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Abstract. Semantic correspondence is the problem of establishing cor-
respondences across images depicting different instances of the same
object or scene class. One of recent approaches to this problem is to esti-
mate parameters of a global transformation model that densely aligns one
image to the other. Since an entire correlation map between all feature
pairs across images is typically used to predict such a global transfor-
mation, noisy features from different backgrounds, clutter, and occlusion
distract the predictor from correct estimation of the alignment. This is
a challenging issue, in particular, in the problem of semantic correspon-
dence where a large degree of image variations is often involved. In this
paper, we introduce an attentive semantic alignment method that focuses
on reliable correlations, filtering out distractors. For effective attention,
we also propose an offset-aware correlation kernel that learns to capture
translation-invariant local transformations in computing correlation val-
ues over spatial locations. Experiments demonstrate the effectiveness of
the attentive model and offset-aware kernel, and the proposed model
combining both techniques achieves the state-of-the-art performance.
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1 Introduction

Semantic correspondence is the problem of establishing correspondences across
images depicting different instances of the same object or scene class. Compared
to conventional correspondence tasks handling pictures of the same scene, such
as stereo matching [1,2] and motion estimation [3–5], the problem of semantic
correspondence involves substantially larger changes in appearance and spatial
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Fig. 1. The proposed attentive semantic alignment. Our model estimates dense corre-
spondences of objects by predicting a set of global transformation parameters via an
attention process. The attention process spatially focuses on the reliable local trans-
formation features, filtering out irrelevant backgrounds and clutter.

layout, thus remaining very challenging. For this reason, traditional approaches
based on hand-crafted features such as SIFT [6,7] and HOG [8–10] do not pro-
duce satisfactory results on this problem due to lack of high-level semantics in
local feature representations.

While previous approaches to the problem focus on introducing an effective
spatial regularizer in matching [7,9,11], recent convolutional neural networks
have advanced this area by learning high-level semantic features [12–24]. One of
the main approaches [13] is to estimate parameters of a global transformation
model that densely aligns one image to the other. In contrast to other approaches,
it casts the whole correspondence problem for all individual features into a sim-
ple regression problem with a global transformation model, thus predicting dense
correspondences through the efficient pipeline. On the other hand, however, the
global alignment approach may be easily distracted; An entire correlation map
between all feature pairs across images is used to predict such a global transfor-
mation, and thus noisy features from different backgrounds, clutter, and occlu-
sion, may distract the predictor from correct estimation of the alignment. This
is a challenging issue, in particular, in the problem of semantic correspondence
where a large degree of image variations is often involved.

In this paper, we introduce an attentive semantic alignment method that
focuses on reliable correlations, filtering out distractors as shown in Fig. 1. For
effective attention, we also propose an offset-aware correlation kernel that learns
to capture translation-invariant local transformations in computing correlation
values over spatial locations. The resultant feature map of offset-aware correla-
tion (OAC) kernels is computed from two input features, where each activation
of the feature map represents how smoothly a source feature is transformed spa-
tially to the target feature map. This use of OAC kernels greatly improves a
subsequent attention process. Experiments demonstrate the effectiveness of the
attentive model and offset-aware kernel, and the proposed model combining both
techniques achieves the state-of-the-art performance.
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Our contribution in this work is threefold:

• The proposed algorithm incorporates an attention process to estimate a global
transformation from a set of inconsistent and noisy local transformations for
semantic image alignment.

• We introduce offset-aware correlation kernels to guide the network in cap-
turing local transformations at each spatial location effectively, and employ
the kernels to compute feature correlations between two images for better
representation of semantic alignment.

• The proposed network with the attention module and offset-aware correlation
kernels achieves the state-of-the-art performances on semantic correspondence
benchmarks.

The rest of the paper is organized as follows. We overview the related work in
Sect. 2. Section 3 describes our proposed network with the attention process and
the offset-based correlation kernels. Finally, we show the experimental results of
our method and conclude the paper in Sects. 4 and 5.

