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Abstract. This paper presents a deep architecture for dense seman-
tic correspondence, called pyramidal affine regression networks (PARN),
that estimates locally-varying affine transformation fields across images.
To deal with intra-class appearance and shape variations that commonly
exist among different instances within the same object category, we lever-
age a pyramidal model where affine transformation fields are progres-
sively estimated in a coarse-to-fine manner so that the smoothness con-
straint is naturally imposed within deep networks. PARN estimates resid-
ual affine transformations at each level and composes them to estimate
final affine transformations. Furthermore, to overcome the limitations of
insufficient training data for semantic correspondence, we propose a novel
weakly-supervised training scheme that generates progressive supervi-
sions by leveraging a correspondence consistency across image pairs. Our
method is fully learnable in an end-to-end manner and does not require
quantizing infinite continuous affine transformation fields. To the best
of our knowledge, it is the first work that attempts to estimate dense
affine transformation fields in a coarse-to-fine manner within deep net-
works. Experimental results demonstrate that PARN outperforms the
state-of-the-art methods for dense semantic correspondence on various
benchmarks.

Keywords: Dense semantic correspondence · Hierarchical graph model

1 Introduction

Establishing dense correspondences across semantically similar images is essen-
tial for numerous computer vision and computational photography applications,
such as scene parsing, semantic segmentation, and image editing [1–5].
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Fig. 1. Visualization of pyramidal model in the PARN: (a) source and target images,
estimated affine field at (b) level 1, (c) level 2, (d) level 3, (e) pixel-level, and (f) warped
images. In each grid at each level, PARN estimates corresponding affine transformation
field regularized with the estimated transformation field at previous level.

Unlike classical dense correspondence tasks such as stereo matching [6] or
optical flow estimation [7] that have been dramatically advanced, semantic corre-
spondence estimation still remains unsolved due to severe intra-class appearance
and shape variations across images. Several recent approaches [8,9] have been
proposed by leveraging deep convolutional neural networks (CNNs), providing
satisfactory performances in capturing reliable matching evidences under intra-
class appearance variations. However, they still consider geometric variations in
just a limited manner such as those used for stereo matching or optical flow esti-
mation [6,7]. In some approaches [9,10], more complex geometric variations such
as scale or rotation were addressed, but they seek the labeling solution from only
a set of scales and/or rotations quantized within pre-defined ranges. Recently,
the discrete-continuous transformation matching (DCTM) framework [10] com-
bined with the fully convolutional self-similarity (FCSS) [8] descriptor exhibits
much improved performance by estimating locally-varying affine transformation
fields on continuous and discrete domains in an alternative manner. Although
DCTM has shown the state-of-the-art performance in dealing with non-rigid
shape deformations, it is formulated with handcrafted smoothness constraint
model and optimization technique, and thus it cannot guarantee optimal results
when the geometric variation is relatively large.

In addition to the effort at measuring reliable matching evidences across
images under intra-class appearance variations, recent CNN-based approaches
have begun directly regressing geometric deformation fields through deep net-
works [11,12]. As pioneering works, spatial transformer networks (STNs) [13]
and its variant, inverse compositional spatial transformer networks (IC-STNs)
[14], offer a way to deal with geometric variations within CNNs. Rocco et al. [12]
and Schneider et al. [15] developed a CNN architecture for geometry-invariant
matching that estimates transformation parameters across semantically simi-
lar images and different modalities. However, these methods assume the global
transformation model, and thus they cannot deal with spatially-varying geo-
metric variations, which frequently appear in dense semantic correspondence.
More recently, some methods such as universal correspondence network (UCN)
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[9] and deformable convolutional networks (DCN) [16] were proposed to encode
locally-varying geometric variations in CNNs, but they do not have smoothness
constraints with neighboring points, and cannot guarantee reliable performance
under relatively large geometric variations. An additional challenge lies in the
lack of training data with ground-truth for semantic correspondence, making the
use of supervised training approaches difficult.

