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Abstract. Monocular visual odometry approaches that purely rely on
geometric cues are prone to scale drift and require sufficient motion par-
allax in successive frames for motion estimation and 3D reconstruction.
In this paper, we propose to leverage deep monocular depth prediction
to overcome limitations of geometry-based monocular visual odometry.
To this end, we incorporate deep depth predictions into Direct Sparse
Odometry (DSO) as direct virtual stereo measurements. For depth pre-
diction, we design a novel deep network that refines predicted depth from
a single image in a two-stage process. We train our network in a semi-
supervised way on photoconsistency in stereo images and on consistency
with accurate sparse depth reconstructions from Stereo DSO. Our deep
predictions excel state-of-the-art approaches for monocular depth on the
KITTI benchmark. Moreover, our Deep Virtual Stereo Odometry clearly
exceeds previous monocular and deep-learning based methods in accu-
racy. It even achieves comparable performance to the state-of-the-art
stereo methods, while only relying on a single camera.

Keywords: Monocular depth estimation
Monocular visual odometry · Semi-supervised learning

1 Introduction

Visual odometry (VO) is a highly active field of research in computer vision with
a plethora of applications in domains such as autonomous driving, robotics,
and augmented reality. VO with a single camera using traditional geometric
approaches inherently suffers from the fact that camera trajectory and map
can only be estimated up to an unknown scale which also leads to scale drift.
Moreover, sufficient motion parallax is required to estimate motion and structure

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01237-3 50) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11212, pp. 835–852, 2018.
https://doi.org/10.1007/978-3-030-01237-3_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01237-3_50&domain=pdf
http://orcid.org/0000-0002-1497-9630
http://orcid.org/0000-0002-2252-9955
http://orcid.org/0000-0002-2328-4363
https://doi.org/10.1007/978-3-030-01237-3_50
https://doi.org/10.1007/978-3-030-01237-3_50


836 N. Yang et al.

Fig. 1. DVSO achieves monocular visual odometry on KITTI on par with state-of-the-
art stereo methods. It uses deep-learning based left-right disparity predictions (lower
left) for initialization and virtual stereo constraints in an optimization-based direct
visual odometry pipeline. This allows for recovering accurate metric estimates.

from successive frames. To avoid these issues, typically more complex sensors
such as active depth cameras or stereo rigs are employed. However, these sensors
require larger efforts in calibration and increase the costs of the vision system.

Metric depth can also be recovered from a single image if a-priori knowledge
about the typical sizes or appearances of objects is used. Deep learning based
approaches tackle this by training deep neural networks on large amounts of data.
In this paper, we propose a novel approach to monocular visual odometry, Deep
Virtual Stereo Odometry (DVSO), which incorporates deep depth predictions
into a geometric monocular odometry pipeline. We use deep stereo disparity
for virtual direct image alignment constraints within a framework for windowed
direct bundle adjustment (e.g. Direct Sparse Odometry [8]). DVSO achieves
comparable performance to the state-of-the-art stereo visual odometry systems
on the KITTI odometry benchmark. It can even outperform the state-of-the-
art geometric VO methods when tuning scale-dependent parameters such as the
virtual stereo baseline.

As an additional contribution, we propose a novel stacked residual network
architecture that refines disparity estimates in two stages and is trained in a
semi-supervised way. In typical supervised learning approaches [6,24,25], depth
ground truth needs to be acquired for training with active sensors like RGB-D
cameras and 3D laser scanners which are costly to obtain. Requiring a large
amount of such labeled data is an additional burden that limits generaliza-
tion to new environments. Self-supervised [11,14] and unsupervised learning
approaches [49], on the other hand, overcome this limitation and do not require
additional active sensors. Commonly, they train the networks on photometric
consistency, for example in stereo imagery [11,14], which reduces the effort for
collecting training data. Still, the current self-supervised approaches are not
as accurate as supervised methods [23]. We combine self-supervised and super-
vised training, but avoid the costly collection of LiDAR data in our approach.
Instead, we make use of Stereo Direct Sparse Odometry (Stereo DSO [40]) to
provide accurate sparse 3D reconstructions on the training set. Our deep depth
prediction network outperforms the current state-of-the-art methods on KITTI.

A video demonstrating our methods as well as the results is available at
https://youtu.be/sLZOeC9z tw.