2 Related Work

Most approaches to semantic correspondence are based on dense matching of
local image features. Early methods extract local features of patches using hand-
crafted feature descriptors [25] such as SIFT [7,11,26,27] and HOG [9,10,28,29].
In spite of some success, the lack of high-level semantics in the feature representa-
tion makes the approaches suffer from non-rigid deformation and large appear-
ance changes of objects. While such challenges have been mainly investigated
in the area of graph-based image matching [28,30–32], recent methods [15–24]
rely on deep neural networks to extract high-level features of patches for robust
matching. More recently, Han et al. [14] propose a deep neural network that
learns both a feature extractor and a matching model for semantic correspon-
dence. In spite of these developments, all these approaches detect correspon-
dences by matching patches or region proposals based on their local features. In
contrast, Rocco et al. [13] propose a global transformation estimation method
that is the most relevant work to ours. Their model in [13] predicts the trans-
formation parameters from a correlation map obtained by computing correla-
tions of every pair of features in source and target feature maps. Although this
model is similar to ours in that it estimates the global transformation based on
correlations of feature pairs, our model is distinguished by the attention process
suppressing irrelevant features and the use of the OAC kernels constructing local
transformation features.

There are some related studies on other tasks using feature correlations such
as optical flow estimation [3] and stereo matching [33,34]. Dosovitskiy et al. [3]
use correlations between features of two video frames to estimate optical flow,
while Zbontar et al. [33] and Luo et al. [34] extract feature correlations from
patches of images for stereo matching. Although all these methods utilize the
correlations, they extract correlations from features in a limited set of candidate
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regions. Moreover, unlike ours, they do not explore the attentive process and the
offset-based correlation kernels.

Lately, attention models have been widely explored for various tasks with
multi-modal inputs such as image captioning [35,36], visual question answer-
ing [37,38], attribute prediction [39] and machine translation [40,41]. In these
studies, models attend to the relevant regions referred and guided by another
modality such as language, while the proposed model attends based on a self-
guidance. Noh et al. [42] use an attention process for image retrieval to extract
deep local features, where the attention is obtained from the features themselves
as in our work.

3 Deep Attentive Semantic Alignment Network

We propose a deep neural network architecture for semantic alignment incor-
porating an attention process with a novel offset-aware correlation kernel. Our
network takes as inputs two images and estimates a set of global transformation
parameters using three main components: feature extractor, local transformation
encoder, and attentive global transformation estimator as presented in Fig. 2. We
describe each of these components in details.

Fig. 2. Overall architecture of the proposed network. It consists of three main compo-
nents: feature extractor, local transformation encoder, and attentive global transfor-
mation estimator. For details, see text.

3.1 Feature Extractor

Given source and target images, we first extract their image feature maps
f src,f trg ∈ RD×H×W using a fully convolutional image feature extractor, where
H and W are height and width of input images, respectively. We use a VGG-
16 [43] model pretrained on ImageNet [44] and extract features from its pool4
layer. We share the weights of the feature extractor for both source and target
images. Input images are resized into 240 × 240 and fed to the feature extrac-
tor resulting in 15 × 15 feature maps with 512 channels. After extracting the
features, we normalize them using L2 norm.
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3.2 Local Transformation Encoder

Given source and target feature maps from the feature extractor, the model
encodes local transformations of the source features with respect to the target
feature map. The encoding is given by introducing a novel offset-aware corre-
lation (OAC) kernel, which facilitates to overcome limitations of conventional
correlation layers [13]. We briefly describe details of the correlation layer includ-
ing its limitations and discuss the proposed OAC kernel.

