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Abstract. Pedestrian detection in crowded scenes is a challenging prob-
lem since the pedestrians often gather together and occlude each other.
In this paper, we propose a new occlusion-aware R-CNN (OR-CNN) to
improve the detection accuracy in the crowd. Specifically, we design a
new aggregation loss to enforce proposals to be close and locate com-
pactly to the corresponding objects. Meanwhile, we use a new part
occlusion-aware region of interest (PORoI) pooling unit to replace the
RoI pooling layer in order to integrate the prior structure informa-
tion of human body with visibility prediction into the network to han-
dle occlusion. Our detector is trained in an end-to-end fashion, which
achieves state-of-the-art results on three pedestrian detection datasets,
i.e., CityPersons, ETH, and INRIA, and performs on-pair with the state-
of-the-arts on Caltech.

Keywords: Pedestrian detection · Occlusion-aware
Convolutional network · Structure information · Visibility prediction

1 Introduction

Pedestrian detection is an important research topic in computer vision field
with various applications, such as autonomous driving, video surveillance, and
robotics, which aims to predict a series of bounding boxes enclosing pedestrian
instances in an image. Recent advances in object detection [10,20,27,43,57,68]
are driven by the success of deep convolutional neural networks (CNNs), which
uses the bounding box regression techniques to accurately localize the objects
based on the deep features.
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Actually, in real life complex scenarios, occlusion is one of the most signif-
icant challenges in detecting pedestrian, especially in the crowded scenes. For
example, as pointed out in [55], 48.8% annotated pedestrians are occluded by
other pedestrians in the CityPersons dataset [67]. Previous methods only require
each predicted bounding box to be close to its designated ground truth, without
considering the relations among them. Thus, they make the detectors sensitive
to the threshold of non-maximum suppression (NMS) in the crowded scenes,
wherein filling with occlusions. To that end, Wang et al. [55] design a repulsion
loss, which not only pushes each proposal to approach its designated target, but
also to keep it away from the other ground truth objects and their corresponding
designated proposals. However, it is difficult to control the balance between the
repulsion and attraction terms in the loss function to handle the overlapping
pedestrians.

In this paper, we propose a new occlusion-aware R-CNN (OR-CNN) based on
the Faster R-CNN detection framework [43] to mitigate the impact of occlusion
challenge. Specifically, to reduce the false detections of the adjacent overlap-
ping pedestrians, we expect the proposals to be close and locate compactly to
the corresponding objects. Thus, inspired by the herd behavior in psychology, we
design a new loss function, called aggregation loss (AggLoss), not only to enforce
proposals to be close to the corresponding objects, but also to minimize the inter-
nal region distances of proposals associated with the same objects. Meanwhile,
to effectively handle partial occlusion, we propose a new part occlusion-aware
region of interest (PORoI) pooling unit to replace the original RoI pooling layer
in the second stage Fast R-CNN module of the detector, which integrates the
prior structure information of human body with visibility prediction into the net-
work. That is, we first partition the pedestrian region into five parts, and pool
the features under each part’s projection as well as the whole proposal’s projec-
tion onto the feature map into fixed-length feature vectors by adaptively-sized
pooling bins. After that, we use the learned sub-network to predict the visibility
score of each part to combine the extracted features for pedestrian detection.

Several experiments are carried out on four pedestrian detection datasets,
i.e., CityPersons [67], Caltech [14], ETH [18] and INRIA [11], to demonstrate the
superiority of the proposed method, especially for the crowded scenes. Notably,
the proposed OR-CNN method achieves the state-of-the-art results with 11.3%
MR−2 on the CityPersons dataset, 24.5% MR−2 on the ETH dataset, and 6.4%
MR−2 on the INRIA dataset. The main contributions of this work are summa-
rized as follows.

– We propose a new occlusion-aware R-CNN method, which uses a new designed
AggLoss to enforce proposals to be close to the corresponding objects, as well
as minimize the internal region distances of proposals associated with the
same objects.

