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Abstract. Skeleton-based action recognition has made great progress
recently, but many problems still remain unsolved. For example, the
representations of skeleton sequences captured by most of the previ-
ous methods lack spatial structure information and detailed temporal
dynamics features. In this paper, we propose a novel model with spa-
tial reasoning and temporal stack learning (SR-TSL) for skeleton-based
action recognition, which consists of a spatial reasoning network (SRN)
and a temporal stack learning network (TSLN). The SRN can capture the
high-level spatial structural information within each frame by a residual
graph neural network, while the TSLN can model the detailed temporal
dynamics of skeleton sequences by a composition of multiple skip-clip
LSTMs. During training, we propose a clip-based incremental loss to
optimize the model. We perform extensive experiments on the SYSU
3D Human-Object Interaction dataset and NTU RGB+D dataset and
verify the effectiveness of each network of our model. The comparison
results illustrate that our approach achieves much better results than
the state-of-the-art methods.
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Temporal stack learning · Clip-based incremental loss

1 Introduction

Human action recognition is an important and challenging problem in computer
vision research. It plays an important role in many applications, such as intelli-
gent video surveillance, sports analysis and video retrieval. Human action recog-
nition can also help robots to have a better understanding of human behaviors,
thus robots can interact with people much better [1,21,30].
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Recently, there have existed many approaches to recognize human actions,
the input data type of which can be grossly divided into two categories: RGB
videos [25] and 3D skeleton sequences [4]. For RGB videos, spatial appearance
and temporal optical flow generally are applied to model the motion dynamics.
However, the spatial appearance only contains 2D information that is hard to
capture all the motion information, and the optical flow generally needs high
computing costs. Compared to RGB videos, Johansson et al. [11] have explained
that 3D skeleton sequences can effectively represent the dynamics of human
actions. Furthermore, the skeleton sequences can be obtained by the Microsoft
Kinect [33] and the advanced human pose estimation algorithms [3]. Over the
years, skeleton-based human action recognition has attracted more and more
attention [2,4,26]. In this paper, we focus on recognizing human actions from
3D skeleton sequences.

For sequential data, recurrent neural networks (RNNs) perform a strong
power in learning the temporal dependencies. There has been a lot of work
successfully applying RNNs for skeleton-based action recognition. Hierarchical
RNN [4] is proposed to learn motion representations from skeleton sequences.
Shahroudy et al. [24] introduce a part-aware LSTM network to further improve
the performance of the LSTM framework. To model the discriminative features,
a spatial-temporal attention model [26] based on LSTM is proposed to focus
on discriminative joints and pay different attentions to different frames. Despite
the great improvement in performance, there exist two urgent problems to be
solved. First, human behavior is accomplished in coordination with each part
of the body. For example, walking requires legs to walk, and it also needs the
swing of arms to coordinate the body balance. It is very difficult to capture the
high-level spatial structural information within each frame if directly feeding
the concatenation of all body joints into networks. Second, these methods uti-
lize RNNs to directly model the overall temporal dynamics of skeleton sequences.
The hidden representation of the final RNN is used to recognize the actions. For
long-term sequences, the last hidden representation cannot completely contain
the detailed temporal dynamics of sequences.

In this paper, we propose a novel model with spatial reasoning and tempo-
ral stack learning (SR-TSL) for this task, which can effectively solve the above
challenges. Figure 1 shows the overall pipeline of our model that contains a spa-
tial reasoning network (SRN) and a temporal stack learning network (TSLN).
First, we propose a spatial reasoning network to capture the high-level spatial
structural features within each frame. The body can be decomposed into differ-
ent parts, e.g. two arms, two legs and one trunk. The concatenation of joints of
each part is transformed into individual spatial feature with a linear layer. These
individual spatial features of body parts are fed into a residual graph neural net-
work (RGNN) to capture the high-level structural features between the different
body parts, where each node corresponds to a body part. Second, we propose a
temporal stack learning network to model the detailed temporal dynamics of the
sequences, which consists of three skip-clip LSTMs. For a long-term sequence, it
is divided into multiple clips. The short-term temporal information of each clip is



