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Abstract. Deep Neural Networks (DNNs) have been widely applied in
various recognition tasks. However, recently DNNs have been shown to
be vulnerable against adversarial examples, which can mislead DNNs to
make arbitrary incorrect predictions. While adversarial examples are well
studied in classification tasks, other learning problems may have differ-
ent properties. For instance, semantic segmentation requires additional
components such as dilated convolutions and multiscale processing. In
this paper, we aim to characterize adversarial examples based on spatial
context information in semantic segmentation. We observe that spatial
consistency information can be potentially leveraged to detect adversar-
ial examples robustly even when a strong adaptive attacker has access
to the model and detection strategies. We also show that adversarial
examples based on attacks considered within the paper barely transfer
among models, even though transferability is common in classification.
Our observations shed new light on developing adversarial attacks and
defenses to better understand the vulnerabilities of DNNs.
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1 Introduction

Deep Neural Networks (DNNs) have been shown to be highly expressive and have
achieved state-of-the-art performance on a wide range of tasks, such as speech
recognition [20], image classification [24], natural language understanding [54],
and robotics [32]. However, recent studies have found that DNNs are vulnerable
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to adversarial examples [7–9,17,31,38,40,45,47]. Such examples are intentionally
perturbed inputs with small magnitude adversarial perturbation added, which
can induce the network to make arbitrary incorrect predictions at test time,
even when the examples are generated against different models [5,27,33,46].
The fact that the adversarial perturbation required to fool a model is often small
and (in the case of images) imperceptible to human observers makes detecting
such examples very challenging. This undesirable property of deep networks has
become a major security concern in real-world applications of DNNs, such as self-
driving cars and identity recognition systems [16,37]. Furthermore, both white-
box and black-box attacks have been performed against DNNs successfully when
an attacker is given full or zero knowledge about the target systems [2,17,45].
Among black-box attacks, transferability is widely used for generating attacks
against real-world systems which do not allow white-box access. Transferability
refers to the property of adversarial examples in classification tasks where one
adversarial example generated against a local model can mislead another unseen
model without any modification [33].

Given these intriguing properties of adversarial examples, various analyses
for understanding adversarial examples have been proposed [29,30,42,43], and
potential defense/detection techniques have also been discussed mainly for the
image classification problem [13,21,30]. For instance, image pre-processing [14],
adding another type of random noise to the inputs [48], and adversarial retrain-
ing [17] have been proposed for defending/detecting adversarial examples when
classifying images. However, researchers [4,19] have shown that these defense or
detection methods are easily attacked again by attackers with or even without
knowledge of the defender’s strategy. Such observations bring up concerns about
safety problems within diverse machine learning based systems.

In order to better understand adversarial examples against different tasks,
in this paper we aim to analyze adversarial examples in the semantic segmenta-
tion task instead of classification. We hypothesize that adversarial examples in
different tasks may contain unique properties that provide in-depth understand-
ing for such examples and encourage potential defensive mechanisms. Different
from image classification, in semantic segmentation, each pixel will be given a
prediction label which is based on its surrounding information [12]. Such spatial
context information plays a more important role for segmentation algorithms,
such as [23,26,50,55]. Whether adversarial perturbation would break such spa-
tial context is unknown to the community. In this paper we propose and conduct
image spatial consistency analysis, which randomly selects overlapping patches
from a given image and checks how consistent the segmentation results are for
the overlapping regions. Our pipeline of spatial consistency analysis for adver-
sarial/benign instances is shown in Fig. 1. We find that in segmentation task,
adversarial perturbation can be weakened for separately selected patches, and
therefore adversarial and benign images will show very different behaviors in
terms of the spatial consistency information. Moreover, since such spatial con-
sistency is highly random, it is hard for adversaries to take such constraints into
account when performing adaptive attacks. This renders the system less brittle
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even facing the sophisticated adversaries, who have full knowledge about the
model as well as the detection/defense method applied.