– We design a new PORoI pooling unit to replace the RoI pooling layer in the
second Fast R-CNN module to integrate the prior structure information of
human body with visibility prediction into the network.
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– Several experiments are carried out on four challenging pedestrian detection
datasets, i.e., CityPersons [67], Caltech [14], ETH [18], and INRIA [11], to
demonstrate the superiority of the proposed method.

2 Related Work

Generic Object Detection. Early generic object detectors [12,19,40,53] rely
on the sliding window paradigm based on the hand-crafted features and clas-
sifiers to find the objects of interest. In recent years, with the advent of deep
convolutional neural network (CNN), a new generation of more effective object
detection methods based on CNN significantly improve the state-of-the-art per-
formances, which can be roughly divided into two categories, i.e., the one-stage
approach and the two-stage approach. The one-stage approach [28,42] directly
predicts object class label and regresses object bounding box based on the pre-
tiled anchor boxes using deep CNNs. The main advantage of the one-stage app-
roach is its high computational efficiency. In contrast to the one-stage approach,
the two-stage approach [10,27,43] always achieves top accuracy on several bench-
marks, which first generates a pool of object proposals by a separated proposal
generator (e.g., Selective Search [52], EdgeBoxes [74], and RPN [43]), and then
predicts the class label and accurate location and size of each proposal.

Pedestrian Detection. Even as one of the long-standing problems in com-
puter vision field with an extensive literature, pedestrian detection still receives
considerable interests with a wide range of applications. A common paradigm
[3,13,58,59,64] to address this problem is to train a pedestrian detector that
exhaustively operates on the sub-images across all locations and scales. Dalal
and Triggs [11] design the histograms of oriented gradient (HOG) descriptors
and support vector machine (SVM) classifier for human detection. Dollár et al.
[12] demonstrate that using features from multiple channels can significantly
improve the performance. Zhang et al. [66] provide a systematic analysis for the
filtered channel features, and find that with the proper filter bank, filtered chan-
nel features can reach top detection quality. Paisitkriangkrai et al. [39] design a
new features built on the basis of low-level visual features and spatial pooling,
and directly optimize the partial area under the ROC curve for better perfor-
mance.

Recently, pedestrian detection is dominated by the CNN-based methods (e.g.,
[4,5,22,44,50,60]). Sermanet et al. [44] present an unsupervised method using
the convolutional sparse coding to pre-train CNN for pedestrian detection. In
[6], a complexity-aware cascaded detector is proposed for an optimal trade-off
between accuracy and speed. Angelova et al. [1] combine the ideas of fast cascade
and a deep network to detect pedestrian. Yang et al. [61] use scale-dependent
pooling and layer-wise cascaded rejection classifiers to detect objects efficiently.
Zhang et al. [63] present an effective pipeline for pedestrian detection via using
RPN followed by boosted forests. To jointly learn pedestrian detection with
the given extra features, a novel network architecture is presented in [30]. Li
et al. [25] use multiple built-in sub-networks to adaptively detect pedestrians
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across scales. Brazil et al. [4] exploit weakly annotated boxes via a segmentation
infusion network to achieve considerable performance gains.

However, occlusion still remains one of the most significant challenges in
pedestrian detection, which increases the difficulty in pedestrian localization.
Several methods [16,17,32,35,36,46,49,56,72] use part-based model to describe
the pedestrian in occlusion handling, which learn a series of part detectors and
design some mechanisms to fuse the part detection results to localize partially
occluded pedestrians. Besides the part-based model, Leibe et al. [24] propose an
implicit shape model to generate a set of pedestrian hypotheses that are further
refined to obtain the visible regions. Wang et al. [54] divide the template of
pedestrian into a set of blocks and conduct occlusion reasoning by estimating
the visibility status of each block. Ouyang et al. [37] exploit multi-pedestrian
detectors to aid single-pedestrian detectors to handle partial occlusions, espe-
cially when the pedestrians gather together and occlude each other in real-world
scenarios. In [41,48], a set of occlusion patterns of pedestrians are discovered
to learn a mixture of occlusion-specific detectors. Zhou et al. [73] propose to
jointly learn part detectors so as to exploit part correlations and reduce the
computational cost. Wang et al. [55] introduce a novel bounding box regression
loss to detect pedestrians in the crowd scenes. Although numerous pedestrian
detection methods are presented in literature, how to robustly detect each indi-
vidual pedestrian in crowded scenarios is still one of the most critical issues for
pedestrian detectors.