108 C. Si et al.

Fig. 1. The overall pipeline of our model which contains a spatial reasoning network and
a temporal stack learning network. In the spatial reasoning network, a residual graph
neural network (RGNN) is used to capture the high-level spatial structural information
between the different body parts. The temporal stack learning network can model the
detailed temporal dynamics for skeleton sequence. During training, the proposed model
is efficiently optimized with the clip-based incremental losses (CIloss)

modeled with an LSTM layer shared among the clips in a skip-clip LSTM layer.
When feeding a clip into shared LSTM, the initial hidden of shared LSTM is
initialized with the sum of the final hidden state of all previous clips, which can
inherit previous dynamics to maintain the dependency between clips. We pro-
pose a clip-based incremental loss to further improve the ability of stack learning.
Therefore, our model can also effectively solve the problem of long-term sequence
optimization. Experimental results show that the proposed SR-TSL speeds up
the model convergence and improve the performance.

The main contributions of this paper are summarized as follows:

1. We propose a spatial reasoning network for each skeleton frame, which can
effectively capture the high-level spatial structural information between the
different body parts using a residual graph neural network.

2. We propose a temporal stack learning network to model the detailed temporal
dynamics of skeleton sequences by a composition of multiple skip-clip LSTMs.

3. The proposed clip-based incremental loss further improves the ability of tem-
poral stack learning, which can effectively speed up convergence and obviously
improve the performance.

4. Our method obtains the state-of-the-art results on the SYSU 3D Human-
Object Interaction dataset and NTU RGB+D dataset.

2 Related Work

In this section, we briefly review the existing literature that closely relates to
the proposed method.
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Skeleton Based Action Recognition. There have been amounts of work
proposed for skeleton-based action recognition, which can be divided into two
classes. The first class is to focus on designing handcrafted features to represent
the information of skeleton motion. Wang et al. [29] exploit a new feature called
local occupancy pattern, which can be treated as the depth appearance of joints,
and propose an actionlet ensemble model to represent each action. Hussein et
al. [10] use the covariance matrix for skeleton joint locations over time as a dis-
criminative descriptor for a sequence. Vemulapalli et al. [27] utilize rotations
and translations to represent the 3D geometric relationships of body parts in
Lie group.

The second class is to use deep neural networks to recognize human actions.
[12,13] exploit the Convolutional Neural Networks (CNNs) for skeleton-based
action recognition. Recently, most of methods utilize the Recurrent Neural Net-
works (RNNs) for this task. Du et al. [4] first propose an end-to-end hier-
archical RNN for skeleton-based action recognition. Zhu et al. [34] design a
fully connected deep LSTM network with a regularization scheme to learn the
co-occurrence features of skeleton joints. An end-to-end spatial and temporal
attention model [26] learns to selectively focus on discriminative joints of the
skeleton within each frame of the inputs and pays different levels of attention
to the outputs of different frames. Zhang et al. [32] exploit a view adaptive
model with LSTM architecture, which enables the network to adapt to the most
suitable observation viewpoints from end to end. A two-stream RNN architec-
ture is proposed to model both temporal dynamics and spatial configurations
for skeleton-based action recognition in [28]. The most similar work to ours is
[16] which proposes an ensemble temporal sliding LSTM (TS-LSTM) networks
for skeleton-based action recognition. They utilize an ensemble of multi-term
temporal sliding LSTM networks to capture short-term, medium-term, long-
term temporal dependencies and even spatial skeleton pose dependency. In this
paper, we design a spatial reasoning network and temporal stack learning net-
work, which can capture the high-level spatial structural information and the
detailed temporal dynamics of skeleton sequences, separately.

Graph Neural Networks. Recently, more and more works have used the graph
neural networks (GNNs) to the graph-structured data, which can be categorized
into two broad classes. The first class is to apply Convolutional Neural Networks
(CNNs) to graph, which improves the traditional convolution network on graph.
[5,6] utilize the CNNs in the spectral domain relying on the graph Laplacian.
[15,20] apply the convolution directly on the graph nodes and their neighbors,
which construct the graph filters on the spatial domain. Yan et al. [31] are the
first to apply the graph convolutional neural networks for skeleton-based action
recognition. The second class is to utilize the recurrent neural networks to every
node of the graph. [23] proposes to recurrently update the hidden state of each
node of the graph. Li et al. [17] propose a model based on Graph Neural Net-
works for situation recognition, which can efficiently capture joint dependencies
between roles using neural networks defined on a graph. Qi et al. [22] use 3D
graph neural networks for RGBD semantic segmentation. In this paper, a resid-
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ual graph neural network is utilized to model the high-level spatial structural
information between different body parts.

