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Abstract. We propose a stereo vision-based approach for tracking the
camera ego-motion and 3D semantic objects in dynamic autonomous
driving scenarios. Instead of directly regressing the 3D bounding box
using end-to-end approaches, we propose to use the easy-to-labeled 2D
detection and discrete viewpoint classification together with a light-
weight semantic inference method to obtain rough 3D object measure-
ments. Based on the object-aware-aided camera pose tracking which is
robust in dynamic environments, in combination with our novel dynamic
object bundle adjustment (BA) approach to fuse temporal sparse feature
correspondences and the semantic 3D measurement model, we obtain 3D
object pose, velocity and anchored dynamic point cloud estimation with
instance accuracy and temporal consistency. The performance of our pro-
posed method is demonstrated in diverse scenarios. Both the ego-motion
estimation and object localization are compared with the state-of-of-the-
art solutions.
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1 Introduction

Localizing dynamic objects and estimating the camera ego-motion in 3D space
are crucial tasks for autonomous driving. Currently, these objectives are sepa-
rately explored by end-to-end 3D object detection methods [1,2] and traditional
visual SLAM approaches [3-5]. However, it is hard to directly employ these
approaches for autonomous driving scenarios. For 3D object detection, there are
two main problems: 1. end-to-end 3D regression approaches need lots of train-
ing data and require heavy workload to precisely label all the object boxes in
3D space and 2. the instance 3D detection produces frame-independent results,
which are not consistent enough for continuous perception in autonomous driv-
ing. To overcome this, we propose a light-weight semantic 3D box inference
method depending only on 2D object detection and discrete viewpoint classifi-
cation (Sect.4). Comparing with directly 3D regression, the 2D detection and
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Fig. 1. Overview of our semantic 3D object and ego-motion tracking system. Top: 3D
trajectories of ego-camera and all objects in the long travel history. Bottom: from left
to right: stereo feature matching for each object (Sect.5). An extreme car-truncated
case where our system can still track the moving car accurately. Dynamic 3D sparse
feature recovered by our object BA. Consistent movement and orientation estimation.

classification task are easy to train, and the training data can be easily labeled
with only 2D images. However, the proposed 3D box inference is also frame-
independent and conditional on the instance 2D detection accuracy. In another
aspect, the well-known SLAM approaches can track the camera motion accu-
rately due to precise feature geometry constraints. Inspired by this, we can
similarly utilize the sparse feature correspondences for object relative motion
constraining to enforce temporal consistency. However, the object instance pose
cannot be obtained with pure feature measurement without semantic prior. To
this end, due to the complementary nature of semantic and feature information,
we integrate our instance semantic inference model and the temporal feature cor-
relation into a tightly-coupled optimization framework which can continuously
track the 3D objects and recover the dynamic sparse point cloud with instance
accuracy and temporal consistency, which can be overviewed in Fig. 1. Benifit-
ting from object-region-aware property, our system is able to estimate camera
pose robustly without being affected by dynamic objects. Thanks to the tem-
poral geometry constraints, we can track the objects continuously even for the
extremely truncated case (see Fig. 1), where the object pose is hard for instance
inference. Additionally, we employ a kinematics motion model for detected cars
to ensure consistent orientation and motion estimation; it also serves as impor-
tant smoothing for distant cars which have few feature observation. Depending
only on a mature 2D detection and classification network [6], our system is capa-
ble of performing robust ego-motion estimation and 3D object tracking in diverse
scenarios. The main contributions are summarized as follows:

— A light-weight 3D box inference method using only 2D object detection and
the proposed viewpoint classification, which provides the object reprojection
contour and occlusion mask for object feature extraction. It also serves as the
semantic measurement model for the follow-up optimization.
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— A novel dynamic object bundle adjustment approach which tightly couples
the semantic and feature measurements to continuously track the object states
with instance accuracy and temporal consistency.

— Demonstration over diverse scenarios to show the practicability of the pro-
posed system.

2 Related Work

We review the related works in the context of semantic SLAM and learning-based
3D object detection from images.

