
MaskConnect: Connectivity Learning
by Gradient Descent

Karim Ahmed(B) and Lorenzo Torresani

Department of Computer Science, Dartmouth College, Hanover, NH, USA
karim@cs.dartmouth.edu, LT@dartmouth.edu

Abstract. Although deep networks have recently emerged as the model
of choice for many computer vision problems, in order to yield good
results they often require time-consuming architecture search. To com-
bat the complexity of design choices, prior work has adopted the principle
of modularized design which consists in defining the network in terms of
a composition of topologically identical or similar building blocks (a.k.a.
modules). This reduces architecture search to the problem of determin-
ing the number of modules to compose and how to connect such mod-
ules. Again, for reasons of design complexity and training cost, previous
approaches have relied on simple rules of connectivity, e.g., connecting
each module to only the immediately preceding module or perhaps to all
of the previous ones. Such simple connectivity rules are unlikely to yield
the optimal architecture for the given problem.

In this work we remove these predefined choices and propose an algo-
rithm to learn the connections between modules in the network. Instead
of being chosen a priori by the human designer, the connectivity is
learned simultaneously with the weights of the network by optimizing
the loss function of the end task using a modified version of gradient
descent. We demonstrate our connectivity learning method on the prob-
lem of multi-class image classification using two popular architectures:
ResNet and ResNeXt. Experiments on four different datasets show that
connectivity learning using our approach yields consistently higher accu-
racy compared to relying on traditional predefined rules of connectivity.
Furthermore, in certain settings it leads to significant savings in number
of parameters.

Keywords: Connectivity learning · Image categorization

1 Introduction

Deep neural networks have emerged as one of the most prominent models for
problems that require the learning of complex functions and that involve large

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01228-1 22) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11209, pp. 362–378, 2018.
https://doi.org/10.1007/978-3-030-01228-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01228-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-01228-1_22
https://doi.org/10.1007/978-3-030-01228-1_22


MaskConnect: Connectivity Learning by Gradient Descent 363

amounts of training data. While deep learning has recently enabled dramatic
performance improvements in many application domains, the design of deep
architectures is still a challenging and time-consuming endeavor. The difficulty
lies in the many architecture choices that impact—often significantly—the per-
formance of the system. In the specific domain of image categorization, which
is the focus of this paper, significant research effort has been invested in the
empirical study of how depth, filter sizes, number of feature maps, and choice of
nonlinearities affect performance [1–6]. Recently, several authors have proposed
to simplify the architecture design by defining convolutional neural networks
(CNNs) in terms of composition of topologically identical or similar building
blocks or modules. This strategy was arguably first popularized by the VGG
nets [7] which were built by stacking a series of convolutional layers having iden-
tical filter size (3× 3). Other examples are ResNets [8] which are constructed by
stacking residual blocks of fixed topology, ResNeXt models [9] which use multi-
branch residual block modules, DenseNets [10] which use dense blocks as build-
ing blocks, or Multi-Fiber networks [11] which use parallel branches (“fibers”)
connected by routers (“transistors”).

While the principle of modularized design has greatly simplified the challenge
of building effective architectures for image analysis, the choice of how to com-
bine and aggregate the computations of these building blocks still rests on the
shoulders of the human designer. To avoid a combinatorial explosion of options,
prior work has relied on simple, uniform rules of aggregation and composition.
For example, in ResNets and DenseNets each building block is connected only
to the preceding one, via identity mapping, convolution or pooling. ResNeXt
models [9] use a set of simplifying assumptions: the branching factor C (also
referred to as cardinality) is fixed to the same constant in all layers of the net-
work, all branches of a module are fed the same input, and the outputs of parallel
branches are aggregated by a simple additive operation that provides the input
to the next module. While these simple rules of connectivity render network
design more manageable, they are unlikely to yield the optimal connectivity for
the given problem.

In this paper we remove these predefined choices and propose an algorithm
that learns to combine and aggregate building blocks of a neural network by
directly optimizing connectivity of modules with respect to the given task. In
this new regime, the network connectivity naturally arises as a result of training
rather than being hand-defined by the human designer. While in principle this
involves a search over an exponential number of connectivity configurations, our
method can efficiently optimize the training loss with respect to connectivity
using a variant of backpropagation. This is achieved by means of connectivity
masks, i.e., learned binary parameters that act as “switches” determining the
final connectivity in our network. The masks are learned together with the con-
volutional weights of the network, as part of a joint optimization with respect
to the given loss function for the problem.

We evaluate our method on the problem of multi-class image classification
using two popular modular architectures: ResNet and ResNeXt. We demonstrate



364 K. Ahmed and L. Torresani

that models with our learned connectivity consistently outperform the networks
based on predefined rules of connectivity for the same budget of residual blocks
(and parameters). An interesting byproduct of our approach is that, in certain
settings, it can automatically identify modules that are superfluous, i.e., unnec-
essary or detrimental for the end objective. At the end of the optimization, these
unused modules can be pruned away without impacting the learned hypothesis
while reducing substantially the runtime and the number of parameters to store.

