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Abstract. Structure from Motion or the sparse 3D reconstruction out
of individual photos is a long studied topic in computer vision. Yet none
of the existing reconstruction pipelines fully addresses a progressive sce-
nario where images are only getting available during the reconstruction
process and intermediate results are delivered to the user. Incremen-
tal pipelines are capable of growing a 3D model but often get stuck in
local minima due to wrong (binding) decisions taken based on incom-
plete information. Global pipelines on the other hand need the access to
the complete viewgraph and are not capable of delivering intermediate
results. In this paper we propose a new reconstruction pipeline working
in a progressive manner rather than in a batch processing scheme. The
pipeline is able to recover from failed reconstructions in early stages,
avoids to take binding decisions, delivers a progressive output and yet
maintains the capabilities of existing pipelines. We demonstrate and eval-
uate our method on diverse challenging public and dedicated datasets
including those with highly symmetric structures and compare to the
state of the art.

1 Introduction

3D reconstruction from individual photographs is a long studied topic in com-
puter vision [1,12,31]. The field of Structure from Motion (SfM) deals with
the intrinsic and extrinsic calibration of sets of images and recovers a sparse
3D structure of the scene at the same time. Traditional methods are usually
designed as batch processing algorithms, where image acquisition and image
processing are separated into two independent steps. This contrasts with cur-
rent demand, when one would like to be able to convert an object or a scene
into a 3D model anytime and anywhere, just by using the mobile phone one is
carrying in her pocket. Recent developments in mobile technology and the avail-
ability of 3D printers raised the need for 3D content even more and underlay the
importance of 3D modeling. In a user-centric scenario, images are taken on the
spot and processed by a 3D modeling pipeline on-the-fly [16,19]. Any feedback
which gets available to the user helps to guide her acquisition and, even more
importantly, assures that the 3D model represents the real-world object in the
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desired quality. In a collaborative scenario, multiple users acquire pictures of the
same object and images are gathered on the reconstruction server in the cloud.
The 3D model is progressively built and intermediate reconstruction results are
shown to the user. Images are getting available as they are taken and the SfM
pipeline has never access to the complete set of information in the dataset. More-
over, the whole reconstruction process might have a starting, but no predefined
end point. Users might always decide to add more images to an existing model.

Fig. 1. Opposed to existing methods, a favorable image order is not crucial for the
proposed progressive SfM pipeline. While the baseline method (a) fails to recover the
structure of the scene our method successfully reconstructs the temple (b). Individual
clusters are identified in the viewgraph (d) and merged (c) based on a lightweight
optimization.

In this work we therefore propose a progressive SfM pipeline which avoids
taking (potentially fatal) binding decisions and therefore is as independent of the
input image order as possible. Moreover, the proposed pipeline reuses already
computed intermediate results in later steps and is suited for delivering progres-
sive modeling results back to the user within seconds.

1.1 Related Work

Classical SfM pipelines are typically not suited to be used in such a progressive –
multiuser-centric scenario. Global pipelines [22,29] start by estimating poses of
all cameras in the dataset and estimate the structure in a second step. Evidently,
this relies on the access to the complete dataset which contradicts the idea of pro-
gressive 3D modeling. Sequential SfM pipelines, sometimes termed SLAM [7,23],
are inherently suitable for processing (potentially infinite) streams of images.
Nevertheless, the underlying assumption often is that images neighboring in the
sequence are spatially close in the scene, which is easily violated when streams
from multiple users are combined together. Incremental SfM pipelines [28,31,36]
build a 3D model by initializing the structure from a small seed and gradually
growing it by adding additional cameras. This scheme is closer to the requested
progressive scenario but, unfortunately, is strongly dependent on the order in
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which images are added to the model [21,27]. View selection algorithms [34]
carefully determine the image order usually by employing the global match-
ing information which is not available in the progressive case. Hierarchical SfM
pipelines [8,10] try to overcome the problem of improper seed selection by start-
ing from several seed locations at the same time and eventually merging the
partial 3D models into a single global model in later stages. Sweeney et al. [33]
group multiple individual cameras and optimize them jointly as a distributed
camera. However all hierarchical methods require the knowledge of all images in
advance. Our proposed method is partially inspired by these approaches but in
order to provide the progressive capability, the hierarchy is not fixed but rather
re-defined every time new images are added to the reconstruction process.

