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Abstract. Accurately localising object proposals is an important pre-
condition for high detection rate for the state-of-the-art object detection
frameworks. The accuracy of an object detection method has been shown
highly related to the average recall (AR) of the proposals. In this work,
we propose an advanced object proposal network in favour of translation-
invariance for objectness classification, translation-variance for bounding
box regression, large effective receptive fields for capturing global con-
text and scale-invariance for dealing with a range of object sizes from
extremely small to large. The design of the network architecture aims to
be simple while being effective and with real-time performance. With-
out bells and whistles the proposed object proposal network significantly
improves the AR at 1,000 proposals by 35% and 45% on PASCAL VOC
and COCO dataset respectively and has a fast inference time of 44.8 ms
for input image size of 6402. Empirical studies have also shown that the
proposed method is class-agnostic to be generalised for general object
proposal.
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1 Introduction

Object detection has been a challenging task in computer vision [6,17]. Sig-
nificant progress has been achieved in the last decade from traditional sliding-
window paradigms [7,28] to recent top-performance proposal-based [27] detec-
tion frameworks [9–11]. A proposal algorithm plays a crucial role in an object
detection pipeline. On one hand, it speeds up the detection process by consid-
erably reducing the search space for image regions to be subsequently classified.
On the other hand, the average recall (AR) of the object proposal method has
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been shown notably correlating with the precision of final detection, in which
AR essentially reveals how accurate the detected bounding boxes are localised
comparing with the ground truth [13].

Instead of using low-level image features to heuristically generate the propos-
als [27,30], trendy methods extract high-level features by using deep convolu-
tional neural networks (ConvNets) [12,26,29] to train a class-agnostic classifier
with a large number of annotated objects [15,21,23]. For general objectness
detection, such supervised learning approaches make an important assumption
that given enough number of different object categories, an objectness classi-
fier can be sufficiently generalised to unseen categories. It has been shown that
learning-based methods indeed tend to be unbiased to the dataset categories
and learn the union of features in the annotated object regions [4,13,15,20].
Despite their good performance [5,12,23], there is still much room to improve
the recall especially for small objects and accuracy for the bounding box locali-
sation [2,14,16,20].

To tackle object detection using ConvNets at various scales and for more
accurate localisation, prior works adopted an encoder-decoder architecture with
skip-connections [24] for exploiting low-resolution strong semantic and high-
resolution weak semantic features [16], used position sensitive score maps for
enhancing translation variance and invariance respectively for localisation and
classification [5], and used a global convolutional network (GCN) component
for enlarging valid receptive field (VRF) particularly for capturing larger image
context [19].

In this paper, we devise an advanced object proposal network which is capa-
ble of handling a large range of object scales and accurately localising proposed
bounding boxes. The proposed network architecture embraces fully convolutional
networks (FCNs) [18] without using fully-connected and pooling layers to pre-
serve spatial information as much as possible. The design takes simplicity into
account, in which the features extracted by ConvNets are entirely shared with
a light-weight network head as shown in Fig. 2.

Ablation studies have been conducted to show the effectiveness of each
designed component. We have empirically found that GCN and position-
sensitivity structure can each individually improves the AR at 1,000 proposals.
As shown in Tables 2 and 3, evaluating the baseline model on PASCAL VOC
and COCO dataset, GCN brings performance gains from 0.48 and 0.42 to 0.59
(22%) and to 0.54 (29%) respectively, and, the use of position-sensitivity to 0.61
(26%) and to 0.45 (6%) respectively. Using them together can furthermore boost
the scores to 0.65 (35%) and to 0.61 (44%) respectively. Together the proposed
framework achieves the state of the art and has a real-time performance.