By recasting the training procedure as an optimization over learning weights
and connectivity, our method effectively searches over a larger space of solutions.
This yields networks achieving higher accuracy than those constrained to use pre-
defined connectivities. The average training time overhead is moderate, ranging
between 13% (for ResNet models) and 39% (for ResNeXt models) compared to
learning using fixed connectivity which, however, yields lower accuracy. Finally
we point out that, although our experiments are carried out using ResNet and
RexNeXt models, our approach is general and applicable without major modi-
fications to other forms of network architectures and other tasks beyond image
categorization. In principle our method can also be used to learn connectivity
among layers of a traditional (i.e., non-modular) neural network or a CNN. How-
ever, modern networks typically include a very large number of layers (hundreds
or even thousands [12]), which would make our approach very costly. Learning
connectivity among modules is more manageable as each module encapsulates
many layers and thus the total number of modules is typically small even for
deep networks.

2 Related Work

Despite their wide adoption, deep networks often require laborious model search
in order to yield good results. As a result, significant research effort has been
devoted to the design of algorithms for automatic model selection. However, most
of this prior work falls within the genre of hyper-parameter optimization [13–
15] rather than architecture or connectivity learning. Evolutionary search has
been proposed as an interesting framework to learn both the structure as well
as the connections in a neural network [16–24]. Architecture search has also
been recently formulated as a reinforcement learning problem with impressive
results [25]. Several authors have proposed learning connectivity by pruning
unimportant weights from the network [26–30]. However, these prior methods
operate in stages where initially a network with full connectivity is learned
and then connections are greedily removed according to an importance crite-
rion. Compare to all these prior approaches, our work provides the advantage of
learning the connectivity by direct global optimization of the loss function of the
problem at hand rather than by greedy optimization of an auxiliary proxy crite-
rion or by costly evolutionary search. Our technical approach shares similarities
with the “Shake-Shake” regularization [31]. This procedure was demonstrated on
two-branch ResNeXt models and consists in randomly scaling tensors produced
by parallel branches during training while at test time the network uses uniform



MaskConnect: Connectivity Learning by Gradient Descent 365

weighting of tensors. Conversely, our algorithm learns an optimal binary scaling
of the parallel tensors with respect to the training objective and uses the result-
ing network with sparse connectivity at test time. While our algorithm is limited
to optimizing the connectivity structure within a predefined architecture, Adams
et al. [32] proposed a nonparametric Bayesian approach that searches over an
infinite network using MCMC. Our approach can be viewed as a middle ground
between two extremes: using hand-defined networks versus learning/searching
the full architecture from scratch. The advantage is that our connectivity learn-
ing can be done without adding a significant training time overhead (only 13–
39% depending on the architecture) compared to using fixed connectivity. The
disadvantage is that the space of models considered by our approach is a lot
more constrained than in the case of general architecture search. Saxena and
Verbeek [33] introduced convolutional neural fabric which are learnable 3D trel-
lises that locally connect response maps at different layers of a CNN. Similarly
to our work, they enable optimization over an exponentially large family of con-
nectivities, albeit different from those considered here. Finally, our approach is
also related to conditional computation methods [34–43], which learn to drop
out blocks of units. However, unlike these techniques, our algorithm learns a
fixed, sparse connectivity that does not change with the input and thus it keeps
the runtime cost and the number of used parameters constant.

3 Technical Approach

3.1 Modular Architecture

We begin by defining the modular architecture that will be used by our frame-
work. In order to present our method in its full generality, we will describe it in
the context of a general modular architecture, which we will then instantiate in
the form of the two models used in our experiments (ResNet and ResNeXt).

We assume that the general modular architecture consists of a stack of L
modules. (When using ResNet the modules will be residual blocks, while for
ResNeXt each module will consist of multiple parallel branches.) We denote
with xj the input to the j-th module for j = 1, . . . , L. The input of each module
is an activation tensor computed from one the previous modules. We assume that
the module implements a function G(.) parameterized by learnable weights θj .
The weights may for example represent the coefficients of convolutional filters.
Thus, the output yj computed by the j-th module is given by yj = G(xj ; θj).
In prior modular architectures, such as ResNet, ResNeXt and DenseNet, the
connectivity between modules is hand-defined a priori according to a very simple
rule: the input of a module is the output of the preceding module. In other words,
xj ← yj−1. While this makes network design straightforward, it greatly limits
the topology of architectures considered for the given task. In the next subsection
we describe how to parameterize the architecture to remove these constraints and
to enable connectivity learning in modular networks.