In this paper, we present a novel CNN architecture, called pyramidal affine
regression networks (PARN), that estimates locally-varying affine transforma-
tion fields across semantically similar images in a coarse-to-fine fashion, as shown
in Fig. 1. Inspired by pyramidal graph models [3,17] that impose the hierarchical
smoothness constraint on labeling results, our approach first estimates a global
affine transformation over an entire image, and then progressively increases the
degree of freedom of the transformation in a form of quad-tree, finally producing
pixel-wise continuous affine transformation fields. The regression networks esti-
mate residual affine transformations at each level and these are composed to pro-
vide final affine transformation fields. To overcome the limitations of insufficient
training data for semantic correspondence, we propose a novel weakly-supervised
training scheme that generates progressive supervisions by leveraging the corre-
spondence consistency. Our method works in an end-to-end manner, and does
not require quantizing the search space, different from conventional methods
[17,18]. To the best of our knowledge, it is the first attempt to estimate the
locally-varying affine transformation fields through deep network in a coarse-to-
fine manner. Experimental results show that the PARN outperforms the latest
methods for dense semantic correspondence on several benchmarks including
Taniai dataset [19], PF-PASCAL [20], and Caltech-101 [21].

2 Related Works

Dense Semantic Correspondence. Liu et al. [2] pioneered the idea of dense
correspondence across different scenes, and proposed SIFT Flow. Inspired by
this, Kim et al. [3] proposed the deformable spatial pyramid (DSP) which
performs multi-scale regularization within a hierarchical graph. More recently,
Yang et al. [22] proposed the object-aware hierarchical graph (OHG) to regulate
matching consistency over whole objects. Among other methods are those that
take an exemplar-LDA approach [23], employ joint image set alignment [5], or
jointly solve for cosegmentation [19]. As all of these techniques use handcrafted
descriptors such as SIFT [24] or DAISY [18], they lack the robustness to defor-
mations that is possible with deep CNNs.

Recently CNN-based descriptors have been used to establish dense semantic
correspondences because of their high invariance to appearance variations. Zhou
et al. [25] proposed a deep network that exploits cycle-consistency with a 3-D
CAD model [26] as a supervisory signal. Choy et al. [9] proposed the universal
correspondence network (UCN) based on fully convolutional feature learning.
Novotny et al. [27] proposed AnchorNet that learns geometry-sensitive features
for semantic matching with weak image-level labels. Kim et al. [8] proposed the
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FCSS descriptor that formulates local self-similarity within a fully convolutional
network. However, none of these methods is able to handle severe non-rigid
geometric variations.

Transformation Invariance. Several methods have aimed to alleviate geo-
metric variations through extensions of SIFT Flow, including scale-less SIFT
Flow (SLS) [28], scale-space SIFT Flow (SSF) [29], and generalized DSP [17].
However, these techniques have a critical and practical limitation that their com-
putational cost increases linearly with the search space size. HaCohen et al. [1]
proposed in a non-rigid dense correspondence (NRDC) algorithm, but it employs
weak matching evidence that cannot guarantee reliable performance. Geometric
invariance to scale and rotation is provided by DAISY Filer Flow (DFF) [4], but
its implicit smoothness constraint often induces mismatches. Recently, Ham et
al. [30] presented the Proposal Flow (PF) algorithm to estimate correspondences
using object proposals. Han et al. [31] proposed SCNet to learn the similarity
function and geometry kernel of PF algorithm within deep CNN. While these
aforementioned techniques provide some amount of geometric invariance, none
of them can deal with affine transformations across images, which frequently
occur in dense semantic correspondence. More recently, Kim et al. [10] proposed
DCTM framework where dense affine transformation fields are inferred using a
handcrafted energy function and optimization.

