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Abstract. Panorama creation is one of the most widely deployed tech-
niques in computer vision. In addition to industry applications such as
Google Street View, it is also used by millions of consumers in smart-
phones and other cameras. Traditionally, the problem is decomposed into
three phases: registration, which picks a single transformation of each
source image to align it to the other inputs, seam finding, which selects
a source image for each pixel in the final result, and blending, which
fixes minor visual artifacts [1,2]. Here, we observe that the use of a sin-
gle registration often leads to errors, especially in scenes with significant
depth variation or object motion. We propose instead the use of multi-
ple registrations, permitting regions of the image at different depths to
be captured with greater accuracy. MRF inference techniques naturally
extend to seam finding over multiple registrations, and we show here
that their energy functions can be readily modified with new terms that
discourage duplication and tearing, common problems that are exacer-
bated by the use of multiple registrations. Our techniques are closely
related to layer-based stereo [3,4], and move image stitching closer to
explicit scene modeling. Experimental evidence demonstrates that our
techniques often generate significantly better panoramas when there is
substantial motion or parallax.

1 Image Stitching and Parallax Errors

The problem of image stitching, or the creation of a panorama from a set of
overlapping images, is a well-studied topic with widespread applications [5–7].
Most modern digital cameras include a panorama creation mode, as do iPhones
and Android smartphones. Google Street View presents the user with panoramas
stitched together from images taken from moving vehicles, and the overhead
views shown in map applications from Google and Microsoft are likewise stitched
together from satellite images. Despite this ubiquity, stitching is far from solved.
In particular, stitching algorithms often produce parallax errors even in a static
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(a) Input images

(b) Our result (c) Autostitch [8]

Fig. 1. Motion errors example. The strip of papers with numbers has undergone trans-
lation between input images. Our result in (b) shows the use of multiple registrations.
Green: the reference, Red: registration aligning the number strip, Blue: registration
aligning the letter strip. Autostitch result in (c) has visible ghosting on the number
strip. (Color figure online)

scene with objects at different depths, or dynamic scene with moving objects.
An example of motion errors is shown in Fig. 1.

The stitching problem is traditionally viewed as a sequence of steps that are
optimized independently [6,7]. In the first step, the algorithm computes a sin-
gle registration for each input image to align them to a common surface.1 The
warped images are then passed on to the seam finding step; here the algorithm
determines the registered image it should draw each pixel from. Finally, a blend-
ing procedure [9] is run on the composite image to correct visually unpleasant
artifacts such as minor misalignment, or differences in color or brightness due to
different exposure or other camera characteristics.

In this paper, we argue that currently existing methods cannot capture the
required perspective changes for scenes with parallax or motion in a single reg-
istration, and that seam finding cannot compensate for this when the seam
must pass through content-rich regions. Single registrations fundamentally fail
to capture the background and foreground of a scene simultaneously. This is
demonstrated in Fig. 1, where registering the background causes errors in the
foreground and vice versa. Several papers [1,2] have addressed this problem by
creating a single registration that is designed to produce a high quality stitch.
However, as we will show, these still fail in cases of large motion or parallax
due to the limitations inherent to single registrations. We instead propose an
end-to-end approach where multiple candidate registrations are presented to
the seam finding phase as alternate source images. The seam finding stage is
then free to choose different registrations for different regions of the composite
1 We use the term registration for an arbitrary (potentially non-rigid) image transfor-

mation, and homography for a line-preserving image transformation. We will some-
times refer to the registration process as warping, or creating a warp.
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output image. Note that as any registration can serve as a candidate under our
scheme, it represents a generalization of methods that attempt to find a single
good registration for stitching.

Unfortunately, the classical seam finding approach [5] does not naturally
work when given multiple registrations. First, traditional seam finding treats
each pixel from the warped image equally. However, by the nature of our mul-
tiple registration algorithm, each of them only provides a good alignment for a
particular region in the image. Therefore, we need to consider this pixel-level
alignment quality in the seam finding phase. Second, seam finding is performed
locally by setting up an MRF that tries to place seams where they are not
visually obvious. Figure 1 illustrates a common failure; the best seam can cause
objects to be duplicated. This issue is made worse by the use of multiple reg-
istrations. In traditional image stitching, pixels come from one of two images,
so in the worst case scenario, an object is repeated twice. However, if we use n
registrations, an object can be repeated as many as n + 1 times.

