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Abstract. Neural networks have emerged as a successful tool to solve
end-to-end classification problems, potentially applicable in many diag-
nostic settings once trained with a sufficient number of existing annota-
tions. Nevertheless, in such training it is often nontrivial to enter already
available domain knowledge. We herein propose a simple approach of
inputing any such information as additional layers to a network. This
may then yield better performance by allowing for networks with fewer
parameters that can be tuned with fewer annotations and with better
generalization capabilities. This can also allow for interpretability of a
deep network, by quantifying attribution to such additional inputs. We
study this approach for the task of skin lesion classification, where we
focus on prior knowledge in the form of pigment networks as they are
known visual indicators of certain skin lesions, e.g. melanoma. We used a
public dataset of dermoscopic images, where a low number of feature seg-
mentations and a high number of classifications are provided in disjoint
datasets. By including information from learned pigment network seg-
mentations, the recall for malignant melanoma was seen to increase from
0.213 to 0.4. To help interpret the results, we also quantified the “atten-
tion” to pigment networks paid by the deep classifier both location- and
channel-wise.
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1 Introduction

Skin cancer is one of the most prevalent types of cancer [1,2] and there is a
growing need for accurate and scalable decision support systems for skin diseases.
To assist doctors in making correct diagnoses, decision support systems can be
trained on dermoscopic images, the same type of input data that dermatologists
often use for an initial assessment.

The International Skin Imaging Collaboration (ISIC) [7,10] provides public
datasets of dermoscopic images and organizes challenges where state-of-the-art
(SoA) methods in this field can compete. These datasets allow researchers to
design data-driven systems for the detection of skin diseases. Although in recent
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years high accuracy has been achieved with different Deep Learning approaches
[7,9,10], most methods do not provide a mechanism to make use of prior medical
knowledge.

In this work, we present a novel approach that tackles this issue. We aim at
leveraging the predictive power of a deep convolutional neural network (CNN)
while providing functionalities to understand which factors influence the net-
work’s prediction. We further quantify the attention that the trained classifier
pays to each feature channel and image location, as a means to demonstrate our
conclusions.

(a) Skin lesion (b) Pigment network (c) Streaks

Fig. 1. Annotation of dermascopic structures overlaid on images [7].

Related Work. Esteva et al. recently presented a CNN-based approach that
outperformed certified dermatologists at differentiating benign and malignant
lesions [9]. They used transfer learning and a disease partitioning algorithm for
the generation of optimal training classes. They further computed saliency maps
that highlight the importance of every pixel for the final prediction. However,
the saliency maps provide only little interpretable information, such as the fact
that the network mainly focuses on pixels belonging to the lesion rather than on
the background.

Codella et al. used a mixture of hand-coded features and features extracted
by deep CNNs to achieve SoA results on the dataset of the ISBI 2016 “Skin
Lesion Analysis Towards Melanoma Detection” challenge [6,10]. Despite lever-
aging color features and shape descriptors for lesions, their approach does not
facilitate an intuitive way of understanding the system’s predictions.

The extensive work of López-Labraca et al. [13] is closely related to our
approach. They employed sophisticated, hand-crafted filters to detect relevant
dermoscopic structures (see Fig. 1). For a given lesion image, malignancy scores
of different dermoscopic structures were computed and then combined to form
a single diagnosis (malignant or benign). The authors were able to generate
comprehensive reports containing the final diagnosis and the detected structures
along with their respective malignancy scores. Nonetheless, their proposed app-
roach requires extensive feature engineering and, in contrast to deep learning
methods, is limited to features that are already known to dermatologists.
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Building on the same idea, González-Dı́az presented a method that used
dermoscopic structures in combination with ResNet50, a deep residual network
[8,11]. An input image was fed into a segmentation network that produced proba-
bility maps of eight different dermoscopic structures. These maps were then used
to modulate the latent representation of the input image at a hidden layer in the
ResNet50. Using this CNN-based method, González-Dı́az achieved the best score
for the detection of seborrheic keratosis in the ISBI 2017 “Skin Lesion Analy-
sis Towards Melanoma Detection” challenge [7]. However, despite making use
of known dermoscopic structures, this method does not provide interpretable
information as the work of López-Labraca et al., where hand-crafted features
were employed [13]. Furthermore, it is unclear to what extent the segmentations
of the dermoscopic structures influence the final diagnosis.