https://youtu.be/sLZOeC9z_tw


DVSO: Leveraging Deep Depth Prediction for Monocular DSO 837

1.1 Related Work

Deep Learning for Monocular Depth Estimation. Deep learning based
approaches have recently achieved great advances in monocular depth estima-
tion. Employing deep neural network avoids the hand-crafted features used in
previous methods [19,36]. Supervised deep learning [6,24,25] has recently shown
great success for monocular depth estimation. Eigen et al. [5,6] propose a two
scale CNN architecture which directly predicts the depth map from a single
image. Laina et al. [24] propose a residual network [17] based fully convo-
lutional encoder-decoder architecture [27] with a robust regression loss func-
tion. The aforementioned supervised learning approaches need large amounts of
ground-truth depth data for training. Self-supervised approaches [11,14,44] over-
come this limitation by exploiting photoconsistency and geometric constraints
to define loss functions, for example, in a stereo camera setup. This way, only
stereo images are needed for training which are typically easier to obtain than
accurate depth measurements from active sensors such as 3D lasers or RGB-D
cameras. Godard et al. [14] achieve the state-of-the-art depth estimation accu-
racy for a fully self-supervised approach. The semi-supervised scheme proposed
by Kuznietsov et al. [23] combines the self-supervised loss with supervision with
sparse LiDAR ground truth. They do not need multi-scale depth supervision
or left-right consistency in their loss, and achieve better performance than the
self-supervised approach in [14]. The limitation of this semi-supervised approach
is the requirement for LiDAR data which are costly to collect. In our approach
we use Stereo Direct Sparse Odometry to obtain sparse depth ground-truth for
semi-supervised training. Since the extracted depth maps are even sparser than
LiDAR data, we also employ multi-scale self-supervised training and left-right
consistency as in Godard et al. [14]. Inspired by [20,34], we design a stacked
network architecture leveraging the concept of residual learning [17].

Deep Learning for VO/SLAM. In recent years, large progress has been
achieved in the development of monocular VO and SLAM methods [8,9,31,32].
Due to projective geometry, metric scale cannot be observed with a single cam-
era [37] which introduces scale drift. A popular approach is hence to use stereo
cameras for VO [8,10,31] which avoid scale ambiguity and leverage stereo match-
ing with a fixed baseline for estimating 3D structure. While stereo VO delivers
more reliable depth estimation, it requires self-calibration for long-term opera-
tion [4,46]. The integration of a second camera also introduces additional costs.
Some recent monocular VO approaches have integrated monocular depth esti-
mation [39,46] to recover the metric scale by scale-matching. CNN-SLAM [39]
extends LSD-SLAM [9] by predicting depth with a CNN and refining the depth
maps using Bayesian filtering [7,9]. Their method shows superior performance
over monocular SLAM [9,30,35,45] on indoor datasets [15,38]. Yin et al. [46]
propose to use convolutional neural fields and consecutive frames to improve the
monocular depth estimation from a CNN. Camera motion is estimated using
the refined depth. CodeSLAM [2] focuses on the challenge of dense 3D recon-
struction. It jointly optimizes a learned compact representation of the dense
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Fig. 2. Overview of StackNet architecture.

geometry with camera poses. Our work tackles the problem of odometry with
monocular cameras and integrates deep depth prediction with multi-view stereo
to improve camera pose estimation. Another line of research trains networks
to directly predict the ego-motion end-to-end using supervised [41] or unsuper-
vised learning [26,49]. However, the estimated ego-motion of these methods is
still by far inferior to geometric visual odometry approaches. In our approach,
we phrase visual odometry as a geometric optimization problem but incorporate
photoconsistency constraints with state-of-the-art deep monocular depth predic-
tions into the optimization. This way, we obtain a highly accurate monocular
visual odometry that is not prone to scale drift and achieves comparable results
to traditional stereo VO methods.

2 Semi-Supervised Deep Monocular Depth Estimation

In this section, we will introduce our semi-supervised approach to deep monocu-
lar depth estimation. It builds on three key ingredients: self-supervised learning
from photoconsistency in a stereo setup similar to [14], supervised learning based
on accurate sparse depth reconstruction by Stereo DSO, and two-stage refine-
ment of the network predictions in a stacked encoder-decoder architecture.

2.1 Network Architecture

We coin our architecture StackNet since it stacks two sub-networks, SimpleNet
and ResidualNet, as depicted in Fig. 2. Both sub-networks are fully convolutional
deep neural network adopted from DispNet [28] with an encoder-decoder scheme.
ResidualNet has fewer layers and takes the outputs of SimpleNet as inputs.
Its purpose is to refine the disparity maps predicted by SimpleNet by learning
an additive residual signal. Similar residual learning architectures have been
successfully applied to related deep learning tasks [20,34]. The detailed network
architecture is illustrated in the supplementary material.

SimpleNet. SimpleNet is an encoder-decoder architecture with a ResNet-50
based encoder and skip connections between corresponding encoder and decoder
layers. The decoder upprojects the feature maps to the original resolution and
generates 4 pairs of disparity maps displeft

simple,s and dispright
simple,s in different res-

olutions s ∈ [0, 3]. The upprojection is implemented by resize-convolution [33],

https://vision.in.tum.de/_media/spezial/bib/yang2018dvso-supp.pdf
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i.e. a nearest-neighbor upsampling layer by a factor of two followed by a con-
volutional layer. The usage of skip connections enables the decoder to recover
high-resolution results with fine-grained details.

ResidualNet. The purpose of ResidualNet is to further refine the disparity
maps predicted by SimpleNet. ResidualNet learns the residual signals dispres,s

to the disparity maps dispsimple,s (both left and right and for all resolutions).
Inspired by FlowNet 2.0 [20], the inputs to ResidualNet contain various infor-
mation on the prediction and the errors made by SimpleNet: we input I left ,
displeft

simple,0, Irightrecons , I leftrecons and el, where

– Irightrecons is the reconstructed right image by warping I left using dispright
simple,0.

