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Abstract. As many other machine learning driven medical image anal-
ysis tasks, skin image analysis suffers from a chronic lack of labeled data
and skewed class distributions, which poses problems for the training of
robust and well-generalizing models. The ability to synthesize realistic
looking images of skin lesions could act as a reliever for the aforemen-
tioned problems. Generative Adversarial Networks (GANs) have been
successfully used to synthesize realistically looking medical images, how-
ever limited to low resolution, whereas machine learning models for chal-
lenging tasks such as skin lesion segmentation or classification benefit
from much higher resolution data. In this work, we successfully syn-
thesize realistically looking images of skin lesions with GANs at such
high resolution. Therefore, we utilize the concept of progressive growing,
which we both quantitatively and qualitatively compare to other GAN
architectures such as the DCGAN and the LAPGAN. Our results show
that with the help of progressive growing, we can synthesize highly real-
istic dermoscopic images of skin lesions that even expert dermatologists
find hard to distinguish from real ones.

1 Introduction

Just like for many other medical fields, the problems of data scarcity and class
imbalance are also apparent for machine learning driven skin image analysis.
In the ISIC2018 challenge, the provided dataset comprises only 10,000 labeled
training samples, and the class distribution is heavily skewed among the seven
categories of skin lesions, due to the rare nature of some pathologies. In order to
tackle the problem of limited training data, state-of-the-art approaches for skin
lesion classification and segmentation rely on heavy data augmentation [9,18] or
webly supervised learning [11]. As an alternative, synthetic images could open
up new ways to deal with these problems. Generative Adversarial Networks
(GANs) [5] have shown outstanding results for this task. In the computer vision
community, GANs have been successfully used for the generation of realistically
looking images of indoor and outdoor scenery [3,13], faces [13] or handwritten
digits [5]. Some conditional variants [10] have also set the new state-of-the-art
in the realms of super-resolution [8] and image-to-image translation [6]. A few of
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(a) Real Images (b) PGAN Samples

(c) DCGAN Samples (d) LAPGAN Samples

Fig. 1. Samples generated with the different models.

these successes have been translated to the medical domain, with applications
for cross-modality image synthesis [16], CT image denoising [17] and for the pure
synthesis of biological images [12], PET images [2], and OCT patches [14]. First
successful attempts for medical data augmentation using GANs have been made
in [1,4], however at a level of small patches.

In contrast to many other medical classification problems, skin lesion seg-
mentation and classification models often utilize ImageNet-pretrained models,
meaning that these rely on input data with resolutions of 224×224 px or higher.
For image synthesis, this implies that higher resolution images need to be gen-
erated without trading off realism. Thoroughly engineered, unconditional archi-
tectures such as DCGAN [13] or LAPGAN [3] have proven to work well for
high quality image synthesis from noise, however at fairly low resolution. Con-
ditional approaches [15] have shown that both high quality and high resolution
image synthesis up to 2048 × 1024 px is possible when mapping from semantic
labelmaps to synthetic images with a hierarchy of conditional GANs, however
this setting requires well structured input into the generator. Recently, progres-
sive growing of GANs (PGAN) [7] has shown outstanding results for realistic
image synthesis of faces at resolutions up to 1024 × 1024 px, without the need
for any conditioning.

Contribution. In this work, we synthesize skin lesion images at sufficiently
high resolution while ensuring high quality and realism. For our experiments,
we utilize dermoscopic images of benign and malignant skin lesions provided by
the ISIC2018 challenge1. For data synthesis, we employ the PGAN and compare

1 https://challenge2018.isic-archive.com/.

https://challenge2018.isic-archive.com/
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it to the DCGAN and the LAPGAN. As PGANs can natively only synthesize
images whose size is a power of 2, we aim for a target resolution of 256× 256 px,
such that State-of-the-Art classifiers could potentially leverage the samples. A
quantitative comparison of the image statistics of the synthetic and real images
shows that the PGAN matches the training dataset distribution very well, and
visual exploration further corroborates its superiority over the other approaches
in terms of sample diversity, sharpness and artifacts. Ultimately, we evaluate the
quality of the PGAN samples in a user study involving 3 expert dermatologists
as well 5 Deep Learning experts, showing that the experts have a hard time
distinguishing between real and fake images.

The remainder of this manuscript is organized as follows: We first briefly
recapitulate the GAN framework as well as the different GAN concepts before
we describe the experimental setup. Afterwards, we introduce the dataset, evalu-
ation metrics, provide a quantitative comparison of the aforementioned concepts
for skin lesion synthesis and the results of our user study. We conclude this paper
with a discussion and an outlook on future work.

