
BusterNet: Detecting Copy-Move Image
Forgery with Source/Target Localization

Yue Wu1(B), Wael Abd-Almageed1, and Prem Natarajan1,2

1 USC Information Sciences Institute, Marina del Rey, CA 90292, USA
{yue wu,wamageed,pnataraj}@isi.edu

2 Amazon Alexa, 101 Main Street, Cambridge, MA 02142, USA

Abstract. We introduce a novel deep neural architecture for image
copy-move forgery detection (CMFD), code-named BusterNet. Unlike
previous efforts, BusterNet is a pure, end-to-end trainable, deep neu-
ral network solution. It features a two-branch architecture followed by a
fusion module. The two branches localize potential manipulation regions
via visual artifacts and copy-move regions via visual similarities, respec-
tively. To the best of our knowledge, this is the first CMFD algorithm
with discernibility to localize source/target regions. We also propose
simple schemes for synthesizing large-scale CMFD samples using out-
of-domain datasets, and stage-wise strategies for effective BusterNet
training. Our extensive studies demonstrate that BusterNet outperforms
state-of-the-art copy-move detection algorithms by a large margin on
the two publicly available datasets, CASIA and CoMoFoD, and that it
is robust against various known attacks.

Keywords: Copy-move · Image forgery detection · Deep learning

1 Introduction

Fake news, often utilizing tampered images, has lately become a global epidemic,
especially with the massive adoption of social media as a contemporary alterna-
tive to classic news outlets. This phenomenon can be largely attributed to the
following: (i) the rapidly declining cost of digital cameras and mobile phones,
which leads to a proliferation of digital images, and (ii) the availability and ease-
of-use of image-editing software (e.g., mobile phone applications and open source
tools) which make images editing or manipulating profoundly easy, whether it
is for innocent or malicious intent.

This work is based on research sponsored by the Defense Advanced Research Projects
Agency under agreement number FA8750-16-2-0204. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the Defense Advanced
Research Project Agency or the U.S. Government.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11210, pp. 170–186, 2018.
https://doi.org/10.1007/978-3-030-01231-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01231-1_11&domain=pdf


BusterNet for Copy-Move Forgery Detection 171

Fig. 1. Whom in photo is not manipulated? BusterNet answers this question by not
only detecting copy-move regions but also differentiating source (green) and target (red)
copies. (a) tweet snapshot of a manipulated photo by James Fridman; (b) input region
for analysis; (c) raw BusterNet output; (d) BusterNet output by applying majority
rule; (e) overlaid result of (c) on (b); and (f) tweet snapshot of the original photo.
(Color figure online)

Copy-move image forgery is one of the most common and easiest-to-perform
image tampering schemes (see Fig. 1), in which an image patch, regular or irreg-
ular shape, is copied and cloned into the same image. Since the cloned image
patch comes from the same image, the photometric characteristic remains largely
consistent, which increases the difficulty of detecting this type of image forgery.

The objective of copy-move forgery detection (CMFD) is to determine
whether a probe (i.e. query) image contains cloned regions, as evidence of poten-
tial malicious intent. Based on the sophistication of the cloning process, we can
generally classify copy-move manipulations as plain, affine and complex forgeries.
Let S and T denote the source and target regions, respectively. Plain cloning
means that T is simply a translated version of S, i.e., copy S and directly paste
it to a new location as T . This is the simplest cloning, which can be done with
very basic image editing tools. In contrast, affine cloning means that T is an
affine-transformed version of S, implying that additional scaling and rotation
changes have been made on S. Similarly, this type of copy-move tampering can
be easily performed with image editing tools supporting affine transformations.
Finally, complex cloning entails a more complicated relationship between D and
T , often with extra diffusion estimation, edge blending, color change or other
more sophisticated image processing steps. Complex cloning requires advancing
image editing tools, such as Adobe Photoshop or GIMP.

In this paper we present a novel deep neural architecture for detecting copy-
move image forgeries. The proposed architecture addresses two major limitations
of state-of-the-art CMFD algorithms—(i) it is an end-to-end DNN solution, and
thus can be optimized directly w.r.t. copy-move forgery detection task; and (ii)
it not only detects copy-move forgeries, but also produces source and target
region masks, as shown in Fig. 1. To the best of our knowledge, our proposed



172 Y. Wu et al.

technology is the first to feature this capability. Discriminating between source
and target regions could be significant for forensic investigations. Consider, for
example, two people each holding a pistol in a criminal investigation. We not
only are interested in knowing that image is manipulated, but also which gun is
the original and which is the clone.

The remainder of this paper is organized as follows. Section 2 briefly dis-
cusses existing approaches and their limitations. Section 3 introduces the pro-
posed BusterNet. Section 4 discusses BusterNet training details. Section 5 shows
extensive experimental results and analysis. Finally, we conclude the paper in
Sect. 6.

2 Related Work

Early CMFD work can be traced back to the early 2000s [12,15] when most of
the research work focused on plain cloning. As mentioned in Sect. 1, the increas-
ing volume of digital images and availability of editing software meant that
“Doctoring digital photos is easy. Detecting it can be hard”[11].