– I leftrecons is the generated left image by back-warping Irightrecons using displeft
simple,0.

– el is the �1 reconstruction error between I left and I leftrecons

For the warping, rectified stereo images are required while stereo camera intrin-
sics and extrinsics are not needed as our network directly outputs disparity.

The final refined outputs disps are disps = dispsimple,s ⊕ dispres,s, s ∈ [0, 3],
where ⊕ is element-wise summation. The encoder of ResidualNet contains 12
residual blocks in total and predicts 4 scales of residual disparity maps as Sim-
pleNet. Adding more layers does not further improve performance in our exper-
iments. Notably, only the left image is used as an input to either SimpleNet
and ResidualNet, while the right image is not required. However, the network
outputs a refined disparity map for the left and right stereo image. Both facts
will be important for our monocular visual odometry approach.

2.2 Loss Function

We define a loss Ls at each output scale s, resulting in the total loss L =∑3
s=0 Ls. The loss at each scale Ls is a linear combination of five terms which

are symmetric in left and right images,

Ls = αU

(
Lleft

U + Lright
U

)
+ αS

(
Lleft

S + Lright
S

)
+ αlr

(
Lleft
lr + Lright

lr

)

+ αsmooth

(
Lleft
smooth + Lright

smooth

)
+ αocc

(Lleft
occ + Lright

occ

)
, (1)

where LU is a self-supervised loss, LS is a supervised loss, Llr is a left-right
consistency loss, Lsmooth is a smoothness term encouraging the predicted dis-
parities to be locally smooth and Locc is an occlusion regularization term. In the
following, we detail the left components Lleft of the loss function at each scale.
The right components Lright are defined symmetrically.

Self-supervised Loss. The self-supervised loss measures the quality of the
reconstructed images. The reconstructed image is generated by warping the input
image into the view of the other rectified stereo image. This procedure is fully
(sub-)differentiable for bilinear sampling [21]. Inspired by [14,47], the quality of
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the reconstructed image is measured with the combination of the �1 loss and
single scale structural similarity (SSIM) [42]:

Lleft
U =

1
N

∑

x,y

α
1 − SSIM

(
I left(x, y), I leftrecons(x, y)

)

2
(2)

+ (1 − α)‖I left(x, y) − I leftrecons(x, y)‖1,

with a 3 × 3 box filter for SSIM and α set to 0.84.

Supervised Loss. The supervised loss measures the deviation of the predicted
disparity map from the disparities estimated by Stereo DSO at a sparse set of
pixels:

Lleft
s =

1
N

∑

(x,y)∈ΩDSO,left

βε

(
displeft(x, y) − displeft

DSO(x, y)
)

(3)

where ΩDSO,left is the set of pixels with disparities estimated by DSO and βε(x)
is the reverse Huber (berHu) norm introduced in [24] which lets the training focus
more on larger residuals. The threshold ε is adaptively set as a batch-dependent
value ε = 0.2max(x,y)∈ΩDSO,left

∣
∣
∣displeft(x, y) − displeft

DSO(x, y)
∣
∣
∣.

Left-Right Disparity Consistency Loss. Given only the left image as input,
the network predicts the disparity map of the left as well as the right image as
in [14]. As proposed in [14,47], consistency between the left and right disparity
image is improved by

Lleft
lr =

1
N

∑

x,y

∣
∣
∣displeft(x, y) − dispright(x − displeft(x, y), y)

∣
∣
∣. (4)

Disparity Smoothness Regularization. Depth reconstruction based on
stereo image matching is an ill-posed problem on its own: the depth of homo-
geneously textured areas and occluded areas cannot be determined. For these
areas, we apply the regularization term

Lleft
smooth=

1
N

∑

x,y

∣
∣
∣∇2

xdisp
left(x, y)

∣
∣
∣e

−
∥
∥
∥∇2

xI left (x,y)

∥
∥
∥
+

∣
∣
∣∇2

ydisp
left(x, y)

∣
∣
∣e

−
∥
∥
∥∇2

yI left (x,y)

∥
∥
∥

(5)
that assumes that the predicted disparity map should be locally smooth. We use
a second-order smoothness prior [43] and downweight it when the image gradient
is high [18].

Occlusion Regularization. Lleft
smooth itself tends to generate a shadow area

where values gradually change from foreground to background due to stereo
occlusion. To favor background depths and hard transitions at occlusions [48],
we impose Lleft

occ which penalizes the total sum of absolute disparities. The com-
bination of smoothness- and occlusion regularizer prefers to directly take the
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(smaller) closeby background disparity which better corresponds to the assump-
tion that the background part is uncovered

Lleft
occ =

1
N

∑

x,y

∣
∣
∣displeft(x, y)

∣
∣
∣. (6)

3 Deep Virtual Stereo Odometry

Deep Virtual Stereo Odometry (DVSO) builds on the windowed sparse direct
bundle adjustment formulation of monocular DSO. We use our disparity predic-
tions for DSO in two key ways: Firstly, we initialize depth maps of new keyframes
from the disparities. Beyond this rather straight-forward approach, we also incor-
porate virtual direct image alignment constraints into the windowed direct bun-
dle adjustment of DSO. We obtain these constraints by warping images with the
estimated depth by bundle adjustment and the predicted right disparities by our
network assuming a virtual stereo setup. As shown in Fig. 3, DVSO integrates
both the predicted left disparities and right disparities for the left image. The
right image of the stereo setup is not used for our VO method at any stage,
making it a monocular VO method.

