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Abstract. Question answering is an important task for autonomous
agents and virtual assistants alike and was shown to support the disabled
in efficiently navigating an overwhelming environment. Many existing
methods focus on observation-based questions, ignoring our ability to
seamlessly combine observed content with general knowledge. To under-
stand interactions with a knowledge base, a dataset has been introduced
recently and keyword matching techniques were shown to yield com-
pelling results despite being vulnerable to misconceptions due to syn-
onyms and homographs. To address this issue, we develop a learning-
based approach which goes straight to the facts via a learned embedding
space. We demonstrate state-of-the-art results on the challenging recently
introduced fact-based visual question answering dataset, outperforming
competing methods by more than 5%.

Keywords: Fact based visual question answering · Knowledge bases

1 Introduction

When answering questions given a context, such as an image, we seamlessly
combine the observed content with general knowledge. For autonomous agents
and virtual assistants which naturally participate in our day to day endeavors,
where answering of questions based on context and general knowledge is most
natural, algorithms which leverage both observed content and general knowledge
are extremely useful.

To address this challenge, in recent years, a significant amount of research
has been devoted to question answering in general and Visual Question Answer-
ing (VQA) in particular. Specifically, the classical VQA tasks require an algo-
rithm to answer a given question based on the additionally provided context,
given in the form of an image. For instance, significant progress in VQA was
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Fig. 1. The FVQA dataset expects methods to answer questions about images utilizing
information from the image, as well as fact-based knowledge bases. Our method makes
use of the image, and question text features, as well as high-level visual concepts
extracted from the image in combination with a learned fact-ranking neural network.
Our method is able to answer both visually grounded as well as fact based questions.

achieved by introducing a variety of VQA datasets with strong baselines [1–8].
The images in these datasets cover a broad range of categories and the questions
are designed to test perceptual abilities such as counting, inferring spatial rela-
tionships, and identifying visual cues. Some challenging questions require logical
reasoning and memorization capabilities. However, the majority of the questions
can be answered by solely examining the visual content of the image. Hence,
numerous approaches to solve these problems [7–13] focus on extracting visual
cues using deep networks.

We note that many of the aforementioned methods focus on the visual aspect
of the question answering task, i.e., the answer is predicted by combining rep-
resentations of the question and the image. This clearly contrasts the described
human-like approach, which combines observations with general knowledge. To
address this discrepancy, in very recent meticulous work, Wang et al. [14] intro-
duced a ‘fact-based’ VQA task (FVQA), an accompanying dataset, and a knowl-
edge base of facts extracted from three different sources, namely WebChild [15],
DBPedia [16], and ConceptNet [17]. Different from the classical VQA datasets,
Wang et al. [14] argued that such a dataset can be used to develop algorithms
which answer more complex questions that require a combination of observation
and general knowledge. In addition to the dataset, Wang et al. [14] also devel-
oped a model which leverages the information present in the supporting facts to
answer questions about an image.

To this end, Wang et al. [14] design an approach which extracts keywords
from the question and retrieves facts that contain those keywords from the knowl-
edge base. Clearly, synonyms and homographs pose challenges which are hard
to recover from.

To address this issue, we develop a learning based retrieval method. More
specifically, our approach learns a parametric mapping of facts and question-
image pairs to an embedding space. To answer a question, we use the fact that
is most aligned with the provided question-image pair. As illustrated in Fig. 1,
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our approach is able to accurately answer both more visual questions as well
as more fact based questions. For instance, given the image illustrated on the
left hand side along with the question, “Which object in the image can be used
to eat with?”, we are able to predict the correct answer, “fork.” Similarly, the
proposed approach is able to predict the correct answer for the other two exam-
ples. Quantitatively we demonstrate the efficacy of the proposed approach on
the recently introduced FVQA dataset, outperforming state-of-the-art by more
than 5% on the top-1 accuracy metric.

