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Abstract. Multi-task learning has been widely adopted in many com-
puter vision tasks to improve overall computation efficiency or boost the
performance of individual tasks, under the assumption that those tasks
are correlated and complementary to each other. However, the relation-
ships between the tasks are complicated in practice, especially when the
number of involved tasks scales up. When two tasks are of weak relevance,
they may compete or even distract each other during joint training of
shared parameters, and as a consequence undermine the learning of all
the tasks. This will raise destructive interference which decreases learning
efficiency of shared parameters and lead to low quality loss local optimum
w.r.t. shared parameters. To address the this problem, we propose a gen-
eral modulation module, which can be inserted into any convolutional
neural network architecture, to encourage the coupling and feature shar-
ing of relevant tasks while disentangling the learning of irrelevant tasks
with minor parameters addition. Equipped with this module, gradient
directions from different tasks can be enforced to be consistent for those
shared parameters, which benefits multi-task joint training. The module
is end-to-end learnable without ad-hoc design for specific tasks, and can
naturally handle many tasks at the same time. We apply our approach
on two retrieval tasks, face retrieval on the CelebA dataset [12] and prod-
uct retrieval on the UT-Zappos50K dataset [34,35], and demonstrate its
advantage over other multi-task learning methods in both accuracy and
storage efficiency.

1 Introduction

Multi-task learning aims to improve learning efficiency and boost the perfor-
mance of individual tasks by jointly learning multiple tasks at the same time.

Part of the work is done when Xiangyun Zhao was an intern at Adobe Research
advised by Haoxiang Li and Xiaohui Shen.
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With the recent prevalence of deep learning-based approaches in various com-
puter vision tasks, multi-task learning is often implemented as parameter sharing
in certain intermediate layers in a unified convolutional neural network architec-
ture [19,33]. However, such feature sharing only works when the tasks are cor-
related and complementary to each other. When two tasks are irrelevant, they
may provide competing or even contradicting gradient directions during feature
learning. For example, learning to predict face attributes of “Open Mouth” and
“Young” can lead to discrepant gradient directions for the examples in Fig. 1.
Because the network is supervised to produce nearby embeddings in one task
but faraway embeddings in the other task, the shared parameters get conflicting
training signals. It is analogous to the destructive interference problem in Physics
where two waves of equal frequency and opposite phases cancel each other. It
would make the joint training much more difficult and negatively impact the
performance of all the tasks.

Fig. 1. Conflicting training signals in multi-task learning: when jointly learning dis-
criminative features for multiple face attributes, some samples may introduce conflict-
ing training signals in updating shared model parameters, such as “Smile” vs.“Young”.

Although this problem is rarely identified in the literature, many of the exist-
ing methods are in fact designed to mitigate destructive interference in multi-task
learning. For example, in the popular multi-branch neural network architecture
and its variants, the task-specific branches are designed carefully with the prior
knowledge regarding the relationships of certain tasks [8,18,20]. By doing this,
people expect less conflicting training signals to the shared parameters. Never-
theless, it is difficult to generalize those specific designs to other tasks where the
relationships may vary, or to scale up to more tasks such as classifying more
than 20 facial attributes at the same time, where the task relationships become
more complicated and less well studied.

To overcome these limitations, we propose a novel modulation module, which
can be inserted into arbitrary network architecture and learned through end-
to-end training. It can encourage correlated tasks to share more features, and
at the same time disentangle the feature learning of irrelevant tasks. In back-
propagation of the training signals, it modulates the gradient directions from
different tasks to be more consistent for those shared parameters; in the feed-
forward pass, it modulates the features towards task-specific feature spaces. Since
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it does not require prior knowledge of the relationships of the tasks, it can be
applied to various multi-task learning problems, and handle many tasks at the
same time. One related work is [24] which try to increase model capacity without
a proportional increase in computation.

