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Abstract. Detecting actions in videos is a challenging task as video
is an information intensive media with complex variations. Existing
approaches predominantly generate action proposals for each individ-
ual frame or fixed-length clip independently, while overlooking temporal
context across them. Such temporal contextual relations are vital for
action detection as an action is by nature a sequence of movements.
This motivates us to leverage the localized action proposals in previous
frames when determining action regions in the current one. Specifically,
we present a novel deep architecture called Recurrent Tubelet Proposal
and Recognition (RTPR) networks to incorporate temporal context for
action detection. The proposed RTPR consists of two correlated net-
works, i.e., Recurrent Tubelet Proposal (RTP) networks and Recurrent
Tubelet Recognition (RTR) networks. The RTP initializes action propos-
als of the start frame through a Region Proposal Network and then esti-
mates the movements of proposals in next frame in a recurrent manner.
The action proposals of different frames are linked to form the tubelet
proposals. The RTR capitalizes on a multi-channel architecture, where in
each channel, a tubelet proposal is fed into a CNN plus LSTM to recur-
rently recognize action in the tubelet. We conduct extensive experiments
on four benchmark datasets and demonstrate superior results over state-
of-the-art methods. More remarkably, we obtain mAP of 98.6%, 81.3%,
77.9% and 22.3% with gains of 2.9%, 4.3%, 0.7% and 3.9% over the best
competitors on UCF-Sports, J-HMDB, UCF-101 and AVA, respectively.
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1 Introduction

Action detection with accurate spatio-temporal location in videos is one of the
most challenging tasks in video understanding. Compared to action recognition,
this task is more difficult due to complex variations and large spatio-temporal
search space. The solutions to this problem have evolved from handcrafted
feature-based methods [18,34,40] to deep learning-based approaches [7]. Promis-
ing progresses have been made recently [22,28,36,39] with the prevalence of deep
Convolutional Neural Networks (CNN) [10,16,30].

Fig. 1. Action detection comparisons on traditional method (first row) and ours (sec-
ond row). Traditional method extracts per-frame proposals independently, which may
result in some failures. In the example of horse riding (left), it fails when the person
is partially blocked by the fence. In the example of long jump (right), an unwanted
person (red bounding box) is also detected. In contrast, our approach can solve these
problems by utilizing the temporal context across frames. (Color figure online)

Inspired by the recent advances of CNN based image object detection meth-
ods [4,6,26], previous action detection approaches first detect either frame-
level [22,39] or clip-level proposals [11] independently. Then these fragmental
proposals are associated to generate a complete action proposal by linking or
tracking based approaches. However, such methods rarely exploit the temporal
relations across frames or clips, which may result in unstable proposals when the
single detection is unreliable. Figure 1 illustrates two examples of such limita-
tions. In the example of horse riding, detection fails in the second frame where
the person is partially blocked by the fence. In the other example of long jump,
an unwanted person (red bounding box) is also detected, bringing in noises for
future proposal recognition. Such noise is long-standing and inevitable due to
independent detection on each frame or clip. One possible way to solve the above
problems is to model the action by leveraging temporally contextual relations.
For example, when the person is blocked in current frame, we could leverage the
proposals in previous frames to infer the current ones. Motivated by this idea, we
consider exploiting the action proposals in previous frames plus the correspond-
ing contextual information when determining the action regions in current one,
instead of detecting proposals from each frame or clip independently. Through
involving the temporal context, the inevitable failures in per frame or clip pro-
posal generation scheme could be mostly alleviated.
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In this paper we present Recurrent Tubelet Proposal and Recognition
(RTPR) networks—a novel architecture for action detection, as shown in Fig. 2.
Our proposed RTPR networks consist of two components: Recurrent Tubelet
Proposal (RTP) networks and Recurrent Tubelet Recognition (RTR) networks.
The RTP produces action proposals in a recurrent manner. Specifically, it ini-
tializes action proposals of the start frame through a Region Proposal Network
(RPN) [26] on the feature map. Then the movement of each proposal in next
frame is estimated from three inputs: feature maps of both current and next
frames, and the proposal in current frame. Simultaneously, a sibling proposal
classifier is utilized to infer the actionness of the proposal. To form the tubelet
proposals, action proposals in two consecutive frames are linked by taking both
their actionness and overlap ratio into account, followed by the temporal trim-
ming on it. The RTR capitalizes on a multi-channel architecture for tubelet pro-
posal recognition. For each proposal, we extract three different semantic-level
features, i.e., the features on proposal-cropped image, the features with RoI
pooling on proposal, and the features on whole frame. These features implicitly
encode the spatial context and scene information, which enhance the recogni-
tion capability on specific categories. After that, each of them is fed into a Long
Short-Term Memory (LSTM) network to model the temporal dynamics. With
both RTP and RTR, our approach can generate better tubelets and boost recog-
nition, thus leading to promising detection results as shown in Fig. 1.