STNs [13] offer a way to deal with geometric variations within CNNs by warp-
ing features through a global parametric transformation. Lin et al. [14] proposed
IC-STNs that replaces the feature warping with transformation parameter prop-
agation. Rocco et al. [12] proposed a CNN architecture for estimating a geometric
model such as an affine transformation for semantic correspondence estimation.
However, it only estimates globally-varying geometric fields, and thus exhibits
limited performance for dealing with locally-varying geometric deformations.
Some methods such as UCN [9] and DCN [16] were proposed to encode locally-
varying geometric variations in CNNs, but they do not have the smoothness
constraints with neighboring points and cannot guarantee reliable performance
for images with relatively large geometric variations [10].

3 Method

3.1 Problem Formulation and Overview

Given a pair of images I and I ′, the objective of dense correspondence estimation
is to establish a correspondence i′ for each pixel i = [ix, iy]. In this work, we
infer a field of affine transformations, each represented by a 2 × 3 matrix

Ti =
[
Ti,x

Ti,y

]
(1)

that maps pixel i to i′ = Tii, where i is pixel i represented in homogeneous
coordinates such that i = [i, 1]T .
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Fig. 2. Network configuration of the PARN, which is defined on the pyramidal model
and consists of several grid-level modules and a single pixel-level module. Each mod-
ule is designed to mimic the standard matching process within a deep architecture,
including feature extraction, cost volume construction, and regression.

Compared to the constrained geometric transformation model (i.e. only
translational motion) commonly used in the stereo matching or optical flow
estimation, the affine transformation fields can model the geometric variation in
a more principled manner. Estimating the pixel-wise affine transformation fields,
however, poses additional challenges due to its infinite and continuous solution
space. It is well-known in stereo matching literatures that global approaches
using the smoothness constraint defined on the Markov random field (MRF)
[32] tend to achieve higher accuracy on the labeling optimization, compared to
local approaches based on the structure-aware cost aggregation [33]. However,
such global approaches do not scale very well to our problem in terms of compu-
tational complexity, as the affine transformation is defined over the 6-D contin-
uous solution space. Additionally, it is not easy to guarantee the convergence of
affine transformation fields estimated through the discrete labeling optimization
due to extremely large label spaces. Though randomized search and propagation
strategy for labeling optimization [32,34] may help to improve the convergence
of labeling optimization on high-dimensional label space, most approaches just
consider relatively lower-dimensional label space, e.g. 4-D label space consisting
of translation, rotation, and scale.

Inspired by the pyramidal graph model [3,17,35] and the parametric geome-
try regression networks [11,12], we propose a novel deep architecture that esti-
mates dense affine transformation fields in a coarse-to-fine manner. Our key
observation is that affine transformation fields estimated at a coarse scale tend
to be robust to geometric variations while the results at a fine scale preserve fine-
grained details of objects better. While conventional approaches that employ the
coarse-to-fine scheme in dense correspondence estimation [2,36] focus on image
scales, our approach exploits semantic scales within the hierarchy of deep convo-
lutional networks. Our method first estimates an image-level affine transforma-
tion using the deepest convolutional activations and then progressively localizes
the affine transformation field additionally using the shallower convolutional acti-
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vations in a quad-tree framework, producing the pixel-level affine transformation
fields as the final labeling results.

As shown in Fig. 2, our method is defined on the pyramidal model (see Fig. 1)
that consists of two kind of networks, several grid-level modules and a sin-
gle pixel-level module, similar to [3,17]. Each module within two networks is
designed to mimic the standard matching process within a deep architecture
[12]: feature extraction, correlation volume construction, and regression. Con-
cretely, when two images I and I ′ are given, convolutional features are first
extracted as multi-level intermediate activations through the feature network
(with Wc) in order to provide fine-grained localization precision ability at each
level while preserving robustness to deformations. Then, the correlation volume
is constructed between these features at the cost volume construction layer of
Fig. 2. Finally the affine transformation fields are inferred by passing the correla-
tion volume to the regression network (with Wk

g , Wp of Fig. 2). This procedure
is repeated for K grid-level modules and a single pixel-level module.

