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Abstract. We present an approach for high-resolution video frame pre-
diction by conditioning on both past frames and past optical flows. Pre-
vious approaches rely on resampling past frames, guided by a learned
future optical flow, or on direct generation of pixels. Resampling based
on flow is insufficient because it cannot deal with disocclusions. Genera-
tive models currently lead to blurry results. Recent approaches synthesis
a pixel by convolving input patches with a predicted kernel. However,
their memory requirement increases with kernel size. Here, we present
spatially-displaced convolution (SDC) module for video frame prediction.
We learn a motion vector and a kernel for each pixel and synthesize a
pixel by applying the kernel at a displaced location in the source image,
defined by the predicted motion vector. Our approach inherits the mer-
its of both vector-based and kernel-based approaches, while ameliorating
their respective disadvantages. We train our model on 428K unlabelled
1080p video game frames. Our approach produces state-of-the-art results,
achieving an SSIM score of 0.904 on high-definition YouTube-8M videos,
0.918 on Caltech Pedestrian videos. Our model handles large motion
effectively and synthesizes crisp frames with consistent motion.

Keywords: 3D CNN · Sampling kernel · Optical flow
Frame prediction

1 Introduction

Video prediction is the task of inferring future frames from a sequence of past
frames. The ability to predict future frames could find applications in various
domains – ranging from future state estimation for self-driving vehicles to video
analysis. For a video prediction model to perform well, it must accurately capture
not only how objects move, but also how their displacement affects the visibility
and appearance of surrounding structures. Our work focuses on predicting one
or more immediate next frames that are sharp, realistic and at high resolution
(Fig. 1).
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Fig. 1. Frame prediction on a YouTube video frame featuring a panning camera. Left
to right: Ground-truth, MCNet [34] result, and our SDC-Net result. The SDC-Net
predicted frame is sharper and preserves fine image details, while color distortion and
blurriness is seen in the tree and text in MCNet’s predicted frame. (Color figure online)

Another attribute of the video prediction task is that models can be trained
on raw unlabeled video frames. We train our models on large amounts of high
resolution footage from video game sequences, which we find improves accuracy
because video game sequences contain a large range of motion. We demonstrate
that the resulting models perform well not only on video game footage, but also
on real-life footage.

Video prediction is an active research area and our work builds on the litera-
ture [2–4,13,18–20,26,33,35,37]. Previous approaches for video prediction often
focus on direct synthesis of pixels using generative models. For instance, convo-
lutional neural networks were used to predict pixel RGB values, while recur-
rent mechanisms were used to model temporal changes. Ranzato et al. [28]
proposed to partition input sequences into a dictionary of image patch cen-
troids and trained recurrent neural networks (RNN) to generate target images
by indexing the dictionaries. Srivastava et al. [31] and Villegas et al. [34] used a
convolutional Long-Short-Term-Memory (LSTM) encoder-decoder architecture
conditioned on previous frame data. Similarly, Lotter et al. [17] presented a pre-
dictive coding RNN architecture to model the motion dynamics of objects in the
image for frame prediction. Mathieu et al. [21] proposed a multi-scale conditional
generative adversarial network (GAN) architecture to alleviate the short range
dependency of single-scale architectures. These approaches, however, suffer from
blurriness and do not model large object motions well. This is likely due to the
difficulty in directly regressing to pixel values, as well as the low resolution and
lack of large motion in their training data.

Another popular approach for frame synthesis is learning to transform input
frames. Liang et al. [14] proposed a generative adversarial network (GAN) app-
roach with a joint future optical-flow and future frame discriminator. However,
ground truth optical flows are not trivial to collect at large scale. Training with
estimated optical flows could also lead to erroneous supervision signals. Jiang et
al. [10] presented a model to learn offset vectors for sampling for frame inter-
polation, and perform frame synthesis using bilinear interpolation guided by
the learned sampling vectors. These approaches are desirable in modeling large
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motion. However, in our experiments, we found sampling vector-based synthesis
results are often affected by speckled noise.