In the following, we use DL and DR as shorthands to represent the predicted
left (displeft

0 ) and right disparity map (dispright
0 ) at scale s = 0, respectively.

When using purely geometric cues, scale drift is one of the main sources of error
of monocular VO due to scale unobservability [37]. In DVSO we use the left
disparity map DL predicted by StackNet for initialization instead of randomly
initializing the depth like in monocular DSO [8]. The disparity value of an image
point with coordinate p is converted to the inverse depth dp using the recti-
fied camera intrinsics and stereo baseline of the training set of StackNet [16],
dp = DL(p)

fxb . In this way, the initialization of DVSO becomes more stable than
monocular DSO and the depths are initialized with a consistent metric scale.

The point selection strategy of DVSO is similar to monocular DSO [8], while
we also introduce a left-right consistency check (similar to Equation (4)) to filter
out the pixels which likely lie in the occluded area

elr =
∣
∣
∣DL(p) − DR(p′)

∣
∣
∣ with p′ = p − [

DL(p) 0
]�

. (7)

The pixels with elr > 1 are not selected.
Every new frame is firstly tracked with respect to the reference keyframe

using direct image alignment in a coarse-to-fine manner [8]. Afterwards DVSO
decides if a new keyframe has to be created for the new frame following the cri-
teria proposed by [8]. When a new keyframe is created, the temporal multi-view
energy function Ephoto :=

∑
i∈F

∑
p∈Pi

∑
j∈obs(p) Ep

ij needs to be optimized,
where F is a fixed-sized window containing the active keyframes, Pi is the set of
points selected from its host keyframe with index i and j ∈ obs(p) is the index
of the keyframe which observes p. Ep

ij is the photometric error of the point p
when projected from the host keyframe Ii onto the other keyframe Ij :



842 N. Yang et al.

Joint OptimizationNew KF?

No No
Yes

Initialized? Tracking     Make KF
Yes

 Marginalization

Refine KFs

Initialization

Fig. 3. System overview of DVSO. Every new frame is used for visual odometry and
fed into the proposed StackNet to predict left and right disparity. The predicted left
and right disparities are used for depth initialization, while the right disparity is used
to form the virtual stereo term in direct sparse bundle adjustment.

Ep
ij := ωp

∥
∥
∥
∥(Ij [p̃] − bj) − eaj

eai
(Ii[p] − bi)

∥
∥
∥
∥

γ

, (8)

where p̃ is the projected image coordinate using the relative rotation matrix
R ∈ SO(3) and translation vector t ∈ R

3 [16], p̃ = Πc

(
RΠ−1

c (p, dp) + t
)
,

where Πc and Π−1
c are the camera projection and back-projection functions.

The parameters ai, aj , bi and bj are used for modeling the affine brightness
transformation [8]. The weight ωp penalizes the points with high image gradi-
ent [8] with the intuition that the error originating from bilinear interpolation of
the discrete image values is larger. ‖·‖γ is the Huber norm with the threshold γ.
For the detailed explanation of the energy function, please refer to [8].

To further improve the accuracy of DVSO, inspired by Stereo DSO [40] which
couples the static stereo term with the temporal multi-view energy function, we
introduce a novel virtual stereo term E†p for each point p

E†p
i = ωp

∥
∥
∥I†

i

[
p†] − Ii [p]

∥
∥
∥

γ
with I†

i

[
p†] = Ii

[
p† − [

DR
(
p†) 0

]�]
, (9)

where p† = Πc(Π−1
c (p, dp)+tb) is the virtual projected coordinate of p using the

vector tb denoting the virtual stereo baseline which is known during the training
of StackNet. The intuition behind this term is to optimize the estimated depth of
the visual odometry to become consistent with the disparity prediction of Stack-
Net. Instead of imposing the consistency directly on the estimated and predicted
disparities, we formulate the residuals in photoconsistency which better reflects
the uncertainties of the prediction of StackNet and also keeps the unit of the
residuals consistent with the temporal direct image alignment terms.

We then optimize the total energy

Ephoto :=
∑

i∈F

∑

p∈Pi

⎛

⎝λE†p
i +

∑

j∈obs(p)

Ep
ij

⎞

⎠ , (10)

where the coupling factor λ balances the temporal and the virtual stereo term.
All the parameters of the total energy are jointly optimized using the Gauss
Newton method [8]. In order to keep a fixed size of the active window (N = 7
keyframes in our experiments), old keyframes are removed from the system by
marginalization using the Schur complement [8]. Unlike sliding window bundle
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Input GT Ours Kuznietsov et al.[23] Godard et al. [14] Garg et al.[11] Eigen et al.[6]

Fig. 4. Qualitative comparison with state-of-the-art methods. The ground truth is
interpolated for better visualization. Our approach shows better prediction on thin
structures than the self-supervised approach [14], and delivers more detailed disparity
maps than the semi-supervised approach using LiDAR data [23].

adjustment, the parameter estimates outside the optimization window including
camera poses and depths in a marginalization prior are also incorporated into the
optimization. In contrast to the MSCKF [29], the depths of pixels are explicitly
maintained in the state and optimized for. In our optimization framework we
trade off predicted depth and triangulated depth using robust norms.

