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Abstract. Inspired by the pioneering work of information bottleneck
principle for Deep Neural Networks (DNNs) analysis, we design an infor-
mation plane based framework to evaluate the capability of DNNs for
image classification tasks, which not only helps understand the capa-
bility of DNNs, but also helps us choose a neural network which leads
to higher classification accuracy more efficiently. Further, with experi-
ments, the relationship among the model accuracy, I(X;T ) and I(T ;Y )
are analyzed, where I(X;T ) and I(T ;Y ) are the mutual information of
DNN’s output T with input X and label Y . We also show the information
plane is more informative than loss curve and apply mutual information
to infer the model’s capability for recognizing objects of each class. Our
studies would facilitate a better understanding of DNNs.

Keywords: Information bottleneck · Mutual information
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1 Introduction

Deep Neural Networks (DNNs) have demonstrated their successes in many com-
puter vision and natural language processing tasks [1–5], but the theoretical
reasons that contribute to the successes of DNNs haven’t been fully unveiled.
Recently, information theory has shown its preponderance for DNNs understand-
ing. Specifically, Tishby and Zaslavsky [6] note that layered neural networks can
be represented as a Markov chain and analyze the neural network via the infor-
mation bottleneck. Schwartz-Ziv and Tishby [7] calculate the mutual informa-
tion I(X;T ), I(T ;Y ) for each hidden layer, where X is the input data, Y is the
label and T is the hidden layer output, respectively. Then they demonstrate the
effectiveness of the visualization of neural networks. These works inspire us to
leverage mutual information to evaluate the capability of DNNs.

Figure 1 depicts the evolution of the mutual information along with the train-
ing epochs in the information plane [7]. As can be seen, the green point, which is
referred to as the transition point, in each mutual information path separates
the learning process into two distinct phases: the ‘fitting phase’, which takes a
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Fig. 1. This figure is adapted from [7]. The mutual information path is calculated
based on a fully connected neural network. X is a 12-dimensional binary input and Y
has 2 classes. Each hidden layer first reaches the green point (transition point), then
converges at the yellow point. The leftmost path corresponds to the last hidden layer
and the rightmost path corresponds to the first hidden layer. (best viewed in color)
(Color figure online)

few hundred epochs, and the layers’ information on the label, namely I(T ;Y ),
increases; the subsequent ‘compression phase’, which takes most of the training
time and the layers’ information on the input, i.e. I(X;T ), decreases (this means
the layers remove irrelevant information until convergence).

The evolution of I(X;T ) and I(T ;Y ) explains how DNNs work. However,
the models used in [6,7] are some simple fully connected neural networks. In
real applications, Convolutional Neural Networks (CNNs) are commonly used
in computer vision. Pushing these works [6,7] forward, in this paper, we design
an information plane based framework to study the capability of some classical
CNN structures for image classification, including AlexNet [2], VGG [8]. The
contributions of our work can be summarized as follows:

– Our work unveils that I(X;T ) also contributes to the training accuracy and
the correlation grows stronger as the network gets deeper. We perform exper-
iments to validate this claim.

– An evaluation framework based on the information plane is proposed. The
framework is more ‘informative’ than the loss curve and would facilitate a
better understanding of DNNs.

– We show that mutual information can be used to infer the DNN’s capability
of recognizing objects of each class in the image classification task.

2 Related Work

The most related topic is the information bottleneck (IB) principle [9]. IB pro-
vides a technique for extracting information in some input random variable that
is relevant for predicting some different output random variable. [10] extends the
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original IB method to obtain continuous representations that preserve relevant
information, rather than discrete clusters, for the special case of multivariate
Gaussian variables. [11] introduces an alternative formulation called the deter-
ministic IB (DIB), which replaces mutual information with entropy and better
captures the notion which features are relevant. [12] theoretically analyzes the IB
method and its relation to learning algorithms and minimal sufficient statistics.
[13] shows that K-means and deterministic annealing algorithms for geometric
clustering can be derived from a more general IB approach.