Correlation Layer. The correlation layer computes correlations of all pairs of
features from the source and the target images [13]. Specifically, the correlation
layer takes two feature maps as its inputs and constructs a correlation map
c ∈ RHW×H×W , which is given by

ci,j = f src
i,j

�f̂ trg, (1)

where ci,j ∈ c is a HW dimensional correlation vector at a spatial location (i, j),
f src

i,j ∈ f src is a feature vector at a location (i, j) of the source image, and f̂ trg ∈
RD×HW is a spatially flattened feature map of f trg of the target image. In other
words, each correlation vector ci,j consists of correlations between a single source
feature f src

i,j and all target features of f trg. Although each element of a correlation
vector maintains the correspondence likelihood of a source feature onto a certain
location in the target feature map, the order of elements in the correlation vector
is based on the absolute coordinates of individual target features regardless of
the source feature location. This means that decoding the local displacement of
the source feature requires not only the vector itself but also the spatial location
of the source feature. For example, consider a correlation vector ci,j = [1, 0, 0, 0]�

between 2×2 feature maps, each element of which is the correlation of f src
i,j with

f trg
0,0 , f trg

0,1 , f trg
1,0 and f trg

1,1 . The displacement represented by the vector varies with
the coordinate of the source feature (i, j). When (i, j) = (0, 0), it indicates that
the source feature f src

0,0 remains at the same location (0, 0) in the target feature
map. When (i, j) = (0, 1), it implies that f src

0,1 is moved to the left of its original
location in the target feature map.

Given a correlation map, decoding the local displacement of a source feature
requires incorporating the offset information from the source feature to indi-
vidual target features. And, this local process is crucial for subsequent spatial
attention process in the next section. Therefore, we first introduce an offset-
aware correlation kernel that utilizes the offset of features during the kernel
application.

Offset-Aware Correlation Kernels. Similarly to the correlation layer, our
OAC kernels also take two input feature maps and utilize correlations of all
feature pairs between these feature maps. The kernels naturally capture the
displacement of a source feature in the target feature map by aligning kernel
weights based on the offset between the source and target features for each
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Fig. 3. Offset-aware correlation kernel at different source locations: (a) at (0, 0) and (b)
at (0, 1). Each dotted line connects source and target features to compute correlation,
and wi,j represents a kernel weight for the dotted line. Note that kernel weights are
associated with different correlation pairs when source locations vary.

correlation as illustrated in Fig. 3. Formally speaking, an OAC kernel captures
feature displacement of a source feature f src

i,j by

h
(n)
i,j =

H∑

k=1

W∑

l=1

w
(n)
i−k,j−lci,j;k,l (2)

=
H∑

k=1

W∑

l=1

w
(n)
i−k,j−lf

src
i,j

�f trg
k,l , (3)

where h
(n)
i,j is the kernel output with the kernel index n, ci,j;k,l is the correlation

between a source feature f src
i,j and a target feature f trg

k,l , and Φ(n) = {w
(n)
s,t } is

a set of the kernel weights. Note that the kernel weights are indexed by offset
between the source and target features, and shared for correlations of any feature
pair with the same offset. For example, in Fig. 3a, w0,0 is associated with the
target feature at (0, 0) because the source location is (0, 0). The same weight
w0,0 is associated with the target feature at (0, 1) when the source location is
(0, 1) as in Fig. 3b because the offset between these features is (0, 0). Also note
that each kernel output h

(n)
i,j at a location (i, j) captures the displacement of its

corresponding source feature f src
i,j at the same location.

While a proposed kernel captures a single aspect of feature displacement,
a set of the proposed kernels produce a dense feature representation of feature
displacement for each source feature. We use 128 OAC kernels resulting in a
feature displacement map h ∈ R128×15×15 encoding the displacement of each
source feature. We set ReLU as the activation functions of the kernel outputs,
and compute normalized correlations in OAC kernels since normalization further
improves the scores as observed in [13].
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In practice, the proposed OAC kernels are implemented by two sub-
procedures. We first compute the normalized correlation map reordered based
on the offsets between the locations of the source and target features. In this
reordered correlation map, every correlation with the same relative displacement
is arranged in the same channel. This reordering results in (2H − 1)(2W − 1)
possible offsets and thus the size of the output tensor becomes (2H − 1)(2W −
1) × H × W where many of the values are zeros due to non-existing pairs for
some offsets. Then, we use a 1 × 1 convolutional layer to compute the dense
feature representation from the raw displacement information captured in the
reordered correlation map. Note that this process significantly reduces the num-
ber of channels by compactly encoding various aspects of the local displacements
into dense representations.

