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Abstract. In generalized zero shot learning (GZSL), the set of classes
are split into seen and unseen classes, where training relies on the seman-
tic features of the seen and unseen classes and the visual representations
of only the seen classes, while testing uses the visual representations of
the seen and unseen classes. Current methods address GZSL by learning
a transformation from the visual to the semantic space, exploring the
assumption that the distribution of classes in the semantic and visual
spaces is relatively similar. Such methods tend to transform unseen test-
ing visual representations into one of the seen classes’ semantic features
instead of the semantic features of the correct unseen class, resulting in
low accuracy GZSL classification. Recently, generative adversarial net-
works (GAN) have been explored to synthesize visual representations of
the unseen classes from their semantic features - the synthesized rep-
resentations of the seen and unseen classes are then used to train the
GZSL classifier. This approach has been shown to boost GZSL classi-
fication accuracy, but there is one important missing constraint: there
is no guarantee that synthetic visual representations can generate back
their semantic feature in a multi-modal cycle-consistent manner. This
missing constraint can result in synthetic visual representations that do
not represent well their semantic features, which means that the use of
this constraint can improve GAN-based approaches. In this paper, we
propose the use of such constraint based on a new regularization for the
GAN training that forces the generated visual features to reconstruct
their original semantic features. Once our model is trained with this
multi-modal cycle-consistent semantic compatibility, we can then syn-
thesize more representative visual representations for the seen and, more
importantly, for the unseen classes. Our proposed approach shows the
best GZSL classification results in the field in several publicly available
datasets.
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1 Introduction

Generalized Zero-shot Learning (GZSL) separates the classes of interest into a
sub-set of seen classes and another sub-set of unseen classes. The training pro-
cess uses the semantic features of both sub-sets and the visual representations
of only the seen classes; while the testing process aims to classify the visual rep-
resentations of both sub-sets [2,3]. The semantic features available for both the
training and testing classes are typically acquired from other domains, such as
visual features [4], text [3,5,6], or learned classifiers [7]. The traditional approach
to address this challenge [2] involves the learning of a transformation from the
visual to the semantic space of the seen classes. Testing is then performed by
transforming the visual representation of the seen and unseen classes into this
semantic space, where classification is typically achieved with a nearest neigh-
bor classifier that selects the closest class in the semantic space. In contrast
to Zero-shot Learning (ZSL), which uses only the unseen domain for testing,
GZSL approaches tend to be biased towards the seen classes, producing poor
classification results, particularly for the unseen testing classes [1].

Fig. 1. Overview of the proposed multi-modal cycle-consistent GZSL approach. Our
approach extends the idea of synthesizing visual representations of seen and unseen
classes in order to train a classifier for the GZSL problem [1]. The main contribution of
the paper is the use of a new multi-modal cycle consistency loss in the training of the
visual feature generator that minimizes the reconstruction error between the semantic
feature a, which was used to synthesize the visual feature x̃, and the reconstructed
semantic feature ã mapped from x̃. This loss is shown to constrain the optimization
problem more effectively in order to produce useful synthesized visual features for
training the GZSL classifier.

These traditional approaches rely on the assumption that the distributions
observed in the semantic and visual spaces are relatively similar. Recently,
this assumption has been relaxed to allow the semantic space to be optimized
together with the transformation from the visual to the semantic space [8] - this
alleviates the classification bias mentioned above to a certain degree. More recent
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approaches consist of building a generative adversarial network (GAN) that syn-
thesizes visual representations of the seen and unseen classes directly from their
semantic representation [8,9]. These synthesized features are then used to train
a multi-class classifier of seen and unseen classes. This approach has been shown
to improve the GZSL classification accuracy, but an obvious weakness is that
the unconstrained nature of the generation process may let the approach gener-
ate unrepresentative synthetic visual representations, particularly of the unseen
classes (i.e., representations that are far from possible visual representations of
the test classes).

The main contribution of this paper is a new regularization of the
generation of synthetic visual representations in the training of GAN-
based methods that address the GZSL classification problem. This reg-
ularization is based on a multi-modal cycle consistency loss term that
enforces good reconstruction from the synthetic visual representations
back to their original semantic features (see Fig. 1). This regularization is
motivated by the cycle consistency loss applied in training GANs [10] that forces
the generative training approach to produce more constrained visual representa-
tions. We argue that this constraint preserves the semantic compatibility between
visual features and semantic features. Once our model is trained with this multi-
modal cycle consistency loss term, we can then synthesize visual representations
for unseen classes in order to train a GZSL classifier [1,11].

Using the experimental setup described by Xian et al. [1], we show that our
proposed regularization provides significant improvements not only in terms of
GZSL classification accuracy, but also ZSL on the following datasets: Caltech-
UCSD-Birds 200-2011 (CUB) [2,12], Oxford-Flowers (FLO) [13], Scene Catego-
rization Benchmark (SUN) [2,14], Animals with features (AWA) [2,4], and Ima-
geNet [15]. In fact, the experiments show that our proposed approach holds the
current best ZSL and GZSL classification results in the field for these datasets.