To validate the effectiveness of the proposed approach, we apply the mod-
ulation module in a neural network to learn the feature embedding of multiple
attributes, and evaluate the learned feature representations on diverse retrieval
tasks. In particular, we first propose a joint training framework with several
embedded modulation modules for the learning of multiple face attributes, and
evaluate the attribute-specific face retrieval results on the CelebA dataset. In
addition, we provide thorough analysis on the task relationships and the capa-
bility of the proposed module in promoting correlated tasks while decoupling
unrelated tasks. Experimental results show that the advantage of our approach
is more significant with more tasks involved, showing its generalization capability
to larger-scale multi-task learning problems. Compared with existing multi-task
learning methods, the proposed module learns improved task-specific features
and supports a compact model for scalability. We further apply the proposed
approach in product retrieval on the UT-Zappos50K dataset, and demonstrate
its superiority over other state-of-the-art methods.

Overall, the contributions of this work are four-fold:

– We address the destructive interference problem of unrelated tasks in multi-
task learning, which is rarely discussed in previous work.

– We propose a novel modulation module that is general and end-to-end learn-
able, to adaptively couple correlated tasks while decoupling unrelated ones
during feature learning.

– With minor task-specific overhead, our method supports scalable multi-task
learning without manually grouping of tasks.

– We apply the module to the feature learning of multiple attributes, and
demonstrate its effectiveness on retrieval tasks, especially on large-scale prob-
lems (e.g., as many as 20 attributes are jointly learned).

2 Related Work

2.1 Multi-task Learning

It has been observed in many prior works that jointly learning of multiple cor-
related tasks can help improve the performance of each of them, for example,
learning face detection with face alignment [19,37], learning object detection
with segmentation [2,4], and learning semantic segmentation with depth estima-
tion [15,29]. While these works mainly study what related tasks can be jointly
learned in order to mutually benefit each other, we instead investigate a proper
joint training scheme given any tasks without assumption on their relationships.

A number of research efforts have been devoted to exploiting the correlations
among related tasks for joint training. For example, Jou et al. [8] propose the
Deep Cross Residual Learning to introduce the cross-residuals connections as a



418 X. Zhao et al.

form of network regularization for better network generalization. Misra et al. [14]
propose the Cross-stitch Networks to combine the activations from multiple task-
specific networks for better joint training. Kokkinos et al. [9] propose UberNet to
jointly learn low-, mid-, and high-level vision tasks by branching out task-specific
paths from different stages in a deep CNN.

Most multi-task learning frameworks, if not all, involve parameters shared
across tasks and task-specific parameters. In joint learning beyond similar tasks,
it is desirable to automatically discover what and how to share between tasks.
Recent works along this line include Lu et al. [13], who propose to automat-
ically discover a neural network design to group similar tasks together; Yang
et al. [32], who model this problem as tensor factorization to learn how to share
knowledge across tasks; and Veit et al. [26], who propose to share all neural
network layers but masking the final image features differently conditioned on
the attributes/tasks.

Compared to these existing works, in this paper, we explicitly identify the
problem of destructive interference and propose a metric to quantify it. Our
observation further confirms its correlation to the quality of learned features.
Moreover, our proposed module is end-to-end learnable and flexible to be inserted
anywhere into an existing network architecture. Hence, our method can further
enhance the structure learned with the algorithm from Lu et al. [13] to improve
its suboptimal within-group branches. When compared with the tensor factor-
ization by Yang et al. [32], our module is lightweight, easy to train, and with a
small and accountable overhead to include additional tasks. Condition similar
networks [26] shares this desirable scalability feature with our method in stor-
age efficiency. However, as they do not account for the destructive interference
problem in layers other than the final feature layer, we empirically observe that
their method does not scale-up well in accuracy for many tasks (See Sect. 4.2).

2.2 Image Retrieval

In this work, we evaluate our method with applications on image retrieval. Image
retrieval has been widely studied in computer vision [7,16,17,25,27,28]. We do
not study the efficiency problem in image retrieval as in many prior works [7,11,
16,28]. Instead, we focus on learning discriminative task-specific image features
for accurate retrieval.

Essentially, our method is related to how discriminative image features can be
extracted. In the era of deep learning, feature extraction is a very important and
fundamental research direction. From the early pioneering AlexNet [10] to recent
seminal ResNet [5] and DenseNet [6], the effectiveness and efficiency of neural
networks have been largely improved. This line of research focuses on designing
better neural network architectures, which is independent of our method. By
design, our algorithm can potentially benefit from better backbone architectures.