We use image scale transformation to perform detection of adversarial exam-
ples as a baseline, which has been used for detection in classification tasks [39].
We show that by randomly scaling the images, adversarial perturbation can be
destroyed and therefore adversarial examples can be detected. However, when
the attacker knows the detection strategy (adaptive attacker), even without
the exact knowledge about the scaling rate, attacker can still perform adap-
tive attacks against the detection mechanism, which is similar with the findings
in classification tasks [4]. On the other hand, we show that by incorporating
spatial consistency check, existing semantic segmentation networks can detect
adversarial examples (average AUC 100%), which are generated by the state-
of-the-art attacks considered in this paper, regardless of whether the adversary
knows the detection method. Here, we allow the adversaries to have full access
to the model and any detection method applied to analyze the robustness of
the model against adaptive attacks. We additionally analyze the defense in a
black-box setting, which is more practical in real-world systems.

In this paper, our goal is to further understand adversarial attacks by con-
ducting spatial consistency analysis in the semantic segmentation task, and we
make the following contributions:

1. We propose the spatial consistency analysis for benign/adversarial images
and conduct large scale experiments on two state-of-the-art attack strategies
against both DRN and DLA segmentation models with diverse adversarial
targets on different dataset, including Cityscapes and real-world autonomous
driving video dataset.

2. We are the first to analyze spatial information for adversarial examples in
segmentation models. We show that spatial consistency information can be
potentially leveraged to distinguish adversarial examples. We also show that
spatial consistency check mechanism induce a high degree of randomness and
therefore is robust against adaptive adversaries. We evaluate image scaling
and spatial consistency, and show that spatial consistency outperform stan-
dard scaling based method.

3. In addition, we empirically show that adversarial examples generated by the
attack methods considered in our studies barely transfer among models, even
when these models are of the same architecture with different initialization,
different from the transferability phenomena in classification tasks.

2 Related Work

Semantic Segmentation has received long lasting attention in the computer
vision community [25]. Recent advances in deep learning [24] also show that
deep convolutional networks can achieve much better results than traditional
methods [28]. Yu et al. [50] proposed using dilated convolutions to build high-
resolution feature maps for semantic segmentation. They can improve the perfor-
mance significantly compared to upsampling approaches [1,28,34]. Most of the
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Fig. 1. Spatial consistency analysis for adversarial and benign instances in semantic
segmentation.

recent state-of-the-art approaches are based on dilated convolutions [44,51,55]
and residual networks [18]. Therefore, in this work, we choose dilated residual
networks (DRN) [51] and deep layer aggregation (DLA) [52] as our target models
for attacking and defense.

Adversarial Examples for Semantic Segmentation have been studied recently
in addition to adversarial examples in image classification. Xie et al. proposed
a gradient based algorithm to attack pixels within the whole image iteratively
until most of the pixels have been misclassified into the target class [49], which
is called dense adversary generation (DAG). Later an optimization based attack
algorithm has been studied by introducing a surrogate loss function called Hou-
dini in the objective function [10]. The Houdini loss function is made up of two
parts. The first part represents the stochastic margin between the score of actual
and predicted targets, which reflects the confidence of model prediction. The sec-
ond part is the task loss, which is independent with the model and corresponds
to the actual task. The task loss enables Houdini algorithm to generate adver-
sarial examples in different tasks, including image segmentation, human pose
estimation, and speech recognition.

Various detection and defense methods have also been studied against adver-
sarial examples in image classification. For instance, adversarial training [17]
and its variations [30,41] have been proposed and demonstrated to be effective
in classification task, which is hard to adapt for the segmentation task. Currently
no defense or detection methods have been studied in image segmentation.

