
Coreset-Based Neural Network
Compression

Abhimanyu Dubey1(B), Moitreya Chatterjee2, and Narendra Ahuja2

1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
dubeya@mit.edu

2 University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
metro.smiles@gmail.com, n-ahuja@illinois.edu

Abstract. We propose a novel Convolutional Neural Network (CNN)
compression algorithm based on coreset representations of filters. We
exploit the redundancies extant in the space of CNN weights and neu-
ronal activations (across samples) in order to obtain compression. Our
method requires no retraining, is easy to implement, and obtains state-
of-the-art compression performance across a wide variety of CNN archi-
tectures. Coupled with quantization and Huffman coding, we create net-
works that provide AlexNet-like accuracy, with a memory footprint that
is 832× smaller than the original AlexNet, while also introducing signifi-
cant reductions in inference time as well. Additionally these compressed
networks when fine-tuned, successfully generalize to other domains as
well.

1 Introduction

Convolutional neural networks, while immensely powerful, often are resource-
intensive [24,26,35,50,54]. Popular CNN models such as AlexNet [35] and VGG-
16 [50], for instance, have 61 and 138 million parameters and consume in excess
of 200 MB and 500 MB of memory space respectively. This characteristic of deep
CNN architectures reduces their portability, and poses a severe bottleneck for
implementation in resource constrained environments [17]. Additionally, design
choices for CNN architectures, such as network depth, filter sizes, and number
of filters seem arbitrary and motivated purely by empirical performance at a
particular task, permitting little room for interpretability. Moreover, the archi-
tecture design is not necessarily fully optimized for the network to be yielding a
certain level of precision, making these models highly resource-inefficient.

Several prior approaches have thus sought to reduce the computational
complexity of these models. Work aimed at designing efficient CNN architec-
tures, such as Residual Networks (ResNets) [25] and DenseNets [28] have shown

A. Dubey and M. Chatterjee—Equal Contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01234-2 28) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11211, pp. 469–486, 2018.
https://doi.org/10.1007/978-3-030-01234-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01234-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-01234-2_28
https://doi.org/10.1007/978-3-030-01234-2_28


470 A. Dubey et al.

promise at alleviating the challenge of model complexity. These CNNs provide
higher performance on classification at only a fraction of the number of parame-
ters of their more resource intensive counterparts. However, despite being more
compact, redundancies remain in such networks, leaving room for further com-
pression.

In this work, we propose a novel method that exploits inter-filter dependen-
cies extant in the convolutional filter banks of CNNs to compress pre-trained
computationally intensive neural networks. Additionally we leverage neuronal
activation patterns across samples to prune out irrelevant filters. Our compres-
sion pipeline consists of finely pruning the filters of every layer of the CNN
based on sample activation patterns, followed by the construction of efficient fil-
ter coreset representations to exploit the inter-filter dependencies. Our method
does not require retraining, is applicable to both fully-connected and convolution
layers, and maintains classification performance similar to the uncompressed
network. We display state-of-the-art compression rates on several popular CNN
models, including multiple ResNets, which show increases from 9.2× to 16.2×
in compression rate over prior state-of-the-art techniques. Coupled with Deep
Compression, we are additionally able to compress other popular CNN mod-
els such as VGGNet-16 [50] and AlexNet [35] by 238× and 55× respectively.
Moreover, we demonstrate the presence of filter redundancies even in highly effi-
cient models such as SqueezeNet [29], by reducing their parameters by 50% with
almost no loss in classification performance, giving us AlexNet-level precision
but with 832× smaller model size, compared to the original AlexNet model.
Finally, we empirically validate the generalizability of these compressed CNNs
to newer domains.

In the next section, we discuss relevant prior work in this area. In Sect. 3,
we present the details of our algorithm. This is followed by Sect. 4, where a
discussion on the empirical evaluation of our method vis-à-vis other competing
compression techniques is presented. We finally conclude in Sect. 5, laying out
some avenues for future research in this area.

2 Related Work

Network Compression: Compressing neural networks has been a topic of
active research interest lately. Prior work in this area can be grouped into three
distinct categories. The first category of methods direct their attention to the
construction of parameter-efficient neural network architectures. For instance,
Iandola et al. [29] propose SqueezeNets, a neural architecture class containing
the parameter efficient, fully convolutional, ‘fire’ modules. Other examples of
such architectures include Residual Networks (ResNets)[25], and Densely Con-
nected Neural Networks (DenseNets)[28], which provide higher classification per-
formance with models much smaller than the previous state-of-the-art, using
‘skip-connections’ between layers of the network. More recent approaches have
sought to adapt CNN architectures so as to make them robust to common trans-
formations (e.g. rotation) within the data, by modifying the filter banks of a



Coreset-Based Neural Network Compression 471

CNN [10,61] or by enforcing sparsity while training [2]. While these approaches
seem to hold promise but they fail to fully exploit the inter-filter dependen-
cies, allowing room for further compression of such networks. Meta-learning
approaches attempt to decipher the optimum CNN architecture by searching
over the space of a gigantic number of possible candidates. However, these tech-
niques are prohibitively resource intensive, (needing well in excess of 400 GPUs
to run), and often yield only a locally optimum architecture [46].