We address this issue by adding several additional terms to the MRF that
penalize common stitching errors and encourage image accuracy. Our confidence
term encourages pixels to select their value from registrations which align nearby
pixels, our duplication term penalizes label sets which select the same object in
different locations from different input images, and finally our tear term penalizes
breaking coherent regions. While our terms are designed to handle the challenges
of multiple registrations, they also provide improvements to the classical single-
registration framework.

Our work can be interpreted as a layer-based approach to image stitching,
where each registration is treated as a layer and the seam finding stage simul-
taneously solves for layer assignment and image stitching [3]. Under this view,
this paper represents a modest step towards explicit scene modeling in image
stitching.

1.1 Motivating Examples

Figure 2 demonstrates the power of multiple registrations. The plant, the floor
and the wall each undergo very distinctive motions. Our technique captures all
3 motions. Another challenging example is shown in Fig. 3. Photoshop computes
a single registration to align the background buildings, which duplicates the
traffic cones and the third car from left. Our technique handles all these objects
at different depth correctly.

1.2 Problem Formulation and Our Approach

We adopt the common formulation of image stitching, sometimes called perspec-
tive stitching [12] or a flat panorama [6, Sect. 6.1], that takes one image I0 as the
reference, then warps another candidate image I1 into the reference coordinate
system, and add its content to I0.

Instead of proposing a single warped ω(I1) and sending it to the seam finding
phase, we proposed a set of warping ω1(I1), . . . , ωN (I1), where each ωi(I1) aligns
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a region in I1 with I0. We will detail our approach for multiple registrations in
Sect. 3.1. Then we will formalize a multi-label MRF problem for seam finding.
We have label set L = {0, 1, . . . , N}, such that label xp = 0 indicates pixel p in
the final stitched result will take its color value from I0, and from ωxp

(I1) when
xp > 0. We will get the optimal seam by minimizing the energy function E(x)
with the new proposed terms to address the challenges we introduced before. We
will describe our seam finding energy E(x) in Sect. 3.2. Finally, we adopt Poisson
blending [9] to smooth transitions over stitching boundaries when generating the
final result.

(a) Input images (b) NIS [10] (c) Our result

Fig. 2. Motivating example for multiple registrations. Even the sophisticated single
registration approach of NIS [10] gives severe ghosting.

(a) Input images (b) Photoshop [11] (c) Our result

Fig. 3. Motivating example for multiple registrations. State of the art commercial
packages like Adobe Photoshop [11] duplicate the traffic cones and other objects.

2 Related Work

The presence of visible seams due to parallax and other effects is a long-standing
problem in image stitching. Traditionally there have been two avenues for elim-
inating or reducing these artifacts: improving registrations by allowing more
degrees of freedom, or hiding misalignments by selecting better seams. Our algo-
rithm can be seen as employing both of these strategies: the use of multiple
registrations allows us to better tailor each registration to a particular region
of the panorama, while our new energy terms improve the quality of the final
seams.
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2.1 Registration

Most previous works take a homography as a starting point and perform addi-
tional warping to correct any remaining misalignment. [13] describes a process in
which each feature is shifted toward the average location of its matches in other
images. The APAP algorithm divides images into grid cells and estimates a sep-
arate homography for each cell, with regularization toward a global homography
[14].

Instead of solving registration and seam finding independently, another line
of work explicitly takes into account the fact that the eventual goal of the reg-
istration step is to produce images that can be easily stitched together. ANAP,
for instance, can be improved by limiting perspective distortions in regions with-
out overlap and otherwise regularizing to produce more natural-looking mosaics
[15]. Another approach is to confine the warping to a minimal region of the input
images that is nevertheless large enough for seam selection and blending, which
allows the algorithm to handle larger amounts of parallax [2]. Going a step fur-
ther it is possible to interleave the registration and seam finding phases, as in
the SEAGULL system [1]. In this case, the mesh-based warp can be modified to
optimize feature correspondences that lie close to the current seam.