One particular approach proposed by Niklaus et al. [23,24] and Vondrick et
al. [36] for frame synthesis is to learn to predict sampling kernels that adapt
to each output pixel. A pixel is then synthesized as the weighted sampling of
a source patch centered at the pixel location. Niklaus et al. [23,24] employed
this for the related task of video frame interpolation, applying predicted sam-
pling kernels to consecutive frames to synthesize the intermediate frame. In our
experiments, we found the kernel-based approaches to be effective in keeping
objects intact as they are transformed. However, this approach cannot model
large motion, since its displacement is limited by the kernel size. Increasing ker-
nel size can be prohibitively expensive.

Inspired by these approaches, we present a spatially-displaced convolutional
(SDC) module for video frame prediction. We learn a motion vector and a kernel
for each pixel and synthesize a pixel by applying the kernel at a displaced location
in a source image, defined by the predicted motion vector. Our approach inherits
the merits of both sampling vector-based and kernel-based approaches, while
ameliorating their respective disadvantages. We take the large-motion advantage
of sampling vector-based approach, while reducing the speckled noise patterns.
We take the clean object boundary prediction advantages of the kernel-based
approaches, while significantly reducing kernel sizes, hence reducing the memory
demand.

The contributions of our work are:

– We propose a deep model for high-resolution frame prediction from a sequence
of past frames.

– We propose a spatially-displaced convolutional (SDC) module for effective
frame synthesis via transformation learning.

– We compare our SDC module with kernel-based, vector-based and state-of-
the-art approaches.

2 Methods

Given a sequence of frames I1:t (the immediate past t frames), our work aims to
predict the next future frame It+1. We formulate the problem as a transformation
learning problem

It+1 = T
(
G
(
I1:t

)
, I1:t

)
, (1)

where G is a learned function that predicts transformation parameters, and T is
a transformation function. In prior work, T can be a bilinear sampling operation
guided by a motion vector [10,15]:

It+1(x, y) = f
(
It(x + u, y + v)

)
, (2)

where f is a bilinear interpolator [15], (u, v) is a motion vector predicted by G,
and It(x, y) is a pixel value at (x, y) in the immediate past frame It. We refer
this approach as a vector-based resampling. Figure 2a illustrates this approach.
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An alternative approach is to define T as a convolution module that
combines motion or displacement learning and resampling into a single
operation [23,24,36]:

It+1(x, y) = K(x, y) ∗ Pt(x, y), (3)

where K(x, y) ∈ RN×N is an N × N 2D kernel predicted by G at (x, y) and Pt(x, y)
is an N ×N patch centered at (x, y) in It. We refer this approach as adaptive
kernel-based resampling [23,24]. Figure 2b illustrates this approach.

Since Eq. (2) considers few pixels in synthesis, its results often appear
degraded by speckled noise patterns. It can, however, model large displacements
without a significant increase in parameter count. On the other hand, Eq. (3)
produces visually pleasing results for small displacements, but requires large
kernels to be predicted at each location to capture large motions. As such, the
kernel-based approach can easily become not only costly at inference, but also
difficult to train.

*

(x,y)(x,y)

*

(x,y)
(x+u, y+v)

P(x+u,y+v)P(x,y)

K(x,y) (x,y)  =

(u, v)

(x,y)

(x+u, y+v)

(x,y)

(u, v)

(x,y)  =(x,y) = ( (x+u, y+v))

(a) Vector-based (b) Kernel-based (c) SDC-based

K(x,y)

Fig. 2. Illustration of sampling-based pixel synthesis. (a) Vector-based with a bilinear
interpolation. (b) Kernel-based, a convolution with a centered patch. (c) our SDC-based
method, a convolution with a displaced patch.

2.1 Spatially Displaced Convolution

To achieve the best of both worlds, we propose a hybrid solution – the Spatially
Displaced Convolution (SDC). The SDC uses predictions of both a motion vector
(u, v) and an adaptive kernel K(x, y), but convolves the predicted kernel with a
patch at the displaced location (x + u, y + v) in It. Pixel synthesis using SDC is
computed as:

It+1(x, y) = K(x, y) ∗ Pt(x + u, y + v). (4)

The predicted pixel It+1(x, y) is thus the weighted sampling of pixels in an
N ×N region centered at (x + u, y + v) in It. The patch Pt(x + u, y + v) is
bilinearly sampled at non-integral coordinates. Figure 2c illustrates our SDC-
based approach.