3 Spatial Consistency Based Method

In this section, we will explore the effects that spatial context information has
on benign and adversarial examples in segmentation models. We conduct dif-
ferent experiments based on various models and datasets, and due to the space
limitation, we will use a small set of examples to demonstrate our discoveries
and relegate other examples to the supplementary materials. Figure 2 shows the
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(a) Cityscapes (b) BDD

Fig. 2. Samples of benign and adversarial examples generated by Houdini on
Cityscapes [11] (targeting on Kitty/Pure) and BDD100K [53] (targeting on
Kitty/Scene). We select DRN as our target model here. Within each subfigure, the
first column shows benign images and corresponding segmentation results, and the
second and third columns show adversarial examples with different adversarial targets.

benign and adversarial examples targeting diverse adversarial targets: “Hello
Kitty” (Kitty) and random pure color (Pure) on Cityscapes; and “Hello Kitty”
(Kitty) and a real scene without any cars (Scene) on BDD video dataset, respec-
tively. In the rest of the paper, we will use the format “attack method | target” to
label each adversarial example. Here we consider both DAG [49] and Houdini [10]
attack methods.

Fig. 3. Heatmap of per-pixel self-entropy on Cityscapes dataset against DRN model.
(a) and (b) show a benign image and its corresponding per-pixel self-entropy heatmap.
(c)–(f) show the heatmaps of the adversarial examples generated by DAG and Houdini
attacks targeting “Hello Kitty” (Kitty) and random pure color (Pure).

3.1 Spatial Context Analysis

To quantitatively analyze the contribution of spatial context information to the
segmentation task, we first evaluate the entropy of prediction based on different
spatial context. For each pixel m within an image, we randomly select K patches
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Fig. 4. Examples of spatial consistency based method on adversarial examples gener-
ated by DAG and Houdini attacks targeting on Kitty and Pure. First column shows the
original image and corresponding segmentation results. Column P1 and P2 show two
randomly selected patches, while column O1 and O2 represent the segmentation results
of the overlapping regions from these two patches, respectively. The mIOU between O1

and O2 are reported. It is clear that the segmentation results of the overlapping regions
from two random patches are very different for adversarial images (low mIOU), but
relatively consistent for benign instance (high mIOU).

{P1, P2, ..., PK} which contain m. Afterwards, within each patch Pi, the pixel m
will be assigned with a confidence vector based on Softmax prediction, so pixel
m will correspond to K vectors in total. We discretize each vector to a one-hot
vector and sum up these K one-hot vectors to obtain vector Vm. Each component
Vm[j] of the vector represents the number of times pixel m is predicted to be
class j. We then normalize Vm by dividing K. Finally, for each pixel m, we
calculate its self-entropy

H(m) = −
∑

j

Vm[j] log Vm[j]

and therefore calculate the self entropy for each vector. We utilize such entropy
information of each pixel to convey the consistency of different surrounding
patches and plot this information in the heatmaps in Fig. 3. It is clear that for
benign instances, the boundaries of original objects have higher entropy, indi-
cating that these are places harder to predict and can gain more information by
considering different surrounding spatial context information (Fig. 4).

3.2 Patch Based Spatial Consistency

The fact that surrounding spatial context information shows different spatial
consistency behaviors for benign and adversarial examples motivates us to
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perform the spatial consistency check hoping to potentially tell these two data
distributions apart.

First, we introduce how to generate overlapping spatial contexts by select-
ing random patches and then validate the spatial consistency information. Let
s be the patch size and w, h be the width and height of an image X. We
define the first and second patch based on the coordinates of their top-left and
bottom-right vertices (u1, u2, u3, u4), (v1, v2, v3, v4), where Let (du1,v1 , du2,v2) be
displacement between the top-left coordinate of the first and second patch:
du1,v1 = v1 − u1, du2,v2 = v2 − u2. To guarantee that there is enough over-
lap, we require (du1,v1 and du2,v2) to be in the range (blow, bupper). Here we
randomly select the two patches, aiming to capture diverse enough surrounding
spatial context, including information both near and far from the target pixel.
The patch selection algorithm (getOverlapPatches) is shown in supple-
mentary materials.