3 Overview

In this section, we briefly review the Graph Neural Networks (GNNs), the Recur-
rent Neural Networks (RNNs) and Long Short-Term Memory (LSTM), which
are utilized in our framework.

3.1 Graph Neural Network

Graph Neural Network (GNN) is introduced in [23] as a generalization of recur-
sive neural networks, which can deal with a more general class of graphs. The
GNNs can be defined as an ordered pair G = {V,E}, where V is the set of
nodes and E is the set of edges. At time step t, the hidden state of the i-th
(i ∈ {1, ..., |V |}) node is st

i, and the output is ot
i. The set of nodes Ωv stands for

the neighbors of node v.
For a GNN, the input vector of each node v ∈ V is based on the information

contained in the neighborhood of node v, and the hidden state of each node
is updated recurrently. At time step t, the received messages of a node are
calculated with the hidden states of its neighbors. Then the received messages
and previous state st−1

i are utilized to update the hidden state st
i. Finally, the

output ot
i is computed with st

i. The GNN formulation at time step t is defined
as follows:

mt
i = fm

(
{st−1

î
|̂i ∈ {1, ..., |Ωvi

|}
)

(1)

st
i = fs

(
mt

i, s
t−1
i

)
(2)

ot
i = fo

(
st

i

)
(3)

where mt
i is the sum of all the messages that the neighbors Ωvi

send to node
vi, fm is the function to compute the incoming messages, fs is the function
that expresses the state of a node and fo is the function to produce the output.
Similar to RNNs, these functions are the learned neural networks and are shared
among different time steps.

3.2 RNN and LSTM

Recurrent Neural Networks (RNNs) are the powerful models to capture the
dependencies of sequences via cycles in the network of nodes, which are suitable
for the sequence tasks. However, there exist two difficult problems of vanishing
gradient and exploding gradient when the standard RNN is used for long-term
sequences.

The advanced RNN architecture of Long Short-Term Memory (LSTM) is
proposed by Hochreiter et al. [7]. LSTM neuron contains an input gate, a forget
gate, an output gate and a cell, which can promote the ability to learn long-term
dependencies.
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4 Model Architecture

In this paper, we propose an effective model for skeleton-based action recogni-
tion, which contains a spatial reasoning network and a temporal stack learning
network. The overall pipeline of our model is shown in Fig. 1. In this section, we
will introduce these networks in detail.

4.1 Spatial Reasoning Network

Rich inherent structures of the human body that are involved in action recogni-
tion task, motivate us to design an effective architecture called spatial reasoning
network to model the high-level spatial structural information within each frame.
According to the general knowledge, the body can be decomposed into K parts,
e.g. two arms, two legs and one trunk (shown in Fig. 2(a)), which express the
knowledge of human body configuration.

For spatial structures, the spatial reasoning network encodes the coordinate
vectors via two steps (see Fig. 1) to capture the high-level spatial features of skele-
ton structural relationships. First, the preliminary encoding process maps the
coordinate vector of each part into the individual part feature ek, k ∈ {1, ...,K}
with a linear layer that is shared among different body parts. Second, all part
features ek are fed into the proposed residual graph neural network (RGNN) to
model the structural relationships between these body parts. Figure 2(b) shows
a RGNN with three nodes.