The main contribution of this work is the proposal of RTPR networks for
addressing the issue of action detection. The solution also leads to the elegant
views of what kind of temporal context should be exploited and how to model
the temporal relations in a deep learning framework particularly for the task of
action detection, which are problems not yet fully understood in the literature.

2 Related Work

Object detection in images is a fundamental computer vision task and has
been studied in a plethora of publications. Most object detection techniques are
developed based on region mechanism, such as R-CNN [5], Fast R-CNN [4], and
Faster R-CNN [26]. These methods first generate a set of object proposals and
then do per-proposal classification and bounding box regression. To overcome the
speed limit of such two-stage frameworks, YOLO [25] and SSD [21] are proposed
to directly classify and regress the anchor boxes in only one step. In our method,
we utilize RPN [26] introduced by Faster R-CNN to initialize action proposals
in the start frame. It outputs a set of action proposals, each with an actionness
score. Besides, RoI pooling [4] is exploited to extract feature for each proposal.

Video action recognition has been extensively studied recently due
to its importance in many application areas, such as video surveillance and
robotics. Many progresses have been achieved by leveraging the recent advances
of CNN, including discriminative feature learning (e.g., Fusion-CNN [15],
C3D [35], FV-VAE [23], P3D [24]) and effective architecture design (e.g., Two-
Stream CNN [29], SR-CNN [37]). In particular, LSTM is employed in several
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works [1,19,20,33,41] to model the long-term temporal clues in videos. In our
work, we also exploit LSTM model in RTR for tubelet proposal recognition. In
addition, both [37] and our RTR capitalize on a multi-channel architecture to
capture different semantic-level information. However, ours uniquely designs a
human only channel, which is potentially more effective than [37] on recognizing
human-driven actions.

Video action detection aims to spatio-temporally localize a recognized
action within a video. Most recent approaches rely on object detectors which are
trained to discriminate human action classes at frame level, including R-CNN
based methods [7,38], Faster R-CNN based methods [22,28], and SSD based
methods [31]. Typically, 2D action regions are detected in each frame, upon
which 3D action volumes are generated [2]. For example, TrackLocalization [38]
tracks current proposals to obtain anchor ones in next frame by leveraging optical
flow, and selects the best regions in the neighborhood of anchors using a sliding
window. However, distinguishing actions from single frame could be ambiguous.
To address this issue, ACT [14] takes as input a sequence of frames and outputs
tube proposals instead of operating on single frames. T-CNN [11] further extends
2D Region-of-Interest pooling to 3D Tube-of-Interest (ToI) pooling with 3D
convolution. It directly generates tube proposals on each fixed-length clip.

The aforementioned action detection methods treat each frame or clip inde-
pendently, while ignoring the temporally contextual relations. Instead, our app-
roach generates the tubelet proposals in a recurrent manner, which fully leverages
the temporal information in videos. The most closely related work is CPLA [39],
which solely relies on the detected proposals of current frame to estimate the
proposal movements in the next frame. Ours is different from [39] in the way
that we effectively model the temporal correlations of proposals between two
consecutive frames to predict movements. Moreover, Faster R-CNN is required
for each frame in [39], while our approach only runs RPN at initialization. In
addition, our work also contributes by reliably capturing different semantic-level
information and long-term temporal dynamics for recognition.

3 Recurrent Tubelet Proposal and Recognition Networks

In this section we present our proposed Recurrent Tubelet Proposal and Recogni-
tion (RTPR) networks for video action detection. An overview of our framework
is shown in Fig. 2. It consists of two main components: Recurrent Tubelet Pro-
posal (RTP) networks and Recurrent Tubelet Recognition (RTR) networks. In
RTP, we first utilize CNNs for feature extraction. The RPN is applied on the
feature map of the start frame for proposal initialization. Our RTP then gener-
ates proposals of subsequent frames in a recurrent manner. In particular, given
action proposals in current frame, RTP estimates the movements of them to
produce proposals in the next frame. Furthermore, action proposals from con-
secutive frames are linked according to their actionness and overlap ratio to
form video-level tubelet proposals, followed by temporal trimming on tubelets.
The obtained tubelets are finally fed into RTR for recognition. RTR employs a
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Fig. 2. The overview of RTPR networks. It consists of two components: RTP networks
and RTR networks. CNNs are first utilized in RTP for feature extraction. Then RPN
is applied on the start frame for proposal initialization. RTP estimates the movements
of proposals in current frame to produce proposals in next frame. After proposal link-
ing and temporal trimming, obtained tubelet proposals are fed into RTR. The RTR
employs a multi-channel architecture to capture different semantic-level information,
where an individual LSTM is utilized to model temporal dynamics on each channel.

multi-channel architecture to capture different semantic-level information, where
an individual LSTM is utilized to model temporal dynamics on each channel.