3.2 Pyramidal Affine Regression Networks

Each module of our pyramidal model has three main components. The first
one extracts hierarchically concatenated features from the input images and the
second computes a cost volume within constrained search windows. Lastly, from
the third one, a locally-varying affine field is densely estimated for all pixels.

Feature Extraction. While conventional CNN-based descriptors have shown
the excellent capabilities in handling intra-class appearance variations [37,38],
they have difficulties in yielding both semantic robustness and matching pre-
cision ability at the same time. To overcome this limitation, our networks are
designed to leverage the inherent hierarchies of CNNs where multi-level inter-
mediate convolutional features are extracted through a shared siamese network.
We concatenate some of these convolutional feature maps such that

Fk =
⋃

n∈M(k)
F(Ik;Wn

c ) (2)

where
⋃

denotes the concatenation operator, Wn
c is the feature extraction net-

work parameter until n-th convolutional layer and M(k) is the sampled indices
of convolutional layers at level k. This is illustrated by the upper of Fig. 2.

Moreover, iteratively extracting the features along our pyramidal model pro-
vides evolving receptive fields which is a key ingradient for the geometric invari-
ance [4,10]. By contrast, existing geometry regression networks [11,12] face a
tradeoff between appearance invariance and localization precision due to the
fixed receptive field of extracted features. Note that we obtained Ik with the
outputs from the previous level by warping Ik−1 with Tk−1 through bilinear
samplers [13] which facilitate an end-to-end learning framework.

Constrained Cost Volume Construction. To estimate geometry between
image pairs Ik and I ′, the matching cost according to search spaces should be
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(a) (b) (c) (d) (e) (f)

Fig. 3. Visualization of the constrained search window Nk
i : (a) source image and a

reference pixel (blue colored). The matching costs are visualized as the heat maps for
the reference pixel at (c) level 1, (d) level 2, (e) level 3, and (f) pixel-level. (color figure
online)

computed using extracted features Fk and F′,k. Unlike conventional approaches
that quantize search spaces for estimating depth [6], optical flow [7], or similarity
transformations [17], quantizing the 6-D affine transformation defined over an
infinite continuous solution space is computationally expensive and also degen-
erates the estimation accuracy. Instead, inspired by traditional robust geometry
estimators such as RANSAC [39] or Hough voting [24], we first construct the
cost volume computed with respect to translational motion only, and then deter-
mine the affine transformation for each block by passing it through subsequent
convolutional layers to reliably prune incorrect matches.

Concretly, the matching costs between extracted features Fk, F′,k are com-
puted within a search window as a rectified cosine similarity, such that

Ck(i, j) = max(0,F′,k(i) · Fk(j)), where j ∈ Nk
i . (3)

A constrained search window Nk
i is centered at pixel i with the radius r(k) as

examplified in Fig. 3. In our pyramidal model, a relatively large radius is used at
coarser levels to estimate a rough yet reliable affine transform as a guidance at
subsequent finer levels. The radius becomes smaller as the level goes deeper where
the regression network is likely to avoid local minima thanks to the guidance of
affine transformation fields estimated on the previous level. Thus only reliable
matching candidates are provided as an input to the following regression network
where even fine-scaled geometric transformations can be estimated at deeper
level. The constructed cost volume can be further utilized for generating the
supervisions with correspondence consistency check as described in Sect. 3.3.

Grid-Level Regression. The constrained cost volume Ck is passed through
successive CNNs and bilinear upsampling layer to estimate the affine transfor-
mation field such that Tk = F(Ck;Wk

g ), where Wk
g is the grid-level regression

network parameter at the level k. Since each level in the pyramid has a simpli-
fied task (it only has to estimate residual transformation field), the regression
networks can be simple to have 3–6 convolutional layers.

Within the hierarchy of the pyramidal model, our first starts to estimate the
transformation from an entire image and then progressively increase the degree of
freedom of the transformation by dividing each grid into four rectangular grids,
yielding 2k−1×2k−1 grid of affine fields at level k. However, the estimated coarse
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Fig. 4. Training the grid-level module at level 1. By using the correspondence consis-
tency, tentative sparse correspondences are determined and used to train the network.