Setting K(x, y) to a kernel of all-zeros except for a one at the center reduce
the SDC to Eq. (2), whereas setting u and v to zero reduces it to Eq. (3). However,
it is important to note that the SDC is not the same as applying Eqs. (2) and
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(3) in succession. If applied in succession, the N×N patch sampled by K(x, y)
would be subject to the resampling effect of Eq. (2) as opposed to being the
original patch from It.

Our SDC effectively decouples displacement and kernel learning, allowing us
to achieve the visually pleasing results of kernel-based approaches while keeping
the kernel sizes small. We also adopt separable kernels [24] for K(x, y) to further
reduce computational cost. At each location, we predict a pair of 1D kernels and
calculate the outer-product of them to form a 2D kernel. This reduces our kernel
parameter count from N2 to 2N. In total, our model predicts 2N + 2 parameters
for each pixel, including the motion vector. We empirically set N = 11. Inference
at 1080p resolution uses 174 MB of VRAM, which easily fits in GPU memory.

We develop deep neural networks to learn motion vectors and kernels adapted
to each output pixel. The SDC is fully differentiable and thus allows our model
to train end-to-end. Losses for training are applied to the SDC-predicted frame.
We also condition our model on both past frames and past optical flows. This
allows our network to easily capture motion dynamics and evolution of pixels
needed to learn the transformation parameters. We formulate our model as:

It+1 = T
(
G
(
I1:t,F2:t

)
, It

)
, (5)

where transformation T is realized with SDC and operates on the most recent
input It, and Fi is the backwards optical flow (see Sect. 2.3) between Ii and
Ii−1. We calculate F using state-of-the-art neural network-based optical flow
models [7,9,32].

Our approach naturally extends to multiple frame prediction It+1:t+D by
recursively re-circulating SDC predicted frames back as inputs. For instance, to
predict a frame two steps ahead, we re-circulate the SDC predicted frame It+1

as input to our model to predict It+2.

2.2 Network Architecture

We realize G using a fully convolutional network. Our model takes in a sequence
of past frames I1:t and past optical flows F2:t and outputs pixel-wise separable
kernels {Ku, Kv} and a motion vector (u, v). We use 3D convolutions to convolve
across width, height, and time. We concatenate RGB channels from our input
images to the two optical flow channels to create 5 channels per frame. The
topology of our architecture gets inspiration from various V-net type typolo-
gies [7,22,29], with an encoder and a decoder. Each layer of the encoder applies
3D convolutions followed by a Leaky Rectified Unit (LeakyRELU) [8] and a
convolution with a stride (1, 2, 2) to downsample features to capture long-range
spatial dependencies. Following [7], we use 3 × 3× 3 convolution kernels, except
for the first and second layers where we use 3× 7× 7 and 3× 5× 5 for capturing
large displacements. Each decoder sub-part applies deconvolutions [16] followed
by LeakyRELU, and a convolution after corresponding features from the con-
tracting part have been concatenated. The decoding part also has several heads,
one head for (u, v) and one each for Ku and Kv. The last two decoding layers
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of Ku and Kv use upsampling with a trilinear mode, instead of normal decon-
volution, to minimize the checkerboard effect [25]. Finally, we apply repeated
convolutions in each decoding head to reduce the time dimension to 1 (Fig. 3).

Fig. 3. Our model G takes in a frame sequence and pairwise flow estimates as input,
and returns parameters for the SDC module to transform It to It+1.

2.3 Optical Flow

We calculate the inter-frame optical flow we input to our model G using
FlowNet2 [9], a state-of-the-art optical flow model. This allows us to extrapolate
motion conditioned on past flow information. We calculate backwards optical
flows because we model our transformation learning problem with backwards
resampling, i.e. predict a sampling location in It for each location in It+1.