3.1 Recurrent Tubelet Proposal Networks

The RTP aims to generate action proposals for all frames. Instead of producing
proposals in each frame independently, we exploit the localized proposals in
previous frame when determining the action regions in current one. Such scheme
could help avoid the failures caused by unreliable single detection. Note that RTP
only indicates the locations where an action exists irrespective of the category.

Architecture. The RTP begins with the initial anchor action proposals
obtained by RPN on the start frame, and then produces the action propos-
als of subsequent frames in a recurrent manner. Given the video frame It and
its proposal set Bt = {bit|i = 1, ..., N} at time t, RTP aims to generate the
proposal set Bt+1 for the next frame It+1. Let bit = (xi

t, y
i
t, w

i
t, h

i
t) denote the

i-th proposal at time t, where x, y, w and h represent two coordinates of the
proposal center, width and height of it. As shown in Fig. 3(a), two consecutive
frames, It and It+1, are first fed into a shared CNN to extract features. To
predict the i-th proposal bit+1 at time t+1, we need to estimate the movement
mi

t+1 = (Δxi
t+1,Δyi

t+1,Δwi
t+1,Δhi

t+1) between bit+1 and bit, which is defined as

Δxi
t+1 = (xi

t+1 − xi
t)/wi

t, Δyi
t+1 = (yi

t+1 − yi
t)/hi

t,

Δwi
t+1 = log(wi

t+1/wi
t), Δhi

t+1 = log(hi
t+1/hi

t).
(1)
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Fig. 3. (a) RTP networks. Two consecutive frames It and It+1 are first fed into CNNs.
Given the proposal bt in current frame It, we perform RoI pooling on both It and It+1

w.r.t. the same proposal bt. The two pooled features are fed into a CBP layer to generate
the correlation features, which are used to estimate the movement of proposal bt and
the actionness score. (b) RTR networks. We capitalize on a multi-channel network for
tubelet recognition. Three different semantic clues, i.e., human only (H), human-object
interaction (I), and scene (S), are exploited, where the features on proposal-cropped
image, the features with RoI pooling on the proposal, and the features on whole frame
are extracted. Each of them is fed into an LSTM to model the temporal dynamics.

Instead, to estimate this movement, visual features of proposals bit+1 and bit are
required. It is a chicken-and-egg problem, as we do not have the exact location of
bit+1 in advance. Observing the fact that the receptive fields of deep convolutional
layers are generally large enough to capture possible movements, we then solve
the problem by simply performing RoI pooling at the same proposal location as
bit, as shown in Fig. 3(a).

Formally, suppose F i
t and F i

t+1 ∈ R
W×H×D denote the RoI pooled features

of It and It+1 w.r.t. the same location of proposal bit, where W , H and D are the
width, height and channel numbers. The objective is to estimate the proposal
movement mi

t+1 based on F i
t and F i

t+1. The movement between two consecutive
frames could be characterized by the comparison between feature maps of two
frames on the same spatial region. Specifically, we adopt Compact Bilinear Pool-
ing (CBP) [3] to capture the pairwise correlations and model spatial interactions
between frames, which can be formulated with the kernelized comparison as

CBP (F i
t , F

i
t+1) =

S∑

j=1

S∑

k=1

〈
φ(F i

t,j), φ(F i
t+1,k)

〉
, (2)

where S = W ×H is the size of the feature map, φ(·) is a low dimensional projec-
tion function, and 〈·〉 is the second order polynomial kernel. Finally, the outputs
of CBP are fed into two sibling fully connected layers. One is the regression layer
that predicts the movement mi

t+1, and the other is the classification layer that
predicts the actionness confidence score of bit+1.