For a RGNN, there are K nodes that correspond to the human body parts.
At time step t, each node has a relation feature vector rt

k ∈ Rt, where Rt =
{rt

1, ..., r
T
K}. And rt

k denotes the spatial structural relationships of the part k
with other parts. We initialize the rt

k with the individual part feature ek, such
that r0k = ek. We use mt

ik to denote the received message of node k from node

Fig. 2. The architecture of residual graph neural network (RGNN). (a) illustrates five
human pose parts and a corresponding RGNN. (b) shows the principle of a RGNN
with three nodes
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i at time step t, where i ∈ {1, ...,K}. Furthermore, the received messages mt
k of

node k from all the neighbors Ωvk
at time step t is defined as follows:

mt
k =

∑
i∈Ωvk

mt
ik

=
∑

i∈Ωvk

Wmst−1
i + bm (4)

where st−1
i is the state of node i at time step t − 1, and a shared linear layer of

weights Wm and biases bm will be used to compute the messages for all nodes.
After aggregating the messages, updating function of the node hidden state can
be defined as follows:

st
k = flstm

(
rt−1

k ,mt
k, st−1

k

)
(5)

where flstm (·) denotes the LSTM cell function. Then, we calculate the relation
representation rt

k at time step t via:

rt
k = rt−1

k + st
k (6)

The residual design of Eq. 6 aims to add the relationship features between each
part based on the individual part features, so that the representations contain
the fusion of both features.

After the RGNN is updated T times, we extract node-level output as the
spatial structural relationships rT

k of each part within each frame. Finally, the
high-level spatial structural information q of human body for a frame can be
computed as follows:

rT = concat
(
[rT

1 , rT
2 , ..., rT

k ]
)
,∀k ∈ K (7)

q = fr

(
rT

)
(8)

where fr (·) is a linear layer.

4.2 Temporal Stack Learning Network

To further exploit the discriminative features of various actions, the proposed
temporal stack learning network further focus on modeling detailed temporal
dynamics. For a skeleton sequence, it has rich and detailed temporal dynam-
ics in the short-term clips. To capture the detailed temporal information, the
long-term sequence can be decomposed into multiple continuous clips. In a skele-
ton sequence, it consists of N frames. The sequence is divided into M clips at
intervals of d frames. The high-level spatial structural features {Q1, Q2, ..., QM}
of the skeleton sequence can be extracted from the spatial reasoning network.
Qm = {qmd+1, qmd+2, ..., q(m+1)d} is the set of features of clip m, and qn denotes
the high-level spatial structural features of the skeleton frame n, n ∈ {1, ..., N}.

Our proposed temporal stack learning network is a two stream network: posi-
tion network and velocity network (see Fig. 1). The two networks have the same
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architecture, which is composed of three skip-clip LSTM layers (shown in Fig. 3).
The inputs of position network are the high-level spatial structural features
{Q1, Q2, ..., QM}. The inputs of velocity network are the temporal differences
{V1, V2, ..., VM} of the spatial features between two consecutive frames, where
Vm = {vmd+1,vmd+2, ...,v(m+1)d}. vn = qn − qn−1 denotes the temporal differ-
ence of high-level spatial features for the skeleton frame n.

Skip-Clip LSTM Layer. In the skip-clip LSTM layer, there is an LSTM layer
shared among the continuous clips (see Fig. 3). For the position network, the
spatial features of continuous skeleton frames in the clip m will be fed into the
shared LSTM to capture the short-term temporal dynamics in the first skip-clip
LSTM layers:

h
′
m = fLSTM (Qm)

= fLSTM

(
{qmd+1, qmd+2, ..., q(m+1)d}

)
(9)

where h
′
m is the last hidden state of shared LSTM for the clip m, fLSTM (·)

denotes the shared LSTM in the skip-clip LSTM layer.
Note that the inputs of LSTM cell between the first skip-clip LSTM layer

and the other layers are different (see Fig. 3). In order to gain more dependency
between two adjacent frames, the input xl

t of LSTM cell for the l (l ≥ 2) layer
at time step t is defined as follows:

xl
t = concat

(
hl−1

t−1,h
l−1
t

)
(10)

where hl−1
t is the hidden state of the l − 1 LSTM layer at time step t.