It is important to note that the motion vectors (u, v) predicted by our model
G at each pixel are not equivalent to optical flow vectors Ft+1, as pure back-
wards optical flow is undefined (or zero valued) for dis-occluded pixels (pixels
not visible in the previous frame due to occlusion). A schematic explanation of
the disocclusion problem is shown in Fig. 4, where a 2 × 2 square is moving hor-
izontally to the right at a speed of 1 pixel per step. The ground-truth backward
optical flow at t = 1 is shown in Fig. 4b. As shown in Fig. 4c, resampling the
square at t = 0 using the perfect optical flow will duplicate the left border of
the square because the optical flow is zero at the second column. To achieve a
perfect synthesis via resampling at t = 1, as shown in Fig. 4e, adaptive sampling
vectors must be used. Figure 4d shows an example of such sampling vectors, in
which a −1 is used to fill-in dis-occluded region. A learned approach is necessary
here as it not only allows the disocclusion sampling to adapt for various degrees
of motion, but also allows for a learned solution for which background pixels
from the previous frame would look best in the filled gap.

2.4 Loss Functions

Our primary loss function is the L1 loss over the predicted image: L1 =∥∥It+1 − Igt+1

∥∥
1
, where Igi is a target and Ii is a predicted frame. We found the

L1 loss to be better at capturing small changes compared to L2, and generally
produces sharper images.
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Fig. 4. Disocclusion illustration using backwards optical-flow. Values in top-row indi-
cate vector magnitude in the horizontal axis. (a) frame at t = 0; (b) optical flow at
t = 1; (c) output of resampling (a) using (b); (d) correct sampling vectors; and (e)
resampling of (a) using (d). A direct use of optical-flow for frame prediction leads to
undesirable foreground stretching in dis-occluded pixels.

We also incorporated the L1 norm on high-level VGG-16 feature representa-
tions [30]. Specifically, we used the perceptual and style loss [11], defined as:

Lperceptual =
L∑

l=1

κl

∥∥Ψl(It+1) − Ψl(I
g
t+1)

∥∥
1
, (6)

and

Lstyle =
L∑

l=1

κl

∥∥(
Ψ

l
(It+1)

)ᵀ(
Ψ

l
(It+1)

)
−

(
Ψl(I

g
t+1)

)ᵀ(
Ψl(I

g
t+1)

)∥∥
1
. (7)

Here, Ψl(Ii) is the feature map from the lth selected layer of a pre-trained Ima-
genet VGG-16 for Ii, L is the number of layers considered, and κl is a normal-
ization factor 1/ClHlKl (channel, height, width) for the lth selected layer. We
use the perceptual and style loss terms in conjunction with the L1 over RGB as
follows:

Lfinetune = wlL1 + wsLstyle + wpLperceptual. (8)

We found the finetune loss to be robust in eliminating the checkerboard artifacts
and generates a much sharper prediction than L1 alone.

Finally, we introduce a loss to initialize the adaptive kernels, which we found
to significantly speed up training. We use the L2 norm to initialize kernels Ku

and Kv as a middle-one-hot vector each. That is, all elements in each kernel are
set very close to zero, except for the middle element which is initialized close
to one. When Ku and Kv elements are initialized as middle-hot vectors, the
output of our displaced convolution described in Eq. (4) will be the same as our
vector-based approach described in Eq. (2). The kernel loss is expressed as:

Lkernel =
W∑
x=1

H∑
y=1

( ∥∥∥Ku(x, y) − 1<N
2 >

∥∥∥
2

2
+

∥∥∥Kv(x, y) − 1<N
2 >

∥∥∥
2

2

)
, (9)

where 1<N
2 > is a middle-one-hot vector, and W and H are the width and height

of images.
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Other loss functions considered include the L1 or L2 distance between pre-
dicted motion vectors (u, v) and target optical flows. We found this loss to lead
to inferior results. As discussed in Sect. 2.3, optimizing for optical flow will not
properly handle the disocclusion problem. Further, use of estimated optical flow
as a training target introduces additional noise.

2.5 Training

We trained our SDC model using frames extracted from many short sequence
videos. To allow our model to learn robust invariances, we selected frames in
high-definition video game plays with realistic, diverse content, and a wide range
of motion. We collected 428K 1080p frames from GTA-V and Battlefield-1 game
plays. Each example consists of five (t = 5) consecutive 256 × 256 frames ran-
domly cropped from the full-HD sequence. We use a batch size of 128 over 8
V100 GPUs.