2 Related Work

We develop a framework for visual question answering that benefits from a rich
knowledge base. In the following, we first review classical visual question answer-
ing tasks before discussing visual question answering methods that take advan-
tage of knowledge bases.

Visual Question Answering. In recent years, a significant amount of research
has been devoted to developing techniques which can answer a question about
a provided context such as an image. Of late, visual question answering has also
been used to assess reasoning capabilities of state-of-the-art predictors. Using a
variety of datasets [2,3,5,8,10,11], models based on multi-modal representation
and attention [18–25], deep network architectures [12,26–28], and dynamic mem-
ory nets [29] have been developed. Despite these efforts, assessing the reasoning
capabilities of present day deep network-based approaches and differentiating
them from mere memorization of training set statistics remains a hard task.
Most of the methods developed for visual question answering [2,6–8,10,12,18–
24,27,29–34] focus exclusively on answering questions related to observed con-
tent. To this end, these methods use image features extracted from networks
such as the VGG-16 [35] trained on large image datasets such as ImageNet [36].
However, it is unlikely that all the information which is required to answer a
question is encoded in the features extracted from the image, or even the image
itself. For example, consider an image containing a dog, and a question about
this image, such as “Is the animal in the image capable of jumping in the air?”.
In such a case, we would want our method to combine common sense and general
knowledge about the world, such as the ability of a healthy dog to jump, along
with features and observations from the image, such as the presence of the dog.
This motivates us to develop methods that can use knowledge bases encoding
general knowledge.

Knowledge-Based Visual Question Answering. There has been interest
in the natural language processing community in answering questions based on
knowledge bases (KBs) using either semantic parsing [37–47] or information
retrieval [48–54] methods. However, knowledge based visual question answer-
ing is still relatively unexplored, even though this is appealing from a practical
standpoint as this decouples the reasoning by the neural network from the stor-
age of knowledge in the KB. Notable examples in this direction are work by Zhu
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et al. [55], Wu et al. [56], Wang et al. [57], Krishnamurthy and Kollar [58], and
Narasimhan et al. [59].

The works most related to our approach include Ask Me Anything (AMA) by
Wu et al. [60], Ahab by Wang et al. [61], and FVQA by Wang et al. [14]. AMA
describes the content of an image in terms of a set of attributes predicted about
the image, and multiple captions generated about the image. The predicted
attributes are used to query an external knowledge base, DBpedia [16], and
the retrieved paragraphs are summarized to form a knowledge vector. The pre-
dicted attribute vector, the captions, and the database-based knowledge vector
are passed as inputs to an LSTM that learns to predict the answer to the input
question as a sequence of words. A drawback of this work is that it does not per-
form any explicit reasoning and ignores the possible structure in the KB. Ahab
and FVQA, on the other hand, attempt to perform explicit reasoning. Ahab
converts an input question into a database query, and processes the returned
knowledge to form the final answer. Similarly, FVQA learns a mapping from
questions to database queries through classifying questions into categories and
extracting parts from the question deemed to be important. While both of these
methods rely on fixed query templates, this very structure offers some insight
into what information the method deems necessary to answer a question about
a given image. Both these methods use databases with a particular structure:
those that contain facts about visual concepts represented as tuples, for exam-
ple, (Cat, CapableOf, Climbing), and (Dog, IsA, Pet). We develop our method
on the dataset released as part of the FVQA work, referred to as the FVQA
dataset [14], which is a subset of three structured databases – DBpedia [16],
ConceptNet [17], and WebChild [15]. The method presented in FVQA [14] pro-
duces a query as an output of an LSTM which is fed the question as an input.
Facts in the knowledge base are filtered on the basis of visual concepts such as
objects, scenes, and actions extracted from the input image. The predicted query
is then applied on the filtered database, resulting in a set of retrieved facts. A
matching score is then computed between the retrieved facts and the question
to determine the most relevant fact. The most correct fact forms the basis of the
answer for the question.