2.2 Seam Finding and Other Combination Techniques

The seam finding phase requires determining, for each pixel, which of the two
source images contributes its color. [5] observed that this problem can be nat-
urally formulated as a Markov Random Field and solved via graph cuts. This
approach tends to give strong results, and the graph cuts method in particular
often produces energies that are within a few percent of the global minimum
[16]. Further work in this area has focused on taking into account the pres-
ence of edges or color gradients in the energy function in order to avoid visible
discontinuities [17].

An alternative to seam finding is the use of a multi-band blending [18] phase
immediately after registration [8]. This step blends low frequencies over a large
spatial range and high frequencies over a short range to minimize artifacts.

2.3 Comparison to Our Technique

Our work clearly generalizes the line of work that optimizes a single registration,
as this arises as a special case when only one candidate warp is used. More
usefully, existing registration methods can serve as candidate generators in our
technique. A single registration algorithm can propose multiple candidates when
run with different parameters, or in the case of a randomized algorithm, such as
RANSAC, run several times.

Similarly, our algorithm can be viewed as implicitly defining a single regis-
tration, given at each pixel by the warp ωi associated with the candidate reg-
istration from which the pixel was drawn in the final output. In theory, this
piecewise defined warp is sufficient to obtain the results reported here, but in
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practice, finding it is difficult. Previous work along these lines has focused on
iterative schemes in order to compute the varying warps that are required in dif-
ferent regions of the image [10,15], but this is in general a very computationally
challenging problem and the warping techniques used may not be sufficient to
produce a good final results. Our technique allows multiple simple registrations
to be used instead.

3 Our Multiple Registration Approach

We use a classic three stage image stitching pipeline, composed of registration,
seam finding, and blending phases [6,7].

In the registration phase, we propose multiple registrations, each of which
attempts to register some part of one of the images with the other. In contrast
to previous methods, which only pass a single proposed registration to the seam
finding stage, our approach allows all of these proposed registrations to be used.
Note that in this phase it is important that the set of registrations we propose
be diverse.

In the seam finding stage, we solve an MRF inference problem to find the best
way to stitch together the various proposals. We observed that using traditional
MRF energy to stitch multiple registrations naively generated poor results, due
to the reasons we mentioned in Sect. 1. To address these challenges, we propose
the improved MRF energy by adding (1) a new data term that describes our
confidence between different warping proposals at pixel p and (2) several new
smoothness terms which attempt to prevent duplication or tearing. Although
this new energy is proposed primarily for the stitching problem with multiple
registrations, it addresses problems observed in the traditional approach (sin-
gle registration) as well and provides marked improvements in final panorama
quality in either framework.

Finally, we adopt Poisson blending [9] to smooth transitions over stitching
boundaries when generating the final result.

3.1 Generating Multiple Registrations

There are two common categories of registration methods [7]: global transfor-
mations, implied by a single motion model over the whole image, such as a
homography; and spatially-varying transformations, implicitly described by a
non-uniform mesh. The candidate registrations we produce are spatially-varying
non-rigid transformations. Similar to [2], we first obtain a homography that
matches some part of the image well and then refine its mesh representation.

We have a 3 step process: homography finding, filtering, and refinement. In
the homography finding step, we generate candidate homographies by running
RANSAC on the set of sparse correspondences between features obtained from
the two input images. We ensure that the set of homographies is diverse by a
filtering step, which removes poor quality homographies and duplicates. In the
refinement step, we solve a quadratic program (QP) to obtain an improved local
warping mesh for each of the homographies that pass the filtering step.
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Homography Finding Step. Given two input images I0 and I1, we first com-
pute a set of sparse correspondences C = {(p01, p

1
1), . . . , (p

0
n, p1n)}, where each

p0i ∈ I0, p1i ∈ I1 and (p0i , p
1
i ) is a pair of matched pixels. We run τH iterations of

a modified RANSAC algorithm to generate a set of potential homographies H.
In each iteration t, we randomly choose a pixel p and consider correspondences
within a distance rH ; if there are enough nearby correspondences to allow us to
estimate a homography Ht we add this to our set of candidates. The homography
Ht is estimated using least median of squares as implemented in OpenCV [19].

