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OR 2.0 2018 Preface

Surgical robotic tools and digitally enhanced operating theaters have been giving surgeons
a helping hand for years. While they provide great control, precision, and flexibility to the
surgeons, they do not yet address the cognitive assistance needs in the operating theater.
We are on the verge of a new wave of innovations of artificial-intelligence-powered,
context-aware operating theaters. OR 2.0, Context-Aware Surgical Theaters, aimed to
highlight the potential use of a broad range of topics such as machine vision and per-
ception, robotics, surgical simulation and modeling, multi-modal data fusion and visu-
alization, image analysis, advanced imaging, advanced display technologies, human–
computer interfaces, sensors, wearable and implantable electronics and robots, visual
attention models, cognitive models, decision support networks to enhance surgical pro-
cedural assistance, context-awareness, and team communication in the operating theater,
human–robot collaborative systems, and surgical training and assessment in defining the
technologies of the next-generation operating theaters.

OR 2.0 was held in conjunction with the Medical Image Computing and Computer
Assisted Intervention (MICCAI) conference in Granada, Spain. OR 2.0 has its roots in
the M2CAI workshop series that started in 2009 in London (UK) and was organized
every year until 2016 in Athens; it was, however, a new movement of the domain
toward multidisciplinary approaches and teamed with a focus on translation and
clinical applications that define operating room technologies of the future.

The workshop featured clinicians, engineers, and industry partners. It hosted key-
note speakers, oral presentations, and a poster session of accepted papers on topics such
as cognitive models, process modeling, anonymization in operating theaters, smart
operating rooms, surgical data science, surgical process and discrete event simulation,
surgical training, perioperative process optimization, human–computer interfaces,
surgical workflow analysis, surgical phase recognition, automatic length, volume
estimation to aid surgical robots, motion-planning, tracking, use of RFID tags with
surgical instruments, as well as technical topics such as self-supervised learning, deep
learning, bidirectional rapidly exploring random trees, open research problems of
nonlinear trajectories, temporal coherence, segmentation, registration. OR 2.0 also
featured an open discussion forum of next-generation context-aware operating theater
technologies and their clinical impact.

September 2018 Duygu Sarikaya
Anand Malpani
Marco Zenati

Sandrine de Ribaupierre
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CARE 2018 Preface

The 5th International Workshop on Computer-Assisted and Robotic Endoscopy
(CARE 2018) was held on September 16, 2018 in Granada, Spain. This half-day
workshop was held in conjunction with MICCAI 2018, the 21st International
Conference On Medical Image Computing and Computer-Assisted Intervention.

As in the previous four CARE workshops, our objective is to bring together
researchers, clinicians, and industry to advance the field of computer-assisted and
robotic endoscopy through the presentation of original research manuscripts and
invited keynotes from leading experts in academia, industry, and medicine. This year
we were pleased to welcome Dr. Sandrine de Ribaupierre, a distinguished pediatric
neurosurgeon and professor from Western University, Canada, who gave the keynote
presentation “Neuroendoscopy: What Are the Needs and Use for AR and VR?”. After
peer review, five papers were selected for oral presentation at CARE and the revised
manuscripts are presented in these proceedings. We thank the authors for their
high-quality papers and presentations at the workshop. It is their outstanding research
and hard work that make this workshop a success.

We would like to express our sincere gratitude to the reviewers who contributed their
time and effort in evaluating the papers. We would also like to thank KUKA
Deutschland GmbH and Intuitive Surgical for their support in sponsoring the best
papers and best presentation awards. Finally, we would like to thank the organizers of
MICCAI for supporting and facilitating this workshop.

September 2018 Jonathan McLeod
Xiongbiao Luo
Toby Collins
Tobias Reichl
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CLIP 2018 Preface

On September 16, 2018, the 7th International Workshop on Clinical Image-Based
Procedures: From Planning to Intervention (CLIP 2018) was held in Granada, Spain in
conjunction with the 21st International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI). Following the tradition set in the past six
years, this year’s edition of the workshop was an exciting forum for the discussion and
dissemination of clinically tested, state-of-the-art methods for image-based planning,
monitoring, and evaluation of medical procedures.

Over the past few years, there has been considerable and growing interest in the
development and evaluation of new translational image-based techniques in the modern
hospital. For a decade or more, a proliferation of meetings dedicated to medical image
computing has created a need for greater study and scrutiny of the clinical application
and validation of such methods. New attention and new strategies are essential to
ensure a smooth and effective translation of computational image-based techniques into
the clinic. For these reasons and to complement other technology-focused MICCAI
workshops on computer-assisted interventions, the major focus of CLIP 2018
continued to be on filling gaps between basic science and clinical applications.