In contrast to Ahab and FVQA, we propose to directly learn an embedding
of facts and question-image pairs into a space that permits to assess their com-
patibility. This has two important advantages over prior work: (1) by avoiding
the generation of an explicit query, we eliminate errors due to synonyms, homo-
graphs, and incorrect prediction of visual concept type and answer type; and (2)
our technique is easy to extend to any knowledge base, even one with a differ-
ent structure or size. We also do not require any ad-hoc filtering of knowledge,
and can instead learn to transform extracted visual concepts into a vector close
to a relevant fact in the learned embedding space. Our method also naturally
produces a ranking of facts deemed to be useful for the given question and image.
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Fig. 2. Overview of the proposed approach. Given an image and a question about the
image, we obtain an Image + Question Embedding through the use of a CNN on the
image, an LSTM on the question, and a Multi Layer Perceptron (MLP) for combining
the two modalities. In order to filter relevant facts from the Knowledge Base (KB), we
use another LSTM to predict the fact relation type from the question. The retrieved
structured facts are encoded using GloVe embeddings. The retrieved facts are ranked
through a dot product between the embedding vectors and the top-ranked fact is
returned to answer the question.

3 Learning Knowledge Base Retrieval

In the following, we first provide an overview of the proposed approach for knowl-
edge based visual question answering before discussing our embedding space and
learning formulation.

Overview. Our developed approach is outlined in Fig. 2. The task at hand is to
predict an answer y for a question Q given an image x by using an external knowl-
edge base KB, which consists of a set of facts fi, i.e., KB =

{
f1, . . . , f|KB|

}
. Each

fact fi in the knowledge base is represented as a Resource Description Frame-
work (RDF) triplet of the form fi = (ai, ri, bi), where ai is a visual concept in the
image, bi is an attribute or phrase associated with the visual entity ai, and ri ∈ R
is a relation between the two entities. The dataset contains |R| = 13 relations
r ∈ R = {Category, Comparative, HasA, IsA, HasProperty, CapableOf, Desires,
RelatedTo, AtLocation, PartOf, ReceivesAction, UsedFor, CreatedBy}. Example
triples of the knowledge base in our dataset are (Umbrella, UsedFor, Shade),
(Beach, HasProperty, Sandy), (Elephant, Comparative-LargerThan, Ant).

To answer a question Q correctly given an image x, we need to retrieve
the right supporting fact and choose the correct entity, i.e., either a or b.
Importantly, entity a is always derived from the image and entity b is derived
from the fact base. Consequently we refer to this choice as the answer source
s ∈ {Image,KnowledgeBase}. Using this formulation, we can extract the answer
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y from a predicted fact f̂ = (â, r̂, b̂) and a predicted answer source ŝ using

y =

{
â, from f̂ if ŝ = Image
b̂, from f̂ if ŝ = KnowledgeBase

. (1)

It remains to answer, how to predict a fact f̂ and how to infer the answer
source ŝ. The latter is a binary prediction task and we describe our approach
below. For the former, we note that the knowledge base contains a large number
of facts. We therefore consider it infeasible to search through all the facts fi ∀i ∈
{1, . . . , |KB|} using an expensive evaluation based on a deep net. We therefore
split this task into two parts: (1) Given a question, we train a network to predict
the relation r̂, that the question focuses on. (2) Using the predicted relation, r̂,
we reduce the fact space to those containing only the predicted relation.

Subsequently, to answer the question Q given image x, we only assess the
suitability of the facts which contain the predicted relation r̂. To assess the
suitability, we design a score function S(gF(fi), gNN(x,Q)) which measures the
compatibility of a fact representation gF(fi) and an image-question representa-
tion gNN(x,Q). Intuitively, the higher the score, the more suitable the fact fi for
answering question Q given image x.
Formally, we hence obtain the predicted fact f̂ via

f̂ = arg max
i∈{j:rel(fj)=r̂}

S(gF(fi), gNN(x,Q)), (2)

where we search for the fact f̂ maximizing the score S among all facts fi which
contain relation r̂, i.e., among all fi with i ∈ {j : rel(fj) = r̂}. Hereby we
use the operator rel(fi) to indicate the relation of the fact triplet fi. Given the
predicted fact using Eq. (2) we obtain the answer y from Eq. (1) after predicting
the answer source ŝ.

