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Abstract. We introduce PixelPlayer, a system that, by leveraging large
amounts of unlabeled videos, learns to locate image regions which pro-
duce sounds and separate the input sounds into a set of components that
represents the sound from each pixel. Our approach capitalizes on the
natural synchronization of the visual and audio modalities to learn mod-
els that jointly parse sounds and images, without requiring additional
manual supervision. Experimental results on a newly collected MUSIC
dataset show that our proposed Mix-and-Separate framework outper-
forms several baselines on source separation. Qualitative results suggest
our model learns to ground sounds in vision, enabling applications such
as independently adjusting the volume of sound sources.
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1 Introduction

The world generates a rich source of visual and auditory signals. Our visual
and auditory systems are able to recognize objects in the world, segment image
regions covered by the objects, and isolate sounds produced by objects. While
auditory scene analysis [5] is widely studied in the fields of environmental sound
recognition [18,26] and source separation [4,6,9,41,42,52], the natural synchro-
nization between vision and sound can provide a rich supervisory signal for
grounding sounds in vision [17,21,28]. Training systems to recognize objects
from vision or sound typically requires large amounts of supervision. In this
paper, however, we leverage joint audio-visual learning to discover objects that
produce sound in the world without manual supervision [1,30,36].

We show that by working with both auditory and visual information, we can
learn in an unsupervised way to recognize objects from their visual appearance
or the sound they make, to localize objects in images, and to separate the audio
component coming from each object. We introduce a new system called Pix-
elPlayer. Given an input video, PixelPlayer jointly separates the accompanying
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audio into components and spatially localizes them in the video. PixelPlayer
enables us to listen to the sound originating from each pixel in the video.

Figure 1 shows a working example of PixelPlayer (check the project website1

for sample videos and interactive demos). In this example, the system has been
trained with a large number of videos containing people playing instruments in
different combinations, including solos and duets. No label is provided on what
instruments are present in each video, where they are located, and how they
sound. During test time, the input (Fig. 1a) is a video of several instruments
played together containing the visual frames I(x, y, t), and the mono audio S(t).
PixelPlayer performs audio-visual source separation and localization, splitting
the input sound signal to estimate output sound components Sout(x, y, t), each
one corresponding to the sound coming from a spatial location (x, y) in the video
frame. As an illustration, Fig. 1c shows the recovered audio signals for 11 example
pixels. The flat blue lines correspond to pixels that are considered as silent by
the system. The non-silent signals correspond to the sounds coming from each
individual instrument. Figure 1d shows the estimated sound energy, or volume
of the audio signal from each pixel. Note that the system correctly detects that
the sounds are coming from the two instruments and not from the background.
Figure 1e shows how pixels are clustered according to their component sound
signals. The same color is assigned to pixels that generate very similar sounds.

The capability to incorporate sound into vision will have a large impact on a
range of applications involving the recognition and manipulation of video. Pix-
elPlayer’s ability to separate and locate sounds sources will allow more isolated

Fig. 1. PixelPlayer localizes sound sources in a video and separates the audio into
its components without supervision. The figure shows: (a) The input video frames
I(x, y, t), and the video mono sound signal S(t). (b) The system estimates the out-
put sound signals Sout(x, y, t) by separating the input sound. Each output component
corresponds to the sound coming from a spatial location (x, y) in the video. (c) Com-
ponent audio waveforms at 11 example locations; straight lines indicate silence. (d)
The system’s estimation of the sound energy (or volume) of each pixel. (e) Clustering
of sound components in the pixel space. The same color is assigned to pixels with
similar sounds. As an example application of clustering, PixelPlayer would enable the
independent volume control of different sound sources in videos.

1 http://sound-of-pixels.csail.mit.edu.
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processing of the sound coming from each object and will aid auditory recog-
nition. Our system could also facilitate sound editing in videos, enabling, for
instance, volume adjustments for specific objects or removal of the audio from
particular sources.

Concurrent to this work, there are papers [11,29] at the same conference that
also show the power of combining vision and audio to decompose sounds into
components. [11] shows how person appearance could help solving the cocktail
party problem in speech domain. [29] demonstrates an audio-visual system that
separates on-screen sound vs. background sounds not visible in the video.

This paper is presented as follows. In Sect. 2, we first review related work in
both the vision and sound communities. In Sect. 3, we present our system that
leverages cross-modal context as a supervisory signal. In Sect. 4, we describe a
new dataset for visual-audio grounding. In Sect. 5, we present several experiments
to analyze our model. Subjective evaluations are presented in Sect. 6.