Due to the lack of global information, an incremental pipeline would connect
new images to the existing model based on incomplete information which often
causes corrupted 3D models [11,14,15,26,37]. Even more importantly, incremen-
tal pipelines cannot recover from wrong decisions taken based on missing infor-
mation and therefore can easily get stuck in only locally optimal reconstructions.
The only reliable solution would be re-running an incremental or global pipeline
from scratch when new images become available which leads to an impractical
algorithm runtime. Heinly et al. [11] detected erroneous reconstructions of scenes
with duplicate structure in a post processing step by evaluating different splits
of the model into submodels and potentially merge them in the correct config-
uration by leveraging conflicting observations. Our method in contrary is a full
fledged SfM pipeline which avoids getting trapped in a local minima in the first
place. Faulty configurations are detected and corrected on-the-fly and not in a
post processing step.

Our work bases on a lightweight representation of the complete scene as a
viewgraph. Many existing approaches investigated robustification of the global
view-graph by filtering out bad epipolar geometries [6,34] and enforcing loop
constraints [38]. Wilson and Snavely [35] are able to reconstruct scenes with
repetitive structures by scoring repetitive features using local clustering. Recent
work of Cui [5] takes a similar approach to our pipeline. The Hybrid SfM pipeline
estimates all rotations of the viewgraph in a community based global algorithm.
The estimated orientations are leveraged in the second phase of the pipeline by
estimating the translations and structure of the scene in an incremental scheme
with reduced dimensionality. While sharing the idea of combining global and
incremental schemes, HSfM is a pure batch processing algorithm. The global
rotation averaging needs access to the complete view graph in advance which
is not available in a progressive scheme. In our work we combine a dynamic
global view graph with a local clustering based on a connectivity score and
combine the advantages of incremental and global structure from motion. In
order to accommodate for the demands of a progressive pipeline, we allow for
flexibility in already reconstructed parts of the model and constantly verify the
local reconstructions against the globally optimized viewgraph.
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1.2 Contributions

We propose a novel progressive SfM pipeline which enables 3D reconstruction
in an anytime anywhere multiuser-centric scenario. Unlike traditional pipelines,
the proposed approach avoids taking binding decisions, does not depend on the
order of incoming images and is able to recover from wrong decisions taken
due to the lack of information. Moreover, the computed intermediate results
are propagated along the reconstruction process resulting in an efficient use of
computational resources. A C++ implementation of the proposed progressive
pipeline is publicly available under: https://github.com/alexlocher/progsfm.

2 Progressive Reconstruction

In the following section we give an overview of our progressive SfM pipeline and
detail individual components and key aspects later on.

2.1 Overview

Our progressive SfM pipeline takes an ordered sequence of images with its geo-
metrically verified correspondences as the input and delivers a sparse pointcloud
and calibrated camera poses as the output (see Fig. 2). The resulting sparse con-
figuration is updated with every image added to the scene. A viewgraph with
nodes being images and edges connecting pairs of matched images is gradually
built and serves as the global knowledge throughout the whole reconstruction.
On every iteration of the algorithm, the viewgraph is clustered based on local
connectivity and individual clusters are processed locally. In each of the local
clusters a robust rotation averaging scheme filters out wrong two-view geome-
tries and the 3D structure is estimated using either an incremental or a global
SfM pipeline. The cluster configuration between two time steps is tracked and the
already estimated parts of the 3D model are passed to the next stage. The global
configuration of individual clusters is estimated in the last stage by robustly
estimating 7 DoF similarity transforms between them using the remaining inter-
cluster constraints. Generally, the local incremental method enables robust and
efficient reconstructions while the viewgraph combined with the robust rotation
averaging injects the global knowledge and allows for correction of corrupted
3D models.

2.2 Progressive Viewgraph

The algorithm takes a (randomly) ordered sequence of images I = (I0, I1, I2, . . . )
as the input. Every incoming image is matched against the most relevant images
already present in the scene and geometrically verified pairwise correspondences
are obtained. A viewgraph G (Vt, Et) with images as vertices Vt = {Ii|i ≤ t}
is maintained at every time step t. Two vertices (Vi, Vj) are connected by
an undirected edge Eij iff there exists a minimum amount of correspondences

https://github.com/alexlocher/progsfm
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(Mij > η ∧ i < j ≤ t) between them where M ∈ R
t×t is the matching matrix.