We optimize with Adam [12] using β1 = 0.9, and β2 = 0.999 with no weight
decay. First, we optimize our model to learn (u, v) using L1 loss with a learning
rate of 1e−4 for 400 epochs. Optimizing for (u, v) alone allows our network to
capture large and coarse motions faster. Next, we fix all weights of the network
except for the decoding heads of Ku and Kv and train them using our Lkernel

loss defined in Eq. (9) to initialize kernels at each output pixel as middle-one-hot
vectors. Then, we optimize all weights in our deep model using L1 loss and a
learning rate of 1e−5 for 300 epochs to jointly fine-tune the (u, v) and (Ku, Kv)
at each pixel. Since we optimize for both kernels and motion vectors in this step,
our network learns to pick up small and subtle motions and corrects disocclusion
related artifacts. Finally, we further fine-tune all weights in our model using
Lfinetune at a learning rate of 1e−5. The weights we use to combine losses are
0.2, 0.06, 36.0 for wl, wp, and ws respectively. We used the activations from
VGG-16 layers relu1 2, relu2 2 and relu3 3 for the perceptual and style loss
terms. The last fine-tuning step of our training makes predictions sharper and
produces visually appealing frames in our video prediction task. We initialized
the FlowNet2 model with pre-trained weights1 and fix them during training.

3 Experiments

We implemented all our Vector, Kernel, and SDC-based models using
PyTorch [27]. To efficiently train our model, we wrote a CUDA custom layer
for our SDC module. We set kernel size to 51 × 51 for the Kernel-based model as
suggested in [24]. The kernel size for our SDC-based model is 11 × 11. Inference
using our SDC-based model at 1080p takes 1.66 s, of which 1.03 s is spent on
FlowNet2.

1 https://github.com/lmb-freiburg/flownet2.

https://github.com/lmb-freiburg/flownet2
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3.1 Datasets and Metrics

We considered two classes of video datasets that contain complex real world
scenes: Caltech Pedestrian [5,6] (CaltechPed) car-mounted camera videos and
26 high definition videos collected from YouTube-8M [1].

We used metrics L1, Mean-Squared-Error (MSE/L2) [17], Peak-Signal-To-
Noise (PSNR), and Structural-Similarity-Image-Metric (SSIM) [38] to evaluate
quality of prediction. Higher values of SSIM and PSNR indicate better quality.

3.2 Comparison on Low-Quality Videos

Table 1. Next frame prediction
accuracy on Caltech Pedestrian [5,
6]. L2 results are in 1e−3.

Methods L2 SSIM

BeyondMSE [21] 3.42 0.847

PredNet [17] 3.13 0.884

MCNet [34] 2.50 0.879

DualGAN [14] 2.41 0.899

CopyLast 5.84 0.811

Our Vector-based 2.47 0.902

Our Kernel-based 2.19 0.896

Our SDC-based 1.62 0.918

Table 1 presents next frame prediction com-
parisions with BeyondMSE [21], PredNet [17],
MCNet [34], and DualGAN [14] on Caltech-
Ped test partition. We also compare with
CopyLast, which is the trivial baseline that
uses the most recent past frame as the predic-
tion. For PredNet and DualGAN, we directly
report results presented in [17] and [15],
respectively. For BeyondMSE2 and MCNet3,
we evaluated using released pre-trained
models.

Our SDC-based model outperforms all
other models, achieving an L2 score of 1.62 ×
10−3 and SSIM of 0.918, compared to the
state-of-the-art DualGAN model which has an
L2 score of 2.41 × 10−3 and SSIM of 0.899. The MCNet which was trained
on dataset that is equally as large as ours shows inferior results with L2 of
2.50 × 10−3 and SSIM of 0.879. CopyLast method has significantly worse L2
of 5.84 × 10−3 and SSIM of 0.811, making it a significantly less viable app-
roach for next frame prediction. Our Vector-based approach has higher accuracy
than our Kernel-based approach. Since the CaltechPed videos contain slightly
larger motion, the Vector-based approach, which is advantageous in large motion
sequences, is expected to perform better.