2 Related Works

Traditional object proposal methods take low-level image features to heuris-
tically propose regions containing objectness. Methods such as Selective
Search [27], CPMC [3] and MCG [1] adopt grouping of multiple hierarchical
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segmentations to produce the final proposals. Edge boxes [30] on the other hand
takes an assumption that objectness is supposed to have clearer contours. Hosang
et al. [13] have comprehensively evaluated different proposal methods. Learning-
based proposal approaches have gained more attentions recently. DeepBox [15]
uses convolutional neural network to re-rank object proposals based on other
bottom-up non-learning proposal methods. Faster R-CNN [23] trains a region
proposal network (RPN) on a large number of annotated ground truth bounding
boxes to obtain high-quality box proposals for object detection. Region-based
fully-convolutional network (R-FCN) [5] introduces position-sensitive score maps
to improve localisation of the bounding boxes at detection stage. Feature pyra-
mid network (FPN) [16] takes multi-scale feature maps into account to exploit
scale-invariant features for both object proposal and detection stages. Instead of
using feature pyramids and learning from ground truth bounding boxes, Deep-
Mask [20] and SharpMask [21] use feed-forward ConvNets trained by ground
truth masks and exploit multi-scale input images to perform mask proposals to
achieve state-of-the-art performances.

D2
D3

D4
D5

D6

s = 64s = 4

Fig. 1. The proposed method. Left: The position-sensitive score maps and windows
with k2 grids (k = 4) in yellow at D2 and D6 shown at the top and bottom respectively.
One can see the D2 activates on small objects while D6 activates on extreme large ones.
Note that D6 is enlarged for visualisation, in which the window size is in fact identical
to the one shown in D2. Right: The windows are mapped into anchors in cyan in the
input image with sizes of the multiple of layer stride s. Both: The bounding box in
orange is the only labeled ground truth (in bike category) on this image from PASCAL
VOC 2007. The large object on the right has no ground truth but the proposed class-
agnostic method can still be generalised to extract its objectness features as shown in
the visualised D6 feature maps.
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Fig. 2. The overall proposed system architecture. Left: The ResNet together with
the feature pyramid structure form the general backbone of RPN heads. Right: The
structures of different RPN heads. Both: Rectangles are components with learnable
parameters to train and ellipses are parameter-free operations. Dash arrow indicates
that the RPN head is shared by all feature pyramid levels.

3 Proposed Method

Inspired by FPN [16] and R-FCN [5], the proposed object proposal method
is devised in favour of scale-invariance and position-sensitivity to retain both
invariance and variance on translation for respectively classifying and localising
objects. We also take VRF into account to learn objectness from a larger image
spatial context [19]. In addition, instead of regressing and classifying a set of
anchors using default profile (i.e., scale and aspect ratio) by a fixed (3 × 3) con-
volutional kernel in certain layers [16,23], we propose directly mapping anchors
from sliding windows in each decoding layer together with sharing the position-
sensitive score maps. The overall ConvNets takes an input image with arbitrary
size to bottom-up encode and top-down decode features with skip connections
to preserve object locality [24]. Scale-invariance as one of the important traits
of the proposed method is thus achieved by extracting multi-scale features from
the input image. These semantically weak to strong features are then feed into
a series of decoding layers being shared by a RPN head. Anchors are generated
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by a dense sliding window fashion shared by a bank of position sensitive score
maps. In the end, the network regresses the anchors to localise objects (reg for
short) and classifies the objectness with scores (cls for short).

3.1 Encoder

The encoder is a feed-forward ConvNet as the backbone feature extractor, which
scales down by a factor of 2 several times. Although the proposed method can
be equipped with any popular ConvNet architectures [26,29] for the backbone,
ResNet [12] is adopted particularly for its FCN structure being able to retain
the local information as much as possible. ResNets are structured with residual
blocks each consisting of a subset of ConvNets. We note the conv2, conv3, conv4
and conv5 blocks from the original paper [12] as {E2, E3, E4, E5} with the cor-
responding dense sliding window strides s = {4, 8, 16, 32} in regard to the input
image.

3.2 Decoder

The decoder recovers the feature resolution for the strongest semantic feature
maps from low to high with skip connections in between the corresponding
encoder and decoder layers. The skip connection is substantial for the accu-
racy of bounding box proposal as it propagates detail-preserving and position-
accurate features from the encoding process to the decoded features which are
later shared by the RPN head.