This approach is outlined in Fig. 2. Pictorially, we illustrate the construction
of an image-question embedding gNN(x,Q), via LSTM and CNN net represen-
tations that are combined via an MLP. We also illustrate the fact embedding
gF(fi). Both of them are combined using the score function S(·, ·), to predict a
fact f̂ from which we extract the answer as described in Eq. (1).

In the following, we first provide details about the score function S, before
discussing prediction of the relation r̂ and prediction of the answer source ŝ.

Scoring the Facts. Figure 2 illustrates our approach to score the facts in the
knowledge base, i.e., to compute S(gF(fi), gNN(x,Q)). We obtain the score in
three steps: (1) computing of a fact representation gF(fi); (2) computing of an
image-question representation gNN(x,Q); (3) combination of the fact and image-
question representation to obtain the final score S. We discuss each of those steps
in the following.

(1) Computing a Fact Representation. To obtain the fact representation gF(fi),
we concatenate two vectors, the averaged GloVe-100 [62] representation of the
words of entity ai and the averaged GloVe-100 representation of the words of
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entity bi. Note that this fact representation is non-parametric, i.e., there are no
trainable parameters.

(2) Computing an Image-Question Representation. We compute the image-
question representation gNN(x,Q), by combining a visual representation gV

w (x),
obtained from a standard deep net, e.g ., ResNet or VGG, with a visual con-
cept representation gC

w (x), and a sentence representation gQ
w (Q), of the ques-

tion Q, obtained using a trainable recurrent net. For notational convenience
we concatenate all trainable parameters into one vector w. Making the depen-
dence on the parameters explicit, we obtain the image-question representation
via gNN

w (x,Q) = gNN
w (gV

w (x), gQ
w (Q), gC

w (x)).
More specifically, for the question embedding gQ

w (Q), we use an LSTM
model [63]. For the image embedding gV

w (x), we extract image features using
ResNet-152 [64] pre-trained on the ImageNet dataset [65]. In addition, we also
extract a visual concept representation gC

w (x), which is a multi-hot vector of size
1176 indicating the visual concepts which are grounded in the image. The visual
concepts detected in the images are objects, scenes, and actions. For objects, we
use the detections from two Faster-RCNN [66] models that are trained on the
Microsoft COCO 80-object [67] and the ImageNet 200-object [36] datasets. In
total, there are 234 distinct object classes, from which we use that subset of
labels that coincides with the FVQA dataset. The scene information (such as
pasture, beach, bedroom) is extracted by the VGG-16 model [35] trained on the
MIT Places 365-class dataset [68]. Again, we use a subset of Places to construct
the 1176-dimensional multi-hot vector gC

w (x). For detecting actions, we use the
CNN model proposed in [69] which is trained on the HICO [70] and MPII [71]
datasets. The HICO dataset contains labels for 600 human-object interaction
activities while the MPII dataset contains labels for 393 actions. We use a sub-
set of actions, namely those which coincide with the ones in the FVQA dataset.

All the three vectors gV
w (x), gQ

w (Q), gC
w (x) are concatenated and passed to the

multi-layer perceptron gNN
w (·, ·, ·).

(3) Combination of Fact and Image-Question Representation. For each fact rep-
resentation gF(fi), we compute a score

Sw(gF(fi), gNN
w (x,Q)) = cos(gF(fi), gNN

w (x,Q)) =
gF(fi) · gNN

w (x,Q)
||gF(fi)|| · ||gNN

w (x,Q)|| ,

where gNN
w (x,Q) is the image question representation. Hence, the score S is the

cosine similarity between the two normalized representations and represents the
fit of fact fi to the image-question pair (x,Q).