366 K. Ahmed and L. Torresani

3.2 Masked Architecture

We now introduce learnable masks defining the connectivity in the network.
Specifically, we want to allow each module j to take input from one or more
of the preceding modules k = 1, . . . , j − 1. To achieve this we define for each
module a binary mask vector that controls the input pathway of that module.
The binary mask vectors are learned jointly with the weights of the network.
Let mj = [mj,1, mj,2, . . . , mj,j−1]

� ∈ {0, 1}j−1 be the binary mask vector defining
the active input connections feeding the j-th module. If mj,k = 1, then the acti-
vation volume produced by the k-th module is fed as input to the j-th module.
If mj,k = 0, then the output from the k-th module is ignored by the j-th mod-
ule. The tensors from the active input connections are all added together (in an
element-wise fashion) to form the input to the module. Thus, if we denote again
with yk the output activation tensor computed by the k-th module, the input
xj to the j-th module will be given by the following equation:

xj =
j−1∑

k=1

mj,k · yk (1)

Then, the output of this module will be obtained through the usual computation,
i.e., yj = G(xj ; θj). We note that under this model we no longer have predefined
connectivity among modules. Instead, the mask mj now determines selectively
for each module which outputs from the previous modules will be aggregated
and form the input to the block. In this paper we constrain the aggregations of
outputs from the active connections to be in the form of simple additions as this
does not require new parameters. When different modules yield feature maps
of different sizes, we use zero-padding shortcuts to increase the dimensions of
feature tensors to the largest size (as in [8]). These shortcuts are parameter free.
We leave to future work the investigation of more sophisticated, parameterized
aggregation schemes.

We point out that depending on the constraints defined over mj , different
interesting models can be realized. For example, by introducing the constraint
that

∑
k mj,k = 1 for each block j, then each module will receive input from

only one of the preceding modules (since each mj,k must be either 0 or 1). At
the other end of the spectrum, if we set mj,k = 1 for all modules j, k, then all
connections would be active. In our experiments we will demonstrate that the
best results are typically achieved for values in between these two extremes, i.e.,
by connecting each module to K previous modules where K is an integer-valued
hyperparameter such that 1 < K < (j − 1). We refer to this hyperparameter
as the fan-in of a module. As discussed in the next section, the mask vector
mj for each block is learned simultaneously with all the other weights in the
network via backpropagation. Finally, we note that it may be possible for a
module in the network to become unused. This happens when, as a result of
the optimization, module k is such that mj,k = 0 for all j. In this case, at the
end of the optimization, we prune the module in order to reduce the number
of parameters to store and to speed up inference (note that this does not affect



MaskConnect: Connectivity Learning by Gradient Descent 367

the function computed by the network). In the next subsection we discuss our
method for jointly learning the weights and the masks in the network.

3.3 MaskConnect: Learning to Connect

We refer to our learning algorithm as MaskConnect. It performs joint optimiza-
tion of a given learning objective � with respect to both the weights of the network
(θ) as well as the masks (m). Since in this paper we apply our method to the
problem of image categorization, we use the traditional multi-class cross-entropy
objective for the loss �. However, our approach can be applied without change
to other loss functions and other tasks benefitting from connectivity learning.

In MaskConnect the weights have real values, as in traditional networks, while
the masks have binary values. This renders the optimization challenging. To
learn these binary parameters, we adopt a modified version of backpropagation,
inspired by the algorithm proposed by Courbariaux et al. [44] to train neural
networks with binary weights. During training we store and update a real-valued
version m̃j ∈ [0, 1]j−1 of the masks, with entries clipped to lie between 0 and 1.

In general, the training via backpropagation consists of three steps: (1) for-
ward propagation, (2) backward propagation, and (3) parameters update. At
each iteration, we stochastically binarize the real-valued masks into binary-
valued vectors mj ∈ {0, 1}j−1 which are then used for the forward propagation
and backward propagation (steps 1 and 2). Instead, during the parameters
update (step 3), the method updates the real-valued masks m̃j . The weights θ of
the convolutional and fully connected layers are optimized using standard back-
propagation. We discuss below the details of our mask training procedure, under
the constraint that at any time there can be only K active entries in the binary
mask mj , where K is a predefined integer hyperparameter with 1 ≤ K ≤ j − 1.
In other words, we impose the following constraints:

mj,k ∈ {0, 1} ∀j, k, and
j−1∑

k=1

mj,k = K ∀j.

These constraints imply that each module receives input from exactly K previous
modules.

Forward Propagation. During the forward propagation, our algorithm first nor-
malizes the real-valued entries in the mask of each block j to sum up to 1,
such that

∑j−1
k=1 m̃j,k = 1. This is done so that Mult(m̃j,1, m̃j,2, . . . , m̃j,j−1) defines

a proper multinomial distribution over the j − 1 possible input connections into
module j. Then, the binary mask mj is stochastically generated by drawing K
distinct samples a1, a2, . . . , aK ∈ {1, . . . , (j − 1)} from the multinomial distribu-
tion over the connections. Finally, the entries corresponding to the K samples
are activated in the binary mask vector, i.e., mj,ak ← 1, for k = 1, . . . ,K. The
input activation volume to the module j is then computed according to Eq. 1
from the sampled binary masks. We note that the sampling from the Multino-
mial distribution ensures that the connections with largest m̃j,k values will be



368 K. Ahmed and L. Torresani

more likely to be chosen, while at the same time the stochasticity of this process
allows different connectivities to be explored, particularly during early stages of
the learning when the real-valued masks still have fairly uniform distributions.

Backward Propagation. In the backward propagation step, the gradient ∂�/∂yk

with respect to each output is obtained via back-propagation from ∂�/∂xj and
the binary masks mj,k.