Recently, we have seen some applications of IB in deep learning. [14] presents
a variational approximation to the IB method. This variational approach can
parameterize the IB model using a neural network and leverage the reparam-
eterization trick for efficient training. [15] proposes a method that allows IB
to be used in more general domains, such as discrete or continuous inputs and
outputs, nonlinear encoding and decoding maps. [16] proposes a Parametric IB
(PIB) framework to jointly optimize the compression and relevance of all layers
in stochastic neural networks for better exploiting the networks’ representation
capabilities. [17] introduces the Information Dropout method, which generalizes
the dropout method in deep learning, rooted in information theoretic principles
that automatically adapts to the data, and can better exploit architectures with
limited capacity.

[6,7], which are most relevant to our work, visualize the mutual information
of hidden layers and the input/output of a neural network in the information
plane to understand the optimization process and the internal organization of
DNNs. While in this paper, different from these works which study DNNs with
fully connected layers, we propose to study the behavior of more commonly used
CNNs in image classification.

3 Mutual Information and Deep Neural Networks

In this section, we first revisit the definition of mutual information and its prop-
erties relevant to DNNs analysis, then we interpret the representation learning in
DNNs with mutual information and show how to calculate mutual information
in DNNs.

3.1 Mutual Information

Given two random variables X and Y with a joint probability mass function
p(x, y) and marginal probability mass functions p(x) and p(y), the mutual infor-
mation between two variables, I(X;Y ), is defined as:

I(X;Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (1)

The entropy of X, H(X), can be defined using the mutual information:

H(X) = I(X;X) = −
∑

x

p(x) log p(x). (2)
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In general, the mutual information of two random variables is a measurement
of the mutual dependence between the two variables. More specifically, it quan-
tifies the amount of information obtained about one random variable, through
the other one.

There are two properties (3) (4) of mutual information which are useful for
analyzing DNNs:

– function transformation:

I(X;Y ) = I(ψ(X);φ(Y )) (3)

for any invertible functions ψ and φ.
– Markov chain. Suppose X → Y → Z forms a Markov chain, then we have

the data processing inequality:

I(X;Y ) ≥ I(X;Z). (4)

3.2 Optimal Representation of Learning Process

In representation learning, we want our model to learn an efficient representation
of the original data X without losing prediction capability of the label Y , which
means we want to learn a minimal sufficient statistics of X with respect to Y . A
minimal sufficient statistics T (X) is the solution to the following optimization
problem:

T (X) = arg min
S(X):I(S(X);Y )=I(X;Y )

I(S(X);X) (5)

So, from the minimal sufficient statistics perspective, the goal of DNNs is
to make I(X;S(X)) as small as possible, which means the representation is
efficient; while I(S(X);Y ) should be the same value of I(X;Y ) which means the
information on Y is not lost. In practice, the explicit minimal sufficient statistics
only exist for very special distributions. The actual learning process is a tradeoff
between I(X;S(X)) and I(S(X);Y ), and it leads to the IB method [9]. IB can
be seen as a special case of Rate Distortion theory and provides a framework to
find approximate minimal sufficient statistics. The efficient representation is a
tradeoff between the compression of X and the prediction ability of Y .

Let x be an input point, and t be the corresponding model’s output, or the
compressed representation of x. This representation is defined by the probabilis-
tic mapping p(t|x). The information bottleneck tradeoff is formulated by the
following optimization problem:

min
p(t|x),Y →X→T

{I(X;T ) − βI(T ;Y )}. (6)

The Lagrange multiplier β determines the level of relevant information captured
by the representation T . So given a joint distribution p(x, y) and the parameter
β, minimizing (6) yields the optimal I(X;T ) and I(T ;Y ) (see (31) in [9]).
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3.3 Calculating Mutual Information in DNNs

From Sect. 3.2, we know I(X;T ) and I(T ;Y ) are essential to evaluate the rep-
resentation learning algorithms, including DNNs, but the calculation in DNNs
is a difficult problem.