4 Experiments

We quantitatively evaluate our StackNet with other state-of-the-art monocular
depth prediction methods on the publicly available KITTI dataset [12]. In the
supplementary materials, we demonstrate results on the Cityscapes dataset [3]
and the Make3D dataset [36] to show the generalization ability. For DVSO, we
evaluate its tracking accuracy on the KITTI odometry benchmark with other
state-of-the-art monocular as well as stereo visual odometry systems. In the sup-
plementary material, we also demonstrate its results on the Frankfurt sequence
of the Cityscapes dataset to show the generalization of DVSO.

4.1 Monocular Depth Estimation

Dataset. We train StackNet using the train/test split (K) of Eigen et al. [6]. The
training set contains 23488 images from 28 scenes belonging to the categories
“city”, “residential” and “road”. We used 22600 images of them for training and
the remaining ones for validation. We further split K into 2 subsets Ko and Kr.
Ko contains the images of the sequences which appear in the training set (but
not the test set) of the KITTI odometry benchmark on which we use Stereo
DSO [40] to extract sparse ground-truth depth data. Kr contains the remaining
images in K. Specifically, Ko contains the images of sequences 01, 02, 06, 08, 09
and 10 of the KITTI odometry benchmark.

Implementation Details. StackNet is implemented in TensorFlow [1] and
trained from scratch on a single Titan X Pascal GPU. We resize the images
to 512 × 256 for training and it takes less than 40 ms for inference including the
I/O overhead. The weights are set to αu = 1, αs = 10, αlr = 1, αsmooth = 0.1/2s
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and αocc = 0.01, where s is the output scale. As suggested by [14], we use expo-
nential linear units (ELUs) for SimpleNet, while we use leaky rectified linear
units (Leaky ReLUs) for ResidualNet. We first train SimpleNet on Ko in the
semi-supervised way for 80 epochs with a batch size of 8 using the Adam opti-
mizer [22]. The learning rate is initially set to λ = 10−4 for the first 50 epochs
and halved every 15 epochs afterwards until the end. Then we train SimpleNet
with λ = 5 × 10−5 on Kr for 40 epochs in the self-supervised way without LS .
In the end, we train again on Ko without LU using λ = 10−5 for 5 epochs. We
explain the dataset schedule as well as the parameter tuning in detail in the
supplementary material.

After training SimpleNet, we freeze its weights and train StackNet by cas-
cading ResidualNet. StackNet is trained with λ = 5 × 10−5 in the same dataset
schedules but with less epochs, i.e. 30, 15, 3 epochs, respectively. We apply
random gamma, brightness and color augmentations [14]. We also employ the
post-processing for left disparities proposed by Godard et al. [14] to reduce the
effect of stereo disocclusions. In the supplementary material we also provide an
ablation study on the various loss terms.

KITTI. Table 1 shows the evaluation results with the error metrics used in [6].
We crop the images as applied by Eigen et al. [6] to compare with [14], [23] within
different depth ranges. The best performance of our network is achieved with
the dataset schedule Ko → Kr → Ko as we described above. We outperform
the state-of-the-art self-supervised approach proposed by Godard et al. [14] by a
large margin. Our method also outperforms the state-of-the-art semi-supervised
method using the LiDAR ground truth proposed by Kuznietsov et al. [23] on all
the metrics except for the less restrictive δ < 1.252 and δ < 1.253.

Figure 4 shows a qualitative comparison with other state-of-the-art methods.
Compared to the semi-supervised approach, our results contain more details
and deliver comparable prediction on thin structures like the poles. Although
the results of Godard et al. [14] appear more detailed on some parts, they are
not actually accurate, which can be inferred by the quantitative evaluation. In
general, the predictions of Godard et al. [14] on thin objects are not as accu-
rate as our method. In the supplementary material, we show the error maps for
the predicted depth maps. Figure 5 further show the advantages of our method
compared to the state-of-the-art self-supervised and semi-supervised approaches.
The results of Godard et al. [14] are predicted by the network trained with both
the Cityscapes dataset and the KITTI dataset. On the wall of the far building
in the left figure, our network can better predict consistent depth on the sur-
face, while the prediction of the self-supervised network shows strong checker-
board artifact, which is apparently inaccurate. The semi-supervised approach
also shows checkerboard artifact (but much slighter). The right side of the figure
shows shadow artifacts for the approach of Godard et al. [14] around the bound-
aries of the traffic sign, while the result of Kuznietsov et al. [23] fails to predict
the structure. Please refer to our supplementary material for further results. We
also demonstrate how our trained depth prediction network generalizes to other
datasets in the supplementary material.