Mask Update. In the parameter update step our algorithm computes the gradient
with respect to the binary masks for each module. Then, using these computed
gradients and the given learning rate, it updates the real-valued masks via gra-
dient descent. At this time we clip the updated real-valued masks to constrain
them to remain within the valid interval [0, 1] (as in [44]).

Pseudocode for our training procedure is given in the supplementary material.
After joint training over θ and m, we have found beneficial to (1) freeze the binary
masks to the top-K values for each mask (i.e., by setting as active connections
in mj those corresponding to the K largest values in m̃j) and then (2) fine-tune
the weights θ of the network with respect to these fixed binary masks.

In the next subsections we discuss how we instantiated our general approach
for the two architectures considered in our experiments: ResNet and ResNeXt.

3.4 MaskConnect Applied to ResNet

The application of our algorithm to ResNets is quite straightforward. ResNets
are modular networks obtained by stacking residual blocks. A residual block
implements a residual function F(.) with reference to the layer input. Figure 1(a)
(left) illustrates an example of these modular components where the 3 layers in
the block implement the residual function F(x; θ). A shortcut connections adds
the residual block output F(x) to its input x. Thus the complete function G(.)
implemented by a residual block computes G(x; θ) = F(x; θ) + x. The ResNets
originally introduced in [8] use a hand-defined connectivity that passes the out-
put of a block to the immediately subsequent block, i.e., xj+1 ← F(xj ; θj) + xj .
Here we propose to use MaskConnect to learn the input connections for each
individual residual block in the network. This changes the input provided to
block j + 1 in the network to be xj+1 ← ∑j

k=1 mj+1,k [F(xk; θk) + xk], where
binary parameters mj+1,k are learned automatically by our approach simultane-
ously with the weights θ subject to the constraint that

∑j
k=1 mj+1,k = K. This

implies that under our model each residual block now receives input from exactly
K out of the preceding blocks. The output tensors from the K selected blocks
are aggregated using element-wise addition and passed as input to the module.
Our experiments present results for varying values of fan-in hyperparameter K,
which controls the density of connectivity.

3.5 MaskConnect Applied to Multi-branch ResNeXt

The adaptation of MaskConnect to ResNeXt architectures is slightly more com-
plex, as ResNeXt is based on a multi-branch topology. ResNeXt was motivated



MaskConnect: Connectivity Learning by Gradient Descent 369

xj−1

F(xj−2;θj−2) + xj−2

mj−1

F(xj−1;θj−1) + xj−1

mj

xj

F(xj;θj) + xj

mj+1

m
(i−1)
1

m
(i−1)
j m

(i−1)
C

m
(i)
1 m

(i)
j

m
(i)
C

m
(i+1)
1 m

(i+1)
j

m
(i+1)
C

m
(i−1)
1

m
(i−1)
j m

(i−1)
C

m
(i)
1 m

(i)
j

m
(i)
C

m
(i+1)

m
(i+1) m

(i+1)

xjj−11

F(xj−2;θj−2) + xj−2

mj−1

F(xj−1;θj−1) + xj−1

mj

xxjj

F(xj;θj) + xj

mj+1

xj−1

xj

xj+1

Fig. 1. Application of MaskConnect to two forms of modular network: (a) ResNet [45]
and (b) multi-branch ResNeXt [9]. In traditional ResNet (a) (left) the connections
between blocks are fixed (black links) so that each block receives input from only the
preceding block. Our approach (a) (right) learns the optimal input connections (solid
red links) for each individual block from a collection of potential connections (solid and
dotted red links). Similarly, in traditional ResNeXt (b) (left) each module consists of
C parallel residual blocks which are all aggregated and fed to the next module (black
links). MaskConnect (b) (right) replaces the fixed aggregation points of RexNeXt with
learnable masks m defining the active input connections (solid red links) for each
individual residual block. (Color figure online)

by the observation that it is beneficial to arrange residual blocks not only along
the depth dimension but also to implement parallel multiple threads of computa-
tion feeding from the same input layer. The outputs of the parallel residual blocks
are then summed up together with the original input and passed on to the next
module. The resulting multi-branch module is illustrated in Fig. 1(b) (left). More
formally, let F(x; θ(i)j ) be the transformation implemented by the j-th residual
block in module i-th of the network, where j = 1, . . . , C and i = 1, . . . , L, with
L denoting the total number of modules stacked on top of each other to form
the complete network. The hyperparameter C is called the cardinality of the
module and defines the number of parallel branches within each module. The
hyperparameter L controls the total depth of the network. Then, in traditional
ResNeXt, the output of the i-th module is computed as:

yi = xi +
C∑

j=1

F(xi; θ
(i)
j ) (2)

In [9] it was experimentally shown that increasing the cardinality C is a more
effective way of improving accuracy compared to increasing depth or the number



370 K. Ahmed and L. Torresani

of filters. In other words, given a fixed budget of parameters, ResNeXt nets were
shown to consistently outperform single-branch ResNets.

However, in an attempt to ease network design, a couple of restrictive limita-
tions were embedded in the architecture of ResNeXt modules: (1) the C parallel
feature extractors in each module operate on the same input; (2) the number of
active branches is constant at all depth levels of the network.

