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Abstract. Despite decades of research, offline handwriting recognition
(HWR) of degraded historical documents remains a challenging problem,
which if solved could greatly improve the searchability of online cultural
heritage archives. HWR models are often limited by the accuracy of
the preceding steps of text detection and segmentation. Motivated by
this, we present a deep learning model that jointly learns text detection,
segmentation, and recognition using mostly images without detection
or segmentation annotations. Our Start, Follow, Read (SFR) model is
composed of a Region Proposal Network to find the start position of
text lines, a novel line follower network that incrementally follows and
preprocesses lines of (perhaps curved) text into dewarped images suitable
for recognition by a CNN-LSTM network. SFR exceeds the performance
of the winner of the ICDAR2017 handwriting recognition competition,
even when not using the provided competition region annotations.
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1 Introduction

In offline handwriting recognition (HWR), images of handwritten documents
are converted into digital text. Though recognition accuracy on modern printed
documents has reached acceptable performance for some languages [28], HWR
for degraded historical documents remains a challenging problem due to large
variations in handwriting appearance and various noise factors. Achieving accu-
rate HWR in this domain would help promote and preserve cultural heritage by
improving efforts to create publicly available transcriptions of historical docu-
ments. Such efforts are being performed by many national archives and other
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Fig. 1. Start, Follow, Read on two document snippets. Red circles and arrows show the
Start-of-Line finder network’s detected position, scale, and direction. Blue lines show
the path taken by the Line Follower network to produce normalized text lines; three
lines are shown with the HWR network’s transcription. (Color figure online)

organizations around the world, but typically use manual transcriptions, which
are costly and time-consuming to produce. While this work focuses discussion
on one of the most difficult HWR domains, i.e. historical documents [9], our
proposed methods are equally applicable to other HWR domains.

For most HWR models, text lines must be detected and segmented from
the image before recognition can occur. This is challenging for historical doc-
uments because they may contain significant amounts of noise, such as stains,
tears, uneven illumination, and ink fade, seepage, and bleed-through. Errors in the
detection or segmentation of text propagate to the recognition stage, and as noted
in [25], the majority of errors in complete HWR systems are due to incorrect line
segmentation rather than incorrect character or word recognition. Despite this,
line detection and segmentation are commonly performed by separate algorithms
in an independent fashion and many HWR models are designed, trained, and eval-
uated only in the context of ground truth line segmentations [18,29].

A few works have attempted to combine detection, segmentation, and recog-
nition. Bluche et al. proposed a recurrent model that detects and recognizes
text lines using a soft-attention mechanism [3]. However, this method is slow
because the model processes the whole image twice to transcribe each text line.
Furthermore, the method does not allow for preprocessing detected lines of text
(e.g. normalize text height), which is shown to improve HWR performance [11].
In contrast, our proposed model efficiently detects all text lines in a single pass
and uses learned preprocessing before applying the HWR model on each line
independently, allowing each line to be recognized in parallel.
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In this work, we present Start, Follow, Read (SFR), a novel end-to-end full-
page handwriting recognition model comprised of 3 sub-models: a Start-of-Line
(SOL) finder, a Line Follower (LF), a line-level HWR model. The SOL finder
is a Region Proposal Network (RPN) where the regions proposed are the start
positions and orientations of the text lines in a given document image. The LF
model starts at each predicted SOL position, incrementally steps along the text
line, following curvature, and produces a normalized text image. Finally, a state-
of-the-art HWR model predicts a transcription from the normalized line image.
Figure 1 shows how the SOL, LF, and HWR networks process document images.

One main contribution is our novel LF network, which can segment and
normalize curved text (e.g. Fig. 1 bottom) that cannot be segmented with a
bounding box. Though [19] previously used a SOL network, we propose a new
architecture and a new training scheme that optimizes recognition performance.
Another contribution is the joint training of the three components on a large
collection of images that have transcriptions only, which allows the SOL finder,
LF, and HWR to mutually adapt to, and supervise, each other. In particular, we
demonstrate that the LF and HWR networks can be used to derive and refine
latent targets for the SOL network; this method only requires pre-training on a
small number of images (e.g. 50) with additional segmentation labels.