3 Occlusion-Aware R-CNN

Our occlusion-aware R-CNN detector follows the adaptive Faster R-CNN detec-
tion framework [67] for pedestrian detection, with the new designed aggregation
loss (Sect. 3.1), and the PORoI pooling unit (Sect. 3.2). Specifically, Faster R-
CNN [43] consists of two modules, i.e., the first region proposal network (RPN)
module and the second Fast R-CNN module. The RPN module is designed to
generate high-quality region proposals, and the Fast R-CNN module is used to
classify and regress the accurate locations and sizes of objects, based on the
generated proposals.

To effectively generate accurate region proposals in the first RPN module, we
design the AggLoss term to enforce the proposals locate closely and compactly
to the ground-truth object, which is defined as

Lrpn({pi}, {ti}, {p∗
i }, {t∗i }) = Lcls({pi}, {p∗

i }) + α · Lagg({p∗
i }, {ti}, {t∗i }), (1)

where i is the index of anchor in a mini-batch, pi and ti are the predicted
confidence of the i-th anchor being a pedestrian and the predicted coordinates
of the pedestrian, p∗

i and t∗i are the associated ground truth class label and
coordinates of the i-th anchor, α is the hyperparameters used to balance the two
loss terms, Lcls({pi}, {p∗

i }) is the classification loss, and Lagg({p∗
i }, {ti}, {t∗i }) is

the AggLoss (see Sect. 3.1). We use the log loss to calculate the classification loss
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over two classes (pedestrian p∗
i = 1 vs. background p∗

i = 0), i.e.,

Lcls({pi}, {p∗
i }) = 1

Ncls

∑
i −

(
p∗

i log pi + (1 − p∗
i ) log (1 − pi)

)
, (2)

where Ncls is the total number of anchors in classification.

3.1 Aggregation Loss

To reduce the false detections of the adjacent overlapping pedestrians, we enforce
proposals to be close and locate compactly to the corresponding ground truth
objects. To that end, we design a new aggregation loss (AggLoss) for both the
region proposal network (RPN) and Fast R-CNN [20] modules in the Faster
R-CNN algorithm, which is a multi-task loss pushing proposals to be close to
the corresponding ground truth object, while minimizing the internal region
distances of proposals associated with the same objects, i.e.,

Lagg({p∗
i }, {ti}, {t∗i }) = Lreg({p∗

i }, {ti}, {t∗i }) + β · Lcom({p∗
i }, {ti}, {t∗i }), (3)

where Lreg({p∗
i }, {ti}, {t∗i }) is the regression loss which requires each proposal

to approach the designated ground truth, and Lcom({p∗
i }, {ti}, {t∗i }) is the com-

pactness loss which enforces proposals locate compactly to the designated ground
truth object, and β is the hyper-parameters used to balance the two loss terms.

Similar to Fast R-CNN [20], we use the smooth L1 loss as the regression loss
Lreg({p∗

i }, {ti}, {t∗i }) to measure the accuracy of predicted bounding boxes, i.e.,

Lreg({p∗
i }, {ti}, {t∗i }) = 1

Nreg

∑
i p∗

i Δ(ti − t∗i ), (4)

where Nreg is the total number of anchors in regression, and Δ(ti − t∗i ) is the
smooth L1 loss of the predicted bounding box ti.

The compactness term Lcom({p∗
i }, {ti}, {t∗i }) is designed to consider the

attractiveness among proposals associated with the same ground truth object. In
this way, we can make the proposals to locate compactly around the ground truth
to reduce the false detections of adjacent overlapping objects. Specifically, we set
{t̃∗1, · · · , t̃∗ρ} to be the ground truth set associated with more than one anchor,
and {Φ1, · · · , Φρ} to be the index sets of the associated anchors corresponding
to the ground truth objects, i.e., the anchors indexed by Φk are associated to
the ground truth t̃∗k, where ρ is the total number of ground-truth object asso-
ciated with more than one anchor. Thus, we have t̃∗k ∈ {t∗i }, for k = 1, · · · , ρ,
and Φi ∩ Φj = ∅. We use the smooth L1 loss to measure the difference between
the average predictions of the anchors indexed by each set in {Φ1, · · · , Φρ} and
the corresponding ground truth object, describing the compactness of predicted
bounding boxes with respect to the ground truth object, i.e.,