2 Literature Review

The starting point for our literature review is the work by Xian et al. [1,2], who
proposed new benchmarks using commonly accepted evaluation protocols on
publicly available datasets. These benchmarks allow a fair comparison among
recently proposed ZSL and GZSL approaches, and for this reason we explore
those benchmarks to compare our results with the ones obtained from the cur-
rent state of the art in the field. We provide a general summary of the methods
presented in [2], and encourage the reader to study that paper in order to obtain
more details on previous works. The majority of the ZSL and GZSL methods tend
to compensate the lack of visual representation of the unseen classes with the
learning of a mapping between visual and semantic spaces [16,17]. For instance, a
fairly successful approach is based on a bi-linear compatibility function that asso-
ciates visual representation and semantic features. Examples of such approaches
are ALE [18], DEVISE [19], SJE [20], ESZSL [21], and SAE [22]. Despite their
simplicity, these methods tend to produce the current state-of-the-art results on
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benchmark datasets [2]. A straightforward extension of the methods above is the
exploration of a non-linear compatibility function between visual and semantic
spaces. These approaches, exemplified by LATEM [23] and CMT [6], tend not
to be as competitive as their bi-linear counterpart, probably because the more
complex models need larger training sets to generalize more effectively. Seminal
ZSL and GZSL methods were based on models relying on learning intermediate
feature classifiers, which are combined to predict image classes (e.g., DAP and
IAP) [4] – these models tend to present relatively poor classification results.
Finally, hybrid models, such as SSE [3], CONSE [24], SYNC [25], rely on a mix-
ture model of seen classes to represent images and semantic embeddings. These
methods tend to be competitive for classifying the seen classes, but not for the
unseen classes.

The main disadvantage of the methods above is that the lack of visual train-
ing data for the unseen classes biases the mapping between visual and semantic
spaces towards the semantic features of seen classes, particularly for unseen test
images. This is an issue for GZSL because it has a negative effect in the classi-
fication accuracy of the unseen classes. Recent research address this issue using
GAN models that are trained to synthesize visual representations for the seen
and unseen classes, which can then be used to train a classifier for both the seen
and unseen classes [8,9]. However, the unconstrained generation of synthetic
visual representations for the unseen classes allows the production of synthetic
samples that may be too far from the actual distribution of visual represen-
tations, particularly for the unseen classes. In GAN literature, this problem is
known as unpaired training [10], where not all source samples (e.g., semantic
features) have corresponding target samples (e.g., visual features) for training.
This creates a highly unconstrained optimization problem that has been solved
by Zhu et al. [10] with a cycle consistency loss to push the representation from
the target domain back to the source domain, which helped constraining the
optimization problem. In this paper, we explore this idea for GZSL, which is a
novelty compared to previous GAN-based methods proposed in GZSL and ZSL.

3 Multi-modal Cycle-Consistent Generalized Zero Shot
Learning

In GZSL and ZSL [2], the dataset is denoted by D = {(x,a, y)i}|D|
i=1 with x ∈ X ⊆

R
K representing visual representation (e.g., image features from deep residual

nets [26]), a ∈ A ⊆ R
L denoting L-dimensional semantic feature (e.g., set of

binary attributes [4] or a dense word2vec representation [27]), y ∈ Y = {1, ..., C}
denoting the image class, and |.| representing set cardinality. The set Y is split
into seen and unseen subsets, where the seen subset is denoted by YS and the
unseen subset by YU , with Y = YS ∪ YU and YS ∩ YU = ∅. The dataset D
is also divided into mutually exclusive training and testing subsets: DTr and
DTe, respectively. Furthermore, the training and testing sets can also be divided
in terms of the seen and unseen classes, so this means that DTr

S denotes the
training samples of the seen classes, while DTr

U represents the training samples
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of the unseen classes (similarly for DTe
S and DTe

U for the testing set). During
training, samples in DTr

S contain the visual representation xi, semantic feature
ai and class label yi; while the samples in DTr

U comprise only the semantic feature
and class label. During ZSL testing, only the samples from DTe

U are used; while
in GZSL testing, all samples from DTe are used. Note that for ZSL and GZSL
problems, only the visual representation of the testing samples is used to predict
the class label.

Below, we first explain the f-CLSWGAN model [1], which is the baseline for
the implementation of the main contribution of this paper: the multi-modal cycle
consistency loss used in the training for the feature generator in GZSL models
based on GANs. The loss, feature generator, learning and testing procedures are
explained subsequently.

Fig. 2. Overview of the multi-modal cycle-consistent GZSL model. The visual features,
represented by x, are extracted from a state-of-art CNN model, and the semantic
features, represented by a, are available from the training set. The generator G(.)
synthesizes new visual features x̃ using the semantic feature and a randomly sampled
noise vector z ∼ N (0, I), and the discriminator D(.) tries to distinguish between real
and synthesized visual features. Our main contribution is focused on the integration of
a multi-modal cycle consistency loss (at the bottom) that minimizes the error between
the original semantic feature a and its reconstruction ã, produced by the regressor
R(.).