2 Skin Lesion Synthesis

2.1 Generative Adversarial Networks

The original GAN framework consists of a pair of adversarial networks: A gen-
erator network G tries to transform random noise z ∼ pz from a prior distribu-
tion pz (usually a standard normal distribution) to realistically looking images
G(z) ∼ pfake. At the same time, a discriminator network D aims to classify
well between samples coming from the real training data distribution x ∼ preal
and fake samples G(z) generated by the generator. By utilizing the feedback
of the discriminator, the generator G can be adjusted such that its samples are
more likely to fool the discriminator in its classification task, ultimately teaching
the generator to approximate the training dataset distribution. Mathematically
speaking, the networks play a two-player minimax game against each other:

min
G

max
D

V (D,G) = Ex∼preal(x)[log(D(x))] + Ez∼pz(z)[1 − log(D(G(z)))] (1)

In consequence, as D and G are updated in an alternating fashion, the dis-
criminator D becomes better in distinguishing between real and fake samples
while the generator G learns to produce even more realistic samples.

In this work, we employ three different GAN concepts for the task of high
resolution skin lesion synthesis, namely the DCGAN, the LAPGAN and finally
the very recent PGAN. An overview of the setup is given in Fig. 2.

The DCGAN architecture is a popular and well engineered convolutional GAN
that is fairly stable to train and has proven to yield high quality results at a
resolution of 64× 64 px. The architecture is carefully designed with concepts
such as leaky ReLu activations to avoid sparse gradients and a specific weight
initialization to allow for a robust training.
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Fig. 2. An overview of the PGAN employed for skin lesion synthesis.

The LAPGAN is a generative image synthesis framework inspired by the concept
of Laplacian pyramids. In essence, it consists of a hierarchy of GANs, where
the first generator G0 is trained to synthesize low-resolution images from noise.
Successive generators Gi are targeted to map from lower-resolution images of
the previous generator Gi−1 to residual images, which have to be added to the
upsampled, input in order to obtain compelling higher resolution images.

The PGAN utilizes the idea of progressive growing [7] to facilitate high resolu-
tion image synthesis from noise at unprecedented levels of quality and realism.
Opposed to the LAPGAN, the PGAN consists only of a single generator and
a discriminator, which both start as small networks which grow in depth and
model complexity during training (see Fig. 2). Gradually, the output-resolution
of the generator and the input-resolution to the discriminator are simultane-
ously ramped up, leading to a very stable training behavior and very realistic,
synthetic images at resolutions up to 1024 × 1024 px.

3 Experiments and Results

In the first part of our experiments, we train a PGAN, and to prove its superiority
over other concepts, also a DCGAN and a LAPGAN for skin lesion synthesis at
a resolution of 256 × 256 px. In succession, we investigate the properties of the
synthetic samples both quantitatively and qualitatively. In the second part of
our experiments, we conduct a user study to verify the realism of the generated
images.

3.1 Dataset

For our experiments, we utilize the ISIC2018 dataset consisting of 10,000 der-
moscopic images of both benign and malignant skin lesions (see Fig. 1a). The
megapixel dermoscopic images are center cropped to square size and downsam-
pled to 256 × 256 px. No data augmentation or pre-processing was applied.



264 C. Baur et al.

Fig. 3. Artifacts produced by the different models. DCGAN samples show characteris-
tic checkerboard patterns (left), LAPGAN produces high frequency artifacts (middle),
whereas PGAN has only problems synthesizing hair (right).

Fig. 4. Walking along the visual manifold of synthetic PGAN samples.

3.2 Evaluation Metrics

A variety of methods have been proposed for evaluating the performance of
GANs in capturing data distributions and for judging the quality of synthe-
sized images. In order to evaluate visual fidelity, numerous works utilized either
crowdsourcing or expert user studies. We also conduct such a user study to rate
the realism of our synthetic images. In addition, we discuss visual fidelity of the
generated images with a focus on diversity, realism, sharpness and artifacts. For
quantitatively judging sample realism, the Sliced Wasserstein Distance (SWD)
has recently shown to be a reasonably good metric for approximately comparing
image distributions [7], thus we also make use of it.

3.3 Image Synthesis

We trained a PGAN as described in [7] from all 10,000 images, as well as
a DCGAN and a LAPGAN. The PGAN has been trained for 3M iterations,
until the SWD between the synthetic samples and the training dataset did
not decrease noticeably any further. For a valid comparison, the LAPGAN and
DCGAN were also trained for the same amount of iterations.