Filtering Step. In order to simplify the seam finding step, it is desirable to limit
the number of candidate homographies. We employ two strategies to achieve this:
screening, which removes homographies from consideration as soon as they are
found, and deduplication, which runs on the full set of homographies that remain
after screening.

The screening procedure eliminates two kinds of homographies: those that
are unlikely to give rise to realistic images, and those that are too close to the
identity transformation to be useful in the final result. Homographies of the first
type are eliminated by considering two properties: (1) whether the difference
between a similarity motion that is obtained from the same set of seed points
exceeds a fixed threshold [2, Sect. 3.2.1], and (2) whether the magnitude of the
scaling parameters of the homography exceed a (different) fixed threshold. The
intuition is that real world perspective changes are often close to similarities,
and stitchable images are likely to be close to each other in scale. Homographies
that are too close to I are eliminated by checking whether the overlap between
the area covered by the original image and the area covered by the transformed
image exceeds 95%. Finally, we reject homographies where either diagonal is
shorter than half the length of the diagonal of the original image.

To determine the set of homographies that are near-duplicates of each other
and of which all but one can therefore be safely discarded, we compute a set of
inlier correspondences Dt for each Ht that passes screening. Dt is constructed
iteratively, starting with all correspondences (p0i , p

1
i ) ∈ C ′

t, where C ′
t is the subset

of seed points that were chosen in iteration t for which the reprojection error
is below a threshold TH . Correspondences containing points that lie within a
distance rD of some point already in Dt are then added until a fixpoint is reached.
This step is a generalization of the strategy introduced in [2, §3.2.1].

Given the sets Dt computed for each Ht, we define a similarity measure
between homographies sim(Ha,Hb) = cos(Va, Vb), where cos represents the
cosine distance and Va the 0-1 indicator vector for Dt. Homographies are then
considered in descending order of |Dt| and added to the set H if their similarity
to all the elements that have already been added to the set is below a thresh-
old θH . We also enforce an upper limit NH on the number of homographies
considered, terminating the procedure early when this limit is reached.

Refinement Step. Our final step is motivated by the observation that our pro-
cess sometimes produces homographies that cause reprojection errors of several
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pixels. This may occur even for large planar objects, such as the side of a build-
ing, which should be fit exactly by a homography. We make a final adjustment
to our homography, then add spatial variation.

To adjust the homography, we define an objective function f(H) =∑
ci∈C S(eci;H), where eci;H is the reprojection error of correspondence ci under

H, and S is a smoothing function S(t) = 1− 1
1+exp(−(TH−t)) . To generate a refined

homography Ĥi from an input Hi, we minimize f using Ceres [20], initializing
with Hi. The resulting Ĥi is a better-fitting homography that is in some sense
near Hi. The smoothing function S is designed to provide gradient in the right
direction for correspondences that are close to being inliers while ignoring those
that are outliers either because they are incorrect matches or because they are
better explained by some other homography.

The homographies Ĥi ∈ H often do an imperfect job of aligning I0 and I1 in
regions that are only mostly flat. In order to address this, we compute a finer-
grained non-rigid registration ωi for each Ĥi using a content-preserving warp
(CPW) technique that is better able to capture the transformation between the
two images [21]. We start from a uniform grid mesh Mi drawn over Ĥi(I1),
and attempt to use CPW to get a new mesh M̂i to capture fine-grained local
variations between I0 and Hi(I1).

Finally, we denote by ωi(I1) the warped candidate image I1 with M̂i applied.