Without loss of generality, a general copy-move detection framework consists
of three major steps [9]: namely (i) feature extraction which basically converts
an input image X to a set of features of interests � = {f1, · · · , fk}, (ii) feature
matching which measures the similarity (or distance) between two features fi and
fj for all fi, fj ∈ �, and (iii) post-processing which usually uses a set of heuris-
tics to further improve CMFD performance, e.g., considering holistic matching
between set of features on a higher level of consistency to reduce false alarms
and to improve true positive. Copy-move detection frameworks can be broadly
classified, based on the underlying feature extraction and subsequent matching
schemes, into three main categories: patch/block-based methods such as chroma
features [4,9], PCA feature [14], Zernike moments [26], blur moments [20],
DCT [21]; keypoint-based methods such as SIFT [1,8,36], ORB [40], triangles [2],
SURF [22,27,28], and irregular region-based methods [16,25].

Each category has its own advantages and disadvantages in CMFD. For
example, block-based methods are known to be simple but computationally
expensive. In contrast, keypoint-based methods are fast and robust against affine
transformation. However, keypoint-based method often fail when S and D are
homogeneous. This general architecture for CMFD pipelines suffers three inher-
ent limitations: (i) each module is optimized independently, (ii) dependence on
hand-crafted features that may not be optimal for the downstream task, and
(iii) inclusion of one or more heuristics or manually tuned thresholds in order
to reduce false alarm and increase detection rates. For a detailed comparison of
existing methods, the reader is referred to [3,5,30,32].

Recently, deep neural network (DNN) has been applied to the image forgery
detection research. [18] uses DNN for feature extraction in CMFD. [6] detects
manipulated regions via a DNN-based patch classifier. [34] proposes an end-to-
end DNN solution for splicing detection and localization. [39] uses DNN to detect
tampered faces.



BusterNet for Copy-Move Forgery Detection 173

3 Copy-Move Forgery Detection via BusterNet

3.1 BusterNet Overview

To overcome the drawbacks of classic CMFD pipelines, as discussed in Sect. 2, our
goal is to design a DNN pipeline that is (i) end-to-end trainable, such that it does
not include manually tuned parameters and/or decision rules and (ii) capable of
producing distinct source and target manipulation masks (which could be used
for forensic analysis).

To achieve the above goals, a valid DNN solution should attain two feature
properties simultaneously, (i) source and target features are dissimilar enough
to distinguish source from target, and (ii) they are also more similar than those
in pristine regions. Of course, one can train a naive DNN, while hoping it could
attain these properties magically. However, a better idea is to explicitly con-
sider these properties, and we therefore propose BusterNet, a two-branch DNN
architecture as shown in Fig. 2.

Fig. 2. Overview of the proposed two-branch DNN-based CMFD solution. Dashed
blocks are only activated during branch training. Output mask of the main task,
i.e.MX

c , is color coded to represent pixel classes, namely pristine (blue), source copy
(green), and target copy (red). Output masks of auxiliary tasks, i.e.MX

m and MX
s , are

binary where white pixels indicates manipulated/similar pixels of interests, respectively.
(Color figure online)

Specifically, we design Mani-Det branch to detect manipulated regions such
that its feature is good for property (i), while Simi-Det branch to detect cloned
regions such that its feature attains property (ii), and finally use both features
in Fusion to predict pixel-level copy-move masks differentiating pristine, source
copy, and target copy classes. To ensure these two branches achieve the desired
functionality, we define each branch an auxiliary task, as indicated by the dashed
blocks in Fig. 2. More precisely, Mani-Det’s and Simi-Det’s tasks are to predict a
binary manipulation mask MX

m and a binary copy-move mask MX
s , respectively,

and both binary masks can be derived from the 3-class mask MX
c .

To simplify discussions, we assume our input image is of size 256 × 256 × 3,
but BusterNet is capable of handling images of other sizes.



174 Y. Wu et al.

3.2 Manipulation Detection Branch

The manipulation detection branch (i.e. Mani-Det as shown by red shaded
regions in Fig. 2) can be thought of as a special segmentation network [19] whose
aim is to segment manipulated regions. More precisely, it takes input image X,
extracts features using CNN Feature Extractor, upsamples the feature maps
to the original image size using Mask Decoder, and applies Binary Classifier
to fulfill the auxiliary task, i.e. producing a manipulation mask MX

m .
Any convolutional neural network (CNN) can serve as CNN Feature

Extractor. Here, we use the first four blocks of the VGG16 architecture [29] for
its simplicity. The resulting CNN feature fX

m is of size 16×16×512, whose resolu-
tion is much lower than that is required by the manipulation mask. We therefore
need to decode this feature, and apply deconvolution [23] to restore the original
resolution via the Mask Decoder as shown Fig. 3, which applies BN-Inception and
BilinearUpPool2D [33] in an alternating way and eventually produces a tensor
dXm of shape 256 × 256 × 6. To be clear, 16 times of the spatial dimension increase
is due to the 4 times of BilinearUpPool2D (i.e. 24 = 16), and the output filter
dimension 6 is because of the last BN-Inception(2@[5,7,11]), which concatenates
3 Conv2D responses, each with 2 output filters but uses kernel sizes at (5, 5), and
(7, 7) and (11, 11), respectively (i.e. 3 × 2 = 6). Finally, we predict pixel-level
manipulation mask MX

m via Binary Classifier, which is as simple as a single
Conv2D layer with 1 filters of kernel size (3, 3) followed by the sigmoid activation.

