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Abstract. Colorizing a given gray-level image is an important task in
the media and advertising industry. Due to the ambiguity inherent to
colorization (many shades are often plausible), recent approaches started
to explicitly model diversity. However, one of the most obvious artifacts,
structural inconsistency, is rarely considered by existing methods which
predict chrominance independently for every pixel. To address this issue,
we develop a conditional random field based variational auto-encoder
formulation which is able to achieve diversity while taking into account
structural consistency. Moreover, we introduce a controllability mech-
anism that can incorporate external constraints from diverse sources
including a user interface. Compared to existing baselines, we demon-
strate that our method obtains more diverse and globally consistent col-
orizations on the LFW, LSUN-Church and ILSVRC-2015 datasets.
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1 Introduction

Colorization of images requires to predict the two missing channels of a pro-
vided gray-level input. Similar to other computer vision tasks like monocular
depth-prediction or semantic segmentation, colorization is ill-posed. However,
unlike the aforementioned tasks, colorization is also ambiguous, i.e., many dif-
ferent colorizations are perfectly plausible. For instance, differently colored shirts
or cars are very reasonable, while there is certainly less diversity in shades of
façades. Capturing these subtleties is a non-trivial problem.

Early work on colorization was therefore interactive, requiring some refer-
ence color image or scribbles [1–6]. To automate the process, classical methods
formulated the task as a prediction problem [7,8], using datasets of limited sizes.
More recent deep learning methods were shown to capture more intricate color
properties on larger datasets [9–14]. However, all those methods have in com-
mon that they only produce a single colorization for a given gray-level image.
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Fig. 1. Diverse colorizations of the ground truth (GT) generated by c-GAN [16], MLN-
GAN [19], BicycleGAN [20], PIC [18], VAE-MDN [15] and our approach.

Hence, the ambiguity and multi-modality are often not modeled adequately. To
this end, even more recently, diverse output space distributions for colorization
were described using generative modeling techniques such as variational auto-
encoders [15], generative adversarial nets [16], or auto-regressive models [17,18].

While approaches based on generative techniques can produce diverse col-
orizations by capturing a dataset distribution, they often lack structural con-
sistency, e.g., parts of a shirt differ in color or the car is speckled. Inconsisten-
cies are due to the fact that structural coherence is only encouraged implicitly
when using deep net based generative methods. For example, in results obtained
from [15,16,18–20] illustrated in Fig. 1, the color of the shoulder and neck differ
as these models are sensitive to occlusion. In addition, existing diverse coloriza-
tion techniques also often lack a form of controllability permitting to interfere
while maintaining structural consistency.

To address both consistency and controllability, our developed method
enhances the output space of variational auto-encoders [21] with a Gaussian
Markov random field formulation. Our developed approach, which we train in
an end-to-end manner, enables explicit modeling of the structural relationship
between multiple pixels in an image. Beyond learning the structural consistency
between pixels, we also develop a control mechanism which incorporates exter-
nal constraints. This enables a user to interact with the generative process using
color stokes. We illustrate visually appealing results on the Labelled Faces in the
Wild (LFW) [22], LSUN-Church [23] and ILSVRC-2015 [24] datasets and assess
the photo-realism aspect with a user study.

2 Related Work

As mentioned before, we develop a colorization technique which enhances vari-
ational auto-encoders with Gaussian Markov random fields. Before discussing
the details, we review the three areas of colorization, Gaussian Markov random
fields and variational auto-encoders subsequently.
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Colorization: Early colorization methods rely on user-interaction in the form of
a reference image or scribbles [1–6]. First attempts to automate the colorization
process [7] rely on classifiers trained on datasets containing a few tens to a
few thousands of images. Naturally, recent deep net based methods scaled to
much larger datasets containing millions of images [9–14,25]. All these methods
operate on a provided intensity field and produce a single color image which
doesn’t embrace the ambiguity of the task.

To address ambiguity, Royer et al. [18] use a PixelCNN [26] to learn a con-
ditional model p(x|g) of the color field x given the gray-level image g, and
draw multiple samples from this distribution to obtain different colorizations. In
addition to compelling results, failure modes are reported due to ignored com-
plex long-range pixel interactions, e.g., if an object is split due to occlusion.
Similarly, [17] uses PixelCNNs to learn multiple embeddings z of the gray-level
image, before a convolutional refinement network is trained to obtain the final
image. Note that in this case, instead of learning p(x|g) directly, the color field
x is represented by a low dimensional embedding z. Although, the aforemen-
tioned PixelCNN based approaches yield diverse colorization, they lack large
scale spatial coherence and are prohibitively slow due to the auto-regressive, i.e.,
sequential, nature of the model.