Encoding Local Transformation Features. Since the feature displacement
map conveys the movement of each source feature independently, each feature
alone is not sufficient to predict the global transformation parameters. To allow
the network predicts the global transformation from local features in the atten-
tion process, we construct a local transformation feature map by combining
spatially adjacent feature displacement information captured by h. That is, the
proposed network feeds the feature displacement map h to a 7 × 7 convolution
layer with 128 output channels applied without padding. This convolution layer
results in a local transformation feature map F ∈ R128×9×9. Note that each fea-
ture ti,j ∈ F captures transformations occurred in a local region. We utilize this
local transformation feature map to predict the global transformation through
an attention process.

Fig. 4. Illustration of attention process. Noisy features in local transformation feature
map are filtered by assigning lower probabilities to these locations. Arrows in boxes of
local transformation feature map demonstrate features encoding local transformations,
and grayscale colors in attention distribution represent magnitudes of probabilities
where brighter colors mean higher probabilities.
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3.3 Attentive Global Transformation Estimator

After local transformation encoding, a set of global transformation parameters is
estimated with an attention process. Given a local transformation feature map
F ∈ RD̂×Ĥ×Ŵ extracted by OAC kernels with a convolution layer, the net-
work focuses on reliable local transformation features by filtering out distracting
regions as depicted in Fig. 4 to predict the parameters from the aggregation of
those features. Although a feature map F gives sufficient information to predict
the global transformation from source to target, local transformation features
extracted from a real image pair is noisy due to image variations such as back-
ground clutter and intra-class variations. Therefore, we propose a model that
suppresses unreliable features by the attention process and extracts an attended
feature vector that summarizes local transformations from all reliable locations
to estimate an accurate global transformation. In other words, the model com-
putes an attended transformation feature τatt by

τatt =
Ĥ∑

i=1

Ŵ∑

j=1

αi,jG(ti,j), (4)

where G : RD̂ → RD′
is a projection function of ti,j into a D′ dimensional vector

space and α = {αi,j} is an attention probability distribution over feature map.
The model computes the attention probabilities by

αi,j =
exp (S(ti,j))

∑Ĥ
k=1

∑Ŵ
l=1 exp (S(tk,l))

, (5)

where S : RD̂ → R is an attention score function producing a single scalar given
a local transformation feature. Note that the model learns to suppress noisy
features by assigning low attention scores and reducing their contribution to the
attended feature.

Once the attended feature τatt over all local transformations is obtained,
we compute the global transformation θ ∈ RQ by a simple matrix-vector
multiplication as

θ = Wτatt, (6)

where W ∈ RQ×D′
is a weight matrix for linear projection of the attended

feature τatt.
In summary, we first compute local transformation between two images and

perform a nonlinear embedding using a projection function G(·). The embedded
vector is weighted by spatial attention to compute an attended feature τatt as
shown in Eq. (4). The global transformation vector is obtained by linear projec-
tion of the attended feature, which is parametrized by a matrix as presented in
Eq. (6).

We use multi-layer perceptrons (MLPs) for G and S in Eqs. (4) and (5). G
is a two-layer MLP with 128 hidden and output ReLU activations. Since the
feature representations produced by G is directly used for the final estimation
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as a linear mapping in Eq. (6), we additionally concatenate 5-dimensional index
embedding to the feature ti,j ∈ F to better estimate the global transformation
from local transformation features. While S is another two-layer MLP with 64
hidden ReLU activations, its output is a scalar without non-linearity; this is
due to the application of softmax normalization outside S. Note that we do not
use the index embedding to avoid strong biases of attentions on certain regions.
Since G and S are applied to all feature vectors across the spatial dimensions,
we implement them by multiple 1 × 1 convolutions with batch normalizations.

