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Abstract. Interpretability of topics built by topic modeling is an impor-
tant issue for researchers applying this technique. We suggest a new inter-
pretability score, which we select from an interpretability score paramet-
ric space defined by four components: a splitting method, a probability
estimation method, a confirmation measure and an aggregation function.
We designed a regularizer for topic modeling representing this score.
The resulting topic modeling method shows significant superiority to all
analogs in reflecting human assessments of topic interpretability.
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1 Introduction

Topic modeling is a domain of machine learning that has been actively developing
since the late 1990s. Its main goal is to determine given a set of text documents,
to which topics each document relates, as well as what terms each topic con-
sists of. Topic modeling allows effectively solving of such tasks as clustering and
classification of text documents [19], topical search of documents and related
objects [17], building of topical profiles of users of various Internet resources [9],
analysis of news flows [11] and many others.

In many cases, in the above-mentioned areas of topic modeling application
requires a person to interact directly with the topic model. In these cases, the
concept of “topic” has to correspond to the human notion of it. In particular,
words that form a specific topic must be semantically related. The task of assess-
ing the topic interpretability in topic models has been actively studied since the
end of 2010, when the methods of expert assessment of interpretability [4] were
first proposed, and later interpretability scores were suggested [1,12,14].

The goal of this work is improving interpretability of topics. To do so, we
use additive regularization for topic modeling (ARTM) approach by proposing
a regularizer that supports topic interpretability. For this purpose, we explore
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interpretability scores in an interpretability score parametric space and find the
one, which is the best to reflect human assessment of topic interpretability.

The rest of the paper is structured as follows. In Sect. 2, we briefly describe
ARTM approach and several regularizers, with which we will compare our work.
In Sect. 3, we describe the parametric space of interpretability score, as well as
present a regularizer corresponding to such space. In Sect. 4 we briefly describe
details of the method implementation and experimental evaluation. Results and
their discussion is presented in Sect. 5. Section 6 concludes.

2 Related Work

2.1 Topic Modeling and Additive Regularization

The probabilistic topic model (TM) of a document collection is a set of topics,
each of which is a probability distribution on the set of words encountered in the
collection, and a set of probability distributions on a set of topics for each doc-
ument [20]. Since the notation in topic modeling domain has not been changed
during recent years, and the size of paper is limited, we will skip the notation
assuming that a reader is familiar with it. We will follow [5,21,22].

Many approaches for topic modeling were suggested: Latent Semantic Analy-
sis (LSA) [16], Probabilistic Latent Semantic Analysis (PLSA) [8], Latent Dirich-
let Allocation (LDA) [2]. They were generalized under an approach suggested in
2014 by Konstantin Vorontsov [21] called additive regularization of topic models
(ARTM). The main idea of this approach is to maximize model likelihood jointly
with additional criteria called regularizers that represent additional constraints.

2.2 Topic Interpretability

Interpretability of topics obtained as the result of topic modeling began to be
actively considered in 2009, when a method for assessing the interpretability of
the topic by a person called word intrusion was proposed [4]. Intuitively, the
assessment of topic interpretability is whether a person can understand how
the words representing a topic are related to each other and what is a general
concept to which they relate. The word intrusion method evaluating of the topic
interpretability by a respondent is as follows. Each topic is presented in the form
of six words, five of which are the most probable words in the topic, and the sixth
word is chosen randomly from words in this topic having a low probability. The
task of the respondent is to correctly determine the intruder. The interpretability
of the topic is estimated by the number of respondents who found the intruder.

Due to the assessing of the topic interpretability is a very expensive and time-
consuming procedure, it would be desirable to be able to evaluate interpretability
without human participation. Researchers have suggested several scores for esti-
mating the topic interpretability discussed below.

Pointwise Mutual Information. Idea of this score (more well-known as
UCI) [13] is to assess the topic interpretability by associating all the pairs of
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words in a topic. Such association is estimated on some large external corpus.
It is assumed that the topic is represented by the ten most likely words in this
topic. The formula of the topic interpretability is as follows:

PMIScore(w) = median{PMI(wi, wj), i, j ∈ {1..10}},

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
,

where p(w) is word probability estimated on an external corpus, p(wi, wj) is a
joint probability of a pair of words estimated with a sliding window of size 10
scanning the external corpus.