Another conditional latent variable approach for diverse colorization was pro-
posed by Deshpande et al. [15]. The authors train a variational auto-encoder to
produce a low dimensional embedding of the color field. Then, a Mixture Den-
sity Network (MDN) [27] is used to learn a multi-modal distribution p(z|g) over
the latent codes. Latent samples are afterwards converted to multiple color fields
using a decoder. This approach offers an efficient sampling mechanism. However,
the output is often speckled because colors are sampled independently for each
pixel.

Beyond the aforementioned probabilistic formulations, conditional generative
adversarial networks [16] have been used to produce diverse colorizations. How-
ever, mode collapse, which results in the model producing one color version of the
gray-level image, is a frequent concern in addition to consistency. This is mainly
due to the generator learning to largely ignore the random noise vector when
conditioned on a relevant context. [19] addresses the former issue by concatenat-
ing the input noise channel with several convolutional layers of the generator. A
second solution is proposed by [20], where the connection between the output and
latent code is encouraged to be invertible to avoid many to one mappings. These
models show compelling results when tested on datasets with strong alignment
between the samples, e.g., the LSUN bedroom dataset [23] in [19] and image-
to-image translation datasets [16,28–31] in [20]. We will demonstrate in Sect. 4
that they lack global consistency on more complex datasets.

In contrast to the aforementioned formulations, we address both diversity
and global structural consistency requirements while ensuring computational
efficiency. To this end we formulate the colorization task by augmenting vari-
ational auto-encoder models with Gaussian Conditional Random Fields (G-
CRFs). Using this approach, beyond modeling a structured output space dis-
tribution, controllability of the colorization process is natural.
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Gaussian Conditional Markov Random Field: Markov random fields [32]
and their conditional counter-part are a compelling tool to model correlations
between variables. Theoretically, they are hence a good match for colorization
tasks where we are interested in reasoning about color dependencies between
different pixels. However, inference of the most likely configuration in classi-
cal Markov random fields defined over large output spaces is computationally
demanding [33–36] and only tractable in a few special cases.

Gaussian Markov random fields [37] represent one of those cases which permit
efficient and exact inference. They model the joint distribution of the data, e.g.,
the pixel values of the two color channels of an image as a multi-variate Gaussian
density. Gaussian Markov random fields have been used in the past for different
computer vision applications including semantic segmentation [38–40], human
part segmentation and saliency estimation [39,40], image labeling [41] and image
denoising [42,43]. A sparse Gaussian conditional random field trained with a
LEARCH framework has been proposed for colorization in [8]. Different from
this approach, we use a fully connected Gaussian conditional random field and
learn its parameters end-to-end with a deep net. Beyond structural consistency,
our goal is to jointly model the ambiguity which is an inherent part of the
colorization task. To this end we make use of variational auto-encoders.

Variational Auto-Encoders: Variational auto-encoders (VAEs) [21] and con-
ditional variants [44], i.e., conditional VAEs (CVAEs), have been used to model
ambiguity in a variety of tasks [45,46]. They are based on the manifold assump-
tion stating that a high-dimensional data point x, such as a color image, can be
modeled based on a low-dimensional embedding z and some auxiliary data g,
such as a gray-level image. Formally, existence of a low-dimensional embedding
space and a transformation via the conditional pθ(x|z, g) is assumed. Given a
dataset D containing pairs of conditioning information g and desired output x,
i.e., given D = {(g,x)}, CVAEs formulate maximization of the conditional log-
likelihood ln pθ(x|g), parameterized by θ, by considering the following identity:

ln pθ(x|g) − DKL(qφ(z|x, g), pθ(z|x, g)) = (1)
−DKL(qφ(z|x, g), p(z|g)) + Eqφ(z |x,g)[ln pθ(x|g,z)].

Hereby, DKL(·, ·) denotes the Kullback-Leibler (KL) divergence between two
distributions, and qφ(z|x, g) is used to approximate the intractable posterior
pθ(z|x, g) of a deep net which models the conditional pθ(x|g,z). The approxi-
mation of the posterior, i.e., qφ(z|x, g), is referred to as the encoder, while the
deep net used for reconstruction, i.e., for modeling the conditional pθ(x|g,z), is
typically called the decoder.