3.1 f-CLSWGAN

Our approach is an extension of the feature generation method proposed by
Xian et al. [1], which consists of a classification regularized generative adversarial
network (f-CLSWGAN). This network is composed of a generative model G :
A×Z → X (parameterized by θG) that produces a visual representation x̃ given
its semantic feature a and a noise vector z ∼ N (0, I) sampled from a multi-
dimensional centered Gaussian, and a discriminative model D : X × A → [0, 1]
(parameterized by θD) that tries to distinguish whether the input x and its
semantic representation a represent a true or generated visual representation
and respective semantic feature. Note that while the method developed by Yan
et al. [28] concerns the generation of realistic images, our proposed approach,
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similarly to [1,8,9], aims to generate visual representations, such as the features
from a deep residual network [26] - the strategy based on visual representation
has shown to produce more accurate GZSL classification results compared to
the use of realistic images. The training algorithm for estimating θG and θD

follows a minimax game, where G(.) generates synthetic visual representations
that are supposed to fool the discriminator, which in turn tries to distinguish the
real from the synthetic visual representations. We rely on one of the most stable
training methods for GANs, called Wasserstein GAN, which uses the following
loss function [29]:

θ∗
G, θ∗

D = arg min
θG

max
θD

�WGAN (θG, θD), (1)

with

�WGAN (θG, θD) = E(x,a)∼Px,a [D(x,a; θD)] − E(x̃,a)∼P
x,a
G

[D(x̃,a; θD)]

− λE(x̂,a)∼P
x,a
α

[(||∇x̂D(x̂,a; θD)||2 − 1)2],
(2)

where E[.] represents the expected value operator, Px,a
S is the joint distribution

of visual and semantic features from the seen classes (in practice, samples from
that distribution are the ones in DTr

S ), P
x,a
G represents the joint distribution

of semantic features and the visual features produced by the generative model
G(.), λ denotes the penalty coefficient, and P

x,a
α is the joint distribution of the

semantic features and the visual features produced by x̂ ∼ αx + (1 − α)x̃ with
α ∼ U(0, 1) (i.e., uniform distribution).

Finally, the f-CLSWGAN is trained with the following objective function:

θ∗
G, θ∗

C , θ∗
D = arg min

θG,θC

max
θD

�WGAN (θG, θD) + β�CLS(θC , θG), (3)

where �CLS(θC , θG) = −E(x̃,y)∼P
x,y
G

[log P (y|x̃, θC)], with

P (y|x̃, θC) =
exp((θC(y))T x̃)

∑

c∈Y exp((θC(c))T x̃)
(4)

representing the probability that the sample x̃ has been predicted with its true
label y, and β is a hyper-parameter that weights the contribution of the loss
function. This regularization with the classification loss was found by Xian et
al. [1] to enforce G(.) to generate discriminative visual representations. The
model obtained from the optimization in (3) is referred to as baseline in the
experiments.

3.2 Multi-modal Cycle Consistency Loss

The main issue present in previously proposed GZSL approaches based on gen-
erative models [1,8,9] is that the unconstrained nature of the generation process
(from semantic to visual features) may produce image representations that are
too far from the real distribution present in the training set, resulting in an
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ineffective multi-class classifier training, particularly for the unseen classes. The
approach we propose to alleviate this problem consists of constraining the syn-
thetic visual representations to generate back their original semantic features -
this regularization has been inspired by the cycle consistency loss [10]. Figure 2
shows an overview of our proposal. This approach, representing the main con-
tribution of this paper, is represented by the following loss:

�CY C(θR, θG) = Ea∼P
a
S ,z∼N (0,I)

[‖a − R(G(a, z; θG); θR)‖22
]

+ Ea∼P
a
U ,z∼N (0,I)

[‖a − R(G(a, z; θG); θR)‖22
]

,
(5)

where P
a
S and P

a
U denote the distributions of semantic features of the seen and

unseen classes, respectively, and R : X → A represents a regressor that estimates
the original semantic features from the visual representation generated by G(.).

3.3 Feature Generation

Using the losses proposed in Sects. 3.1 and 3.2, we can propose several feature
generators. First, we pre-train the regressor R(.) defined below in (6), by mini-
mizing a loss function computed only from the seen classes, as follows:

�REG(θR) = E(a,x)∼P
a,x
S

[‖a − R(x; θR)‖22
]

, (6)

where P
a,x
S represents the real joint distribution of image and semantic features

present in the seen classes. In practice, this regressor is defined by a multi-
layer perceptron, whose output activation function depends on the format of the
semantic vector.