UMass. This score [12] is quite similar to the UCI, however in this case the
function estimating the association between a pair of words is not symmetric.
In addition, it does not use external corpus, evaluating the coherence of words
in the collection of documents on which TM was built. It is also assumed that a
topic is described with M of its most probable words. It is defined as follows:

C(t, V (t)) =
M∑

m=2

m−1∑

l=1

log
D(v(t)

m , v
(t)
l ) + 1

D(v(t)
l )

,

where D(v) is frequency of word v among the documents, D(v, v′) is the joint
frequency of pair (v, v′) among documents, V (t) = (v(t)

1 , . . . , v
(t)
M ) is a list of M

most probable words in topic t. The unit in the numerator under the logarithm
prevents the value under the logarithm from being converted to zero.

Context Vectors. The main idea of this score [1] is usage of vector representa-
tion of words in the subject. It is also assumed that a topic is represented with
n most probable words. The proposed score is defined as:

CoherenceSim(T ) =

∑
1≤i≤n−1,i+1≤j≤n Sim(w i,w j)(

n
2

)

Sim(w i,w j) =
w i · w j

||w i|| · ||w j || ,

where w i is a vector representation of word wi ∈ T . The vector representation is
learned on an external corpus with so-called word context, which is defined as 10
words closest to each of the word occurrences into the outer body (5 on each side).
Thus, every occurrence of word w in the chosen external corpus results in 10 new
components in the vector representation of w. Value of w component associated
with word f is evaluated as PMI(w, f)γ , where γ is the parameter that makes
the components of the vector with a high value to be more meaningful.

However, it is easy to see that with this approach the dimensionality of the
vectors turns out to be too large, therefore it is suggested to limit the dimension
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by choosing only βwi
of the most connected (maximal) components, where βwi

is computed using the following formula [10]:

βwi
= (log(c(wi)))2 · log2(m)

δ
,

where δ is a regularization coefficient and m is the external corpus size.

2.3 Interpretability in ARTM

A regularizer for ARTM is known, which directly maximizes the coherence
between words in a topic [22]. It uses a previously computed matrix of con-
nectivity between the words C, where Cuv is the joint estimate of pair of words
(u, v) ∈ Q ⊂ W 2. This regularizer, which minimizes the sum of divergences
between each distribution of φvt and its estimate for all words that occur with
v, looks like this:

R(Φ) = τ
∑

t∈T

∑

(u,v)∈Q

Cuvnut ln φvt → max .

However, application of this regularizer meets some difficulties. Given a suf-
ficiently large volume of the collection, on which topic model is built, it is not
possible to evaluate the joint occurrence for each pair of words in the collec-
tion due to the very large size of the set of all pairs of words. A choice of some
subset of pairs of words must have some logical justification, which also causes
difficulties. This is why we did not include this approach in comparison.

Next modification is word embedding coherence (WEC) [15], which is:

Cohwe(t) =
1

n(n − 1)

∑

w̃i
(t) �=w̃j

(t)

d(v(w̃i
(t)), v(w̃j

(t))),

where v : W → R
d is a mapping from tokens to d-dimensional vectors and

d : Rd × R
d → R is a distance function.

3 Interpretability Scores and an Additive Regularizer

First, we describe a parametric space of interpretability scores, in which we will
further search for the best metric. Second, we present a new regularizer for TMs,
which maximizes the interpretability of the main words in topics.

3.1 Parametric Space of Interpretability Scores

We assume that a score estimating the quality of topic interpretability can
be represented in the form of four relatively independent components [18]
(S ,P,C ,A ), which will be described in detail later. The input of a inter-
pretability score are a topic and n of the most probable words W =
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{w1, w2, . . . , wn}. The first component S of the score is a method of splitting
the most probable words into pairs (W ′,W ∗), where W ′,W ∗ ⊂ W . The second
component P is a method of estimating word probability, which is a function
P : W ′ → [0, 1]. It is computed using an external collection of documents, which
differs from the one, on which the topic model is built. Intuitive requirement
for this collection is a presence of large amount of non-specific information. An
example of such a collection is a set of Wikipedia articles. The third component
C of the score is function C : (W ′,W ∗) → R, which is the so-called confirmation
measure. It shows how much the subset W ′ supports the subset W ∗. The fourth
component A is an aggregating function that converts a set of real numbers into
single real number.

Thus, the whole process of computing interpretability score of a topic can
be described as follows. First, topic W is split into a set of pairs {(W,W ∗)} by
means of S . Then for each pair from the resulting set, confirmation measure
C is computed using P. Finally, the set of real numbers obtained with C is
transformed by means of A into a single real number, which represents the
quality of the topic interpretability. The scheme for evaluating interpretability
in the manner described above is presented in Fig. 1.