In Fig. 5, we present qualitative comparisons on CaltechPed. SDC-Net pre-
dicted frames are crisp, sharp and show minimal un-natural deformation of the
highlighted car (framed in red). All predictions were able in picking up the right
motion as shown with their good alignment with the ground-truth frame. How-
ever, both BeyondMSE and MCNet create generally blurrier predictions and
unnatural deformations on the highlighted car.

3.3 Comparison on High-Definition Videos

Table 2 presents next frame prediction comparisons with BeyondMSE, MCNet
and CopyLast on 26 full-HD YouTube vidoes. Our SDC-Net model outperforms
2 https://github.com/coupriec/VideoPredictionICLR2016.
3 https://github.com/rubenvillegas/iclr2017mcnet.

https://github.com/coupriec/VideoPredictionICLR2016
https://github.com/rubenvillegas/iclr2017mcnet
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GT BeyondMSE MCNet SDCNet

Fig. 5. Qualitative comparison for Caltech (set006-v001/506th frame). Left to right:
Ground-truth, BeyondMSE, MCNet, and SDC-Net predicted frames. (Color figure
online)

Table 2. Next frame prediction accuracy on YouTube-8M [1].

YouTube8M L1 L2 PSNR SSIM

BeyondMSE [21] 0.0271 0.00328 33.33 0.858

MCNet [34] 0.0216 0.00255 35.64 0.895

CopyLast 0.0260 0.00506 36.63 0.854

Our Vector 0.0177 0.00270 37.24 0.905

Our Kernel 0.0186 0.00303 37.33 0.904

Our SDC 0.0174 0.00240 37.15 0.911

all other models, achieving an L2 of 2.4 × 10−3 and SSIM of 0.911, compared to
the state-of-the-art MCNet model which has an L2 of 2.55 × 10−3 and SSIM of
0.895.

In Fig. 6, SDCNet is shown to provide crisp and sharp frames, with motion
mostly in good alignment with the ground-truth frame. Since our models do not
hallucinate pixels, they produce visually good results by exploiting the image
content of the last input frame. For instance, instead of duplicating the borders of
foreground objects, our models displace to appropriate locations in the previous
frame and synthesize pixels by convolving the learned kernel for that pixel with
an image patch centered at the displaced location.

Since our approach takes FlowNet2 [9] predicted flows as part of its input,
the transformation parameters predicted by our deep model are affected by inac-
curate optical flows. For instance, optical flow for the ski in Fig. 6 (bottom right)
is challenging, and so the ski movement was not predicted by our model as well
as the movement of the skiing person.

In Fig. 7, we qualitatively show comparisons for MCNet, our Kernel-, Vector-
, and SDC-based methods for a large camera motion. MCNet shows signifi-
cantly blurry results and ineffectiveness in capturing large motions. MCNet also
significantly alters the color distribution in the predicted frames. Our Kernel-
based method has difficulty predicting large motion, but preserves the color
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Fig. 6. Comparison of frame prediction methods. Shown from top to bottom are
Ground-truth image, MCNet and SDC-Net results. SDCNet is shown to provide crisp
and sharp frames, with motion mostly in good alignment with the ground-truth frame.
MCNet results on the other hand appear blurry, with artifacts surrounding the persons
(framed in red and orange). MCNet results also show checkerboard artifacts near the
skis and on the snow background. (Color figure online)

distribution. However, the Kernel-based approach often moves components dis-
jointly, leading to visually inferior results. Our Vector-based approach better cap-
tures large displacement, such as the motion present in this sequence. However,
its predictions suffer from pixel noise. Our SDC-based method, which combines
merits of both our Kernel- and Vector-based approaches, combines the ability
of our Vector-based method to predict large motions, along with the visually
pleasing results of our Kernel-based approach.