Since the KL-divergence is non-negative, we obtain a lower bound on the
data log-likelihood ln pθ(x|g) when considering the right hand side of the identity
given in Eq. 1. CVAEs minimize the negated version of this lower bound, i.e.,

min
θ,φ

DKL(qφ(z|x, g), p(z|g)) − 1
N

N∑

i=1

ln pθ(x|g,zi), (2)
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Fig. 2. A fully connected Gaussian Conditional Random Field (G-CRF) based VAE
for diverse and globally coherent colorization. To generate diverse colorizations, we
use a Mixture Density Network (MDN) to represent the multi-modal distribution of
the color field embedding z given the gray-level image g. At test time, we sample
multiple embeddings that are subsequently decoded to generate different colorizations.
To ensure global consistency, we model the output space distribution of the decoder
using a G-CRF.

where the expectation Eqφ(z |x,g) is approximated via N samples zi ∼ qφ(z|x, g).
For simplicity of the exposition, we ignored the summation over the samples in
the dataset D, and provide the objective for training of a single pair (x, g).

We next discuss how we combine those ingredients for diverse, controllable
yet structurally coherent colorization.

3 Consistency and Controllability for Colorization

Our proposed colorization model has several appealing properties: (1) diversity,
i.e., it generates diverse and realistic colorizations for a single gray-level image;
(2) global coherence, enforced by explicitly modeling the output-space distribu-
tion of the generated color field using a fully connected Gaussian Conditional
Random field (G-CRF); (3) controllability, i.e., our model can consider external
constraints at run time efficiently. For example, the user can enforce a given
object to have a specific color or two separated regions to have the same col-
orization.

3.1 Overview

We provide an overview of our approach in Fig. 2. Given a gray-level image g
with P pixels, our goal is to produce different color fields x ∈ R

2P consisting
of two channels xa ∈ R

P and xb ∈ R
P in the Lab color space. In addition,

we enforce spatial coherence at a global scale and enable controllability using a
Gaussian Markov random field which models the output space distribution.

To produce a diverse colorization, we want to learn a multi-modal conditional
distribution p(x|g) of the color field x given the gray-level image g. However,
learning this conditional is challenging since the color field x and the intensity
field g are high dimensional. Hence, training samples for learning p(x|g) are
sparsely scattered and the distribution is difficult to capture, even when using
large datasets. Therefore, we assume the manifold hypothesis to hold, and we
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Fig. 3. Overview of the model architecture and the training procedure. In the first
training stage, we learn a low dimensional embedding z of the color field x conditioned
on the gray-level image g using a VAE. To disentangle color from structure, we first
learn the unary term B in phase 1, then in phase 2, learn a precision matrix that
encodes the structure of the image by imposing the constraint that pixels with similar
intensities should have similar colorizations. To enable controllability, we use a training
schedule specified in the matrix H to incrementally mask the decoded pixel colors in
the unary term B and hence gradually rely on the A matrix to restore the colorization
from the unary term. In the second training stage, we use an MDN to learn a multi-
modal distribution of the latent embedding given the gray-level image.

choose to learn a conditional p(x|z, g) based on low-dimensional embeddings
z captured from x and g, by using a variational auto-encoder which approxi-
mates the intractable posterior p(z|x, g) via an encoder. Deshpande et al. [15]
demonstrated that sampling from the approximation of the posterior results in
low variance of the generated images. Following [15], we opt for a multi-stage
training procedure to directly sample from p(z|g) as follows.

To capture the low-dimensional embedding, in a first training stage, we use
a variational auto-encoder to learn a parametric uni-modal Gaussian encoder
distribution qφ(z|x, g) ∼ N (μφ, σ2

φI) of the color field embedding z given both
the gray-level image g and the color image x (Fig. 3(a)). At the same time, we
learn the parameters θ of the decoder pθ(x|z, g).

Importantly, we note that the encoder qφ(z|x, g) takes advantage of both
the color image x and the gray-level intensities g when mapping to the latent
representation z. Due to the use of the color image, we expect that this mapping
can be captured to a reasonable degree using a uni-modal distribution, i.e., we
use a Gaussian.

However, multiple colorizations can be obtained from a gray-scale image g
during inference. Hence, following Deshpande et al. [15], we don’t expect a uni-
modal distribution p(z|g) to be accurate during testing, when only conditioning
on the gray-level image g.