Predicting the Relation. To predict the relation r̂ ∈ R = hr
w1

(Q), from the
obtained question Q, we use an LSTM net. More specifically, we first embed and
then encode the words of the question Q, one at a time, and linearly transform
the final hidden representation of the LSTM to predict r̂, from |R| possibilities
using a standard multinomial classification. For the results presented in this
work, we trained the relation prediction parameters w1 independently of the
score function. We leave a joint formulation to future work.
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Algorithm 1. Training with hard negative mining
Input: (x,Q, f∗), KB
Output: parameters w

1: for t = 0, . . . , T do
2: Create dataset D(t) by sampling negative facts randomly (if t = 0) or by retriev-

ing facts predicted wrongly with w(t−1) (if t > 0)
3: Use D(t) to obtain w(t) by optimizing the program given in Eq. (7)
4: end for
5: return w(T )

Predicting the Answer Source. Prediction of the answer source ŝ = hs
w2

(Q)
from a given question Q is similar to relation prediction. Again, we use an LSTM
net to embed and encode the words of the question Q before linearly transforming
the final hidden representation to predict ŝ ∈ {Image,KnowledgeBase}. Analo-
gous to relation prediction, we train this LSTM net’s parameters w2 separately
and leave a joint formulation to future work.

Learning. As mentioned before, we train the parameters w (score function),
w1 (relation prediction), and w2 (answer source prediction) separately. To train
w1, we use a dataset D1 = {(Q, r)} containing pairs of question and the cor-
responding relation which was used to obtain the answer. To learn w2, we use
a dataset D2 = {(Q, s)}, containing pairs of question and the corresponding
answer source. For both classifiers we use stochastic gradient descent on the
classical cross-entropy and binary cross-entropy loss respectively. Note that both
the datasets are readily available from [14].

To train the parameters of the score function we adopt a successive approach
operating in time steps t = {1, . . . , T}. In each time step, we gradually increase
the difficulty of the dataset D(t) by mining hard negatives. More specifically,
for every question Q, and image x, D(0) contains the ‘groundtruth’ fact f∗ as
well as 99 randomly sampled ‘non-groundtruth’ facts. After having trained the
score function on this dataset we use it to predict facts for image-question pairs
and create a new dataset D(1) which now contains, along with the groundtruth
fact, another 99 non-groundtruth facts that the score function assigned a high
score to.

Given a dataset D(t), we train the parameters w of the representations
involved in the score function Sw(gF(fi), gNN

w (x,Q)), and its image, question,
and concept embeddings by encouraging that the score of the groundtruth fact
f∗ is larger than the score of any other fact. More formally, we aim for parameters
w which ensure the classical margin, i.e., an SVM-like loss for deep nets:

Sw(f∗, x,Q) ≥ L(f∗, f) + Sw(f, x,Q) ∀(f, x,Q) ∈ D(t), (3)

where L(f∗, f) is the task loss (aka margin) comparing the groundtruth fact f∗

to other facts f . In our case L ≡ 1. Since we may not find parameters w which
ensure feasibility ∀(f, x,Q) ∈ D(t), we introduce slack variables ξ(f,x,Q) ≥ 0 to
obtain after reformulation:

ξ(f,x,Q) ≥ L(f∗, f) + Sw(f, x,Q) − Sw(f∗, x,Q) ∀(f, x,Q) ∈ D(t). (4)
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Table 1. Accuracy of predicting rela-
tions given the question.

Method Accuracy

@1 @3

FVQA [14] 64.94 82.42

Ours 75.4 91.97

Table 2. Accuracy of predicting
answer source from a given question.