Another important related research area is metric learning [21,23,30,31],
which mostly focuses on designing an optimization objective to find a metric to
maximize the inter-class distance while minimizing the intra-class distance. They
are often equivalent to learning a discriminative subspace or feature embedding.
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Some of them have been introduced into deep learning as the loss function for
better feature learning [3,22]. Our method is by design agnostic to the loss
function, and we can potentially benefit from more sophisticated loss functions
to learn more discriminative image feature for all tasks. In our experiment, we
use triplet loss [22] due to its simplicity.

3 Our Method

In this section, we first identify the destructive interference problem in sharing
features for multi-task learning and then present the technical details of our
modulation module to resolve this problem.

3.1 Destructive Interference

Despite that a multi-task neural network can have many variants which involve
the learning of different task combinations, the fundamental technique is to
share intermediate network parameters for different tasks, and jointly train with
all supervision signals from different tasks by gradient descent methods. One
issue raised from this common scheme is that two irrelevant or weakly relevant
tasks may drag gradients propagated from different tasks in conflicting or even
opposite directions. Thus, learning the shared parameters can suffer from the
well-known destructive interference problem.

Fig. 2. A neural network fully modulated by our proposed modules: in testing, the net-
work takes inputs as the image and task label to extract discriminative image features
for the specified task.

Formally, we denote θ as the parameters of a neural network F over different
tasks, I as its input, and f = F (I|θ) as its output. The update of θ follows its
gradient:

∇θ =
∂L

∂f

∂f

∂θ
, (1)

where L is the loss function.
In multi-task learning, θ will be updated by gradients from different tasks.

Essentially, ∂L
∂f directs the learning of θ. In common cases, a discriminative loss

generally encourages fi and fj to be similar for images Ii and Ij from the same
class. However, the relationship of Ii and Ij can change in multi-task learning,
even flip in different tasks. When training all these tasks, the update directions
of θ may be conflicting, which is the namely destructive interference problem.
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Table 1. Accuracy and UCR Comparison on three face attribute-based retrieval
tasks (See Sect. 4.1 for details): the comparison empirically support our analysis of
the destructive interference problem and the assumption that reasonable task-specific
modulation parameters can be learned from data

smile Acc. open
mouth Acc.

young Acc. smile/young
UCR

smile/open-
mouth UCR

smile + young + open
mouth(a)

84.71% 74.73 % 71.6% - -

smile + young(b) 83.85% - 74.71% 22.1% -

smile + open
mouth(c)

91.72% 92.65% - - 43.71%

Three Independent
Networks(d)

93.32% 94.40% 84.90% - -

With Proposed
Modulation(e)

94.03% 95.31% 86.20% 50.63% 52.77%

With Proposed
Modulation + Reg(f)

94.94% 95.58% 87.75% - -

More specifically, given a mini-batch of training samples from task t and t′,
∇θ = ∇θt + ∇θt′ , where ∇θt/t′ denotes gradients from samples of task t/t′.
Gradients from two tasks are negatively impacting the learning of each other,
when

At,t′ = sign(〈∇θt,∇θt′〉) = −1. (2)

The destructive interference hinders the learning of the shared parameters
and essentially leads to low quality loss local optimum w.r.t. shared parameters.

Empirical Evidence. We validate our assumption through a toy experiment
on jointly learning of multiple attribute-based face retrieval tasks. More details
on the experimental settings can be found in Sect. 4.1.

Intuitively, the attribute smile is related to attribute open mouth but irrele-
vant to attribute young1. As shown in Table 1, when we share all the parameters
of the neural network across different tasks, the results degrade when jointly
training the tasks compared with training three independent task-specific net-
works. The degradation when jointly training smile and young is much more
significant than the one when jointly training smile and open mouth. That is
because there are always some conflicting gradients from some training samples
even if two tasks are correlated, and apparently when the two tasks are with
weak relevance, the conflicts become more frequent, making the joint training
ineffective.