To address this issue, in a second training stage, we train a Mixture Den-
sity Network (MDN) pψ(z|g) to maximize the log-likelihood of embeddings z
sampled from qφ(z|x, g) (Fig. 3(b)). Intuitively, for a gray-level image, the MDN
predicts the parameters of M Gaussian components each corresponding to a dif-
ferent colorization. The embedding z that was learned in the first stage is then
tied to one of these components. The remaining components are optimized by
close-by gray-level image embeddings.
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At test time, N different embeddings {z}N
k=1 are sampled from the MDN

pψ(z|g) and transformed by the decoder into diverse colorizations, as we show
in Fig. 2.

To encourage globally coherent colorizations and to ensure controllability, we
use a fully connected G-CRF layer to model the output space distribution. The
negative log-posterior of the G-CRF has the form of a quadratic energy function:

E(x) =
1
2
xT Agx − Bz ,gx. (3)

It captures unary and higher order correlations (HOCs) between the pixels’ colors
for the a and b channels. Intuitively, the joint G-CRF enables the model to cap-
ture more global image statistics which turn out to yield more spatially coherent
colorizations as we will show in Sect. 4. The unary term Bz ,g is obtained from the
VAE decoder and encodes the color per pixel. The HOC term Ag = f(AT

g Ag )
is responsible for encoding the structure of the input image. It is a function of
the inner product of low rank pixel embeddings Ag , learned from the gray-level
image and measuring the pairwise similarity between the pixels’ intensities. The
intuition is that pixels with similar intensities should have similar colorizations.
The HOC term is shared between the different colorizations obtained at test
time. Beyond global consistency, it also enables controllability by propagating
user edits encoded in the unary term properly. Due to the symmetry of the HOC
term, the quadratic energy function has a unique global minimum that can be
obtained by solving the system of linear equations:

Agx = Bz ,g . (4)

Subsequently, we drop the dependency of A and B on g and z for notational
simplicity.

We now discuss how to perform inference in our model and how to learn
the model parameters such that colorization and structure are disentangled and
controllability is enabled by propagating user strokes.

3.2 Inference

In order to ensure a globally consistent colorization, we take advantage of the
structure in the image. To this end, we encourage two pixels to have similar
colors if their intensities are similar. Thus, we want to minimize the difference
between the color field x for the a and b channels and the weighted average of
the colors at similar pixels. More formally, we want to encourage the equalities
xa = Ŝxa and xb = Ŝxb, where Ŝ = softmax(AT A) is a similarity matrix
obtained from applying a softmax function to every row of the matrix resulting
from AT A. To simplify, we use the block-structured matrix S = diag(Ŝ, Ŝ).

In addition to capturing the structure, we obtain the color prior and control-
lability by encoding the user input in the computed unary term B. Hence, we
add the constraint Hx = α, where H is a diagonal matrix with 0 and 1 entries
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Fig. 4. Controllability: given a gray-level image, we learn to disentangle structure from
colorization. The HOC term is used to propagate sparse user edits encoded in the H
and α terms.

corresponding to whether the pixel’s value isn’t or is specified by the user, and
α a vector encoding the color each pixel should be set to.

With the aforementioned intuition at hand we obtain the quadratic energy
function to be minimized as:

Eθ,g ,z (x) =
1
2
‖(I − S)x‖2 +

1
2
β‖Hx − α‖2,

with β being a hyper-parameter. This corresponds to a quadratic energy function
of the form 1

2xT Ax + Bx + C, where A = (S − I)T (S − I) + βHT H, B =
−2βαT H and C = βαT α. It’s immediately apparent that the unary term only
encodes color statistics while the HOC term is only responsible for structural
consistency. Intuitively, the conditional pθ(x|g,z) is interpreted as a Gaussian
multi-variate density:

pθ(x|z, g) ∝ exp(−Eθ,g ,z (x)), (5)

parametrized by the above defined energy function Eθ,g ,z . It can be easily
checked that A is a positive definite full rank matrix. Hence, for a strictly positive
definite matrix, inference is reduced to solving a linear system of equations:

((I − S)T (I − S) + βHT H)x = βHT α. (6)

We solve the linear system above using the LU decomposition of the A matrix.
How to learn the terms α and S will be explained in the following.

3.3 Learning

We now present the two training stages illustrated in Fig. 3 to ensure color and
structure disentanglement and to produce diverse colorizations. We also discuss
the modifications to the loss given in Eq. 2 during each stage.