We demonstrate state-of-the-art performance on the ICDAR2017 HWR com-
petition dataset [25]. This competition represents a common scenario where a
collection is manually transcribed, but segmentations are not annotated. While
the best previous result is 71.5 BLEU score using the provided region annota-
tions (57.3 BLEU without), SFR achieves 73.0 BLEU with region annotations,
and performs only slightly worse with a 72.3 BLEU score without regions.

2 Related Work

Though segmentation and recognition are critical components of HWR, most
prior works solve these problems independently: text lines are detected, seg-
mented, and preprocessed into rectangular image snippets before being tran-
scribed by a recognition model. Errors in the detection, segmentation, or pre-
processing steps often lead to poor recognition. In contrast, SFR jointly performs
detection, segmentation, preprocessing, and recognition in an end-to-end model.

Text Line Detection/Segmentation. Often, peaks in vertical projection pro-
files (summing pixels along rows) are used to detect transitions from dark text to
lighter inter-line space [1,13,26]. However, these methods are sensitive to images
with noise and curved handwriting (e.g. the image in Fig. 1). Additionally, such
methods assume that distinct text lines cannot be horizontally adjacent, an
assumption that is violated in practice. The recursive XY cut algorithm also
considers the horizontal projection profile to make vertical image cuts along
detected white space, but requires manually tuning of threshold values [14].

Seam carving [2] based methods improve on projection profile methods
because seams can follow the curves of text lines. Boiangiu et al. use a pixel
information measure for computing an energy map for seam carving [5], while
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Saabni and El-Sana use a signed distance transform to compute the energy [24].
The winner of the ICDAR2017 handwriting recognition competition [25] cor-
rected the output of a seam carving method by using a Convolutional Neural
Network (CNN) to predict if lines were over-segmented or under-segmented.

Tian et al. [31] use a Region Proposal Network (RPN), similar to Faster-
RCNN [23], to predict bounding boxes for text in the wild detection. However,
unlike Faster-RCNN, their RPN predicts many small boxes along the text line
in order to follow skewed or curved lines. These boxes must be clustered in a
separate step, which may result in over- or under-segmentation.

Handwriting Recognition. Some early handwriting recognition models used
machine learning models such as neural networks and Support Vector Machines
(SVM) to learn whole word, character and stroke classifiers using handcrafted
features [17,32]. However, such methods required further segmentation of text
line images into primitives such as characters or strokes, which itself was error
prone. Hidden Markov Model (HMM) approaches similar to those used in speech
recognition then became popular because they were able to perform alignment
to refine segmentation hypotheses [20]. These approaches are often combined
with a Language Model (LM) or lexicon to refine predictions to more closely
resemble valid natural language [6].

The introduction of the Connectionist Temporal Classification (CTC)
loss [10] allowed recurrent neural network (RNN) character classifiers to per-
form alignment similar to HMMs, which led to the current dominance of RNN
approaches for HWR. Long-Short Term Memory (LSTM) networks combined
with convolutional networks, CTC, and LM decoding represent the current state-
of-the-art in HWR [11]. Additional improvements, such as Multi-Dimensional
LSTMs [12], neural network LMs [34], and warp based data augmentation [33]
have also been proposed. Preprocessing text lines to deslant, increase contrast,
normalize text height, and remove noise is also a critical component of many
HWR systems [11].

Combined Segmentation and Recognition. Moysset et al. proposed pre-
dicting SOL positions with a RPN and then applying a HWR network to axis-
aligned bounding boxes beginning at the SOL [19]. However, the two models are
trained independently and bounding box segmentations cannot handle curved
text. Recurrently computing an attention mask for recognition has been applied
at the line-level [3] and the character level [4] and though these methods are
computationally expensive, they have been shown to successfully follow slanted
lines on clean datasets of modern handwriting with well-separated text lines.
In contrast, we demonstrate our work on a more challenging dataset of noisy
historical handwritten documents.

3 Proposed Model: Start, Follow, Read

In order to jointly learn text detection, segmentation, and recognition, we pro-
pose the SFR model with three components: the Start of Line (SOL) network, the
Line Follower (LF) network, and the Handwriting Recognition (HWR) network.