Semantic SLAM. With the development of 2D object detection, several joint
SLAM with semantic understanding works have sprung up, which we discuss in
three categories. The first is semantic-aided localization: [7,8] focus on correct-
ing the global scale of monocular Visual Odometry (VO) by incorporating object
metric size of only one dimension into the estimation framework. Indoor with
small objects and outdoor experiments are conducted respectively in these two
works. [9] proposes an object data association method in a probabilistic formula-
tion and shows its drift correcting ability when re-observing the previous objects.
However, it omits the orientation of objects by treating the 2D bounding boxes
as points. And in [10], the authors address the localization task from only object
observation in a prior semantic map by computing a matrix permanent. The
second is SLAM-aided object detection [11,12] and reconstruction [13,14]: [11]
develops an 2D object recognition system which is robust to viewpoint chang-
ing with the assistance of camera localization, while [12] performs confidence-
growing 3D objects detection using visual-inertial measurements. [13,14] recon-
struct the dense surface of 3D object by fusing the point cloud from monocular
and RGBD SLAM respectively. Finally, the third category is joint estimation for
both camera and object poses: With pre-built bags of binary words, [15] localizes
the objects in the datasets and correct the map scale in turns. In [16,17], the
authors propose a semantic structure from motion (SfM) approach to jointly esti-
mate camera, object with considering scene components interaction. However,
neither of these methods shows the ability to solve dynamic objects, nor makes
full use of 2D bounding box data (center, width, and height) and 3-dimensions
object size. There are also some existing works [18-21] building the dense map
and segmenting it with semantic labels. These works are beyond the scope of
this paper, so we will not discuss them in details.

3D Object Detection. Inferring object pose from images by deep learning
approaches provides an alternative way to localize 3D objects. [22,23] use the
shape prior to reason 3D object pose, where the dense shape and wireframe mod-
els are used respectively. In [24], a voxel pattern is employed to detect 3D pose of
objects with specific visibility patterns. Similarly to object proposal approaches
in 2D detection [1,6] generates 3D proposals by utilizing depth information cal-
culated from stereo images, while [2] exploits the ground plane assumption and
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Fig. 2. Our whole semantic tracking system architecture.

additional segmentation features to produce 3D candidates; R-CNN is then used
for candidates scoring and object recognition. Such high-dimension features used
for proposal generating or model fitting are computationally complex for both
training and deploying. Instead of directly generating 3D boxes, [25] regresses
object orientation and dimensions in separate stages; then the 2D-3D box geom-
etry constraints are used to calculate the 3D object pose, while purely depending
on instance 2D box limits its performance in object-truncated cases.

In this work, we study the pros and cons of existing works and propose an
integrated perception solution for autonomous driving that makes full use of the
instance semantic prior and precise feature spatial-temporal correspondences to
achieve robust and continuous state estimation for both the ego-camera and
static or dynamic objects in diverse environments.

3 Overview

Our semantic tracking system has three main modules, as illustrated in Fig. 2.
The first module performs 2D object detection and viewpoint classification
(Sect. 4), where the objects poses are roughly inferred based on the constraints
between 2D box edges and 3D box vertexes. The second module is feature extrac-
tion and matching (Sect. 5). It projects all the inferred 3D boxes to the 2D image
to get the objects contour and occlusion masks. Guided feature matching is then
applied to get robust feature associations for both stereo and temporal images.
In the third module (Sect.6), we integrate all the semantic information, feature
measurements into a tightly-coupled optimization approach. A kinematics model
is additionally applied to cars to get consistent motion estimation.
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4 Viewpoint Classification and 3D Box Inference

Our semantic measurement includes the 2D object box and classified viewpoints.
Based on this, the object pose can be roughly inferred instantly in close-form.

4.1 Viewpoint Classification

2D Object detection can be implemented by the state-of-the-art object detectors
such as Faster R-CNN [6], YOLO [26], etc. We use Faster R-CNN in our system
since it performs well on small objects. Only left images are used for object
detection due to real-time requirement. The network architecture is illustrated in
Fig. 2(a). Instead of the pure object classification in the original implementation
of [6], we add sub-categories classification in the final FC layers, which denotes
object horizontal and vertical discrete viewpoints. As Fig. 3a shown, We divide
the continuous object observing angle into eight horizontal and two vertical
viewpoints. With total 16 combinations of horizontal and vertical viewpoint
classification, we can generate associations between edges in the 2D box and
vertexes in the 3D box based on the assumption that the reprojection of the 3D
bounding box will tightly fit the 2D bounding box. These associations provide
essential condition to build the four edge-vertex constraints for 3D box inference
(Sect. 4.2) and formulate our semantic measurement model (Sect.6.2).