Stage 1: Training a Structured Output Space Variational Auto-
Encoder: During the first training stage, we use the variational auto-encoder
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formulation to learn a low-dimensional embedding for a given color field. This
stage is divided into two phases to ensure color and structure disentanglement.
In a first phase, we learn the unary term produced by the VAE decoder. In
the second phase, we fix the weights of the VAE apart from the decoder’s two
top-most layers and learn a D-dimensional embedding matrix A ∈ R

D×P for
the P pixels from the gray-level image. The matrix Ŝ obtained from applying a
softmax to every row of ATA is used to encourage a smoothness prior x = Sx
for the a and b channels. In order to ensure that the S matrix learns the struc-
ture required for the controllability stage, where sparse user edits need to be
propagated, we follow a training schedule where the unary terms are masked
gradually using the H matrix. The input image is reconstructed from the sparse
unary entries using the learned structure. When colorization from sparse user
edits is desired, we solve the linear system from Eq. 6 for the learned HOC term
and an H matrix and α term encoding the user edits, as illustrated in Fig. 4.
We explain the details of the training schedule in the experimental section.

Given the new formulation of the G-CRF posterior, the program for the first
training stage reads as follows:

min
φ,θ

DKL(N (μφ,σ2
φI)),N (0, I))− 1

N

N∑

i=1

ln pθ(x|z(i),g)s.t.z(i)∼N (μφ,σ2
φI).(7)

Subsequently we use the term L to refer to the objective function of this program.

Stage 2: Training a Mixture Density Network (MDN): Since a color
image x is not available during testing, in the second training stage, we cap-
ture the approximate posterior qφ(z|x, g), a Gaussian which was learned in the
first training stage, using a parametric distribution pψ(z|g). Due to the depen-
dence on the color image x we expect the approximate posterior qφ(z|x, g) to
be easier to model than pψ(z|g). Therefore, we let pψ(z|g) be a Gaussian Mix-
ture Model (GMM) with M components. Its means, variances, and component
weights are parameterized via a mixture density network (MDN) with parame-
ters ψ. Intuitively, for a given gray-level image, we expect the M components to
correspond to different colorizations. The colorfield embedding z learned from
the first training stage is mapped to one of the components by minimizing the
negative conditional log-likelihood, i.e., by minimizing:

− ln pψ(z|g) = − ln
M∑

i=1

π
(i)
g ,ψN (z|μ(i)

g,ψ, σ). (8)

Hereby, π
(i)
g ,ψ, μ

(i)
g ,ψ and σ refer to, respectively, the mixture coefficients, the means

and a fixed co-variance of the GMM learned by an MDN network parametrized
by ψ. However, minimizing − ln pψ(z|g) is hard as it involves the computation
of the logarithm of a summation over the different exponential components. To
avoid this, we explicitly assign the code z to that Gaussian component m, which
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Fig. 5. Qualitative comparison of diverse colorizations obtained from c-GAN [16],
MLN-GAN [19], BicycleGAN [20], PIC [18], VAE-MDN [15] and our approach.

has its mean closest to z, i.e., m = argmin
i

‖z − μ
(i)
g,ψ‖. Hence, the negative

log-likelihood loss − ln pψ(z|g) is reduced to solving the following program:

min
ψ

− ln π
(m)
g ,ψ +

‖z − μ
(m)
g ,ψ ‖2

2σ2
s.t.

⎧
⎨

⎩

z ∼ qφ(z|x, g) = N (μφ,σ2
φI)

m = argmin
i∈{1,...,M}

‖z − μ
(i)
g,ψ‖ . (9)

Note that the latent samples z are obtained from the approximate posterior
qφ(z|x, g) learned in the first stage.

4 Results

Next, we present quantitative and qualitative results on three datasets of increas-
ing color field complexity: (1) the Labelled Faces in the Wild dataset (LFW) [22],
which consists of 13,233 face images aligned by deep funneling [47]; (2) the
LSUN-Church dataset [23] containing 126,227 images and (3) the validation
set of ILSVRC-2015 (ImageNet-Val) [24] with 50,000 images. We compare the
diverse colorizations obtained by our model with three baselines representing
three different generative models: (1) the Conditional Generative Adversarial
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Table 1. Results of the user study (% of the model in bold winning).