Fig. 3. Inception-based mask deconvolution module. (a) Mask deconvolution network
and (b) parametric BN-inception module, where s1, s2 and s3 indicates the kernel sizes
used in three Conv2D layers, respectively, and n stands for the number of filters.

3.3 Similarity Detection Branch

The similarity detection branch (i.e. Simi-Det as shown by blue shaded regions
in Fig. 2) takes an input image X, extracts features using CNN Feature
Extractor, computes feature similarity via Self-Correlation module, collects
useful statistics via Percentile Pooling, upsamples feature maps to the orig-
inal image size using Mask Decoder, and applies Binary Classifier to fulfill
the auxiliary task, i.e. producing a copy-move mask MX

m at the same resolu-
tion of X. It is worthy to stress that modules shared in both branches, e.g. CNN
Feature Extractor, only share the network architecture, but not weights.



BusterNet for Copy-Move Forgery Detection 175

Like Mani-Det branch, Simi-Det branch starts with feature representa-
tion via CNN Feature Extractor. It again produces a feature tensor fX

s of
size 16 × 16 × 512, which can be also viewed as 16 × 16 patch-like features,
i.e. fX

s = {fX
s [ir, ic]}ir,ic∈[0,··· ,15], and each with 512 dimensions. Since our goal

is to recover the potential copy-move regions, we have to mine useful information
to decide what are matched patch-like features. To do so, we first compute all-
to-all feature similarity score using Self-Correlation, and collect meaningful
statistics to identify matched patches via Percentile Pooling.

Specifically, given two patch-like feature fX
m [i] and fX

m [j] where i = (ir, ic) and
j = (jr, jc), we use the Pearson correlation coefficient ρ to quantify the feature
similarity as shown in Eq. (1)

ρ(i, j) = (f̃X
m [i])T f̃X

m [j]/512 (1)

where (·)T is the transpose operator, and f̃X
m [i] is the normalized version of fX

m [i]
by subtracting its mean μX

m[i] and dividing by its standard deviation σX
m [i] as

shown in Eq. (2).
f̃X
m [i] = (fX

m [i] − μX
m[i])/σX

m [i] (2)

For a given fX
m [i], we repeat the process over all possible fX

m [j], and form a score
vector SX [i], namely

SX [i] = [ρ(i, 0), · · · , ρ(i, j), · · · , ρ(i, 255)] (3)

As a result, Self-Correlation outputs a tensor SX of shape 16 × 16 × 256.
When fX

m and Pearson correlation coefficient are both meaningful, it is clear
that if fX

m [i] is matched, some score SX [i][j] with j �= i should be significantly
greater than the rest of the scores SX [i][k] with k /∈ {i, j}. Since we do not
know the corresponding fX

m [j] in advance, it is difficult to check this pattern in
the context of DNN. Alternatively, it is easier to check this pattern in a sorted
score vector. Specifically, Percentile Pooling first sorts a score vector SX [i]
to S′X [i] in the descending order as shown Eq. (4).

S′X [i] = sort(SX [i]) (4)

Imagining plotting a curve about (k, S′X [i][k]) for k ∈ [0, · · · , 255], we are sup-
posed to see a monotonic decreasing curve with an abrupt drop at some point if
fX
m [i] is matched. This indicates that this sorted version of score vector contains

sufficient information to decide what feature is matched in future stages.
One can directly feed S′X to future modules to decide matched features.

However one drawback of doing so is that the resulting network loses the capa-
bility of accepting an input of an arbitrary size, because the length of score
vector is dependent on the input size. To remove this dependency, Percentile
Pooling also standardize the sorted score vector by only picking those scores
at percentile ranks of interests. In other words, regardless the length L of raw
sorted score vector, we always pick K scores to form a pooled percentile score
vector PX [i] as shown in Eq. (5)

PX [i][k] = S′X [i][k′] (5)



176 Y. Wu et al.

where k ∈ [0, · · · ,K − 1], and k′ is the index of raw sorted score vector after
mapping a predefined percentile pk ∈ [0, 1] according to L as shown in Eq. (6)

k′ = round(pk · (L − 1)) (6)

Another advantage of the above standardization is dimension reduction, because
only a small portion of all scores is kept. Once Percentile Pooling is done, we
use Mask Decoder to gradually upsample feature PX to the original image size
as dXs , and Binary Classifier to produce a copy-move mask MX

s to fulfill the
auxiliary task. Again, both Mask Decoder and Binary Classifier only have
the same architecture as those in Mani-Det, but with distinctive weights.

