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Abstract. In this work we introduce Deforming Autoencoders, a gen-
erative model for images that disentangles shape from appearance in an
unsupervised manner. As in the deformable template paradigm, shape
is represented as a deformation between a canonical coordinate system
(‘template’) and an observed image, while appearance is modeled in
deformation-invariant, template coordinates. We introduce novel tech-
niques that allow this approach to be deployed in the setting of autoen-
coders and show that this method can be used for unsupervised group-
wise image alignment. We show experiments with expression morphing in
humans, hands, and digits, face manipulation, such as shape and appear-
ance interpolation, as well as unsupervised landmark localization. We
also achieve a more powerful form of unsupervised disentangling in tem-
plate coordinates, that successfully decomposes face images into shading
and albedo, allowing us to further manipulate face images.

1 Introduction

Disentangling factors of variation is important for the broader goal of controlling
and understanding deep networks, but also for applications such as image manip-
ulation through interpretable operations. Progress in the direction of disentan-
gling the latent space of deep generative models has facilitated the separation
of latent image representations into dimensions that account for independent
factors of variation, such as identity, illumination, normals, and spatial sup-
port [1–4], low-dimensional transformations, such as rotations, translation, or
scaling [5–7] or finer-levels of variation, including age, gender, wearing glasses,
or other attributes e.g. [2,8] for particular classes, such as faces.
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Fig. 1. Deforming Autoencoders follow the deformable template paradigm and model
image generation through a cascade of appearance (or, ‘texture’) synthesis in a canoni-
cal coordinate system and a spatial deformation that warps the texture to the observed
image coordinates. By keeping the latent vector for texture short, we force the network
to model shape variability through the deformation branch. This allows us to train a
deep generative image model that disentangles shape and appearance in an entirely
unsupervised manner, using solely an image reconstruction loss for training.

Shape variation is more challenging as it is a transformation of a function’s
domain, rather than its values. Even simple, supervised additive shape models
result in complex nonlinear optimization problems [9,10]. Nonetheless, several
works in the previous decade aimed at learning shape/appearance factorizations
in an unsupervised manner, exploring groupwise image alignment, [11–14].

In a deep learning context, several works incorporated deformations and
alignment in supervised settings, including Spatial Transformers [15], Deep Epit-
omic Networks [16], Deformable CNNs [17], Mass Displacement Networks [18],
Mnemonic Descent [19], Densereg [20] or more recently, works that use surface-
based 3D face models for accurate face analysis [21,22]. These works have shown
that one can improve the accuracy of both classification and localization tasks
by injecting deformations and alignment within traditional CNN architectures.

Turning to unsupervised deep learning, even though most works focus on
rigid or low-dimensional parametric deformations, e.g. [5,6], several works have
attempted to incorporate richer non-rigid deformations within learning. A thread
of work aims at dynamically rerouting the processing of information within the
network’s graph based on the input, starting from neural computation arguments
[23–25] and eventually translating into concrete algorithms, such as the ‘capsule’
works [26,27] that bind neurons on-the-fly. Still, these works lack a transparent,
parametric handling of non-rigid deformations. On a more geometric direction,
recent work aims at recovering dense correspondences between pairs [28] or sets
of RGB images, e.g. [29,30]. These works however do not have the notion of a
reference coordinate system (‘template’) to which images can get mapped - this
makes image generation and manipulation harder. More recently, [31] use the
equivariance principle to align sets of images to a common coordinate system,
but do not develop this into a full-blown generative model of images.

Our work advances this line of research by following the deformable tem-
plate paradigm [9,10,32–34]. In particular, we consider that object instances are
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obtained by deforming a prototypical object, or ‘template’, through dense, dif-
feomorphic deformation fields. This makes it possible to factor object variability
within a category into variations that are associated to spatial transformations,
generally linked to the object’s 2D/3D shape, and variations that are associated
to appearance (or, ‘texture’ in graphics), e.g. due to facial hair, skin color, or
illumination. In particular we model both sources of variation in terms of a low-
dimensional latent code that is learnable in an unsupervised manner from images.
We achieve disentangling by breaking this latent code into separate parts that
are fed into separate decoder networks that deliver appearance and deformation
estimates. Even though one could hope that a generic convolutional architecture
will learn to represent such effects, we argue that explicitly injecting this induc-
tive bias in a network can help with training, while also yielding control over the
generative process. Our main contributions in this work are:

First, we introduce the Deforming Autoencoder architecture, bringing
together the deformable modeling paradigm with unsupervised deep learning.
We treat the template-to-image correspondence task as that of predicting a
smooth and invertible transformation. As shown in Fig. 1, our network first pre-
dicts a transformation field in tandem with a template-aligned appearance field.
It subsequently deforms the synthesized appearance to generate an image similar
to its input. This allows us to disentangle shape and appearance by explicitly
modelling the effects of image deformation during decoding.