Network Training. We build two of the proposed networks with different
parametric global transformations: affine and thin-plate spline (TPS) transfor-
mations. To train the network, we adapt the average transformed grid distance
loss proposed in [13], which indirectly measures the distance from the predicted
transformation parameters θ to the ground-truth transformation parameters
θGT. Given θ and θGT, the transformed grid distance TGD(θ, θGT) is obtained
by

TGD(θ, θGT) =
1

|G|
∑

g∈G
d (Tθ (g) , TθGT (g))2 (7)

where G is a set of points in a regular grid, Tθ is the transformation param-
eterized by θ and d(·) is a distance measure. We minimize the average TGD
of training examples to train the network. Since every operation within the
proposed network is differentiable, the network is trainable end-to-end using a
gradient-based optimization algorithm. We use ADAM [45] with initial learning
rate of 2 × 10−4 and batch size of 32 for 50 epochs. During training, the pre-
trained feature extractor is fixed and only the other parts of the network are
finetuned.

4 Experiments

We evaluate the proposed method on public benchmarks for semantic corre-
spondence estimation. The experiments demonstrate that the proposed atten-
tive method and OAC kernels are effective in semantic alignment, substantially
improving the baseline models. The codes are publicly released at http://cvlab.
postech.ac.kr/research/A2Net/.

4.1 Experimental Settings

Training with Self-supervision. While the loss function requires the full
supervision of θGT, it is very expensive or even impractical to collect exact
ground-truth transformation parameters for non-rigid objects involving intra-
class variations. Therefore, it is hard to scale up to numerous instances and
classes, restricting generalization. For example, the largest annotation dataset
at this time, PF-PASCAL, only contains total 1,351 image pairs from 20 classes,
and furthermore their dense annotations are extrapolated from sparse keypoints,

http://cvlab.postech.ac.kr/research/A2Net/
http://cvlab.postech.ac.kr/research/A2Net/
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thus being not fully exact. To work around this problem, we adopt the self-
supervised learning for semantic alignment, which is free from the burden of any
manual annotation, is an appealing alternative introduced in [13]. In this frame-
work, given a public image dataset D without any annotations, we synthetically
generate a training example (Isrc, Itrg) by randomly sampling an image Isrc from
D and computing a transformed image Itrg by applying a random transformation
θGT. We also use mirror padding and center cropping following [13] to avoid bor-
der artifacts. The synthetic image pairs generated by this process are annotated
with the ground-truth transformation parameters θGT allowing us to train the
network with full supervision. Note that, however, this training scheme can be
considered unsupervised since no annotated real dataset is used during training.

For the synthetic dataset generation, we use PASCAL VOC 2011 [46], and
build two variations of training datasets with either affine or TPS transforma-
tion each for its corresponding network. A set of PASCAL VOC images is kept
separate to generate another set of synthetic examples for validation and the
best performing models on the validation set is evaluated.

Evaluation. Two public benchmarks called PF-WILLOW and PF-PASCAL [9]
are used for the evaluation. PF-WILLOW consists of about 900 image pairs gen-
erated from 100 images of 5 object classes. PF-PASCAL contains 1351 image
pairs of 20 object classes. Each image pair in both datasets contains different
instances of the same object class such as ducks and motorbikes, e.g., left two
images in Fig. 1. The objects in these datasets have large intra-class variations
and many background clutters making the task more challenging. The image
pairs of both PF-WILLOW and PF-PASCAL are annotated with sparse key
points that establishe correspondences between two images. Following the stan-
dard evaluation metric, the probability of correct keypoint (PCK) [47] of these
benchmarks, our goal is to correctly transform the key points in the source image
to their corresponding ones in the target image. A transformed source key point
is considered correct if its distance to its corresponding target key point is less
than α · max(h,w), where α = 0.1, and h and w are height and width of the
object bounding box. Formally, PCK of a proposed model M is measured by

PCK(M) =

N∑
i=1

∑
(ps,pt)∈Pi

1 [d (Tθi
(ps) , pt) < α · max(h,w)]

N∑
i=1

|Pi|
, (8)

where N is the total number of image pairs, Pi is a set of source and target key
point pairs (ps, pt) for ith example, θi is predicted transformation, and 1 is the
indicator function which returns 1 if the expression inside brackets is true and
0 otherwise.