3.2 Improved MRF Energy for Seam Finding

The final output of the registration stage is a set of proposed warps {ωi(I1)}, (i =
1, 2, . . . , N). For notational simplicity, we write {IS

i } where IS
0 = I0, IS

i = ωi(I1)
are the source images in the seam finding stage. These images are used to set up
a Markov Random Field (MRF) inference problem, to decide how to combine
regions of the different images in order to obtain the final stitched image. The
label set for this MRF problem is given by L = {0, 1, . . . , N}, and its purpose is
to assign a label xp ∈ L to each pixel p in the stitching space, which indicates
that the value of that pixel is copied from IS

xp
.

It would be natural to expect that we can use the standard MRF stitching
energy function Eold(x) =

∑
p Eold

m (xp) +
∑

p,q∈N Eold
s (xp, xq) introduced by [5]

(where N is the 4-adjacent neighbors). However, we observed that this energy
function is not suitable for the case of multiple registrations.

In this formulation, the data term Eold
m (xp) = 0 when pixel p has a valid color

value in IS
xp

, and λm otherwise. This means we will impose a penalty λm for out-
of-mask pixels but treat all the inside-mask pixels equally (they all have cost 0).
However, we found that even state-of-the-art single-registration algorithms [1,
2], cannot align every single pixel. In contrast, our multiple registrations are
designed to only capture a single region with each warp. We propose a new
mask data term for multiple registrations and a warp data term to address this
problem.

The traditional smoothness term is Eold
s (xp, xq) = λs(‖IS

xp
(p) − IS

xq
(p)‖ +

‖IS
xp

(q) − IS
xq

(q)‖) when xp �= xq, and 0 otherwise. It only enforces local simi-
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larity across the stitching seam to make it less visible, without any other global
constraints. Note that there are a number of nice extensions to this basic idea
that improve the smoothness term; for example [6, p. 62] describes several ways
to pick better seams and avoid tearing. However, we may still duplicate content
in the stitching result with a single registration due to parallax or motion. This
problem can be more serious with multiple registrations since we may duplicate
content N + 1 times instead of just twice. Therefore, we propose a new pairwise
term to explicitly penalize duplications.

In sum, we compute the optimal seam by minimizing the energy function
E(x) =

∑
p Em(xp) +

∑
p Ew(xp) +

∑
p,q∈N Es(xp, xq) + Ed(x) using expansion

moves [22]. We now describe our mask data term Em, warp data term Ew,
smoothness term Es and duplication term Ed in turn.

Mask Data Term for Multiple Registrations. There is an immediate issue
with the standard mask-based data term in the presence of multiple registrations.
When one input is significantly larger than the others, the MRF will choose this
warping for pixels where its mask is 1 and the other warping masks are 0.
Worse, since the MRF itself imposes spatial coherence, this choice of input will
be propagated to other parts of the image.

We handle this situation conservatively, by imposing a mask penalty λm on
pixels that are not in the intersection of all the candidate warpings

⋂
i ωi(I1)

when assigning them to a candidate image (i.e., xp �= 0). Pixels that lie inside
the reference image (xp = 0) are handled normally, in that they have no mask
penalty with the reference image mask and λm mask penalty out of the mask.
Note that this mask penalty is a soft constraint: pixels outside of the intersection⋂

i ωi(I1) can be assigned an intensity from a candidate image, if it is promising
enough by our other criteria.

Formally we can write our mask data term as

Em(xp) =

{
λm (1 − mask0(p)) , xp = 0,

λm

(
1 − ∏N

i=1 maski(p)
)

, xp �= 0,
(1)

where maski(p) = 1 indicates IS
i has a valid pixel at p, maski(p) = 0 otherwise.

Warp Data Term. In the presence of multiple registrations, we need a data
term that makes significant distinctions among different proposed warps. There
are two natural ways to determine whether a particular warp ω is a good choice
at the pixel p. First, we can determine how confident we are that ω actually
represents the motion of the scene at p. Second, for pixels in the reference image,
we can check intensity/color similarity between I0(p) and ω(I1)(p).