376 C. Wigington et al.

Fig. 2. The SOL network densely predicts x and y offsets, scale, rotation angle, and
probability of occurrence for every 16× 16 input patch. Contrary to left-right segmen-
tation methods, this allows detection of horizontally adjacent text lines. (Color figure
online)

(a) SOL position and first viewing window (b) Predicted next position

(c) Next viewing window (d) Resulting LF center line path

(e) Normalized handwriting line

Fig. 3. The LF begins at a SOL (a) and regresses a new position indicated by the
second blue dot in (b). The next input is a new viewing window (c). This process
repeats until it reaches the image edge. The purple and green lines in (d) show the
segmentation that produces the normalized handwriting line (e). (Color figure online)

After pre-training each network (Sect. 3.3) individually, we jointly train the mod-
els using only ground truth (GT) transcriptions (with line breaks) (Sect. 3.3).

3.1 Network Description

Start-of-Line Network. Our Start-of-Line (SOL) network is a RPN that
detects the starting points of text lines. We formulate the SOL task similar
to [19], but we use a truncated VGG-11 architecture [27] instead of an MDL-
STM architecture to densely predict SOL positions (Fig. 2). For an image patch,
we regress (x0, y0) coordinates, scale s0, rotation θ0, and probability of occur-
rence p0. For image patches with a SOL (e.g. red box in Fig. 2), the network
should predict p0 = 1, otherwise 0. We remove the fully connected and final
pooling layers of VGG-11 for a prediction stride of 16×16 and, similar to Faster
R-CNN [23], predicted (x, y) coordinates are offsets relative to the patch center.
The scale and rotation correspond to the size of handwriting and slant of the
text line.
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Fig. 4. Using the current transformation Wi (a), we resample a 32×32 patch (b) from
the input image. A CNN regresses a transform change (d) used to compute the next
transformation (e). Using the upper and lower points (f, g) of the LF path, we resample
a 60 × 60 patch to be part of the normalized, segmented line.

Line Follower. After identifying the SOL position, our novel LF network fol-
lows the handwriting line in incremental steps and outputs a dewarped text
line image suitable for HWR (see Fig. 3). Instead of segmenting text lines with
a bounding box (e.g. [19]), the LF network segments polygonal regions and is
capable of following and straightening arbitrarily curved text.

The LF is a recurrent network that given a current position and angle of
rotation (xi, yi, θi), resamples a small viewing window (red box in Fig. 3a) that
is fed to a CNN to regress (xi+1, yi+1, θi+1) (Fig. 3b). This process is repeated
until the image edge (Figs. 3c and d), and during training we use the HWR
network to decide where the text line ends. The initial position and rotation is
determined by a predicted SOL. The size of the viewing window is determined
by the predicted SOL scale and remains fixed.

Resampling the input image to obtain the viewing window is done similarly
to the Spatial Transform Network [15] using an affine transformation matrix that
maps input image coordinates to viewing image coordinates (see Fig. 4). This
allows LF errors to be backpropagated through viewing windows. The first view-
ing window matrix, W0 = AWSOL, is the composition of the mapping defined
by a transformation SOL matrix WSOL (defined by values of the SOL network
prediction) and a look-ahead matrix A:

WSOL =

⎡
⎣

1
s0

0 0
0 1

s0
0

0 0 1

⎤
⎦

⎡
⎣

cos(θ0) − sin(θ0) 0
sin(θ0) cos(θ0) 0

0 0 1

⎤
⎦

⎡
⎣

1 0 −x0

0 1 −y0
0 0 1

⎤
⎦ , A =

⎡
⎣

0.5 0 −1
0 0.5 0
0 0 1

⎤
⎦ (1)

The look-ahead matrix gives the LF network enough context to correctly follow
lines. For each step i, we extract a 32 × 32 viewing window patch by resampling
according to Wi. When resampling, the (x, y) coordinates in the patch are nor-
malized to the range (−1, 1). Given the (i − 1)th viewing window patch, the LF
network regresses xi, yi and θi, which are used to form the prediction matrix Pi.
We then compute Wi = PiWi−1 with