Fig. 1. Scheme of computing an interpretability score

Splitting Method S . To estimate the interpretability of a topic, the set of
words representing the topic is divided into pairs, for which their probabilistic
“compatibility” is estimated. The most straightforward way of splitting is the
simple principle of “every word with every other”, Sone

one . This splitting is used,
for example, for the UMI and UMass measures. Further options for splitting
include those, in which each word is combined only with each subsequent or
with each previous one, Sone

suc and Sone
pre . A smarter way of splitting is not only

into pairs of single words, but also using subsets of more than one element [6]:
we use one versus all other Sone

all , one versus some subset of other words Sone
any

and two non-intersecting subsets of words Sany
any .

Probability Estimation Method P. This component determines how the
probability of a word is estimated by the external collection of documents. The
simplest estimation method, which is used, for example, in the UMass metric, is
a method called a “boolean document”. The probability of a word is estimated
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as the number nw of documents, in which this word occurs, divided by the total
number n of documents in the collection. It is worth noting that such estimate
of the probability does not take into account the distance between occurrences
of words, but only the fact of their appearance in the document.

An alternative approach is the so-called “sliding window”. The idea is that a
window of fixed size n moves through the external collection of documents. The
probability of word w in this case is the number of steps on which w was in the
window divided by the total number of steps. In this case, the distance between
several words in the text matters, when joint probability is estimated. We will
choose from windows of sizes 10, 50, 100 and 200.

Confirmation Measure C . A confirmation measure receives a pair of topic
most probable word subsets and uses a probability estimate method considered
earlier to calculate how much one subset of the pair is associated with the other.
The options, which will be used as elements of the component in the parametric
score space, are presented in Table 1.

Table 1. Confirmation measures

Measure Formula

difference, Cd P (W ′|W ∗) − P (W ′)

ratio, Cr
P (W ′,W ∗)

P (W ′)P (W ∗)

log-ration, Clr log P (W ′,W ∗)+ε
P (W ′)P (W ∗)

normalized log-ratio, Cnlr
mlr(W

′,W ∗)
− log(P (W ′,W ∗)+ε)

likelihood, Cl
P (W ′|W ∗)

P (W ′|¬W ∗)+ε

log-likelihood, Cll log P (W ′|W ∗)+ε
P (W ′|¬W ∗)+ε

conditional, Cc
P (W ′,W ∗)

P (W ∗)

logarithmic conditional, Clc log P (W ′,W ∗)+ε
P (W ∗)

Jaccard, Cj
P (W ′,W ∗)
P (W ′∨W ∗)

logarithmic Jaccard, Clj log P (W ′,W ∗)+ε
P (W ′∨W ∗)

Fitelson [7], Cf
P (W ′|W ∗)−P (W ′|¬W ∗)
P (W ′|W ∗)+P (W ′|¬W ∗)

Aggregation Function A . As an aggregation function, we take the arithmetic
mean Aam, median Amed, the geometric mean Agm and the harmonic mean
Ahm.

3.2 Regularizer for ARTM

In this Subsection, we describe a new regularizer for ARTM, adding of which
will lead to maximizing of a score from the parametric space, maximizing thus
the interpretability of the topics.
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First, recall that the problem of maximizing the interpretability of topics
stands first of all if a person needs to interact directly with a topic model and
analyze it. When a person interacts with topics, it is incontinent for a person
to consider a topic as a distribution on the whole set of words. Topic models
are usually built for large collections of documents, and the dictionary of such
collections is so large that a person is not able to process it visually, let alone
process a certain number of probability distributions in this dictionary. In this
case, the common practice is to present a topic in the form of n of the most
probable words. Most often, n is assumed to be 10. Thus, the main idea of the
proposed regularizer is to optimize the quality of interpretability of exactly the
ten most probable words in the topic.

Let Topt = {w1, w2, . . . , w10} be the ten most probable words of topic t,
and C(u, v) be the adjusted confirmation measure for the pair words (u, v),
taken from the parametric space of interpretable scores. Then the regularizer,
which for each word v from Topt minimizes the sum of divergences between the
distribution of φvt and the confirmation measure for all the remaining words
from Topt, looks like this:

R(Φ) = τ
∑

t∈T

∑

(u,v)∈Top2
t

C(u, v)n̂ut ln φvt → max,

where τ is a regularization coefficient. Further, the resulting regularizer casts the
following modified formula for M-step in EM-algorithm:

{
φwt ∝ n̂wt + τ

∑
v∈Topt\w C(w, v)n̂vt ifw ∈ Topt,

φwt ∝ n̂wt otherwise.