Every edge Eij has an associated relative rotation Rij and translation direction
tij which is obtained by decomposing either the estimated essential matrix in the
calibrated case or the fundamental matrix when the focal length is not known.

Fig. 2. An overview of the main steps
of the progressive SfM pipeline and its
involved components.

Fig. 3. Depending on the status of an
individual cluster, its structure is esti-
mated with different methods.

The order in which images are fed to a reconstruction pipeline plays an impor-
tant role and every snapshot of the viewgraph only captures the past information
of the reconstruction process. This is why filtering of supposedly wrong two-view
geometries at this stage can be very dangerous. It might happen that a geometry
is inconsistent with other local geometries in the neighborhood1 at the current
time-step but connecting images added in later steps may show that the two-
view geometry was actually correct. As a wrong decision in the global viewgraph
could lead to a local minimum in the reconstruction, i.e. a corrupted 3D model,
we do not conduct any outlier rejection and defer robustification to a later stage.

2.3 Clustering

Motivated by the general observation that densely connected regions of the view-
graph are likely to form a 3D model worth reconstruction, the viewgraph is
clustered in a second step. The distance dij between two vertices Vij is based

1 This can, e.g., be checked by computing the cumulative rotation of loops in which
the edge is participating [38].
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on the weighted Jaccard distance of the adjacent edges where connections to
neighboring vertices are weighted by the number of verified correspondences.

dij = 1 −

∑

n∈N
Min + Mnj

t∑

n=0
Min + Mnj

∣
∣
∣
∣
∣
∣
∣
∣

N = {k|Mik · Mkj > 0} (1)

A set of clusters Ct is hierarchically grown by single-linkage clustering until
no single edge with dij < η between two clusters exists. Single-linkage clustering
tends to generate clusters with a chain-like topology where the two ending nodes
might have a distance way larger than the defined threshold. While this might
be a disadvantage in other applications it is actually beneficial in our applica-
tion as local (incremental) reconstruction pipeline performs well for such graph
structures.

Incremental Clustering. Due to the single-linkage hierarchical clustering, a
simplified incremental scheme can be used to update an existing cluster topology
with a new node. While generally a single extra node can cause a complete change
in topology of the clustered graph, the changes are limited to clusters which are
connected to the new node. As a result only clusters with an edge connecting
to the new node have to be re-clustered which leads to an efficient and scalable
implementation. Note that in worst case the whole graph still might be updated
– but in most cases a new image only connects to few clusters and therefore
most of the existing clusters remain untouched.

2.4 Cluster Tracking and Recycling

Between the transition of two timesteps tb and ta = tb + 1 the topology of
clusters can undergo large changes but mostly will either stay the same or be
extended by the new image. All changes in the clusters have to be propagated
to the eventually estimated 3D structure. We therefore keep track of the nodes
changing cluster between the two timesteps and add or remove the correspond-
ing images in the local reconstruction. The recycling of intermediate (partial)
3D reconstructions can be realized by a merge and split scheme. If a group of
interconnected nodes transfer together from one cluster to another, the corre-
sponding cameras in the 3D model can be separated from the rest and merged
into the potentially existing structure of the new cluster.

2.5 Cluster Reconstruction

Once individual clusters Ci have been identified by the hierarchical clustering, the
3D structure of the images and correspondences of every cluster C is estimated.
The cluster reconstruction process is only triggered if its topology has changed
meaning either some nodes were added or some nodes were removed from the
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cluster. If the topology of the cluster is unchanged between the two time steps
tb and ta, the reconstruction step is skipped as a whole.

A sub-graph VC capturing all vertices and edges of the cluster C is extracted
in a first step. All following operations are restricted to the scope of the extracted
graph VC .

Robust Rotation Averaging. The unfiltered viewgraph is potentially cor-
rupted by outliers and has to be cleaned up for further usage. As this step is
performed in every iteration it is safe to reject outlier two-view geometries. As
a result of the repetitive execution of the filtering stage, it is important to use
a computationally efficient filtering scheme. As proposed by Chatterjee et al. [3]
we estimate the global rotations of the subgraph with a robust �1 optimization.
Global Rotations R̄ are initialized by concatenating the relative rotations of a
Maximum Spanning Tree (MST) extracted from the viewgraph VC using the
number of verified inliers Mij as edge weights. The global rotations are then
optimized by minimizing the relative rotation errors ρij .

arg min
R̄

∑

(i,j)∈EC

ρij

(
Rij , R̄jR̄−1

i

)
(2)

By using the Lie-algebraic approximation of the relative rotation, the error
can be expressed as a difference of the corresponding rotations ω. Where
ω = Θn ∈ so(3) denotes a rotation by angle Θ around the unit axis n.