https://vision.in.tum.de/_media/spezial/bib/yang2018dvso-supp.pdf
https://vision.in.tum.de/_media/spezial/bib/yang2018dvso-supp.pdf
https://vision.in.tum.de/_media/spezial/bib/yang2018dvso-supp.pdf
https://vision.in.tum.de/_media/spezial/bib/yang2018dvso-supp.pdf
https://vision.in.tum.de/_media/spezial/bib/yang2018dvso-supp.pdf
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Table 1. Evaluation results on the KITTI [13] Raw test split of Eigen et al. [6]. CS
refers to the Cityscapes dataset [3]. Upper part: depth range 0-80 m, lower part: 1-
50 m.All results are obtained using the crop from [6]. Our SimpleNet trained on Ko

outperforms [14] (self-supervised) trained on CS and K. StackNet also outperforms
semi-supervision with LiDAR [23] on most metrics.

RMSE RMSE (log) ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Approach Dataset Lower is better Higher is better

Godard

et al. [14],

ResNet

CS→K 4.935 0.206 0.114 0.898 0.861 0.949 0.976

Kuznietsov

et al. [23]

K 4.621 0.189 0.113 0.741 0.862 0.960 0.986

Ours, SimpleNet Ko 4.886 0.209 0.112 0.888 0.862 0.950 0.976

Ours, SimpleNet Ko → Kr 4.817 0.202 0.108 0.862 0.867 0.950 0.977

Ours, SimpleNet Kr → Ko 4.890 0.208 0.115 0.870 0.863 0.950 0.977

Ours, SimpleNet Ko → Kr → Ko 4.785 0.199 0.107 0.852 0.866 0.950 0.978

Ours, StackNet Ko → Kr → Ko 4.442 0.187 0.097 0.734 0.888 0.958 0.980

Garg et al. [11]

L12 Aug 8×
K 5.104 0.273 0.169 1.080 0.740 0.904 0.962

Godard et al.

[14], ResNet

CS→K 3.729 0.194 0.108 0.657 0.873 0.954 0.979

Kuznietsov

et al. [23]

K 3.518 0.179 0.108 0.595 0.875 0.964 0.988

Ours, StackNet Ko → Kr → Ko 3.390 0.177 0.092 0.547 0.898 0.962 0.982

Input Ours Godard et al. [14] Kuznietsov et al. [23]

Fig. 5. Qualitative results on Eigen et al.’s KITTI Raw test split. The result of Godard
et al. [14] shows a strong shadow effect around object contours, while our result does
not. The result of Kuznietsov [23] shows failure on predicting the traffic sign. Both
other methods [14,23] predict checkerboard artifacts on the far building, while our
approach predicts such artifacts less.

4.2 Monocular Visual Odometry

KITTI Odometry Benchmark. The KITTI odometry benchmark contains
11 (0–10) training sequences and 11 (11–21) test sequences. Ground-truth 6D
poses are provided for the training sequences, whereas for the test sequences
evaluation results are obtained by submitting to the KITTI website. We use the
error metrics proposed in [12].

We firstly provide an ablation study for DVSO to show the effectiveness
of the design choices in our approach. In Table 2 we give results for DVSO in
different variants with the following components: initializing the depth with the
left disparity prediction (in), using the right disparity for the virtual stereo term
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in windowed bundle adjustment (vs), checking left-right disparity consistency
for point selection (lr), and tuning the virtual stereo baseline tb. The intuition
behind the virtual stereo baseline is that StackNet is trained over various camera
parameters and hence provides a depth scale for an average baseline. For tb, we
therefore tune the scale factors of different sequences with different cameras
intrinsics, to better align the estimated scale with the ground truth. Baselines
are tuned for each of the 3 different camera parameter sets in the training set
individually using grid search on one training sequence. Specifically, we tuned
the baselines on sequences 00, 03 and 05 which correspond to 3 different camera
parameter sets. The test set contains the same camera parameter sets as the
training set and we map the virtual baselines for tb correspondingly. Monocular
DSO (after Sim(3) alignment) is also shown as the baseline. The results show
that our full approach achieves the best average performance. Our StackNet
also adds significantly to the performance of DVSO compared with using depth
predictions from [14].

Table 2. Ablation study for DVSO. ∗ and † indicate the sequences used and not used
for training StackNet, respectively. trel(%) and rrel(

◦) are translational- and rotational
RMSE, respectively. Both trel and rrel are averaged over 100 to 800 m intervals. in:
DL is used for depth initialization. vs: virtual stereo term is used with DR. lr: left-
right disparity consistency is checked using predictions. tb: tuned virtual baseline is
used. DVSO’([14]): full (in, vs, lr, tb) with depth from [14]. DVSO: full with depth from
StackNet. Best results are shown as bold, second best italic. DVSO clearly outperforms
the other variants.

