highlighted by the stimulus-based attention. In all of our experiments,
the stimulus-based attention is obtained from a pre-trained saliency prediction
network and details about the network can be found in Sect. 5.

Figure 3 illustrates the high-level architecture of our method. The model first
takes a single raw image as input and encodes it with a CNN Visual Encoder
to obtain the visual features. The encoded features are then passed through a
Top-down Attention Module and our Stimulus-based Attention Module in paral-
lel, computing the top-down attention and integrating stimulus-based attention.
The proposed Stimulus-based Attention Module mainly consists of three parts,
a convolutional layer Wsal pre-trained on saliency prediction for producing the
stimulus-based attention features (attentional CNN features, Sect. 4.1), a con-
volutional layer Wv that further encodes the visual features, and an integration

Fig. 3. An illustration of architecture design for proposed Boosted Attention method.
Top-down attention maps and their corresponding words are highlighted in purple,
blue, green color, while stimulus-based attention map is shown in the red frame. (Color
figure online)
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module � that combines stimulus-based attention and visual features. After pro-
cessing with both the Top-down Attention Module and Stimulus-based Attention
Module, visual features integrated with two attention are fed into the Language
Generator to sequentially produce the caption.

Note that the proposed method is general and works with different top-
down attention and language generation algorithms (i.e., the Top-down Atten-
tion Module and the Language Generator in Fig. 3). Details about the modules
depend on a selected baseline model and the ones used in this work are described
in Sect. 5.

4.1 Attentional CNN Features

Instead of using the final output of the saliency prediction network (i.e., the
saliency map), we propose to make use of features from intermediate layers of the
network which could encode richer information about stimulus-based attention.
In this section, we formulate and provide intuitions behind using the attentional
CNN features to encode stimulus-based attention.

Considering a fully-convolutional saliency prediction network, we denote it
as the equation below (for simplicity we only take the last two layers into con-
siderations):

S = softmax(Wm δ(WsalI)) (1)

where I is the output of previous layers with ReLU activation, Wsal and Wm

represent weight parameters in the layer that is used to produce attentional CNN
features and output saliency map respectively, δ denotes the ReLU activation
and S is the saliency map. The kernel size of both convolutional layers is 1,
which enables the model to better capture cross-filter correlations as discussed
in [10].

As shown in Eq. 1, Wsal here constructs both channel-wise attention and
spatial attention. Specifically, with the use of ReLU activation ensures non-
negativity, to highlight salient regions in the saliency map Wsal needs to con-
struct the correlations between filters and stimulus-based attention (i.e. sup-
pressing filters that have negative correlations and emphasizing those have pos-
itive correlations). These correlations (channel-wise attention) are determined
by the signs and magnitude of weights in Wm, e.g., negative weights lead to
decrease of activation in S and thus indicate negative correlations, larger weights
emphasize more significant contributions. Furthermore, due to the use of spatial
softmax activation, Wsal also considers the correlations between features and
stimulus-based attention on spatial domain, resulting in the spatial attention.

Therefore, we in this work use Wsal to produce attentional CNN features for
encoding stimulus-based attention, constructing not only spatial attention widely
used in various captioning models but also channel-wise (filter-wise) attention
[2] that recently found beneficial for image captioning. In Fig. 4 we visualize
attention maps computed with the CNN features, the results demonstrate that
attentional CNN features utilized by our model are capable of highlighting var-
ious regions of interest.
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4.2 Integrating Stimulus-Based Attention

This section discusses our integration method for introducing stimulus-based
attention. We first integrate stimulus-based attention with visual features using
an asymmetric function as follows:

I
′
= WvI ◦ log(WsalI + ε) (2)

where I and I
′

are the visual features before and after integrating stimulus-
based attention, Wv represents weights in an additional convolutional layer that
further encodes the visual features and Wsal is the same as in Eq. 1, ◦ denotes
hadamard product, and ε is a hyper-parameter. Note that � in Fig. 3 denotes
the whole integration process of Eq. 2.

The intuitions behind this integration method are three-fold: First, Wv fur-
ther encodes visual features, allowing them to adapt to the cross-filter correla-
tions with stimulus-based attention that are stored in Wsal. Second, by intro-
ducing logarithm, we aim at alleviating the effects of co-adaptation between
Wv, Wsal and smoothing the contributions of stimulus-based attentional fea-
tures. Third, with the hyper-parameter ε we form a residual mechanism, pre-
serving the original information in visual features and thus preventing potential
information loss caused by applying stimulus-based attention. This mechanism
is crucial in the proposed integration method, because stimulus-based attention
alone may fail to attend to all regions of interest and it is reasonable to allow
the model to extract features attended by either one of the attention (stimulus-
based or top-down). In our experiments, we define ε as a mathematical constant
e to preserve the identity of the original visual features. Additional discussion
on selecting the hyper-parameter is provided in the supplementary materials.