Training Objective. When training RTP, the network inputs include two con-
secutive frames It and It+1, the proposal set Bt of It obtained by RPN, and the
ground-truth bounding boxes B̂t+1. Assuming that the action movement across
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two consecutive frames is not big, those correctly extracted proposals in Bt will
have large Intersection-over-Union (IoU) ratios with one ground-truth proposal
in B̂t+1. Consequently, we assign a positive label to the proposals bit if: (a) bit
has an IoU overlap higher than 0.7 with any ground-truth box in B̂t+1, or (b) bit
is with the highest IoU overlap with a ground-truth box in B̂t+1. Otherwise, we
assign a negative label to bit if its IoU ratio is lower than 0.3 with all ground-truth
boxes in B̂t+1. The network is jointly optimized with classification loss Lcls and
regression loss Lreg. For classification, the standard log loss Lcls(bit) is utilized.
It outputs an actionness score in range [0, 1] for the output proposal. For regres-
sion, the smooth L1 loss [4] Lreg(mi

t+1) is exploited. It forces the proposal bit
to move towards a nearby ground-truth proposal in the next frame. The overall
objective L is formulated as

L =
1
N

∑

i

Lcls(bit) + λ
1

Nreg

∑

i

yi
tLreg(mi

t+1), (3)

where N is the number of proposals in Bt, Nreg is the number of positive pro-
posals in Bt, λ is the parameter for balancing classification and regression, and
yi
t is an indicator that yi

t = 1 if bit is assigned a positive label, otherwise 0.

Prediction. Given a video, we initialize action proposals of its start frame by
utilizing RPN on the feature map. Among all the proposals, we keep the top
N1 proposals B1 = {bi1}N1

i=1 according to their confidence scores. Then, our RTP
generates the proposals frame by frame. At time t+1, we predict the movements
of Nt proposals of frame It, and also obtain Nt regions on frame It+1. Similar
in spirit, we only keep Nt+1 positive ones (actionness score > 0.7), which are
further exploited in the next iteration. The process is repeated until the proposal
number Nt′ at time t′ is smaller than Nmin, which indicates that there are not
enough action regions to track. In this case, we utilize RPN to re-initialize anchor
proposals for t′-th frame and restart RTP on the next frames till the end, making
RTP robust to bad initialization. Finally, a set of proposals can be obtained for
each frame, which will be utilized in the tubelet generation.

3.2 Action Tubelet Generation

Given frame-level proposals with associated actionness scores, linking them in
spatial and temporal dimensions is essential for generating action tubelets. It has
two steps: (i) linking action proposals based on their actionness scores and spa-
tial overlaps in between to form tubelet proposals, which span the entire video
duration, (ii) temporally trimming tubelets to identify their temporal bound-
aries.

Tubelet Linking. We formulate the linking problem as a path finding problem,
which is to produce K connected paths across the whole video and K is the
minimum number of action proposals in one frame. The linking score between
two temporally consecutive proposals bit and bjt+1 is given by

S(bit, b
j
t+1) = {ai

t + aj
t+1 + γ iou(bit, b

j
t+1)} · ψ(iou), (4)
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where ai
t and aj

t+1 are the actionness scores of bit and bjt+1, iou(·) is the IoU over-
lap ratio of two proposals, and γ is a scalar parameter for balancing the action-
ness scores and overlaps. We define ψ(iou) as the following threshold function:

ψ(iou) =

{
1, if iou(bit, b

j
t+1) > τ,

0, otherwise.
(5)

According to Eq. (4), two proposals bit and bjt+1 will be linked if their spatial
regions significantly overlap and their actionness scores are both high.

To find the optimal path across the video, we maximize the linking scores
over the duration T of the video, which is calculated by

P ∗ = arg max
P

1
T − 1

T−1∑

t=1

S(bt, bt+1). (6)

We solve it with Viterbi algorithm, whose complexity is O(T×N2), where N is
the average number of proposals per frame. Once an optimal path is found, we
remove all the proposals in it and seek the next one from the remaining proposals.

Temporal Trimming. The above tubelet linking produces tubelets spanning
the whole video. In realistic videos, human actions typically occupy only a frac-
tion. In order to determine the temporal extent of an action instance within the
tubelet, we employ a similar temporal trimming approach as in [28], which solves
an energy maximization problem via dynamic programming. The idea behind
is to restrict consecutive proposals to have smooth actionness scores. Note that
temporal trimming is only performed on untrimmed datasets in this work.

3.3 Recurrent Tubelet Recognition Networks

Recent detection works always exploit RoI pooling features for action classifi-
cation directly, which have two main drawbacks. First, the long-term temporal
information is not incorporated for action recognition. Second, some action-
related semantic clues, such as scene context, are neglected by only utilizing RoI
features. To address the issues, we propose Recurrent Tubelet Recognition (RTR)
networks with multiple semantic channels to recognize the generated tubelets.