3.4 BusterNet Fusion

As illustrated in Fig. 2, Fusion module takes inputs of the Mask Decoder fea-
tures from both branches, namely dXm and dXs , and jointly considers these two
branches and make the final CMFD prediction. More precisely, we (i) concate-
nate feature dXm and dXs , (ii) fuse feature using the BN-Inception with parameter
set 3@[1, 3, 5] (see Fig. 3(b)), and (iii) predict the three-class CMFD mask using
a Conv2D with one filter of kernel size 3 × 3 followed by the softmax activation.

4 BusterNet Implementation and Training

4.1 Custom Layer Implementation

It is clear that except Self-Correlation and Percentile Pooling modules,
all other modules are either standard or can be built from standard layers.
Self-Correlation requires implementing Eqs. (1) and (2). We compute (i) ten-
sor f̃X

m using Eq. (2), and (ii) correlation scores for all i, j pairs in one-shot via
tensor dot product operator1, instead of computing Eq. (1) one by one. Both
operations are differentiable.

Percentile Pooling is essentially a pooling layer, which has no trainable
parameters but a deterministic pooling function. As one may notice, neither
Eq. (4) nor (5) is differentiable. However, all we need to do is to perform back-
propagation similar to that is performed in standard MaxPooling (i.e. only the
neuron corresponding to the max receives the gradient).

4.2 Training Details

As shown in Table 1 of [38], and Table 12 of [32], publicly available dataset are
very small (typically around a few thousands). More importantly, none of existing
CMFD dataset provides ground truth masks differentiating source and target
copies. We therefore create a synthetic dataset for training BusterNet.

Inspired by [13] and also [10], we start with an original image X with an
associated object mask Ms, randomly generate an affine matrix m to trans-
form both the source mask and the source object image. We then use the trans-
formed mask as the target mask Mt, paste the transformed object back to image
1 This operator is known as batched tensordot in Theano, and matmul in TensorFlow.



BusterNet for Copy-Move Forgery Detection 177

X and obtain a copy-move forgery sample X ′. In particular, we use the MIT
SUN2012 dataset [35], and the Microsoft COCO dataset [17] as image sources.
All generated manipulation are either affine [34] or complex2. Complex clones use
Poisson image editing [24], and perform complicated blending far beyond naive
region pasting. Parameters used in affine matrix are: rotation ∈ [−30◦, 30◦], scale
∈ [0.5, 2], and translation is also uniformly picked within regions.

To further encourage more real-like training samples, we train a binary clas-
sifier to predict whether a sample is real unmanipulated or synthetic copy-move
forged. Synthetic samples that fail to fool this classifier are not used for training
BusterNet. Figure 4 shows some synthetic samples of our dataset, and they look
quite natural in general. This dataset can be provided upon request.

Fig. 4. Synthetic CMFD samples with ground truth masks. Pixel colors blue, green
and red in masks denotes pristine, source and target copy classes, respectively. (Color
figure online)

In total, we collected 100,000 quality synthetic samples for copy-move detec-
tion, each with one three-class mask distinguishing source and destination copies
and two binary masks auxiliary task training. The synthetic training data is split
into training, validation and testing splits with 8:1:1 ratio. This synthetic dataset
is used to train both auxiliary tasks and the main task of BusterNet.

It is worth noting that external image manipulation dataset from IEEE
IFS-TC First Image Forensics Challenge3 and the Wild Web tampered image
dataset [37] are also used for training Mani-Det branch, because we want
Mani-Det learns to identify more manipulated regions beyond the fixed set of
manipulations in our synthetic dataset.

To train BusterNet, we initialize all parameters from random weights except
for using a pretrained VGG16 on ImageNet for CNN Feature Extractor in
Simi-Det. Instead of training BusterNet all modules together, we adopt a
three-stage training strategy—(i) train each branch with its auxiliary task
independently, (ii) freeze both branches and train fusion module, and (iii)
unfreeze entire network and fine tune BusterNet end-to-end. Specifically, for
auxiliary tasks, we use Adam optimizer with initial learning rate of 1e−2 and
binary crossentropy loss. Whenever validation loss reaches plateaus after 10

2 https://github.com/fbessho/PyPoi.git.
3 http://ifc.recod.ic.unicamp.br/.

https://github.com/fbessho/PyPoi.git
http://ifc.recod.ic.unicamp.br/


178 Y. Wu et al.

epochs, we reduce learning rate by half until improvement stops for 20 epochs.
For main task, we also Adam optimizer with categorical crossentropy loss,
but use initial learning rate of 1e−2 for fusion training while 1e−5 for finetun-
ing. Pretrained models can be also found in our open repository https://github.
com/isi-vista/BusterNet.git.