Method Accuracy

@1 @3

Ours 97.3 100.00

Instead of enforcing the constraint ∀(f, x,Q) in the dataset D(t), it is equivalent
to require [72]

ξ(x,Q) ≥ max
f

{L(f∗, f) + Sw(f, x,Q)} − Sw(f∗, x,Q) ∀(x,Q) ∈ D(t). (5)

Using this constraint, we find the parameters w by solving

min
w,ξ(x,Q)≥0

C

2
‖w‖22 +

∑

(x,Q)∈D(t)

ξ(x,Q) s.t. Constraints in Eq. (5). (6)

For applicability of the standard sub-gradient descent techniques, we reformulate
the program given in Eq. (6) to read as

min
w

C

2
‖w‖22 +

∑

(x,Q)∈D(t)

(
max

f
{L(f∗, f) + Sw(f, x,Q)} − Sw(f∗, x,Q)

)
, (7)

which can be optimized using standard deep net packages. The proposed app-
roach for learning the parameters w is summarized in Algorithm 1. In the fol-
lowing we now assess the suitability of the proposed approach.

4 Evaluation

In the following, we assess the proposed approach. We first provide details about
the proposed dataset before presenting quantitative results for prediction of rela-
tions from questions, prediction of answer-source from questions, and prediction
of the answer and the supporting fact. We also discuss mining of hard negatives.
Finally, we show qualitative results.

Dataset and Knowledge Base. We use the publicly available FVQA
dataset [14] and its knowledge base to evaluate our model. This dataset consists
of 2,190 images, 5,286 questions, and 4,126 unique facts corresponding to the
questions. The knowledge base, consisting of 193,449 facts, were constructed by
extracting the top visual concepts for all the images in the dataset and querying
for those concepts in the three knowledge bases, WebChild [15], ConceptNet [17],
and DBPedia [16]. The dataset consists of 5 train-test folds, and all the scores
we report are averaged across all splits.
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Predicting Relations from Questions. We use an LSTM architecture as dis-
cussed in Sect. 3 to predict the relation r ∈ R given a question Q. The standard
train-test split of the FVQA dataset is used to evaluate our model. Batch gradi-
ent descent with Adam optimizer was used on batches of size 100 and the model
was trained over 50 epochs. LSTM embedding and word embeddings are of size
128 each. The learning rate is set to 1e−3 and a dropout of 0.7 is applied after
the word embeddings as well as the LSTM embedding. Table 1 provides a com-
parison of our model to the FVQA baseline [14] using top-1 and top-3 prediction
accuracy. We observe our results to improve the baseline by more than 10% on
top-1 accuracy and by more than 9% when using the top-3 accuracy metric.

Predicting Answer Source from Questions. We assess the accuracy of pre-
dicting the answer source s given a question Q. To predict the source of the
answer, we use an LSTM architecture as discussed in detail in Sect. 3. Note that
for predicting the answer source, the size of the LSTM embedding and word
embeddings was set to 64 each. Table 2 summarizes the accuracy of the predic-
tion results of our model. We observe the prediction accuracy of the proposed
approach to be close to perfect.

Predicting the Correct Answer. Our score function based model to retrieve
the supporting fact is described in detail in Sect. 3. For the image embedding,
we pass the 2048 dimensional feature vector returned by ResNet through a
fully-connected layer and reduce it to a 64 dimensional vector. For the ques-
tion embedding, we use an LSTM with a hidden layer of size 128. The two are
then concatenated into a vector of size 192 and passed through a two layer per-
ceptron with 256 and 128 nodes respectively. Note that the baseline doesn’t use
image features apart from the detected visual concepts.

The multi-hot visual concept embedding is passed through a fully-connected
layer to form a 128 dimensional vector. This is then concatenated with the output
of the perceptron and passed through another layer with 200 output nodes. We
found a late fusion of the visual concepts to results in a better model as the facts
explicitly contain these terms.