ωij ≈ ωj − ωi (3)

The relative rotations can be encoded in a sparse matrix A where each row
only has two nonzero −1,+1 entries. The robust �1 norm combined with an
edge weighting ρ depending on the number of verified correspondences allows
us to obtain the global rotations of the cluster C in an iterative scheme by
optimizing Eq. 4 in every step. For more details we refer the reader to the
original publication [3].

arg min
ωg

‖AΔωg − ρωrel‖�1
(4)

The obtained global rotations can optionally be refined by Iteratively Reweighted
Least Squares (IRLS) method using a robustified �2 norm. As we are primarily
interested in rejecting outliers, the results of the �1 optimization is accurate
enough and we omit the refinement step.

Finally edges with a relative error above ρg max are removed from the local
viewgraph.

Reconstruction. Using the global rotations and the pairwise matches as the
input, the structure of the individual clusters is estimated with different methods
depending on the current status (Fig. 3).
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New: If we could not recover any structure from tb and the cluster contains at
least μmin nodes but less than μmax images a new reconstruction is starting
using an incremental SfM pipeline similar to [31,36]. If the number of images
in the cluster is larger than μmax, incremental pipelines get inefficient and a
global pipeline is more suited. We therefore refine the global rotations and
estimate global position using the 1DSfM method [35]. The structure is then
obtained by triangulating consistent feature-tracks and the configuration is
refined by a bundle adjustment step.

Extend: In most cases an existing local reconstruction can be extended by
one or multiple images which are either new or transferred from another
cluster. In order to extend an existing 3D reconstruction with a new image we
extend existing feature tracks by the new correspondences and estimate the
3D position of the camera by the P3P algorithm [17]. New tracks are added
and potential conflicting tracks are split up. A local bundle adjustment refines
the structure and calibration of the newly added cameras. If the model has
grown by more than ηgrow percent, a bundle adjustment step over the local
reconstruction refines the whole structure.

Transfer: If a large part (more than μmin nodes) of an already estimated local
model is transferred to another cluster, its already estimated structure is kept
and transferred to the new cluster. Commonly estimated tracks are fused
and a bundle adjustment step refines the structure. Potentially unestimated
cameras are then added in an incremental scheme as described before.

Detection of Bad Configurations. Due to the incremental reconstruction
scheme for cluster reconstruction we can reuse most of the intermediate results
from an earlier stage and propagate them to later stages. The incremental scheme
is highly dependent on the actual image ordering and therefore some unfortunate
decisions taken in early stages (e.g. wrongly connecting an image due to missing
information) cannot be recovered in later stages. Global clustering usually solves
this problem for us as the wrongly connected image or sub-model is likely to be
transferred to another cluster at a later stage. But it might also happen that the
image actually belongs to the same cluster and yet is wrongly connected. With-
out any additional counter measurements, we would end up with a corrupted
reconstruction in such cases.

By using the relative global rotations of the local viewgraph (which is inde-
pendent of the image order) we can evaluate an error measure between the
rotations of the current local reconstruction R̂ and the global rotations R̄.

ρl =
∥
∥
∥

{
R̄ij R̂−1

ij

∣
∣
∣ (i, j) ∈ EC

} ∥
∥
∥

∞
(5)

If the rotation error ρl is above a certain limit ρlmax the reconstruction is likely
to be erroneous. Hence it is reset and re-estimated in the next phase of the
reconstruction.
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2.6 Cluster Pose Estimation

The output of the pipeline so far are multiple locally highly consistent but dis-
connected model parts. In order to merge them to a final representation we make
use of the remaining inter-cluster connections. As this step of merging multiple
models is often rather fragile and can easily go wrong, several methods employed
a rather conservative merging criteria as multiple cameras of overlap [10] or a
high amount of common points [36]. Instead, we are estimating pairwise sim-
ilarity transforms Tab ∈ Sim(3) between clusters Ca and Cb and optimize the
global positions of the cluster centers. For robustification, we use a two stage
verification scheme for individual inter-cluster constraints.