Our first strategy to build a feature generator consists of pre-training a regres-
sor (using samples from seen classes) optimized by minimizing �REG in (6), which
produces θ∗

R and training the generator and discriminator of the WGAN using
the following optimization function:

θ∗
G, θ∗

D = arg min
θG

max
θD

�WGAN (θG, θD) + λ1�CY C(θ∗
R, θG), (7)

where �WGAN is defined in (2), �CY C is defined in (5), and λ1 weights the
importance of the second optimization term. The optimization in (7) can use
both the seen and unseen classes, or it can rely only the seen classes, in which case
the loss �CY C in (5) has to be modified so that its second term (that depends on
unseen classes) is left out of the optimization. The feature generator model in (7)
trained with seen and unseen classes is referred to as cycle-(U)WGAN, while
the feature generator trained with only seen classes is labeled cycle-WGAN.

The second strategy explored in this paper to build a feature generator
involves pre-training the regressor in (6) using samples from seen classes to
produce θ∗

R, and pre-training a softmax classifier for the seen classes using �CLS ,
defined in (3), which results in θ∗

C . Then we train the combined loss function:

θ∗
G, θ∗

D = arg min
θG

max
θD

�WGAN (θG, θD)+λ1�CY C(θ∗
R, θG)+λ2�CLS(θ∗

C , θG). (8)

The feature generator model in (8) trained with seen classes is referred to as
cycle-CLSWGAN.
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3.4 Learning and Testing

As shown in [1] the training of a classifier using a potentially unlimited number
of samples from the seen and unseen classes generated with x ∼ G(a, z; θ∗

G) pro-
duces more accurate classification results compared with multi-modal embedding
models [18–21]. Therefore, we train a final softmax classifier P (y|x, θC), defined
in (4), using the generated visual features by minimizing the negative log likeli-
hood loss �CLS(θC , θ∗

G), as defined in (3), where θ∗
G has been learned from one of

the feature learning strategies discussed in Sect. 3.3 - the training of the classifier
produces θ∗

C . The samples used for training the classifier are generated based on
the task to be solved. For instance, for ZSL, we only use generated visual repre-
sentations from the set of unseen classes; while for GZSL, we use the generated
samples from seen and unseen classes.

Finally, the testing is based on the prediction of a class for an input test
visual representation x, as follows:

y∗ = arg max
y∈ ˜Y

P (y|x, θ∗
C), (9)

where ˜Y = Y for GZSL or ˜Y = YU for ZSL.

4 Experiments

In this section, we first introduce the datasets and evaluation criteria used in
the experiments, then we discuss the experimental set-up and finally show the
results of our approach, comparing with the state-of-the-art results.

4.1 Datasets

We evaluate the proposed method on the following ZSL/GZSL benchmark
datasets, using the experimental setup of [2], namely: CUB-200-2011 [1,12],
FLO [13], SUN [2], and AWA [2,30] – where CUB, FLO and SUN are fine-
grained datasets, and AWA coarse. Table 1 shows some basic information about
these datasets in terms of number of seen and unseen classes and number of train-
ing and testing images. For CUB-200-2011 [1,12] and Oxford-Flowers [13], the
semantic feature has 1024 dimensions produced by the character-based CNN-
RNN [31] that encodes the textual description of an image containing fine-
grained visual descriptions (10 sentences per image). The sentences from the
unseen classes are not used for training the CNN-RNN and the per-class sen-
tence is obtained by averaging the CNN-RNN semantic features that belong to
the same class. For the FLO dataset [13], we used the same type of semantic
feature with 1024 dimensions [31] as was used for CUB (please see description
above). For the SUN dataset [2], the semantic features have 102 dimensions. Fol-
lowing the protocol from Xian et al. [2], visual features are represented by the
activations of the 2048-dim top-layer pooling units of ResNet-101 [26], obtained
from the entire image. For AWA [2,30], we use a semantic feature containing 85
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Table 1. Information about the datasets CUB [12], FLO [13], SUN [33], AWA [2], and
ImageNet [15]. Column (1) shows the number of seen classes, denoted by |YS |, split
into the number of training and validation classes (train + val), (2) presents the number
of unseen classes |YU |, (3) displays the number of samples available for training |DTr|
and (4) shows number of testing samples that belong to the unseen classes |DTe

U | and
number of testing samples that belong to the seen classes |DTe

S |.

Name |YS | (train + val) |YU | |DTr| |DTe
U | + |DTe

S |
CUB 150 (100 + 50) 50 7057 1764 + 2967

FLO 82 (62 + 20) 20 1640 1155 + 5394

SUN 745 (580 + 65) 72 14340 2580 + 1440

AWA 40 (27 + 13) 10 19832 4958 + 5685

ImageNet 1000 (1000 + 0) 100 1.2 × 106 5200 + 0

dimensions denoting per-class attributes. In addition, we also test our approach
on ImageNet [15], for a split containing 100 classes for testing [32].

The input images do not suffer any pre-processing (cropping, background
subtraction, etc.) and we do not use any type of data augmentation. This ResNet-
101 is pre-trained on ImageNet with 1K classes [15] and is not fine tuned. For
the synthetic visual representations, we generate 2048-dim CNN features using
one of the feature generation models, presented in Sect. 3.3.