Per model, we then generate 10,000 synthetic images and compare their dis-
tribution to the real data by means of the SWD (see Table 1). Since the SWD
constitutes an approximation, we also compute the SWD between the real data
and itself to obtain a lower bound. In comparison, the lowest SWD is clearly
obtained with the PGAN samples, whereas the DCGAN and LAPGAN perform
considerably, but equally worse. This is also reflected by a visual exploration of
the samples (see Fig. 1 for a comparison of samples generated with the different
models). The DCGAN samples are prone to checkerboard artifacts (Fig. 3, left)
and can thus easily be identified as fake. The LAPGAN samples (Fig. 3, middle)
seem more realistic and diverse, but close inspection shows a vast amount of high
frequency artifacts, which again, negatively impact realism of these samples. The
PGAN samples (Fig. 3, right) seem highly realistic, alone filamentary structures
such as hair raise suspicion.
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Table 1. Sliced Wasserstein Distances (SWDs) between the real and generated samples
from different models. Closest to the lower bound (i.e. SWD between real images and
themselves) is the PGAN, whereas the distribution of DCGAN and LAPGAN samples
differs considerably from the real one.

Lower bound PGAN vs Real DCGAN vs Real LAPGAN vs Real

4.3360 20.0197 94.71508 96.68380

Table 2. Confusion matrix coefficients, Accuracy, TPR & TNR per voter.

DLE1 DLE2 DLE3 DLE4 DLE5 ED1 ED2 ED3

TP 50 30 36 26 26 27 35 29

FP 26 10 9 16 20 11 18 17

FN 0 20 14 24 24 23 15 21

TN 4 20 21 14 10 19 12 13

ACC 0.675 0.625 0.712 0.500 0.450 0.575 0.587 0.525

TPR 1.000 0.600 0.720 0.520 0.520 0.540 0.700 0.580

TNR 0.133 0.666 0.700 0.466 0.333 0.633 0.400 0.433

Exploring the Visual Manifold. Since the PGAN samples look so compelling,
there might be a chance that the model memorized the training dataset. There-
fore, we explore the manifold of synthetic samples. The smooth transitions among
samples provide clear evidence that memorization did not occur (see Fig. 4).

3.4 Visual Turing Test

In order to juge realism of the generated images, we conduct a so-called Visual
Turing Test (VTT) involving 3 expert dermatologists (ED) and 5 deep-learning
experts (DLE). Each participant is asked to classify the same random mix of
generated and real images as being either real (class 1) or fake (class 0). The
DLEs are familiar with common GAN artifacts and are thus expected to be
skilled to identify unplausible generated images, even though they do not have
experience in judging actual skin lesion images. On the other hand, the EDs
are not aware of these deep-learning induced image artifacts, but instead know
about the gamut of possible skin lesion phenotypes.

Using the PGAN, we first generate 30 synthetic images, which are then mixed
with 50 randomly chosen images from the real training dataset. In the VTT, we
present each participant with these 80 images in random order and let him/her
classify. The performances of all the participants in terms of the TPR (how many
real images have been identified as real), the FPR (how many fake images have
ben classified as real) and the Accuracy are reported in Fig. 5a. Performance
statistics among EDs and DLEs are provided in Fig. 5b), and the complete user
study details can be found in Table 2. Interestingly, the classification accuracy is
slightly lower for the EDs than for the DLEs. Overall, the accuracy is just slightly
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(a) TPR, FPR and Accuracies of all the
voters, color coded by expert type.

(b) Boxplots for the classification accura-
cies of DLEs (left) and EDs (right).

Fig. 5. Visual Turing Test results

above 50%, implying that the experts can distinguish between real and fake just
slightly better than chance. Thereby, not all fakes have been mistaken as real (on
average 56%), but on average 42% of the real images have also mistakingly be
identified as fake. All in all, none of the participants is able to reliably distinguish
the fake samples from real ones, leading to the conclusion that these synthetic
samples are in fact highly realistic.

4 Discussion and Conclusion

We have shown that with the help of PGANs, we are able to generate extremely
realistic dermoscopic images, which carves open new opportunities to tackle the
problems of data scarcity and class imbalance. Yet, it is unclear to which extent
these synthetic data provide additional information to supervised deep learning
models. In fact, a variety of questions need to be answered, such as (i) whether
there is an information gain in the synthetic samples over the actual training
dataset, (ii) if the gain is higher than using standard data augmentation and
(iii) how many training images are in fact required to obtain reliable generative
models. Noteworthy, we trained the PGAN ignoring the presence of different
classes. For generating images along with class information, one would need to
leverage labeled data and effectively train a single model per class. Further, the
synthetic images are not always perfect. In particular, the methodology has to
be enhanced to account for filamentary structures. In future work, we aim to
perform large scale experiments and strive to answer these question.

Overall, we have shown that we can synthesize images of skin lesions at
yet unprecedented levels of realism. In fact, the level of realism is so high such
that experts from both the medical and the deep-learning fields were not able
to reliably distinguish real images from generated ones. This leaves us confident
that such synthetic data can be leveraged for new data augmentation approaches.
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