After obtaining the visual features attended by the stimulus-based attention
(i.e. I

′
), we apply top-down attention on them via hadamard product, enabling

two attention to complement to each other. That is, when stimulus-based atten-
tion fails to attend to some regions of interest, top-down attention can attend
to those regions via assigning larger weights, and vice versa. We further study
the corporation between the two types of attention in Sect. 5.3.

5 Experiments

Dataset and Evaluation. We evaluate our method on two popular datasets:
(1) Microsoft COCO [19], where most images contain multiple objects in complex
natural scenes with abundant context information. The dataset includes 82783,
40504, 40775 images for training, validation and online evaluation, each has 5
corresponding captions. We use the publicly available Karapthy’s split [12] for
both training and offline evaluation. (2) Flickr30K [24], where most images depict
human performing various activities. It has a total of 31000 images from Flickr,
each has 5 corresponding captions. Due to the lack of official split, in order to
compare with other works we follow split from [12]. Four automatic metrics are
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used for evaluation, including BLEU [23], ROUGEL [18], METEOR [15] and
CIDEr [30].

Saliency Prediction Network. In order to integrate stimulus-based attention,
we construct a saliency prediction network with 2 convolutional layers (note that
features from the last convolutional layer of a ResNet-101 are viewed as inputs).
The first convolutional layer has 2048 filters while the second layer projects the
CNN features to spatial saliency map using a single filter. The kernel size for
both layers is set as 1 and the whole saliency network can be represented as
Eq. 1. We optimize the model on SALICON dataset with cross-entropy loss and
SGD optimizer using learning rate 2.5 × 10−4. Batch size is set to 1. Weights
from the first layer of saliency prediction network is utilized to initialize the
stimulus-based attention module in the proposed method (i.e. Wsal in Eq. 2).

Baseline Model. To demonstrate the effectiveness of our method and the
advantages of integrating stimulus-based attention, we apply the proposed
method on our baseline model constructed based on Soft Attention [32] and sev-
eral recent tips [2,26] to enhance performance: we replace the VGG [27] based
visual encoder with a more powerful ResNet-101 [7] based one. Instead of fine-
tuning the encoder, we directly adopt visual features from the last convolutional
layer of the visual encoder as input. When extracting the features, no cropping or
re-scaling is applied to the original images, instead, an adaptive spatial average
pooling layer is utilized to produce features with a fixed size of 2048 × 14 × 14.
Unlike [32] which trains the model solely on cross-entropy loss, we use the opti-
mization method proposed in [26] which contains both supervised learning and
reinforcement learning. The LSTM hidden size, word and attention dimensions
are set as 512 in our baseline. The other settings remain the same as the original
Soft Attention model.

Training. We train our models following the same settings from [26]: we use
ADAM [13] optimizer for training all of the models and batch size is set as 50.
Models are first trained on cross-entropy loss under supervised learning frame-
work, with initial learning learning rate 5 × 10−4 and Scheduled Sampling [1]
feedback probability being 0. During supervised learning, the learning rate is
decayed by a factor of 0.8 every 3 epochs and feedback probability increased
by 0.05 every 5 epochs. After 25 epochs of supervised learning, we further opti-
mize the models under reinforcement learning framework on the CIDEr metric
as [26]. The initial learning rate for reinforcement learning is set as 5×10−5 and
also decayed by 0.8 every 3 epochs. In supervised learning we fix the weights for
stimulus-based attention (Wsal in Eq. 2) to establish correlations between filters
within parallel layers (Wsal and Wv in Eq. 2), while later on in reinforcement
learning we fine-tune stimulus-based attention since the filter correlations have
already been established.

5.1 Quantitative Results

In this section, we report quantitative results to demonstrate the effectiveness
of the proposed method. We perform inter-model comparisons of the proposed
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method and 8 state-of-the-art models including Soft Attention [32], ATT [34],
SCA-CNN [2], SCN-LSTM [5], RLE [25], AdaATT [21], Att2all [26] and PG-
BCMR [20]. We also conduct intra-model comparisons on results with and with-
out the proposed approach (i.e., integrating the stimulus-based attention) and
whether using pre-trained stimulus-attention for integration. During evaluation,
beam search is utilized for generating the captions and the beam size is set
as 3. Tables 1 and 2 show the result comparison on Flickr30K and MSCOCO
(Karpathy’s test split [12] and online testing platform).