Then the representation of clip dynamics can be calculated as follows:

Hm = Hm−1 + h
′
m

=
m∑

i=1

h
′
i (11)

Fig. 3. The architecture of three skip-clip LSTM layers
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where Hm−1 and Hm denote the representations of clip m − 1 and m, respec-
tively. The representation Hm is to aggregate all the detailed temporal dynamics
of the m-th clip and all previous clips to represent the long-term sequence. When
feeding the clip m into the shared LSTM layer, we initialize the initial hidden
state h0

m of the shared LSTM with the Hm−1, such that h0
m = Hm−1, which

can inherit previous dynamics to learn the short-term dynamics of the m-th clip
to maintain the dependency between clips.

The skip-clip LSTM layer can capture the temporal dynamics of the short-
term clip based on the temporal information of previous clips. And the larger m
is, the richer temporal dynamics Hm contains.

Learning the Classier. Finally, two linear layers are used to compute the
scores for C classes:

Om = Fo (Hm) (12)

where Om is the score of clip m and Om = (om1, om2, ..., omC), Fo denotes the
two linear layers. And the output is fed to a softmax classifier to predict the
probability being the ith class:

ŷmi =
eomi

∑C
j=1 eomj

, i = 1, ..., C (13)

where ŷmi indicates the probability that the clip m is predicted as the ith class.
And ŷm = (ŷm1, ..., ŷmC) denotes the probability vector of clip m.

Our proposed temporal stack learning network is a two stream network, so
the clip dynamic representations (Hp

m, Hv
m and Hs

m) of three modes will be
captured. Hp

m and Hv
m denote the dynamic representations extracted from the

position and velocity for the clip m, respectively. And Hs
m is the sum of Hp

m

and Hv
m. The probability vectors (ŷp

m, ŷv
m and ŷs

m) can be predicted from the
network.

In order to optimize the model, we propose the clip based incremental losses
for a skeleton sequence:

Lp = −
M∑

m=1

m

M

C∑
i=1

yilogŷp
mi (14)

Lv = −
M∑

m=1

m

M

C∑
i=1

yilogŷv
mi (15)

Ls = −
M∑

m=1

m

M

C∑
i=1

yilogŷs
mi (16)

where y = (y1, ..., yC) denotes the groundtruth label. The richer temporal infor-
mation the clip contains, the greater the coefficient m

M is. The clip-based incre-
mental loss will promote the ability of modeling the detailed temporal dynamics
for long-term skeleton sequences. Finally, the training loss of our model is defined
as follows:
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L = Lp + Lv + Ls (17)

Due to the mechanisms of skip-clip LSTM (see the Eq. 11), the representation
Hs

M of clip M aggregates all the detailed temporal dynamics of the continuous
clips from the position sequences and velocity sequences. In the testing pro-
cess, we only use the probability vector ŷs

M to predict the class of the skeleton
sequence.

5 Experiments

To verify the effectiveness of our proposed model for skeleton-based action recog-
nition, we perform extensive experiments on the NTU RGB+D dataset [24] and
the SYSU 3D Human-Object Interaction dataset [8]. We also analyze the per-
formance of our model with several variants.

5.1 Datasets and Experimental Settings

NTU RGB+D Dataset (NTU). This is the current largest action recog-
nition dataset with joints annotations that are collected by Microsoft Kinect
v2. It has 56880 video samples and contains 60 action classes in total. These
actions are performed by 40 distinct subjects. It is recorded with three cameras
simultaneously in different horizontal views. The joints annotations consist of 3D
locations of 25 major body joints. [24] defines two standard evaluation protocols
for this dataset: Cross-Subject and Cross-View. For Cross-Subject evaluation,
the 40 subjects are split into training and testing groups. Each group consists of
20 subjects. For Cross-View evaluation, all the samples of camera 2 and 3 are
used for training while the samples of camera 1 are used for testing.

SYSU 3D Human-Object Interaction Dataset (SYSU). This dataset con-
tains 480 video samples in 12 action classes. These actions are performed by 40
subjects. There are 20 joints for each subject in the 3D skeleton sequences.
There are two standard evaluation protocols [8] for this dataset. In the first set-
ting (setting-1), for each activity class, half of the samples are used for training
and the rest for testing. In the second setting (setting-2), half of subjects are
used to train model and the rest for testing. For each setting, there is 30-fold
cross validation.