Table 1. Comparing different training strategies on Synthetic 10K testing set

Metrics Recall Accuracy

Class Pristine Source Target 3-Class

Simi-Det Only 92.57% 32.28% 38.97% 92.57%

Direct BusterNet 93.70% 34.12% 47.37% 92.74%

Stage-wise BusterNet 93.83% 41.64% 53.61% 93.02%

This stage-wise training strategy is important to ensure the functionality of
each branch, and further to achieve BusterNet’s goals. Table 1 compares Buster-
Net performance on our synthetic testing dataset. Specifically, Simi-Det Only
denotes to perform the main task but only use the Simi-Det branch (in other
words, a naive solution as we discussed in Sect. 3.1), Direct BusterNet means
to train BusterNet without auxiliary tasks, and Stage-wise BusterNet is our
proposed training strategy. As one can see, it is easier to predict target copies
than source copies in general, possibly because target copies may contain visual
artifacts to help classification; and differences of prediction accuracy between
systems are small, due to the dominant pristine class. However, the impact of
two-branch design and stage-wise training should not be under-looked. As shown
in Table 1, it turns out that two-branch model(Direct BusterNet) outperforms
one-branch model (Simi-Det Only), and stage-wise training further improves
recall on all classes by a large margin, especially on source and target classes.

5 Experimental Evaluation

5.1 Metrics and Baseline Settings

We use precision, recall and F1 scores to report CMFD performance [7,9,34].
For a testing image, we compute the true positive (TP), false positive (FP) and
false negative (FN) at pixel level. Of course, we have to treat pixels classified to
source and target both as forged, so that the proposed BusterNet could be fairly
compared with all classic CMFD methods which only predict binary masks.

Based on how F1 is calculated, two protocols are used for pixel-level eval-
uation: (A) aggregate all TP, FP, and FN numbers over the whole dataset, and
report precision, recall and F1 scores [7,34]; and (B) compute precision, recall,
F1 scores for each image, and report the averaged scores [25]. Protocol A bet-
ter captures overall performance including non-forged images, while protocol B

https://github.com/isi-vista/BusterNet.git
https://github.com/isi-vista/BusterNet.git


BusterNet for Copy-Move Forgery Detection 179

only works for a subset of forged images (F1 score is ill-defined when TP is zero),
but better quantifies the localization performance. We use both protocols in our
evaluations. If any pixels in a testing image are detected as forged, the testing
image is labeled as forged. We compare a predicted image label with its ground
truth to compute image-level TP, FP, and FN, and report precision, recall and
F1 scores over an entire dataset as image-level evaluation protocol.

Furthermore, we use area under the receiver operating characteristic (ROC)
curve (AUC) to evaluate overall performance, where the ROC curve is a function
of true positive rate (TPR) in terms of false positive rate (FPR). AUC quantifies
the overall ability of the network to discriminate between two classes.

We use four methods as baselines for comparison—a block-based CMFD
with the Zernike moment feature [26], a keypoint-based CMFD with the SIFT
feature [7], a dense field-based CMFD [9], and a deep matching and validation
network (DMVN) [34]. All method implementations are either provided by paper
authors or from reliable third-party implementation in [7]. Since DMVN is orig-
inally designed for image splicing detection where the input is a pair of images,
we recursively split the input image into two halves X1 and X2 along X’s longer
axis, and feed DMVN this pair of (X1,X2). If DMVN finds anything spliced,
this means X contains copy-move regions (one in X1 and the other in X2). If
not, we then split X1 and X2 into halves again, and apply DMVN to detect
whether splicing has happened within X1 and X2. This recursion continues until
it reaches the smallest patch size (we use 16 × 16) for analysis or successfully
finding splicing regions. Default parameters are used for all baseline methods
without any preprocessing. Speed measurement is based on an Intel Xeon CPU
E52695@2.4GHz with a single Nivdia Titan-X GPU.

5.2 Evaluation Data

We use two standard datasets for evaluation. The first dataset is the CASIA
TIDEv2.0 dataset,4 which is the largest public accessible image forgery detection
benchmark, in which all manipulations are created manually. It contains 7491
authentic and 5123 tampered color images. However, it does not specify which
images are manipulated in a copy-move manner and does not provide ground
truth manipulation masks. We therefore manually verify that 1313 out of 5123
tampered samples are of copy-move forgery. These 1313 CMFD samples and their
authentic counterparts together form the testing dataset (total 2626 samples) we
used later. We refer to it as the CASIA CMFD dataset.

The second dataset is the CoMoFoD dataset [31], which contains 200 base
forged images and 25 categories (total 5000 images). Each category is made by
applying postprocessing/attacks to the base category images to hide forgery
clues (e.g., JPEG compression, etc.). Detailed attack descriptions and settings
can be found in [31].

Finally, to evaluate BusterNet discernibility, we need testing data with
ground truth masks distinguishing source and target. However, neither the

4 http://forensics.idealtest.org/casiav2.

http://forensics.idealtest.org/casiav2


180 Y. Wu et al.

CASIA CMFD nor the CoMoFoD datasets provide such masks. We therefore
synthesize them by comparing a forged image with its authentic counterpart for
both datasets. All synthesized masks are manually verified, and can be found in
our code repository.