Specifically with ResNet, the decoding process starts from E5 using 1×1 con-
volution and 256 output channels for feature selection followed by batch normal-
isation (BN) and rectified linear unit (ReLU) layers, which together we brief as
CBR{·} where · is the kernel size. Likewise, each skip connection at a layer takes
a CBR1 with 256 output channels. The bottom-up decoding process is therefore
done by using bilinear upsampling followed by element-wise addition with the
CBR1 selected features from the encoding layers. A CBR3 block is inserted in
each decoding layer right after the addition for the purpose of de-aliasing. We
note the decoding layers as {D2,D3,D4,D5} corresponding to {E2, E3, E4, E5}
in the encoding layers. An extra D6 is added by directly down sampling D5

for gaining an even larger stride s = 64, which is in favor of extremely large
objectness detection.

3.3 RPN Heads

A RPN head is in charge of learning features across a range of scales for reg
and cls. The learnable parameters in the RPN head share all features in the
decoding layers to capture different levels of semantics for various object sizes.
We will show that the design of a RPN head has a significant impact on the final
proposal accuracy in Sect. 4. We show a number of different RPN head designs
in Fig. 2. Each head takes 256 channel feature map as input and outputs two
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sibling CB1 blocks for reg and cls with 4×k2 and k2 channels respectively, where
k2 is the number of regular grids for position-sensitive score maps described in
Sect. 3.4. We regard the state-of-the-art RPN used in FPN [16] as a Baseline
method, in which a CBR3 block is adopted for fusing multi-scale features. Our
Baseline implementation, which is a bit different from [16], uses BN and ReLU
which have been found helpful in converging the end-to-end training.

Inspired by GCN within residual structure [19], we hypothesise that enlarging
VRF to learn from larger image context can improve the overall object proposal
performance. For the GCN shared smoother (GCN-S) and Large kernel shared
smoother (LK-S), a larger convolution kernel (15 × 15) is inserted before the
CBR3 smoothing. Additionally their non-shared smoother counterpart (GCN-
NS and LK-NS) are also compared.

To study the effect of model capacity and the increased number of parame-
ters, a Näıve head is taken into account, which is simply added with more CBR3
blocks to approximately match the number of learnable parameters compared
with other RPN heads. Table 1 lists the number of parameters of all RPN heads.
Compared with the Baseline, the numbers of parameter ratio of the other models
are within a 0.015 standard deviation.

3.4 Position-Sensitive Anchors

We argue that using a default set of scales and aspect ratios to map anchors
from a constant-size convolution kernel can potentially undermine the accuracy
of reg and cls. This could be due to the mismatch of the receptive field of
network and the mapped anchors. Prior works have used such strategy [5,16,23]
with little exploration of other varieties. To improve the fidelity of relationship
between features and anchors with respect to the receptive field of ConvNets,
in the proposed method, at each layer, the size of an anchor is calculated by
(w · s) × (h · s) where w and h are the width and height of the sliding window.

Since the anchor and the sliding window are now naturally mapped, position-
sensitive score maps can be further exploited for improving the accuracy of
localisation. Fig. 1 illustrates the stack of score maps for k2 regular grids in
the sliding window. Each grid in the window takes average of its coverage on
the corresponding score map (i.e., average pooling). All k2 grids then undergo a
global average pooling to output 4-channel t and 1-channel o for the final reg and
cls result respectively. We further feed o to an activation function sigmoid for
evaluating the objectness score. Details of position-sensitive pooling can be found
in [5]. In this paper we use k = 4 for illustration as well as for all experiments.

3.5 Implementation Details

In this paper, all the experiments were conducted with ResNet-50 with the
removal of average pooling, fully-connected and softmax layers in the end of
the original model. We do not use conv1 in the pyramid due to the high memory
footage and too low-level features which contribute very little for semantically
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representing objectness. The architecture is illustrated in Fig. 2. A set of win-
dow sizes w : h = {8 : 8, 4 : 8, 8 : 4, 3 : 9, 9 : 3} are used for the dense sliding
windows at each layer for generating anchors. At the most top D6 and bottom
D2 layer, additional window sizes {12 : 12, 6 : 12, 12 : 6, 12 : 4, 4 : 12} and
{4 : 4, 2 : 4, 4 : 2} are respectively used for discovering extremely large and
small objectness.

The proposed position-sensitive anchors mapped from the windows are all
inside the input image, but the bounding boxes regressed from anchors can
possibly exceed the image boundary. We simply discard those bounding boxes
exceeding the image boundary. In addition, the number of total anchors depends
on the size of input image and the used anchor profile. The effect of anchor
number is discussed in the supplementary material.