For CUB, FLO, SUN, and AWA we use the zero-shot splits proposed by
Xian et al. [2], making sure that none of the training classes are present on
ImageNet [15]. Differently from these datasets (i.e., CUB, FLO, SUN, AWA),
we observed that there is a lack of standardized experimental setup for GZSL
on Imagenet. Recently, papers have used ImageNet for GZSL using several splits
(e.g., 2-hop, 3-hop), but we noticed that some of the supposedly unseen classes
can actually be seen during training (e.g., in split 2-hop, we note that the class
American mink is assumed to be unseen, while class Mink is seen, but these
two classes are arguably the same). Nevertheless, in order to demonstrate the
competitiveness of our proposed cycle-WGAN, we compare it to the baseline
using carefully selected 100 unseen classes [32] (i.e., no overlap with 1k training
seen classes) from ImageNet.

4.2 Evaluation Protocol

We follow the evaluation protocol proposed by Xian et al. [2], where results
are based on average per-class top-1 accuracy. For the ZSL evaluation, top-1
accuracy results are computed with respect to the set of unseen classes YU ,
where the average accuracy is independently computed for each class, which is
then averaged over all unseen classes. For the GZSL evaluation, we compute the
average per-class top-1 accuracy on seen classes YS , denoted by s, the average
per-class top-1 accuracy on unseen classes YU , denoted by u, and their harmonic
mean, i.e. H = 2 × (s × u)/(s + u).



30 R. Felix et al.

Table 2. Summary of cross-validated hyper-parameters in our experiments.

R(.) GAN: G(.) and D(.) Classifier

lrR(.) batch #ep lrG(.) lrD(.) batch #ep lr batch #ep

CUB 1e−4 64 100 1e−4 1e−3 64 926 1e−4 4096 80

FLO 1e−4 64 100 1e−4 1e−3 64 926 1e−4 2048 100

SUN 1e−4 64 100 1e−2 1e−2 64 926 1e−4 4096 298

AWA 1e−3 64 50 1e−4 1e−3 64 350 1e−4 2048 37

ImageNet 1e−4 2048 5 1e−4 1e−3 256 300 1e−3 2048 300

4.3 Implementation Details

In this section, we explain the implementation details of the generator G(.),
the discriminator D(.), the regressor R(.), and the weights used for the hyper-
parameters in the loss functions in (2), (3), (7) and (8) - all these terms have
been formally defined in Sect. 3 and depicted in Fig. 2. The generator consists
of a multi-layer perceptron (MLP) with a single hidden layer containing 4096
nodes, where this hidden layer is activated by LeakyReLU [34], and the output
layer, with 2048 nodes, has a ReLU activation [35]. The weights of G(.) are
initialized with a truncated normal initialization with mean 0 and standard
deviation 0.01 and the biases are initialized with 0. The discriminator D(.) is also
an MLP consisting of a single hidden layer with 4096 nodes, which is activated
by LeakyReLU, and the output layer has no activation. The initialization of D(.)
is the same as for G(.). The regressor R(.) is a linear transform from the visual
space X to the semantic space A. Following [1], we set λ = 10 in (2), β = 0.01
in (3) and λ1 = λ2 = 0.01 in (7) and (8). We ran an empirical evaluation with
the training set and noticed that when λ1 and λ2 share the same value, the
training becomes stable, but a more systematic evaluation to assess the relative
importance of these two hyper-parameters is still needed. Table 2 shows the
learning rates for each model (denoted by lr{R(.),G(.),D(.)}), batch sizes (batch)
and number of epochs (#ep) used for each dataset and model – the values for
G(.) and D(.) have been estimated to reproduce the published results of our
implementation of f-CLSWGAN (explained below), and the values for R(.) have
been estimated by cross validation using the training and validation sets.

Regarding the number of visual representations generated to train the classi-
fier, we performed a few experiments and reached similar conclusions, compared
to [1]. For all experiments in the paper, we generated 300 visual representations
per class [1]. We reached this number after a study that shows that for a small
number of representations (below 100), the classification results were not com-
petitive; for values superior to 200 or more, results became competitive, but
unstable; and above 300, results were competitive and stable.

Since our approach is based on the f-CLSWGAN [1], we re-implemented
this methodology. In the experiments, the results from our implementation of
f-CLSWGAN using a softmax classifier is labeled as baseline. The results that
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Table 3. Comparison between the reported results of f-CLSWGAN [1] and our
implementation of it, labeled baseline, where we show the top-1 accuracy on the
unseen test YU (GZSL), the top-1 accuracy for seen test YS (GZSL), the harmonic
mean H (GZSL), and the top-1 accuracy for ZSL (T1Z).