[7] uses the hyperbolic tangent function as the hidden layer’s activation func-
tion, and bins the neuron’s output activation into 30 equal intervals between −1
and 1. Then they use these discretized values for each t, to directly calculate the
joint distributions p(x, t) and p(t, y) over the equally likely patterns of the input
data for every hidden layer. But when the number of neurons in the hidden layer
is large (it happens when we visualize CNN layers), I(X;T ) and I(T ;Y ) barely
change. The reason is that the sample space of T is huge even if we decrease
the number of intervals, and the output of a particular input data x falls into
one interval of t with high probability. Thus p(x|t) and p(y|t) are approximately
deterministic, I(X;T ) ≈ H(X) and I(T ;Y ) ≈ H(Y ) from (1) (2). So this issue
makes it hard to analyze universal neural networks. Luckily our goal is to eval-
uate different network structures, so we just need to visualize the last hidden
layer since it directly reveals the relationship among the model output T , input
X and label Y . Since the number of neurons of the last hidden layer in the DNNs
for image classification task is precisely the number of classes of input data, our
method is only subject to the number of classes.

Fig. 2. This figure shows how we obtain T from the network for calculating I(X;T )
and I(T ;Y ). Y → X → T forms a Markov chain. The output of the last layer (blue
circles) is the softmax probability. (Color figure online)

Suppose there are C classes, the outputs of the last hidden layer are scores
of different classes which are unbounded. We use the normalized exponential
function to squash a C dimensional real vector z of arbitrary real values to a C
dimensional vector σ(z) of real values in the range [0,1] that add up to 1. The
function is given by

σ(z)j =
ezj

∑C
c=1 ezc

for j = 1, . . . , C, (7)
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which is exactly what the softmax function does in the neural network. We bin
the neuron’s output σ(z) into 10 equal intervals between 0 and 1 and get our final
model output T . Then we can calculate I(X;T ) and I(T ;Y ) for any network
architecture. An advantage of this calculation is that the sample space of T is
a bit smaller since we enforce the C dimensional vector σ(z) add up to 1. This
process is illustrated in Fig. 2.

4 Experiments

This section goes as follows: in Sect. 4.1, we analyze the relationship among the
model accuracy, I(X;T ) and I(T ;Y ); in Sect. 4.2, we propose a framework that
can be used to evaluate DNNs; in Sect. 4.3, we show the evaluation framework
is more informative than the loss curve when evaluating DNNs and how to use
this framework to guide us on choosing networks efficiently; in Sect. 4.4, we show
how to apply mutual information to infer the capability of a model for objects
of each class in image classification tasks.

4.1 Relationship Among Classification Accuracy, I(X; T ) and
I(T ;Y ) in DNNs

In addition to developing the theory of deep learning, it is also important to
empirically validate it. In the original IB theory [12], X, Y and T represent the
training input, training label and model output, respectively; and [12] states that
I(T ;Y ) explains the training accuracy, I(X;T ) serves as a regularization term
that controls the generalization. Here we find that in DNNs, low I(X;T ) also
contributes to the training accuracy. In particular, when I(T1;Y ) and I(T2;Y )
are equal, the model with smaller I(X;T ) has a larger probability to achieve
higher training accuracy.

To validate the hypothesis that low I(X;T ) also contributes to the training
accuracy, we train neural networks on the CIFAR-10 dataset to sample values
of I(X;T ), I(T ;Y ) and the training accuracy. During the training process, the
sampling is performed at every fixed iteration steps. For the i-th sample, we
use I(X;Ti), I(Ti;Y ) and Acci to denote the mutual information values and
the training accuracy, respectively. A direct way to examine the rightness of our
hypothesis is to find pairs (i, j) which satisfy I(Ti;Y ) = I(Tj ;Y ), then check the
relationship of I(X;T ) and the training accuracy.

Since I(T ;Y ) is a real number, it’s hard to find a pair of samples who have the
same value of I(T ;Y ). Instead, we examine the hypothesis by checking inversions.
An inversion is a pair of samples (i, j) which satisfy I(Ti;Y ) < I(Tj ;Y ) and
Acci > Accj . Among all these inversion pairs, we calculate the percentage of pairs
that satisfy I(X;Ti) < I(X;Tj). This percentage is a proper indicator of the
rightness of our hypothesis since if the percentage is near 0.5, then I(X;T ) almost
has no relation to the training accuracy. Otherwise, if the percentage is high,
then low I(X;T ) also contributes to the training accuracy. In our experiments,
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Table 1. This table records the percentages with 600 samples for DNNs with different
network structures and training methods on the training set. The percentage converges
when we include 600 samples. CNN-9 is a deep convolutional neural network with 9
convolutional layers. Linear network is a feedforward network whose activation func-
tion is the identity function. SGD is short for Stochastic Gradient Descent, and BGD
for Batch Gradient Descent. For computational limitation, we include 10000 training
samples when performing BGD. Also BGD and SGD use the same training set.