Next we show how to apply the spatial consistency based method to a
given input and therefore recognize adversarial examples. The detailed algo-
rithm is shown in Algorithm1. Here K denotes the number of overlapping
regions for which we will check the spatial consistency. We use the mean Inter-
section Over Union (mIOU) between the overlapping regions O1, O2 from two
patches P1, P2 to measure their spatial consistency. The mIOU is defined as
1

ncls

∑
i nii/(

∑
j nij +

∑
j nji − nii), where nij denotes the number of pixels pre-

dicted to be class i in O1 and class j in O2, and ncls is the number of the unique
classes appearing in both O1 and O2. getmIOU is a function that computes
the mIOU given patches P1, P2 along with their overlapping regions O1 and O2

shown in supplementary materials.

4 Scale Consistency Analysis

We have discussed how spatial consistency can be utilized to potentially charac-
terize adversarial examples in segmentation task. In this section, we will discuss
another baseline method: image scale transformation, which is another natu-
ral factor considered in semantic segmentation [22,28]. Here we focus on image
blur operation by applying Gaussian blur to given images [6], which is studied
for detecting adversarial examples in image classification [39]. Similarly, we will
analyze the effects of image scaling on benign/adversarial samples. Since spatial
context information is important for segmentation task, scaling or performing
segmentation on small patches may damage the global information and there-
fore affect the final prediction. Here we aim to provide quantitative results to
understand and explore how image scale transformation would affect adversarial
perturbation.

4.1 Scale Consistency Property

Scale theory is commonly applied in image segmentation task [35], and therefore
we train scale resilient models to obtain robust ones, which we perform attacks
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Algorithm 1. Spatial Consistency Check Algorithm
input: Input image X;

number of overlapping regions K;
patch size s;
segmentation model f ;
bound blow, bupper;

output: Spatial consistency threshold c;

Initialization : cs ←[], w ← x.width, h ← x.height;
1 for k ← 0 to K do
2 (u1, u2, u3, u4), (v1, v2, v3, v4) ← getOverlapPatches(s, w, h, blow, bupper);
3 P1 = X[u1 : u3, u2 : u4], P2 = X[v1 : v3, v3 : v4];

/* get prediction result of two random patches from f */;
4 pred1 ← argmaxcfc(P1), pred

2 ← argmaxcfc(P2);
/* get prediction of the overlap area between two patches */;

5 p1 ← {pred1i,j |∀(i, j) ∈ pred1, i > v1 − u1, j > v2 − u2};

6 p2 ← {pred2i,j |∀(i, j) ∈ pred2, i < s − (v1 − u1), j < s − (v2 − u2)};

/* get consistency value (mIOU) from two patches */;

7 cs
+← getmIOU(p1, p2);

8 end
9 c ← Mean(cs);

Return: c

against. On these scale resilient models, we first analyze how image scaling affect
segmentation results for benign/adversarial samples. We applied the DAG [49]
and Houdili [10] attacks against the DRN and DLA models with different adver-
sarial targets. The images and corresponding segmentation results before and
after scaling are shown in Fig. 5. We apply Gaussian kernel with different stan-
dard deviations (std) to scale both benign and adversarial instances. It is clear
that when we apply Gaussian blurring with higher std (3 and 5), adversarial
perturbation is harmed and the segmentation results are not longer adversarial
targets for scale transformed adversarial examples as shown in Fig. 5(a)–(e).

5 Experimental Results

In this section, we conduct comprehensive large scale experiments to evaluate the
image spatial and scale consistency information for benign and adversarial exam-
ples generated by different attack methods. We will also show that the spatial
consistency based detection method is robust against sophisticated adversaries
with knowledge about defenders, while scale transformation method is not.