(a) (b) (c) (d) (e) (f)

Fig. 5. Visualization of the generated supervisions at each level: (a) source and target
images, (b) level 1, (c) level 2, (d) level 3, (e) pixel level, (f) GT keypoints. The tentative
positive samples are color-coded. (Best viewed in color.)

affine field has the discontinuities between nearby affine fields occuring blocky
artifacts around grid boundaries as shown in (d) and (f) of Fig. 6. To alleviate
this, a bilinear upsampler [13] is applied at the end of successive CNNs, upsam-
pling a coarse grid-wise affine field to the original resolution of the input image
I. This simple strategy regularizes the affine field to be smooth, suppressing the
artifacts considerably as examplified in Fig. 6.

Note that the composition of the estimated affine fields from level 1 to k can
be computed as multiplications of augmented matrix in homogeneous coordi-
nates such that

M(T[1,k]
i ) =

∏
n∈{1,...,k} M(Tn

i ) (4)

where M(T) represents T in homogeneous coordinates as [T; [0, 0, 1]].

Pixel-Level Regression. To improve the matching ability localizing fine-
grained object boundaries, we additionally formulate a pixel-level module. Sim-
ilar to the grid-level modules, it also consists of feature extraction, constrained
cost volume construction, and regression network. The main difference is that
an encoder-decoder architecture is employed for the regression network, which
has been adopted in many pixel-level prediction tasks such as disparity esti-
mation [40], optical flow [41], or semantic segmentation [42]. Taking a warped
image IK+1 as an input, a constrained cost volume CK+1 is computed and the
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Algorithm 1. Pyramidal Affine Regression Network

Input: images I, I ′

Output: network parameters Wc, Wg, Wp, affine fields T∗

1 : Compute convolutional activations of target image I ′

for k = 1 : K do

2 : Compute image Ik by warping Ik−1 with Tk−1 when k > 1

3 : [Only when training] : Initialize affine fields as Tk
i = [I2×2,02×1]

/∗ Feature Extraction ∗/

4 : Compute convolutional activations of Ik and extract features Fk, F′,k

/∗ Constrained Correlation Volume ∗/

5 : Construct the constrained cost volume Ck with radius r(k)

6 : [Only when training] : Generate supervisions Sk and train the network
/∗ Affine Transformation Field Regression ∗/

7 : [Only when testing] : Estimate affine fields Tk = F(Ck;Wk
g )

end for
8 : Estimate pixel-level affine fields T′ = F(CK+1;Wp)
9 : Compute final affine fields M(T∗

i ) =
∏

n∈{1,...,K} M(Tn) · M(T′
i)

pixel-level affine field is regressed through the encoder-decoder network such that
T′ = F(CK+1;Wp), where Wp is the pixel-level regression network parameter.
The final affine transformation field between source and target image can be
computed as M(T∗

i ) = M(T[1,K]
i ) · M(T′

i).

3.3 Training

Generating Progressive Supervisions. A major challenge of semantic cor-
respondence with CNNs is the lack of ground-truth correspondence maps for
training data. A possible approach is to synthetically generate a set of image
pairs transformed by applying random transformation fields to make the pseudo
ground-truth [11,12], but this approach cannot reflect the realistic appearance
variations and geometric transformations well.

Instead of using synthetically deformed imagery, we propose to generate
supervisions directly from the semantically related image pairs as shown in
Fig. 4, where the correspondence consistency check [35, 48] is applied to the
constructed cost volume of each level. Intuitively, the correspondence relation
from a source image to a target image should be consistent with that from the
target image to the source image. Given the constrained cost volume Ck, the
best match fk

i is computed by searching the maximum score for each point
i, fk

i = argmaxj Ck(i, j). We also compute the backward best match bki for
fk
i such that bki = argmaxm Ck(m, fi) to identify that the best match fk

i

is consistent or not. By running this consistency check along our pyramidal
model, we actively collect the tentative positive samples at each level such that
Sk = {i|i = bki , i ∈ Ω}. We found that the generated supervisions are qual-
itatively and quantitatively superior to the sparse ground-truth keypoints as
examplified in Fig. 5.