Second, we explore different ways in which deformations can be represented
and predicted by the decoder. Instead of building a generic deformation model,
we compose a global, affine deformation field, with a non-rigid field that is syn-
thesized as a convolutional decoder network. We develop a method that prevents
self-crossings in the synthesized deformation field and show that it simplifies
training and improves accuracy. We also show that class-related information
can be exploited, when available, to learn better deformation models: this yields
sharper images and can be used to learn models that jointly account for multiple
classes - e.g. all MNIST digits.

Third, we show that disentangling appearance from deformation has several
advantages for modeling and manipulating images. Disentangling leads to clearly
better synthesis results for tasks such as expression, pose or identity interpola-
tion, compared to standard autoencoder architectures. Similarly, we show that
accounting for deformations facilitates further disentangling of appearance com-
ponents into intrinsic, shading-albedo decompositions, which allow us to re-shade
through simple operations on the latent shading coordinates.

We complement these qualitative results with a quantitative analysis of the
learned model in terms of landmark localization accuracy. We show that our
method is not too far below supervised methods and outperforms with a margin
the latest state-of-the-art works on self-supervised correspondence estimation
[31], even though we never explicitly trained our network for correspondence
estimation, but rather only aimed at reconstructing pixel intensities.
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2 Deforming Autoencoders

Our architecture embodies the deformable template paradigm in an autoencoder
architecture. Our premise is that image generation can be interpreted as the com-
bination of two processes: a synthesis of appearance on a deformation-free coordi-
nate system (‘template’), followed by a subsequent deformation that introduces
shape variability. Denoting by T (p) the value of the synthesized appearance (or,
texture) at coordinate p = (x, y) and by W (p) the estimated deformation field,
we reconstruct the observed image, I(p) as follows:

I(p) � T (W (p)), (1)

namely the image appearance at position p is obtained by looking up the synthe-
sized appearance at position W (p). This is implemented in terms of a bilinear
sampling layer [15] that allows us to pass gradients through the warping process.

The appearance and deformation functions are synthesized by independent
decoder networks. The inputs to the decoders are delivered by a joint encoder
network that takes as input the observed image and delivers a low-dimensional
latent representation, Z, of shape and appearance. This is split into two parts,
Z = [ZT , ZS ] which feed into the appearance and shape networks respectively,
providing us with a clear separation of shape and appearance.

2.1 Deformation Field Modeling

Rather than leave deformation modeling entirely to back-propagation, we use
some domain knowledge to simplify and accelerate learning. The first observation
is that global aspects can be expressed using low-dimensional linear models. We
account for global deformations by an affine Spatial Transformer layer, that uses
a six-dimensional input to synthesize a deformation field as an expansion on a
fixed basis [15]. This means that the shape representation, ZS described above is
decomposed into two parts, ZW , ZA, where ZA accounts for the affine, and ZW

for the non-rigid, learned part of the deformation field. As is common practice in
deformable modeling [9,10], these deformation fields are generated by separate
decoders and are composed so that the affine transformation warps the detailed
non-rigid warps to the image positions where they should apply.

We note that not every non-rigid deformation field is plausible. Without
appropriate regularization the deformation field can amount to a generic per-
mutation matrix. As observed in Fig. 2(f), a non-regularized deformation can
spread a connected texture pattern to a disconnected image area.

To prevent this problem, instead of the shape decoder CNN directly predict-
ing the local warping field W (p) = (Wx(x, y),Wy(x, y)), we consider a ‘differ-
ential decoder’ that generates the spatial gradient of the warping field: ∇xWx

and ∇yWy, where ∇c denotes the c − th component of the spatial gradient
vector. These two quantities measure the displacement of consecutive pixels -
for instance ∇xWx = 2 amounts to horizontal scaling by a size of 2, while
∇xWx = −1 amounts to left-right flipping; a similar behavior is associated with
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Fig. 2. Our warping module design only permits locally consistent warping, as shown
in (b), while the flipping of relative pixel positions, as shown in (c), is not allowed
by design. To achieve this, we let the deformation decoder predict the horizontal and
vertical increments of the deformation (∇xW and ∇yW , respectively) and use a ReLU
transfer function to remove local flips, caused by going back in the vertical or horizon-
tal direction. A spatial integral module is subsequently applied to generate the grid.
This simple mechanism serves as an effective constraint for the deformation generation
process, while allowing us to model free-form/non-rigid local deformation.