5.1 Implementation Details

Datasets. We apply both Cityscapes [11] and BDD100K [53] in our evaluation.
We show results on the validation set of both datasets, which contains 500 high
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Fig. 5. Examples of images and corresponding segmentation results before/after image
scaling on Cityscapes against DRN model. For each subfigure, the first column shows
benign/adversarial image, while the later columns represent images after scaling by
applying Gaussian kernel with std as 0.5, 3, and 5, respectively. (a) shows benign
images before/after image scaling and the corresponding segmentation results; (b)–(e)
present similar results for adversarial images generated by DAG and Houdini attacks
targeting on Kitty and Pure.

resolution images with a combined 19 categories of segmentation labels. These
two datasets are both outdoor datasets containing instance-level annotations,
which would raise real-wold safety concerns if they were attacked. Comparing
with other datasets such as Pascal VOC [15] and CamVid [3], these two dataset
are more challenging due to the relatively high resolution and diverse scenes
within each image.

Semantic Segmentation Models. We apply Dilated residual networks (DRN) [51]
and Deep Layer Aggregation (DLA) [52] as our target models. More specifically,
we select DRN-D-22 and DLA-34. For both models, we use 512 crop size and 2
random scale during training to obtain scale resilient models for both the BDD
and Cityscapes datasets. The mIOU of these two models on pristine training
data are shown in Table 1. More result on different models can be found in
supplementary materials.

Adversarial Examples. We generate adversarial examples based on two state-
of-the-art attack methods: DAG [49] and Houdini [10] using our own imple-
mentation of the methods. We select a complex image, Hello Kitty (Kitty),
with different background colors and a random pure color (Pure) as our tar-
gets on Cityscapes dataset. Furthermore, in order to increase the diversity, we



Characterizing Adversarial Examples Based on Spatial Consistency 229

also select a real-world driving scene (Scene) without any cars from the BDD
training dataset as another malicious target on BDD. Such attacks potentially
show that every image taken in the real world can be attacked to the same scene
without any car showing on the road, which raises great security concerns for
future autonomous driving systems. Furthermore, we also add three additional
adversarial targets, including “ECCV 2018”, “Remapping”, and “Color strip”
in supplementary materials to increase the diversity of adversarial targets.

We generate 500 adversarial examples for Cityscapes and BDD100K datasets
against both DRN and DLA segmentation models targeting on various malicious
targets (More results can be found in supplementary materials).

5.2 Spatial Consistency Analysis

To evaluate the spatial consistency analysis quantitatively for segmentation task,
we leverage it to build up a simple detector to demonstrate its property. Here
we perform patch based spatial consistency analysis, and we select patch size
and region bound as s = 512, blow = 32, bupper = 64. We select the number
of overlapping regions as K ∈ {1, 5, 10, 50}. Here we first select some benign
instances, and calculate the normalize mIOU of overlapping regions from two
random patches. We record the lower bound of theses mIOU as the threshold of
the detection method. Note that when reporting detection rate in the rest of the
paper, we will use the threshold learned from a set of benign training data; while
we also report Area Under Curve (AUC) of Receiver Operating Characteristic
Curve (ROC) curve of a detection method to evaluate its overall performance.
Therefore, given an image, for each overlapping region of two random patches,
we will calculate the normalize mIOU and compare with the threshold calcu-
lated before. If it is larger, the image is recognized as benign; vice versa. This
process is illustrated in Algorithm 1. We report the detection results in terms of
AUC in Table 1 for adversarial examples generated in various settings as men-
tioned above. We observed that such simple detection method based on spatial
consistency information can achieve AUC as nearly 100% for adversarial exam-
ples that we studied here. In addition, we also select s with a random number
between 384 to 512 (too small patch size will affect the segmentation accuracy
even on benign instances, so we tend not to choose small patches on the purpose
of control variable) and show the result in supplementary materials. We observe
that random patch sizes achieve similar detection result.

5.3 Image Scale Analysis

As a baseline, we also utilize image scale information to perform as a simple
detection method and compare it with the spatial consistency based method. We
apply Gaussian kernel to perform the image scaling based detection, and select
stddetect ∈ {0.5, 3, 5} as the standard deviation of Gaussian kernel. We compute
the normalize mIOU between the original and scalled images. Similarly, the
detection results of corresponding AUC are shown in Table 1. It is demonstrated
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Table 1. Detection results (AUC) of image spatial (Spatial) and scale consistency
(Scale) based methods on Cityscapes dataset. The number in parentheses of the Model
shows the number of parameters for the target mode, and mIOU shows the performance
of segmentation model on pristine data. We color all the AUC less than 80% with red.