RTR capitalizes on a three-channel architecture for recognition, as illustrated
in Fig. 3(b). It leverages three different semantic-level information, i.e., human
only, human-object interaction, and scene. Human only (H) channel takes
proposal-cropped images as input. It focuses on human region and is expected
to be capable of classifying “body motion only” actions, such as “walking” and
“jumping.” Human-object interaction (I) channel exploits the RoI pooling
layer to extract a fixed-length feature vector for each proposal. Since the recep-
tive fields of deep convolutional layers are generally large, this channel is able
to incorporate surrounding contexts. Such information can be utilized to model
the relationships between human and nearby objects, which potentially improves
the performance for actions involving objects such as “shooting gun.” Scene (S)
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channel handles the whole frame and is devised to capture the global context. It
provides additional scene information and facilitates the recognition for particu-
lar action categories. For example, if a pool is observed, the probability that the
action “diving” exists is high. For each channel, an individual LSTM is used to
model the temporal dynamics and produces a score vector. We apply late fusion
on the scores from different channels to obtain the final action score of a tubelet.

4 Implementations

Details of RTPR networks. For RTP networks, we adopt the pre-trained
VGG-16 [30] as our basic CNN model, and build RTP at the top of its last
convolutional layer. Following [22], we exploit a two-stream pipeline for utilizing
multiple modalities, where the RGB frame and the stacked optical flow “image”
are considered. To fuse their proposal results, we simply merge the proposal
bounding boxes with non-maximum suppression (NMS). RPN [26] is exploited
for proposal initialization, which is fine-tuned on the target datasets. During
training, we randomly sample a set of two consecutive frames. For each pair,
we use RPN to extract region proposals of the previous frame, and keep the top
N = 300 proposals after NMS operation. These proposals plus the pair of frames
are exploited for training. The output dimension dc of CBP layer is 4, 096. λ in
Eq. (3) is set to 1. In testing, we initialize the proposals of the first frame with
top N1 = 300 ones generated from RPN. Nmin is set to 150. When linking the
frame-level proposals to form tubelets, γ and τ are set to 1 and 0.2, respectively.
All the above parameters are determined via cross validation.

For RTR networks, we also exploit the pre-trained VGG-16 [30] for feature
extraction. Similar to RTP, the two-stream pipeline is employed and late fusion
strategy is utilized to fuse the two streams. For all channels, we employ the
output of fc6 layer as the input of LSTM. Specifically, for channel I, we apply
the RoI pooling on the feature maps of the last convolutional layer. The grid of
RoI pooling layer is fixed to 7×7. The number of hidden states in LSTM is fixed
to 1, 024. Both RTP and RTR networks are trained in an end-to-end manner.

Training Strategy. Our method is implemented on Caffe [13]. We utilize mini-
batch SGD algorithm to train the model. Following [4], we re-scale the frames,
making their shorter sides 600 pixels. The batch size is 256 and 128 for RTP and
RTR, respectively. The momentum and weight decay are set to 0.9 and 0.0005
for both networks. The initial learning rate is 0.001 and we decrease to its 10%
after 8 epoches. The whole training procedure stops at 12 epoches.

5 Experiments

5.1 Datasets and Evaluation Metrics

We empirically evaluate our proposed framework on four datasets: UCF-Sports,
J-HMDB, UCF-101 and AVA. UCF-Sports [27] consists of 150 short videos



Recurrent Tubelet Proposal and Recognition Networks for Action Detection 315

Re
ca

ll

IoU

(a) UCF-Sports

Re
ca

ll

IoU

(b) J-HMDB

Re
ca

ll

IoU

(c) UCF-101

Re
ca

ll

IoU

(d) AVA

Fig. 4. The frame-level Recall vs. IoU curves of different action proposal methods on
UCF-Sports, J-HMDB (split 1), UCF-101, and AVA datasets.

from 10 sports categories. Videos are truncated to actions and bounding box
annotations are available for all frames. Following [17], 103 and 47 videos are used
for training and testing, respectively. J-HMDB [12] contains 928 well trimmed
video clips of 21 actions. The bounding box annotations are inferred from human
silhouettes. It provides three training/test splits for evaluation. Following [29],
we conduct analysis of different components on the first split, and report the
average results over three splits when comparing to the state-of-the-arts.