Comparing with direct 3D regression, the well-developed 2D detection and
classification networks are more robust over diverse scenarios. The proposed
viewpoint classification task is easy to train and have high accuracy, even for
small and extreme occluded objects.

Vmin @
- "] 2D Bounding Box
—,/rjﬁj 3D Bounding Box

(D Outer Vertexes

Umax

Fig. 3. (a) Presents all the horizontal and vertical viewpoints for our classification, their
combinations are enough to cover all the observation cases in autonomous scenarios.
(b) Illustrates the 3D car in a specific viewpoint, where the object frame, four vertexes
corresponding to four 2D box edges are denoted respectively.

4.2 3D Box Inference Based on Viewpoint

Given the 2D box described by four edges in normalized image plane
[min, Umins Umax; Vmax| and classified viewpoint, we aim to infer the object pose
based on four constriants between 2D box edges and 3D box vertexes, which is
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inspired by [25]. A 3D bounding box can be represented by its center position
P = [Pz, Py, p-]T and horizontal orientation @ respecting to camera frame and the
dimensions prior d = [dg, dy, d.]T. For example, in such a viewpoint presented
in Fig. 3b from one of 16 combinations in Fig. 3a (denoted as red), four vertexes
are projected to the 2D edges, the corresponding constraints can be formulated

as:
Umin = 7T(p+R9C1d)ua Umax = W(P+R9C2d)u7 (1)
Umin = T (p + RQCSd)U y Umax = T (p + R9C4d)v 5

where 7 is a 3D projection warp function which defined as w(p) =
[px/P2,py/p=]T, and (-), represents the u coordinate in the normalized image
plane. We use Ry to denote the rotation parameterized by horizontal orienta-
tion 6 from the object frame to the camera frame. C1.4 are four diagonal selection
matrixes to describe the relations between the object center to the four selected
vertexes, which can be determined after we get the classified viewpoint without
ambiguous. From the object frame defined in Fig. 3b, it’s easy to see that:

050 0] [-050 0 05 0 0 —050 0
Ciu=[0050],] 0 05 0 |,]0-05 01, 0 050].(2
0 005 0 0 -05| |0 0 —05 0 005

With these four equations, the 4 DoF object pose can be solved intuitively given
the dimensions prior. This solving process has very trivial time consuming com-
paring with [25] which exhaustive tests all the valid edge-vertex configurations.

We convert the complex 3D object detection problem into 2D detection, view-
point classification, and straightforward closed-form calculation. Admittedly, the
solved pose is an approximated estimation which is conditioned on the instance
“tightness” of the 2D bounding box and the object dimension prior. Also for
some top view cases, the reprojection of the 3D box does not strictly fit the 2D
box, which can be observed from the top edge in Fig. 3b. However, for the almost
horizontal or slight looking-down viewpoints in autonomous driving scenarios,
this assumption can be held reasonably. Note that our instance pose inference is
only for generating object projection contour and occlusion mask for the feature
extraction (Sect.5) and serves as an initial value for the follow-up maximum-
a-posteriori (MAP) estimation, where the 3D object trajectory will be further
optimized by sliding window based feature correlation and object point cloud
alignment.

5 Feature Extraction and Matching

We project the inferred 3D object boxes (Sect.4.2) to the stereo images to gen-
erate a valid 2D contour. As Fig.2(b) illustrates, we use different colors mask
to represent visible part of each object (gray for the background). For occlu-
sion objects, we mask the occluded part as invisible according to objects 2D
overlap and 3D depth relations. For truncated objects which have less than four
valid edges measurements thus cannot be inferred by the method in Sect. 4.2,
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we directly project the 2D box detected in the left image to the right image. We
extract ORB features [27] for both the left and right image in the visible area
for each object and the background.

Stereo matching is performed by epipolar line searching. The depth range of
object features are known from the inferred object pose, so we limit the search
area to a small range to achieve robust feature matching. For temporal matching,
we first associate objects for successive frames by 2D box similarity score voting.
The similarity score is weighted by the center distance and shape similarity of
the 2D boxes between successive images after compensating the camera rotation.
The object is treated as lost if its maximum similarity score with all the objects
in the previous frame is less than a threshold. We note that there are more
sophisticated association schemes such as probabilistic data association [9], but
it is more suitable for avoiding the hard decision when re-visiting the static
object scene than for the highly dynamic and no-repetitive scene for autonomous
driving. We subsequently match ORB features for the associated objects and
background with the previous frame. Outliers are rejected by RANSAC with
local fundamental matrix test for each object and background independently.