Pi =

⎡
⎣

cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

⎤
⎦

⎡
⎣

1 0 −xi

0 1 −yi

0 0 1

⎤
⎦ (2)

To obtain the output image for HWR, we first represent the normalized hand-
writing line path as a sequence of upper and lower coordinate pairs, pu,i and p�,i
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(green and purple lines in Fig. 3d), which are computed by multiplying the upper
and lower midpoints of predicted windows by their inverse transformations:

pu,i, p�,i =

⎡
⎣

xu,i x�,i

yu,i y�,i

1 1

⎤
⎦ = W−1

i A

⎡
⎣

0 0
−1 1
1 1

⎤
⎦ (3)

We extract the handwriting line by mapping each pu,i, p�,i, pu,i+1, and p�,i+1 to
the corners of a 60 × 60 patch. We concatenate all such patches to form a full
handwriting line of size 60s × 60 where s is the number of LF steps.

The architecture of the LF is a 7-layer CNN with 3 × 3 kernels and 64, 128,
256, 256, 512, and 512 feature maps on the 6 convolution layers. We apply Batch
Normalization (BN) after layers 4 and 5 and 2×2 Max Pooling (MP) after layers
1, 2, 4, and 6. A fully connected layer is used to regress the X, Y, θ outputs with
initial bias parameters for X initialized to 1 and biases for Y and θ initialized to
0. This initialization is a prior that lines are straight and read left-to-right.

Handwriting Recognition. After the LF network produces a normalized line
image, it is fed to a CNN-LSTM network to produce a transcription. The CNN
part of the HWR network learns high level features that are vertically collapsed
to create a horizontal 1D sequence that is fed to a Bidirection LSTM model. In
the BLSTM, learned context features propagate forward and backwards along
the sequence before a character classifier is applied to each output time step.

The output sequence of character predictions is much longer than the GT
transcriptions, but includes a blank character for use in the CTC decoding
step [10]. Decoding is performed by first collapsing non-blank repeating char-
acters and then removing the blanks, e.g. the output --hh--e-lll-l----oo--
is decoded as hello. While the CTC loss does not explicitly enforce alignment
between predicted characters and the input image, in practice, we are able to
exploit this alignment to refine SOL predictions (see Sect. 3.3).

The architecture of our HWR network is on a CNN-LSTM HWR network [33]
and is similar to our LF network. The input size is W × 60, where W , can
dynamically vary. There are 6 convolutional layers with 3 × 3 filters with 64,
128, 256, 256, 512, and 512 feature maps respectively. BN is applied after layers
4 and 5, and 2 × 2 MP (stride 2) is applied after layers 1, 2. To collapse features
vertically we use 2 × 2 MP with a vertical stride of 2 and a horizontal stride of
1 after layers 4 and 6. Features are concatenated vertically to form a sequence
of 1024-dimensional feature vectors that are fed to a 2-layer BLSTM with 512
hidden nodes and 0.5 probability of node dropout. A fully connected layer is
applied at each time step to produce character classifications.

The HWR also serves an additional function. LF always runs to the edge
of the page and in many cases intersects other columns or SOL positions. The
HWR implicitly learns during training when to stop reading (similar to [19]) and
as a result we do not need additional post processing to determine when the line
ends.
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Fig. 5. Our network is first pre-trained on a small training set with segmentation and
transcription annotations. The three phase training process is performed over a much
larger training set that has only transcription annotations.

3.2 Post Processing

We introduce a novel non-maximal suppression method for the SOL and LF
networks. Given any two LF path prediction we consider the first N steps (we
used N = 6). We form a polygon by joining start and end points of the center
lines. If the area of the resulting polygon is below a threshold proportional to
its length, we suppress the line with the lowest SOL probability.

To correct recognitions errors we employ an HMM-based 10-g character-
level language model (LM) that has been trained on the training set transcrip-
tions using the Kaldi toolkit [21]. Character-level LMs typically correct out-of-
vocabulary words better than word-level LMs [16].