2 Related Work

Our work relates mainly to the fields of sound source separation, visual-audio
cross-modal learning, and self-supervised learning, which will be briefly discussed
in this section.

Sound Source Separation. Sound source separation, also known as the “cock-
tail party problem” [14,25], is a classic problem in engineering and perception.
Classical approaches include signal processing methods such as Non-negative
Matrix Factorization (NMF) [8,40,42]. More recently, deep learning methods
have gained popularity [7,45]. Sound source separation methods enable appli-
cations ranging from music/vocal separation [39], to speech separation and
enhancement [12,16,27]. Our problem differs from classic sound source sepa-
ration problems because we want to separate sounds into visually and spatially
grounded components.

Learning Visual-Audio Correspondence. Recent work in computer vision
has explored the relationship between vision and sound. One line of work has
developed models for generating sound from silent videos [30,51]. The correspon-
dence between vision and sound has also been leveraged for learning represen-
tations. For example, [31] used audio to supervise visual representations, [3,18]
used vision to supervise audio representations, and [1] used sound and vision to
jointly supervise each other. In work related to our paper, people studied how
to localize sounds in vision according to motion [19] or semantic cues [2,37],
however they do not separate multiple sounds from a mixed signal.

Self-Supervised Learning. Our work builds off efforts to learn perceptual
models that are “self-supervised” by leveraging natural contextual signals in
images [10,22,24,33,38], videos [13,20,32,43,44,46], and even radio signals [48].
These approaches utilize the power of supervised learning while not requiring
manual annotations, instead deriving supervisory signals from the structure in
natural data. Our model is similarly self-supervised, but uses self-supervision to
learn to separate and ground sound in vision.
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Fig. 2. Procedure to generate the sound of a pixel: pixel-level visual features are
extracted by temporal max-pooling over the output of a dilated ResNet applied to
T frames. The input audio spectrogram is passed through a U-Net whose output is K
audio channels. The sound of each pixel is computed by an audio synthesizer network.
The audio synthesizer network outputs a mask to be applied to the input spectrogram
that will select the spectral components associated with the pixel. Finally, inverse STFT
is applied to the spectrogram computed for each pixel to produce the final sound.

3 Audio-Visual Source Separation and Localization

In this section, we introduce the model architectures of PixelPlayer, and the
proposed Mix-and-Separate training framework that learns to separate sound
according to vision.

3.1 Model Architectures

Our model is composed of a video analysis network, an audio analysis network,
and an audio synthesizer network, as shown in Fig. 2.

Video Analysis Network. The video analysis network extracts visual features
from video frames. Its choice can be an arbitrary architecture used for visual
classification tasks. Here we use a dilated variation of the ResNet-18 model [15]
which will be described in detail in the experiment section. For an input video
of size T×H×W×3, the ResNet model extracts per-frame features with size
T×(H/16)×(W/16)×K. After temporal pooling and sigmoid activation, we
obtain a visual feature ik(x, y) for each pixel with size K.

Audio Analysis Network. The audio analysis network takes the form of
a U-Net [35] architecture, which splits the input sound into K components sk,
k = (1, ...,K). We empirically found that working with audio spectrograms gives
better performance than using raw waveforms, so the network described in this
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paper uses the Time-Frequency (T-F) representation of sound. First, a Short-
Time Fourier Transform (STFT) is applied on the input mixture sound to obtain
its spectrogram. Then the magnitude of spectrogram is transformed into log-
frequency scale (analyzed in Sect. 5), and fed into the U-Net which yields K
feature maps containing features of different components of the input sound.

Audio Synthesizer Network. The synthesizer network finally predicts the
predicted sound by taking pixel-level visual feature ik(x, y) and audio feature
sk. The output sound spectrogram is generated by vision-based spectrogram
masking technique. Specifically, a mask M(x, y) that could separate the sound
of the pixel from the input is estimated, and multiplied with the input spectro-
gram. Finally, to get the waveform of the prediction, we combine the predicted
magnitude of spectrogram with the phase of input spectrogram, and use inverse
STFT for recovery.