In the first stage, a similarity transform based on 3D-to-3D correspondences
from every single edge Eij between clusters Ca and Cb is estimated in a RANSAC
scheme [9,13]. The vertices (camera centers) of Ca are afterwards transformed
using the estimated transformation and the camera configuration of the obtained
combined model is compared to the individual configuration before. A neighbor-
hood similarity measure s evaluates how many of the cameras pk in the merged
cluster would retain their closest neighbors NNa(pk) and NNb(pk) for the cam-
eras from clusters Ca and Cb, respectively. pk denotes the camera center of the
node k and the operator Tij ◦pk transforms a point by the similarity transform.

Tij ∀ i ∈ Ca ∧ j ∈ Cb ∧ (i, j) ∈ EC (6)

Pa = pk|k ∈ Ca (7)
Pb = pk|k ∈ Cb (8)
Pc = Pb ∪ Tij ◦ pk|k ∈ Ca (9)

s =
1

|Pc|
∑

pk∈Pc

sk (10)

sk =

⎧
⎪⎨

⎪⎩

1 k ∈ Ca ∧ Tij ◦ NNa(pk) = NNc(Tij ◦ pk)
1 k ∈ Cb ∧ NNb(pk) = NNc(pk)
0 otherwise

(11)

Edges with the neighborhood similarity measure below λc are rejected as outliers
for the final constraint estimation. The measure is motivated by the observation
that nearby cameras should already be clustered by the original algorithm and
prevents merged models where the cameras are extensively interleaved.

In the second stage, a final transformation Tij between the clusters is esti-
mated using all correspondences of edges that survived the first filtering stage.
All relative constraints are gathered and a cluster graph GC with local recon-
structions as nodes and pairwise inter-cluster constraints as edges is created.

arg min
PC

∑

(a,b)∈GC

∥
∥δ

(
Tab PbP−1

a

)∥
∥2

(12)
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The global poses PC of the clusters are afterwards obtained by iteratively mini-
mizing the pairwise relative pose constraints Tab, where δ(.) denotes the robust
Huber error function.

While this in the optimal case leads to a single 3D model, the flexibility and
efficiency of the global optimization allows us to choose a much less conservative
threshold for cluster merging. In addition to its efficiency, the cluster graph
representation can easily incorporate additional extrinsic constraints, e.g., the
gravity vector for orientation with respect to the ground plane or coarse cluster-
wise GPS locations for geo-referencing. Such additional constraints can help to
put individual models in relative perspective even if pure vision based inter-
cluster constraints are not (yet) available.

3 Experiments and Results

In the following section, we first give some implementation details of the proposed
solution and introduce the conducted experiments.

3.1 Implementation

We implemented the proposed pipeline as a C++ software. SIFT [20] features
are detected on all images and described with the RootSift descriptor [2]. The
pipeline is setup for stream processing dedicated by the progressive reconstruc-
tion scheme. Every incoming image is indexed by a 1M word vocabulary trained
on the independent Oxford5k [24] dataset and the top 100 nearest neighbors are
retrieved using a fast tf-idf scoring [30]. Matches are geometrically verified by
estimating the fundamental or essential matrix (depending on the availability of
the focal length) as well as a homography matrix in a RANSAC scheme using
the general USAC framework [25]. The relative rotation and translation direc-
tion are obtained by decomposing the fundamental, essential, or homography
matrix (depending on the amount of inliers). The incremental and global recon-
struction of cluster centers bases on the publicly available Theia library [32] and
the final clustergraph optimization is realized in the g2o [18] framework. The
following parameters were used within all the conducted experiments: μmin = 5,
μmax = 50, λs = 0.9, ρlmax = ρg max = 10◦, η = 0.2, ηgrow = 0.15.

3.2 Baselines

Throughout our experiments we compare the proposed progressive pipeline
against two linear pipelines (VisualSFM [36] and incremental Theia [32]) as well
as to the recently published hybrid pipeline HSfM [5]. For an unbiased compari-
sion, all geometrically verified matches were precomputed and imported into the
various pipelines. The streaming part of the pipeline was skipped and matches
directly loaded from disk.
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Within the experiments we run the pipelines in different modes:

batch mode. All images are added to the pipeline at once and the model is
reconstructed without intermediate results. This is the classical SfM operation
mode.

progressive mode. Images are fed to the pipeline in a certain order and inter-
mediate reconstructions are enforced. In VisualSFM this is realized by the
“Add Image” option and in Theia we dictated the order in which views are
added to an ongoing reconstruction by a slight code modification.