5.3 Overall CMFD Performance Analysis

Table 2 shows the overall performance on the CASIA CMFD dataset. Buster-
Net’s F1 score outperforms all others by a large margin on all three evaluation
protocols; it is also is the fastest solution. By comparing the performance of
Simi-Det branch and the full BusterNet, one can see that end-to-end fine-tuning
improves AUC by 3–4% at both pixel- and image-level as shown in Fig. 5.

Table 2. Performance analysis on CASIA CMFD dataset.

Methods Ours

[26] [7] [9] [34] Simi. Det. BusterNet

Image level evaluation protocol

Precision 97.01% 68.49% 99.51% 66.37% 71.53% 78.22%

Recall 24.47% 67.82% 30.61% 73.59% 80.73% 73.89%

F-score 39.08% 68.15% 46.82% 69.80% 75.85% 75.98%

Pixel level evaluation protocol - A

Precision 94.46% 64.84% 83.12% 17.06% 56.52% 77.38%

Recall 25.05% 0.17% 51.28% 10.60% 62.06% 59.15%

F-score 39.59% 0.34% 63.43% 13.08% 59.16% 67.05%

Pixel level evaluation protocol - B

Precision 22.71% 37.09% 24.92% 23.97% 47.23% 55.71%

Recall 13.36% 0.14% 26.81% 13.79% 48.44% 43.83%

F-score 16.40% 0.23% 25.43% 14.64% 43.72% 45.56%

Processing speed

Sec./Img. 5.11 0.97 1.78 0.95 0.44 0.62

Fig. 5. AUC performance comparison on CASIA CMFD dataset.



BusterNet for Copy-Move Forgery Detection 181

5.4 BusterNet Robustness Analysis

To evaluate BusterNet robustness against various attacks/postprocessing, we
test it and all baseline methods on the CoMoFoD dataset. Table 3 shows the
number of correctly detected images under each attack (containing 200 samples).
An image is to referred as correctly detected if its pixel-level F1 score is higher
than 0.5 [31]. BusterNet outperforms baseline methods on all but one attack.

To better understand the BusterNet performance against the state-of-the-
art, we conduct performance analysis over the entire dataset. Figure 6 shows the
detailed pixel-level F1 scores under protocol B for all attacks. As one can see,
except for attacks of severe JPEG compression (e.g. JC1 compression quality 10),
BusterNet is quite robust against various attacks. The performance analysis on
the base category (i.e., no attack) is shown in Table 3. On the left half of the table,
we follow the modified protocol used by [18,31] to report average scores only on
the correctly detected subset, while on the right half of table we continuously
report our performance using pixel-level protocol B. It is worthy to mention
that although [9] leads the proposed BusterNet by 7% in F1 score when only
considering correctly detected samples, BusterNet correctly detected 24 more

Table 3. Number of correctly detected
images on CoMoFoD dataset under attacks.

Attack Methods

[31] [26] [16] [28] [18] [9] [34] Ours

Base 53 90 102 88 97 93 53 117

BC1 - 91 - - - 94 50 116

BC2 - 89 - - - 94 53 115

BC3 42 89 99 90 94 88 48 109

CA1 - 93 - - - 98 50 117

CA2 - 93 - - - 96 50 116

CA3 45 92 99 90 94 96 48 116

CR1 44 92 90 82 72 97 51 117

CR2 - 91 - - - 95 50 116

CR3 - 90 - - - 92 54 116

IB1 - 90 91 94 104 91 53 113

IB2 47 87 - - - 88 32 98

IB3 - 84 - - - 84 26 93

JC1 - 43 - - - 69 18 60

JC2 - 63 - - - 73 21 77

JC3 - 72 - - - 75 26 86

JC4 5 73 - - - 77 29 103

JC5 - 76 - - - 81 38 99

JC6 - 80 - - - 83 33 101

JC7 - 86 - - - 87 42 107

JC8 - 88 - - - 92 42 109

JC9 - 81 89 31 78 87 36 106

NA1 - 24 - - - 41 38 100

NA2 3 42 - - - 66 39 102

Fig. 6. Pixel-level F1 scores (y-axis) on
CoMoFoD under attacks (x-axis).



182 Y. Wu et al.

Table 4. CMFD performance comparisons on CoMoFoD dataset with no attack.

Methods Correctly detected average Protocol B (overall average)

#Passed Precision Recall F1 Precision Recall F1

[31] 50 96.77% 83.91% 88.72% - - -

[26] 90 96.27% 69.84% 79.93% 45.78% 34.35% 37.37%

[16] 102 54.46% 85.04% 59.54% - - -

[28] 100 54.37% 74.19% 54.60% - - -

[18] 97 59.27% 82.20% 63.18% - - -

[9] 93 84.22% 93.58% 87.82% 39.92% 47.61% 41.83%

[34] 53 61.11% 71.48% 63.13% 36.29% 40.41% 31.13%

Ours 117 83.52% 78.75% 80.09% 57.34% 49.39% 49.26%

samples than [9], indicting BusterNet is better in general. Indeed,BusterNet
outperforms [9] by 7% on the performance over the entire dataset (Table 4).