Network structure Training method Percentages with 600 samples

CNN-9 SGD 0.865

BGD 0.821

Linear network SGD 0.755

BGD 0.594

we set different training conditions to train neural networks. The percentages
are listed in Table 1.

The results in Table 1 show that I(X;T ) also contributes to training accuracy
since the percentages are over 0.5. Different network structures may end up with
different percentages. Also SGD has higher percentage than BGD. We want to
emphasize that the percentages may have a little deviation from the ground
truth since the mutual information in DNNs was calculated approximately by
binning. This is crucial especially when mutual information values do not vary
too much. We believe the accurate mutual information will make our hypothesis
more convincing. Table 1 can be further interpreted as follows:

First, notice that I(T ;Y ) is not a monotonic function of the training accuracy.
For example, suppose we have C classes in the dataset, and Ci denotes the i-th
class. Consider two cases: In the first case, T = σ(Y ) where σ is an identity
mapping which means T always predicts the true class. In the second case T =
ϕ(Y ) where ϕ is a shift mapping which means if the true class is Ci, the prediction
of T is Ci+1. In both two cases, since σ and ϕ are invertible functions, from (3),
we have I(T ;Y ) = I(σ(Y );Y ) = I(ϕ(Y );Y ) = H(Y ). But in case 1, the training
accuracy is 1, whereas in case 2 it is 0.

Second, unlike linear networks, the loss function of CNNs is highly non-
convex. By using SGD or BGD to train neural networks, the training loss respect
to all the training data does not decrease all the time during the training process
which indicates the network sometimes is learning in the wrong direction. Since
SGD only uses a mini-batch of samples for each iteration, the loss curve becomes
more unstable. Only in the linear network (the loss function is convex) trained by
BGD, with a proper learning rate, the training loss always decreases during the
training process, which means the model always makes T closer to the true label
Y (the model is stablest in this case). So I(T ;Y ) can fully explain the training
accuracy and I(X;T ) may not contribute to training accuracy very much.

Third, [18] defines that a learning algorithm is stable if its output does not
depend too much on any individual training example. So when I(T1;Y ) and
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I(T2;Y ) are equal, the model with low I(X;T ) has large stability, which may
lead to a high training accuracy.

We also find that when trained by SGD, the percentages increase as more
convolutional layers are considered, which can be seen from the columns in
Table 2. This interesting phenomenon may reveal some inherent properties of
CNNs which we would further explore in our future work.

Table 2. This table records the percentages with 600 samples for DNNs with different
network structures on the training set. CNN-i is a deep convolutional neural network
with i convolutional layers.

Network structure CNN-2 CNN-4 CNN-9 CNN-16 (VGG)

Percentage with 600 samples 0.56 0.68 0.87 0.96

We also validate our hypothesis on the validation data where X and Y now
represent the validation input and validation label, respectively. The percentages
in Table 3 also show that low I(X;T ) contributes to validation accuracy. This
result will be useful in the next subsection for evaluating DNNs.

Table 3. The percentages with numbers of samples on the validation set. The network
is VGG-16 trained by SGD.

Number of samples 100 200 300 400 500 600

Percentage 0.905 0.921 0.912 0.924 0.924 0.924

4.2 Evaluating DNNs in the Information Plane

Evaluating the capability of DNNs during the training process is important
because it would help us understand the training phase better. Section 3.2 shows
that an optimal representation (a minimal sufficient statistics of X with respect
to Y ) is a tradeoff between I(X;T ) and I(T ;Y ). We validate the hypothesis in
Sect. 4.1 that, in DNNs trained by SGD, not only I(T ;Y ) but also I(X;T ) is
a measurement of validation accuracy where X and Y represent the validation
input and validation label, respectively. So we use ΔI(T ;Y )

ΔI(X;T ) (the slope of the
curve) to represent the model’s learning capability at each moment in the
information plane.