Members of the medical imaging community were encouraged to submit work
centered on specific clinical applications, including techniques and procedures based
on clinical data or already in use and evaluated by clinical users. Once again, the event
brought together world-class researchers and clinicians who presented ways to
strengthen links between computer scientists and engineers, and surgeons, interven-
tional radiologists, and radiation oncologists.

In response to the call for papers, 13 original manuscripts were submitted for
presentation at CLIP 2018. Each of the manuscripts underwent a meticulous
double-blind peer review by three members of the Program Committee, all of them
prestigious experts in the field of medical image analysis and clinical translations of
technology. A member of the Organizing Committee further oversaw the review of
each manuscript. Eight manuscripts were accepted for oral presentation at the
workshop. The accepted contributors represented a considerable diversity of countries
from different continents. Judging by the contributions received, the quality of CLIP
2018 maintained the high standards of previous years.

As always, the workshop featured prominent expert keynote speakers. Vesna
Prchkovska, Chief Operating Officer of the company QMENTA, provided her vision
of the translation of research to industry. Dr. Elisenda Eixarch, fetal surgeon from
Hospital Clínic and Hospital Sant Joan de Déu in Barcelona, presented her experience
in bringing technology to real use in fetal and perinatal care.

We would like to acknowledge the invaluable contributions of our entire Program
Committee, many members of whom have actively participated in the planning of the
workshop over the years, and without whose assistance CLIP 2018 would not be
possible. Our thanks also go to all the authors in this volume for the high quality



of their work and the commitment of time and effort. Finally, we are grateful to the
MICCAI organizers for supporting the organization of CLIP 2018.

September 2018 Miguel Angel González Ballester
Klaus Drechsler

Marius Erdt
Marius George Linguraru
Cristina Oyarzun Laura

Raj Shekhar
Stefan Wesarg
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ISIC 2018 Preface

The Third International Skin Imaging Collaboration (ISIC) Workshop and Challenge
on Skin Image Analysis was held at the Granada Conference Center, Granada, Spain,
on September 20, 2018, in conjunction with the 21st International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI).

The skin is the largest organ of the human body, and is the first area of assessment
performed by any clinical staff when a patient is seen, as it provides numerous insights
into a patient’s underlying health. For example, cardiac function, liver function,
immune function, and physical injuries can be assessed by examining the skin. In
addition, dermatologic complaints are also among the most prevalent in primary care.
Images of the skin are the most easily captured form of medical image in health care,
and the domain shares qualities with other standard computer vision datasets, serving
as a natural bridge between standard computer vision tasks and medical applications.

This workshop served as a venue to facilitate advancements and knowledge
dissemination in the field of skin image analysis, as well as to host a melanoma detection
challenge, raising awareness and interest in these socially valuable tasks. Invited speakers
included major influencers in computer vision and skin imaging, top-ranked participants
of the hosted challenge, and authors of accepted manuscripts on skin image analysis.

Authors were asked to submit full-length manuscripts for double-blind peer review.
A total of 28 submissions were received, and with a Program Committee composed of
31 experts in the field, reviewed by at least three reviewers. Based on the feedback and
critiques, ten of the best papers (36%) were selected for oral presentation at the
workshop, and included in the LNCS volume published by Springer.

For the associated challenge, participants were asked to perform three tasks on
dermoscopic images: lesion segmentation, attribute detection and localization, and
disease classification. Approximately 931 users registered for data download. In total,
115 submissions were made to the lesion segmentation task, 27 submissions to the
lesion attribute detection task, and 159 submissions to the disease classification task, all
with manuscripts supplied describing the approaches, hosted and made available on the
challenge website. Six participants were selected for presentation.

We thank the authors for submitting their excellent work, our reviewers for their
timely and detailed reviews, our invited speakers, challenge participants, and all our
attendees. We sincerely hope that the efforts coming together to make this workshop
possible will help advance the field and have a positive impact on health care around
the world.