A second broad category of compression methods attempt to prune the unim-
portant network parameters. Han et al. [20] demonstrate an efficient pruning-
retraining method, based on pruning weights by their �p norms. Srinivas and
Babu [53] remove individual neurons instead of weights, with impressive results.
The importance of ordering filters for the purpose of pruning has also been high-
lighted in Yu et al., He et al., and Molchanov et al. [27,42,60]. These approaches
have been modified in the works of Polyak et al. [45] and Luo et al. [41], that
focus on removing weights grouped by characteristics of filters (such as norm of
filter weights, etc.). Li et al. [40] extend the ideas of filter pruning by removing fil-
ters from a network following an ‘importance’ criterion. However, the re-training
step in these algorithms is time intensive.

Finally, the third theme of compression techniques is to employ weight-
approximation and information-theoretic principles for the compression of neural
network parameters. An early example of such work is the approach by Denton
et al. [9] that uses low-rank approximations to compress fully-connected layers
of neural networks. However, this technique doesn’t apply to the convolution
layers. Lebdev et al. fixes this problem and employs a low-rank decomposition
approach to the full CNN to construct more efficient representations but their
technique’s principal bottleneck is re-training, which we avoid [36]. Rosenfield et
al. consider an efficient utilization of CNN filters by representing them as a linear
combination of a bases set [48]. However, our algorithm, different from this line
of work, is additionally also capable of introducing structure, such as sparsity, in
the approximated weights resulting from the decomposition, which further aids
compression. Han et al. [20] introduce Deep Compression, that uses several steps
such as weight-pruning, weight-sharing, and Huffman coding to reduce neural
network size. However, their algorithm requires special hardware for inference in
the compressed state, making it hard to deploy the compressed networks across
platforms.

Our method aims at handling the shortcomings in each of these individ-
ual themes of CNN compression. Contrary to the first category of architecture
search, our method is applicable to a wide variety of models, is less resource inten-
sive, and does not require any retraining. While we do prune filters inspired by
the work of Polyak et al. [45] (following the second theme of compression), our
criterion for filter pruning, however, is motivated by the accurate reconstruction
of sample activations, instead of the magnitude of filter weights. Finally, our
compression technique does not require special hardware for running inference
unlike Han et al. [19] and scales to both fully-connected and convolutional layers,
unlike the low-rank (SVD) approach by Denton et al. [9].



472 A. Dubey et al.

Coresets for Point Selection: Coresets have been widely studied in computa-
tional geometry. They were introduced first by Agarwal et al. [1] for approximat-
ing a set of points with a smaller set, while preserving some desired criteria, on
k-means and k-median problems. Badoiu et al. [5] propose a coreset formulation
to cluster points using a subset of the total set of points to generate the optimal
solution. Har-Peled and Mazumdar [22] give an alternate solution for coresets
that include points not in the original set. Feldman et al. [13] demonstrate that
weak coreset representations can be generated with the number of points inde-
pendent of the underlying data distribution. These formulations have recently
been applied to several problems within computer vision and machine learning
[12,14,15], and are primarily used to approximate a set of n points in d dimen-
sions, originating from a domain S, with a smaller set of ñ � n points, while
preserving some criterion such as similar pairwise distances. However, coresets
have remained unexplored in the context of CNN compression, which constitutes
a major novelty of our work.

3 Method

We begin with a fully-trained CNN and compress it without retraining, first
by pruning out unimportant filters, followed by extraction of efficient coreset
representation of these filters. Some of the major advantages of our method
include: (i) Lack of retraining, therefore a major reduction in processing time,
(ii) Capacity of our algorithm to significantly compress both convolutional and
fully connected layers, and (iii) Ability of the compressed CNN to generalize to
newer tasks.

3.1 Background and Notation

An n-layered neural network can be described as a union of the parameter tensors
of every layer, W = ∪n

k=1 Wk. The parameters Wk of layer k have the shape
Nk × Ck × hk × wk, where Nk denotes the number of filters, Ck denotes the
number of input channels of the filter (since this is typically equal to the number
of filters in the previous layer, Ck = Nk−1), and hk and wk denote the height and
width of a filter. We can rewrite the parameter tensor Wk as a 2D matrix Wk

of the shape Nk × (Ckhkwk). Next, we append the biases of the filters to Wk, to
make it a matrix of dimensions Nk × (Ckhkwk + 1). It is well known that using
this representation of the weights and biases of a layer, Wk, we can represent the
output activation of any fully connected layer as a matrix product of Wk with
the incoming activation tensor Ak−1. This notion can be extended to convolution
layers by re-casting the matrices in an appropriate Toeplitz form [56].

The goal of compression is to obtain a compressed representation of the
parameters for each layer Ŵ = ∪n

k=1 Ŵk such that it is smaller and computa-
tionally efficient, and preserves the final classification accuracy. Our approach is
to construct compressed filter ‘coresets’ Ŵk ∈ R

N̂k×(Ckhkwk+1) of the parame-
ters of each layer (where N̂k < Nk), such that the output activations (obtained



Coreset-Based Neural Network Compression 473

after the Toeplitz matrix multiplication), are well approximated. Ensuring that
the output activations remain largely the same at every layer, post compres-
sion, ensures that the final classification performance remains largely unchanged.
Since the elements of these coresets are typically linear functions of the original
parameters, we will additionally require a decompression matrix Dk ∈ R

N̂k×Nk

to obtain an approximation to the initial set of parameters, starting with the
coreset representation.

Coresets are an effective technique of approximating a large set of points
with a smaller set, which need not necessarily be a part the original set, while
preserving some desirable property such as mean pairwise distances, diameter of
the point set, etc. We seek to obtain a reduced matrix (coreset) Ŵk representa-
tion of the original filter weights Wk of every layer, which we do via 3 different
approaches, as described below.