Fig. 3. Training pipeline of our proposed Mix-and-Separate framework in the case of
mixing two videos (N = 2). The dashed boxes represent the modules detailed in Fig. 2.
The audio signals from the two videos are added together to generate an input mixture
with known constituent source signals. The network is trained to separate the audio
source signals conditioned on corresponding video frames; its output is an estimate
of both sound signals. Note that we do not assume that each video contains a single
source of sound. Moreover, no annotations are provided. The system thus learns to
separate individual sources without traditional supervision.

3.2 Mix-and-Separate Framework for Self-supervised Training

The idea of the Mix-and-Separate training procedure is to artificially create a
complex auditory scene and then solve the auditory scene analysis problem of
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separating and grounding sounds. Leveraging the fact that audio signals are
approximately additive, we mix sounds from different videos to generate a com-
plex audio input signal. The learning objective of the model is to separate a
sound source of interest conditioned on the visual input associated with it.

Concretely, to generate a complex audio input, we randomly sample N videos
{In, Sn} from the training dataset, where n = (1, ..., N). In and Sn represent the
visual frames and audio of the n-th video, respectively. The input sound mixture
is created through linear combinations of the audio inputs as Smix =

∑N
n=1 Sn.

The model f learns to estimate the sounds in each video Ŝn given the audio
mixture and the visual of the corresponding video Ŝn = f(Smix, In).

Figure 3 shows the training framework in the case of N = 2. The training
phase differs from the testing phase in that (1) we sample multiple videos ran-
domly from the training set, mix the sample audios and target to recover each
of them given their corresponding visual input; (2) video-level visual features
are obtained by spatial-temporal max pooling instead of pixel-level features.
Note that although we have clear targets to learn in the training process, it is
still unsupervised as we do not use the data labels and do not make assumptions
about the sampled data.

The learning target in our system are the spectrogram masks, they can be
binary or ratios. In the case of binary masks, the value of the ground truth mask
of the n-th video is calculated by observing whether the target sound is the
dominant component in the mixed sound in each T-F unit,

Mn(u, v) = �Sn(u, v) ≥ Sm(u, v)�, ∀m = (1, ..., N), (1)

where (u, v) represents the coordinates in the T-F representation and S repre-
sents the spectrogram. Per-pixel sigmoid cross entropy loss is used for learning.
For ratio masks, the ground truth mask of a video is calculated as the ratio of
the magnitudes of the target sound and the mixed sound,

Mn(u, v) =
Sn(u, v)
Smix(u, v)

. (2)

In this case, per-pixel L1 loss [47] is used for training. Note that the values of the
ground truth mask do not necessarily stay within [0, 1] because of interference.

4 MUSIC Dataset

The most commonly used videos with audio-visual correspondence are musical
recordings, so we introduce a musical instrument video dataset for the proposed
task, called MUSIC (Multimodal Sources of Instrument Combinations) dataset.

We retrieved the MUSIC videos from YouTube by keyword query. During
the search, we added keywords such as “cover” to find more videos that were
not post-processed or edited.

MUSIC dataset has 714 untrimmed videos of musical solos and duets, some
sample videos are shown in Fig. 4. The dataset spans 11 instrument categories:
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Fig. 4. Example frames and associated sounds from our video dataset. The top row
shows videos of solos and the bottom row shows videos of duets. The sounds are
displayed in the time-frequency domain as spectrograms, with frequency on a log scale.

Fig. 5. Dataset Statistics: (a) Shows the distribution of video categories. There are 565
videos of solos and 149 videos of duets. (b) Shows the distribution of video durations.
The average duration is about 2 min.

accordion, acoustic guitar, cello, clarinet, erhu, flute, saxophone, trumpet, tuba,
violin and xylophone. Figure 5 shows the dataset statistics.

Statistics reveal that due to the natural distribution of videos, duet perfor-
mances are less balanced than the solo performances. For example, there are
almost no videos of tuba and violin duets, while there are many videos of guitar
and violin duets.