∇yWy in the vertical axis. We note that global rotations are handled by the
affine warping field, and the ∇xWy,∇yWx are associated with small local rota-
tions of minor importance - we therefore focus on ∇xWx,∇yWy. Having access
to these two values gives us a handle on the deformation field, since we can
prevent folding/excessive stretching by controlling ∇xWx,∇yWy.

In particular, we pass the output of our differential decoder through a Rec-
tified Linear Unit (ReLU) layer, which enforces positive horizontal offsets on
horizontally adjacent pixels, and positive vertical offsets on vertically adjacent
pixels. We subsequently apply a spatial integration layer, implemented as a fixed
network layer, on top of the output of the ReLU layer to reconstruct the warping
field from its spatial gradient. Thus, the new deformation module enforces the
generation of smooth and regular warping fields that avoid self-crossings. In prac-
tice we found that clipping the decoded offsets by a maximal value significantly
eases training, which amounts to replacing the ReLU layer, ReLU(x) = max(x, 0)
with a HardTanh0,δ(x) = min(max(x, 0), δ) layer. In our experiments we set
δ = 5/w, where w denotes the number of pixels along an image dimension.

2.2 Class-Aware Deforming Autoencoder

We can require our network’s latent representation to predict not only shape
and appearance, but also instance class, if that is available during training. This
discrete information may be easier to acquire than the actual deformation field,
which requires manual landmark annotation. For instance, for faces such discrete
information could represent the expression or a person’s identity.

In particular we consider that the latent representation can be decomposed
as follows: Z = [ZT , ZC , ZS ], where ZT , ZS are as previously the appearance-
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Fig. 3. A class-aware model can account for multi-modal deformation distributions by
utilizing class information. Introducing a classification loss into latent space helps the
model learn a better representation of the input as demonstrated on MNIST.

and shape- related parts of the representation, respectively, while ZC is fed as
input to a sub-network trained to predict the class associated with the input
image. Apart from assisting the classification task, the latent vector ZC is fed
into both the appearance and shape decoders, as shown in Fig. 3. Intuitively this
allows our decoder network to learn a mixture model that is conditioned on class
information, rather than treating the joint, multi-modal distribution through a
monolithic model. Even though the class label is only used during training, and
not for reconstruction, our experimental results show that a network trained
with class supervision can deliver more accurate synthesis results.

2.3 Intrinsic Deforming Autoencoder: Deformation, Albedo and
Shading Decomposition

Having outlined Deforming Autoencoders, we now use a Deforming Autoencoder
to model complex physical image signals, such as illumination effects, without
a supervision signal. For this we design the Intrinsic Deforming-Autoencoder
(Intrinsic-DAE) to model shading and albedo for in-the-wild face images. As
shown in Fig. 4(a), we introduce two separate decoders for shading S and albedo
A, each of which has the same structure as the original texture decoder. The
texture is computed by T = S ◦ A where ◦ denotes the Hadamard product.

In order to model the physical properties of shading and albedo, we follow the
intrinsic decomposition regularization loss used in [2]: we apply the L2 smooth-
ness loss on ∇S, meaning that shading is expected to be smooth, while leaving
albedo unconstrained. As shown in Fig. 4 and more extensively in the experi-
mental results section, when used in tandem with a Deforming Autoencoder, we
can successfully decompose a face image into shape, albedo, and shading compo-
nents, while a standard Autoencoder completely fails at decomposing unaligned
images into shading and albedo. We note that unlike [22], our decomposition is
obtained in an entirely unsupervised manner.