For the accuracy of supervisions, we limit the correspondence candidate
regions using object location priors such as bounding boxes or masks contain-
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Qualitative results of the PARN at each level: (a) source image, (b) target
image, warping result at (c) level 1, (d) level 2 without upsampling layer, (e) level 2,
(f) level 3 without upsampling layer, (g) level 3, and (h) pixel-level.

ing the target object to be matched, which are provided in most benchmarks
[21,43,44]. Note that our approach is conceptually similar to [8], but we generate
the supervisions from the constrained cost volume in a hierarchical manner so
that the false positive samples are avoided which is critical to train the geometry
regression network.

Loss Function. To train the module at level k, the loss function is defined as a
distance between the flows at the positive samples and the flow fields computed
by applying estimated affine transformation field such that

Lk(Wk) =
1
N

∑
i∈Sk

‖Tk
i i − (i − fk

i )‖2, (5)

where Wk is the parameters of feature extraction network and regression net-
work at level k and N is the number of training samples. Algorithm 1 provides
an overall summary of PARN.

4 Experimental Results

4.1 Experimental Settings

For feature extraction networks in each regression module, we used the ImageNet
pretrained VGGNet-16 [45] and ResNet-101 [38] with their network parameters.
For the grid-level regressions, we used three grid-level modules (K = 3), fol-
lowed by a single pixel-level module. For M(k) in the feature extraction step,
we sampled convolutional activations after intermediate pooling layers such as
‘conv5-3’, ‘conv4-3’, and ‘conv3-3’. The radius of search space r(k) is set to the
ratio of the whole search space, and decreases as the level goes deeper such that
{1/10, 1/10, 1/15, 1/15}.

In the following, we comprehensively evaluated PARN through comparisons
to state-of-the-art dense semantic correspondences, including SIFT Flow [24],
DSP [3], and OHG [22]. Furthermore, geometric-invariant methods including
PF [30], SCNet [31], CNNGM [12], DCTM [10]. The performance was measured
on Taniai benchmark [19], PF-PASCAL dataset [20], and Caltech-101 [21].
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Fig. 7. Average matching accuracy with respect to endpoint error threshold on the
Taniai benchmark [19]: (from left to right) FG3DCar, JODS, PASCAL, and average.

(a) (b) (c) (d) (e) (f)

Fig. 8. Qualitative results on the Taniai benchmark [19]: (a) source image, (b) target
image, (c) CNNGM-Aff.TPS [12], (d) SCNet-AG+ [31], (e) DCTM [10], (f) PARN.
The source images were warped to the target images using correspondences.

4.2 Training Details

For training, we used the PF-PASCAL dataset [20] that consists of 1,351 image
pairs selected from PASCAL-berkely keypoint annotations of 20 object classes.
We did not use the ground-truth keypoints at all to learn the network, but we uti-
lized the masks for the accuracy of generated supervisions. We used 800 pairs as a
training data, and further divide the rest of PF-PASCAL data into 200 validation
pairs and 350 testing pairs. Additionally, we synthetically augment the training
pair 10 times by applying randomly generated geometric transformations includ-
ing horizontal flipping [12]. To generate the most accurate supervisions in the
first level, we additionally apply M-estimator SAmple and Consensus (MSAC)
[46] to build the initial supervisions T0 and restrict the search space with the
estimated transformation. We sequentially trained the regression modules for
120k iterations each with a batch size of 16 and further finetune all the regres-
sion networks in an end-to-end manner [14]. The more details of experimental
settings and training are provided in the supplemental material.
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Table 1. Matching accuracy compared to state-of-the-art correspondence techniques
on the Taniai benchmark [19].

Methods Descriptor Matching FG3D. JODS PASC. Avg.