3.3 Training

Figure 5 summarizes the full training process: (1) Networks are pretrained using
a small number of images with GT SOL, segmentations, and line-level transcrip-
tions (Sect. 3.3); (2) Alignment (Sect. 3.3) on a large number of training images
with only GT transcriptions produces bootstrapped targets for the SOL and LF
networks; (3) Individual networks are trained using SOL and LF targets from
alignment and GT transcriptions for the HWR network; (4) Validation is per-
formed over the entire validation set using the best individual weights of each
network. Steps 2–4 are repeated until convergence.

Start-of-Line Network. We create the training set for our SOL network by
resizing images to be 512 pixels wide and sampling 256 × 256 patches, with half
the patches containing SOLs. Patches are allowed to extend outside the image
by padding with each edge’s average color. We use the loss function proposed for
the multibox object detection model [8], which performs an alignment between
the highest probability predicted SOL positions and the target positions.

L(l, p; t) =
N∑

n=0

M∑
m=0

Xnm(α‖ln − tm‖22 − log(pn)) − (1 − Xnm)log(1 − pn) (4)

where tm is a target position, pn is the probability of SOL occurrence, and ln is
a transformation of the directly predicted (xn, yn, sn, θn):

ln = (− sin(θn)sn + xn, − cos(θn)sn + yn, sin(θn)sn + xn, cos(θn)sn + yn), (5)
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(a) Initial forward steps (b) Backward steps

(c) Complete forward steps (d) Refined SOL prediction.

Fig. 6. SOL refinement process. In (b), the LF does not backtrack to the initial (incor-
rect) SOL. The LF passes through the correct SOL in (c), which is identified using the
alignment (d) induced by CTC decoding in the HWR network.

Xnm is a binary alignment matrix between the N predictions and M target
positions, while α weights the relative importance of the positional loss and the
confidence loss. In our experiments, α = 0.01 and we compute the Xnm that
minimizes L given (l, p, t) using bipartite graph matching as in [8].

Line Follower. While the LF outputs a normalized text line image, the defining
image transformation is piece-wise affine and is parameterized by a sequence of
upper and lower coordinate points. Thus, for supervision we construct pairs of
target coordinate points that induce the desired piece-wise affine transformation
and train the LF using a Mean-Square Error (MSE) loss.

loss =
∑
i=0

‖pu,i − tu,i‖22 + ‖p�,i − t�,i‖22 (6)

The LF starts at the first target points, tu,0 and t�,0, and every 4th step resets to
the corresponding target points. This way, if the LF deviates from the handwrit-
ing it can recover without introducing large and uninformative errors into the
training procedure. To help the LF be robust to incorrect previous predictions,
after resetting to a target position we randomly perturb the LF position by a
translation of Δx,Δy ∈ [−2, 2] pixels and a rotation of Δθ ∈ [−0.1, 0.1] radians.

Handwriting Recognition. We train the HWR network on line images with
the aligned GT transcription using CTC loss [10]. For data augmentation, we
apply Random Warp Grid Distortions (RWGD) [33] to model variations in hand-
writing shape, contrast augmentation [30] to learn invariance to text/background
contrast, and global hue perturbation to handle different colors of paper and ink.

Pre-training. Before joint training can be effective, each network needs to
achieve a reasonable level of accuracy. Individual networks are pre-trained on a
small number of images that have SOL, segmentation, and line-level transcription
annotations. This follows the same procedure as described in the previous three
subsections, but the actual GT is used for targets.
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Alignment. After the networks are pre-trained, we perform an alignment
between SFR predicted line transcriptions with GT line transcriptions for images
with only transcription annotations, i.e. no corresponding spatial GT informa-
tion. The main purpose of this alignment is to create bootstrapped training
targets for the SOL and LF networks because the images lack GT for detection
and segmentation. For each GT text line, we keep track of the best predicted
SOL and segmentation points, where best is defined by the accuracy of the
corresponding predicted line transcription produced by the HWR network.