Lcom({p∗
i }, {ti}, {t∗i }) = 1

Ncom

∑ρ
i=1 Δ(t̃∗i − 1

|Φi|
∑

j∈Φi
tj), (5)

where Ncom is the total number of ground truth object associated with more
than one anchor (i.e., Ncom = ρ), and |Φi| is the number of anchors associated
with the i-th ground truth object.



662 S. Zhang et al.

Fig. 1. For each proposal Q, we divide it into 5 parts (P1, · · · , P5) and use RoIPooling
to get the features (F1, · · · , F5), then feed them into the occlusion process unit to
predict the visibility scores (o1, · · · , o5). We also apply RoIPooling on Q to generate
the holistic feature F . The final features is computed as F ⊕ (o1 ·F1) ⊕ (o2 ·F2) ⊕ (o3 ·
F3) ⊕ (o4 · F4) ⊕ (o5 · F5) for subsequent classification and regression.

3.2 Part Occlusion-Aware RoI Pooling Unit

In real life complex scenarios, occlusion is ubiquitous challenging the accuracy
of detectors, especially in crowded scenes. As indicated in [35,49,73], the part-
based model is effective in handling occluded pedestrians. In contrast to the
aforementioned methods, we design a new part occlusion-aware RoI pooling unit
to integrate the prior structure information of human body with visibility pre-
diction into the Fast R-CNN module of the detector, which assembles a micro
neural network to estimate the part occlusion status. As shown in Fig. 1 (a), we
first divide the pedestrian region into five parts with the empirical ratio in [19].
For each part, we use the RoI pooling layer [20] to pool the features into a small
feature map with a fixed spatial extent of H × W (e.g., 7 × 7).

We introduce an occlusion process unit, shown in Fig. 1 (b), to predict the vis-
ibility score of the corresponding part based on the pooled features. Specifically,
the occlusion process unit is constructed by three convolutional layers followed
by a softmax layer with the log loss in training. Symbolically, ci,j indicates the
j-th part of the i-th proposal, oi,j represents its predicted visibility score, and
o∗

i,j is the corresponding ground truth visibility score. If half of the part ci,j is
visible, o∗

i,j = 1, otherwise o∗
i,j = 0. Mathematically, if the intersection between

ci,j and the visible region of ground truth object divided by the area of ci,j is
larger than the threshold 0.5, o∗

i,j = 1, otherwise o∗
i,j = 0. That is

o∗
i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Ω

(
U(ci,j) ∩ V (t∗i )

)

Ω
(
U(ci,j)

) > θ,

0
Ω

(
U(ci,j) ∩ V (t∗i )

)

Ω
(
U(ci,j)

) ≤ θ,

(6)
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where Ω(·) is the area computing function, U(ci,j) is the region of ci,j , V (t∗i ) is
the visible region of the ground truth object t∗i , and ∩ is the intersection oper-
ation between two regions. Then, the loss function of the occlusion process unit
is calculated as Locc({ti}, {t∗i }) =

∑5
j=1 −(o∗

i,j log oi,j + (1 − o∗
i,j) log(1 − oi,j)).

After that, we apply the element-wise multiplication operator to multiply the
pooled features of each part and the corresponding predicted visibility score to
generate the final features with the dimensions 512 × 7 × 7. The element-wise
summation operation is further used to combine the extracted features of the
five parts and the whole proposal for classification and regression in the Fast
R-CNN module (see Fig. 1).

To further improve the regression accuracy, we also use AggLoss in the Fast
R-CNN module, which is defined as:

Lfrc({pi}, {ti}, {p∗
i }, {t∗i }) = Lcls({pi}, {p∗

i }) + α · Lagg({p∗
i }, {ti}, {t∗i })

+λ · Locc({ti}, {t∗i }), (7)

where α and λ are used to balance the three loss terms, Lcls({pi}, {p∗
i }) and

Lagg({p∗
i }, {ti}, {t∗i }) are the classification and aggregation losses, defined the

same as that in the RPN module, and Locc({ti}, {t∗i }) is the occlusion process
loss.