3.4 Comparison in Multi-step Prediction

Previous experiments showed SDCNet’s performance in next frame prediction.
In practice, models are used to predict multiple future frames. Here, we con-
dition each approach on five original frames and predict five future frames on
CaltechPed. Figure 8 shows that SDCNet predicted multiple frames are consis-
tently favourable when compared to previous approaches, as quantified by L1,
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Fig. 7. Comparison of frame prediction for large motion. Expected transformation
is an upwards displacement with a slight zoom-in. While the Kernel-based, Vector-
based, and SDC-based models were all trained with L1 and fine-tuned with style-loss
to promote sharpness, note that the Vector-based result still loses coherence when
predicting large displacement. On the other hand, the SDCNet is able to displace as
much as the Vector-based model while maintaining sharpness. While the Kernel-based
result is relatively sharp, it is conservative about predicting the upwards translation
(note the relative distance of tiles to the bottom of the frame compared to the vector
and SDC approaches). Further, there is a slight ghosting effect in the right-most tile
of the Kernel-based result, which is not present in the SDC result.
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L2, SSIM and PSNR over 120,725 unique Caltech Pedestrian frames. Figure 9
presents an example five-step prediction that show SDCNet predicted frames
preserving color distribution, object shapes and their fine details.

Fig. 8. Quantitative five-step prediction results for SDC-Net (blue), MCNet (orange),
BeyondMSE (gray) and CopyLast (yellow). SDCNet shows consistently better results
as quantified by L1, L2, PSNR and SSIM over 120,725 unique CaltechPed frames.
(Color figure online)

Fig. 9. Qualitative five-step prediction results for MCNet (top row), SDCNet (middle
row), and Ground Truth (bottom row). Both MCNet and SDCNet were conditioned
on the same set of five frames (not seen in the figure).

3.5 Ablation Results

We compare our Vector-based with our SDC-based approach in Fig. 10. Our
Vector-based approach struggles with disocclusions (orange box), as described
in Sect. 2.3. In Fig. 10, the Vector-based model avoids completely stretching the
glove borders, but still leaves some residual glove pixels behind. The Vector-
based approach also may produce speckled noise patterns due to large motion
(red box). Disocclusion and speckled noise are significantly reduced in the SDC-
Net results shown in Fig. 10.

In Fig. 11, we present qualitative results for our SDC-based model trained
using L1 loss alone vs L1 followed by our Lfinetune given by Eq. (8). We note
that using L1 loss alone leads to slightly blurry results, e.g. the glove (red box),
and the fence (orange box) in Fig. 11. Figure 11 (center column) shows the same
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Vector-Based SDCGT

Fig. 10. Comparison of frame synthesis operations. Ground-truth frame (left), Vector-
based sampling (middle), and SDC (right). Some foreground duplication (orange box)
and inconsistent pixel synthesis (red box, may require zooming in) are present in the
Vector-based approach but resolved in the SDC results. (Color figure online)

result after fine-tuning, with finer details preserved – demonstrating that the
perceptual and style losses reduce blurriness. We also observed that the L1 loss
helps capture large motions that are otherwise challenging to capture.

Figure 11 represents a challenging example due to fast motion. Since our
model depends on optical flow, situations that are challenging for optical flow
are also difficult for our model. The prediction errors can be seen with the
relatively larger misalignment on the fence compared to the ground truth (orange
box). Our approach also fails during scene transitions, where past frames are not
relevant to future frames. Currently, we automatically detect scene transitions
by analyzing optical flow statistics, and skip frame prediction until enough (five)
valid frames to condition our models are available.

GT L1 Style

Fig. 11. Comparison of loss functions. Ground-truth (left), L1 loss (middle), and Fine-
tuned result with style loss (right). Fine-tuning with style loss can improve the sharp-
ness of results, as seen in the rendered text on the barriers and fence (orange crop) as
well as the glove (red crop). (Color figure online)
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4 Conclusions

We present a 3D CNN and a novel spatially-displaced convolution (SDC) mod-
ule that achieves state-of-the-art video frame prediction. Our SDC module effec-
tively handles large motion and allows our model to predict crisp future frames
with motion closely matching that of ground-truth sequences. We trained our
model on 428K high-resolution video frames collected from gameplay footage.
To the best of our knowledge, this is the first attempt in transfer learning from
synthetic to real life for video frame prediction. Our model’s accuracy is depen-
dent on the accuracy of the input estimated flows, thus leading to failures in fast
motion sequences. Future work will include a study on the effect of multi-scale
architectures for fast motion.
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