We evaluate three different versions of the proposed model as in [13]. The
first two versions are the models with different transformations: affine and TPS
transformations. The other version sequentially merges these two models. That
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is, the input image pair are first fed to the network with affine transformation,
and the image pair transformed by its out is then fed to the network with TPS
transformation.

4.2 Results

Comparisons toOtherModels. Table 1 shows the comparative results on both
PF-WILLOW and PF-PASCAL benchmarks. It includes (i) previous methods
using hand-crafted features: DeepFlow [5], GMK [31], SIFTFlow [7], DSP [11],
and ProposalFlow [9], (ii) self-supervised alignment methods: GeoCNN [13] and
the proposed attentive alignment network (A2Net), (iii) supervised methods:
UCN [12], FCSS [17], andSCNet [14].Note that the supervisedmethods are trained
with either a weakly or strongly annotated data and that many of their PCKs
are measured under a different criterion that are not directly comparable to the
other scores. By contrast, our method is only trained using synthetic data with

Table 1. Experimental results on PF-WILLOW and PF-PASCAL. PCK is measured
with α = 0.1. Scores for other models are brought from [9,13,14] while scores marked
with an asterisk (*) are drawn from the reproduced models by released official codes.
The PCK scores marked with a star (�) are measured with height and width of the
image size instead of the bounding box size. Note that the PCK measure with the
bounding box size is more conservative than the one with the image size resulting in
lower scores.

Models PCK (α = 0.1)

PF-WILLOW PF-PASCAL

Hand-crafted DeepFlow [5] 0.20 0.21

GMK [31] 0.27 0.27

SIFTFlow [7] 0.38 0.33

DSP [11] 0.29 0.30

ProposalFlow (NAM) [9] 0.53 –

ProposalFlow (PHM) [9] 0.55 –

ProposalFlow (LOM) [9] 0.56 0.45

Self Sup. GeoCNN (affine) [13] 0.49 0.50*

GeoCNN (affine+TPS) [13] 0.56 0.60*

A2Net (affine) 0.52 0.57

A2Net (affine+TPS) 0.63 0.63

A2Net (affine+TPS; ResNet101) 0.68 0.68

Supervised UCN [12] 0.42� 0.56�

FCSS [17] 0.58 –

SCNet-A [14] 0.73� 0.66�

SCNet-AG [14] 0.72� 0.70�

SCNet-AG+ [14] 0.70� 0.72�
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self-supervision. As shown in Table 1, the proposed method substantially outper-
forms all the other methods that are directly comparable. Using VGG-16 feature
extractor, the proposed method improves 12.5% and 5% of PCK over the non-
attentive alignment method [13] on PF-WILLOW and PF-PASCAL, respectively.
This reveals the effect of the proposed attention model for semantic alignment. The
quality of the model is further improved when incorporated with a more advanced
feature extractor such as ResNet101. It is notable that the proposed model out-
performs some of supervised methods, UCN [12] and FCSS [17], while it is trained
without any real datasets.

Ablation Study. As our proposed model combines two distinct techniques we
perform ablation studies to demonstrate their effects. We mainly compare the
proposed model to GeoCNN as it directly predicts the global transformation
parameters using the correlation layer. To see the effect of the proposed OAC
kernels, we build a model, referred to as GeoCNN+OACK, by replacing the
correlation layer of GeoCNN with the OAC kernels. As shown in Table 2, the
use of the OAC kernels already improves the performances of GeoCNN for all
three versions. Moreover, the OAC kernels reduce the number of parameters in
the network since it uses dense representations of local transformations allow-
ing channel compression. Applying attention process on top of correlation layer
(GeoCNN+Attention) drops the performance. This is because the correlation
map does not encode local transformations in a translation invariant represen-
tations. On the other hand, the attention process with the OAC kernels, which
is the proposed model, further improves the performances as the distracting
regions can be suppressed during the transformation estimation thanks to the

Table 2. PCKs of ablations on PF-WILLOW trained with PASCAL VOC 2011. Scores
of GeoCNN are obtained from the code released by the authors. The numbers of
network parameters exclude the feature extractors since all models share the same
feature extractor.