4 Experiments

Several experiments are conducted on four datasets: CityPersons [67], Caltech-
USA [14], ETH [18], and INRIA [11], to demonstrate the performance of the
proposed OR-CNN method.

4.1 Experimental Setup

Our OR-CNN detector follows the adaptive Faster R-CNN framework [67] and
uses VGG-16 [47] as the backbone network, pre-trained on the ILSVRC CLS-
LOC dataset [23]. To improve the detection accuracy of pedestrians with small
scale, we use the method presented in [69,70] to dense the anchor boxes with
the height less than 100 pixels two times, and use the matching strategy in [71]
to associate the anchors and the ground truth objects.

All the parameters in the newly added convolutional layers are randomly
initialized by the “xavier” method [21]. We optimize the OR-CNN detector
using the Stochastic Gradient Descent (SGD) algorithm with 0.9 momentum and
0.0005 weight decay, which is trained on 2 Titan X GPUs with the mini-batch
involving 1 image per GPU. For the Citypersons dataset, we set the learning
rate to 10−3 for the first 40k iterations, and decay it to 10−4 for another 20k
iterations. For the Caltech-USA dataset, we train the network for 120k iterations
with the initial learning rate 10−3 and decrease it by a factor of 10 after the first
80k iterations. All the hyperparameters α, β and λ are empirically set to 1.



664 S. Zhang et al.

Table 1. Pedestrian detection results on the CityPersons validation set. All models are
trained on the training set. The scale indicates the enlarge number of original images
in training and testing. MR−2 is used to compare the performance of detectors (lower
score indicates better performance). The top three results are highlighted in red, blue
and green, respectively.

Method Scale Backbone Reasonable Heavy Partial Bare

×1 VGG-16 15.4 - - -
Adapted Faster RCNN [67] ×1.3 VGG-16 12.8 - - -

×1 ResNet-50 13.2 56.9 16.8 7.6
Repulsion Loss [55] ×1.3 ResNet-50 11.6 55.3 14.8 7.0

OR-CNN

AggLoss PORoI
×1 VGG-16 14.4 59.4 18.4 7.9√ √ ×1 VGG-16 12.8 55.7 15.3 6.7

×1.3 VGG-16 12.5 54.5 16.8 6.8√ ×1.3 VGG-16 11.4 52.6 13.8 6.2√ ×1.3 VGG-16 11.7 53.0 14.8 6.6√ √ ×1.3 VGG-16 11.0 51.3 13.7 5.9

4.2 CityPersons Dataset

The CityPersons dataset [67] is built upon the semantic segmentation dataset
Cityscapes [7] to provide a new dataset of interest for pedestrian detection. It is
recorded across 18 different cities in Germany with 3 different seasons and various
weather conditions. The dataset includes 5, 000 images (2, 975 for training, 500
for validation, and 1, 525 for testing) with ∼35,000 manually annotated persons
plus ∼13,000 ignore region annotations. Both the bounding boxes and visible
parts of pedestrians are provided and there are approximately 7 pedestrians in
average per image.

Following the evaluation protocol in CityPersons, we train our OR-CNN
detector on the training set, and evaluate it on both the validation and the
testing sets. The log miss rate averaged over the false positive per image (FPPI)
range of [10−2, 100] (MR−2) is used to measure the detection performance (lower
score indicates better performance). We use the adaptive Faster R-CNN method
[67] trained by ourselves as the baseline detector, which achieves 12.5 MR−2 on
the validation set with ×1.3 scale, sightly better than the reported result (12.8
MR−2) in [67].