UCF-101 [32] is an action recognition dataset of realistic videos. For detec-
tion, a subset of 24 classes with 3, 207 videos are provided with spatio-temporal
ground truths. Unlike UCF-Sports and J-HMDB in which the whole videos are
truncated to actions, videos in UCF-101 are untrimmed, and additional annota-
tions of action temporal range are available. Following [22,28,39], all experiments
are conducted on the first split. AVA [8] is a challenging dataset published very
recently. It densely annotates 80 atomic visual actions in 57.6K video segments
collected from 192 movies. The duration of each segment is 3 s. Different from
the above datasets where annotations are provided for all frames, only the mid-
dle frame of each 3-second-long video segment is annotated in AVA. To take
full advantage of the temporal information around the annotated key-frame, 15
consecutive frames (i.e., the key-frame, 7 frames before it, and 7 frames after
it) are treated as a video clip to be processed in our framework. Note that each
bounding box may be associated with multiple action categories, making the
dataset more challenging. Experiments are performed on the standard splits [8].

Evaluation Metrics. We adopt both frame-mAP and video-mAP as our evalu-
ation metrics [7,22]. A frame or tubelet detection is treated as positive if its IoU
with the ground-truth is greater than a threshold δ and the predicted label is cor-
rect. Specifically, for UCF-Sports, J-HMDB, and UCF-101, we follow [9,11,22]
to exploit video-mAP as evaluation metric. And for AVA, we follow the stan-
dard evaluation scheme in [8] to measure frame-mAP. The reported metric is the
mAP at IoU threshold δ = 0.5 for spatial localization (UCF-Sports, J-HMDB
and AVA) and δ = 0.2 for spatio-temporal localization (UCF-101) by default.

5.2 Performance Evaluations and Experimental Analysis

Evaluation on Recurrent Tubelet Proposal. We first validate the RTP
networks and compare with two other proposal generation methods: RPN [26]
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Fig. 5. An example of proposal generation results with three methods on action “Run.”

Table 1. Evaluation on RTR networks with different channels on the four datasets.

Model H I S HI IS HS HIS H I S HI IS HS HIS

UCF-Sports J-HMDB (split 1)

RGB 81.5 85.7 82.5 86.4 87.2 83.7 87.6 45.2 59.1 46.5 59.9 60.7 53.2 61.7

Flow 90.8 95.4 91.2 95.8 96.1 93.4 96.5 61.6 76.4 63.6 77.4 77.3 68.5 78.1

Fusion 92.3 96.8 93.4 97.4 97.1 95.1 97.8 66.3 78.5 70.8 79.8 80.0 74.3 80.7

UCF-101 AVA

RGB 54.8 59.2 56.3 59.4 59.8 58.0 60.4 14.4 18.2 13.7 18.9 18.7 17.2 19.4

Flow 65.6 71.5 68.1 72.0 72.7 70.5 73.4 11.2 13.7 9.4 15.2 14.9 12.5 15.6

Fusion 69.3 74.9 71.2 75.2 75.8 72.1 76.3 16.3 18.9 15.1 19.7 19.5 18.1 20.1

and Flow-Guided (FG) region tracking. RPN extracts region proposals of each
frame or stacked optical flow “image” separately and then links the proposals
in each frame or flow “image” to form tubelet. FG is initialized with proposals
of the start frame or stacked optical flow “image” extracted from RPN. Then
FG simply tracks each proposal according to the average optical flow over pixels
within the proposal region. For fair comparison, we also utilize VGG-16 network
for RPN and FG. RPN is fine-tuned on target datasets for both methods.

Figure 4 shows the frame-level Recall vs. IoU curve comparisons on the four
datasets. RTP consistently outperforms the others significantly on both RGB
and Flow streams, especially at high IoU area. The results demonstrate the
effectiveness of incorporating long-term temporal coherence in proposal genera-
tion. It is not surprising that FG performs the worst among all. This somewhat
reveals the weakness of the straightforward tracking scheme that only exploits
very few temporal clues, making FG sensitive to noise. Another observation is
that RGB stream outperforms Flow stream. The reason is that Flow stream only
focuses on salient motion regions (e.g., waving arm of a person), while the target
proposals are human-centered bounding boxes which cover the entire person.

Figure 5 shows the comparison of three methods with RGB stream on an
exemplar action “Run” in UCF-Sports. RPN generally works well but fails when
the person is blocked by the obstacle. FG generates accurate proposals for former
frames. Once the noise (occlusion) occurs, the error is aggregated and the model
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Fig. 6. Performance comparison of human only (H) channel, human-object interaction
(I) channel, and scene (S) channel on nine action classes in J-HMDB (split 1).

is then unable to localize the proposals well. RTP, in comparison, benefited from
the temporal context and could predict precise proposals in current frame by
leveraging those in previous frames.