To further understand how the learning leads to the above results, we follow
Eq. 2 to quantitatively estimate the compatibility of task pairs by looking at the
ratio of mini-batches with At,t′ > 0 in one training epoch. So we define this ratio

1 Here the attribute refers to its estimation from a given face image.
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as Update Compliance Ratio(UCR) which measures the consistence of two tasks.
The larger the UCR is, the more consistent the two tasks are in joint training.
As shown in Table 1, in joint learning of smile and open mouth we observe higher
compatibility compared with joint learning of smile and young, which explains
the accuracy discrepancy from (b) to (c) in Table 1. Comparing (e) with (b) and
(c), the accuracy improvement is accompanied with UCR improvement which
explains how the proposed module improves the overall performance. With our
proposed method introduced as following, we observe increased UCR for both
task pairs.

3.2 A Modulation Module

Most multi-task learning frameworks involve task-specific parameters and shared
parameters. Here we introduce a modulation module as a generic framework to
add task-specific parameters and link it to alleviation of destructive interference.

More specifically, we propose to modulate the feature maps with task-specific
projection matrix Wt for task t. As illustrated in Fig. 2, this module maintains
the feature map size to keep it compatible with layers downwards in the net-
work architecture. Following we will discuss how this design affects the back-
propagation and feed-forward pass.

Back-Propagation. In back-propagation, destructive interference happens
when gradients from two tasks t and t′ over the shared parameters θ have compo-
nents in conflicting directions, i.e., 〈∇θt,∇θt′〉 < 0. It can be simply derived that
the proposed modulation over feature maps is equivalent to modulating shared
parameters with task-specific masks Mt/t′ . With the proposed modulation, the
update to θ is now Mt∇θt + Mt′∇θt′ . Since the task-specific masks/projection
matrices are learnable, we observe that the training process will naturally mit-
igate the destructive interference by reducing the average across-task gradient
angles 〈Mt∇θt,Mt′∇θt′〉, which is observed to result in better local optimum of
shared parameters.

Feed-Forward Pass. Given feature map x with size M × N × C and the
modulation projection matrix W, we have

x′ = Wt × x, (3)

which is the input to the next layer.
A full projection matrix would require Wt of size MNC × MNC, which

is infeasible in practice and the modulation would degenerate to completely
separated branches with a full project matrix. Therefore, we firstly simplify the
Wt to have shared elements within each channel. Formally, W = {wi,j}, {i, j} ∈
{1, . . . , C}

x′
mni =

C∑

j=1

xmnj ∗ wi,j , (4)
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where x′
mni, xmni and wij denote elements from input, output feature maps and

Wt respectively. We ignore the subscription t for simplicity. Here W is in fact a
channel-wise projection matrix.

We can further reduce the computation by simplifying the Wt to be a
channel-wise scaling vector Wt with size C as illustrated in Fig. 2.

Formally, W = {wc}, c ∈ {1, . . . , C}.

x′
mnc = xmnc ∗ wc, (5)

where x′
mnc and xmnc denotes elements from input and output feature maps

respectively.
Compared with the channel-wise scaling vector design, we observe empiri-

cally the overall improvement from the channel-wise projection matrix design
is marginal, hence we will mainly discuss and evaluate the simpler channel-wise
scaling vector option. This module can be easily implemented by adding task
specific linear transformations as shown in Fig. 3.

Fig. 3. Structure of the proposed Modulation Module which adapts features via learned
weights with respect to each task. This module can be inserted between any layers and
maintain the network structure.

3.3 Training

The modulation parameters Wt are learned together with the neural network
parameters through back-propagation. In this paper, we use triplet loss [22] as
the objective for optimization. More specifically, given a set of triplets from
different tasks (Ia, Ip, In, t) ∈ T,

L =
∑

T

[‖fa − fp‖2 + α − ‖fa − fn‖2)]+ (6)

fa,p,n = F (Ia,p,n|θ,Wt)), (7)

where α is the expected distance margin between positive pair and negative pair,
Ia is the anchor sample, Ip is the positive sample, In is the negative sample and
t is the task.

When training the Neural Network with a discriminative loss, we argue that
by introducing the Modulation module into the neural network, it will learn to
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leverage the additional knobs to decouple unrelated tasks and couple related
ones to minimize the training loss. In the toy experiment shown in Table 1, we
primarily show that our method can surpass fully independent learning. The
reduced ratios of conflicting mini-batches in training as shown in Table 1 also
validate our design.