Ablation Study on AggLoss. To demonstrate the effectiveness of AggLoss,
we construct a detector, denoted as OR-CNN-A, that use AggLoss instead of the
original regression loss in the baseline detector [67], and evaluate it on the valida-
tion set of CityPersons in Table 1. For a fair comparison, we use the same setting
of parameters of OR-CNN-A and our OR-CNN detector in both training and
testing. All of the experiments are conducted on the reasonable train/validation
sets for training and testing.
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Fig. 2. (a) Visual comparisons of the predicted bounding boxes before NMS of the
baseline and OR-CNN-A detectors. The predictions of OR-CNN-A locate more com-
pactly than that of the baseline detector. (b) Results with AggLoss across various NMS
thresholds at FPPI = 10−2. The curve of AggLoss is smoother than that of the base-
line detector, which indicates that it is less sensitive to the NMS threshold. The scores
in the parentheses of the legend are the mean and variance of the miss rate on the
curve.

Comparing the detection results between the baseline and OR-CNN-A in
Table 1, we find that using the newly proposed AggLoss can reduce the MR−2

by 1.1% (i.e., 11.4% MR−2 vs. 12.5% MR−2) with ×1.3 scale. It is worth noting
that the OR-CNN-A detector achieves 11.4% MR−2 with ×1.3 scale, surpass-
ing the state-of-the-art method using Repulsion Loss [55] (11.6% MR−2), which
demonstrates that AggLoss is more effective than Repulsion Loss [55] for detect-
ing the pedestrians in a crowd.

In addition, we also show some visual comparison results of the predicted
bounding boxes before NMS of the baseline and OR-CNN-A detectors in
Fig. 2(a). As shown in Fig. 2(a), the predictions of OR-CNN-A locate more com-
pactly than that of the baseline detector, and there are fewer predictions of OR-
CNN-A lying in between two adjacent ground-truth objects than the baseline
detector. This phenomenon demonstrates that AggLoss can push the predictions
lying compactly to the ground-truth objects, making the detector less sensitive
to the NMS threshold with better performance in the crowd scene. To further
validate this point, we also present the results with AggLoss across various NMS
threshold at FPPI = 10−2 in Fig. 2(b). A high NMS threshold may lead to more
false positives, while a low NMS threshold may lead to more false negatives. As
shown in Fig. 2(b), we find that the curve of OR-CNN-A is smoother than that
of baseline (i.e., the variances of the miss rates are 0.095 vs. 0.230), which indi-
cates that the former is less sensitive to the NMS threshold. It is worth noting
that across various NMS thresholds at FPPI = 10−2, the OR-CNN-A method
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always produces lower miss rate, which is due to the NMS operation filtering
out more false positives in the predictions of OR-CNN-A than that of baseline,
implying that the predicted bounding boxes of OR-CNN-A locate compactly
than baseline.

Fig. 3. Some examples of the predicted visibility scores of the pedestrian parts using
the proposed PORoI pooling unit.

Ablation Study on PORoI Pooling. To validate the effectiveness of the
PORoI pooling unit, we construct a detector, denoted as OR-CNN-P, that use
the PORoI pooling unit instead of the RoI pooling layer in baseline [67], and
evaluate it on the validation set of CityPersons in Table 1. For a fair comparison,
we use the same parameter settings of OR-CNN-P and our OR-CNN detector in
both training and testing. All of the ablation experiments involved CityPersons
are conducted on the reasonable train/validation sets for training and testing.

As shown in Table 1, comparing to baseline, OR-CNN-P reduces 0.8% MR−2

with ×1.3 scale (i.e., 11.7% vs. 12.5%), which demonstrates the effectiveness
of the PORoI pooling unit in pedestrian detection. Meanwhile, we also present
some qualitative results of the predictions with the visibility scores of the cor-
responding parts in Fig. 3. Notably, we find that the visibility scores predicted
by the PORoI pooling unit are in accordance with the human visual system.
As shown in Fig. 3(a) and (b), if the pedestrian is not occluded, the visibility
score of each part of the pedestrian approaches 1. However, if some parts of the
pedestrians are occluded by the background obstacles or other pedestrians, the
scores of the corresponding parts decrease, such as the occluded thigh and calf in
Fig. 3(c)–(f). Besides, if two pedestrians gather together and occlude each other,
our PORoI pooling unit successfully detects the occluded human parts that can
help lower the contributions of the occluded parts in pedestrian detection, see
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Table 2. Pedestrian detection results of the proposed OR-CNN method and other
state-of-the-art methods on the CityPersons testing set. The scale indicates the enlarge
number of original images in training and testing. MR−2 is used to compare of the
performance of detectors (lower score indicates better performance).