Training. In each image, a large amount of anchors are generated across
all decoding layers to be further assigned positive and negative labels. An
anchor having intersection-over-union (IoU) with any ground truth bounding
box greater than 0.7 is assigned a positive label p and less than 0.3 a negative
label n. For each ground truth bounding box, the anchor with the highest IoU
is also assigned to a positive label, only if the IoU is greater than 0.3. This
policy is similar to [23] but with the additional lower bound for avoiding dis-
traction of outliers. NA anchors (half positive and half negative anchors) are
selected for each training iteration. The model can be trained end-to-end with
NB mini-batch images together with the sampled anchors using a defined loss:

L =
1

NB · NA

NB∑

i=1

[ NA∑

j=1

[
Lreg(t

p
i,j , t

∗
i,j) + Lcls(o

p
i,j)

]
+

NA∑

j=1

Lcls(on
i,j)

]
, (1)

where t is the regressed bounding box with t∗ as its ground truth correspondent,
and o is the objectness score. Lreg is the smooth L1 loss taking the difference
between normalised bounding box coordinates with the ground truth as defined
in [9], and Lcls the cross-entropy loss. We use stochastic gradient descent (SGD)
with momentum of 0.9, weight decay of 10−4 and exponential decay learning
rate le = l0b

−λe, in which the e is the epoch number and we set l0 = 0.1 and
λ = 0.1 for the base b = 10.

4 Empirical Studies

We have conducted comprehensive experiments for comparing different RPN
heads as well as ablation studies to show the impact of position-sensitive score
maps. The experiment platform is equipped with an Intel(R) Xeon(R) CPU E5-
2650 v4@2.20GHz CPU and Nvidia Titan X (Pascal) GPUs with 12 GB memory.
Such hardware spec allowed us to train the models with batch size NB listed
in Table 1. Note that we particularly focus on conducting ablation studies on
different components. In all experiments we therefore did not exploit additional
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tricks for boosting the performance such as using multi-scale input images for
training [11] and testing [12], iterative regression [8], hard example mining [25],
etc.

Table 1. The number of parameters in the different models and the corresponding
inference time T in ms averaged on the number of all testing images

w/o position-sensitive w/ position-sensitive

# params NB T07test Tminival # params NB T07test Tminival

Baseline 26,858,334 28 26.6 58.2 26,875,104 18 35.7 79.5

Näıve 28,039,006 18 32.2 - 28,055,776 14 41.5 -

GCN-S 27,137,630 18 34.3 76.3 27,154,400 14 44.1 96.1

LK-S 27,81,3470 18 45.2 - 27,830,240 14 55.1 -

GCN-NS 27,727,966 16 35.9 83.5 27,744,736 12 44.8 103.6

LK-NS 28,403,806 16 48.8 - 28,420,576 12 57.5 -

Baseline Model. The implementation of our Baseline model, with or without
using position-sensitive score maps, differ from the original FPN [16] in the
use of BN and ReLU in the RPN head, as well as the de-aliasing CBR3 block
in each layer. In addition, the evaluation in their paper was conducted with
rescaling image short side to 800 pixels. The rest of setting such as anchor
generation, the number of pyramid layers, etc. are remained the same. Note that
such discrepancy do not affect the ablation studies here to compare the baseline
architecture. The main purpose is to assess performance gains when adding other
network components.

Evaluation Protocol. All models are evaluated on PASCAL VOC [6] and
COCO [17]. For Pascal VOC we used all train and validation dataset in 2007 and
2012 (denoted as 07+12), which has in total 16,551 images with 40,058 objects,
and report test result on the 2007 test dataset (denoted as 07test) consisting
of 4,952 images with 12,032 objects. For COCO we employed the union of train
and a subset of validation set for in total 109,172 images and 654,212 objects
(denoted as trainval35k), and report test results on the rest of validation set
for 4,589 images and 27,436 objects (denoted as minival). Our evaluation is
consistent with the official COCO evaluation protocol, in which areas marked as
“crowds” are ignored and do not affect detector’s scores [17].