3.2 k-Means Coresets

A first approach to constructing such a coreset would be to obtain a reduced
representation of the parameter matrix that approximates the sum of distances
in the space of neuronal activations of an arbitrary sample between each of the
filters. Feldman et al. [14] demonstrate that this problem is equivalent to finding
a low-rank approximation of the filter matrix. This is representable as follows:

min
U ′

k,Σ
′
k,V

′
k

‖Wk − U ′
kΣ

′
kV

′T
k ‖2F (1)

Their formulation for constructing a compact set of N̂k � N points using
the sum of distances criterion leads to the k-Means Coresets, where the coreset
representation is given by the solution to the above optimization problem:

Ŵk = U ′
kΣ

′
k, with decompression matrix: Dk = V

′T
k (2)

Here, the matrices U ′
k,Σ

′
k and V

′T
k are the N̂k-truncated versions of the

matrices Uk,Σk and V T
k , which satisfy the property:

Wk = UkΣkV
T
k ≈ Ŵk = U ′

kΣ
′
kV

′T
k (3)

Uk,Vk are unitary matrices, while Σk is a diagonal matrix. Such a decom-
position can be obtained using Singular Value Decomposition (SVD), where the
extent of truncation is specified as an input to the algorithm. The truncation
determines the amount of compression we get.

Intuitively a significant truncation, while yielding greater compression, leads
to a weaker approximation of the filter weights. This also results in a weaker
approximation of the output activations, manifesting itself as a drop in classifi-
cation accuracy. We seek the optimum compression, across all layers, such that
the classification accuracy does not deviate by more than 0.5%.

SVD for compressing neural network weights has been investigated previ-
ously in [9], however, with two key differences - (i) the naive SVD approach has



474 A. Dubey et al.

been applied only to fully-connected layers of neural networks, with limited suc-
cess, whereas our coreset-based formulation scales to both convolution and fully
connected layers, and (ii) our method for selecting the number of components
to be retained N̂k is data-dependent, based on training error obtained on ran-
dom subsets of the training data, instead of an arbitrary initialization followed
by retraining. However, since this decomposition does not explicitly encode any
structure on the approximated weights, such as sparsity or considers the impact
of activations, we build upon this formulation to create stronger coreset repre-
sentations. This sets us apart from prior work, which employ simple low-rank
decomposition for constructing efficient CNNs [36] (Fig. 1).

Original Filter Set Pruned Filter Set

x =

Approximated
Filter Set

Filter
Coreset

Decompression
Matrix

Activation-Based
Filter Pruning

Coreset-Based
Filter Compression

Fig. 1. Visual representation of compression pipeline for layer k of a neural network.
Our algorithm proceeds in two steps - (i) filter pruning, and (ii) filter compression, as
illustrated

3.3 Structured Sparse Coresets

If we consider the previous coreset decomposition, the optimization problem can
be rewritten as (subject to constraints on each of the variables U ′

k,Σ
′
k and V ′

k):

min
U ′

k,Σ
′
k,V

′
k

‖Wk − U ′
kΣ

′
kV

′T
k ‖2F (4)

To induce sparsity in the obtained decomposition, Jenatton et al. [30] introduce
a technique known as Structured Sparse PCA, which optimizes the following:

min
U ′

k,Σ
′
k,V

′
k

‖Wk − U ′
kΣ

′
kV

′T
k ‖2F + λ · ‖V ′

k‖1,

subject to ‖(U ′
k · Σ′

k)m‖2 = 1 ∀ m ∈ [1, N̂k]
(5)

This problem can be solved by a cyclic optimization of two convex problems [30],
and provides us with a decomposition that possesses structured sparsity. The
motivation behind using such a formulation is to obtain a decomposition that is
sparse in the number of components used, while minimizing reconstruction error.
While techniques such as SPCA [32] or NMF [39] also construct representations
that are sparse in the projected space, this formulation returns a decomposition
that makes the approximation in the original space sparse as well, hence, both
Ŵk and Dk are sparse. Moreover, this formulation allows us to discard those
filters for which the corresponding column vector in Dk is a null vector, leading
to further compression.



Coreset-Based Neural Network Compression 475

The hyper-parameters N̂k and λ are chosen jointly so as to obtain the max-
imum compression while restricting the deviation in classification performance
to within 0.5% of the uncompressed network, post the compression of all layers.
We observe that this technique provides much more compression than k-Means
Coreset, however, this does not take into account the relative importance of the
filters during reconstruction, which leads us to our final coreset formulation.

3.4 Activation-Weighted Coresets

Our final coreset formulation is obtained by introducing a relative importance
score to every filter (based on their activation magnitudes over the training
set), while inducing sparsity. However, if we attempt to directly learn a coreset
representation by minimizing the reconstruction error over all the training set
activations, the resulting optimization problem will be difficult to solve, owing to
the large size of the activation matrix and its degenerate nature. We thus employ
an alternate formulation: for each filter f in a layer, we compute its ‘importance’
i
(f)
k as the mean value of its activation over all training set points, normalized

over all filters, in the kth layer. This is given by the following:

i
(f)
k =

Ā
(f)
k

∑Nk

p=1 Ā
(p)
k

; where Ā
(f)
k =

1
T

T∑

j=1

‖A(f)
k (j)‖F (6)

Here, A(f)
k (j) is the activation of the f th filter of layer k, for training sample

j, and T denotes the total number of training samples. We then construct the
Importance Matrix Ik for the layer k by tiling the column vectors (i(f)k )Nk

f=1, for
(Ck × hk × wk + 1) times, creating an Importance Matrix ∈ R

Nk×(Ckhkwk+1),
where each row denotes the ‘importance’ of each filter, normalized over all filters
of the current layer.