6 Ego-Motion and Object Tracking

Beginning with the notation definition, we use sf = {b},, bl  ix,Ck, ,} to
denote the semantic measurement of the k' object at time ¢, where bl, bt
are the observations of the left-top and the right-bottom coordinates of the 2D
bounding box respectively, I;, is the object class label and C}, ., are four selec-
tion matrixes defined in Sect. 4.2. For measurements of sparse feature which is
anchored to one object or the background, we use "z} = {"z},, "z} } to denote
the stereo observations of the n'”* feature on the k' object at time ¢ (k = 0 for the
static background), where "z, "z} are feature coordinates in the normalized
left and right image plane respectively. The
states of the ego-camera and the k" object
are represented as “x., = {“p%, “RL}, “x!, =
{*pl,, dg, 0%, 0%, 6L, } respectively, where we
use “(+), (+)c and (+), to denote the world, cam-
era and object frame. “p represents the position
in the world frame. For objects orientation, we
only model the horizontal rotation “?, instead
of SO(3) rotation “R! for the ego-camera. dy, is
the time-invariant dimensions of the k' object, ™= Obiect feature Qcmerapose
anq vt ot are the speed and steering angle, ;C;’ii:rie:‘:?;::::m 5;’;::;§::eame
which are only estimated for cars. For concise- .« packground feature measure

ness, we visualize the measurements and states

in Fig. 4 at the time t¢. Fig. 4. Notation visualization.

Considering a general autonomous driving scene, we aim to continuously esti-
mate the ego-motion of the onboard camera from time 0 to T: “ X, = {“x%},—o.7,
and track the K; number of 3D objects: “X, = {“’xok}k:lzm VYol =



Stereo Vision-Based Semantic 3D Object 671

{¥x!, }+=0.7, and recover the 3D position of the dynamic sparse features:

= {*f}1—0.x,, *f = {*£,}n=0.N,, (note that here we use *(-) to denote the k'"
object frame, in which the features are relatively static, k¥ = 0 for background
world, in which the features are globally static), given the semantic measure-
ments: S = {sg hr=1.k,, Sk = {s}, }+—o.r and sparse feature observations anchored
to the k' object: Z = {zk}r=0:k,» 2k = {"Zk fn=o:N, "2k = {"2L}i—0.7. We
formulate our semantic objects and camera ego-motion tracking from the prob-
abilistic model to a nonlinear optimization problem.

6.1 Ego-Motion Tracking

Given the static background feature observation, the ego-motion can be solved
via maximum likelihood estimation (MLE):

wX,, °f = arg max H Hp vxL, O, x]) 3)
YA 5 208=0
= arg maxz Zlogp ol“xL, °f,, " x0) (4)

X 20 t=0

= argmmz Z ||rz "zo, w Z,Of H(Q’ZZ . (5)

v Xe,OF n=0 t=0

This is the typical SLAM or SfM approach. The camera pose and background
point cloud are estimated conditionally on the first state. As Eq.3 shows, the
log probability of measurement residual is proportional to its Mahalanobis norm
Hr||2z =rTsy"!r. Then the MLE is converted to a nonlinear least square prob-
lem, this process is also known as Bundle Adjustment (BA).

6.2 Semantic Object Tracking

After we solve the camera pose, the object state at each time ¢ can be
solved based on the dimension prior and the instance semantic measurements
(Sect.4.2). We assume the object is a rigid body, which means the feature
anchored to it is fixed respecting to the object frame. Therefore, the temporal
states of the object are correlated if we have continuous object feature observa-
tions. States of different objects are conditionally independent given the camera
pose, so we can track all the objects in parallel and independently. For the k"
object, we have the dimension prior distribution p(dy) for each class label. We
assume the detection results and feature measurements for each object at each
time are independent and Gaussian distributed. According to Bayes’ rule, we
have the following maximum-a-posteriori (MAP) estimation:
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“Xop, "f = arg max p(“Xop, "f | X, Z1, S1) (6)
WX ok,
= arg max p(zg, k| “"X¢, “ Xok, kf)p(dk) (7)
Wxok, P f
= arg m?Xp(Zk\an “Xok, "E)p(sk [V Xe, X0k )p(dy) (8)
WXok,*f
T N