Figure 1 shows two learning phases of the training process. The model begins
to generalize in the second compression phase, and the first fitting phase takes
very little time compared to the compression phase. So we just use ΔI(T ;Y )

ΔI(X;T ) in
the second compression phase to evaluate the model’s capability of generaliza-
tion. We expect that a good model has small (negative) ΔI(T ;Y )

ΔI(X;T ) at the second
phase. While for the first fitting phase, I(T ;Y ) and I(X;T ) grow simultaneously
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(in order to fit the label, the model needs to remember X at first). So we use
I(T ;Y ) instead of ΔI(T ;Y )

ΔI(X;T ) to represent the model’s capability of fitting the label.
Based on the discussion above, we propose our evaluation framework in Fig. 3.

Fig. 3. Evaluation framework based on I(X;T ) and I(T ;Y ). The height of transition
point (I(T ;Y )) represents the model’s capability of fitting the label. The slope after

transition point ( ΔI(T ;Y )
ΔI(X;T )

) represents the model’s capability of generalization.

We are interested in how different neural networks behave under the frame-
work we propose in Fig. 3. So we run different network structures on MNIST and
CIFAR-10 dataset (see Fig. 4). Notice that in this and the subsequent experi-
ments, X and Y represent the validation input and validation label respectively.
Mutual information curves are smoothed for better visualization since smoothing
doesn’t change the trend of the curve. Also, DNNs are just trained once until
convergence without data augmentation or retraining since we want to com-
pare networks in an equal way. We also record the mutual information, training
epochs, model validation accuracy at the transition point and convergence point
in Table 4. Figure 4 and Table 4 show some interesting phenomenons.

– Convolutional neural networks (CNNs) may have lower capabilities of fitting
the label than fully connected networks (FCs) in the first fitting phase by
comparing I(T ;Y ) at the transition point (The reason may attribute to the
large number of parameters of FCs), but CNNs have stronger capabilities
of generalization (smaller ΔI(T ;Y )

ΔI(X;T ) ) in the compression phase which lead to
higher final validation accuracies.

– Some models may not have second compression phase. For MNIST, all models
have exactly two learning phases, but for CIFAR-10, the models with fewer
layers don’t show second compression phase (see CNN-2, CNN-4, and FC-3
for CIFAR-10 in Fig. 4). It reveals that when the dataset is harder to classify,
neural networks with fewer layers can not generalize well.

– For CIFAR-10, I(X;T ) and I(T ;Y ) of FC-6 and FC-9 both drop down in the
second phase indicating that increasing layers in FCs may lead to overfitting.



190 H. Cheng et al.

Fig. 4. The figures depict mutual information paths with training epochs in the infor-
mation plane. The left and right figures represent MNIST and CIFAR-10, respectively.
Both datasets are trained by fully connected neural networks and convolutional neural
networks. FC-i denotes a fully connected neural network which has i layers including
the input and output layers. CNN-i denotes a convolutional neural network which has
i convolutional layers.

This evaluation framework allows us to visualize any CNN or FC in the
information plane. In the next subsection, we will show this framework is more
informative than the loss curve when evaluating neural networks.

4.3 Informativeness and Guidance of Information Plane

Usually, for a particular problem, the network structure is determined based on
the exhausting search of different DNNs on the validation set which is time-
consuming. Next, we will show our evaluation framework is more informative
than the loss curve and would facilitate the model selection of DNNs.