Fact embeddings are constructed using GloVe-100 vectors each, for entities
a and b. If a or b contain multiple words, an average of all the embeddings is
computed. We use cosine distance between the MLP and the fact embeddings to
score the facts. The highest scoring fact is chosen as the answer. Ties are broken
randomly.

Based on the answer source prediction which is computed using the afore-
mentioned LSTM model, we choose either entity a or b of the fact to be the
answer. See Eq. (1) for the formal description. Accuracy is computed based on
exact match between the chosen entity and the groundtruth answer.

To assess the importance of particular features we investigate 5 variants of
our model with varying features: two oracle approaches ‘gt Question + Image
+ Visual Concepts’ and ‘gt Question + Visual Concepts’ which make use of
groundtruth relation type and answer type data. More specifically, ‘gt Ques-
tion + Image + Visual Concepts’ and ‘gt Question + Visual Concepts’ use the
groundtruth relations and answer sources respectively. We have three approaches
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Table 3. Answer accuracy over the FVQA dataset.

Method Accuracy

@1 @3

LSTM-Question+Image+Pre-VQA [14] 24.98 40.40

Hie-Question+Image+Pre-VQA [14] 43.14 59.44

FVQA [14] 56.91 64.65

Ensemble [14] 58.76 -

Ours - Question + Image 26.68 30.27

Ours - Question + Image + Visual Concepts 60.30 73.10

Ours - Question + Visual Concepts 62.20 75.60

Ours - gt Question + Image + Visual Concepts 69.12 80.25

Ours - gt Question + Visual Concepts 70.34 82.12

using a variety of features as follows: ‘Question + Image + Visual Concepts,’
‘Question + Visual Concepts,’ and ‘Question + Image.’ We drop either the Image
embeddings from ResNet or the Visual Concept embeddings to obtain two other
models, ‘Question + Visual Concepts’ and ‘Question + Image.’

Table 3 shows the accuracy of our model in predicting an answer and com-
pares our results to other FVQA baselines. We observe the proposed approach
to outperform the state-of-the-art ensemble technique by more than 3% and the
strongest baseline without ensemble by over 5% on the top-1 accuracy metric.
Moreover we note the importance of visual concepts to accurately predict the
answer. By including groundtruth information we assess the maximally possible
top-1 and top-3 accuracy. We observe the difference to be around 8%, suggesting
that there is some room for improvement.

Question to Supporting Fact. To provide a complete assessment of the pro-
posed approach we illustrate in Table 4 the top-1 and top-3 accuracy scores in
retrieving the supporting facts of our model compared to other FVQA baselines.
We observe the proposed approach to improve significantly both the top-1 and
top-3 accuracy by more than 20%. We think this is a significant improvement
towards efficiently including knowledge bases into visual question answering.

Mining Hard Negatives. We trained our model over three iterations of hard
negative mining, i.e., T = 2. In iteration 1 (t = 0), all the 193,449 facts were used
to sample the 99 negative facts during train. At every 10th epoch of training,
negative facts which received high scores were saved. In the next iteration, the
trained model along with the negative facts is loaded and we ensure that the
99 negative facts are now sampled from the hard negatives. Table 5 shows the
Top-1 and Top-3 accuracy for predicting the supporting facts over each of the
three iterations. We observe significant improvements due to the proposed hard
negative mining strategy. While näıve training of the proposed approach yields
only 20.17% top-1 accuracy, two iterations improve the performance to 64.5%.
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Table 4. Correct fact prediction precision over the FVQA dataset.

Method Accuracy

@1 @3

FVQA-top-1 [14] 38.76 42.96

FVQA-top-3 [14] 41.12 45.49

Ours - Question + Image 28.98 32.34

Ours - Question + Image + Visual Concepts 62.30 74.90

Ours - Question + Visual Concepts 64.50 76.20

Table 5. Correct fact prediction precision with hard negative mining.