5 Experiments

5.1 Audio Data Processing

There are several steps we take before feeding the audio data into our model. To
speed up computation, we sub-sampled the audio signals to 11 kHz, such that the
highest signal frequency preserved is 5.5 kHz. This preserves the most perceptu-
ally important frequencies of instruments and only slightly degrades the overall
audio quality. Each audio sample is approximately 6 s, randomly cropped from
the untrimmed videos during training. An STFT with a window size of 1022 and
a hop length of 256 is computed on the audio samples, resulting in a 512 × 256
Time-Frequency (T-F) representation of the sound. We further re-sample this
signal on a log-frequency scale to obtain a 256×256 T-F representation. This step
is similar to the common practice of using a Mel-Frequency scale, e.g. in speech
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recognition [23]. The log-frequency scale has the dual advantages of (1) simi-
larity to the frequency decomposition of the human auditory system (frequency
discrimination is better in absolute terms at low frequencies) and (2) translation
invariance for harmonic sounds such as musical instruments (whose fundamental
frequency and higher order harmonics translate on the log-frequency scale as the
pitch changes), fitting well to a ConvNet framework. The log magnitude values
of T-F units are used as the input to the audio analysis network. After obtaining
the output mask from our model, we use an inverse sampling step to convert our
mask back to linear frequency scale with size 512 × 256, which can be applied
on the input spectrogram. We finally perform an inverse STFT to obtain the
recovered signal.

5.2 Model Configurations

In all the experiments, we use a variant of the ResNet-18 model for the video
analysis network, with the following modifications made: (1) removing the last
average pooling layer and fc layer; (2) removing the stride of the last residual
block, and making the convolution layers in this block to have a dilation of 2;
(3) adding a last 3× 3 convolution layer with K output channels. For each video
sample, it takes T frames with size 224×224×3 as input, and outputs a feature
of size K after spatiotemporal max pooling.

The audio analysis network is modified from U-Net. It has 7 convolutions (or
down-convolutions) and 7 de-convolutions (or up-convolution) with skip connec-
tions in between. It takes an audio spectrogram with size 256 × 256 × 1, and
outputs K feature maps of size 256 × 256 × K.

The audio synthesizer takes the outputs from video and audio analysis net-
works, fuses them with a weighted summation, and outputs a mask that will
be applied on the spectrogram. The audio synthesizer is a linear layer which
has very few trainable parameters (K weights +1 bias). It could be designed to
have more complex computations, but we choose the simple operation in this
work to show interpretable intermediate representations, which will be shown in
Sect. 5.6.

Our best model takes 3 frames as visual input, and uses the number of feature
channels K = 16.

5.3 Implementation Details

Our goal in the model training is to learn on natural videos (with both solos
and duets), evaluate quantitatively on the validation set, and finally solve the
source separation and localization problem on the natural videos with mixtures.
Therefore, we split our MUSIC dataset into 500 videos for training, 130 videos for
validation, and 84 videos for testing. Among them, 500 training videos contain
both solos and duets, the validation set only contains solos, and the test set only
contains duets.

During training, we randomly sample N = 2 videos from our MUSIC dataset,
which can be solos, duets, or silent background. Silent videos are made by pairing
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silent audio waveforms randomly with images from the ADE dataset [50] which
contains images of natural environments. This technique regularizes the model
better in localizing objects that sound by introducing more silent videos. To
recap, the input audio mixture could contain 0 to 4 instruments. We also exper-
imented with combining more sounds, but that made the task more challenging
and the model did not learn better.

In the optimization process, we use a SGD optimizer with momentum 0.9.
We set the learning rate of the audio analysis network and the audio synthesizer
both as 0.001, and the learning rate of the video analysis network as 0.0001 since
we adopt a pre-trained CNN model on ImageNet.

5.4 Sound Separation Performance

To evaluate the performance of our model, we also use the Mix-and-Separate
process to make a validation set of synthetic mixture audios and the separation
is evaluated.

Figure 6 shows qualitative results of our best model, which predicts binary
masks that apply on the mixture spectrogram. The first row shows one frame
per sampled videos that we mix together, the second row shows the spectrogram
(in log frequency scale) of the audio mixture, which is the actual input to the
audio analysis network. The third and fourth rows show ground truth masks and
the predicted masks, which are the targets and output of our model. The fifth
and sixth rows show the ground truth spectrogram and predicted spectrogram
after applying masks on the input spectrogram. We could observe that even with
the complex patterns in the mixed spectrogram, our model can “segment” the
target instrument components out successfully.

Table 1. Model performances of baselines and different variations of our proposed
model, evaluated in NSDR/SIR/SAR. Binary masking in log frequency scale performs
best in most metrics.