Ours vs VAE-MDN Ours vs PIC VAE-MDN vs PIC

LFW 61.12 % 59.04 % 57.17 %

LSUN-Church 66.89 % 71.61 % 54.46 %

ILSVRC-2015 54.79 % 66.98 % 62.88%

Table 2. Quantitaive comparison with baselines. We use the error-of-best per pixel
(Eob.), the variance (Var.), the mean structural similarity SSIM across all pairs of
colorizations generated for one image (SSIM.) and the training time (Train.) as per-
formance metrics.

Method LFW LSUN-Church ILSVRC-2015

eob. Var. SSIM. Train. eob. Var. SSIM. Train. eob. Var. SSIM. Train.

c-GAN[16] .047 8.40e−6 .92 ∼4h .048 6.20e−6 .94 ∼39h .048 8.88e−6 .91 ∼18h

MLN-GAN[19] .057 2.83e−2 .12 ∼4h .051 2.48e−2 .34 ∼39h .063 1.73e−2 .38 ∼18h

BicycleGAN[20] .045 6.50e−3 .51 ∼4h .048 2.20e−2 .38 ∼39h .042 2.20e−2 .15 ∼18h

VAE-MDN[15] .035 1.81e−2 .49 ∼4h .028 1.05e−2 .77 ∼39h .033 7.17e−3 .48 ∼18h

PIC[18] .043 5.32e−2 .36 ∼48h .047 7.40e−5 .91 ∼144h .035 6.74e−2 .19 ∼96h

Ours 11e−5 8.86e−3 .61 ∼4h 93e−6 1.17e−2 .83 ∼39h 12e−5 8.80e−3 .52 ∼18h

Network [16,19,20]; (2) the Variational Auto-encoder with MDN [15]; and (3) the
Probabilistic Image Colorization model [18] based on PixelCNN. Note that [15]
presents a comparison between VAE-MDN and a conditional VAE, demonstrat-
ing the benefits of the VAE-MDN approach.

4.1 Baselines

Conditional Generative Adversarial Network: We compare our approach
with three GAN models: the c-GAN architecture proposed by Isola et al. [16],
the GAN with multi-layer noise by Cao et al. [19] and the BicycleGAN by Zhu
et al. [20].

Variational Auto-Encoder with Mixture Density Network (VAE-
MDN): The architecture by Deshpande et al. [15] trains an MDN based auto-
encoder to generate different colorizations. It is the basis for our method.

Probabilistic Image Colorization (PIC): The PIC model proposed by
Royer et al. [18] uses a CNN network to learn an embedding of a gray-level
images, which is then used as input for a PixelCNN network.

Comparison with Baselines: We qualitatively compare the diversity and
global spatial consistency of the colorizations obtained by our models with the
ones generated by the aforementioned baselines, in Figs. 1 and 5. We observe
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Fig. 6. Controllability: colorization from sparse user edits.

that our approach is the only one which generates a consistent colorization of
the skin of the girl in Fig. 1. We are also able to uniformly color the ground, the
snake, and the actor’s coat in Fig. 5.

For global consistency evaluation, we perform a user study, presented in
Table 1, where participants are asked to select the more realistic image from a
pair of images at a time. We restrict the study to the three approaches with
the overall lowest error-of-best (eob) per pixel reported in Table 2, namely VAE-
MDN, PIC and our model. We use the clicking speed to filter out inattentive
participants. Participants did neither know the paper content nor were the meth-
ods revealed to them. We gathered 5,374 votes from 271 unique users. The results
show that users prefer results obtained with the proposed approach.

To evaluate diversity, we use two metrics: (1) the variance of diverse col-
orizations and (2) the mean structural similarity SSIM [48] across all pairs of
colorizations generated for one image. We report our results in Table 2.

Global Consistency: Our model noticeably outperforms all the baselines in
producing spatially coherent results as demonstrated by the user study. PIC
generates very diversified samples for the LFW and ILSVRC-2015 datasets but
lacks long range spatial dependencies because of the auto-regressive nature of
the model. For example, the snake in the second row of Fig. 5 has different colors
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Table 3. Average PSNR (dB) (higher is better) vs. number of revealed points (|H |).