Mono DSO in in, vs in, vs, lr in, vs, tb DVSO’([14]) DVSO

Seq. trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00† 188 0.25 13.1 0.30 0.95 0.24 0.93 0.24 0.73 0.25 1.02 0.28 0.71 0.24

03† 17.7 0.17 9.10 0.29 2.56 0.19 2.56 0.18 0.78 0.19 4.78 0.18 0.79 0.18

04† 0.82 0.16 0.83 0.29 0.69 0.06 0.67 0.07 0.36 0.06 2.03 0.14 0.35 0.06

05† 72.6 0.23 12.7 0.23 0.67 0.23 0.64 0.23 0.61 0.23 2.11 0.21 0.58 0.22

07† 48.4 0.32 18.5 0.91 0.85 0.41 0.80 0.38 0.81 0.40 1.09 0.39 0.73 0.35

01∗ 9.17 0.12 4.30 0.41 1.50 0.11 1.52 0.12 1.15 0.11 1.23 0.11 1.18 0.11

02∗ 114 0.22 9.58 0.26 1.08 0.23 1.05 0.23 0.86 0.23 0.87 0.23 0.84 0.22

06∗ 42.2 0.20 11.2 0.30 0.84 0.23 0.80 0.24 0.73 0.23 0.87 0.24 0.71 0.20

08∗ 177 0.26 14.9 0.28 1.11 0.26 1.10 0.26 1.05 0.26 1.05 0.26 1.03 0.25

09∗ 28.1 0.21 14.2 0.23 1.03 0.21 0.95 0.21 0.88 0.21 0.87 0.21 0.83 0.21

10∗ 24.0 0.22 9.93 0.27 0.58 0.23 0.59 0.22 0.74 0.22 0.68 0.21 0.74 0.21

Mean† 65.50 0.23 10.85 0.40 1.14 0.23 1.12 0.22 0.66 0.23 2.21 0.24 0.63 0.21

Mean∗ 65.75 0.21 10.69 0.29 1.02 0.21 1.00 0.21 0.90 0.21 0.93 0.21 0.89 0.20

Overall

mean

65.64 0.21 10.76 0.34 1.08 0.22 1.06 0.22 0.79 0.22 1.51 0.22 0.77 0.20

We also compare DVSO with other state-of-the-art stereo visual odometry
systems on the sequences 00–10. The sequences with marker ∗ are used for train-
ing StackNet and the sequences with marker † are not used for training the net-
work. In Table 3 and the following tables, DVSO means our full approach with
baseline tuning (in, vs, lr, tb). The average RMSE of DVSO without baseline
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Table 3. Comparison with state-of-the-art stereo visual odometry. DVSO: our full
approach (in, vs, lr, tb). Global optimization and loop-closure are turned off for stereo
ORB-SLAM2 and Stereo LSD-SLAM. DVSO (monocular) achieves comparable perfor-
mance to these stereo methods.

St. LSD-VO [10] ORB-SLAM2 [31] St. DSO [40] in, vs, lr DVSO

Seq. trel rrel trel rrel trel rrel trel rrel trel rrel

00† 1.09 0.42 0.83 0.29 0.84 0.26 0.93 0.24 0.71 0.24

03† 1.16 0.32 0.71 0.17 0.92 0.16 2.56 0.18 0.77 0.18

04† 0.42 0.34 0.45 0.18 0.65 0.15 0.67 0.07 0.35 0.06

05† 0.90 0.34 0.64 0.26 0.68 0.19 0.64 0.23 0.58 0.22

07† 1.25 0.79 0.78 0.42 0.83 0.36 0.80 0.38 0.73 0.35

01∗ 2.13 0.37 1.38 0.20 1.43 0.09 1.52 0.12 1.18 0.11

02∗ 1.09 0.37 0.81 0.28 0.78 0.21 1.05 0.23 0.84 0.22

06∗ 1.28 0.43 0.82 0.25 0.67 0.20 0.80 0.24 0.71 0.20

08∗ 1.24 0.38 1.07 0.31 0.98 0.25 1.10 0.26 1.03 0.25

09∗ 1.22 0.28 0.82 0.25 0.98 0.18 0.95 0.21 0.83 0.21

10∗ 0.75 0.34 0.58 0.28 0.49 0.18 0.59 0.22 0.74 0.21

mean† 0.96 0.44 0.68 0.26 0.78 0.22 1.12 0.22 0.63 0.21

mean∗ 1.29 0.36 0.91 0.26 0.89 0.19 1.00 0.21 0.89 0.20

overall mean 1.14 0.40 0.81 0.26 0.84 0.20 1.06 0.22 0.77 0.20

Ours Godard et al.[6]
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Fig. 6. Results on KITTI odometry seq. 00. Top: comparisons with monocular methods
(Sim(3)-aligned) and stereo methods. DVSO provides significantly more consistent tra-
jectories than other monocular methods and compares well to stereo approaches. Bot-
tom: DVSO with StackNet produces more accurate trajectory and map than with [14].
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tuning is better than Stereo LSD-VO, but not as good as Stereo DSO [40] or
ORB-SLAM2 [31] (stereo, without global optimization and loop closure). Impor-
tantly, DVSO uses only monocular images. With the baseline tuning, DVSO
achieves even better average performance than all other stereo systems on both
rotational and translational errors. Figure 6 shows the estimated trajectory on
sequence 00. Both monocular ORB-SLAM2 and DSO suffer from strong scale
drift, while DVSO achieves superior performance on eliminating the scale drift.
We also show the estimated trajectory on 00 by running DVSO using the depth
map predicted by Godard et al. [14] with the model trained on the Cityscapes
and the KITTI dataset. For the results in Fig. 6 our depth predictions are more