MaskConnect allows us to remove these restrictions without adding any signif-
icant burden on the process of manual network design, with the exception of a sin-
gle additional integer hyperparameter (K) for the entire network. As in ResNeXt,
our proposed architecture consists of a stack of L multi-branch modules, each con-
taining C parallel feature extractors. However, differently from ResNeXt, each
branch in a module can take a different input. The input pathway of each branch
is controlled by a binary mask vector. Let m

(i)
j = [m

(i)
j,1, m

(i)
j,2, . . . , m

(i)
j,C ]� ∈ {0, 1}C

be the binary mask vector defining the active input connections feeding the j-th
residual block in module i. We note that under this model we no longer have fixed
aggregation nodes summing up all outputs computed from a module. Instead,
the mask m

(i)
j now determines selectively for each block which branches from the

previous module will be aggregated to form the input to the next block. Under
this new scheme, the parallel branches in a module receive different inputs and
as such are likely to yield more diverse features.

As before, different constraints over m
(i)
j will give rise to different forms of

architecture. By introducing the constraint that
∑

k m
(i)
j,k = 1 for all blocks j,

then each residual block will receive input from only one branch (since each
m

(i)
j,k must be either 0 or 1). If instead we set m

(i)
j,k = 1 for all blocks j, k in each

module i, then all connections would be active and we would obtain again the
fixed ResNeXt architecture. In our experiments we present results obtained by
varying the fan-in hyperparameter K such that 1 < K < C. We also note that it
may be possible for a residual block in the network to become unused, as a result
of the optimization over the mask values. Thus, at any point in the network the
total number of active parallel threads can be any number smaller than or equal
to C. This implies that a variable branching factor is learned adaptively for the
different depths in the network.

4 Experiments

We tested our approach on the task of image categorization using two different
examples of modularized architecture: ResNet [8] and ResNeXt [9]. We used
the following datasets for our evaluation: CIFAR-10 [46], CIFAR-100 [46], Mini-
ImageNet [47], as well as the full ImageNet [48]. In this paper we include the
results achieved on CIFAR-100 and ImageNet [48], while the results for CIFAR-
10 [46] and Mini-ImageNet [47] (showing consistent improvements up to nearly
4% over fixed connectivity) can be found in the supplementary material.



MaskConnect: Connectivity Learning by Gradient Descent 371

Table 1. CIFAR-100 accuracies achieved by models trained using the connectivity
of ResNet [45] (Fixed-Prev), a fixed random connectivity (Fixed-Random), and the
connectivity learned by our approach (Learned)

Model Connectivity Accuracy (%)

ResNet-38 Fixed-Prev, K = 1 [45] 68.54

Fixed-Random, K = 10 62.67

Learned, K = 10 70.40

ResNet-74 Fixed-Prev, K = 1 [45] 70.64

Fixed-Random, K = 15 66.93

Learned, K = 15 72.81

ResNet-110 Fixed-Prev, K = 1 [45] 71.21

Fixed-Random, K = 20 67.22

Learned, K = 20 73.15

4.1 CIFAR-100

CIFAR-100 contains images of size 32 × 32. It consists of 50,000 training images
and 10,000 test images. Each image is labeled as belonging to one of 100 possible
classes.

CIFAR-100 Results Based on the ResNet Architecture

Fig. 2. Varying the fan-in (K), i.e., the number
of learned active connections to each residual
block. The plot reports accuracy achieved by
MaskConnect on CIFAR-100 using a ResNet-
38 architecture (L = 18 blocks). All models
have the same number of parameters (0.57M).
The best accuracy is achieved at K = 10.

Effect of Fan-In (K). The fan-
in hyperparameter (K) defines the
number of active input connec-
tions feeding each residual block.
We study the effect of the fan-
in on the performance of models
built and trained using our pro-
posed approach. We use residual
blocks consisting of two 3× 3 con-
volutional layers. We use a model
obtained by stacking L = 18 resid-
ual blocks with total depth of D =
2 + 2L = 38 layers. We trained
and tested this architecture using
different fan-in values: K = 1, .., 17. All these models have the same learning
capacity as varying K does not affect the number of parameters. The results
are shown in Fig. 2. We notice that the best accuracy is achieved using K = 10.
Using a very low or very high fan-in yields lower accuracy. However, the algo-
rithm does not appear to be overly sensitive to the fan-in hyperparameter, as a
wide range of values for K (from K = 7 to K = 13) produce accuracy close to
the best.

Varying the Model. We trained several ResNet models differing in depth, using
both MaskConnect as as well as the traditional predefined connectivity. For these



372 K. Ahmed and L. Torresani

experiments we use a stack of L residual blocks with two 3 x 3 convolutional layers
for each block. We choose L ∈ {18, 36, 54} to build networks with depths D =
2 + 2L equal to 38, 74, and 110 layers, respectively. We show the classification
accuracy achieved by different models in Table 1. We report the results achieved
using MaskConnect with fan-in K = 10, K = 15, K = 20 for models of depth
D = 38, D = 74, D = 110, respectively. Fixed-Prev denotes the performance of
ResNet, where each block is connected to only the previous block (K = 1). We
also include the accuracy achieved by choosing a random connectivity (Fixed-
Random) using the same fan-in values K as our approach and training the
parameters while keeping the random connectivity fixed. This baseline is useful
to show that our model achieves higher accuracy over traditional ResNet not
because of the higher number of connections (i.e., K > 1), but rather because
it learns the connectivity. Indeed, the results in Table 1 show that learning the
connectivity using MaskConnect yields consistently higher accuracy than using
multiple random connections or a single connection to the previous block.