Method Backbone Scale Reasonable Reasonable-Small

Adapted FasterRCNN [67] VGG-16 ×1.3 12.97 37.24

Repulsion Loss [55] ResNet-50 ×1.5 11.48 15.67

OR-CNN VGG-16 ×1.3 11.32 14.19

Fig. 3(g) and (h). Notably, the detection accuracy of the OR-CNN detector can
not be improved if we fix the visibility score of each part to 1 instead of using
the predictions of the occlusion process unit (see Fig. 1). Thus, the occlusion
process unit is the key component to detection accuracy, since it enables our
PORoI pooling unit to detect the occluded parts of pedestrians, which is useful
to help extract effective features for detection.

Evaluation Results. We compare the proposed OR-CNN method1 with the
state-of-the-art detectors [55,67] on both the validation and testing sets of
CityPersons in Tables 1 and 2, respectively. Our OR-CNN achieves the state-
of-the-art results on the validation set of CityPersons by reducing 0.6% MR−2

(i.e., 11.0% vs. 11.6% of [55]) with ×1.3 scale and 0.4% MR−2 (i.e., 12.8% vs.
13.2% of [55]) with ×1 scale, surpassing all published approaches [55,67], which
demonstrates the superiority of the proposed method in pedestrian detection.

To demonstrate the effectiveness of OR-CNN under various occlusion levels,
we follow the strategy in [55] to divide the Reasonable subset in the validation set
(occlusion < 35%) into the Reasonable-Partial subset (10% < occlusion ≤ 35%),
denoted as Partial subset, and the Reasonable-Bare subset (occlusion ≤ 10%),
denoted as Bare subset. Meanwhile, we denote the annotated pedestrians with
the occlusion ratio larger than 35% (that are not included in the Reasonable
set) as Heavy subset. We report the results of the proposed OR-CNN method
and other state-of-the-art methods [55,67] on these three subsets in Table 1.
As shown in Table 1, OR-CNN outperforms the state-of-the-art methods con-
sistently across all three subsets, i.e., reduces 1.1% MR−2 on the Bare subset,
1.1% MR−2 on the Partial subset, and 4.0% MR−2 on the Heavy subset. Notably,
when the occlusion becomes severely (i.e., from Bare subset to Heavy subset),
the performance improvement of our OR-CNN is more obvious compared to
the state-of-the-art methods [55,67], which demonstrates that the AggLoss and
PORoI pooling unit are extremely effective to address the occlusion challenge.
1 Due to the shortage of computational resources and the memory issue, we only train

OR-CNN with two kinds of input sizes, i.e., ×1 and ×1.3 scale. We believe the
accuracy of OR-CNN can be further improved using larger input images. Thus, we
only compare the proposed method with the state-of-the-art detectors using ×1 and
×1.3 input scales.
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Fig. 4. Comparisons with the state-of-the-art methods on the Caltech-USA dataset.
The scores in the legend are the MR−2 scores of the corresponding methods

In addition, we also evaluate the proposed OR-CNN method on the testing
set of CityPersons [67]. Following its evaluation protocol, we submit the detec-
tion results of OR-CNN to the authors for evaluation and report the results in
Table 2. The proposed OR-CNN method achieves the top accuracy with only
×1.3 scale. Although the second best detector Repulsion Loss [55] uses much
bigger input images (i.e., ×1.5 scale of [55] vs. ×1.3 scale of OR-CNN) and
stronger backbone network (i.e., ResNet-50 of [55] vs. VGG-16 of OR-CNN), it
still produces 0.16% higher MR−2 on the Reasonable subset and 1.48% higher
MR−2 on the Reasonable-Small subset. We believe the performance of OR-CNN
can be further improved by using bigger input images and stronger backbone
network.