Alignment and training are alternated (see Fig. 5) as better alignment
improves network training and vice versa. To perform the alignment, we first
run the SOL finder on the whole image and obtain dense SOL predictions. On
predicted SOLs with probability above a threshold, we then apply the LF and
HWR networks to obtain a predicted segmentation and transcription. For each
GT line, we find the predicted transcription that minimizes the Character Error
Rate (CER), which is equivalent to string edit distance. If the CER is lower than
the best previous prediction for that GT line, we update that line’s target SOL
and segmentation points to be those predicted by the SOL and LF networks.

The final step in alignment is to refine the SOL position using spatial infor-
mation extracted from the LF and HWR networks. To refine a SOL target, we
run the LF forward s = 5 steps from the current best SOL (Fig. 6a), and then
backwards for s + 1 steps (Fig. 6b). We then move the current best SOL up or
down to align with the backwards path. This works because even if the LF does
not start on the text line, it quickly finds the text line in the forward steps and
then can follow it back to its start using backwards steps. Next, we run the LF
and HWR from this new SOL and find the first non-blank predicted character
before CTC decoding (Fig. 6d). We then shift the SOL left and right to align
with the image location of this character.

To find the end of the handwriting line, we find the last non-blank character
during CTC decoding. Once we have identified line ends, we no longer run the
LF past the end of lines, which helps speed training.

End-to-End Training. Though our SFR model is end-to-end differentiable in
that the CTC loss can backpropagate through the HWR and LF networks to the
SOL network, in practice we observed no increase in performance when using end-
to-end training on the dataset used in this work. End-to-end training is much
slower, and the three networks take significantly different amounts of time to train,
with the HWR network taking the most time by far. We have concluded that the
majority of errors made by our SFR model are not likely to be fixed by end-to-
end error backpropagation because (1) the transcription CTC loss cannot fix very
bad segmentations and (2) our joint training provides adequate supervision when
predicted SOL and segmentations are reasonably good.

4 Results

We evaluate our SFR model on the 2017 ICDAR HWR full page competition
dataset [25] of 1800s German handwriting, which has two training sets. The
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Table 1. ICDAR 2017 HWR Competition results [25] compared to our method.

Method BLEU with ROIs BLEU without ROIs

Start, Follow, Read (ours) 73.0 72.3

BYU 71.5 57.3

ParisTech 48.3 –

LITIS 37.2 –

Table 2. Line-level dataset results. ∗indicates non-standard train/test split.

Method Page-level RIMES IAM

CER WER CER WER

Start, Follow, Read (ours) X 2.1 9.3 6.4 23.2

Bluche [3] X 2.9 12.6 7.9 24.6

Puigcerver [34] 2.3 9.6 5.8∗ 18.4∗

first set has 50 fully annotated images with line-level segmentations and tran-
scriptions. The second set of 10,000 images has only transcriptions (containing
line breaks). This dataset, to our knowledge, is the largest and most challenging
public HWR benchmark with 206,161 handwriting lines and 1,769,195 words.
The test data is not public, so we use the BLEU score metric reported by the
public evaluation server1. The competition test data provides multiple regions of
interest (ROIs) per image to facilitate text line segmentation, and the evaluation
server protocol requires that all predicted text lines be assigned to a ROI. We
also evaluate on the IAM and Rimes line-level datasets.

4.1 Quantitative Results

The fully annotated 50 images are used to pre-train the network (see Fig. 5). We
then jointly train on 9,000 images (1,000 for validation) by alternating alignment,
training, and validation steps. We then submitted two sets of predictions to the
evaluation server: one set exploiting the ROI information and one set without.
To exploit ROI information, we mask out all other parts of the image using the
median image color before running SFR.

Though we also evaluate without ROIs, the evaluation server still requires
each line to be assigned to a ROI. After running SFR on full pages (no masking),
we simply assign each line prediction to the region in which it has the most
overlap. Predictions mostly outside any ROI are discarded, though sometimes
these are real unannotated text lines that are completely outside the given ROIs.

1 https://scriptnet.iit.demokritos.gr/competitions/∼icdar2017htr/.

https://scriptnet.iit.demokritos.gr/competitions/~icdar2017htr/
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(a) LF on warped IAM lines with upper and lower lines as dis-
traction. SOL positions were provided.