September 2018 Noel C. F. Codella
M. Emre Celebi

Kristin Dana
Allan Halpern
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Abstract. Operating room management aims at the efficient coordi-
nation of surgical procedures by maximizing the number of surgical
cases while minimizing the required surgery time, with the main goal
of improving the patient outcome. Discrete Event Simulation can be uti-
lized to describe, analyze and predict the impact of procedural changes in
perioperative processes. The aim of this work is to provide a simulation
approach for a holistic perioperative optimization. Therefore, two differ-
ent process simulation techniques, namely Business Process Simulation
and 3D Process Flow Simulation, were utilized. It could be shown that
perioperative simulation could lead to the improvement of OR utiliza-
tion, reduction of process duration and a decrease in personnel workload.

Keywords: Surgical process simulation · Discrete event simulation
Perioperative process opitimization · Operating room management

1 Motivation

The goal of the operating room (OR) management is the effective coordination
and execution of surgical procedures in order to create a safe, efficient, and struc-
tured environment with the ultimate goal of optimizing the patient outcome. Due
to the fact that the surgical department is the most cost-intensive department
of the hospital, the OR management aims at maximizing the number of sur-
gical cases while minimizing the required time, resources and related costs. In
the last decades, numerous methods and technical approaches have been devel-
oped to improve OR scheduling and OR efficiency in order to increase capacity
utilization and patient throughput, e.g. formula-based equations [1], statistical
methods [2] and process- or discrete-event-simulation (DES) models. DES mod-
els aim at describing, analyzing and predicting procedural changes of dynamic
systems over the time. Simulation is an essential methodology to (re-)design,
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analyze, execute and evaluate processes in respect of different perspectives,
objectives, and stakeholders. DES is in the focus of widespread developments
for the improvement of pre- and postoperative processes (e.g. [3,4]). However,
only a few efforts have been given to the process optimization of intraopera-
tive processes. Fernández-Gutiérrez et al. analyzed and simulated perioperative
(pre-, intra- and postoperative) workflows in order to find the optimal develop-
ment of new complex procedures in multimodal imaging environments [5] and
for the efficient utilization of scarce medical equipment [6]. Currently, there are
no simulation studies available, which focus on the streamlining of intraoperative
processes and their impact on OR capacity utilization and on the execution of
pre- and postoperative processes. The OR is a highly complex environment, all
processes are intertwined and have a significant impact on each other. Even small
delays can lead to timing problems that affect the entire surgical team and the
overall OR performance. This complexity requires the analysis of processes from
different perspectives. Most simulation approaches focus on temporal (process
duration), behavioral (activities and interactions of personnel) and operational
aspects (availability of resources, capacity of facilities) of the pre- and postoper-
ative processes. There is no research available on how the structural perspective
(environmental aspects, e.g. layout of the OR and surgical department) is influ-
encing the perioperative processes.

The aim of this work is to provide a DES approach for a holistic perioper-
ative process optimization with a focus on the combination of behavioral, tem-
poral, operational and structural perspective. Two different process simulation
techniques, namely Business Process Simulation (BPS) and 3D Process Flow
Simulation were utilized. Process re-engineering methods based on the com-
puter simulation are used to improve OR capacity utilization and perioperative
process efficiency as well as simultaneously reduce the workload of the OR per-
sonnel by minimizing waiting times and overwork time. For this purpose, the
DES models were implemented with perioperative data from Total Hip Replace-
ment (THR) and Total Knee Replacement (TKR) surgeries. The optimization
objective is to increase the number of surgeries to three cases per day by reduc-
ing the intraoperative incision-to-closure-time (ICT) through the optimization of
the OR layout. Furthermore, the processes for surgery follow-up and OR prepa-
ration (closure-to-incision time (CIT)) should be streamlined in order to reduce
vacancies and utilizing the available resources to capacity without overburden.
To ensure a persistent high-quality patient treatment, the performance duration
of perioperative activities should not be reduced.

2 Materials and Methods

2.1 Data Acquisition

THR is a orthopedic procedure in which the hip joint is replaced by a prosthetic
implant to treat arthritis pain or hip fractures. During TKR the knee joint is
replaced to relieve debilitating pain or osteoarthritis. For the intraoperative sim-
ulation 15 THR and 7 TKR surgeries and for pre- and postoperative simulation
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30 (total or partial) knee- and hip replacement surgeries were recorded at the
University Hospital Leipzig in 2016. In the pre- and postoperative environment,
temporal and procedural process information for every OR staff member as well
as CIT (OR turnover times) were acquired. In the intraoperative setting struc-
tural data (on-site measurement), surgical process data (surgical activities for
THR and TKR), OR layout (number and the arrangement of instrument tables
for left- and right side THR and TKR), instrument handover (number, duration
and path of handovers between surgeon and scrub nurse), travel paths (number,
duration and travel path of the circulator) as well as ICT was recorded. In addi-
tion, an ergonomic assessment was performed for every OR team member with
the OWAS method (Ovako Working Posture Assessment System), which is used
to evaluate the most common work postures for the back, arms, and legs.