2 Methods

Overview. Our method consists of two stages. Given an input image of a skin
lesion, we first employ a segmentation network (SN) to detect dermoscopic struc-
tures that dermatologists consider to be important for disease classification (see
Fig. 1). We focus on pigment networks as they are known indicators for malignant
melanoma and benign nevi. Furthermore, they are the dermoscopic structures
that are segmented with the highest confidence by our SN. In a second stage,
the output of the network is stacked on top of the existing RGB channels of
the original image, and then the resulting four-channel input is used to train a
classifier network (CN) for each considered type of disease.

Additionally, we introduce two measures of attention given by the classifier
network, namely the channel-wise and location-wise attention. These measures
allow us to quantify how much attention the classifier is paying to the provided
dermoscopic structure compared to the rest of the input data.

Material and Dataset. For the detection of pigment networks, we trained our
SN with the dataset provided by the ISBI 2017 “Skin Lesion Analysis Towards
Melanoma Detection” challenge [7]. It consists of 2000 training images and 600
testing images with superpixel level annotations of different types of dermoscopic
structures, one of which is the pigment network. Every image is labeled with one
of three classes: Melanoma, nevus, or seborrheic keratosis.

For the disease classification task, we trained our CN on the datasets released
for the “ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection” chal-
lenge [7,17]. It comprises 10,015 images belonging to one of seven classes:
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign
keratosis, dermatofibroma, or vascular lesion. For simplicity, we will from now
on call the datasets DS2017 and DS2018, respectively.

Methodology Overview. Since the images exhibit varying dimensions, they
were resized to 224 × 224 pixels. Both datasets were augmented with random
rotations of 90◦, 180◦ and 270◦, as well as vertical and horizontal flips. The
algorithms for pigment network segmentation SN and disease classification CN
were implemented in Tensorflow [3], both by extending the code provided by [5].
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Detection of Pigment Networks. The detection task was formulated as a
pixel-wise binary segmentation problem with a foreground and a background
class. Due to the large class imbalance by background pixels, we reduced the
original training set to a subset containing only those images where a pigment
network was annotated. Note that this may result in a biased segmenter SN
because it has been trained to always detect a pigment network somewhere in
the image. Nevertheless, the subsequent disease classifier CN still sees the actual
image and may choose to ignore this segmented area, if that does not facilitate
the classification. Accordingly, our motivation was to have an (over-)sensitive
SN, in order to let the subsequent CN decide how much importance to give
to the allegedly-detected pigment network. Although such a two-step approach
can be argued to potentially be inferior to an end-to-end solution, the former
allows us to facilitate dedicated datasets and train targeted models, giving us
more control over each step.

For SN, we employed a shallow U-Net [14] that outputs probability maps
for the occurrence of pigment networks. To further alleviate the problem of
background dominance, the Sørensen-Dice coefficient was used as loss function.

Disease Classification. We evaluated two types of classifiers: (i) ResNet50
(with 50 layers) pre-trained with images from the 2014 ImageNet Large Scale
Visual Recognition Challenge [15], and (ii) the shallower ResNet18 (with 18
layers) proposed by He et al. [11], which we trained from scratch.

Fig. 2. Input images and their corresponding attribution maps (red = positive contri-
bution, blue = negative contribution). (Color figure online)

Attention. Our attention measures are based on so-called attribution meth-
ods. Given a deep CNN with input x = [x1, ..., xN ] ∈ R

N and output f(x) =
[f1(x), ..., fC(x)] ∈ R

C , attribution methods compute the contribution Ri,c of
every input pixel xi to a specific target neuron fc. Different types of attribution
methods have been proposed in the past, such as the perturbation- and gradient-
based approaches [4]. We herein employed a simple method of input × partial-
derivative [16], which is fast and worked for generating successful attribution
maps for our purposes (see Fig. 2). This metric defines attribution component
Ri,c of an input pixel xi to a target neuron fc as follows:

Ri,c := xi · ∂fc(x)
∂xi

. (1)

Based on (1) we propose two quantities to measure the attention that a CNN
pays to each input channel and image location.



316 K. Thandiackal and O. Goksel

Channel-wise attention (Ac) is defined as the ratio of contribution from a par-
ticular structure channel c to the contributions of all K channels:

Ac :=

∑N
i=1 R2

i,c
∑K

k=1

∑N
i=1 R2

i,k

. (2)

Location-wise attention (AL) captures the local attention in the image space,
again as a ratio. The numerator contains the contributions of all channels except
for the dermoscopic structure channel c. The contributions are weighted with p,
the local probability of the dermoscopic structure; and the denominator contains
the corresponding unweighted contributions:

AL :=

∑N
i=1 pi · ∑K−1

k=1 R2
i,k

∑K−1
k=1

∑N
i=1 R2

i,k

. (3)

We used the implementation of Ancona et al.1 to compute the contribution
values and to generate the attribution maps.