The learned W∗ capture the relationship of tasks implicitly. We obtained
Ws, Wy and Wo for smile, young, open-mouth respectively. Then the element-
wise difference between Ws and Wo, ∇Ws,o, and the difference between Ws and
Wy, ∇Ws,y, are obtained to measure their relevancy. The mean and variance
of ∇Ws,o is 0.18 and 0.03 while the mean and variance of ∇Ws,y is 0.24 and
0.047.

We further empirically validate this assumption by introducing an additional
regularization loss to encode human prior knowledge on the tasks’ relevancy. We
assume the learned W for smile would be more similar to the one for open mouth
compared with the one for young. We regularize the pairs of relevant tasks to
have similar task-specific Ws with

La = max(0, ‖Wi − Wj‖2 + β − ‖Wi − Wk‖2), (8)

where β is the expected margin, i, j, k denotes three tasks, and task pair (i, j)
is considered more relevant compared to task pair (i, k). La is weighted by a
hyper-parameter λ and combined with the above triplet loss over samples in
training.

As shown in Table 1, the accuracy of our method augmented with this regu-
larization loss is better but the gap is only marginal. This suggests that without
encoding prior knowledge through the loss, the learned Ws may implicitly cap-
ture task relationships in a similar way. On the other hand, it is impractical to
manually define all pairwise relationships when the number of tasks scales up,
hence we ignore this regularization loss in our large-scale experiments.

4 Experiments

In the experiments, we evaluate the performance of our approach on the face
retrieval and product retrieval tasks.

4.1 Setup

In both retrieval settings, we define a task as retrieval based on a certain attribute
of either face or product. Both datasets have the per-image annotation for each
attribute. To quantitatively evaluate the methods under the retrieval setting,
we randomly sample image triplets from their testing sets as our benchmarks.
Each triplet consists of an anchor sample Ia, a positive sample Ip, and a negative
sample In. Given a triplet, we retrieve one sample from Ip and In with Ia and
consider it a success if Ip is preferred. In our method, we extract discriminative
features with the proposed network and measure image pair distance by their
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Table 2. Our Basic Neural Network Architecture: Conv-Pool-ResnetBlock stands for
a 3 × 3 conv-layer followed by a stride 2 pooling layer and a standard residual block
consist of 2 3 × 3 conv-layers.

Name Operation Output Size

conv1 3 × 3 convolution 148 × 148 × 32

block2 Conv-Pool-ResnetBlock 73 × 73 × 64

block3 Conv-Pool-ResnetBlock 35 × 35 × 128

block4 Conv-Pool-ResnetBlock 16 × 16 × 128

block5 Conv-Pool-ResnetBlock 7 × 7 × 128

fc Fully-Connected 256

euclidean distance of features. The accuracy metric is the ratio of successfully
retrieved triplets.

Unless stated otherwise, we use the neural network architecture in Table 2
for our method, our re-implementation of other state-of-the-art methods, and
our baseline methods.

We add the proposed Modulation modules to all layers from block4 to the
final layer and use ADAGRAD [1] for optimization in training with learning
rate 0.01. We uniformly initialize the parameters in all added modules to be 1.
We use the batch size of 180 for 20 tasks and 168 for 7 tasks joint training. In
each mini-batch, we evenly sample triplets for all tasks. Our method generally
converges after 40 epochs.

4.2 Face Retrieval

Dataset. We use Celeb-A dataset [12] for the face retrieval experiment. Celeb-
A consists of more than 200,000 face images with binary annotations on 40 face
attributes related to age, expression, decoration, etc. We select 20 attributes
more related to face appearance and ignore attributes around decoration such
as eyeglasses and hat for our experiments. We also report the results on 40
attributes to verify the effectiveness on 40 attributes.

We randomly sampled 30000 triplets for training and 10000 triplets for testing
for each task. Our basic network architecture is shown in Table 2. We augment
it by inserting our gradient modulation modules and train from scratch.

Results. We report our evaluation of the following methods in Table 3:

– Ours: we insert the proposed Modulation modules to the block4, block5, and
fc layers to the network in Table 2 and jointly train it with all training triplets
from 20 tasks;

– Conditional Similarity Network (CSN) from Veit et al. [26]: we follow the
open-sourced implementation from the authors to replace the network archi-
tecture with ours and jointly train it with all training triplets from 20 tasks;
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– Independent Task-specific Network (ITN): in this strong baseline we train 20
task-specific neural networks with training triplets from each task indepen-
dently;

– Single Fully-shared Network (FSN): we train one network with all training
triplets.