We create this form of the importance matrix with every element of a row
containing identical values, since we do not want to weigh each component of a
particular filter differently. Note, additionally, that we can compute this matrix
in only one forward pass of the entire training set. This leads us to the following
optimization problem:

min
U ′

k,Σ
′
k,V

′
k

‖Ik � (Wk − U ′
kΣ

′
kV

′T
k )‖2F (7)

Here � denotes the Hadamard (elementwise) product. This problem is essen-
tially, a weighted low-rank decomposition, studied previously by Srerbo and
Jaakkola [52] and Delchambre [8] and is solved using an efficient Expectation-
Maximization (EM) algorithm [52].

The intuition behind this weighted formulation is to ascribe a relative impor-
tance to the filters that contribute most to the activations in the training set
(on average in the Frobenius norm sense), instead of attempting to reconstruct
all activations with equal priority. Molchanov et al. [42] also use the notion of
an importance criteria for compression but rather than using it as a weighting



476 A. Dubey et al.

scheme in the optimization objective, like we do, they directly use it to prune
the ‘less important’ filters. In this case as well, we compute the optimum number
of components to be kept by selecting the least number of components that can
be selected such that the classification accuracy is bounded within 0.5% of the
original network, once the entire network has been compressed.

3.5 Activation-Based Filter Pruning

In related work, Liet al. observe that not all filters are equally important in the
context of classification [40]. This motivates us to perform a pre-processing step
before coreset compression, to first eliminate unimportant filters pre-emptively,
based on the mean of their activation norms over the training set. This step is
essential to remove unimportant weights, since pruning out a filter in a layer can
completely remove the weights corresponding to that filter, in the next layer as
well, inducing greater sparsity. Using the notation from earlier we can write the
size of filters Ŵk as:

size(Ŵk) = N̂k × (Ckhkwk + 1) + NkN̂k

Setting Ck = Nk−1 (since number of outgoing activations in the previous layer is
equal to the number of input channels in the next layer), and using Nk−1hkwk 	
Nk, we get:

size(Ŵk) ∝ N̂k · Nk−1

By layer-wise pruning of complete filters, we can hence set the number of post-
pruning filters at layer k−1 to be N∗

k−1 < Nk−1, permitting further compression.
In networks with skip-connections (e.g. ResNets), Ck �= Nk−1, but it is a positive
linear combination of the number of filters of the “source” layers of the (skip)
connections, hence the proportionality still holds.

Starting from the first layer in the network, we proceed to evaluate the activa-
tion values for the entire training set, layer-by-layer. Inspired by standard “Max-
Pool” sub-sampling techniques prevalent in modern CNNs [35,50], we approxi-
mate the response from each filter in the convolution layers (a 2D matrix) with
its maximum value (a scalar). Once we have this set of pooled filter-wise activa-
tions for all samples, we compute the mean squared norm of each filter over all
the training samples, and sort the filters by this value. This technique of ordering
filters differentiates us from prior pruning-based techniques. We maximize the
number of pruned filters, ensuring that the divergence in classification accuracy
is only 0.5%, after the pruning has been carried out across all layers. Once we
obtain a reduced set of filters with the crucial filters preserved, we compress this
set of filters using coresets, as discussed earlier.

3.6 Compression Pipeline and Computational Complexity Analysis

The entire pipeline for compression can be summarized in two stages - (i)
activation-based pruning, followed by (ii) coreset-based compression. The prun-
ing procedure can be summarized in the following steps:



Coreset-Based Neural Network Compression 477

1. Sort the layers of the network in order of descending parameter size.
2. For each layer of the sorted network, repeat the following steps:

(a) Compute activations for every input in the training set, and store the
maximum value for each filter activation (max-pool over spatial dimen-
sions).

(b) Sort the filters in descending order of the mean value of the max-pooled
activations, over the entire training set.

(c) Find the smallest number of filters N∗
k that can be retained while per-

formance deviation, post the compression of all layers, is within 0.5% of
original performance - using binary search.

We can see that the complexity of the individual steps are O(n log n) for the
first sorting step, and O(n · (A+Nk log Nk +A log Nk)) for layer-wise activation
computation, filter sorting, and binary-search. A denotes the complexity to do
one feed-forward operation on the entire training set. Since A 	 Nk 	 1,
the total complexity of the filter pruning is O(n · A · log maxk Nk), requiring a
maximum of n log maxk Nk epochs of feed-forward operations, which, for most
neural network architectures, we find to be much smaller than the complexity of
fine-tuning.

After filter pruning, we proceed to the coreset-based compression stage. This
procedure for compression can be summarized in the following steps:

For each layer in the network, starting from the shallowest, do:

1. Compute the complete decomposition according to the coreset formulation
used.

2. Find the minimum number of coreset filters N̂k that can be retained while
performance is within 0.5% of the network prior to coreset compression, post
the compression of all layers - by searching over a random subset of the
training data using binary search.

The complexity for the coreset construction set is O(n · (B + sA log N∗
k )),

where B is the complexity for the matrix decomposition, and 0 ≤ s ≤ 1 is the
fraction of random training points used. For our experiments, we set s = 0.005.
We find that for most networks, sA log N∗

k > B, and hence the total complexity
of the compression pipeline is O(n · A · log Nk · (1 + s)). Note that post the
cascading of activation-based pruning with coreset compression across all layers,
the total deviation allowed in classification performance is 1% (0.5% for pruning
and 0.5% for coreset compression).