3.3 Randomized Image Order

One of the key contributions of the proposed pipeline is the ability of recovering
from wrong connections between image pairs made in previous reconstruction
cycles. Wrong connections often occur in symmetric environments which is why
we chose the publicly available TempleOfHeaven dataset [15] with a rotationaly
symmetric structure for the first experiment. The dataset consists of 341 images
taken in a regular spacing and perfectly demonstrates problems arising from
unpleasant orderings. As a reference model, we reconstructed the scene using
VisualSFM and restricted the matches to sequential matching in the original
order. Figure 5 shows the development of the model as a function of the timestep
t. We report the number of clusters before and after global cluster position
estimation as well as the number of outlier cameras. A camera is considered
to be an outlier if the position error is larger than half the minimum distance
between two cameras in the reference model.

Fig. 4. Individual snapshots showing the viewgraph (top) and the sparse structure
(bottom) of a reconstruction of the temple scene using a very unfortunate image order-
ing document the algorithm’s recovery ability. Two separate parts of the temple are
initially wrongly reconstructed in a single model (a-b) and are later successfully sepa-
rated (c) and the real structure is recovered (d).
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As expected both methods perform well in the “linear” case, where the images
are fed to the pipeline in the original ordering. A single cluster is reconstructed
and maximum of 8 cameras are classified as outliers. In a second experiment
we randomly shuffled the order of images. After an initial set of 20 images,
the baseline merges all clusters to a single one and as a result the number of
outlier cameras increases linearly. The final 3D model is highly corrupted and
only covers about a third of the temple (Fig. 1a).

In contrast, the proposed pipeline creates up to 6 individual but locally con-
sistent clusters. After 84 out of the 341 images the clusters are correctly localized
into a single effective cluster by the cluster positioning (dashed line). Figure 1
shows the resulting reconstruction after 100 images as well as the corresponding
clustered viewgraph.

3.4 Very Unfortunate Image Order

In order to demonstrate the recovery capabilities of our proposed pipeline we
conducted an additional experiment on the TempleOfHeaven dataset. The tem-
ple has a strong rotational symmetry which repeats with 60◦. One of the worst
conditions for an algorithm would be if the image ordering had exactly this
60◦ periodicity. To test the algorithm, we created an artificial image sequence
by feeding the images alternatively in the following order: (I0, I60, I1, I61, ...).
Figure 6 shows the number of clusters, images, and outliers in every timestep.
Due to the high amount of matches between the symmetric part and the lack
of images in between, the clustering algorithm sees enough evidence for putting

Fig. 5. Behavior of the incremental and
progressive SfM pipelines on the Tem-
pleOfHeaven dataset. In the well behav-
ing “linear” case (blue), both pipelines
reconstruct the temple. If the input order
is shuffled the incremental pipeline gets
stuck in a local minimum (green) whereas
the proposed pipeline recovers and recon-
structs the whole scene (red). (Color
figure online)

Fig. 6. Evolution of the clusters and
images in a very unfortunately ordered
image sequence. Despite the heavy rota-
tional symmetry of the temple dataset,
the pipeline is able to recover from a
wrong configuration (timestep 36).
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all images into a single cluster (Fig. 4a) and roughly every second image is an
outlier. After the addition of the 36th image, the connectivity has sufficiently
changed so that the two clusters are recognized and the 3D models are separated.

Due to the highly interleaved configuration the structure of the individual
models cannot be recycled in this case and both clusters are reconstructed from
scratch. At this stage there are no inter-cluster constraints available yet, which is
why the global cluster positioning does not succeed and the models are displayed
as independent sub-models (Fig. 4c). On the 95th image enough intra-cluster
evidence is available s.t. the models can be placed into a common coordinate
system (Fig. 4d) and with the 101st image a single cluster is formed (this time
the structure of the individual sub-models can be recovered and a simple merging
is needed). The experiment shows that the proposed pipeline can recover from
a wrong local minimum of the reconstruction.

Fig. 7. Comparison of the proposed progressive pipeline (left, center) to the incremen-
tal SfM pipeline (right) on the Stanford dataset.