Specifically, by comparing the number of training epochs at the transition
point and convergence point, we can find that most of the training time is spent
on the compression phase, as shown in Table 4. So we can visualize the infor-
mation plane during training the network, and stop training once the model
has crossed the transition point for several epochs. The height of the transition
point (I(T ;Y )) represents the model’s capability of fitting the label. The slope
( ΔI(T ;Y )

ΔI(X;T ) ) after transition point represents the model’s capability of generaliza-
tion. These two indicators will give us a general prediction about the model’s
quality. Figure 5 shows the mutual information paths of different network struc-
tures on the CIFAR-10 dataset. Table 5 records the model validation accuracy
and ‘percentages’ defined in Sect. 4.1.
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Table 4. The table records I(T ;Y ), I(X;T ), training epochs and validation accuracy
of every network at the transition point and convergence point. For FC-3, CNN-2 and
CNN-4 on CIFAR-10, the values on the transition point and convergence point are the
same since they don’t show the compression phase.

Dataset Model Transition point Convergence point

I(T ; Y ) I(X; T ) Epochs Accuracy I(T ; Y ) I(X; T ) Epochs Accuracy

MNIST FC-3 2.96 7.183 1 0.836 3.259 4.358 51 0.983

FC-6 2.962 7.532 1 0.846 3.249 3.746 56 0.988

FC-9 2.803 7.166 1 0.774 3.214 3.647 54 0.988

CNN-2 2.952 7.898 1 0.75 3.282 3.916 50 0.99

CNN-4 2.286 7.683 1 0.451 3.284 3.621 53 0.994

CNN-6 2.236 6.184 1 0.515 3.275 3.592 54 0.994

CIFAR-10 FC-3 2.671 10.085 65 0.534 2.671 10.085 65 0.534

FC-6 2.604 9.321 20 0.537 2.218 7.197 66 0.575

FC-9 2.55 9.02 21 0.555 2.218 7.197 66 0.56

CNN-2 1.816 8.133 63 0.451 1.816 8.133 63 0.451

CNN-4 2.840 8.761 67 0.705 2.840 8.761 67 0.705

CNN-6 2.301 8.891 5 0.52 2.472 4.862 66 0.781

Table 5. The percentages of each network are from Table 2.

Network structure CNN-2 CNN-4 CNN-9 CNN-16 (VGG)

Percentage of 600 samples 0.56 0.68 0.87 0.96

Final acc on validation set 0.45 0.70 0.77 0.89

Fig. 5. (a) Mutual information path of each model with SGD optimization on the
training set of CIFAR-10. (b) Mutual information path of each model on the validation
set. (c) Training loss of each model with training iterations.

From Fig. 5(c), we can see the loss of each model continues to decrease with
training iterations. While in the information plane, each model behaves differ-
ently. In Fig. 5(a) and (b), the models with few layers do not have clear second
stage in the mutual information paths. Actually, we can visualize the informa-
tion path of each model on the validation set to help us evaluate or select model
efficiently. From Fig. 5(b), compared with CNN-9, the slope of information path
of CNN-16 in the second stage is smaller (negative), which represents better
generalization capability. The validation accuracy of each model in Table 5 is
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consistent with our analysis. Thus, the information plane is more ‘informative’
than loss curve when evaluating the DNN model. Since the first stage only takes
little time compared to the second stage, we can choose a better model quickly
given different model architectures by visualizing the information plane on the
validation set.

It is worth noticing that our prediction may not always be true, since the
mutual information path may have a larger slope change in the future. So it’s
a trade-off between training time and confidence of our prediction. The longer
time we train the network, the more confident prediction about the model we
can make. But it is still an efficient way to guide us on choosing neural network
structure for a given task.

Figure 5(a), (b) and Table 5 also show that when CNNs have fewer layers, the
information plane does not clearly show the second phase, and the percentages
are low. Whereas for CNN-9 and CNN-16, the information plane clearly show the
second phase and the percentages are high. This experiment shows that I(X;T )
contributes to training accuracy mostly at the second stage of information paths.
One possible reason is that the model begins to ‘compress’ the information of
the training set and learns to generalize (extract common features from each
mini-batch) at the second stage. From the percentages, this process happens
even when I(T ;Y )’s remain the same. The correlation between accuracy and
I(X;T ) grows stronger when the number of layers of DNN increases, since DNN
with more layers has better generalization capability. We can view I(X;T ) and
I(T ;Y ) as: I(T ;Y ) determines how much the knowledge T has about the label Y ,
and I(X;T ) determines how easy this knowledge can be learned by the network.