SF [2] SIFT SF 0.632 0.509 0.360 0.500

DSP [3] SIFT DSP 0.487 0.465 0.382 0.445

PF [30] HOG LOM 0.786 0.653 0.531 0.657

OHG [22] HOG OHG 0.875 0.708 0.729 0.771

SCNet [31] VGG-16 A 0.774 0.574 0.476 0.608

AG 0.764 0.600 0.463 0.609

AGplus 0.776 0.608 0.474 0.619

CNNGM [12] VGG-16 Aff. 0.771 0.662 0.501 0.644

Aff.+TPS 0.835 0.656 0.527 0.672

DCTM [10] VGG-16 DCTM 0.790 0.611 0.528 0.630

Affine-FCSS 0.891 0.721 0.610 0.740

Baseline VGG-16 SF 0.756 0.490 0.360 0.535

PARN-Lv1 0.783 0.668 0.641 0.697

PARN-Lv2 0.837 0.689 0.656 0.739

PARN-Lv3 0.869 0.707 0.681 0.752

Proposed VGG-16 PARN 0.876 0.716 0.688 0.760

ResNet-101 0.895 0.759 0.712 0.788

4.3 Ablation Study

To validate the components within PARN, we additionally evaluated it at each
level such as ‘PARN-Lv1’, ‘PARN-Lv2’, and ‘PARN-Lv3’ as shown in Fig. 6 and
Table 1. For quantitative evaluations, we used the matching accuracy on the
Taniai benchmark [19], which is described in details in the following section.
As expected, even though the global transformation was estimated roughly well
in the coarest level (i.e. level 1), the fine-grained matching details cannot be
achieved reliably, thus showing the limited performance. However, as the levels
go deeper, the localization ability has been improved while maintaining globally
estimated transformations.

The performance of the backbone network was also evaluated with a standard
SIFT flow optimization [2]. Note that the evaluation of the pixel-level module
only in our networks is impracticable, since it requires a pixel-level supervision
that does not exist in the current public datasets for semantic correspondence.

4.4 Results

See the supplemental material for more qualitative results.
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(a) (b) (c) (d) (e) (f)

Fig. 9. Qualitative results on the PF-PASCAL benchmark [20]: (a) source image, (b)
target image, (c) CNNGM-Aff.+TPS [12], (d) SCNet-AG+ [31], (e) DCTM [10], (f)
PARN. The source images were warped to the target images using correspondences.

Taniai Benchmark. We evaluated PARN compared to other state-of-the-art
methods on the Taniai benchmark [19], which consists of 400 image pairs divided
into three groups: FG3DCar, JODS, and PASCAL. Flow accuracy was measured
by computing the proportion of foreground pixels with an absolute flow endpoint
error that is smaller than a certain threshold T , after resizing images so that
its larger dimension is 100 pixels. Figure 7 shows the flow accuracy with varying
error threshold T . Our method outperforms especially when the error thershold
is small. This clearly demonstrates the advantage of our hierarchical model in
terms of both localization precision and appearance invariance.

Table 1 summarizes the matching accuracy for various dense semantic cor-
respondence techniques at the fixed threshold (T = 5 pixels). The quantitative
results of ‘PARN-Lv1’ and ‘CNNGM-Aff’ in Table 1 verify the benefits of our
weakly supervised training scheme. Whereas ‘CNNGM-Aff.’ is also trained in
weakly supervised manner, it relys only on the synthetically deformed image
pairs while our method employs semantically sensitive supervisions. Note that
we implemented our regression module at level 1 in the same architecture of
‘CNNGM-Aff.’. From the qualitative results of Fig. 8, while DCTM is trapped
in local minima unless an appropriate initial solution is given, our method pro-
gressively predicts locally-varying affine transformation fields and able to handle
relatively large semantic variations including flip variations without handcrafted
parameter tuning. The superiority of PARN can be seen by comparing to the
correspondence techniques with the same ‘VGG-16’ descriptor in Table 1 and
Fig. 7 and even outperforms the supervised learning based method of [31]. We
also evaluated with ResNet-101 [38] as a backbone network to demonstrate the
performance boosting of our method with more powerful features, where our
method achieves the best performance on average.