Evaluation on Recurrent Tubelet Recognition. Next, we turn to mea-
sure the performance of the RTR networks on each of designed channels, i.e.,
human only (H) channel, human-object interaction (I) channel, and scene (S)
channel, based on the tubelets generated by RTP. All possible combination
schemes between three channels are considered. Table 1 summarizes the com-
parisons across different modalities. As indicated by our results, the channel
I achieves the highest performance among the three channels, as the majority
of action classes are related to objects (8 in 10 for UCF-Sports, 14 in 21 for
J-HMDB, 20 in 24 for UCF-101, 49 in 80 for AVA). Moreover, the fusion on
any two or all three channels could further improve the results, indicating that
the three channels are complementary. In addition, combining RGB and Flow
streams also leads to considerable improvements. It is worth noting that the
channel S performs better than the channel H on UCF-Sports, J-HMDB (split
1) and UCF-101, but worse on AVA. This observation is not surprising because
most actions in AVA are collected from similar movie scenes and it is difficult to
distinguish them with scene information. Similar in spirit, the performances of
Flow stream are superior over RGB stream on UCF-Sports, J-HMDB (split 1)
and UCF-101, but inferior on AVA, due to the fact that the actions in the first
three datasets have more obvious movements and thus produce salient optical
flows.

As described in Sect. 3.3, our multi-channel RTR is devised to capture dif-
ferent semantic-level clues. To verify this, we examine the performance of these
channels on several categories from J-HMDB and report the performances on
RGB stream in Fig. 6. We observe that the three channels indeed capture dif-
ferent semantic information. Specifically, for “body motion only” actions (e.g.,
“Jump,” “Sit,” and “Stand”), channel H performs the best. Similarly, on the
object-related categories (e.g., “Shoot Bow,” “Shoot Gun,” “Swing Baseball,”
and “Kick Ball”), channel I achieves the best results and channel S outperforms
other two on scene-related categories, e.g., “Brush Hair” and “Climb Stairs.”

An Ablation Study. Here we study how each design in RTPR influences the
overall performance. The basic way is to directly utilize Faster R-CNN on each



318 D. Li et al.

Table 2. Performance contribution of each component in the proposed RTPR. U-S,
J-H, and U-1 represent UCF-Sports, J-HMDB (split 1), and UCF-101 respectively.

Method RTP LSTM HIS Flow U-S J-H U-1 AVA

Faster R-CNN 83.8 56.5 56.0 15.6

+RTP
√

85.2 58.2 57.9 16.8

+LSTM
√ √

85.7 59.1 59.2 18.2

+HIS
√ √ √

87.6 61.7 60.4 19.4

RTPR
√ √ √ √

97.8 80.7 76.3 20.1

Table 3. Video-mAP comparisons on UCF-Sports, J-HMDB, and UCF-101.

Method UCF-Sports J-HMDB UCF-101

0.2 0.5 0.1 0.2 0.3 0.4 0.5 0.05 0.1 0.2 0.3

Gkioxari et al. [7] - 75.8 - - - - 53.3 - - - -

Weinzaepfe et al. [38] - 90.5 - 63.1 63.5 62.2 60.7 54.3 51.7 46.8 37.8

Saha et al. [28] - - 72.7 72.6 72.6 72.2 71.5 79.1 76.6 66.8 55.5

Peng et al. [22]a 94.8 94.7 - 74.3 - - 73.1 78.8 77.3 72.9 65.7

Singh et al. [31] - - - 73.8 - - 72.0 - - 73.5 -

Kalogeiton et al. [14] 92.7 92.7 - 74.2 - - 73.7 - - 77.2 -

Hou et al. [11]b 95.2 95.2 - 78.4 - - 76.9 78.2 77.9 73.1 69.4

Yang et al. [39] - - - - - - - 79.0 77.3 73.5 60.8

He et al. [9] 96.0 95.7 79.8 79.7 79.3 78.5 77.0 - - 71.7 -

RTPR

-w/ VGG-16 97.8 97.8 83.0 82.3 82.0 81.2 80.5 81.5 80.7 76.3 70.9

-w/ ResNet-101 98.6 98.6 83.0 82.7 82.3 82.3 81.3 82.1 81.3 77.9 71.4
aUpdated result from https://hal.inria.fr/hal-01349107/file/eccv16-pxj-v3.pdf
b Updated result from https://arxiv.org/pdf/1712.01111.pdf

RGB frame for both proposal generation and recognition, plus the tubelet gener-
ation between them. Average score over all proposals in the tubelet is exploited.
RTP replaces the independent proposal generation with our recurrent scheme.
LSTM leverages the temporal dynamics for recognition. HIS further employs
the multi-channel architecture. Flow exploits optical flow stream additionally.