4.4 Evaluating DNN’s Capability of Recognizing Objects from
Different Classes

Furthermore, we also evaluate the model’s capability of recognizing objects from
each class for the image classification task. The information plane provides a
method in an informative way. Suppose there are C classes in the dataset, Ci

denotes the i-th class. To test the model’s capability of recognizing Ci from the
data, we can label other classes in the validation data as one class, thus label
Y changes from RC to R2. When calculating the mutual information, we make
label Y balanced so that H(Y ) is equal to 1. Then I(X;T ) and I(T ;Y ) can be
calculated directly given a neural network. Note that the structure of the neural
network does not change. The output T is still RC . We only alter the way how
to test the data. Repeating this process for C times and the model’s capability of
recognizing each class can be visualized in the information plane. This method
is similar to one-vs-all classifications [19]. It measures the model’s capability of
recognizing the true class from all the data.
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Fig. 6. Models’ capabilities of recognizing objects from each class on the CIFAR-10
dataset. Models are well trained AlexNet and VGG-16. For each class, we show its
I(X;T ), I(T ;Y ) and validation accuracy. The validation accuracy of each class is the
percentage of how many samples are correctly predicted out of all samples belonging to
that class. Note that since I(T ;Y ) is bounded by H(Y ) which is 1, the accuracy is also
bounded by 1. To facilitate the visualization, we divide I(X;T ) by its upper-bound
H(X) so that I(X;T ), I(T ;Y ) and the validation accuracy have the same magnitude.

For better visualization, we select the first 3 classes (airplane, automobile,
bird) on CIFAR-10. Figure 7 shows how network recognizes objects from each
class during the training stage in the information plane. Figure 6 compares dif-
ferent networks’ recognizing capabilities for each class at the end of the training.

As shown in Fig. 7, Automobile has almost the same I(T ;Y ) as airplane at
the transition point, but automobile has smaller slop after that point. So we
conclude that VGG-16 model has higher classification accuracy on automobile
than airplane. For airplane and bird, model has almost equally generalization
capabilities, but the capability of fitting the label of airplane is better than that
of bird. So we conclude model has better classification accuracy on airplane than
bird. The final classification accuracies for these three classes are 0.921, 0.961
and 0.825 which is consistent with our analysis.

Figure 6 shows that VGG-16 has stronger recognizing capability than
AlexNet on each class. For each model, we can still use I(X;T ) and I(T ;Y )
to compare each class. Like in AlexNet, after comparing I(X;T ) and I(T ;Y )
of automobile and bird, we can conclude model has more recognizing capability
on automobile rather than bird since automobile has a higher I(T ;Y ) and lower
I(X;T ).

Of course, ‘model accuracy’ can still be used to evaluate the model’s recogniz-
ing capability for each class. But I(X;T ) and I(T ;Y ) provide more information
about the model’s property in an informative way. Moreover, in some problems
where the distribution of sample is unbalanced, we can use the information plane
to test how many samples we need to train a neural network with balanced clas-
sification capability for each class.
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Fig. 7. Mutual information paths of different classes on CIFAR-10 dataset during the
training phase for VGG-16.

5 Discussion

In this paper, we apply mutual information to evaluate the capability of DNNs
for image classification tasks. We explore the relationship among model accuracy,
I(X;T ) and I(T ;Y ) in DNNs through extensive experiments. The results show
that I(X;T ) also contributes to accuracy. We propose a general framework that
can be used to evaluate DNNs in the information plane. This framework is more
informative than the loss curve and can guide us on choosing network struc-
tures. We also apply mutual information to validate the network’s recognizing
capability for each class in the image classification tasks.

The datasets we use in the paper are MNIST and CIFAR. The difficulty of
validating IB on large dataset like Imagenet is that Imagenet has 1000 classes.
The sample space of T is huge and we can not calculate I(X;T ) and I(T ;Y )
accurately by binning. Estimating accurate mutual information in high dimen-
sion space is still an open problem. Some future works can be done to develop
more efficient ways to calculate mutual information and further explore the rela-
tionship between accuracy and I(X;T ) for understanding neural networks bet-
ter.
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