Method Model mIOU Detection Detection Adap

DAG Houdini DAG Houdini

Pure Kitty Pure Kitty Pure Kitty Pure Kitty

Scale (std) 0.5 DRN (16.4M) 66.7 100% 95% 100% 99% 100% 67% 100% 78%

3.0 100% 100% 100% 100% 100% 0% 97% 0%

5.0 100% 100% 100% 100% 100% 0% 71% 0%

0.5 DLA (18.1M) 74.5 100% 98% 100% 100% 100% 75% 100% 81%

3.0 100% 100% 100% 100% 100% 24% 100% 34%

5.0 100% 100% 100% 100% 97% 0% 95% 0%

Spatial (K) 1 DRN (16.4M) 66.7 91% 91% 94% 92% 98% 94% 92% 94%

5 100% 100% 100% 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100% 100% 100% 100%

50 100% 100% 100% 100% 100% 100% 100% 100%

1 DLA (18.1M) 74.5 96% 98% 97% 97% 99% 99% 100% 100%

5 100% 100% 100% 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100% 100% 100% 100%

50 100% 100% 100% 100% 100% 100% 100% 100%

that detection method based on image scale information can achieve similarly
high AUC compared with spatial consistency based method.

5.4 Adaptive Attack Evaluation

Regarding the above detection analysis, it is important to evaluate adaptive
attacks, where adversaries have knowledge of the detection strategy.

As Carlini and Wagner suggest [4], we conduct attacks with full access to the
detection model to evaluate the adaptive adversary based on Kerckhoffs principle
[36]. To perform adaptive attack against the image scaling detection mechanism,
instead of attacking the original model, we add another convolutional layer after
the input layer of the target model similarly with [4]. We select std ∈ {0.5, 3, 5} to
apply adaptive attack, which is the same with the detection model. To guarantee
that the attack methods will converge, when performing the adaptive attacks,
we select 0.06 for the upper bound for adversarial perturbation, in terms of L2

distance (pixel values are in range [0,1]), since larger than that the perturbation
is already very visible. The detection results against such adaptive attacks are
shown in Table 1 on Cityscapes (We omit the results on BDD to supplementary
materials). Results on adaptive attack show that the image scale based detection
method is easily to be attacked (AUC of detection drops dramatically), which
draws similar conclusions as in classification task [4]. We show the qualitative
results in Fig. 6(a), and it is obvious that even under large std of Gaussian kernel,
the adversarial example can still be fooled into the malicious target (Kitty).
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Fig. 6. Performance of adaptive attack. (a) shows adversarial image and corresponding
segmentation result for adaptive attack against image scaling. The first two rows show
benign images and the corresponding segmentation results; the last two rows show the
adaptive adversarial images and corresponding segmentation results under different
std of Gaussian kernel (0.5, 3, 5 for column 2–4). (b) and (c) show the performance of
adaptive attack against spatial consistency based method with different K. (b) presents
mIOU of overlapping regions for benign and adversarial images during along different
iterations. (c) shows mIOU for overlapping regions of benign and adversarial instances
at iteration 200.

Fig. 7. Detection performance of spatial consistency based method against adaptive
attack with different K on Cityscapes with DRN model. X-axis indicates the number
of patches selected to perform the adaptive attack (0 means regular attack). Y-axis
indicates the number of overlapping regions selected for during detection.