2.2 Discrete Event Simulation

DES provides an environment for process design, analysis, re-engineering, and
evaluation. It is also used to predict the impact of procedural changes over
the time and to quantitatively evaluate different alternative process configu-
rations [3]. Thereby, DES relies on the modeling of activities, which are exe-
cuted by processing the transitions between a list of events. The events are usu-
ally described with instructions and a logic for executing the simulation, which
enables the imitation of complex behavior. There are various DES methods and
tools for different applications and objectives available. In this paper, BPS has
been used for the simulation of the behavioral, temporal and operational per-
spective. For the assessment of structural dynamic changes and their impact on
the underlying processes, 3D Process Flow Simulation has been utilized.

Business Process Simulation

For the modeling, analysis, and evaluation of complex, flexible processes, business
process modeling is widely used in academic and industry. Especially, BPMN 2.0
has been proven successful in the modeling of the perioperative process environ-
ment [7]. In addition, BPMN is regarded as the most appropriate standard avail-
able for BPS. The pre- and postoperative processes in the orthopedic department
were modeled with the Signavio Editor [8] in the BPMN 2.0 format. For BPS
the free business process simulator BIMP [9] was used.

3D Process Flow Simulation

Following the argumentation and assessment in [5], 3D Process Flow Simulation
was utilized for the intraoperative process optimization. Therefore, Delmia by
Dassault Systems [10] was used, which provides a 3D Modeling environment
and logical process simulation. Delmia was initially designed for manufacturing
industry but has also a widespread distribution in healthcare (e.g. [4,5]).
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3 Simulation Experiments

3.1 Pre- and Postoperative Simulation

Initially, the pre- and postoperative activities of all OR team members (surgeon,
assistant, scrub nurse, circulator, anesthesiologist and nurse anesthetist) were
modeled in BPMN format and supplemented with the recorded activity dura-
tion (mean duration and standard deviation under normal distribution). The
BPMN models were simulated with BIMP in different scenarios for the whole
workday with 2 or 3 surgeries. In order to analyze which and how many surgeries
are feasible with the currently available OR- and personnel-capacities, different
combinations of THR and TKR were simulated. According to the intraoperative
data acquisition, the initial mean ICT was set to 64,24 min (std 19,74) for THR
and 90,0 min (std 22,67) for TKR. The simulation scenarios were then instan-
tiated 250 times (mean working days per year) and the minimum, average and
maximum process duration (Cycle Time (CT)) for one workday were calculated
via simulation. The normal working period of the OR staff is scheduled to 8 h,
which has been defined as an upper boundary for the CT. In addition, waiting
times in the process flow resulting from process bottlenecks or scarce resources
were simulated. In order to determine the current personnel utilization, the work-
load of the staff was also simulated. Thereby, only the pre- and postoperative
main tasks were analyzed.

In the first optimization step, the pre- and postoperative processes were
streamlined with methods of Business Process Re-engineering by parallelization
and summarization of activities, redistribution of responsibilities and temporal
alignment of the process. After this optimization step, the BPMN models were
adapted to the optimized processes and the simulation scenarios were repeated.
In the second step, the intraoperative process optimization was performed. After-
wards, the simulation was repeated with improved ICTs.

3.2 Intraoperative Process Simulation

The aim of the intraoperative process optimization was to shorten the ICT by
improving the OR layout, instrument table positions and setups for THR and
TKR. For this purpose, the existing table setups were analyzed and simulated
considering the duration, number, and paths of instrument handovers. Based on
the simulation scenario, new setup suggestions are designed and compared to the
initial setups. When creating the new setups, both the ergonomic aspects of the
OWAS evaluation method and the average rotational movements necessary for
the handovers were included. Further, a possible optimization of the circulators’
travel paths was simulated together with the initial and optimized setups.