Table 2 details the improvement by considering one more factor at each stage.
RTP is an effective method for action tubelet generation. It successfully boosts
up the performance with 1.4%, 1.7%, 1.9%, and 1.2% on UCF-Sports, J-HMDB
(split 1), UCF-101, and AVA, respectively. LSTM and HIS are two components
of our RTR, which also lead to considerable improvement. More specifically, the
performance gains range from 0.5% to 1.4% of LSTM, and 1.2% to 2.6% of HIS
across the four datasets. In addition, we observe that the Flow stream exhibits
significant improvements on UCF-Sports (10.2%), J-HMDB (19.0%) and UCF-
101 (15.9%), but marginal gain on AVA (0.7%). As mentioned, this is because
the actions in the first three datasets have more intensive motions.

https://hal.inria.fr/hal-01349107/file/eccv16-pxj-v3.pdf
https://arxiv.org/pdf/1712.01111.pdf
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Table 4. Frame-mAP comparisons on AVA.

Method RGB Flow Fusion

[8] w/ ResNet-101 17.1 9.3 18.4

RTPR w/ VGG-16 19.4 15.6 20.1

RTPR w/ ResNet-101 20.5 16.2 22.3

0.93 0.88 0.74 0.94 0.78
0.69 0.89 0.92

0.79 0.65 0.83 0.86 0.72 0.75 0.83 0.86
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 0.002
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0.72 0.85 0.86 0.79 0.71 0.74 0.78 0.72
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Fig. 7. Four detection examples of our method from UCF-Sports, J-HMDB, UCF-101,
and AVA. The proposal score is given for each bounding box. Top predicted action
classes for each tubelet are on the right. Red labels indicate ground-truth. (Color
figure online)

Comparison with State-of-the-Art. In addition to VGG-16, we also utilize
ResNet-101 [10] as our backbone. In Table 3, we summarize the performance
comparisons on UCF-Sports, J-HMDB (3 splits) and UCF-101 with different IoU
thresholds δ. Early works mainly exploit R-CNN or Faster R-CNN to perform
per-frame action detection [7,22,28,38]. T-CNN [11] improves them by utilizing
3D CNN to model short-term temporal information. Our RTPR achieves the
best performance in most cases. Specifically, at the standard δ value (0.5 for
UCF-Sports/J-HMDB, and 0.2 for UCF-101), our VGG-16 based model makes
the improvements over VGG-16 based two-stream networks [9,22] by 2.1%–7.4%.
Ours also outperforms T-CNN [11] by 2.6%, 3.6%, and 3.2% on the three datasets
respectively. This somewhat reveals the weakness of [11] when the detection
data is insufficient to support 3D ConvNets fine-tuning or training from scratch.
Compared to the competitor CPLA [39], our approach boosts up the performance
from 73.5% to 76.3% on UCF-101 when δ = 0.2. More importantly, from Table 1
we can see that only utilizing the single channel I in RTPR already exceeds most
state-of-the-art approaches including CPLA. The results indicate the advantages
of modeling the temporal correlations of proposals between consecutive frames
to predict movements in RTP rather than relying on RPN for each individual
frame in CPLA. In addition, our ResNet-101 based model outperforms the best
competitors [9,14] by 2.9%, 4.3% and 0.7% on the three datasets respectively.

Table 4 shows the comparisons on AVA. Since AVA is a very recent dataset,
there are very few studies on it and we only compare with [8], which imple-
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ments Multi-Region Two-Stream CNN [22] with ResNet-101. We can observe
that ours with both VGG-16 and ResNet-101 basic models outperform the base-
line. Figure 7 showcases four detection examples from UCF-Sports, J-HMDB,
UCF-101, and AVA. Even in complex cases, e.g., varying scales (third row) and
multi-person plus multi-label (last row), our approach can still work very well.

6 Conclusion

We have presented Recurrent Tubelet Proposal and Recognition (RTPR) net-
works for video action detection, which is able to incorporate temporal contex-
tual information. Particularly, we study the problem of utilizing the proposals
in previous frames to facilitate the detection in current frame through build-
ing a recurrent neural network. To verify our claim, we have devised Recurrent
Tubelet Proposal networks, which is to estimate the movements of proposals in
the next frame in a recurrent manner. Furthermore, a multi-channel architecture
is designed for proposal recognition, which leverages different semantic context
to enhance recognition. Experiments conducted on four public datasets validate
our model and analysis. More remarkably, we achieve the new state-of-the-art
performances on all the four datasets.
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