2.4 Training

Our objective function is formed as the sum of three losses, combining the recon-
struction error with the regularization terms required for the modules described
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Fig. 4. Autoencoders with intrinsic decomposition. (a) Deforming Autoencoder with
intrinsic decomposition (Intrinsic-DAE): we model the texture by the product of shad-
ing and albedo components, each of which is decoded by an individual decoder. The
texture is subsequently warped by the predicted deformation field. (b) A plain autoen-
coder with intrinsic decomposition. Both networks are trained with a reconstruction
loss (EReconstruction) for the final output and a regularization loss on shading (EShading).

above. Concretely, the loss of the deforming autoencoder can be written as

EDAE = EReconstruction + EWarp, (2)

where the reconstruction loss is defined as the standard �2 loss

EReconstruction = ‖IOutput − IInput‖2, (3)

and the warping loss is decomposed as follows:

EWarp = ESmooth + EBiasReduce. (4)

The smoothness cost, Esmooth, penalizes quickly-changing deformations encoded
by the local warping field. It is measured in terms of the total variation norm of
the horizontal and vertical differential warping fields, and is given by:

ESmooth = λ1 (‖∇Wx(x, y)‖1 + ‖∇Wy(x, y)‖1) , (5)

where λ1 = 1e − 6. Finally, EBiasReduce is a regularization on (1) the affine
parameters defined as the L2-distance between SA and S0, S0 being the identity
affine transform and (2) the average of the deformation grid for a random batch
of training data being close to identity mapping grid:

EBiasReduce = λ2‖SA − S0‖2 + λ′
2‖W̄ − W0‖2, (6)

where λ2 = λ′
2 = 0.01. W̄ denotes the average deformation grid of a mini-batch of

training data and W0 denotes an identity mapping grid. In the class-aware vari-
ant described in Sect. 2.2 we augment the loss above with the cross-entropy loss
evaluated on the classification network’s outputs. We add the following objec-
tive function in the training of the Intrinsic-DAE: EShading = λ3‖∇S‖2 where
λ3 = 1e − 6.



Deforming Autoencoders 671

We experiment with two architecture types: (1) DAE with a standard con-
volutional auto-encoder, where both encoder and decoders are CNNs with stan-
dard convolution-BatchNorm-ReLU blocks. The number of filters and the texture
bottleneck capacity can vary per experiment, image resolution, and dataset, as
detailed in the supplemental material; (2) Dense-DAE with a densely connected
convolutional network [35] for encoder and decoders respectively (no skip con-
nections over the bottleneck layers). In particular, we follow the architecture of
DenseNet-121, but without the 1×1 convolutional layers inside each dense block.

3 Experiments

To demonstrate the properties of our deformation disentangling network, we con-
duct experiments on MNIST, 11k Hands [36] and Faces-in-the-wild datasets [37,
38]. Our experiments include (1) unsupervised image alignment/appearance
inference; (2) learning semantically meaningful manifolds for shape and appear-
ance; (3) unsupervised intrinsic decomposition and (4) unsupervised landmarks
detection.

Fig. 5. Unsupervised deformation-appearance disentangling on a single MNIST digit.
Our network learns to reconstruct the input image while automatically deriving a
canonical appearance for the input image class. In this experiment, the dimension of
the latent representation for appearance ZT is 1.

Fig. 6. Class-aware Deforming Autoencoders effectively model the appearance and
deformation for multi-class data.
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3.1 Unsupervised Appearance Inference

We model canonical appearance and deformation for single category objects. We
demonstrate results in the MNIST dataset (Figs. 5 and 6). By limiting the size
of ZT (1 in Fig. 5), we can successfully infer a canonical appearance for a class.
In Fig. 5, all different types of digit ‘3’ are aligned to a simple canonical shape.

In cases where the data has a multi-modal distribution exhibiting multiple
different canonical appearances, e.g., multi-class MNIST images, learning a single
appearance is less meaningful and often challenging (Fig. 6(b)). In such cases,
utilizing class information (Sect. 2.2) significantly improves the quality of multi-
modal appearance learning (Fig. 6(d)). As the network learns to classify the
images implicitly in its latent space, it learns to generate a single canonical
appearance for each class. Misclassified data will be decoded into an incorrect
class: the image at position (2, 4) in Fig. 6(c, d) is interpreted as a 6.

Moving to a more challenging modeling task, we consider modeling faces in-
the-wild. Using the MAFL face dataset we show that our network is able to align
the faces to a common texture space under various poses, illumination conditions,
or facial expressions (Fig. 9(d)). The aligned textures retain the information of
the input image such as lighting, gender, and facial hair, without using any
relevant supervision. We further demonstrate the alignment on the 11k Hands
dataset [36], where we align palmar images of the left hand of several subjects
(Fig. 7). This property of our network is especially useful for applications such
as computer graphics, where establishing correspondences (UV map) between a
class of objects is important but usually difficult.