3 Results and Discussion

Segmentation. Examples for segmentations of pigment networks are depicted
in Fig. 3. We trained and tested on DS2017 because at the moment of this writ-
ing, SoA results for DS2018 are not yet publicly available for comparison. As
seen in Table 1, our pigment network segmentation results are not as accurate
but comparable to the SoA results by Kawahara & Hamarneh from the ISBI
2017 “Skin Lesion Analysis Towards Melanoma Detection” challenge [7] in der-
moscopic structure segmentation [12]. Note that our goal herein was not to
perfect the SN stage, but rather to investigate if and how any information that
SN provides can be further used in classification.

Fig. 3. Input images and segmented pigment networks (green = true positives, red =
false positives, black = true negatives, blue = false negatives) (Color figure online)

Classification. For the classification experiments, we used the DS2018 training
set and applied an 80%-10%-10%-split into training, validation and test set.
Table 2 and 3 show the classification scores of ResNet18 and ResNet50 with and
without additional pigment network channel.
1 DeepExplain repository24May2018: https://github.com/marcoancona/DeepExplain.

https://github.com/marcoancona/DeepExplain
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Table 1. Evaluation scores for the segmentation of pigment networks

Method ROC AUC Accuracy Recall Specificity

Kawahara and Hamarneh [12] 0.945 0.951 0.803 0.956

U-Net 0.914 0.901 0.786 0.904

For ResNet18, the ROC AUC values do not change significantly when the
pigment network channel is added. Despite a slight overall decrease in ROC AUC
values, Table 3 shows that the F1-score for the crucial melanoma class increases
thanks to a clear improvement of the recall from 0.213 to 0.400. This is even
better than the recall obtained by the much more complex ResNet50. In terms
of ROC AUC values, ResNet50 still performs best. Notice however, that adding
the pigment network channel to the input of ResNet50 actually leads to lower
ROC AUC values, recall, and F1-scores.

Table 2. ROC AUC values. ME = Melanoma, MN = Melanocytic Nevus, BCC =
Basal Cell Carcinoma, AK = Actinic Keratosis, BK = Benign Keratosis, DF = Der-
matofibroma, VL = Vascular Lesion.

Method ME MN BCC AK BK DF VL

ResNet18 (raw images) 0.893 0.927 0.940 0.929 0.877 0.840 0.986

ResNet18 (raw images
+ pigment networks)

0.866 0.917 0.929 0.921 0.847 0.851 0.966

ResNet50 (raw images) 0.896 0.954 0.969 0.968 0.930 0.932 0.992

ResNet50 (raw images
+ pigment networks)

0.855 0.913 0.918 0.923 0.854 0.896 0.964

Table 3. Recall, precision, and F1-score for Melanoma.

Method Recall Precision F1

ResNet18 (raw images) 0.213 0.629 0.318

ResNet18 (raw images + pigment networks) 0.400 0.428 0.414

ResNet50 (raw images) 0.353 0.633 0.454

ResNet50 (raw images + pigment networks) 0.193 0.579 0.289

As seen in Table 4, the channel-wise attention Ac as well as the location-wise
attention Al for melanoma and melanocytic nevus are clearly higher in the case
of ResNet18. This suggests that ResNet50 is not focusing its attention on the
parts of the image that are medically relevant. The pre-trained ResNet50 may
require more sophisticated fine-tuning if an additional channel is to be used. In
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our approach, only the weights of the first convolutional layer and the final fully-
connected layer were learned whereas all weights in-between were pre-trained and
frozen. Since the images from the 2014 ImageNet Large Scale Visual Recognition
Challenge [15] are very different from dermoscopic images, it might be benefi-
cial to use more general pre-trained feature representations from a higher layer
and start learning from there. However, this is in turn computationally more
expensive.

Table 4. Attention measures Ac, AL for additional pigment network channel. ME =
Melanoma, MN = Melanocytic Nevus.

Network Ac for ME Ac for MN AL for ME AL for MN

ResNet18 0.263 0.176 0.161 0.155

ResNet50 0.035 0.034 0.029 0.054

4 Conclusion

We showed that the recall and the F1-score for the detection of melanoma can be
improved by providing a CNN with an additional input channel that contains rel-
evant prior knowledge. Furthermore, we demonstrated that our proposed atten-
tion measures can help to identify where a CNN focuses its attention. In a next
step, one might consider integrating more than just information about pigment
networks in the input. Other dermoscopic structures such as streaks and dots
could be used to further improve existing classifiers, e.g. for non-melanocytic
lesions.
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