Table 3. Accuracy comparison on the joint training of 20 face attributes: with far fewer
parameters, our method achieves best mean accuracy over the 20 tasks compared with
the competing methods.

Methods: Ours CSN ITN FSN IB-256 IB-25 Only mask

Average
Accuracy

84.86% 72.81% 84.61% 69.4% 83.69% 75.47% 76.32%

Number of
Baseline
Parameters

3 M 3 M 3 M 3 M 3 M 3 M 3 M

Number of
additional
Parameters

10 k 3 k 51 M 0 1.3 M 128 k 10 k

smile 93.77% 75.59% 93.32% 78.83% 92.76% 82.91% 87.64%

shadow 94.67% 92.83% 92.25% 85.39% 92.83% 88.02% 86.41%

bald 91.83% 87.80% 90.70% 81.79% 89.47% 78.11% 88.42%

are-eyebrows 78.36% 63.94% 79.60% 66.19% 76.84% 66.00% 72.10%

chubby 90.2% 85.32% 87.29% 79.06% 88.66% 82.79% 85.39%

double-chin 91.45% 85.61% 89.57% 81.15% 89.92% 83.08% 87.19%

high-
cheekbone

88.53% 71.25% 88.93% 74.57% 87.25% 76.53% 82.80%

goatee 94.47% 90.66% 94.06% 83.48% 94.17% 84.68% 91.52%

mustache 93.41% 89.21% 93.23% 82.40% 93.21% 87.52% 89.89%

no-beard 93.84% 82.35% 93.69% 80.52% 93.98% 86.51% 85.69%

sideburns 95.27% 90.95% 94.88% 86.20% 95.04% 88.81% 91.85%

bangs 90.22% 71.91% 89.96% 69.96% 89.13% 78.75% 80.34%

straight-hair 72.98% 63.31% 73.24% 61.70% 71.98% 62.33% 65.47%

wavy-hair 76.59% 59.34% 76.10% 59.49% 75.62% 64.04% 65.11%

receding-
hairline

87.33% 75.63% 86.93% 72.02% 86.24% 80.17% 79.94%

bags-eyes 85.90% 76.39% 85.93% 72.39% 84.64% 76.01% 82.05%

bushy-
eyebrows

88.73% 79.22% 88.32% 74.52% 88.44% 80.50% 80.50%

young 84.87% 60.61% 84.90% 61.55% 83.48% 73.05% 66.23%

oval-face 72.21% 64.33% 71.52% 63.54% 70.16% 62.10% 65.10%

mouth-open 94.59% 87.32% 94.40% 72.71% 92.22% 89.03% 86.59%
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Table 4. Comparison of UCR between different tasks on joint training of seven face
attributes with our method (red) and the fully shared network baseline (black): we
quantitatively demonstrate the mitigation of destructive interference with our method.

smile ovalface shadow bald arc-eyebrows big-lips big-nose

smile - 51.56/48.47 67.70/26.33 67.82/32.30 52.32/45.40 54.83/49.49 58.72/45.25

ovalface 51.56/48.47 - 67.36/26.94 64.99/35.29 57.86/50.13 57.74/49.32 54.98/46.64

shadow 67.70/26.33 67.36/26.94 - 91.67/30.54 66.87/26.48 72.51/28.25 69.90/29.99

bald 67.82/32.30 64.99/35.29 91.67/30.54 - 61.74/31.67 67.60/36.22 72.66/41.04

arc-eyebrows 52.32/45.40 57.86/50.13 66.87/26.48 61.74/31.67 - 58.86/51.13 50.34/41.43

big-lips 54.83/46.49 57.74/49.32 72.51/28.25 67.70/36.22 58.86/51.13 - 55.20/46.84

big-nose 58.72/45.25 54.98/46.64 69.90/29.99 72.66/41.04 50.34/41.43 55.20/46.84 -

– Independent Branch 256 (IB-256): based on shared parameters, we add task-
specific branch with feature size 256.

– Independent Branch 25 (IB-25): based on shared parameters, we add task-
specific branch with feature size 25.