PF-PASCAL Benchmark. We also evaluated PARN on the testing set of PF-
PASCAL benchmark [30]. For the evaluation metric, we used the probability of
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Table 2. Matching accuracy compared to state-of-the-art correspondence techniques
on the PF-PASCAL benchmark [30] and Caltech-101 dataset [21].

Dataset PF-PASCAL Caltech-101

Methods PCK LT-ACC IoU LOC-ERR

α = 0.05 α = 0.1 α = 0.15

SF [2] 0.192 0.334 0.492 0.75 0.48 0.32

DSP [3] 0.198 0.372 0.414 0.77 0.47 0.35

PF [30] 0.235 0.453 0.621 0.78 0.50 0.25

OHG [22] - - - 0.81 0.55 0.19

SCNet [31] 0.260 0.482 0.658 0.79 0.51 0.25

CNNGM [12] 0.254 0.461 0.641 0.80 0.56 0.25

DCTM [10] 0.257 0.477 0.648 0.84 0.53 0.18

PARN 0.268 0.491 0.662 0.87 0.65 0.21

correct keypoint (PCK) between flow-warped keypoints and the ground-truth.
The warped keypoints are deemed to be correctly predicted if they lie within
α · max(h,w) pixels of the ground-truth keypoints for α ∈ [0, 1], where h and
w are the height and width of the object bounding box, respectively. Figure 9
shows qualitative results for dense flow estimation.

Without ground-truth annotations, our PARN has shown the outperform-
ing performance compared to other methods in Table 2 where [31] is trained in
fully supervised manner. The relatively modest gain may come from the limited
evaluation only on the sparsely annotated keypoints of PF-PASCAL benchmark.
However, the qualitative results of our method in Fig. 9 indicates that the per-
formance can be significantly boosted when dense annotations are given for
evaluation. Although [31] estimates the sparse correspondences in a geometri-
cally plausible model, they compute the final dense semantic flow by linearly
interpolating them which may not consider the semantic structures of target
image. By contrast, our method leverages a pyramidal model where the smooth-
ness constraint is naturally imposed among semantic scales within deep networks
(Fig. 10).

Caltech-101 Dataset. Our evaluations also include the Caltech-101 dataset
[21]. Following the experimental protocol in [21], we randomly selected 15 pairs
of images for each object class, and evaluated matching accuracy with three met-
rics: label transfer accuracy (LT-ACC), the IoU metric, and the localization error
(LOC-ERR) of corresponding pixel positions. Note that compared to other bench-
marks described above, the Caltech-101 dataset provides image pairs from more
diverse classes, enabling us to evaluate our method under more general correspon-
dence settings. For the results, our PARN clearly outperforms the semantic corre-
spondence techniques in terms of LT-ACC and IoU metrics. Table 2 summarizes
the matching accuracy compared to state-of-the-art methods.
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(a) (b) (c) (d) (e) (f)

Fig. 10. Qualitative result on the Caltech-101 benchmark [21]: (a) source image, (b)
target image, (c) CNNGM-Aff.+TPS [12], (d) SCNet-AG+ [31], (e) DCTM [10], (f)
PARN. The source image was warped to the target images using correspondences.

5 Conclusion

We presented a novel CNN architecture, called PARN, which estimates locally-
varying affine transformation fields across semantically similar images. Our
method defined on pyramidal model first estimates a global affine transformation
over an entire image and then progressively increases the transformation flexibil-
ity. In contrast to previous CNN based methods for geometric field estimations,
our method yields locally-varying affine transformation fields that lie in the con-
tinuous solution space. Moreover, our network was trained in a weakly-supervised
manner, using correspondence consistency within object bounding boxes in the
training image pairs. We believe PARN can potentially benefit instance-level
object detection and segmentation, thanks to its robustness to severe geometric
variations.
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