(b) Deskewed line. Upper left (c) Deskewed line. Lower left

Fig. 7. Results from warped IAM dataset.

The competition systems made predictions over each ROI by first cropping
to the ROI bounding box [25]. The BYU system was evaluated without ROIs
using the same process as SFR except lines are only discarded if they intersect no
ROI. This difference was necessary because their segmentations span the entire
image and too many good text lines would have been discarded.

Table 1 compares SFR with the competition results. Our SFR model achieves
the highest BLEU score at 73.0 using ROI annotations, but performance only
degrades slightly to 72.3 without ROIs. This shows that the SOL and LF net-
works perform well and do not benefit much from a priori knowledge of text
line location. In contrast, the winning competition system scores 71.5 using the
ROIs, but its performance drops significantly to 57.3 without the ROIs.

Table 2 shows results for the IAM (English) and RIMES (French) line-level
datasets. Like [3], we evaluated our page-level method on line-level datasets
where we do not use the provided line segmentation annotations during train-
ing or evaluation, except for 10 pretraining images. We achieved state-of-the-art
results on RIMES, outperforming [22] which uses the segmentation annotations
for training and evaluation. On IAM, we outperformed the best previously pro-
posed page-level model [3], and we note that [22] used a non-standard data split,
so their results are not directly comparable. Results shown in Table 2 are without
LM decoding, so that the raw recognition models can be fairly compared.

4.2 Qualitative Results

We produced a synthetic dataset to test the robustness of the LF on very curved
lines. To generate the data we randomly warped real handwriting lines from the
IAM dataset [18] and added distracting lines above and below. We provided the
SOL position and did not employ the HWR. Figure 7 shows results from the
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(a) Document written in the 1400s
from the 2016 ICFHR HWR com-
petition [29]

(b) English document from the
ICDAR competition on baseline
detection[7]

Fig. 8. Images from other collections applied to our trained model

validation set. Even when text lines are somewhat overlapping (Fig. 7b), the LF
is able to stay on the correct line. Though the synthetic warping is exaggerated,
this suggests the LF can learn to follow less extreme real-world curvature.

Figure 9 shows some results on our ICDAR2017 HWR dataset validation set.
On clean images, SFR often produces a perfect transcription (Fig. 9a), and only
minor errors on noisy handwriting (Fig. 9b). The LF performs well on compli-
cated layouts, such as horizontally adjacent lines (Fig. 9c). However, some noisy
lines cause the LF to jump between lines. (Fig. 9d).

We also applied the trained SFR model to other image datasets and found
that the SOL and LF networks generalize even to documents in different lan-
guages. Figure 8a shows that SFR correctly segments a document written in
Early Modern German and we see similar results on a English document
(Fig. 8b). Of course, the HWR network would need to be retrained to handle
other languages, though due to the modularity of SFR, the HWR network can
be retrained while preserving the previous SOL and LF networks. Additional
images can be viewed in the supplementary material.
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(a) No errors

(b) Noisy lines, few transcription errors

(c) Complex layout, few transcription errors

(d) Noisy lines, LF error. HWR stopped reading after the error.

Fig. 9. Results from the ICDAR 2017 competition dataset. Colored lines represent
different detected lines. Green, red, and purple characters represent insertion, substi-
tution, and omission errors respectively. (Color figure online)
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5 Conclusion

We have introduced a novel Start, Follow, Read model for full-page HWR and
demonstrated state-of-the-art performance on a challenging dataset of histori-
cal handwriting, even when not exploiting given ROI information. We improved
upon a previous SOL method and introduced a novel LF network that learns
to segment and normalize handwriting lines for input to a HWR network. After
initial pre-training, our novel training framework is able to jointly train the
networks on documents using only line-level transcriptions. This is significant
because when human annotators transcribe documents, they often do not anno-
tate any segmentation or spatial information.