– Only-mask: our network is pretrained from the independent branch model,
the shared parameters are fixed and only the module parameters are learned.

Table 5. Ablation Study of our method: with more layers modulated by the proposed
method, performance generally improves; channel-wise projection module is marginally
better than the default channel-wise scaling vector design.

Face Attributes: smile ovalface shadow bald arc-eyebrows big-lips big-nose Average

Accuracy

Single Fully-shared

Network

78.39% 64.39% 79.55% 77.62% 69.17% 61.71% 68.88% 71.38%

Independent Task-specific

Networks

93.32% 71.52% 92.25% 90.70% 79.60% 67.35% 84.35% 82.72%

CSN 91.39% 68.41% 92.51% 90.79% 77.53% 65.79% 82.03% 81.20%

Ours (from block5) 93.35% 70.47% 90.44% 88.79% 77.12% 66.36% 83.84% 81.48%

Ours (from block4) 93.69% 71.44% 92.06% 90.66% 80.00% 67.15% 84.26% 82.75%

Ours (from block3) 93.83% 71.04% 93.28% 90.66% 79.76% 67.53% 84.76% 82.98%

Ours (from block2) 94.11% 71.94% 92.5% 90.70% 78.66% 66.36% 84.10% 82.62%

channel-wise projection

(from block4)

94.10% 71.98% 92.69% 90.58% 78.95% 66.78% 84.48% 82.79%

Single Fully-shared network and CSN severely suffer from the destructive
interference as shown in Table 3. Note when jointly training only 7 tasks, CSN
performs much better than the fully-shared network and similarly to fully shared
network with additional parameters as shown in Table 5. However, it does not
scale up to handle as many as 20 tasks. Since the majority of the parameters are
naively shared across tasks until the last layer, CSN still suffers from destructive
interference.

We then compare our methods with Independent Branch methods. Inde-
pendent Branch methods naively add task specific branches above the shared
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parameters. The branching for IB-25 and IB256 begins at the end of the base-
line model in Table 2, i.e., different attributes have different branches after the
FC layer. As illustrated in Table 3, our method clearly outperforms them with
much fewer task-specific parameters. Regarding the number of additional param-
eters, we observe that to approximate accuracy of our method, this baseline needs
about 1.3 M task-specific parameters, which is 100 times of ours. The comparison
indicates that our module is more efficient in leveraging additional parameters
budget.

Table 6. Accuracy Comparison on joint training of 4 product retrieval tasks on UT-
Zappos50k: our method significantly outperforms others.

Tasks Class Closure Gender Heel Average
Accuracy

Single Fully-shared Network 78.95% 80.33% 69.22% 73.35% 75.46%

Independent Task-specific
Networks

92.01% 89.12% 79.10% 85.97% 86.61%

CSN [26] 93.06% 89.37% 78.09 86.42% 86.73%

Ours 93.34% 90.57% 79.50% 89.27% 88.17%

Compared with the independently trained task-specific networks, our method
achieves slightly better average accuracy with almost 20 times fewer parame-
ters. Notably, our method achieves obvious improvement for both face shape
related attributes (chubby, double chin) and all three beard related attributes
(goatee, mustache, sideburns), which demonstrates that the proposed method
does not only decouple unrelated tasks but also adaptively couples related tasks
to improve their learning. We show some example retrieval results in Fig. 4.

We reported the Update Compliance Ratio (UCR) comparison in Table 4.
Our method significantly improves the UCR in the joint training for all task
pairs. This indicates that the proposed module is effective in alleviating the
destructive interference by leading the gradients over shared parameters from
different tasks to be more consistent.

To further validate that the source of improvement is from better shared
parameters instead of simply additional task specific parameters. We keep our
shared parameters fixed as the ones trained with the strong baseline IB-256 and
only make the modulation modules trainable. As reported in the last column
in Table 3, the results are not as good as our full pipeline, which suggests that
the proposed modules improved the learning of shared parameters. To validate
the effectiveness of our method on 40 attributes, we evaluate our method on 40
attributes and obtain average 85.75% which is significant better than 78.22% of
our baseline IB-25 which has same network complexity but with independent
branches.
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Ablation Study. In Table 5, we evaluate how the performance evolves when we
insert more Modulation modules into the network. By adding proposed modules
to all layers after blockN , N = 5, 4, 3, 2, we observe that the performance gener-
ally increases with more layers modulated. This is well-aligned with our intuition
that with gradients modulated in more layers, the destructive inference problem
gets solved better. Because early layers in the neural networks generally learn
primitive filters [36] shared across a broad spectrum of tasks, shared parameters
may not suffer from conflicting updates. Hence the performance improvement
saturates eventually.