According to the comparative results, the proposed Boosted Attention
method leads to significant performance increase across all evaluation met-
rics compared to the original baselines without stimulus-based attention. On
Flickr30K, using our method results in 2.6%, 5.6%, 2.3% and 12% of rela-
tive improvements on BLEU-4, ROUGE-L, METEOR and CIDEr, while on
MSCOCO the improvements are 5.7%, 2.0%, 2.7% and 5.6% for correspond-
ing evaluation metrics. Moreover, boosted by the stimulus-based attention, our
models are capable of achieving state-of-the-art performance on both datasets.

To further study the contributions of stimulus-based attention, we conduct
experiments using a model with the same architecture as the proposed model but
not initialized on pre-trained weights for stimulus-based attention. In this case,
the stimulus-based attention Wsal is trained end-to-end and not fixed during
supervised learning. As shown in Table 1, models with pre-trained stimulus-

Table 1. Performance comparison with the state-of-the-art on Flickr30K and
MSCOCO (test split in [12]). Baseline is our augmented baseline model without
stimulus-based attention, BAM indicates the proposed Boosted Attention model and
BAM∗ denotes the model without using pre-trained stimulus-based attention but with
the same architecture as BAM. Reported scores are BLEU-4 (B@4), METEOR (MT),
ROUGE-L (RG) and CIDEr (CD). The relative improvement by using the proposed
method over its baseline is shown in percentage.

Model Flickr30K MSCOCO

B@4 MT RG CD B@4 MT RG CD

Soft attention [32] 0.191 0.185 - - 0.243 0.239 - -

ATT [34] 0.230 0.189 - - 0.304 0.243 - -

SCA-CNN [2] 0.223 0.195 0.449 0.447 0.311 0.250 0.531 0.952

SCN-LSTM [5] 0.265 0.218 - - 0.330 0.257 - 1.012

RLE [25] - - - - 0.304 0.251 0.525 0.937

AdaATT [21] 0.251 0.204 0.467 0.531 0.332 0.266 0.549 1.085

Att2all [26] - - - - 0.342 0.267 0.557 1.140

ours-Baseline 0.267 0.197 0.471 0.523 0.335 0.258 0.551 1.062

ours-BAM∗ 0.270 0.204 0.477 0.571 0.350 0.262 0.559 1.111

ours-BAM 0.274 0.208 0.482 0.586 0.354 0.265 0.562 1.122

Improvement (%) 2.6% 5.6% 2.3% 12.0% 5.7% 2.7% 2.0% 5.6%
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Table 2. Online results (C5) on the MSCOCO evaluation platform, † indicates ensem-
ble of models. Our result is obtained from an ensemble of 4 models trained under
different random seeds.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL METEOR CIDEr

ATT† [34] 0.731 0.565 0.424 0.316 0.535 0.250 0.953

SCA-CNN [2] 0.712 0.542 0.404 0.302 0.524 0.244 0.912

SCN-LSTM† [5] 0.740 0.575 0.436 0.331 0.543 0.257 1.003

PG-BCMR [20] 0.754 0.591 0.445 0.332 0.550 0.257 1.013

AdaATT† [21] 0.748 0.584 0.444 0.336 0.550 0.264 1.042

Att2all† [26] 0.781 0.619 0.470 0.352 0.563 0.270 1.147

ours-BAM† 0.794 0.622 0.470 0.349 0.560 0.264 1.083

based attention (BAM) are able to consistently outperform models without
stimulus-based attention (BAM∗), indicating that stimulus-based attention plays
an essential role on boosting the performance and the improvement of our
method is not merely due to advantages of modifications on architecture.

5.2 Qualitative Results

In addition to quantitative evaluations, in this section we further demonstrate
the effectiveness of proposed method via comparing qualitative results computed
by models with and without using our method. Figure 4 shows the captions
generated based the two models, together with the corresponding stimulus-
based attention maps computed by models using the Boosted Attention method.
Stimulus-based attention maps are generated by normalizing the average acti-
vation within the CNN features at different spatial locations.