Fig. 7. Unsupervised alignment on images of palms of left hands. (a) The input images;
(b) reconstructed images; (c) texture images warped with the average of the decoded
deformation; (d) the average input image; and (e) the average texture.

3.2 Autoencoders Vs. Deforming Autoencoders

We now show the ability of our network to learn meaningful deformation rep-
resentations without supervision. We compare our disentangling network with a
plain auto-encoder (Fig. 8). Contrary to our network which disentangles an image
into a template texture and a deformation field, the auto-encoder is trained to
encode all of the image in a single latent representation.
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Fig. 8. Latent representation interpolation: we embed a face image in the latent space
provided by an encoder network. Our network disentangles the texture and deforma-
tion in the respective parts of the latent representation vector, allowing a meaningful
interpolation between images. Interpolating the deformation-specific part of the latent
representation changes the face shape and pose (1); interpolating the latent represen-
tation for texture will generate a pose-aligned texture transfer between the images (2);
traversing both latent representations will generate smooth and sharp image defor-
mations (3, 5, 7). In contrast, when using a standard auto-encoder (4, 6, 8) such an
interpolation often yields artifacts.

We train both networks with the MAFL dataset. To evaluate the learned
representation, we conduct manifold traversal (i.e., latent representation inter-
polation) between two randomly sampled face images: given a source face image
Is and a target image It, we first compute their latent representations Zs. We use
ZT (Is) and ZS(Is) to denote the latent representations in our network for Is, and
Zae(Is) for the latent representation learned by a plain autoencoder. We then
conduct linear interpolation on Z, between Zs and Zt: Zλ = λZs + (1 − λ)Zt.
We subsequently reconstruct the image Iλ from Zλ using the corresponding
decoder(s), as shown in Fig. 8.
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By traversing the learned deformation representation only, we can change the
shape and pose of a face while maintaining its texture (Fig. 8(1)); interpolating
the texture representation results in pose-aligned texture transfer (Fig. 8(2));
traversing on both representations will generate a smooth deformation from
one image to another (Fig. 8(3, 5, 7)). Compared to the interpolation using the
autoencoder (Fig. 8(4, 6, 8)), which often exhibits artifacts, our traversal stays
on the semantic manifold of faces and generates sharp facial features.

3.3 Intrinsic Deforming Autoencoders

Having demonstrated the disentanglement abilities of Deforming Autoencoders,
we now explore the disentanglement capabilities of the Intrinsic-DAE described
in Sect. 2.3. Using only the EDA and regularization losses, the Intrinsic-DAE is
able to generate convincing shading and albedo estimates without direct super-
vision (Fig. 9(b) to (g)). Without the “learning-to-align” property, a baseline
autoencoder with an intrinsic decomposition design (Fig. 4(b)) cannot decom-
pose the image into plausible shading and albedo(Fig. 9(h), (i), (j)).

In addition, we show that by manipulating the learned latent representation
of S, Intrinsic-DAE allows us to simulate illumination effects for face images,
such as interpolating lighting directions (Fig. 10).

Fig. 9. Unsupervised intrinsic decomposition with an Intrinsic-DAE. Thanks to the
“automatic dense alignment” property of DAE, shading and albedo are faithfully sepa-
rated (e, f) by the intrinsic decomposition loss. Shading (b) and albedo (c) are learned in
an unsupervised manner in the densely aligned canonical space. With the deformation
field also learned without supervision, we can recover the intrinsic image components
for the original shape and viewpoint (e, f). Without dense alignment, the intrinsic
decomposition loss fails to decompose shading and albedo (h, i, j).

As a final demonstration of the potential of the learned models for image
synthesis, we note that with L2 or L1 reconstruction losses, autoencoder-like
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Fig. 10. Lighting interpolation with Intrinsic-DAE. With latent representations
learned in an unsupervised manner for shading, albedo, and deformation, the DAE
allows us to simulate smooth transitions of the lighting direction. In this example,
we interpolate the latent representation of the shading from source (lit from the left)
to target (mirrored source, hence lit from the right). The network generates smooth
lighting transitions, without explicitly learning geometry, as shown in shading (1) and
texture (2). Together with the learned deformation of the source image, DAE enables
the relighting of the face in its original pose (3).

architectures are prone to generating smooth images which lack visual realism
(Fig. 9). Inspired by generative adversarial networks (GANs) [39], we follow [2]
and use an adversarial loss to generate visually realistic images. We train the
Intrinsic-DAE with an extra adversarial loss term EAdversarial applied on the
final output, yielding:

EIntinsic-DAE = EReconstruction + EWarp + λ4EAdversarial. (7)

In practice, we apply a PatchGAN [40,41] as the discriminator and set λ4 = 0.1.
As shown in Fig. 11, the adversarial loss improves the visual sharpness of the
reconstruction while the deformation, shading are still successfully disentangled.