Models # of params Affine TPS Affine+TPS

GeoCNN [13] 1.63M (x1.7) 0.430 0.539 0.560

GeoCNN+Attention 1.41M (x1.5) 0.423 0.478 0.476

GeoCNN+OACK 1.12M (x1.2) 0.491 0.555 0.609

Attention+OACK (A2Net) 0.95M (x1.0) 0.521 0.563 0.626

Table 3. PCKs of affine models on PF-WILLOW with different training datasets:
PASCAL VOC 2011 and Tokyo Time Machine. Scores for GeoCNN are brought from
[13].

Models PASCAL VOC 2011 Tokyo time machine

GeoCNN [13] 0.45 0.49

A2Net 0.52 0.51
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local transformation feature map obtained by the OAC kernels. It is also notable
that applying the attention process reduces the number of model parameters
because the model does not need extra layers that combine all local information
to produce the global estimation; instead, the models simply aggregate local fea-
tures with attention distribution. This additional parameter reduction results in
70% fewer parameters than GeoCNN while the models maintain superior per-
formance improvements.

Sensitivity to Training Datasets. While both our model and GeoCNN are
generally applicable to any image datasets, we experiment the sensitivity of
the models to changing training datasets. We train both models with the affine
transformation on another image dataset, called Tokyo Time Machine [48], using
the same synthetic generation process, and show how much the performances
change depending on the datasets. Table 3 shows that the proposed model is less
dependent on the choice of the training dataset compared to GeoCNN.

Qualitative Results with Attention Visualizations. Figure 5 presents
some qualitative examples of our model on PF-PASCAL. In our experimental set-
ting, the models learn to predict inverse transformation. Therefore, we transform

Fig. 5. Qualitative results of the attentive semantic alignment. Each row shows an
example of PF-PASCAL benchmark. Given the source and target images shown in
first and third columns, we visualize the attention maps of the affine model (second
column), the transformed image by the affine model (fourth column) and the final
transformed image by the affine+TPS model (last column). Since the models learn
inverse transformation, the target image is transformed toward the source image while
the attention distribution is drawn over the source image. The model attends to the
objects to match and estimates dense correspondences despite intra-class variations
and background clutters.
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Fig. 6. Some failure cases of the proposed model with the affine transformation. Each
row shows an example of PF-PASCAL. Each example contains (1) source image, (2)
source image masked by attention distribution, (3) target image and (4) target image
transformed by the predicted affine parameters. Even though the model attends to the
matching objects, the model fails to find the correct correspondences due to multiple
objects of the same class causing ambiguity or hard examples that are difficult to
visually percept.

the target image toward the source image using the estimated inverse transfor-
mation whereas the attention distribution is drawn over the source image. The
proposed model attends to the target objects with other regions suppressed and
predicts the global transformation based on reliable local features. The model
estimates the transformation despite large intra-class variations such as an adult
vs. a kid.

We also investigate some failure cases of the proposed model in Fig. 6. The
model is confused when there are multiple objects of the same class in an image
or have a large obstacles occluding the matching objects. Also, objects in some
examples are hard to visually recognize and lead mismatches. For instance, the
model fails to correctly match a wooden chair to a transparent chair although
the model attends to the correct region in the second example of Fig. 6. It is chal-
lenging even for human to recognize the transparent chair and its corresponding
key points.

5 Conclusion

We propose a novel approach for semantic alignment. Our model facilitates an
attention process to estimate global transformation from reliable local transfor-
mation features by suppressing distracting features. We also propose offset-aware
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correlation kernels that reorder correlations of feature pairs and produce a dense
feature representation of local transformations. The experimental results show
the attentive model with the proposed kernels achieves the state-of-the-art per-
formances with large margins over previous methods on the PF-WILLOW and
PF-PASCAL benchmarks.
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