In order to perform mini-batch training, we rescaled images in 07+12 with
the long side fixed and zero-pad along the rescaled short side to 640 × 640 for
batching, and for images in trainval35k, the short side were fixed to 768 with
random crop along the rescaled long side to 768 × 768. For testing, images in
07test and minival are padded to have width and height being the closest
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multiple of the maximum stride (i.e., s = 64), to avoid rounding errors. All
models were trained for 40 epochs which roughly take 30 and 90 h for PASCAL
VOC 07+12 and COCO trainval35k respectively.

Following [4,13,17], we evaluated models at AR with different proposal num-
bers of 10, 100 and 1,000 {AR10,AR100,AR1k} and the area under the curve
(AUC) of recall across all proposal numbers. Besides, we also evaluated models
at AR for different object area a: small (a < 322), medium (322 < a < 962)
and large (a > 962) with 1,000 proposals {AR1k

s ,AR1k
m ,AR1k

l }. It is worth not-
ing that COCO has more complex scenes with diverse and many more small
objects than PASCAL VOC does [17,22]. We therefore evaluated all models
with PASCAL VOC while selected the top-performance GCN-S and GCN-NS
models for COCO evaluation. In the tables, numbers with underline indicate the
highest score of a metric among models with different RPN heads, and numbers
in bold indicate the highest score of a metric among models with or without
using position-sensitivity.

4.1 Impact of Using GCN

The results of Tables 2 and 3 reveal that by adding GCN in the RPN head, the
overall AR can be remarkably improved regardless the number of considered
proposals or if the position-sensitivity is employed. This can be also observed in
Fig. 3 in which GCN-S and GCN-NS curves are always on the top of others.

Fig. 3. Recall against IoU with different proposal numbers of 10, 100 and 1,000 and
average recall against the number of proposals of all models: The results of PASCAL
VOC 07test using models trained on PASCAL VOC 07+12 (Row 1). The results of
COCO minival using models trained on COCO trainval35k (Row 2) and models
trained on PASCAL VOC 07+12 (Row 3).
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Table 2. Object proposal results of all models trained on PASCAL VOC 07+12 and
evaluated on 07test

w/o position-sensitive w/ position-sensitive

AR10 AR100 AR1k AUC AR1k
s AR1k

m AR1k
l AR10 AR100 AR1k AUC AR1k

s AR1k
m AR1k

l

Baseline .074 .234 .480 .272 .254 .414 .566 .131 .385 .605 .399 .423 .583 .655

Näıve .094 .286 .515 .313 .410 .418 .596 .182 .434 .613 .435 .466 .593 .655

GCN-S .103 .325 .584 .356 .471 .558 .623 .212 .479 .644 .471 .445 .603 .709

LK-S .113 .333 .562 .356 .441 .547 .595 .178 .447 .630 .446 .463 .613 .674

GCN-NS .136 .365 .586 .383 .445 .569 .625 .238 .490 .653 .484 .453 .593 .730

LK-NS .084 .290 .551 .326 .420 .553 .575 .179 .447 .645 .450 .429 .582 .728

Table 3. Object proposal results of all models trained on COCO trainval35k and
evaluated on minival

w/o position-sensitive w/ position-sensitive

AR10 AR100 AR1k AUC AR1k
s AR1k

m AR1k
l AR10 AR100 AR1k AUC AR1k

s AR1k
m AR1k

l

Baseline .083 .208 .421 .242 .308 .562 .392 .034 .165 .448 .219 .385 .411 .566

GCN-S .082 .294 .542 .322 .414 .558 .680 .075 .270 .579 .321 .485 .592 .677

GCN-NS .079 .277 .532 .310 .422 .552 .643 .096 .316 .607 .358 .493 .623 .726

AR1k
s in particular benefits from learning the global image context. One can

observe that compared to Baseline model, the scores have been boosted by
85% from 0.254 to 0.471 on PASCAL VOC with GCN-S model, and by 37%
from 0.308 to 0.422 on COCO with GCN-NS. Therefore, the AR1k has been
overall improved from 0.480 and 0.421 to 0.586 and 0.542, which are 22% and
29% respectively. Fig. 3 also shows that GCN-S and GCN-NS models have the
highest recall scores across all IoU thresholds with different proposal numbers.