According to the results, introducing stimulus-based attention helps the
model efficiently locate the objects of interest within the visual scenarios and
generate better captions. For example, in the top two images, the model using
Boosted Attention successfully focuses on the street signs similar as humans do
(as shown in the attention maps as well as the captions in red) while the model
without incorporating stimulus-based attention gets lost in the background
objects such as the palm trees and bus (see the captions in black). Furthermore,
the results also indicate that the model with the proposed Boosted Attention
method is capable of capturing multiple salient objects within images. For exam-
ple, for the bottom three images, by incorporating stimulus-based attention, the
model is able to concentrate on objects including the bird, mountain and laptop
(see the attention maps and captions in red). These objects are missing in the
captions generated by the model without using Boosted Attention (captions in
black) but mentioned in multiple human generated captions (captions in blue).
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Fig. 4. Qualitative results for models with and without using the Boosted Attention
method. From left to right: original images, stimulus-based attention map, and captions
corresponding to the images. Captions generated by models with and without using
Boosted Attention method are colored in red and black respectively, while the ground-
truth human generated captions are colored in blue. (Color figure online)

5.3 Attention Corporation in Image Captioning

To explore how the two types of attention, i.e., stimulus-based attention and
top-down model attention, corporate with each other during the caption gen-
eration process, we first evaluate the correlations between the attention maps
from the two types of attention. The stimulus-based attention map is extracted
using the same method described in Sect. 5.2. Since top-down attention maps are
generated for each corresponding word within a caption, we compute the aver-
age correlations between stimulus-based attention map and top-down attention
maps for different words.

We compute the correlations on the 5000 images from Karpathy’s test split
[12]. Two evaluation metrics commonly used for estimating correlations between
spatial maps, i.e. Coefficient Correlation (CC) and Spearman’s Rank Correlation
(Spearman), are utilized for analysis. According to the experimental results,
CC and Spearman scores are negative (CC = −0.256, Spearman = −0.369),
indicating that stimulus-based attention tends to focus on regions different from
top-down attention thus the two can potentially complement each other.

Next, we show qualitative results to demonstrate that two attention corpo-
rate in a complementary manner. Figure 5 compares top-down attention and its
corresponding stimulus-based attention, three typical scenarios for the corpora-
tion between attention are summarized as follows:
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Fig. 5. Qualitative results illustrating that the two types of attention complement each
other in various situations. From left to right: original images with generated captions,
stimulus-based attention maps, top-down model attention maps for different words
within the captions. The word associated with a specific top-down attention map is
highlighted in red color. (Color figure online)
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Scenario I: Stimulus-based attention has successfully captured all of the objects
of interest corresponding to generated caption. In this case, top-down attention
tends to play a minor role on discriminating the salient regions related to the
task. As shown in the first two images, since stimulus-based attention has already
concentrated on the objects of interest mentioned in the captions (i.e., horse and
church in the first image, man and giraffe in the second image), when generating
the words corresponding to the objects, top-down attention either does not have
a clear focused region (the 1st image) or attends to similar regions as stimulus-
based attention (the 2nd image).

Scenario II: Stimulus-based attention concentrates on only part of an object
but not covering the entire object (e.g., the 3rd image), or it covers some but
not all objects of interest (e.g., the 4th image). Under these situations, top-down
attention will focus on the missing regions to enhance the objects of interest and
complement stimulus-based attention. In the 3rd image, stimulus-based atten-
tion highlights the cat but only the bottom part of the stuffed animal, therefore
in order to collect enough visual information when generating the word ‘animal’,
top-down attention is placed on the upper part of the stuffed animal. Further-
more, in the 4th image we can see that since stimulus-based attention does not
quite focus on the woman, during generating the word ‘woman’ top-attention
significantly emphasizes the face of the woman and reveals the lost visual infor-
mation.

Scenario III: Stimulus-based attention fails to distinguish salient objects with
irrelevant background. In this case, top-down attention will play a major role in
extracting regions corresponding to the objects of interest. As shown in the 5th
image, due to the complexity of the visual scenario, stimulus-based attention
confuses the objects of interest (i.e. woman and cat according to the caption)
with background objects such as bed and blanket. As a result, the model relies
on top-down attention to filter out the irrelevant information and concentrate
on regions related to the word being generated.

6 Conclusion

In this work, we propose a Boosted Attention method that leverages human
stimulus-based attention to improve the performance of image captioning mod-
els. Stimulus-based attention provides prior knowledge on salient regions within
the visual scenarios and plays a complementary role to the top-down atten-
tion computed by the image captioning models. Experimental results on the
MSCOCO and Flickr30K datasets show that the proposed method leads to sig-
nificant improvements in captioning performance across various evaluation met-
rics and achieves state-of-the-art results. The proposed method is also general
and compatible with various image captioning models using top-down visual
attention.
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