Next, we will apply adaptive attack against the spatial consistency based
method. Due to the randomness of the approach, we propose to develop a strong
adaptive adversary that we can think of by randomly select K patches (the same
value of K used by defender). Then the adversary will try to attack both the
whole image and the selected K patches to the corresponding part of malicious
target. The detailed attack algorithm is shown in the supplementry materials.
The corresponding detection results of the spatial consistency based method
against such adaptive attacks on Cityscapes are shown in Table 1. It is interest-
ing to see that even against such strong adaptive attacks, the spatial consistency
based method can still achieve nearly 100% detection results. We hypothesize
that it is because of the high dimension randomness induced by the spatial con-
sistency based method since the search space for patches and the overlapping
regions is pretty high. Figure 6(b) analyzes the convergence of such adaptive
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Fig. 8. Transferability analysis: cell (i, j) shows the normalized mIoU value or pixel-
wise attack success rate of adversarial examples generated against model j and evaluate
on model i. Model A,B,C are DRN (DRN-D-22) with different initialization. We select
“Hello Kitty” as target

attack against spatial consistency based method. From Fig. 6(b) and (c), we can
see that with different K, the selected overlapping regions still remain inconsis-
tent with high probability.

Since the spatial consistency based method can induce large randomness, we
generate a confusion matrix of detection results for adversaries and detection
method choosing various K as shown in Fig. 7. It is clear that for different
malicious targets and attack methods, choosing K = 50 is already sufficient to
detect sophisticated attacks. In addition, based on our empirical observation,
attacking with higher K increases the computation complexity of adversaries
dramatically.

5.5 Transferability Analysis

Given the common properties of adversarial examples for both classifier and
segmentation tasks, next we will analyze whether transferability of adversarial
examples exists in segmentation models considering they are particularly sensi-
tive to spatial and scale information. Transferability is demonstrated to be one
of the most interesting properties of adversarial examples in classification task,
where adversarial examples generated against one model is able to mislead the
other model, even if the two models are of different architectures. Given this
property, transferability has become the foundation of a lot of black-box attacks
in classification task. Here we aim to analyze whether adversarial examples in
segmentation task still retain high transferability. First, we train three DRN
models with the same architecture (DRN-D-22) but different initialization and
generate adversarial images with the same target.

Each adversarial image has at least 96% pixel-wise attack success rate against
the original model. We evaluate both the DAG and Houdini attacks and evaluate
the transferability using normalized mIoU excluding pixels with the same label
for the ground truth adversarial target. We show the transferability evaluation
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among different models in the confusion matrices in Fig. 81. We observe that the
transferability rarely appears in the segmentation task. More results on different
network architectures and data sets are in the supplementary materials.

As comparison with classification task, for each network architecture we train
a classifier on it and evaluate the transferability results as shown in supplemen-
tary materials. As a control experiments, we observe that classifiers with the
same architecture still have high transferability aligned with existing findings,
which shows that the low transferability is indeed due to the natural of segmen-
tation instead of certain network architectures.

This observation here is quite interesting, which indicates that black-box
attacks against segmentation models may be more challenging. Furthermore, the
reason for such low transferability in segmentation is possibly because adversarial
perturbation added to one image could have focused on a certain region, while
such spatial context information is captured differently among different models.
We plan to analyze the actual reason for low transferability in segmentation in
the future work.

6 Conclusions

Adversarial examples have been heavily studied recently, pointing out vulner-
abilities of deep neural networks and raising a lot of security concerns. How-
ever, most of such studies are focusing on image classification problems, and in
this paper we aim to explore the spatial context information used in semantic
segmentation task to better understand adversarial examples in segmentation
scenarios. We propose to apply spatial consistency information analysis to rec-
ognize adversarial examples in segmentation, which has not been considered in
either image classification or segmentation as a potential detection mechanism.
We show that such spatial consistency information is different for adversarial and
benign instances and can be potentially leveraged to detect adversarial examples
even when facing strong adaptive attackers. These observations open a wide door
for future research to explore diverse properties of adversarial examples under
various scenarios and develop new attacks to understand the vulnerabilities of
DNNs.
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1 Since the prediction of certain classes presents low IoU value due to imperfect seg-
mentation, we eliminate K classes with the lowest IoU values to avoid side effects.
In our experiments, we set K to be 13.
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