We must note that this regularizer is in general a modification of coher-
ence [12] with specified C(u, v). The confirmation measure must be adjusted with
a constant so that its values are to some degree symmetric with respect to zero.
That is, for poorly connected words the measure should take negative values,
and for well-connected words the value should be positive. Then the presented
regularizer can be understood as follows: on each iteration of the algorithm, for
each of the ten most probable words of topic t, its relative interpretability to
other words from Topt is estimated; if word w is semantically well-connected
with the remaining words v ∈ Topt and C(w, v) is positive for the most words,
then the probability estimate φwt increases and improves w probability estima-
tion, allowing it to remain in Topt; if word w is badly related to the rest of
v ∈ Topt, then most values of C(w, v) take negative values, and then the prob-
ability estimation φwt decreases, which is likely to cause word w to be excluded
from the most probable words of t.

4 Experiment Setup

4.1 Finding Best Interpretability Score in the Parametric Space

Data Labeling. We obtain the topics, on which the score quality is evalu-
ated, using various methods for building topic models, namely PLSA, LDA, and
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ARTM. We learn them on a collection of documents representing posts on the
blog platform LiveJournal (in Russian). The resulting set counts 1200 topics.
Each of the topics is presented with its ten most probable words.

The obtained topics were demonstrated to two assessors. We ask them to
estimate each topic, answering two questions. The first question is “Do you
understand why these words turned out to be together in this topic?”. The
second question is “Do you understand what kind of event or phenomenon of
life can be discussed in the texts on this topic?”. Each answer should be an
integer from 0 to 2, where 0 stands for “no”, 1 stands for “partly”, and 2 stands
for “yes”. After that each topic was estimated with the mean of two answers.

External Corpus for Learning P. In order to learn word probability esti-
mates, we use an external corpus, which is a collection of approximately 1.5
million preprocessed articles of the Russian Wikipedia. First, XML tags and
punctuation were removed. Further, all the words were lemmatized by the means
of pymorphy2. After that, stop words, numerals, English words, Roman numer-
als, service parts of speech were removed. Finally, due to the resulting collection
was quite large, the index of this collection was built using the Apache Lucene
library to improve the speed of work.

Selection Criteria. To assess the quality of the interpretability score, the
Spearman rank correlation coefficient between the scores values and the respon-
dents’ answers is used. To ensure that the difference between the mean values of
the expert estimates is not random, we used Student’s t-test.

Experiment Pipeline. We examine each point of the parametric space, with
which we estimated each of 1200 topics. We use Java 8 and Palmetto library [18],
which implements many elements from which the parametric space components
were composed.

4.2 Comparing Topic Models

Document Collection. We use the following document collections: (1) papers
presented at conference “Intellectual Data Processing” in various years; (2) arti-
cles published in the newspaper “Izvestia” in 1997; (3) text corpus that was
labeled within the project OpenCorpora [3].

Each collection was preprocessed in the same way as the external corpus,
described in the previous Subsection. Two TMs are built for each of the col-
lections. The first TM is built using such regularizers as the topic rarefaction,
blurring of background topics and decorrelation of subject topics. The second
TM is build using the very same regularizers and a new regularizer proposed in
this work. Each of the six topic models consists of one hundred subject topics
and ten background topics.

Topic Model Assessment Criteria. To evaluate how the adding of the new
regularizer improves the quality of the interpretability of topics, we invited three
assessors who estimated each topic in the way described in the previous Sub-
section. The most common criterion for the quality of TMs is perplexity, which
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characterizes the discrepancy between the model p(w|d) for word w observed in
documents d ∈ D and is determined through the log likelihood as follows:

P(D; p) = exp

(
− 1

n

∑

d∈D

∑

w∈d

ndw ln p(w|d)

)
.

Also, following the assumption that the topics contain a relatively small
number of words from the collection dictionary, and a relatively small number
of topics are represented in the documents from the collection, the sparsity of
the matrices Φ and Θ is used as an important characteristic of topic models.

Implementation Details. We used BigARTM to implement the TM addi-
tive regularization. The source code of this library was supplemented with the
regularizer, described in Sect. 3.