4 Experimental Evaluation

We implement our method in PyTorch [44] and Caffe [31], and evaluate on a
cluster of NVIDIA TITAN Xp and Tesla GPUs. All of our implementation and
other details are available here 1. For all experiments, we evaluate all 3 core-
set construction techniques, as well as the impact of activation-based pruning
1 https://sites.google.com/site/metrosmiles/research/research-projects/

compress cnn.

https://sites.google.com/site/metrosmiles/research/research-projects/compress_cnn
https://sites.google.com/site/metrosmiles/research/research-projects/compress_cnn


478 A. Dubey et al.

coupled with each, and report all results together with the baseline and com-
parable recent work. The Activation-Based Pruning pipeline is reported as AP,
while the coreset techniques are reported as - (1) k-Means Coreset (Coreset-K),
(2) Structured Sparse Coreset (Coreset-S) and (3) Activation-Weighted Coreset
(Coreset-A). We compare our compression performance with recent compres-
sion benchmarks, such as Fast-Food [59], SVD [9], Weight-Based Pruning [21],
Deep Compression [20], memory-bounded CNNs [6], Compression Aware Train-
ing [2], etc. on a wide array of CNN architectures, including the highly efficient
SqueezeNet [29].

4.1 LeNet-5 on MNIST

The first architecture we evaluate is the LeNet-5 network [38] on the MNIST
dataset [37]. This is a popular benchmark for network compression, and high
values of compression are reported by various recent work, which makes it a very
competitive setup. The results for this experiment are summarized in Table 2. We
can see that the coreset-based methods outperform the recent work comfortably,
with a relative improvement of 18% over the existing state-of-the-art.

Table 1. Compression (Comp.) results for both AlexNet [35] and VGGNet-16 [50]
trained on the ImageNet dataset, along with variation in performance with Deep Com-
pression

Method AlexNet [35] VGGNet-16 [50]

Acc. (%) #Params Comp. #Epochs Acc. (%) #Params Comp.

Baseline 57.22 61M 1× - 68.88 138M 1×
Fastfood-32-AD [59] 58.07 30M 2× - - - -

Fastfood-16-AD [59] 57.10 17M 3.7× - - - -

Collins and Kohli [6] 55.60 15.3M 4× - - - -

Compression-Aware [2] - - - - 67.6 64.17M 2.2×
SVD [9] 55.98 12.2M 5× 540 68.85 27M 5.1×
Pruning [20] 57.23 6.8M 9× 960 68.15 15M 9.1×
Dynamic Net Surgery [18] 56.91 3.47M 17.7× 140 - - -

Coreset-K 56.97 9.15M 6.7× 17 68.69 15.6M 9.2×
Coreset-S 56.78 5.76M 10.5× 21 68.65 9.9M 13.9×
Coreset-A 56.82 4.97M 12.3× 23 68.01 9.2M 15.1×
AP+Coreset-K 56.51 4.02M 15.2× 26 68.56 9.81M 14×
AP+Coreset-S 56.38 3.20M 19.1 × 28 67.90 8.1M 17×
AP+Coreset-A 56.48 3.68M 16.5× 27 68.16 8.7M 15.8×
With deep compression (comparison of model size)

Baseline 57.22 6.9MB 35× - 68.70 10.77MB 49×
Coreset-K 56.80 4.17MB 49× - 68.51 2.52MB 210×
Coreset-S 56.87 3.92MB 52× - 68.25 2.35MB 225×
Coreset-A 57.19 4.01MB 51× - 68.43 2.41MB 220×
AP+ Coreset-K 56.85 4.01MB 51× - 68.02 2.28MB 232×
AP+ Coreset-S 56.70 3.85MB 53× - 68.16 2.26MB 233×
AP+ Coreset-A 57.08 3.74MB 55 × - 68.14 2.21MB 238×



Coreset-Based Neural Network Compression 479

4.2 Large-Scale ImageNet Models

The next set of experiments we perform are on the large-scale ImageNet-trained
models - the very deep networks such as Residual Networks [24], AlexNet [35]
and VGGNet-16 [50]. These architectures are ubiquitous for countless applied
computer vision tasks [7,23], and several recent compression techniques demon-
strate remarkable compression on these models which makes them an appro-
priate benchmark for evaluating compression performance. For these networks,
we also demonstrate the impact of coupling Deep Compression (which involves
quantization, pruning, re-training iteratively) with our method.

Table 3 summarizes the empirical evaluation on Residual Networks. We find
state-of-the-art performance achieved by all three coreset methods, and a sub-
stantial increase from previous baselines as well. Even in 101-layer deep net-
works such as ResNet-101, we are able to obtain consistent compression, similar
to the shallower ResNets. Note that this improvement is entirely on convolu-
tional layers, which typically have very few redundancies when compared to
fully-connected layers. We additionally observe that activation-based pruning
buys us significant compression, providing in essence a cascading additive effect.

Table 1 summarizes the empirical evaluation on AlexNet and VGGNet-16
networks, the two of the largest image classification networks in use today. We
demonstrate substantial improvements over the state-of-the-art, by compress-
ing AlexNet by 19×, and VGGNet-16 by 17× from their baseline sizes. When
combined with Deep Compression, these ratios increase, up to 55× and 238×
respectively, yielding models with a memory footprint of less than 4 MB. The
results additionally highlight the improvement that the activation-based pruning
(AP) provides, which is most prominent in the Coreset-K and Coreset-S models.

Table 2. Compression (Comp.)
results on LeNet-5

Method Top-1 Comp.