Experimental Settings. In all our experiments, we set the hidden state dimen-
sion of RGNN to 256. For the NTU dataset, the human body is decomposed into
K = 8 parts: two arms, two hands, two legs, one trunk and one head. For the
SYSU dataset, there are K = 5 parts: two arms, two legs, and one trunk. We set
the length N = 100 of skeleton sequences for the two datasets. The neuron size
of LSTM cell in the skip-clip LSTM layer is 512. The learning rate, initiated with
0.0001, is reduced by multiplying it by 0.1 every 30 epochs. The batch sizes for
the NTU dataset and the SYSU dataset are 64 and 10, respectively. The network
is optimized using the ADAM optimizer [14]. Dropout with a probability of 0.5
is utilized to alleviate overfitting during training.
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Table 1. The comparison results on NTU RGB+D dataset with Cross-Subject and
Cross-View settings in accuracy (%)

Methods Cross-Subject Cross-View

HBRNN-L [4] (2015) 59.1 64.0

Part-aware LSTM [24] (2016) 62.9 70.3

Trust Gate ST-LSTM [18] (2016) 69.2 77.7

Two-stream RNN [28] (2017) 71.3 79.5

STA-LSTM [26] (2017) 73.4 81.2

Ensemble TS-LSTM [16] (2017) 74.6 81.3

Visualization CNN [19] (2017) 76.0 82.6

VA-LSTM [32] (2017) 79.4 87.6

ST-GCN [31] (2018) 81.5 88.3

SR-TSL (Ours) 84.8 92.4

5.2 Experimental Results

We compare the performance of our proposed model against several state-of-
the-art approaches on the NTU dataset and SYSU dataset in Tables 1 and 2.
These methods for skeleton-based action recognition can be divided into two
categories: CNN-based methods [19,31] and LSTM-based methods [16,26,32].

As shown in Table 1, we can see that our proposed model achieves the best
performances of 84.8% and 92.4% on the current largest NTU dataset. Our
performances significantly outperform the state-of-the-art CNN-based method
[31] by about 3.3% and 4.1% for cross-subject evaluation and cross-view evalu-
ation, respectively. Our model belongs to the LSTM-based methods. Compared
with VA-LSTM [32] that is the current best LSTM-based method for action
recognition, our results are about 5.4% and 4.8% better than VA-LSTM on
the NTU dataset. Ensemble TS-LSTM [16] is the most similar work to ours.
The results of our model outperform by 10.2% and 11.1% compared with [16]
in cross-subject evaluation and cross-view evaluation, respectively. As shown in
Table 2, our proposed model achieves the best performances of 80.7% and 81.9%
on SYSU dataset, which significantly outperforms the state-of-the-art approach
[32] by about 3.8% and 4.4% for setting-1 and setting-2, respectively.

Table 2. The comparison results on SYSU dataset in accuracy (%)

Methods Setting-1 Setting-2

LAFF [9] (2016) - 54.2

Dynamic Skeletons [8] (2015) 75.5 76.9

VA-LSTM [32] (2017) 76.9 77.5

SR-TSL (Ours) 80.7 81.9
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Table 3. The comparison results on NTU and SYSU dataset in accuracy (%). We
compare the performances of several variants and our proposed model to verify the
effectiveness of our model

Methods NTU SYSU

Cross-Subject Cross-View Setting-1 Setting-2

FC + LSTM 77.0 84.7 39.9 40.7

SRN + LSTM 78.7 87.3 42.1 44.4

FC + TSLN 83.8 91.6 77.3 77.4

SR-TSL(Position) 78.8 88.2 77.1 76.9

SR-TSL(Velocity) 82.2 90.6 71.7 71.8

SR-TSL (Ours) 84.8 92.4 80.7 81.9

5.3 Model Analysis

We analyze the proposed model by comparing it with several baselines. The
comparison results demonstrate the effectiveness of our model. There are two
key ingredients in the proposed model: spatial reasoning network (SRN) and
temporal stack learning network (TSLN). To analyze the role of each component,
we compare our model with several combinations of these components. Each
variant is evaluated on NTU dataset.