_arglnaXH Hp v i,w okkan)p(sz wa:vwa)k)p(wXZkl vx! ) (dk)
“xoi " 120 n=0

(9)

Similar to Eq. 3, we convert the MAP to a nonlinear optimization problem:

T Ng
Y op, FE = argmln{zz Hrz Low Z,MXZk’kfn)HiZ; + Hm»(dﬁg,dk)szz,

“xoks" 120 n=0
+ZHTM w Zk)w t 1 Hzf +ZHT$ w i)w t Hzt}a (10)

where we use 7z, rp, 1A, and rs to denote the residual of the feature reprojec-
tion, dimension prior, object motion model, and semantic bounding box repro-
jection respectively. 3 is the corresponding covariance matrix for each mea-
surement. We formulate our 3D object tracking problem into a dynamic object
BA approach which makes fully exploit object dimension and motion prior and
enforces temporal consistency. Maximum a posteriori estimation can be achieved
by minimizing the sum of the Mahalanobis norm of all the residuals.

Sparse Feature Observation. We extend the projective geometry between
static features and camera pose to dynamic features and object pose. Based on
anchored relative static features respecting to the object frame, the object poses
which share feature observations can be connected by a factor graph. For each
feature observation, the residual can be represented by the reprojection error of
predicted feature position and the actual feature observations on the left and
right image:

rz (nzzv wxz’ wxf)kv kfn) (11)
(10 B )

- W(h(rxl,h ( h(w Zkakfn)))) _nZZT , (12)

where we use h(x,p) to denote applying a 3D rigid body transform x to a point p.
For example, h (w s ”“fn) transforms the nt" feature point *f,, from the object
frame to the world frame, h=!(x, p) is the corresponding inverse transform. "x;
denotes the extrinsic transform of the stereo camera, which is calibrated offline.

Semantic 3D Object Measurement. Benefiting from the viewpoint classi-
fication, we can know the relations between edges of the 2D bounding box and
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vertexes of the 3D bounding box. Assume the 2D bounding box is tightly fitted
to the object boundary, then each edge is intersected with a reprojected 3D ver-
tex. These relations can be determined as four selection matrixes for each 2D
edge. The semantic residual can be represented by the reprojection error of the
predicted 3D box vertexes with the detected 2D box edges:

ek

r(si " "o d) = | 7 (bl | (13)
7 (hy), — (),

e, =W (xt, B("xty, Codl), (19

where we use hg, to project a vertex specified by the corresponding selection
matrix C; of the 3D bounding box to the camera plane. This factor builds the
connection between the object pose and its dimensions instantly. Note that we
only perform 2D detection on the left image due to the real-time requirement.

Vehicle Motion Model. To achieve consistent estimation of motion and ori-
entation for the vehicle class, we employ the kinematics model introduced in
[28]. The vehicle state at time ¢ can be predicted with the state at ¢ — 1:

Wt Is43, 0,0, A wpt—l
t “’IG)g: (;( 1.0 tan(é)At wegkl COS(G)At
~ — o — ) y Yy T o_k A _ . 9 At 15
Xk 52k 0, 0,1, 0 5Zk1 ) sm(o) . (15)
’Uék O, O, 0, 1 /UZEI
(Mg, X0 ) = Xy — Xy, (16)

where L is the length of the wheelbase, which can be parameterized by the
dimensions. The orientation of the car is always parallel to the moving direction.
We refer readers to [28] for more derivations. Thanks to this kinematics model,
we can track the vehicle velocity and orientation continuously, which provides
rich information for behavior and path planning for autonomous driving. For
other class such as pedestrians, we directly use a simple constant-velocity model
to enhance smoothness.

Point Cloud Alignment. After minimizing Before alignment fter algnment
all the residuals, we obtain the MAP estima- ‘
tion of the object pose based on the dimension
prior. However, the pose might be biased esti-
mated due to object size difference (See Fig.5).
We therefore align the 3D box to the recovered
point cloud, which is unbiased because of accu-
rate stereo extrinsic calibration. We minimize the
distance of all 3D points with their anchored 3D
box surfaces:

Fig. 5. Point cloud alignment.
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Ny
wx!, = argmin Z d(xt, Ff,), (17)
“Xok  p—0

where d(“x!, % f,,) denotes the distance of the k*" feature with its corresponding

observed surface. After all the above information is tightly fused together, we get
consistent and accurate pose estimation for both the static and dynamic objects.