5.5 Source/Target Discernibility Analysis

To the best of our knowledge, none of CMFD state-of-the-art methods is capable
of localizing, and differentiating between, the source and target of the manip-
ulation. One of the prominent features of BusterNet, however, is the ability to
localize source and target regions. In order to evaluate the accuracy of local-
ization, we compare the predicted forgery region labels with those from ground
truth. For each predicted mask, we merge the source and destination channels
to find all forged regions using the connected component (CC) analysis, and use
the dominant class of all its pixels as the label of a CC. If no CC is found, this
is a miss. If all CCs in a sample have the same label, we opt-out this sample.
Otherwise, this is an opt-in sample for analysis, and we label it “correct” only
when both source and target forgery regions are correctly classified.

Visual examples are shown in Fig. 7. Table 5 summarizes the discernibility
performance of BusterNet on both the CASIA CMFD (manipulated only) and
CoMoFoD datasets, where miss indicates those missed samples, overall accuracy
is the ratio of corrected samples to total samples, and opt-in accuracy is the ratio
of corrected samples to opt-in samples. The overall ∼12% accuracy does not seem
not high. However, one should consider the fact that BusterNet is only trained
with synthetic data with a limited number of real manipulation samples, and
the used simple CC-based label assignment scheme is also simple for complicated
real cases. As one can see in Fig. 7(b), BusterNet sometimes correctly captures
target manipulation at least partially (e.g. , the left-most bird sample and the
right-most spider sample), but the simple CC-based label scheme fails to assign
correct labels. Indeed, if we consider the accuracy only for opt-in samples, the
accuracy of the proposed BusterNet jumps to 78% as shown in Table 5.



BusterNet for Copy-Move Forgery Detection 183

Table 5. Source/target discernibility performance of BusterNet.

Dataset Number of images Accuracy

Total Miss Opt-out Opt-in Corr. Overall Opt-in

CASIA CMFD 1313 542 581 190 146 11.11% 76.84%

CoMoFoD 200 83 76 41 33 16.50% 80.49%

Overall 1513 625 657 231 179 11.83% 77.49%

Fig. 7. BusterNet detection results on testing dataset. (a) samples that BusterNet
correctly distinguishes source/target copies; and (b) samples that BusterNet fails to
distinguish source/target copies. blue: pristine, green: source copy and red: target copy.
Note many object classes, e.g. flower, sand, and ladybug, are not included in SUN or
COCO dataset, indicating the generalizability of BusterNet to unseen classes. (Color
figure online)

6 Conclusion

We introduce BusterNet, an end-to-end DNN solution to detecting copy-move
forged images with source/target localization with two branches as shown in
Fig. 2. We show how to design auxiliary tasks for each branch to ensure its
functionality and feature properties. We also demonstrate how to overcome the



184 Y. Wu et al.

training data shortage by synthesizing a large scale of realistic and quality CMFD
samples from out-of-domain datasets. Our evaluation results demonstrate that
BusterNet outperforms state-of-the arts methods by a large margin, and is also
robust against various known CMFD attacks. More importantly, BusterNet has
the prominent advantage, over any existing CMFD solutions, of distinguishing
source/target copies. This is a desired capability for forensic experts.

References

1. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based foren-
sic method for copy-move attack detection and transformation recovery. IEEE
Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)

2. Ardizzone, E., Bruno, A., Mazzola, G.: Copy-move forgery detection by matching
triangles of keypoints. IEEE Trans. Inf. Forensics Secur. 10(10), 2084–2094 (2015)

3. Asghar, K., Habib, Z., Hussain, M.: Copy-move and splicing image forgery detec-
tion and localization techniques: a review. Aust. J. Forensic Sci. 49(3), 281–307
(2017)

4. Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting
copy-move forgery. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2009, pp. 1053–1056. IEEE (2009)

5. Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive tech-
niques: a survey. Digit. Investig. 10(3), 226–245 (2013)

6. Bunk, J., et al.: Detection and localization of image forgeries using resampling
features and deep learning. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE (2017)

7. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of
popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur.
7(6), 1841–1854 (2012)

8. Costanzo, A., Amerini, I., Caldelli, R., Barni, M.: Forensic analysis of SIFT key-
point removal and injection. IEEE Trans. Inf. Forensics Secur. 9(9), 1450–1464
(2014)

9. Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery
detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)

10. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis
for instance detection. In: The IEEE International Conference on Computer Vision
(ICCV), October 2017

11. Farid, H.: Seeing is not believing. IEEE Spectr. 46(8) (2009)
12. Fridrich, A.J., Soukal, B.D., Lukáš, A.J.: Detection of copy-move forgery in digital

images. In: Proceedings of Digital Forensic Research Workshop. Citeseer (2003)
13. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-

ural images. In: IEEE Conference on Computer Vision and Pattern Recognition
(2016)

14. Huang, D.Y., Huang, C.N., Hu, W.C., Chou, C.H.: Robustness of copy-move
forgery detection under high JPEG compression artifacts. Multimed. Tools Appl.
76(1), 1509–1530 (2017)