5 Results

5.1 Comparison of Interpretability Scores

As a result of the experiment, we found that the highest Spearman coeffi-
cient in the interpretability score parametric space was shown by the following
score: (S one

one ,Psw(200),Cd,Aam, ) where S one
one is splitting “each word with each

other”, Psw(200) is sliding window probability estimation of size 200 words,
Cd(W ′,W ∗) = P (W ′|W ∗) − P (W ′), and Aam is the arithmetical mean. It is
important to note that in order to use this score in the regularizer presented in
Sect. 3, no additional regulation of the confirmation measure by means of some
scalars, due to Cd takes values in range [−1, 1].

We present comparison of the Spearman correlation coefficient (SCC)
between the human assessments and all the discussed scores in the Table 2. One
can see that the score of the parametric space is superior to all the presented
analogs. From this we conclude that the selected interpretability score models
human interpretability assessment better than the known scores.

Table 2. Comparison of interpretability scores

Score SCC Score SCC

UCI 0.44538 Context vectors 0.62002

UMass 0.54474 WEC 0.50074

NPMI 0.53320 ParamSpace 0.70330

As a result, we found a score that maximizes the SCC, which outperforms
other scores, and now we can use it for topic modeling.



126 A. Mavrin et al.

5.2 Comparison of Topic Model Interpretability and Quality

Comparison Using the Human Assessments. In Table 3 one can see the
arithmetic mean of human assessments for each of the built TMs. It is easy to see
that addition of the regularizer has significantly improved the interpretability of
topics for all collections of documents.

Table 3. Human assessment of the topic models

Collection Without the regularizer With the regularizer

ISP 2.357 2.490

Izvestia 2.503 2.863

OpenCorpora 1.950 2.183

The value of Student’s t-test was 4.705, which exceeded the value of Student’s
distribution (2.59) at 299◦ of freedom and significance level 0.01, which allows
rejecting the hypothesis about the equality of mean values.

Comparison Using Topic Model Quality Measures. Figures. 2, 3 and 4
show how the perplexity of TMs has been changing on each step of the EM
algorithm. Blue is used by the TMs built using the proposed regularizer, red is
used by the TMs built without it. The perplexity of TMs with the regularizer
turned out to be noticeably higher, which may indicate that the proposed regu-
larizer worsens the quality of TMs. However, it 2009 in one of the first articles
devoted to the interpretability of TMs [4], authors showed that when the value
of perplexity is high enough, perplexity and human interpretability assessments
are directly dependent. In particular, it was shown that when the perplexity of
a TM is reduced, human’s interpretability assessments are also reduced. This
corresponds to our experiment results described above.

Fig. 2. Perplexity of TMs
on IDP corpus

Fig. 3. Perplexity of TMs
on Izvestia corpus

Fig. 4. Perplexity of TMs
on OpenCorpora

Figures 5, 6 and 7 show how the sparsity of Φ has been changing during
the EM-iterations of the algorithm. It is easy to see that the proposed regular-
izer somewhat worsens the sparsity of Φ, which looks logical enough given the
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Fig. 5. Sparsity of Θ of TM
on IDP corpus

Fig. 6. Sparsity of Θ of
TMs on Izvestia corpus

Fig. 7. Sparsity of Φ of
TMs on OpenCorpora

structure of the proposed regularizer. However, it caused only a small decrease
of the sparseness of Φ (by no more than 2%), which prevents stating that the
introduced regularizer significantly worsened the quality of TMs.

The change in the sparsity of Θ during the iterations of the EM algorithm
can be traced on Figs. 8, 9 and 10. Interestingly, the introduction of the proposed
regularizer somewhat improved the sparsity of the Θ for each of the collections,
but not so much as to say that the number of zero elements in the Θ matrix
became comparatively large.

Fig. 8. Sparsity of Θ of
TMs on IDP corpus

Fig. 9. Sparsity of Θ of
TMs on Izvestia corpus

Fig. 10. Sparsity of Θ of
TMs on OpenCorpora

To summarize, the addition of the proposed regularizer did not decreased the
quality of TMs, but significantly increased their interpretability.

6 Conclusion

In this paper, we found the best interpretability score in an interpretability
score parametric space composed of four components. Basing on this score, we
proposed a regularizer for ARTM, which being added is capable of building
interpretable topic models. The experiments showed that a topic model with the
proposed regularizer significantly outperforms topic models without it having
comparable results in term of topic model quality.

As a development of this work, one can consider, for example, the improve-
ment of the semantic similarity of documents belonging to the same topic.
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