NMF
[42]

DeepConvSep
[7]

Spectral
regression

Ratio mask Binary mask

Linear
scale

Log
scale

Linear
scale

Log
scale

NSDR 3.14 6.12 5.12 6.67 8.56 6.94 8.87

SIR 6.70 8.38 7.72 12.85 13.75 12.87 15.02

SAR 10.10 11.02 10.43 13.87 14.19 11.12 12.28

To quantify the performance of the proposed model, we use the following met-
rics: the Normalized Signal-to-Distortion Ratio (NSDR), Signal-to-Interference
Ratio (SIR), and Signal-to-Artifact Ratio (SAR) on the validation set of our
synthetic videos. The NSDR is defined as the difference in SDR of the separated
signals compared with the ground truth signals and the SDR of the mixture
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Fig. 6. Qualitative results on vision-guided source separation on synthetic audio mix-
tures. This experiment is performed only for quantitative model evaluation.

signals compared with the ground truth signals. This represents the improve-
ment of using the separated signal compared with using the mixture as each
separated source. The results reported in this paper were obtained by using the
open-source mir eval [34] library.

Results are shown in Table 1. Among all the models, baseline approaches
NMF [42] and DeepConvSep [7] use audio and ground-truth labels to do source
separation. All variants of our model use the same architecture we described,
and take both visual and sound input for learning. Spectral Regression refers
to the model that directly regresses output spectrogram values given an input
mixture spectrogram, instead of outputting spectrogram mask values. From the
numbers in the table, we can conclude that (1) masking based approaches are
generally better than direct regression; (2) working in the log frequency scale
performs better than in the linear frequency scale; (3) binary masking based
method achieves similar performance as ratio masking.

Meanwhile, we found that the NSDR/SIR/SAR metrics are not the best
metrics for evaluating perceptual separation quality, so in Sect. 6 we further
conduct user studies on the audio separation quality.
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5.5 Visual Grounding of Sounds

As the title of paper indicates, we are fundamentally solving two problems:
localization and separation of sounds.

Sound Localization. The first problem is related to the spatial grounding
question, “which pixels are making sounds?” This is answered in Fig. 7: for nat-
ural videos in the dataset, we calculate the sound energy (or volume) of each
pixel in the image, and plot their distributions in heatmaps. As can be seen, the
model accurately localizes the sounding instruments.

Fig. 7. “Which pixels are making sounds?” Energy distribution of sound in pixel space.
Overlaid heatmaps show the volumes from each pixel.

Clustering of Sounds. The second problem is related to a further question:
“what sounds do these pixels make?” In order to answer this, we visualize the
sound each pixel makes in images in the following way: for each pixel in a video
frame, we take the feature of its sound, namely the vectorized log spectrogram
magnitudes, and project them onto 3D RGB space using PCA for visualization
purposes. Results are shown in Fig. 8, different instruments and the background
in the same video frame have different color embeddings, indicating different
sounds that they make.

Fig. 8. “What sounds do these pixels make?” Clustering of sound in space. Overlaid
colormap shows different audio features with different colors. (Color figure online)
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Discriminative Channel Activations. Given our model could separate
sounds of different instruments, we explore its channel activations for different
categories. For validation samples of each category, we find the strongest acti-
vated channel, and then sort them to generate a confusion matrix. Figure 9 shows
the (a) visual and (b) audio confusion matrices from our best model. If we simply
evaluate classification by assigning one category to one channel, the accuracy is
46.2% for vision and 68.9% for audio. Note that no learning is involved here,
we expect much higher performance by using a linear classifier. This experiment
demonstrates that the model has implicitly learned to discriminate instruments
visually and auditorily.

Fig. 9. (a) Visual and (b) audio confusion matrices by sorting channel activations with
respect to ground truth category labels.

In a similar fashion, we evaluate object localization performance of the video
analysis network based on the channel activations. To generate a bounding box
from the channel activation map, we follow [49] to threshold the map. We first
segment the regions of which the value is above 20% of the max value of the acti-
vation map, and then take the bounding box that covers the largest connected
component in the segmentation map. Localization accuracy under different inter-
section over union (IoU) criterion are shown in Table 2.

Table 2. Object localization performance of the learned video analysis network.

IoU threshold 0.3 0.4 0.5

Accuracy(%) 66.10 47.92 32.43

5.6 Visual-Audio Corresponding Activations

As our proposed model is a form of self-supervised learning and is designed
such that both visual and audio networks learn to activate simultaneously on
the same channel, we further explore the representations learned by the model.
Specifically, we look at the K channel activations of the video analysis network
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before max pooling, and their corresponding channel activations of the audio
analysis network. The model has learned to detect important features of spe-
cific objects across the individual channels. In Fig. 10 we show the top activated
videos of channel 6, 11 and 14. These channels have emerged as violin, guitar
and xylophone detectors respectively, in both visual and audio domains. Chan-
nel 6 responds strongly to the visual appearance of violin and to the higher
order harmonics in violin sounds. Channel 11 responds to guitars and the low
frequency region in sounds. And channel 14 responds to the visual appearance
of xylophone and to the brief, pulse-like patterns in the spectrogram domain.
For other channels, some of them also detect specific instruments while others
just detect specific features of instruments.