15. Ke, Y., Sukthankar, R., Huston, L.: An efficient parts-based near-duplicate and
sub-image retrieval system. In: Proceedings of the 12th Annual ACM International
Conference on Multimedia, pp. 869–876. ACM (2004)



BusterNet for Copy-Move Forgery Detection 185

16. Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery
detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015)

17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

18. Liu, Y., Guan, Q., Zhao, X.: Copy-move forgery detection based on convolutional
kernel network. Multimed. Tools Appl. 1–25 (2017)

19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

20. Mahdian, B., Saic, S.: Detection of copy-move forgery using a method based on
blur moment invariants. Forensic Sci. Int. 171(2), 180–189 (2007)

21. Mahmood, T., Nawaz, T., Irtaza, A., Ashraf, R., Shah, M., Mahmood, M.T.: Copy-
move forgery detection technique for forensic analysis in digital images. Math.
Probl. Eng. 2016, 1–13 (2016)

22. Manu, V.T., Mehtre, B.M.: Detection of copy-move forgery in images using seg-
mentation and SURF. In: Thampi, S., Bandyopadhyay, S., Krishnan, S., Li, K.C.,
Mosin, S., Ma, M. (eds.) Advances in Signal Processing and Intelligent Recognition
Systems. AISC, vol. 425, pp. 645–654. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-28658-7 55

23. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1520–1528 (2015)

24. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph.
(TOG) 22, 313–318 (2003)

25. Pun, C.M., Yuan, X.C., Bi, X.L.: Image forgery detection using adaptive overseg-
mentation and feature point matching. IEEE Trans. Inf. Forensics Secur. 10(8),
1705–1716 (2015)

26. Ryu, S.-J., Lee, M.-J., Lee, H.-K.: Detection of copy-rotate-move forgery using
Zernike moments. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010.
LNCS, vol. 6387, pp. 51–65. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16435-4 5

27. Shivakumar, B., Baboo, S.: Detection of region duplication forgery in digital images
using SURF. Int. J. Comput. Sci. Issues 8(4), 199–205 (2011)

28. Silva, E., Carvalho, T., Ferreira, A., Rocha, A.: Going deeper into copy-move
forgery detection: exploring image telltales via multi-scale analysis and voting pro-
cesses. J. Vis. Commun. Image Represent. 29, 16–32 (2015)

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

30. Soni, B., Das, P., Thounaojam, D.: CMFD: a detailed review of block based and
key feature based techniques in image copy-move forgery detection. IET Image
Process. 12, 167–178 (2017)

31. Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: CoMoFod—new database for copy-
move forgery detection. In: 2013 55th International Symposium on ELMAR, pp.
49–54. IEEE (2013)

32. Warif, N.B.A., et al.: Copy-move forgery detection: survey, challenges and future
directions. J. Netw. Comput. Appl. 75, 259–278 (2016)

33. Wojna, Z., et al.: The devil is in the decoder (2017)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-28658-7_55
https://doi.org/10.1007/978-3-319-28658-7_55
https://doi.org/10.1007/978-3-642-16435-4_5
https://doi.org/10.1007/978-3-642-16435-4_5


186 Y. Wu et al.

34. Wu, Y., Abd-Almageed, W., Natarajan, P.: Deep matching and validation network:
an end-to-end solution to constrained image splicing localization and detection. In:
Proceedings of the 2017 ACM on Multimedia Conference, MM 2017, pp. 1480–1502
(2017)

35. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale
scene recognition from abbey to zoo. In: 2010 IEEE conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)

36. Yang, B., Sun, X., Guo, H., Xia, Z., Chen, X.: A copy-move forgery detection
method based on CMFD-SIFT. Multimed. Tools Appl. 77, 1–19 (2017)

37. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Detecting image splicing in
the wild (web). In: 2015 IEEE International Conference on Multimedia & Expo
Workshops (ICMEW), pp. 1–6. IEEE (2015)

38. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of
splicing localization algorithms for web images. Multimed. Tools Appl. 76(4), 4801–
4834 (2017)

39. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tam-
pered face detection. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 1831–1839. IEEE (2017)

40. Zhu, Y., Shen, X., Chen, H.: Copy-move forgery detection based on scaled ORB.
Multimed. Tools Appl. 75(6), 3221–3233 (2016)


	BusterNet: Detecting Copy-Move Image Forgery with Source/Target Localization
	1 Introduction
	2 Related Work
	3 Copy-Move Forgery Detection via BusterNet
	3.1 BusterNet Overview
	3.2 Manipulation Detection Branch
	3.3 Similarity Detection Branch
	3.4 BusterNet Fusion

	4 BusterNet Implementation and Training
	4.1 Custom Layer Implementation
	4.2 Training Details

	5 Experimental Evaluation
	5.1 Metrics and Baseline Settings
	5.2 Evaluation Data
	5.3 Overall CMFD Performance Analysis
	5.4 BusterNet Robustness Analysis
	5.5 Source/Target Discernibility Analysis

	6 Conclusion
	References