A 3D simulation environment was created with Delmia and the existing lay-
outs and table positions were modeled and simulated based on the intraopera-
tive recorded data (see Fig. 1). The number and the duration of handovers were
included in the simulation in order to obtain the total handover time for THR
and TKR. The alternative setups for the left and right side of the operated hip



Perioperative Workflow Simulation and Optimization in Orthopedic Surgery 7

Fig. 1. 3D simluation scenario of the orthopedic OR modeled in Delmia (left TKR).

respectively the left and right side of the knee were designed, simulated, analyzed
and compared with regard to the handover times and travel paths.

4 Results

4.1 Initial Situation

Conventional OR Capacity Planning
OR capacities are optimally utilized if a maximum of surgeries can be performed
in the work time. Formula-based equations are the state-of-the-art (e.g. [1]) for
capacity calculation and planning. These methods are used to define a baseline
for the verification of the perioperative simulation:

Current Surgeries per day =
Cases per year

Working days per year
=

581
250

= 2, 3 (1)

Possible THR and TKR surgeries per working day (8 h-1 h for supportive tasks):

PossibleTHR =
Work time− 1 h

meanICT (THR) + meanCIT (THR)
=

420
(64 + 60)

= 3, 4

(2)

PossibleTKR =
Work time− 1 h

meanICT (TKR) + meanCIT (TKR)
=

420
(90 + 60)

= 2, 8

(3)
Possible surgeries per day for a combination of THR and TKR:

PossibleTHR/TKR =
420

(72 + 60)
= 3, 2 (4)

According to conventional planning, 3 surgeries per day should be feasible with
3THR and a combination of THR and TKR without overwork time (>8 h).
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Analysis of the Initial Situation with Business Process Simulation

Firstly, the CTs of the existing situation for different THR and TKR combi-
nations were simulated (Fig. 2 (light gray)). Two surgeries can be performed
without any further process optimization with the disadvantage of an insuffi-
cient OR utilization, which results in unused resource capacities. The target
of three surgeries per day could be only achieved with 3THR (avg. CT 8,2 h).
All combination with one to three TKRs widely exceed the maximum CT of
8 (avg. CT: 3TKR = 9,7 h, 2TKR + 1THR = 9,2 h, 1TKR + 2THR = 8,7 h). The
simulation results correspond with the calculation based on the conventional
capacity planning method with minor differences for 2THR + 1TKR. In addi-
tion, the workload of the OR personnel was simulated and is presented in Fig. 3
(light gray). The upper boundary of 8 h work time per day should not be fully
exploited in order to have free capacities for supportive and non-value-added
tasks (e.g. supply refill, travel paths etc.). According to the recommendation
of [1], the optimal workload is set to 7 h. The maximum workload is set to 4 h
per day for the nurse anesthetist, who is responsible for more than one OR and
acts as an anesthetist circulator. The simulation results indicate that only 3THR
and the combination of 2THR + 1TKR could be performed within one work day.
The optimal boundary of 7 h could not be achieved by any surgery combination
without further process optimization.

Fig. 2. CT simulation results of THR and TKR combinations: 2 surgeries (left side) and
of 3 surgeries (right side). The red line marks the 8 h work time/day boundary. The
results after pre-, intra- and postoperative optimization (Target CT) are numbered.
(Color figure online)

4.2 Pre- and Postoperative Process Optizimation

For perioperative process optimization several process alignments, such as paral-
lelization and summarization of activities, redistribution of responsibilities and



Perioperative Workflow Simulation and Optimization in Orthopedic Surgery 9

temporal optimization of the process were proposed. Based on these optimiza-
tions a decrease of the CTs could be achieved (Fig. 2, dark gray). Still, it is not
possible to perform three surgeries with at least one TKR in the time period of
8 h. In Fig. 3 (dark gray) the optimized workload is represented. Through the
process optimization, a reduction and a better balancing of workload between
the OR team members have been achieved. Especially, the workload of the anes-
thesiologist has been reduced to less than 8 h while the workload of the nurse
anesthetists was slightly increased by 1 h (Fig. 3, dark blue).