Classifier CUB FLO SUN AWA

YU YS H T1Z YU YS H T1Z YU YS H T1Z YU YS H T1Z

f-CLSWGAN [1] 43.7 57.7 49.7 57.3 59.0 73.8 65.6 67.2 42.6 36.6 39.4 60.8 57.9 61.4 59.6 68.2

baseline 43.8 60.6 50.8 57.7 58.8 70.0 63.9 66.8 47.9 32.4 38.7 58.5 56.0 62.8 59.2 64.1

we obtained from our baseline are very similar to the reported results in [1], as
shown in Table 3. For ImageNet, note that we use a split [32] that is different
from previous ones used in the literature, as explained above in Sect. 4.1, so
it is not possible to have a direct comparison between f-CLSWGAN [1] and
our baseline. Nevertheless, we show in Table 6 that the results we obtain for
the split [32] are in fact similar to the reported results for f-CLSWGAN [1] for
similar ImageNet splits. We developed our code1 and perform all experiments
using Tensorflow [36].

5 Results

In this section we show the GZSL and ZSL results using our proposed mod-
els cycle-WGAN, cycle-(U)WGAN and cycle-CLSWGAN, the baseline
model f-CLSWGAN, denoted by baseline, and several other baseline meth-
ods previously used in the field for benchmarking [2]. Table 4 shows the GZSL
results and Table 5 shows the ZSL results obtained from our proposed meth-
ods, and several baseline approaches on CUB, FLO, SUN and AWA datasets.
The results in Table 6 shows that the top-1 accuracy on ImageNet for cycle-
WGAN and baseline [1].

6 Discussion

Regarding the GZSL results in Table 4, we notice that there is a clear trend
of all of our proposed feature generation methods (cycle-WGAN, cycle-
(U)WGAN), and cycle-CLSWGAN) to perform better than baseline on the
unseen test set. In particular, it seems advantageous to use the synthetic samples
from unseen classes to train the cycle-(U)WGAN model since it achieves the
best top-1 accuracy results in 3 out of the 4 datasets, with improvements from
0.7% to more than 4%. In general, the top-1 accuracy improvement achieved by
our approaches in the seen test set is less remarkable, which is expected given
that we prioritize to improve the results for the unseen classes. Nevertheless,
our approaches achieved improvements from 0.4% to more than 2.5% for the
seen classes. Finally, the harmonic mean results also show that our approaches

1 Code is available at: https://github.com/rfelixmg/frwgan-eccv18.

https://github.com/rfelixmg/frwgan-eccv18
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Table 4. GZSL results using per-class average top-1 accuracy on the test sets of unseen
classes YU , seen classes YS , and the harmonic mean result H – all results shown in
percentage. Results from previously proposed methods in the field extracted from [2].

Classifier CUB FLO SUN AWA

YU YS H YU YS H YU YS H YU YS H

DAP [30] 4.2 25.1 7.2 − − − 1.7 67.9 3.3 0.0 88.7 0.0

IAP [30] 1.0 37.8 1.8 − − − 0.2 72.8 0.4 2.1 78.2 4.1

DEVISE [19] 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9 13.4 68.7 22.4

SJE [20] 23.5 59.2 33.6 13.9 47.6 21.5 14.7 30.5 19.8 11.3 74.6 19.6

LATEM [23] 15.2 57.3 24.0 6.6 47.6 11.5 14.7 28.8 19.5 7.3 71.7 13.3

ESZSL [21] 12.6 63.8 21.0 11.4 56.8 19.0 11.0 27.9 15.8 6.6 75.6 12.1

ALE [18] 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3 16.8 76.1 27.5

SAE [22] 8.8 18.0 11.8 − − − 7.8 54.0 13.6 1.8 77.1 3.5

baseline [1] 43.8 60.6 50.8 58.8 70.0 63.9 47.9 32.4 38.7 56.0 62.8 59.2

cycle-WGAN 46.0 60.3 52.2 59.1 71.1 64.5 48.3 33.1 39.2 56.4 63.5 59.7

cycle-CLSWGAN 45.7 61.0 52.3 59.2 72.5 65.1 49.4 33.6 40.0 56.9 64.0 60.2

cycle-(U)WGAN 47.9 59.3 53.0 61.6 69.2 65.2 47.2 33.8 39.4 59.6 63.4 59.8

Table 5. ZSL results using per-class average top-1 accuracy on the test set of unseen
classes YU – all results shown in percentage. Results from previously proposed methods
in the field extracted from [2].

Classifier ZSL

CUB FLO SUN AWA

DEVISE [19] 52.0 45.9 56.5 54.2

SJE [20] 53.9 53.4 53.7 65.6

LATEM [23] 49.3 40.4 55.3 55.1

ESZSL [21] 53.9 51.0 54.5 58.2

ALE [18] 54.9 48.5 58.1 59.9

baseline [1] 57.7 66.8 58.5 64.1

cycle-WGAN 57.8 68.6 59.7 65.6

cycle-CLSWGAN 58.4 70.1 60.0 66.3

cycle-(U)WGAN 58.6 70.3 59.9 66.8

improve over the baseline in a range of between 1% and 2.2%. Notice that this
results are remarkable considering the outstanding improvements achieved by
f-CLSWGAN [1], represented here by baseline. In fact, our proposed methods
produce the current state of the art GZSL results for these four datasets.