Fig. 10. Visualizations of corresponding channel activations. Channel 6 has emerged
as a violin detector, responding strongly to the presence of violins in the video frames
and to the high order harmonics in the spectrogram, which are colored brighter in the
spectrogram of the figure. Likewise, channel 11 and 14 seems to detect the visual and
auditory characteristics of guitars and xylophones.

6 Subjective Evaluations

The objective and quantitative evaluations in Sect. 5.4 are mainly performed on
the synthetic mixture videos, the performance on the natural videos needs to
be further investigated. On the other hand, the popular NSDR/SIR/SAR met-
rics used are not closely related to perceptual quality. Therefore we conducted
crowd-sourced subjective evaluations as a complementary evaluation. Two stud-
ies are conducted on Amazon Mechanical Turk (AMT) by human raters, a sound
separation quality evaluation and a visual-audio correspondence evaluation.

6.1 Sound Separation Quality

For the sound separation evaluation, we used a subset of the solos from the
dataset as ground truth. We prepared the outputs of the baseline NMF model
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and the outputs of our models, including spectral regression, ratio masking and
binary masking, all in log frequency scale. For each model, we take 256 audio
outputs from the same set for evaluation and each audio is evaluated by 3 inde-
pendent AMT workers. Audio samples are randomly presented to the workers,
and the following question is asked: “Which sound do you hear? 1. A, 2. B,
3. Both, or 4. None of them”. Here A and B are replaced by their mixture
sources, e.g. A=clarinet, B=flute.

Subjective evaluation results are shown in Table 3. We show the percentages
of workers who heard only the correct solo instrument (Correct), who heard
only the incorrect solo instrument (Wrong), who heard both of the instruments
(Both), and who heard neither of the instruments (None). First, we observe that
although the NMF baseline did not have good NSDR numbers in the quantita-
tive evaluation, it has competitive results in our human study. Second, among
our models, the binary masking model outperforms all other models by a mar-
gin, showing its advantage in separation as a classification model. The binary
masking model gives the highest correct rate, lowest error rate, and lowest con-
fusion (percentage of Both), indicating that the binary model performs source
separation perceptively better than the other models. It is worth noticing that
even the ground truth solos do not give 100% correct rate, which represents the
upper bound of performance.

Table 3. Subjective evaluation of sound separation performance. Binary masking-
based model outperforms other models in sound separation.

Model Correct(%) Wrong(%) Both(%) None(%)

NMF 45.70 15.23 21.35 17.71

Spectral regression 18.23 15.36 64.45 1.95

Ratio mask 39.19 19.53 27.73 13.54

Binary mask 59.11 11.59 18.10 11.20

Ground truth solo 70.31 16.02 7.68 5.99

6.2 Visual-Sound Correspondence Evaluations

The second study focuses on the evaluation of the visual-sound correspondence
problem. For a pixel-sound pair, we ask the binary question: “Is the sound
coming from this pixel?” For this task, we only evaluate our models for
comparison as the task requires visual input, so audio-only baselines are not
applicable. We select 256 pixel positions (50% on instruments and 50% on back-
ground objects) to generate corresponding sounds with different models, and get
the percentage of Yes responses from the workers, which tells the percentage of
pixels with good source separation and localization, results are shown in Table 4.
This evaluation also demonstrates that the binary masking-based model gives
the best performance in the vision-related source separation problem.
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Table 4. Subjective evaluation of visual-sound correspondence. Binary masking-based
model best relates vision and sound.

Model Yes(%)

Spectral regression 39.06

Ratio mask 54.68

Binary mask 67.58

7 Conclusions

In this paper, we introduced PixelPlayer, a system that learns from unlabeled
videos to separate input sounds and also locate them in the visual input. Quan-
titative results, qualitative results, and subjective user studies demonstrate the
effectiveness of our cross-modal learning system. We expect our work can open
up new research avenues for understanding the problem of sound source separa-
tion using both visual and auditory signals.
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