Fig. 3. Personnel workload of THR/TKR with numbered results after perioperative
optimization (Target workload). Red line is the 8 h work time/day boundary and the
green line is the optimal boundary. Gray: decrease and dark blue: increase of workload.
(Color figure online)

4.3 Intraoperative Setup Optimization

Based on 3D Flow Simulation, optimal setups for THR and TKR were defined
and evaluated in the real intraoperative OR environment. ICTs were recorded
for 8 THR and TKR surgeries, which results in a decrease of 9,45 min for
THR (54,75 min (std 15,04)) and 3,25 min for TKR (86,75 min (std 21,91)). The
improved ICT were included in the perioperative optimization and the BPS sim-
ulation study was repeated (Fig. 2 (blue)). The results of the perioperative opti-
mization indicate that it would be possible to perform 3THR or 2THR + 1TKR
in the work time of one day (avg. CT 8,2 h). This result also corresponds with
the current case mix of THR and TKR at the University Hospital, which is
about 2,3:1 (409 THR, 172 TKR in 2016). Also, the workload of the OR mem-
bers (Fig. 3 blue) could be decreased to the intended 7 h boundary for 3THR
and 2THR + 1TKR.
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5 Discussion and Conclusion

It could be shown that perioperative process optimization lead to improvement
of OR utilization, reduction of CTs and a decrease in personnel workload. The
simulation results of the capacity planning correspond with conventional meth-
ods. However, these metrics solely rely on parameters such as ICT and CIT
and fail to asses in which way the process need to be changed for improvement.
Simulation techniques enable the determination not only that perioperative pro-
cesses can be improved, but also in which way processes need to be adapted
and how the process efficiency is changed due to the impact of different proce-
dural, behavioral, structural, operational or temporal parameters. In this paper
different DES methods have been utilized, which were adapted to the underly-
ing optimization problem and objective. Since 3D Flow Simulation is developed
for the manufacturing industry, it is suitable for the simulation of operational
and structural aspects with a high granularity. On the contrary, it lacks in the
representation of complex and intertwined processes with various process actors.
Thus, BPS is more suitable and flexible than other modeling methods for proce-
dural and temporal modeling. With the proposed mixed method DES approach,
aspects of both domains, could be addressed adequately. An objective time- and
resource-saving assessment of different process alternatives and their impact on
efficacy and potentials for perioperative process improvement could be achieved.

Acknowledgements. We would like to thank the staff of the Department of Joint
Replacement for their kind support during the study. Many thanks are also owed to
Fabiola Fernández-Gutiérrez for her patient assistance on Delmia.
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Abstract. Operating rooms will emerge to integrated systems with a
consistent, cooperative behavior. Recent developments towards context-
awareness for medical devices aim to keep system’s complexity manage-
able for the staff. In that context, we propose a modeling approach for the
realization of a dynamic assignment of device functions to remote input
devices. In the present experiments, we focused on the surgeon’s human-
machine interactions. The results of the preliminary technical validation
indicate that the proposed approach has the potential to increase the sur-
geon’s direct control with a reasonable set of already established input
devices. The context-aware assignment of functions will ease the com-
plexity where automation is not applicable due to induced risks. Thus,
it contributes to the implementation of context-aware systems’ behavior
for a intelligent surgical working environment.

Keywords: Human-computer interfaces
Context-aware operating theatre · Intelligent operating room

1 Motivation

With the advent of medical device interoperability and of online workflow recog-
nition, methods for configurable remote control [1,2] and context-awareness [3,4]
have been discussed, and ways to automate supportive tasks and human-machine
interaction [5] have been demonstrated recently. Operating rooms have begun to
emerge from a set of monolithic medical devices, through an ensemble of inter-
operable connected devices, to a distributed system with consistent behavior.
The research efforts aim to assist the surgical personnel and to keep the ever
increasing complexity manageable. Instead of technology, the patient should be
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the focus. However, automation usually bears severe risks that limit the scope.
Hence, we propose a method for the context-aware assignment of medical device
functions to input devices in integrated operating rooms. By means of that,
surgeon’s direct control can be increased with a limited interaction complexity.

2 Materials and Methods

The designed approach relies on medical device interoperability and the avail-
ability of intraoperative technical context-awareness. Thus, the basic principles
of both prerequisites and their existing implementations are briefly summarized.

2.1 Medical Device Interoperability and Context-Awareness

An openly integrated technical environment is an essential prerequisite for a com-
prehensive workflow recognition based on data from various sources as well as
for the implementation of remote control. The emerging IEEE 11073 SDC stan-
dards family for medical device interoperability introduces the service-oriented
architecture paradigm to operating rooms [6] and will frame the access to data
and control across vendors. In this context, input devices, such as buttons and
pedals [7], act as service providers analogously to medical devices offering con-
trol functionalities, such as parameter settings and operations. Following the
concept discussed in [1], we developed an orchestration component that enables
a dynamic configuration of remote control.