Analyzing the ZSL results in Table 5, we again notice that, similarly to the
GZSL case, there is a clear advantage in using the synthetic samples from unseen
classes to train the cycle-(U)WGAN model. For instance, top-1 accuracy
results show that we can improve over the baseline from 0.9% to 3.5%. The
results in this table show that our proposed approaches currently hold the best
ZSL results for these datasets.
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Table 6. ZSL and GZSL ImageNet results using per-class average top-1 accuracy on
the test sets of unseen classes YU – all results shown in percentage.

Classifier ZSL GZSL

baseline [1] 7.5 0.7

cycle-WGAN 8.7 1.5

It is interesting to see that, compared to GZSL, the ZSL results from pre-
vious method in the literature are far more competitive, achieving results that
are relatively close to ours and the baseline. This performance gap between
ZSL and GZSL, shown by previous methods, enforces the argument in favor of
using generative models to synthesize images from seen and unseen classes to
train GZSL models [1,8,9]. As argued throughout this paper, the performance
produced by generative models can be improved further with methods that help
the training of GANs, such as the cycle consistency loss [10].

In fact, the experiments clearly demonstrate the advantage of using our pro-
posed multi-modal cycle consistency loss in training GANs for GZSL and ZSL.
In particular, it is interesting to see that the use of synthetic examples of unseen
classes generated by cycle-(U)WGAN to train the GZSL classifier provides
remarkable improvements over the baseline, represented by f-CLSWGAN [1].
The only exception is with the SUN dataset, where the best result is achieved
by cycle-CLSWGAN. We believe that cycle-(U)WGAN is not the top per-
former on SUN due to the number of classes and the proportion of seen/unseen
classes in this dataset. For CUB, FLO and AWA we notice that there is roughly
a (80%, 20%) ratio between seen and unseen classes. In contrast, SUN has a
(91%, 9%) ratio between seen and unseen classes. We also notice a sharp increase
in the number of classes from 50 to 817 – GAN models tend not to work well with
such a large number of classes. Given the wide variety of GZSL datasets available
in the field, with different number of classes and seen/unseen proportions, we
believe that there is still lots of room for improvement for GZSL models.

Regarding the large-scale study on ImageNet, the results in Table 6 show that
the top-1 accuracy classification results for Baseline and cycle-WGAN are
quite low (similarly to the results observed in [1] for several ImageNet splits), but
our proposed approach still shows more accurate ZSL and GZSL classification.

An important question about out approach is whether the regularisation
succeeds in mapping the generated visual representations back to the semantic
space. In order to answer this question, we show in Fig. 3 the evolution of the
reconstruction loss �REG in (6) as a function of the number of epochs. In general,
the reconstruction loss decreases steadily over training, showing that our model
succeeds at such mapping. Another relevant question is if our proposed meth-
ods take more or less epochs to converge, compared to the Baseline – Fig. 4
shows the classification accuracy of the generated training samples from the
seen classes for the proposed models cycle-WGAN and cycle-CLSWGAN,
and also for the baseline (note that cycle-(U)WGAN is a fine-tuned model
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Fig. 3. Evolution of �REG in terms of the number of epochs for CUB, FLO, SUN and
AWA.

Fig. 4. Convergence of the top-1 accuracy in terms of the number of epochs for the
generated training samples from the seen classes for CUB, FLO, SUN and AWA.

from the cycle-WGAN, so their loss functions are in fact identical for the
seen classes shown in the graph). For three out of four datasets, our proposed
cycle-WGAN converges faster. However, when the �CLS in included in (7) to
form the loss in (8) (transforming cycle-WGAN into cycle-CLSWGAN),
then the convergence of cycle-CLSWGAN is comparable to that of the base-
line. Hence, cycle-WGAN tends to converge faster than the baseline and
cycle-CLSWGAN.

7 Conclusions and Future Work

In this paper, we propose a new method to regularize the training of GANs in
GZSL models. The main argument explored in the paper is that the use of GANs
to generate seen and unseen synthetic examples for training GZSL models has
shown clear advantages over previous approaches. However, the unconstrained
nature of the generation of samples from unseen classes can produce models that
may not work robustly for some unseen classes. Therefore, by constraining the
generation of samples from unseen classes, we target to improve the GZSL classi-
fication accuracy. Our proposed constraint is motivated by the cycle consistency
loss [10], where we enforce that the generated visual representations maps back
to their original semantic feature – this represents the multi-modal cycle consis-
tency loss. Experiments show that the use of such loss is clearly advantageous,
providing improvements over the current state of the art f-CLSWGAN [1] both
in terms of GZSL and ZSL.