Since our warp is computed using features and RANSAC, we can identify
inlier feature points in ωi(I1) when the reprojection error is smaller than a
parameter TH . Denoting these inliers as Ii, we place a Gaussian weight G(.) on
each inlier, and define motion quality for pixel p in IS

i as Qi
m(p) =

∑
q∈Ii

G(‖p−
q‖). This makes pixels closer to inliers have greater confidence in the warp.



62 C. Herrmann et al.

For color similarity we use the L2 distance between the local patch around
pixel p in the reference IS

0 and our warped image IS
i : Qi

c(p) =
∑

q∈Br(p)
‖IS

0 (p)−
IS
i (p)‖, where Br(p) is the set of pixels within distance r to pixel p. So pixels

with better image content alignment become more confident in the warp.
Putting them together, we have ei

w(p) = −Qi
m(p)+λcQ

i
c(p) to be our quality

score for pixel p for warp ωi (lower means better, since we want to minimize the
energy). Then we have a normalized score êi

w(p) ∈ [−1, 1] per warped image, and
define the warp data term as: Ew(xp) = λwê

xp
w (p) when xp �= 0, and Ew(xp) = 0

otherwise.

Smoothness Terms. We adopt some standard smoothness terms used in state-
of-the-art MRF stitching. Following [6,7] these terms include:

1. The color-based seam penalty (introduced in [5,17]) for local patches to
encourage seams that introduce invisible transitions between source images,

2. The edge-based seam penalty introduced in [17] to discourage the seam from
cutting through edges, hence reduce the “tearing” artifacts where only some
part of an object appears in the stitched result,

3. A Potts term to encourage local label consistency.

Duplication Avoidance Term. For stitching tasks with large parallax or
motion, it is easy to duplicate scene content in the stitching result. We address
this issue by explicitly formalizing a duplication avoidance term in our energy.
If pixel p from the reference image IS

0 and q from the candidate image IS
i form

a true correspondence, then they refer to the same point (i.e., scene element)
in the real world. Therefore, we penalize a labeling that contains both of them
(i.e., xp = 0, xq = i), as shown in Fig. 4. Since our correspondence is sparse, we
also apply this idea to the local region within a radius r of pixels p and q. We
reweight the penalty by a Gaussian G since the farther away we are from these
corresponding pixels, the more uncertain the correspondence.

(a) Candidate image (b) Reference image

Desirable
Stitching Seam

Candidate
Image

Reference
Image

p q

(c) Good stitch

Undesirable
Stitching Seam

Candidate
Image

Reference
Image

p q

(d) Bad stitch

Fig. 4. Illustration of the duplication term. Figure (c) provides a bad stitching result
with the green triangles duplicated. The feature point correspondence between pixel
p and q suggests duplication, and we introduce a term which penalizes this scenario.
(Color figure online)
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Formally, our duplication term Ec is defined as

Ed(x) = λd

N∑

i=1

∑

(p,q)∈Ci

∑

δ∈Br

er(xp+δ, xq+δ; δ, i) (2)

where Ci is the pixel correspondence between IS
0 and IS

i , and Br = {(dx, dy) ∈
I2 | ‖(dx, dy)‖ ≤ r} is a box of radius r. er(xp+δ, xq+δ; δ, i) = G(‖δ‖) when
xp = 0, xq = i, and 0 otherwise.

4 Experimental Results and Implementation Details

Experimental Setup. Our goal is to perform stitching on images whose degree
of parallax and motion causes previous methods to fail. Ideally, there would be
a standard dataset of images that are too difficult to stitch, along with an eval-
uation metric. Unfortunately this is not the case, in part due to the difficulty of
defining ground truth for image stitching. We therefore had to rely on collecting
challenging imagery ourselves, though we found one appropriate example (Fig. 5)
whose stitching failures were widely shared on social media.