3.5 Realworld Progressive Reconstruction

While the experiments so far demonstrated the capabilities of the progressive
pipeline for unfortunate image orderings, its behavior in real world applications
remains to be shown. Therefore we collected a series of 4516 images with three
different mobile devices (HTC Nexus 9, LG Nexus 5x, and Google Pixel) consist-
ing of 29 sequences on the main quad of the Stanford University. The sequences
were then progressively reconstructed in an interleaved order (simulating multi-
ple users collaboratively acquiring the pictures) as well as in the batch-processing
mode. An additional similar experiment was conducted using the publicly avail-
able Quad dataset [4] consisting of 6514 images, mainly taken by iPhone 3G.
Images were shuffled randomly and pushed to the reconstruction algorithms.

Table 1 shows the proposed pipeline compared to the incremental Theia [32]
pipeline in batch and progressive modes. In addition we compare against the
HSfM [5] pipeline purely in batch-processing mode. The proposed algorithm as
the only pipeline can deal with the progressive scheme while the other get stuck
in a local minimum and only reconstruct a very small subpart of the scene2.
In the case of the progressive pipeline, we also report the number of failure
recoveries during the whole reconstruction (the number of resets with a local

2 Experiments were repeated using multiple random orderings.
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cluster due to major topological changes). Figure 7 illustrates the final result
of the proposed pipeline versus the local minimum of the incremental pipeline.
The compute times of the proposed pipeline are comparable to existing pipelines
despite the continuous flow of intermediate results. This is due to the fact that
our pipeline practically never operates on the whole image sets, but only on
the local clusters. This allows significantly faster execution times of the bundle
adjustment.

We furthermore run our method on several of the datasets presented by [11].
We used random ordering of the crowd sourced data and pushed them to the
progressive pipeline as done in the Quad [4] experiment. Figure 8 shows a sam-
ple result on the Radcliffe scene. While both HSfM and the incremental baseline
method got confused by the duplicate structure, our pipeline successfully sepa-
rated the front and rear views of Radcliffe. The two clusters were merged suc-
cessfully into the correct configuration by the global cluster pose optimization. In
contrary to [11], this is not done in a post processing step but erroneous connec-
tions are detected on-the-fly during the reconstruction. Table 1 shows the results
on the resulting numbers on the dataset equally to the experiment before. Our
method was able to separate duplicate structure in all datasets. As the recon-
struction backbone of the presented pipeline bases on the well known incremen-
tal [32] and global [35] pipelines, the accuracy of the resulting structure is equals
the accuracy of these pipelines.

Fig. 8. Result on the Radcliffe dataset with HSfM (left), Theia (incr.) (right) and the
proposed method (right).

Table 1. Evaluation of our pipeline versus the incremental Theia pipeline and HSfM.
Only the proposed pipeline can successfully handle the progressive scenario.

Stanford Quad [4] BigBen
Radcliffe
Camera

Alexander
Nevsky
Cathedral

Branden-
burg Gate

Arc De
Triomphe

total imgs [#] 4516 6514 402 282 448 175 434

ba
tc

h

HSfM [5] imgs [#] 2,140 4,832 375 272 430 173 441
time [s] 11,490 23,570 1,932 1,654 1,900 389 2,131

Theia (incr.) [32] imgs [#] 3,298 5,462 394 278 443 173 410
time [s] 34,749 158,853 2,385 1,307 3,687 1,018 3,348

pr
og

re
ss

iv
e Theia (incr.) [32] imgs [#] 51 527 394 280 418 173 416

time [s] 7,605 215,064 2,026 1,473 2,268 1,141 3,516

proposed imgs [#] 3,165 3,894 285 279 427 173 405
time [s] 13,276 25,713 552 1,121 2,163 627 377
clusters [#] 76 92 5 2 4 2 5
recoveries [#] 14 29 1 0 5 1 1
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4 Conclusions

We proposed a novel progressive SfM pipeline which addresses a multiuser-
centric scenario, where a 3D model is simultaneously reconstructed from multiple
image streams handled by a cloud-based reconstruction service. In contrary to
existing work, our pipeline does not depend on the image order and does not
require any a-priori global knowledge about image connectivity. The progressive
pipeline avoids taking any binding decisions and is able to recover for erroneous
configurations. A global viewgraph is incrementally built and maintained. The
graph is clustered based on the local connectivity of cameras and individual
clusters are reconstructed using either an incremental or a global reconstruc-
tion pipeline. In the last step, individual models are merged using a lightweight
posegraph optimization just on the cluster centers. We demonstrated the effec-
tiveness and efficiency of our pipeline on multiple dataset and compared it to
existing solutions.
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