As noticed in Sect. 6, GAN-based GZSL approaches offer indisputable advan-
tage over previously proposed methods. However, the reliance on GANs to gen-
erate samples from unseen classes is challenging because GANs are notoriously
difficult to train, particularly in unconstrained and large scale problems. There-
fore, future work in this field should be focused on targeting these problems.
In this paper, we provide a solution that addresses the unconstrained problem,
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but it is clear that other regularization approaches could also be used. In addi-
tion, the use of GANs in large scale problems (regarding the number of classes)
should also be more intensively studied, particularly when dealing with real-life
datasets and scenarios. Therefore, we will focus our future research activities in
solving these two issues in GZSL.

References

1. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-
shot learning. In: 31st IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR 2018), Salt Lake City, UT, USA (2018)

2. Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning - the Good, the Bad and the
Ugly. In: 30th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2017), Honolulu, HI, USA, pp. 3077–3086. IEEE Computer Society (2017)

3. Zhang, Z., Saligrama, V.: Zero-shot learning via semantic similarity embedding.
In: Proceedings of the IEEE International Conference on Computer Vision,pp.
4166–4174 (2015)

4. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-
shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3),
453–465 (2014)

5. Qiao, R., Liu, L., Shen, C., van den Hengel, A.: Less is more: zero-shot learning
from online textual documents with noise suppression. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2249–2257 (2016)

6. Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-
modal transfer. In: Advances in Neural Information Processing Systems, pp. 935–
943 (2013)

7. Yu, F.X., Cao, L., Feris, R.S., Smith, J.R., Chang, S.F.: Designing category-level
attributes for discriminative visual recognition. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 771–778 (2013)

8. Long, Y., Liu, L., Shen, F., Shao, L., Li, X.: Zero-shot learning using synthesised
unseen visual data with diffusion regularisation. IEEE Trans. Pattern Anal. Mach.
Intell. (2017)

9. Bucher, M., Herbin, S., Jurie, F.: Generating visual representations for zero-shot
classification. In: International Conference on Computer Vision (ICCV) Work-
shops: TASK-CV: Transferring and Adapting Source Knowledge in Computer
Vision (2017)

10. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: 2017 IEEE International Confer-
ence on Computer Vision (ICCV) (2017)

11. Tran, T., Pham, T., Carneiro, G., Palmer, L., Reid, I.: A Bayesian data aug-
mentation approach for learning deep models. In: Advances in Neural Information
Processing Systems, pp. 2794–2803

12. Welinder, P., et al.: Caltech-UCSD birds 200 (2010)
13. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number

of classes. In: Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, ICVGIP 2008, pp. 722–729. IEEE (2008)

14. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their
attributes. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2009, pp. 1778–1785. IEEE (2009)



36 R. Felix et al.

15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR09 (2009)

16. Chen, L., Zhang, H., Xiao, J., Liu, W., Chang, S.F.: Zero-shot visual recognition
using semantics-preserving adversarial embedding networks. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2018

17. Annadani, Y., Biswas, S.: Preserving semantic relations for zero-shot learning. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018

18. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image
classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2016)

19. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al.:
DeVISE: a deep visual-semantic embedding model. In: Advances in Neural Infor-
mation Processing Systems, pp. 2121–2129 (2013)

20. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embed-
dings for fine-grained image classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2927–2936 (2015)

21. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot
learning. In: International Conference on Machine Learning, pp. 2152–2161 (2015)

22. Elyor Kodirov, T.X., Gong, S.: Semantic autoencoder for zero-shot learning. In:
IEEE CVPR 2017 (2017)

23. Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.: Latent embed-
dings for zero-shot classification. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 69–77 (2016)

24. Norouzi, M., et al.: Zero-shot learning by convex combination of semantic embed-
dings (2014)

25. Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot
learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5327–5336 (2016)

26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

28. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2Image: conditional image generation
from visual attributes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016 Part IV. LNCS, vol. 9908, pp. 776–791. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46493-0 47

29. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

30. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object
classes by between-class attribute transfer. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2009, pp. 951–958, June 2009

31. Reed, S., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-
grained visual descriptions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 49–58 (2016)

32. Wang, P., Liu, L., Shen, C., Huang, Z., van den Hengel, A., Shen, H.T.: Multi-
attention network for one shot learning. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, pp. 22–25 (2017)

https://doi.org/10.1007/978-3-319-46493-0_47
https://doi.org/10.1007/978-3-319-46493-0_47
http://arxiv.org/abs/1701.07875


Multi-modal Cycle-Consistent Generalized Zero-Shot Learning 37

33. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-
scale scene recognition from abbey to zoo. In: 2010 IEEE conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3485–3492, IEEE (2010)

34. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. Proc. ICML. 30, 3 (2013)

35. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

36. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16,
265–283 (2016)


	Multi-modal Cycle-Consistent Generalized Zero-Shot Learning
	1 Introduction
	2 Literature Review
	3 Multi-modal Cycle-Consistent Generalized Zero Shot Learning
	3.1 f-CLSWGAN
	3.2 Multi-modal Cycle Consistency Loss
	3.3 Feature Generation
	3.4 Learning and Testing

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Protocol
	4.3 Implementation Details

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References