We implemented or obtained code for a number of alternative methods, as
detailed below, and ran them on all of our examples, along with our technique
using a single parameter setting. Since our images are so challenging, it was not
uncommon for a competing method to return no output (“failing to stitch”). In
the entire corpus of images we examined, we found numerous cases where com-
peting techniques produced dramatic artifacts, while our algorithm had minimal
if any errors. We have not found any example images where our technique pro-
duces dramatic artifacts and a competitor does not. However, we found a few less
challenging images that are well handled by competitors but where we produce
small artifacts. These examples, along with other data, images, and additional
material omitted here are available online,2 for reasons of space we focus here on
images that provide useful insight. However, the images included here are repre-
sentative of the performance we have observed on the entire corpus of challenging
images we collected.

We follow the experimental setup of [2], who (very much like our work)
describe a stitching approach that can handle images with too much parallax
for previous techniques. The strongest overall competitor turns out to be Adobe
Photoshop 2018’s stitcher Photomerge [11]. While experimental results reported
in [2] compare their algorithm with Photoshop 2014, the 2018 version is substan-
tially better, and does an excellent job of stitching images with too many motions
for any other competing methods. Therefore, we take Photoshop’s failing on a
dataset as a signal that dataset is particularly challenging; in this section, we
show several examples in this section where we successfully stitch such datasets.
In addition to Photoshop we downloaded and ran APAP [14], Autostitch [8], and
NIS [10]. To produce stitching results from APAP we follow the approach of [2],
who extended APAP with seam-finding. Results from all methods are shown in
Figs. 9 and 10.
2 See https://sites.google.com/view/oois-eccv18.

https://sites.google.com/view/oois-eccv18
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Implementation Details. For feature extraction and matching, we used Deep-
Match [23]. The associated DeepFlow solver was used to generate flows for the
optical flow-based warping. We used the Ceres solver [20] for the QP problems
that arose when generating multiple registrations, as discussed in Sect. 3.1.

Visual Evaluation. Following [2] we review several images from our test set
and highlight the strengths and weaknesses of our technique, as well as those of
various methods from the literature. All of our results are shown for a single set
of parameters.

We observed two classes of stitching errors: warping errors, where the algo-
rithm fails to generate any candidate image that is well-aligned with the refer-
ence image; and stitching errors, where the MRF does not produce good output
despite the presence of good candidate warps. An example of our technique mak-
ing a warping error is shown in Fig. 9e, where no warp found by our algorithm
continues the parking stall line, causing a visible seam. An example of a stitching
error is given in Fig. 10e, where the remainder of the car’s wheel is available in
the warp from which our mosaic draws the front wheelwell. Errors may mani-
fest as a number of different kinds of artifacts, such as: tearing (e.g., the arm
in Fig. 5b); wrong perspective (e.g., the tan background building in Fig. 9b); or
duplication (e.g., the stop sign in Fig. 7b), ghosting (e.g., the bollards in Fig. 6b),
or omission (e.g., the front door of the car in Fig. 10c) of scene content.

Quantitative Evaluation. The only quantitative metric used by previous
stitching papers is seam quality (MRF energy). However, as we have shown, local
seam quality is not indicative of stitch quality. Also, this technique requires the
user to know the seam location, which precludes it from being run on black-box
algorithms like Photoshop. Here we attempt to define a metric to address these
problems.

We first observe that stitching can be viewed as a form of view synthesis with
weaker assumptions regarding the camera placement or type. With this connec-
tion in mind, we redefine perspective stitching as extending the field of view of a
reference image using the information in the candidate images. This redefintion
naturally leads to an evaluation technique. We crop part of the reference image
and then stitch the cropped image with the candidate image. This cropped region
serves as a ground truth, which we can compare against the appropriate location
in the stitch result. Note that in perspective stitching, the reference image’s size
is not altered so we know the exact area where the cropped region should be.
We then calculate MS-SSIM [24] or PSNR.

We report this evaluation for 2 examples in Table 1: 50 pixels are cropped
off the edge of the reference images in Stop Sign (left side of first image for
Fig. 7) and Graffiti Building (right side of first image for Fig. 8). The stitch
results for the cropped images appear almost identical to the stitch results for
the whole images. Best score shown inbold. “Ground Truth” compares only the
ground truth region to the appropriate location, while “Uncropped Reference”
compares the uncropped reference.
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(a) Input images

(b) Photoshop [11] (c) Our result

Fig. 5. “Ski” dataset. Photoshop tears the people and the fence. Our stitch has the
fence stop abruptly but keeps the people in place. Note that the candidate provides no
information that allows us to extend the fence.