One may argue that the improvement in GCN-S and GCN-NS models is
due to the increased number of parameters. From Table 2, LK-S and LK-NS
models have also shown some improvement but considering the extra number of
parameters compared with Baseline model, they are not as effective as GCN-S
and GCN-NS models. This shows that using separable convolution kernel mat-
ters, which aligns with the observation in [19]. Näıve model also exhibits similar
results.

4.2 Impact of Using Position-Sensitivity

As shown in Table 2, on PASCAL VOC, among different proposal numbers
and object sizes, models using position-sensitive components generally result
in higher AR. Specifically, for AR1k, Baseline model shows an improvement
from 0.480 to 0.605 (26%) and GCN-NS from 0.586 to 0.653 (11%). As shown in
Table 3, the experiment on COCO shows similar results, in which Baseline model
has an improvement from 0.421 to 0.448 (6%) and GCN-NS model from 0.532
to 0.607 (14%). To investigate on the small object proposals, AR1k

s reveal that
training on a large number of annotated small objects in COCO indeed helps in
higher AR1k

s scores, compared with the results of PASCAL VOC counterpart.
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GCN-NS has achieved much higher AR1k
s (0.493) score, which is a 17% improve-

ment compared to the counterpart. Fig. 4 visualises the distribution heatmap and
hit-and-miss of top 1,000 proposals using GCN-NS models with and without tak-
ing position-sensitivity into account, in which the hits are with a threshold 0.7
for the ground truth IoU. One can qualitatively tell that by using the position-
sensitivity, models can generate proposals closer to objects and thus result in
more hits, especially for objects with extremely large or small sizes.

4.3 Inference Time

Introducing both GCN structure and position-sensitive score maps in the RPN
head brings in more learnable parameters resulting in more computation. Beside
the input image size which has a directly impact on the overall inference time,
the number of anchors, the kernel size of GCN and the grid number k of position-
sensitive score maps are also key factors. Table 1 lists the models’ inference times
averaged on all input images in both 07test and minival, in which Baseline
model shows a performance of 26.6/58.2 (denoted for 07test/minival) ms.
Adding the position-sensitive score maps (with grid size k = 4) takes extra
9.1/21.3 ms, 9.8/19.8 ms and 8.9/20.1 ms for Baseline, GCN-S and GCN-NS
model respectively, which show a comparable time difference. In contrast, intro-
ducing the GCN structure in the Baseline model adds 7.7/18.1 ms for GCN-S
model while additional 9.3/25.3 ms for GCN-NS model. This reveals that using
non-shared smoother generally takes more times than using shared smoother
does. GCN-NS with position-sensitivity, as the best performance model, has a
running time 44.8 ms (∼22 fps) for 07+12 and 103.6 ms (∼10 fps) for minival.

4.4 Model Generalisation

To evaluate the generalisation ability of the proposed method, the models trained
on PASCAL VOC 07+12 are used to evaluate on COCO minival. Note that
compared to COCO (80 categories), PASCAL VOC is a much smaller dataset
with limited object categories (20 categories) and almost all categories in PAS-
CAL VOC are included in COCO. We separate the categories of COCO into
two sets: common and non-common. Common categories are ones in PASCAL
VOC, while non-common are unseen categories. In addition, image scenes in
PASCAL VOC are relatively simple with less small objects annotations. It is
therefore more challenging for a model learned from PASCAL VOC to perfor-
mance object proposal on COCO images. The results are shown in Table 4 and
Fig. 3 (Row 3). Surprisingly, the AR1k of the best performance models, GCN-S
and GCN-NS with position-sensitivity, trained with PASCAL VOC 07+12 can
still outperform Baseline model trained with COCO trainval35k (i.e., 0.438
vs. 0.421). It is expected that the model will not work well on small objects
since PASCAL VOC does not contain many small objects, but nevertheless the
model still shows decent performance on large objects in which the AR1k