Baseline 0.97 1×
Wang et al. [58] 0.93 16×
Han et al. [20] 0.74 39×
Guo et al. [18] 0.91 108×
SVD [9] 0.92 118×
Ullric et al. [55] 0.97 164×
AP+Coreset-K 0.966 165×
AP+Coreset-S 0.96 192×
AP+Coreset-A 0.96 193×

Table 3. Compression results on Residual Net-
works. Columns Acc. and Comp. represent the
Top-1 accuracy and compression factor respec-
tively

Method Residual network

Res-18 Res-50 Res-101

Acc. Comp. Acc. Comp. Acc. Comp.

Baseline [25] 0.69 1× 0.75 1× 0.76 1×
SVD [9] 0.69 8× 0.74 9.1× 0.75 9.2×
Pruning [21] 0.68 5.2× 0.74 6.2× 0.76 6.4×
N2N [4] 0.67 9.0× 0.73 8.7× 0.74 8.5×
ThiNet [41] - - 0.71 2.06× - -

ThiNet [41] - - 0.68 2.95× - -

AP+Coreset-K 0.69 13.3× 0.74 14.7× 0.75 15.1×
AP+Coreset-S 0.68 15× 0.74 15.8× 0.75 16.2×
AP+Coreset-A 0.69 14.2× 0.74 15.6× 0.75 15.8×



480 A. Dubey et al.

4.3 SqueezeNet

We evaluate our method on the highly parameter-efficient SqueezeNet archi-
tecture to evaluate if further redundancies still persist after such a compres-
sion in the architecture space and if those can be eliminated via efficient filter
bank representations. We find that despite beginning with 50× less parameters
than AlexNet (while providing the same performance), SqueezeNet can be com-
pressed further (results in Table 4). Using our method, we are able to compress
SqueezeNet to half its parameters, providing accuracy similar to AlexNet at
100× compression. By coupling with Deep Compression, we obtain a net com-
pression in model size to the tune of 16.64× over the original model (or 832×
from AlexNet) while maintaining classification performance.

4.4 Additional Observations

Further, we observe that Coreset-S and Coreset-A formulations consistently out-
perform Coreset-K. We surmise that large extant model redundancies tend to
benefit Coreset-A and S formulations where sparsity is explicitly enforced in
the objective. Moreover, we observe that for deeper models Coreset-S tends to
achieve the most compression. Table 5 shows the superior layer-wise compres-
sion achieved by our algorithm vis-á-vis state-of-the-art compression techniques
on LeNet-5. The results clearly bring out the efficacy of using our compression

Table 4. Comparison with SqueezeNet [29] trained on the ImageNet dataset. We can
compress SqueezeNet to create a model that is 832× smaller than AlexNet [35] with
the same performance.

Method Acc. (%) Num. of params Ratio Rel. to AlexNet

Baseline 57.01 1.24M 1× 50×
Coreset-K 56.83 0.73M 1.7× 85×
Coreset-S 56.92 0.65M 1.9× 95×
Coreset-A 56.94 0.61M 2× 102×
AP+ Coreset-K 56.52 0.65M 1.9× 95×
AP+ Coreset-S 56.44 0.59M 2.1× 109×
AP+ Coreset-A 56.80 0.60M 2× 103×
With deep compression (comparing model size)

Baseline 56.04 0.47 MB 10.14× 507×
Coreset-K 56.08 0.29 MB 16.1× 805×
Coreset-S 56.05 0.28 MB 16.34× 817×
Coreset-A 56.03 0.29 MB 16.23× 812×
AP+ Coreset-K 56.31 0.27 MB 16.50× 825×
AP+ Coreset-S 56.15 0.26 MB 16.64× 832×
AP+ Coreset-A 56.18 0.27 MB 16.56× 828×



Coreset-Based Neural Network Compression 481

Table 5. LeNet-5 layer-wise compression of our method (denoted by identifiers) vis-
á-vis prior work. The entries represent the fraction of parameters retained post com-
pression

Layer Han et al. [21] Guo et al. [18] K S A AP+K AP+S AP+A

conv1 0.66 0.14 0.06 0.03 0.03 0.02 0.02 0.02

conv2 0.12 0.03 0.04 0.03 0.03 0.02 0.02 0.02

fc1 0.08 0.01 0.04 0.03 0.03 0.02 0.01 0.02

fc2 0.19 0.04 0.02 0.01 0.02 0.01 0.01 0.01

technique, especially for convolution layers. For layer-wise compression results
on other CNNs, please refer to the supplementary.

Runtime Analysis: We also perform a study of runtime analysis in both train-
ing and inference performance. Since we do not undertake retraining, our method
is considerably faster - on our hardware, one forward pass and backward pass
of AlexNet (batch size 256) takes 16 ms naively, which corresponds to a total
epoch training time (on ImageNet) of 2.5 min. We use this as a base measure-
ment to compare the total training time (inclusive of the coreset operations).
Table 1 describes the comparison of training times across methods. The previous
state of the art method, Dynamic Net Surgery [18], requires 140 epochs (in time
units) whereas our method takes at most 28 epochs (in time units), a significant
reduction of 80%. During inference, we observe a reduction in inference time
as well, which can be optimized by using efficient tensor multiplication [51].
On ResNet-50, VGGNet-16 and AlexNet, the naive (uncompressed) runtimes
per epoch are: 36 ms, 45 ms and 8 ms respectively. Our best runtimes for these
networks (with Coreset-S) are 19 ms, 21 ms and 3.5 ms on average, which is an
average improvement of around 50% (Fig. 4).