4.3 Caltech-USA Dataset

The Caltech-USA dataset [14] is one of the most popular and challenging datasets
for pedestrian detection, which comes from approximately 10 h 30 Hz VGA video
recorded by a car traversing the streets in the greater Los Angeles metropolitan
area. We use the new high quality annotations provided by [65] to evaluate
the proposed OR-CNN method. The training and testing sets contains 42, 782
and 4, 024 frames, respectively. Following [14], the log-average miss rate over 9
points ranging from 10−2 to 100 FPPI is used to evaluate the performance of
the detectors.

We directly fine-tune the detection models pre-trained on CityPersons [67]
of the proposed OR-CNN method on the training set in Caltech-USA. Simi-
lar to [55], we evaluate the OR-CNN method on the Reasonable subset of the
Caltech-USA dataset, and compare it to other state-of-the-art methods (e.g.,
[5,6,9,15,25,30,34,49,50,55,63,66]) in Fig. 4. Notably, the Reasonable subset
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Fig. 5. Comparisons with the state-of-the-art methods on the ETH dataset. The scores
in the legend are the MR−2 scores of the corresponding methods.

(occlusion < 35%) only includes the pedestrians with at least 50 pixels tall,
which is widely used to evaluate the pedestrian detectors. As shown in Fig. 4,
the OR-CNN method performs competitively with the state-of-the-art method
[55] by producing 4.1% MR−2.

4.4 ETH Dataset

To verify the generalization capacity of the proposed OR-CNN detector, we
directly use the model trained on the CityPersons [67] dataset to detect the
pedestrians in the ETH dataset [18] without fine-tuning. That is, all 1, 804 frames
in three video clips of the ETH dataset [18] are used to evaluate the performance
of the OR-CNN detector. We use MR−2 to evaluate the performance of the
detectors, and compare the proposed OR-CNN method with other state-of-the-
art methods (i.e., [3,11,29,31–33,35,36,38,39,45,50,53,63]) in Fig. 5. Our OR-
CNN detector achieves the top accuracy by reducing 5.7% MR−2 comparing to
the state-of-the-art results (i.e., 24.5% of OR-CNN vs. 30.2% RFN-BF [63]). The
results on the ETH dataset not only demonstrates the superiority of the proposed
OR-CNN method in pedestrian detection, but also verifies its generalization
capacity to other scenarios.

4.5 INRIA Dataset

The INRIA dataset [11] contains images of high resolution pedestrians collected
mostly from holiday photos, which consists of 2, 120 images, including 1, 832
images for training and 288 images. Specifically, there are 614 positive images
and 1, 218 negative images in the training set. We use the 614 positive images
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Fig. 6. Comparisons with the state-of-the-art methods on the INRIA dataset. The
scores in the legend are the MR−2 scores of the corresponding methods.

in the training set to fine-tune our model pre-trained on CityPersons for 5k
iterations, and test it on the 288 testing images. Figure 6 shows that our OR-CNN
method achieves an MR−2 of 6.4%, better than the other available competitors
(i.e., [2,3,8,11,26,31–33,39,51,53,62–64]), which demonstrates the effectiveness
of the proposed method in pedestrian detection.

5 Conclusions

In this paper, we present a new occlusion-aware R-CNN method to improve the
pedestrian detection accuracy in crowded scenes. Specifically, we design a new
aggregation loss to reduce the false detections of the adjacent overlapping pedes-
trians, by simultaneously enforcing the proposals to be close to the associated
objects, and locate compactly. Meanwhile, to effectively handle partial occlu-
sion, we propose a new part occlusion-aware RoI pooling unit to replace the
RoI pooling layer in the Fast R-CNN module of the detector, which integrates
the prior structure information of human body with visibility prediction into
the network to handle occlusion. Our method is trained in an end-to-end fashion
and achieves the state-of-the-art accuracy on three pedestrian detection datasets,
i.e., CityPersons, ETH, and INRIA, and performs on-pair with the state-of-the-
arts on Caltech. In the future, we plan to improve the method in two aspects.
First, we would like to redesign the PORoI pooling unit to jointly estimate the
location, size, and occlusion status of the object parts in the network, instead of
using the empirical ratio. And then, we plan to extend the proposed method to
detect other kinds of objects, e.g., car, bicycle, tricycle, etc.
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