3.4 Unsupervised Alignment Evaluation

Having qualitatively analyzed the disentanglement capabilities of our networks,
we now turn to quantifying their performance on the task of unsupervised face
landmark localization. We report performance on the MAFL dataset, which
contains manually annotated landmark locations (eyes, nose, and mouth corners)
for 19,000 training and 1,000 test images. In our experiments, we use a model
trained on the CelebA dataset without any form of supervision. Following the
evaluation protocol of previous work [31], we train a landmark regressor post-hoc
on these deformation fields using the provided training annotations in MAFL.
The annotation from the MAFL training set is only used to train the regressor
while the DAE is fixed after pre-training. The regressor is a 2-layer MLP. Its
inputs are flattened deformation fields (vectors of size 64 × 64 × 2), which are
provided as input to a 100-dimensional hidden layer, followed by a ReLU and a
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Fig. 11. Intrinsic-DAE with an adversarial loss: (a/d) reconstruction (b/e) albedo,
(c/f) shading, in image and template coordinates, respectively. Adding an adversarial
loss visually improves the image reconstruction quality of Intrinsic-DAE, while defor-
mation, albedo, and shading can still be successfully disentangled.

Table 1. Landmark localization performance by different types of deformation model-
ing methods and different training corpus. A indicates affine transformation, I indicates
non-rigid transformation by integration, whereas MAFL and CelebA denotes the train-
ing set. From columns 1 to 4, we manually annotate landmarks on the average texture,
while for column 5, we train a regressor on the deformation fields to predict them.
Latent vectors are 32D in these experiments.

A, MAFL I, MAFL A + I, MAFL A + I, CelebA A + I, CelebA, with regressor

14.13 9.89 8.50 7.54 5.96

10-D output layer to predict the spatial coordinates ((x, y)) for five landmarks.
We use L1 loss as the objective function for regression.

We report the mean error in landmark localization as a percentage of the
inter-ocular distance on the MAFL testing set (Tables 1 and 2). As the deforma-
tion field determines the alignment in the texture space, it serves as an effective
mapping between landmark locations on the aligned texture and those on the
original, unaligned faces. Hence, the mean error we report directly quantifies
the quality of the (unsupervised) face alignment. In Table 2 we compare with
previous state-of-the-art self-supervised image registration [31]. We observe that
by better modeling of the deformation space we quickly bridge the gap in per-
formance, even though we never explicitly trained to learn correspondences.
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Table 2. Mean error on unsupervised landmark detection on the MAFL test set. Under
DAE and Dense-DAE we specify the size of each latent vector. NR signifies training
without regularization on the estimated deformations, while Res signifies training by
estimating the residual deformation instead of the integral. Our results outperform the
self-supervised method of [31] trained specifically for establishing correspondences.

DAE Dense-DAE TCDCN
[42]

Thewlis et al.
[31]

32-NR 32-Res 16 32 64 96 16 64 96

10.24 9.93 5.71 5.96 5.70 6.46 6.85 5.50 5.45 7.95 5.83

Fig. 12. Row 1: testing images; row 2: estimated deformation grid; row 3: image reverse-
transformed to texture space; row 4: semantic landmark locations (green: ground truth,
blue: estimation, red: error). (Color figure online)

4 Conclusion and Future Work

In this paper we have developed deforming autoencoders to disentangle shape
and appearance in a learned latent representation space. We have shown that this
method can be used for unsupervised groupwise image alignment. Our experi-
ments with expression morphing in humans, image manipulation, such as shape
and appearance interpolation, as well as unsupervised landmark localization,
show the generality of our approach. We have also shown that bringing images
in a canonical coordinate system allows for a more extensive form of image
disentangling, facilitating the estimation of decompositions into shape, albedo
and shading without any form of supervision. We expect that this will lead in
the future to a full-fledged disentanglement into normals, illumination, and 3D
geometry.



678 Z. Shu et al.

Acknowledgment. This work was supported by a gift from Adobe, NSF grants CNS-
1718014 and DMS 1737876, the Partner University Fund, and the SUNY2020 Infras-
tructure Transportation Security Center. Rıza Alp Güler was supported by the Euro-
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