(a) Input images
(b) Autostitch [8] (c) Our result

Fig. 6. “Bike Mural” dataset. Autostitch has ghosting on the car, bridge, and poles.
Our algorithm shortens the truck and deletes a pole, but has no perceptible ghosting
or tearing of the objects.

(a) Input images

(b) Photoshop [11] (c) Our result

Fig. 7. “Stop Sign” dataset. Photoshop duplicates the stop sign. Of all the imple-
mentations we tried, ours is the only visually plausible result, successfully avoiding
duplicating the foreground.

(a) Input images
(b) APAP [14] (c) Our result

Fig. 8. “Graffiti-Building” dataset. APAP deletes significant amounts of red graffiti,
and introduces noticable curvature. Our result does not produce tearing, ghosting, or
duplication. (Color figure online)
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(a) Input images (b) APAP [14]
(c) Photoshop [11]

(d) NIS [10] (e) Our result

Fig. 9. “Parking lot” dataset. Autostitch fails to stitch. APAP duplicates the car’s
hood, tears a background building, and introduces a corner in the roof of the trailer.
Photoshop duplicates the front half of the car. NIS has substantial ghosting. Our result
cuts out a part of a parking stall line, but avoids duplicating the car.

(a) Input images
(b) APAP [14] (c) Photoshop [11]

(d) NIS [10] (e) Our result

Fig. 10. “Cars” dataset. Autostitch fails to stitch. APAP and Photoshop shorten the
car. APAP also introduces substantial curvature into the background building. NIS
has substantial ghosting and shortens the car. Our result deletes part of the hood and
front wheel; however, it is the only result which produces an artifact-free car body.

Note that for Stop Sign, all algorithms performed reasonably in Ground
Truth Region. However, both APAP and Photoshop include a duplicate of the
stop sign that lowers their values for Uncropped Reference.
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(a) Input images (b) Our result

Fig. 11. An example of tearing and duplication produced by our method.“Cars”
dataset.

Table 1. Evaluation scores for different algorithms.

Image Comparison Metric Ours APAP [14] Photoshop [11]

Stop sign Ground truth region MS-SSIM 0.6851 0.6573 0.6861

PSNR 19.4943 17.7073 18.9996

Uncropped reference MS-SSIM 0.9354 0.8981 0.9108

PSNR 23.0006 20.3533 20.9238

Graffiti building Ground truth region MS-SSIM 0.4636 0.3747 0.1250

PSNR 14.9983 13.1269 9.6520

Uncropped reference MS-SSIM 0.9253 0.5737 0.8541

PSNR 24.7637 14.8298 18.7102

5 Conclusions, Limitations, and Future Work

We have demonstrated a novel formulation of the image stitching problem in
which multiple candidate registrations are used. We have generalized MRF seam
finding to this setting and proposed new terms to combat common artifacts such
as object duplication. Our techniques outperform existing algorithms in large
parallax and motion scenarios.

Our methods naturally generalize to other stitching surfaces such as cylinders
or spheres via modifications to the warping function. Three or more input images
can be handled by proposing multiple registrations of each candidate image, and
letting the seam finder composite them. A potential problem is the presence
of undetected sparse correspondences, which can lead to duplications or tears
(Fig. 11). The use of dense correspondences may remedy this issue, but our
preliminary experiments suggest that optical flows cannot easily capture motion
in input images with large disparities, and do not produce correspondences of
sufficient quality. A second issue is that it is unclear whether to populate regions
of the output mosaic when only data from a single candidate image is present, as
the constrained choice of candidate here may conflict with choices made in other
regions of the mosaic. This can to some extent be handled with modifications to
the data term, but compared to traditional methods, scene content may be lost.
One example of this occurs in Fig. 10, where the front wheel of the car is omitted
in the final output. These problems remain exciting challenges for future work.
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