l is
up to 0.693 as shown in Table 4. The score is comparable to the other models
trained on COCO trainval35k as shown in Table 3. Delving into the details, we
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Fig. 4. The impact of position-sensitivity: visualisation on the distribution heatmap
and hit-and-miss of the top 1,000 proposals by GCN-NS models for a number of selected
PASCAL VOC 07test (Row 1–2) and COCO minival (Row 3–5) images. For each
pair of images, model without position-sensitivity is on the left and the one with
position-sensitivity is on the right. Col 1–2: The heatmaps are plotted by stacking
the proposal boxes. Col 3–4: The bounding boxes in orange are ground truth boxes
with their corresponding hit proposals in cyan, in which the IoU threshold is set to 0.7,
and the bounding boxes in red are missed cases. Row 6–7: All models tend to fail in
images with complex scenes and diverse object aspect ratios. Nonetheless, note that
models with position-sensitivity generally have higher hit rate. Sect. 4.2 for detailed
discussions.
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show the breakdown results of the model generalisation experiment for common
and non-common categories are shown in Table 5. All models have better perfor-
mance on common categories overall. However, compared to the Baseline model,
the proposed components significantly improved the performance on both com-
mon and non-common categories. The per-category AUC performance in Fig. 5
shows that non-common categories do not necessarily have worse performance
than common categories (e.g., bear, zebra, and toilet). This indicates that the
proposed object proposal networks are able to generalise proposals from a smaller
to a larger and more complex dataset, from common to non-common categories,
and that the proposed architecture can further improve the generalisation for
all categories. Fig. 6 qualitatively demonstrates the generalisation ability of the
proposed method. Although the model trained on PASCAL VOC 07+12 fails at
detecting small objectness, it still exhibits a certain degree of generalisation to
unseen categories (e.g., elephant, teddy bear, or fire hydrant).

Fig. 5. Per-category AUC performance of models trained on PASCAL VOC 07+12 and
evaluated on COCO minival. Common and non-common categories are split in the
white and green region respectively.

Table 4. Object proposal results of all models trained on PASCAL VOC 07+12 and
evaluated on COCO minival

w/o position-sensitive w/ position-sensitive

AR10 AR100 AR1k AUC AR1k
s AR1k

m AR1k
l AR10 AR100 AR1k AUC AR1k

s AR1k
m AR1k

l

Baseline .031 .097 .234 .122 .114 .234 .382 .061 .218 .400 .240 .224 .401 .614

GCN-S .053 .185 .390 .217 .240 .430 .524 .104 .277 .438 .288 .227 .463 .665

GCN-NS .066 .200 .390 .228 .239 .420 .538 .118 .282 .438 .292 .235 .432 .693

Table 5. Object proposal results of all models trained on PASCAL VOC 07+12 and
evaluated on COCO minival for common and non-common categories. Note that (non)
denotes models evaluated on non-common categories

w/o position-sensitive w/ position-sensitive

AR10 AR100 AR1k AUCAR1k
s AR1k

m AR1k
l AR10 AR100 AR1k AUCAR1k

s AR1k
m AR1k

l

Baseline .046 .129 .285 .156 .180 .316 .369 .076 .271 .483 .294 .329 .506 .629

Baseline (non) .013 .055 .170 .079 .035 .139 .402 .043 .151 .295 .171 .099 .280 .590

GCN-S .061 .217 .447 .252 .329 .499 .524 .128 .344 .520 .351 .327 .564 .687

GCN-S (non) .042 .144 .317 .172 .134 .349 .525 .073 .192 .334 .207 .107 .346 .632

GCN-NS .078 .240 .451 .269 .323 .493 .549 .149 .353 .524 .360 .335 .540 .716

GCN-NS (non) .050 .150 .312 .175 .138 .334 .522 .078 .192 .328 .206 .114 .305 .658
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Fig. 6. The results of model generalisation experiments visualised in the distribution
heatmap and hit-and-miss of the top 1,000 proposals by GCN-NS models for a number
of selected COCO minival. For each pair of COCO minival images, result of model
trained on PASCAL VOC is on the left and the one of model trained on COCO is on
the right. See Sect. 4.4 for detailed discussions.

5 Conclusions

In this paper, we have proposed object proposal networks based on the
observation that accurate detection relies on translation-invariance for object-
ness classification, translation-variance for localisation as regression and scale-
invariance for various object sizes. Thorough experiments on PASCAL VOC and
COCO datasets have shown that the adoption of global convolutional network
(GCN) and position-sensitivity components can significantly improve object pro-
posal performance while keeping the network lightweight to achieve real-time
performance.
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