CIFAR-100 Results Based on Multi-branch ResNeXt

Effect of Fan-In (K). Even for ResNeXt, we start by studying the effect of the
fan-in hyperparameter (K). For this experiment we use a model obtained by
stacking L = 6 multi-branch residual modules, each having cardinality C = 8
(number of branches in each module). We use residual blocks consisting of 3
convolutional layers with a bottleneck implementing dimensionality reduction
on the number of feature channels, as shown in Fig. 1(b). The bottleneck for this
experiment was set to w = 4. Since each residual block consists of 3 layers, the
total depth of the network in terms of learnable layers is D = 2 + 3L = 20.

We trained and tested this architecture using different fan-in values: K =
1, ..., 8. Again, varying K does not alter the number of parameters. The results
are shown in Fig. 3. We can see that the best accuracy is achieved by connecting
each residual block to K = 4 branches out of the total C = 8 in each module.
Note that when setting K = C, there is no need to learn the masks. In this case
each mask is simply replaced by an element-wise addition of the outputs from
all the branches. This renders the model equivalent to ResNeXt [9], which has
fixed connectivity. Based on the results of Fig. 3, in all our experiments below we
use K = 4 (since it gives the best accuracy) but also K = 1 since it gives high
sparsity which, as we will see shortly, implies savings in number of parameters.

Varying the Models. In Table 2 we show the classification accuracy achieved with
ResNeXt models of different depth and cardinality (the details of each model are
listed in the Supplementary Material). For each architecture we also include the
accuracy achieved with full (as opposed to learned) connectivity, which corre-
sponds to ResNeXt. These results show that learning the connectivity produces
consistently higher accuracy than using fixed connectivity, with accuracy gains
of up to 2.2% compared to the state-of-the-art ResNeXt model. Furthermore,
we can notice that the accuracy of models based on random connectivity (Fixed-
Random) is considerably lower compared to our approach, despite having the



MaskConnect: Connectivity Learning by Gradient Descent 373

Fig. 3. Varying the fan-in (K)
of our model, i.e., the number
of active input branches to each
residual block. The plot reports
accuracy achieved on CIFAR-100
using a network stack of L = 6
ResNeXt modules having cardi-
nality C = 8 and bottleneck width
w = 4. All models have the same
number of parameters (0.28M).

Fig. 4. A visualization of the fixed connec-
tivity of ResNext (left) vs the connectiv-
ity learned by our method (right) using
K = 1. Each green square is a residual
block, each row of C = 8 square is a multi-
branch module. Arrows indicate pathways
connecting residual blocks of adjacent mod-
ules. It can be noticed that MaskConnect
learns sparse connections. The squares with-
out in/out edges are those pruned at the
end of learning. This gives rise to a branch-
ing factor that varies along the depth of the
net. (Color figure online)

same connectivity density (K = 4). This shows that the improvements of our
approach over ResNeXt are not due to sparser connectivity but they are rather
due to learned connectivity. We note that these improvements in accuracy come
at little computational training cost: the average training time overhead for
learning masks and weights is about 39% using our unoptimized implementa-
tion compared to learning only the weights given a fixed connectivity.

Parameter Savings. Our proposed approach provides the benefit of automatically
identifying residual blocks that are unnecessary. At the end of the training, the
unused residual blocks can be pruned away. This yields savings in the number
of parameters to store and in test-time computation. In Table 2, columns Train
and Test under Params show the original number of parameters (used during
training) and the number of parameters after pruning (used at test-time). Note
that for the biggest architecture, our approach using K = 1 yields a parameter
saving of 40% compared to ResNeXt with full connectivity (20.5M vs 34.4M),
while achieving the same accuracy. Thus, in summary, using fan-in K = 4 gives
models that have the same number of parameters as ResNeXt but they yield
higher accuracy; using fan-in K = 1 gives a significant saving in number of
parameters and accuracy on par with ResNeXt.