FC+LSTM. For this model, the coordinate vectors of each body part are
encoded with the linear layer and three LSTM layers are used to model the
sequence dynamics. It is also a two stream network to learn the temporal dynam-
ics from position and velocity.

SRN+LSTM. Compared with FC+LSTM, this model uses spatial rea-
soning network to capture the high-level spatial structural features of skeleton
sequences within each frame.

FC+TSLN. Compared with FC+LSTM, the temporal stack learning net-
work replaces three LSTM layers to learn the detailed sequence dynamics for
skeleton sequences.

SR-TSL (Position). Compared with our proposed model, the temporal
stack learning network of this model only contains the position network.

SR-TSL (Velocity). Compared with our proposed model, the temporal
stack learning network of this model only contains the velocity network.

SR-TSL. It denotes our proposed model.
Table 3 shows the comparison results of the variants and our proposed model

on NTU and SYSU dataset. We can observe that our model can obviously
increase the performances on both datasets. And the increased performances
showed in Table 3 illustrate that the spatial reasoning network and temporal
stack learning network are effective for the skeleton based action recognition,
especially the temporal stack learning network. Furthermore, the two stream
architecture of temporal stack learning network is efficient to learn the tempo-
ral dynamics from the velocity sequence and position sequence. Figure 4 shows
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(a) Cross-Subject (b) Cross-View

Fig. 4. The accuracy of the baselines and our model on the testing set of NTU RGB+D
dataset during learning phase. (a) shows the comparison results for cross-subject eval-
uation, and (b) is for cross-view evaluation

the accuracy of the baselines and our model on the testing set of NTU RGB+D
dataset during learning phase. We can see that our proposed model can speed up
convergence and obviously improve the performance. We also show the process
of temporal stack learning in Fig. 5. With the increase of m, the much richer
temporal information is contained in the representation of a sequence. And the
network can consider more temporal dynamics of the details to recognize human
action, so as to improve the accuracy. The above results illustrate the proposed
SR-TSL can effectively speed up convergence and obviously improve the perfor-
mance.

We also discuss the effect of two important hyper-parameters: the time step
T of the RGNN and the length d of clips. The comparison results are shown in
Tables 4 and 5. For the time step T , we can find that the performance increases
by a small amount when increasing T , and saturates soon. We think that the
high-level spatial structural features between a small number of body parts can
be learned quickly. For the length d of clips, with the increase of d, the perfor-

Fig. 5. The accuracy of the increasing clips on the testing set of NTU RGB+D dataset
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Table 4. The comparison results on NTU
dataset in accuracy (%). We compare sev-
eral models that have different time steps
for the RGNN to show the improvements
achieved at every step

RGNN Cross-Subject Cross-View

T = 1 84.1 92.0

T = 2 84.4 92.2

T = 3 84.5 92.4

T = 4 84.7 92.3

T = 5 84.8 92.3

T = 6 84.7 92.2

Table 5. The comparison results on NTU
dataset in accuracy (%). We compare the
performances of several proposed models
that have different the length d of clips

TSLN Cross-Subject Cross-View

d = 2 81.6 90.6

d = 4 84.1 91.4

d = 6 84.5 92.4

d = 8 84.5 92.3

d = 10 84.8 92.1

d = 15 84.7 92.2

d = 20 84.4 92.1

mance is significantly improved and then saturated. The reason of saturation is
that learning short-term dynamic does not require too many frames. The above
experimental results illustrate that our proposed model is effective for skeleton-
based action recognition.

6 Conclusions

In this paper, we propose a novel model with spatial reasoning and temporal
stack learning for long-term skeleton based action recognition, which achieves
much better results than the state-of-the-art methods. The spatial reasoning
network can capture the high-level spatial structural information within each
frame, while the temporal stack learning network can model the detailed tem-
poral dynamics of skeleton sequences. We also propose a clip-based incremental
loss to further improve the ability of stack learning, which provides an effective
way to solve long-term sequence optimization. With extensive experiments on
the current largest NTU RGB+D dataset and SYSU dataset, we verify the effec-
tiveness of our model for the skeleton based action recognition. In the future, we
will further analyze the error samples to improve the model, and consider more
contextual information, such as interactions, to aid action recognition.
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