Fig. 2. The comparison of
Activation-Based Pruning
(AP) with weight-based
filter pruning (without re-
training), on AlexNet

Fig. 3. Variation of clas-
sification performance
with compression for
all coreset compression
techniques evaluated on
AlexNet [35]

Fig. 4. The compari-
son of Activation-Based
Pruning (AP) with the
pruning techniques of
Han et al. and Li et al.
[21,40], on AlexNet



482 A. Dubey et al.

4.5 Ablation Analysis

To demonstrate the effect of individual components in our method, we perform
some ablation studies as well. We first compare the effect of activation-based
pruning (AP) on all coreset compression techniques on three models - AlexNet
[35], VGGNet-16 [50] and SqueezeNet [29], and observe that pruning benefits all
methods of coreset compression, as described in Tables 1 and 4.

Next, we compare activation-based pruning with weight-based pruning, with-
out re-training, and the pruning technique of Li et al. [40] for AlexNet. The
results of these comparisons are summarized in Fig. 2. We obtain consistently
better performance at all compression ratios, substantiating the merit of data-
dependent filter pruning approaches over those based on the magnitudes of filter
weights.

Finally, we analyze the variation of performance with compression factor for
all coreset compression techniques on the AlexNet classification model, described
in Fig. 3. We observe that Coreset-K (with and without AP), while stronger than
SVD and Pruning approaches, worsens much more rapidly in comparison to
other corresponding coreset techniques. This observation is consistent across all
models. For additional results, more layer-wise compression analysis, and filter
visualizations we refer the reader to the supplementary material.

4.6 Domain Adaptibility

To measure the generalizability of our compressed models to newer tasks, we
evaluate compressed models on domain adaptation benchmarks, following the
experimental pipeline proposed in [41]. We evaluate the performance of the com-
pressed CNN model VGGNet-16 [50] on target domain adaptation datasets -
CUB-2011 [57] and Stanford-Dogs [34], two popular datasets for fine-grained
image classification. These results are summarized in Table 6. We observe that
our compressed coreset models are able to provide classification performance
close to the uncompressed networks, while surpassing networks compressed by

Table 6. Performance of coreset-based compression on domain-adaptation tasks.

Dataset Model #Params Top-1

CUB-2011 VGG-16 Finetune (FT) 138M 72.30%

Train from Scratch 138M 44.27%

SVD [9] + FT 27M 53.65%

Pruning [21] + FT 15M 57.45%

AP+Coreset-S + FT 8.1M 70.66%

Stanford-Dogs VGG-16 Finetune (FT) 138M 61.92%

Train from Scratch 138M 27.16%

SVD [9] + FT 27M 40.84%

Pruning [21] + FT 15M 43.28%

AP+Coreset-S + FT 8.1M 55.91%



Coreset-Based Neural Network Compression 483

other techniques. This exhibits the versatility of coreset-compressed models to
domain adaptation tasks, as well.

5 Conclusions and Future Work

In this paper we introduce a novel technique that exploits redundancies in
the space of convolutional filter weights and sample activations to reduce neu-
ral network size, using the long-existing concepts of coresets, coupled with an
activation-based pooling technique. The lack of a re-training step in our algo-
rithmic pipeline makes the implementation simple. Empirical evaluation reveals
that our algorithm outperforms all other competing methods at compressing a
wide array of popular CNN architectures. Our findings uncover the existence of
redundancies even in the most compressed CNNs, such as SqueezeNets, which
can be further exploited to improve efficiency.

Our method does not require any retraining, scales to both convolution and
fully connected layers, and is extensively generalizable to different neural net-
work models without being computationally intensive. Thus, we hope that our
algorithm will serve as a valuable tool to obtain leaner and more efficient CNNs.
As future work, we hope to apply our algorithm to compress other types of
deep neural networks, such as Recurrent Neural Networks (RNNs) which are
applicable to time-varying sequential inputs.

Acknowledgments. We are grateful to Prof. Ramesh Raskar for his insightful com-
ments. MC additionally acknowledges Po-han Huang for helpful discussions and
NVIDIA for providing the GPUs used for this research.

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via
coresets. Comb. Comput. Geom. 52, 1–30 (2005)

2. Alvarez, J.M., Salzmann, M.: Compression-aware training of deep networks. In:
Advances in Neural Information Processing Systems, pp. 856–867 (2017)

3. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 2425–2433 (2015)

4. Ashok, A., Rhinehart, N., Beainy, F., Kitani, K.M.: N2N learning: network to
network compression via policy gradient reinforcement learning. arXiv preprint
arXiv:1709.06030 (2017)

5. Bādoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Pro-
ceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
pp. 250–257. ACM (2002)

6. Collins, M.D., Kohli, P.: Memory bounded deep convolutional networks. arXiv
preprint arXiv:1412.1442 (2014)

7. Dai, J., et al.: Deformable convolutional networks. CoRR, abs/1703.06211 1(2), 3
(2017)

8. Delchambre, L.: Weighted principal component analysis: a weighted covariance
eigendecomposition approach. Mon. Not. R. Astron. Soc. 446(4), 3545–3555 (2014)

http://arxiv.org/abs/1709.06030
http://arxiv.org/abs/1412.1442


484 A. Dubey et al.

9. Denton, E.L., et al.: Exploiting linear structure within convolutional networks for
efficient evaluation. In: Advances in NIPS 2014, pp. 1269–1277 (2014)

10. Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in con-
volutional neural networks. arXiv preprint arXiv:1602.02660 (2016)

11. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsu-
pervised feature learning with convolutional neural networks. In: Advances in Neu-
ral Information Processing Systems, pp. 766–774 (2014)

12. Dubey, A., Naik, N., Raviv, D., Sukthankar, R., Raskar, R.: Coreset-based adaptive
tracking. arXiv preprint arXiv:1511.06147 (2015)

13. Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for k-means clustering based
on weak coresets. In: Proceedings of the Twenty-Third Annual Symposium on
Computational Geometry, pp. 11–18. ACM (2007)

14. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-
size coresets for k-means, PCA and projective clustering. In: Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–
1453. SIAM (2013)

15. Feldman, D., Volkov, M., Rus, D.: Dimensionality reduction of massive sparse
datasets using coresets. arXiv preprint arXiv:1503.01663 (2015)

16. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

17. Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 G-ops/s mobile
coprocessor for deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 682–687 (2014)

18. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In:
Advances In Neural Information Processing Systems, pp. 1379–1387 (2016)

19. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.
In: Proceedings of the 43rd International Symposium on Computer Architecture,
pp. 243–254. IEEE Press (2016)

20. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network
with pruning, trained quantization and Huffman coding (2015)

21. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

22. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
ACM Symposium on Theory of Computing (2004)

23. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

26. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
arXiv preprint arXiv:1603.05027 (2016)

27. He, Y., et al.: Channel pruning for accelerating very deep NNS. In: ICCV 2017
(2017)

28. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993 (2016)

29. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1mb model
size. arXiv preprint arXiv:1602.07360 (2016)

http://arxiv.org/abs/1602.02660
http://arxiv.org/abs/1511.06147
http://arxiv.org/abs/1503.01663
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1602.07360


Coreset-Based Neural Network Compression 485

30. Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component anal-
ysis. In: Proceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, pp. 366–373 (2010)

31. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678. ACM (2014)

32. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component tech-
nique based on the LASSO. J. Comput. Graph. Stat. 12(3), 531–547 (2003)

33. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3128–3137 (2015)

34. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained
image categorization: Stanford dogs

35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

36. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up
convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553 (2014)

37. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

38. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

39. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

40. Li, H., et al.: Pruning filters for efficient ConvNets. In: ICLR 2017 (2017)
41. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural

network compression. arXiv preprint arXiv:1707.06342 (2017)
42. Molchanov, P., et al.: Pruning convolutional neural networks for resource efficient

transfer learning. In: ICLR 2017 (2017)
43. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual

tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4293–4302 (2016)

44. Paszke, A., Gross, S., Chintala, S.: PyTorch (2017)
45. Polyak, A., Wolf, L.: Channel-level acceleration of deep face representations. IEEE

Access 3, 2163–2175 (2015)
46. Real, E., et al.: Large-scale evolution of image classifiers. arXiv preprint

arXiv:1703.01041 (2017)
47. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

48. Rosenfeld, A., Tsotsos, J.K.: Incremental learning through deep adaptation. arXiv
preprint arXiv:1705.04228 (2017)

49. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detec-
tion: CNN architectures, dataset characteristics and transfer learning. IEEE Trans.
Med. Imaging 35(5), 1285–1298 (2016)

50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

51. Solomonik, E.: Provably efficient algorithms for numerical tensor algebra. Univer-
sity of California, Berkeley (2014)

http://arxiv.org/abs/1412.6553
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1707.06342
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1705.04228
http://arxiv.org/abs/1409.1556


486 A. Dubey et al.

52. Srebro, N., Jaakkola, T.: Weighted low-rank approximations. In: Proceedings of
the 20th International Conference on Machine Learning (ICML 2003), pp. 720–
727 (2003)

53. Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks.
arXiv preprint arXiv:1507.06149 (2015)

54. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

55. Ullrich, K., Meeds, E., Welling, M.: Soft weight-sharing for neural network com-
pression. arXiv preprint arXiv:1702.04008 (2017)

56. Vasudevan, A., Anderson, A., Gregg, D.: Parallel multi channel convolution using
general matrix multiplication. arXiv preprint arXiv:1704.04428 (2017)

57. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
birds-200-2011 dataset (2011)

58. Wang, S., Cai, H., Bilmes, J., Noble, W.: Training compressed fully-connected
networks with a density-diversity penalty (2016)

59. Yang, Z., et al.: Deep fried ConvNets. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 1476–1483 (2015)

60. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation.
arXiv preprint arXiv:1711.05908 (2017)

61. Zhai, S., Cheng, Y., Zhang, Z.M., Lu, W.: Doubly convolutional neural networks.
In: Advances in Neural Information Processing Systems, pp. 1082–1090 (2016)

http://arxiv.org/abs/1507.06149
http://arxiv.org/abs/1702.04008
http://arxiv.org/abs/1704.04428
http://arxiv.org/abs/1711.05908

	Coreset-Based Neural Network Compression
	1 Introduction
	2 Related Work
	3 Method
	3.1 Background and Notation
	3.2 k-Means Coresets
	3.3 Structured Sparse Coresets
	3.4 Activation-Weighted Coresets
	3.5 Activation-Based Filter Pruning
	3.6 Compression Pipeline and Computational Complexity Analysis

	4 Experimental Evaluation
	4.1 LeNet-5 on MNIST
	4.2 Large-Scale ImageNet Models
	4.3 SqueezeNet
	4.4 Additional Observations
	4.5 Ablation Analysis
	4.6 Domain Adaptibility

	5 Conclusions and Future Work
	References