Visualization of the Learned Connectivity. Figure 4 provides an illustration of
the connectivity learned by MaskConnect for K = 1 versus the fixed connectivity



374 K. Ahmed and L. Torresani

Table 2. CIFAR-100 accuracies achieved by two ResNeXt architectures trained using
predefined full connectivity (Fixed-Full) [9], random connectivity (Fixed-Random, K =
4), and the connectivity learned by our algorithm (Learned, K = 1, K = 4). Each
model was trained 4 times, using different random initializations. We report the best
test performance as well as the mean test performance computed from the 4 runs. We
list the number of parameters used during training (Params-Train) and the number
of parameters obtained after pruning the unused blocks (Params-Test). Our learned
connectivity using K = 4 produces accuracy gains of up to 2.2% compared to the
strong ResNeXt model, while using K = 1 yields results equivalent to ResNeXt but it
induces a significant reduction in number of parameters at test time (e.g., a saving of
40% for model {29, 64, 8})

Architecture Connectivity Params Accuracy (%)

{Depth (D), Bottleneck width (w),

Cardinality (C)}
Train Test Best (mean ± std)

{29, 8, 8} Fixed-Full, K=8 [9] 0.86M 0.86M 73.52 (73.37± 0.13)

Learned, K = 1 0.86M 0.65M 73.91 (73.76± 0.14)

Learned, K = 4 0.86M 0.81M 75.89 (75.77± 0.12)

Fixed-Random, K = 4 0.86M 0.85M 72.85 (72.66± 0.24)

{29, 64, 8} Fixed-Full, K=8 [9] 34.4M 34.4M 82.23 (82.12± 0.12)

Learned, K = 1 34.4M 20.5M 82.31 (82.15± 0.15)

Learned, K = 4 34.4M 32.1M 84.05 (83.94± 0.11)

Fixed-Random, K = 4 34.4M 34.3M 81.96 (81.73± 0.20)

of ResNeXt for model {D = 29, w = 8, C = 8}. While ResNeXt feeds the same
input to all blocks of a module, our algorithm learns different input pathways
for each block and yields a branching factor that varies along depth.

4.2 ImageNet

Finally, we evaluate our approach on the large-scale ImageNet 2012 dataset [48],
which includes images of 1000 classes. We train our approach on the training set
(1.28M images) and evaluate it on the validation set (50K images).

ImageNet Results Based on the ResNet Architecture. For this experi-
ment we use a stack of L = 16 residual blocks with 3 convolutional layers with
a bottleneck architecture. Thus, the total number of layers is D = 2 + 3L = 50.
Compared to the traditional ResNet using fixed connectivity, the same network
trained using MaskConnect with fan-in K = 10 yields a top-1 accuracy gain of
1.94% (78.09% vs 76.15%).

ImageNet Results Based on Multi-branch ResNeXt . In Table 3, we report
the top accuracies for three different ResNeXt architectures. For these experi-
ments we set K = C/2. We can observe that for all three architectures, our
learned connectivity yields an improvement in accuracy over fixed full connec-
tivity [9].



MaskConnect: Connectivity Learning by Gradient Descent 375

Table 3. ImageNet accuracies (single crop) achieved by different architectures using
the predefined connectivity of ResNeXt (Fixed-Full) versus the connectivity learned
by our algorithm (Learned)

Architecture Connectivity Accuracy

{Depth (D), Bottleneck
width (w), Cardinality (C)}

Top-1 Top-5

{50, 4, 32} Fixed-Full, K = 32 [9] 77.8 93.3

Learned, K = 16 79.1 94.1

{101, 4, 32} Fixed-Full, K = 32 [9] 78.8 94.1

Learned, K = 16 79.5 94.5

{101, 4, 64} Fixed-Full, K = 64 [9] 79.6 94.7

Learned, K = 32 79.8 94.8

5 Conclusions

In this paper we introduced an algorithm to learn the connectivity of deep mod-
ular networks. The problem is formulated as a single joint optimization over the
weights and connections between modules in the model. We tested our approach
on challenging image categorization benchmarks where it led to significant accu-
racy improvements over the state-of-the-art ResNet and ResNeXt models using
fixed connectivity. An added benefit of our approach is that it can automatically
identify superfluous blocks, which can be pruned after training without impact
on accuracy for more efficient testing and for reducing the number of parameters
to store.

While our experiments were carried out on two particular architectures
(ResNet and ResNeXt) and a specific form of building block (residual block),
we expect the benefits of our approach to extend to other modules and net-
work structures. For example, it could be applied to learn the connectivity of
skip-connections in DenseNets [10], which are currently based on predefined
connectivity rules. In this paper, our masks perform non-parametric additive
aggregation of the branch outputs. It would be interesting to experiment with
learnable (parametric) aggregations of the outputs from the individual branches.
Our approach is limited to learning connectivity within a given, fixed architec-
ture. Future work will explore the use of learnable masks for full architecture
discovery.

Acknowledgements. This work was funded in part by NSF award CNS-120552. We
gratefully acknowledge NVIDIA and Facebook for the donation of GPUs used for por-
tions of this work.



376 K. Ahmed and L. Torresani

References

1. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2011, Fort Lauderdale, USA, 11–13 April 2011, pp. 315–323
(2011)

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
25, Lake Tahoe, Nevada, United States, pp. 1106–1114 (2012)

3. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat:
integrated recognition, localization and detection using convolutional networks. In:
International Conference on Learning Representations (ICLR) (2013)

4. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. Proc. ICML 30, 1 (2013)

5. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

6. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June
2005, pp. 1–9 (2015)

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICLR) (2015)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

9. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transfor-
mations for deep neural networks. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR (2017)

10. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2017)

11. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: Multi-fiber networks for video
recognition. In: European Conference on Computer Vision (ECCV) (2018)

12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

13. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

14. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems 25,
Lake Tahoe, Nevada, United States, pp. 2960–2968 (2012)