Levin et al. [2] Endo et al. [49] Barron et al. [50] Zhang et al. [14] Ours

|H| 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

PSNR 26.5 28.5 30 24.8 25.9 26 25.3 28 29 28 30.2 31.5 26.7 29.3 30.4

Fig. 7. Visualization of the unary term. The first row corresponds to the ground truth
image. We visualize one possible colorization in the third row and its corresponding
unary term in the second row.

for the head and the tail, and the woman’s skin tone is inconsistent in Fig. 1.
The VAE-MDN, BicycleGAN and MLN-GAN outputs are sometimes speckled
and objects are not uniformly colored. For example, parts of the dome of the
building in the second row of Fig. 5 are confused to be part of the sky and the
shirt in the third row is speckled. In contrast, our model is capable of capturing
complex long range dependencies. This is confirmed by the user study.

Diversity: Across all datasets, c-GAN suffers from mode collapse and is fre-
quently unable to produce diverse colorizations. The PIC, MLN-GAN and Bicy-
cleGAN models yield the most diverse results at the expense of photo-realism.
Our model produces diverse results while ensuring long range spatial consistency.

Controllability: For the controllably experiments, we set the β hyper-
parameter to 1 during training and to 5 during testing. We opt for the following
training schedule, to force the model to encode the structure required to prop-
agate sparse user inputs in the controllability experiments: We train the unary
branch for 15 epochs (Stage1, Phase1), then train the HOC term for 15 epochs
as well (Stage1, Phase2). We use the diagonal matrix H to randomly specify L
pixels which colors are encoded by the unary branch α. We decrease L following
a training schedule from 100% to 75%, 50%, 25% then 10% of the total number of
pixels after respectively epochs 2, 4, 6, 8, 10 and 12. Note that additional stages
could be added to the training schedule to accommodate for complex datasets
where very sparse user input is desired. In Fig. 6, we show that with a single pixel
as a user edit (E1), we are able to colorize a boot in pink, a sea coral in blue
and the background behind the spider in yellow in respectively Fig. 6(a–c). With
two edits (E1 and E2), we colorize a face in green (Zhang et al. [14] use 3 edits)
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Fig. 8. Visualization of the HOC term. For every example, we show the ground truth
image and three HOC terms corresponding to three different pixels marked in red.

in Fig. 6(d) and the sky and the building in different colors in Fig. 6(e,f). With
three user edits (E1, E2 and E3), we show that we can colorize more complex
images in Fig. 6(g–i). We show the edits E using red markers. We visualize the
attention weights per pixel, corresponding to the pixel’s row in the similarity
matrix S, in blue, where darker shades correspond to stronger correlations.

Quantitatively, we report the average PSNR for 10, 50 and 100 edits on the
ImageNet test set in Table 3, where edits (points) corresponding to randomly
selected 7×7 patches are revealed to the algorithm. We observe that our method
achieves slightly better results than the one proposed by Levin et al. [2] as our
algorithms learns for every pixel color an ‘attention mechanism’ over all the
pixels in the image while Levin et al. impose local smoothness.

Visualization of the HOC and Unary Terms: In order to obtain more
insights into the model’s dynamics, we visualize the unary terms, B, and the
HOC terms, A, in respectively Figs. 7 and 8. As illustrated in Fig. 8, the HOC
term has learned complex long range pixel affinities through end-to-end training.
The results in Fig. 7 further suggest that the unary term outputs a colorization
with possibly some noise or inconsistencies that the HOC term fixes to ensure
global coherency. For example, for the picture in the second column in Fig. 7,
the colors of the face, chest and shoulder predicted by the unary term are not
consistent, and were fixed by the binary term which captured the long range
correlation as it is shown in Fig. 8(c).

We notice different interesting strategies for encoding the long range correla-
tions: On the LSUN-Church dataset, the model encourages local smoothness as
every pixel seems to be strongly correlated to its neighbors. This is the case for
the sky in Fig. 8(e). The model trained on the LFW dataset, however encoded
long range correlation. To ensure consistency over a large area, it chooses some
reference pixels and correlates every pixel in the area, as can be seen in Fig. 8(c).
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We provide more results and details of the employed deep net architectures
in the supplementary material.

5 Conclusion

We proposed a Gaussian conditional random field based variational auto-encoder
formulation for colorization and illustrated its efficacy on a variety of benchmark
datasets, outperforming existing methods. The developed approach goes beyond
existing methods in that it doesn’t only model the ambiguity which is inherent
to the colorization task, but also takes into account structural consistency.
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National Science Foundation under Grant No. 1718221, Samsung, and 3M. We thank
NVIDIA for providing the GPUs used for this research.
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13. Varga, D., Szirányi, T.: Twin deep convolutional neural network for example-based
image colorization. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017 Part
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