We also experiment with channel-wise projection matrix instead of channel-
wise scaling vector in the proposed modules as introduced in Sect. 3.2. We observe
marginal improvement with the more complicated module, as shown in the last
row of Table 5. This suggests that potentially with more parameters being mod-
ulated, the overall performance improves at the cost of additional task-specific
parameters. It also shows that the proposed channel-wise scaling vector design
is a cost-effective choice.

4.3 Product Retrieval

Dataset. We use UT-Zappos50K dataset [34,35] for the product retrieval exper-
iment. UT-Zappos50K is a large shoe dataset consisting of more than 50,000
catalog images collected from the web. The datasets are richly annotated and
we can retrieve shoes based on their type, suggested gender, height of their heel,
and the closing mechanism. We jointly learn these 4 tasks in our experiment.
We follow the same training, validation, and testing set splits as Veit et al. [26]
to sample triplets.

Results. As shown in Table 6, our method is significantly better than all other
competing methods. Because CSN manually initializes the 1-dimensional mask
for each attribute to be non-overlapping, their method does not exploit their
correlation well when two tasks are correlated. We argue that naively sharing
features for all tasks may hinder the further improvement of CSN due to gradient
discrepancy among different tasks. In our method, proposed modules are inserted
in the network and the correlation of different tasks are effectively exploited.
Especially for heel task, our method obtains a nearly 3 point gain over CSN.
Note that because our network architecture is much simpler than the one used
by Veit et al. [26] and does not pre-train on ImageNet. The numbers are generally
not compatible to those reported in their paper.

5 Discussion

5.1 General Applicability

In this paper, we mainly discuss multi-task learning with application in image
retrieval in which each task has similar network structure and loss functions.
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Fig. 4. Example face retrieval results in two tasks: using models jointly trained for 20
face attributes with CSN and our method respectively. Some incorrectly ranked faces
are highlighted in red. (Color figure online)

By design the proposed module is not limited to a specific loss and should be
applicable to handle different tasks and different loss functions.

In general multi-task learning, each task may have its specifically designed
network architecture and own loss, such as face detection and face align-
ment [19,37], learning object detection and segmentation [2,4], learning seman-
tic segmentation and depth estimation [15,29]. The signals from different tasks
could be explicitly conflicting as well and lead to severe destructive interference
especially when the number of jointly learned tasks scale up. When such severe
destructive interference happens, the proposed module could be added to mod-
ulate the update directions as well as task-specific features. We leave it as our
future work to validate this assumption through experiments.

5.2 Speed and Memory Size Trade-off

Similar to a multi-branch architecture and arguably most multi-task learning
frameworks, our method shares the problem of runtime speed and memory size
trade-off in inference. One can either choose to keep all task-specific feature maps
in memory to finish all the predictions in a single pass or iteratively feed-forward
through the network from the shared feature maps to keep a tight memory foot-
print. However, we should highlight that our method can achieve better accuracy
with a more compact model in storage. Either a single pass inference or iterative
inference could be feasible with our method. Since most computations happen in
the early stage in inference, with the proposed modules, our method only added
15% overhead in feed-forward time. The feature maps after block4 are much
smaller than the ones in the early stages, so the increased memory footprint
would be sustainable for 20 tasks too.
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6 Conclusion

In this paper, we propose a Modulation module for multi-task learning. We
identify the destructive interference problem in joint learning of unrelated tasks
and propose to quantify it with Update Compliance Ratio. The proposed mod-
ules alleviate this problem by modulating the directions of gradients in back-
propagation and help extract better task-specific features by exploiting related
tasks. Extensive experiments on CelebA dataset and UT-Zappos50K dataset
verify the effectiveness and advantage of our approach over other multi-task
learning methods.
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