15. Snoek, J., et al.: Scalable Bayesian optimization using deep neural networks. In:
Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6–11 July 2015, pp. 2171–2180 (2015)

16. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

17. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1712.06567


MaskConnect: Connectivity Learning by Gradient Descent 377

18. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as
a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017)

19. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical
representations for efficient architecture search. arXiv preprint arXiv:1711.00436
(2017)

20. Xie, L., Yuille, A.L.: Genetic CNN. In: ICCV, pp. 1388–1397 (2017)
21. Wierstra, D., Gomez, F.J., Schmidhuber, J.: Modeling systems with internal state

using Evolino. In: Genetic and Evolutionary Computation Conference, GECCO
2005, Proceedings, Washington DC, USA, 25–29 June 2005, pp. 1795–1802 (2005)

22. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evol. Intell. 1(1), 47–62 (2008)

23. Real, E., et al.: Large-scale evolution of image classifiers. CoRR abs/1703.01041
(2017)

24. Fernando, C., et al.: PathNet: evolution channels gradient descent in super neural
networks. CoRR abs/1701.08734 (2017)

25. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
International Conference on Learning Representations (ICLR) (2017)

26. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems 2, NIPS Conference, Denver, Colorado, USA, 27–
30 November 1989, pp. 598–605 (1989)

27. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
work with pruning, trained quantization and Huffman coding. In: International
Conference on Learning Representations (ICLR) (2015)

28. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems
28, Montreal, Quebec, Canada, pp. 1135–1143 (2015)

29. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In:
Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, 5–10 December 2016, Barcelona, Spain,
pp. 1379–1387 (2016)

30. Han, S., et al.: DSD: regularizing deep neural networks with dense-sparse-dense
training flow. In: International Conference on Learning Representations (ICLR)
(2016)

31. Gastaldi, X.: Shake-shake regularization. CoRR abs/1705.07485 (2017)
32. Adams, R.P., Wallach, H.M., Ghahramani, Z.: Learning the structure of deep

sparse graphical models. In: Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, 13–15 May 2010, pp. 1–8 (2010)

33. Saxena, S., Verbeek, J.: Convolutional neural fabrics. In: Advances in Neural Infor-
mation Processing Systems 29: Annual Conference on Neural Information Process-
ing Systems 2016, 5–10 December 2016, Barcelona, Spain, pp. 4053–4061 (2016)

34. Wu, Z., et al.: BlockDrop: dynamic inference paths in residual networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8817–8826 (2018)

35. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

36. Bengio, E., Bacon, P.L., Pineau, J., Precup, D.: Conditional computation in neural
networks for faster models. arXiv preprint arXiv:1511.06297 (2015)

http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1511.06297


378 K. Ahmed and L. Torresani

37. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H.,
Mart́ın-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol.
7978, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39593-2 1

38. Shazeer, N., et al.: Outrageously large neural networks: the sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538 (2017)

39. Davis, A., Arel, I.: Low-rank approximations for conditional feedforward computa-
tion in deep neural networks. arXiv preprint arXiv:1312.4461 (2013)

40. Eigen, D., Ranzato, M., Sutskever, I.: Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314 (2013)

41. Denoyer, L., Gallinari, P.: Deep sequential neural network. arXiv preprint
arXiv:1410.0510 (2014)

42. Cho, K., Bengio, Y.: Exponentially increasing the capacity-to-computation ratio for
conditional computation in deep learning. arXiv preprint arXiv:1406.7362 (2014)

43. Almahairi, A., Ballas, N., Cooijmans, T., Zheng, Y., Larochelle, H., Courville, A.:
Dynamic capacity networks. In: International Conference on Machine Learning, pp.
2549–2558 (2016)

44. Courbariaux, M., Bengio, Y., David, J.: BinaryConnect: training deep neural net-
works with binary weights during propagations. In: Advances in Neural Information
Processing Systems 28, Montreal, Quebec, Canada, pp. 3123–3131 (2015)

45. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015)

46. Krizhesvsky, A.: Learning multiple layers of features from tiny images. Technical
report (2009). https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

47. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: Advances in Neural Information Processing
Systems 29, Barcelona, Spain, pp. 3630–3638 (2016)

48. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierar-
chical image database. In: 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20–25 June 2009, Miami, Florida,
USA, pp. 248–255 (2009)

https://doi.org/10.1007/978-3-642-39593-2_1
https://doi.org/10.1007/978-3-642-39593-2_1
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1312.4461
http://arxiv.org/abs/1312.4314
http://arxiv.org/abs/1410.0510
http://arxiv.org/abs/1406.7362
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	MaskConnect: Connectivity Learning by Gradient Descent
	1 Introduction
	2 Related Work
	3 Technical Approach
	3.1 Modular Architecture
	3.2 Masked Architecture
	3.3 MaskConnect: Learning to Connect
	3.4 MaskConnect Applied to ResNet
	3.5 MaskConnect Applied to Multi-branch ResNeXt

	4 Experiments
	4.1 CIFAR-100
	4.2 ImageNet

	5 Conclusions
	References