7 Experimental Results

We evaluate the performance of the proposed system on both KITTT [29,30] and
Cityscapes [31] dataset over diverse scenarios. The mature 2D detection and clas-
sification module has good generalization ability to run on unseen scenes, and
the follow-up nonlinear optimization is data-independent. Our system is there-
fore able to perform consistent results on different datasets. The quantitative
evaluation shows our semantic 3D object and ego-motion tracking system has
better performance than the isolated state-of-the-art solutions.

) -
——-
N 18.05km/h (s}

(b)

Fig. 6. Continuous tracking results over long trajectories. (a) shows a roughly 700 m
close-loop trajectory including both static and dynamic cars. The right top and right
bottom are enlarged start and end views respectively. The car in the blue circle is
tracked over 200 m, the trajectory of which can be found in the left top view. (b) shows a
scenario which mainly contains dynamic and truncated cars. The estimated trajectory,
velocity and reprojected 2D image are presented in left and right respectively. Note
that the LiDAR point cloud is only for reference in all the top views.

7.1 Qualitative Results over Diverse Scenarios

Firstly, we test the system on long challenging trajectories in KITTI dataset
which contains 1240 x 376 stereo color and grayscale images captured at 10 Hz.
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We perform 2D detection on left color images and extract 500 (for the back-
ground) and 100 (for the object) ORB features [27] on both left and right
grayscale images. Figure 6a shows a 700 m close-loop trajectory which includes
both static and dynamic cars. We use red cone and line to represent the camera
pose and trajectory, and various color CAD models and lines to represent dif-
ferent cars and their trajectories, all the observed cars are visualized in the top
view. Currently, our system performs object tracking in a memoryless manner,
so the re-observed object will be treated as a new one, which can also be found
in the enlarged start and end views in Fig. 6a. In Fig. 6b, the black car is con-
tinuously truncated over a long time, which is an unobservable case for instance
3D box inference (Sect. 4.2). However, we can still track its pose accurately due
to temporal feature constraints and dynamic point cloud alignment.

We also demonstrate the system performance on different datasets over more
scenarios which include concentrated cars, crossroads, and dynamic roads. All
the reprojected images and the corresponding top views are shown in Fig. 7.

KITTI Dataset

Cityscapes Dataset

Fig. 7. Qualitative examples over diverse scenarios. From left to right: Concentrated
cars. Crossroads which include both cars and pedestrians (note that we do not solve
orientation for pedestrians), Dynamic cars. The top two rows are the results on the
KITTI dataset, and the bottom two rows show the results on the Cityscapes dataset.

7.2 Quantitative Evaluation

Since there are no available integrated academic solutions for both ego-motion
and dynamic objects tracking currently, we conduct quantitative evaluations for
the camera and objects poses by comparing with the isolated state-of-the-art
works: ORB-SLAM?2 [4] and 3DOP [1].

Camera Pose Evaluation. Benefiting from the semantic prior, our system
can perform robust camera estimation in dynamic environments. We evaluate
the accuracy of camera odometry by comparing the relative pose error (RPE)
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Fig. 8. (a) RPEs comparison. Left and right are the results of 0929_0004 and 10030047
sequences from the KITTI raw dataset respectively. (b) RMSEs of ATE comparisons
on ten long KITTI raw sequences.

[29] and RMSE of ATE (Absolute Trajectory Error) [32] with the ORB-SLAM2
[4] with stereo settings. Two sequences in KITTI raw dataset: 09290004 and
1003_0047 which include dynamic objects are used for RPEs comparison. The
relative translation and rotation errors are presented in Fig.8(a). Ten long
sequences of KITTI raw dataset are additionally used to evaluate RMSEs of
ATE, as detailed in Fig. 8(b). It can be seen that our estimation shows almost
same accuracy with [4] in less dynamic scenarios due to the similar Bundle
Adjustment approaches (0926_0051, etc.). However, our system still works well in
high dynamic environments while ORB-SLAM2 shows non-trivial errors due to
introducing many outliers (1003-0047, 09290004, etc.). This experiment shows
that the semantic-aided object-aware property is essential for camera pose esti-
mation, especially for dynamic autonomous driving scenarios.