Iteration # Hard negatives Precision

@1 @3

1 0 20.17 23.46

2 84,563 38.65 45.49

3 6,889 64.5 76.2

Synonyms and Homographs. Here we show the improvements of our model
compared to the baseline with respect to synonyms and homographs. To this end,
we run additional tests using Wordnet to determine the number of question-fact
pairs which contain synonyms. The test data contains 1105 such pairs out of
which our model predicts 91.6% (1012) correctly, whereas the FVQA model pre-
dicts 78.0% (862) correctly. In addition, we manually generated 100 synonymous
questions by replacing words in the questions with synonyms (e.g ., “What in the
bowl can you eat?” is rephrased to “What in the bowl is edible?”). Tests on these
100 new samples find that our model predicts 89 of these correctly, whereas the
key-word matching FVQA technique [14] gets 61 of these right. With regards
to homographs, the test set has 998 questions which contain words that have
multiple meanings across facts. Our model predicts correct answers for 79.4%
(792), whereas the FVQA model gets 66.3% (662) correct.

Qualitative Results. Figure 3 shows the Visual Concepts (VCs) detected for a
few samples along with the top 3 facts retrieved by our model. Providing these
predicted VCs as input to our fact-scoring MLP helps improve supporting fact
retrieval as well as answer accuracy by a large margin of over 30% as seen in
Tables 3 and 4. As can be seen in Fig. 3, there is a close alignment between
relevant facts and predicted VCs, as VCs provide a high-level overview of the
salient content in the images.

In Fig. 4, we show success and failure cases of our method. There are 3 steps
to producing the correct answer using our method: (1) correctly predicting the
relation, (2) retrieving supporting facts containing the predicted relation, and
relevant to the image, and (3) choosing the answer from the predicted answer
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Fig. 3. Examples of Visual Concepts (VCs) detected by our framework. Here, we show
examples of detected objects, scenes, and actions predicted by the various networks
used in our pipeline. There is a clear alignment between useful facts, and the predicted
VCs. As a result, including VCs in our scoring method helps improve performance.

source (Image/Knowledge Base). The top two rows of images show cases where
all the 3 steps were correctly executed by our proposed method. Note that our
method works for a variety of relations, objects, answer sources, and varying
difficulty. It is correctly able to identify the object of interest, even when it is
not the most prominent object in the image. For example, in the middle image of
the first row, the frisbee is smaller than the dog in the image. However, we were
correctly able to retrieve the supporting fact about the frisbee using information
from the question, such as ‘capable of ’ and ‘flying.’

A mistake in any of the 3 steps can cause our method to produce an incorrect
answer. The bottom row of images in Fig. 4 displays prototypical failure modes.
In the leftmost image, we miss cues from the question such as ‘round,’ and
instead retrieve a fact about the person. In the middle image, our method makes
a mistake at the final step and uses information from the wrong answer source.
This is a very rare source of errors overall, as we are over 97% accurate in
predicting the answer source, as shown in Table 2. In the rightmost image, our
method makes a mistake at the first step of predicting the relation, making
the remaining steps incorrect. Our relation prediction is around 75%, and 92%
accurate by the top-1 and top-3 metrics, as shown in Table 1, and has some scope
for improvement. For qualitative results regarding synonyms and homographs we
refer the interested reader to the supplementary material.
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Fig. 4. Success and failure cases of our method. In the top two rows, our method
correctly predicts the relation, the supporting fact, and the answer source to produce
the correct answer for the given question. The bottom row of examples shows the failure
modes of our method.
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5 Conclusion

In this work, we addressed knowledge-based visual question answering and devel-
oped a method that learns to embed facts as well as question-image pairs into a
space that admits efficient search for answers to a given question. In contrast to
existing retrieval based techniques, our approach learns to embed questions and
facts for retrieval. We have demonstrated the efficacy of the proposed method on
the recently introduced and challenging FVQA dataset, producing state-of-the-
art results. In the future, we hope to address extensions of our work to larger
structured knowledge bases, as well as unstructured knowledge sources, such as
online text corpora.
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