We believe that further improvements can be made by predicting the end-
of-line (EOL), in addition of SOL, and applying the LF backwards. Then, the
SOL and EOL results can mutually constrain each other and lead to improved
segmentation. Also, we did not extensively explore network architectures, so per-
formance could increase with improved architectures such as Residual Networks.
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20. Plötz, T., Fink, G.A.: Markov models for offline handwriting recognition: a survey.
Int. J. Doc. Anal. Recognit. (IJDAR) 12(4), 269 (2009)

21. Povey, D., et al.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding. IEEE Signal Processing
Society, December 2011. IEEE Catalog No. CFP11SRW-USB

22. Puigcerver, J.: Are multidimensional recurrent layers really necessary for hand-
written text recognition? In: 14th International Conference on Document Analysis
and Recognition (ICDAR), pp. 67–72. IEEE, November 2017. https://doi.org/10.
1109/ICDAR.2017.20

23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2017)

24. Saabni, R., El-Sana, J.: Language-independent text lines extraction using seam
carving. In: 11th International Conference on Document Analysis and Recognition
(ICDAR), pp. 563–568. IEEE (2011)

25. Sanchez, J.A., Romero, V., Toselli, A.H., Villegas, M., Vidal, E.: ICDAR2017 com-
petition on handwritten text recognition on the READ dataset. In: 14th Interna-
tional Conference on Document Analysis and Recognition (ICDAR), pp. 1383–
1388. IEEE, November 2017. http://doi.ieeecomputersociety.org/10.1109/ICDAR.
2017.226

26. Shapiro, V., Gluhchev, G., Sgurev, V.: Handwritten document image segmentation
and analysis. Pattern Recognit. Lett. 14(1), 71–78 (1993)

https://doi.org/10.1109/ICDAR.1995.602115
https://doi.org/10.1109/ICDAR.1995.602115
https://doi.org/10.1109/ICASSP.2013.6639275
https://doi.org/10.1109/ICDAR.2017.147
https://doi.org/10.1109/ICDAR.2017.147
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.1109/ICDAR.2017.20
http://doi.ieeecomputersociety.org/10.1109/ICDAR.2017.226
http://doi.ieeecomputersociety.org/10.1109/ICDAR.2017.226


388 C. Wigington et al.

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

28. Smith, R.: Tutorial: tesseract blends old and new OCR technology (2016)
29. Sanchez, J.A., Romero, V., Toselli, A.H., Vidal, E.: ICFHR2016 competition on

handwritten text recognition on the READ dataset. In: 15th International Con-
ference on Frontiers in Handwriting Recognition (ICFHR), pp. 630–635. IEEE,
October 2016. https://doi.org/10.1109/ICFHR.2016.0120

30. Tensmeyer, C., Saunders, D., Martinez, T.: Convolutional neural networks for
font classification. In: 14th International Conference on Document Analysis
and Recognition (ICDAR), pp. 985–990. IEEE, November 2018. http://doi.
ieeecomputersociety.org/10.1109/ICDAR.2017.164

31. Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image
with connectionist text proposal network. CoRR abs/1609.03605 (2016). http://
arxiv.org/abs/1609.03605

32. Vinciarelli, A.: A survey on off-line cursive word recognition. Pattern Recognit.
35(7), 1433–1446 (2002)

33. Wigington, C., Stewart, S., Davis, B., Barrett, W., Price, B., Cohen, S.: Data
augmentation for recognition of handwritten words and lines using a CNN-LSTM
network. In: 14th International Conference on Document Analysis and Recognition
(ICDAR), pp. 639–645 (2017)

34. Zamora-Martinez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M.J., Fis-
cher, A., Bunke, H.: Neural network language models for off-line handwriting recog-
nition. Pattern Recognit. 47(4), 1642–1652 (2014)

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICFHR.2016.0120
http://doi.ieeecomputersociety.org/10.1109/ICDAR.2017.164
http://doi.ieeecomputersociety.org/10.1109/ICDAR.2017.164
http://arxiv.org/abs/1609.03605
http://arxiv.org/abs/1609.03605

	Start, Follow, Read: End-to-End Full-Page Handwriting Recognition
	1 Introduction
	2 Related Work
	3 Proposed Model: Start, Follow, Read
	3.1 Network Description
	3.2 Post Processing
	3.3 Training

	4 Results
	4.1 Quantitative Results
	4.2 Qualitative Results

	5 Conclusion
	References