Object Localization Evaluation. We evaluate the car localization perfor-
mance on KITTT tracking dataset since it provides sequential stereo images with
labeled objects 3D boxes. According to occlusion level and 2D box height, we
divide all the detected objects into three regimes: easy, moderate and hard then
evaluate them separately. To evaluate the localization accuracy of the proposed
estimator, we collect objects average position error statistics. By setting series
of Intersection-over-Unions (IoU) ;.
thresholds from 0 to 1, we calcu-
late the true positive (TP) rate and
the average error between estimated
position of TPs and ground truth at
each instance frame for each thresh-
old. The average position error (in
%) vs TP rate curves are shown in
Fig. 9, where we use blue, red, yellow
lines to represent statistics for easy,
moderate and hard objects. It can be
seen that the average error for half
tuth positive objects is below 5%. For
all the estimated results, the average
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Fig. 9. Average position error vs TP rate
results. We set 40 discrete IoU thresholds
from 0 to 1, then count the TP rate and the
average position error for the true positives
for each IoU threshold.
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position errors are 5.9%, 6.1% and 6.3% for easy, moderate and hard objects
respectively.

To compare with baselines, we evaluate the Average Precision (AP) for bird’s
eye view boxes and 3D boxes by comparing with 3DOP [1], the state-of-the-art
stereo based 3D object detection method. We set IoU thresholds to 0.25 and 0.5
for both bird’s eye view and 3D boxes. Note that we use the oriented box overlap,
so the object orientation is also implied evaluated in these two metrics. We use
S, M, F, P to represent semantic measurement, motion model, feature observa-
tion, and point cloud alignment respectively. As listed in Table 1, the semantic
measurement serves as the basis of the 3D object estimation. Adding feature
observation increases the AP for easy (near) objects obviously due to large fea-
ture extraction area (same case for adding point clout alignment), while adding
motion model helps the hard (far) objects since it “smooths” the non-trivial 2D
detection noise for small objects. After integrating all these cues together, we
obtain accurate 3D box estimation for both near and far objects. It can be seen
that our integrated method shows more accurate results for all the AP in bird’s
eye view and 3D box with 0.25 IoU threshold. Due to the unregressed object size,
our performance slightly worse than 3DOP in 3D box comparison of 0.5 IoU.
However, we stress our method can efficiently track both static and dynamic 3D
objects with temporal smoothness and motion consistency, which is essential for
continuous perception and planning in autonomous driving.

Table 1. Average precision (in %) of bird’s eye view and 3D boxes comparison.

Method APy (IoU =0.25) |APy, (IoU=0.5) AP34q(IoU=0.25) |AP3q(IoU=0.5) Time (ms)
Easy |[Mode | Hard | Easy |Mode | Hard | Easy |Mode | Hard | Easy |Mode | Hard

S 63.12 |56.37 |53.18 |33.12 |28.91 |27.77 |58.78 |52.42 |48.82 (25.68 (21.70 |21.02 120
S+M 66.27 [63.81 |58.84 |41.08 [38.90 |34.84 |62.97 |60.70 |55.28 |34.18 |30.98 |27.32 121
S+F 76.23 |70.18 |66.18 |48.82 (43.07 |39.80 |73.35 |66.86 |62.66 |38.93 |33.43 |30.46 170

S+F+M T7.87 |74.48 |70.85 |46.96 |44.39 |42.23 |73.32 |71.06 |67.30 |40.50 |36.28 |34.59 171
S+F+4+M+P|88.07|77.83|72.73|58.52|/46.17/43.97|86.57|74.13|68.96|48.51 |37.13 |34.54 173
3DOP 81.34 |70.70 |66.32 |54.83 |43.36 |37.15 |80.62 |70.01 |65.76 |53.73|42.27|35.87 |1200

8 Conclusions and Future Work

In this paper, we propose a 3D objects and ego-motion tracking system for
autonomous driving. We integrate the instance semantic prior, sparse feature
measurement and kinematics motion model into a tightly-coupled optimization
framework. Our system can robustly estimate the camera pose without being
affected by the dynamic objects and track the states and recover dynamic sparse
features for each observed object continuously. Demonstrations over diverse sce-
narios and different datasets illustrate the practicability of the proposed system.
Quantitative comparisons with state-of-the-art approaches show our accuracy
for both camera estimation and objects localization.

In the future, we plan to improve the object temporal correlation by fully
exploiting the dense visual information. Currently, the camera and objects track-
ing are implemented successively in our system. We are also going to model them



678 P. Liet al.

into a fully-integrated optimization framework such that the estimation for both
camera and dynamic objects can benefit from each other.
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