Fig. 7. Evaluation results on the KITTI odometry test set. We show translational and
rotational errors with respect to path length intervals. For translational errors, DVSO
achieves comparable performance to Stereo LSD-SLAM, while for rotational errors,
DVSO achieves comparable results to Stereo DSO and better results than all other
methods. Note that with virtual baseline tuning, DVSO achieves the best performance
among all the methods evaluated.

Table 4. Comparison with deep learning approaches. Note that Deep VO [41] is trained
on sequences 00, 02, 08 and 09 of the KITTI Odometry Benchmark. UnDeepVO [26]
and SfMLearner [49] are trained unsupervised on seqs 00-08 end-to-end. Results of
DeepVO and UnDeepVO taken from [41] and [26] while for SfMLearner we ran their
pre-trained model. Our DVSO clearly outperforms state-of-the-art deep learning based
VO methods.

DeepVO [41] UnDeepVO [26] Yin et al. [46] SfMLearner [49] in, vs, lr DVSO

Seq. trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00† − − 4.41 1.92 − − 66.35 6.13 0.93 0.24 0.71 0.24

03† 8.49 6.89 5.00 6.17 − − 10.78 3.92 2.56 0.18 0.77 0.18

04† 7.19 6.97 4.49 2.13 − − 4.49 5.24 0.67 0.07 0.35 0.06

05† 2.62 3.61 3.40 1.50 − − 18.67 4.10 0.64 0.23 0.58 0.22

07† 3.91 4.60 3.15 2.48 − − 21.33 6.65 0.80 0.38 0.73 0.35

01∗ − − 69.07 1.60 − − 35.17 2.74 1.52 0.12 1.18 0.11

02∗ − − 5.58 2.44 − − 58.75 3.58 1.05 0.23 0.84 0.22

06∗ 5.42 5.82 6.20 1.98 − − 25.88 4.80 0.80 0.24 0.71 0.20

08∗ − − 4.08 1.79 2.22 0.10 21.90 2.91 1.10 0.26 1.03 0.25

09∗ − − 7.01 3.61 4.14 0.11 18.77 3.21 0.95 0.21 0.83 0.21

10∗ 8.11 8.83 10.63 4.65 1.70 0.17 14.33 3.30 0.59 0.22 0.74 0.21
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accurate. Figure 7 shows the evaluation result of the sequences 11–21 by sub-
mitting results of DVSO with and without baseline tuning to the KITTI odom-
etry benchmark. Note that in Fig. 7, Stereo LSD-SLAM and ORB-SLAM2 are
both full stereo SLAM approaches with global optimization and loop closure.
For qualitative comparisons of further estimated trajectories, please refer to our
supplementary material.

We also compare DVSO with DeepVO [41], UnDeepVO [26] and SfM-
Learner [49] which are deep learning based visual odometry systems trained
end-to-end on KITTI. As shown in Table 4, on all available sequences, DVSO
achieves better performance than the other two end-to-end approaches. Table 4
also shows the comparison with the deep learning based scale recovery methods
for monocular VO proposed by Yin et al. [46]. DVSO also outperforms their
method. In the supplementary material, we also show the estimated trajectory
on the Cityscapes Frankfurt sequence to demonstrate generalization capabilities.

5 Conclusion

We presented a novel monocular visual odometry system, DVSO, which recovers
metric scale and reduces scale drift in geometric monocular VO. A deep learning
approach predicts monocular depth maps for the input images which are used to
initialize sparse depths in DSO to a consistent metric scale. Odometry is further
improved by a novel virtual stereo term that couples estimated depth in win-
dowed bundle adjustment with the monocular depth predictions. For monocular
depth prediction we have presented a semi-supervised deep learning approach,
which utilizes a self-supervised image reconstruction loss and sparse depth pre-
dictions from Stereo DSO as ground truth depths for supervision. A stacked
network architecture predicts state-of-the-art refined disparity estimates.

Our evaluation conducted on the KITTI odometry benchmark demonstrates
that DVSO outperforms the state-of-the-art monocular methods by a large mar-
gin and achieves comparable results to stereo VO methods. With virtual base-
line tuning, DVSO can even outperform state-of-the-art stereo VO methods, i.e.,
Stereo LSD-VO, ORB-SLAM2 without global optimization and loop closure, and
Stereo DSO, while using only monocular images.

The key practical benefit of the proposed method is that it allows us to
recover accurate and scale-consistent odometry with only a single camera. Future
work could comprise fine-tuning of the network inside the odometry pipeline end-
to-end. This could enable the system to adapt online to new scenes and camera
setups. Given that the deep net was trained on driving sequences, in future work
we also plan to investigate how much the proposed approach can generalize to
other camera trajectories and environments.
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