The context-aware online assignment of controls requires the intraoperative
provision of information on the operational context of the medical devices. The
implementation is based on an existing context-awareness pipeline that gathers
data for recognition, performs a mapping to low-level tasks, processes a network
of process models and additional components to provide a comprehensive situa-
tion description (Surgical Process Context), and shares these data via SDC net-
work [5]. The contextual information also include predictions of upcoming work
steps based on the method described in [8]. The proposed dynamic assignment
is based on the situation description, especially the ongoing low-level work step
and the potential upcoming tasks.

2.2 Modeling of User Interaction Needs

We propose a novel modeling approach for the realization of dynamic func-
tionality assignment. The human-machine interaction is described as a set of
interaction use cases, for instance setting the shaver’s parameters and using it to
remove soft tissue. The use case can be further decomposed into a set of atomic
interactions, such as the step-by-step decrease or increase of the revolution limit
and the continuous motor control. The interactions are described by a basic type,
a target, such as the device setting, and a categorical input type to distinguish
between triggers and continuous control.
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The interactions are associated to the surgical workflow by mapping them to
low-level tasks. To that end, the modeling approach includes pre-configuration
and initiating interactions (pre-step interactions) as well as interactions during
an ongoing work step (intra-step interactions). For example, the revolution limit
of the shaver might be configured prior the actual work step of tissue removal.
Hence, the decrease and increase interactions are required for pre-configuration.
The motor control via foot pedal initiates the tissue removal work step and
is thus also required prior to the work step (pre-step need). In this example,
all three interactions are as well required during the actual removal work step
(intra-step need).

In the formal modeling, the probability for each pre-step interaction as well
as the probability of each intra-step interaction are provided. In addition, the
probabilities are modeled user-dependent to represent each member of the sur-
gical team individually. If recordings of surgeries are available, the probabilities
may be determined empirically. The aspects of human-machine interaction that
are essential for a dynamic assignment of controls during surgery may then be
described in terms of user’s interactions associated to low-level tasks. The result-
ing interaction use cases are user-specific and depend on the type of surgery.

2.3 Modeling of Interaction Profiles

Besides the users’ needs modeled so far, a representation of available input
devices, such as switches at handles or foot pedals, is necessary for a dynamic
assignment. The required risk management for remote control poses considerable
challenges for the modeling. For example, an input device needs to respect the
risk class of the controlled medical device. Otherwise, an assignment shall be
prohibited. Furthermore, the assignments should be consistent in each situation
to achieve a sufficient user acceptance. For example, decreasing and increasing
a device parameter should be assigned to a pair of co-located buttons.

To ensure consistent and safe configurations, a pre-definition of interaction
profiles is proposed. When designing such a profile, functions are assigned to
input devices allowing for a comprehensive risk management and the preservation
of consistency. Whilst for each input device, the modeling complexity is reduced
to the interaction assignment and an access probability for each user. By means
of an access probabilities, input devices may be mainly or exclusively associated
to certain users, for instance the buttons on the endoscope camera head will be
used by the surgeon exclusively. The interaction profiles add another layer of
specificity to the interaction use cases, as they depend on the available input
devices and their accessibility by the team members.

2.4 Intraoperative Profile Selection

The dynamic assignment of functions to input devices is realized by a context-
aware automated selection of the most appropriate interaction profile. The OR
system performs the selection at the beginning of each low-level task. The set of
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interactions that the optimal profile would have to cover consists of the intra-
step interactions of the actual work step and the pre-step interactions of the
upcoming next task. Thus, the suitability of an interaction profile depends on
the actual work step as well as on the upcoming task, which is yet not known. An
online profile selection method must rely on predictions, especially a probability
distribution over potentially forthcoming tasks.

We designed a score for an online assessment of the suitability of each interac-
tion profile. The scoring uses the ongoing workflow, the prediction of forthcoming
tasks, the modeled user interaction needs, and the interaction assignments of the
profiles. The recently begun work step and the prediction are considered to be
given as they are part of the Surgical Process Context [5]. For a given work step
st and the potential upcoming tasks st+1, a score ωu can be calculated for a
profile π with pre-step interactions ī and interaction during the work step i as
follows for each user.

ωu(π) =
∑

i∈π p(i|st)
∑

i p(i|st)
(1)

The required conditional probabilities p(i|st) are given by the modeling of
the user needs. Equation 1 represents the coverage of the user’s current needs.
By design, there should be at least one interaction profile with full coverage.

ω̄u(π) =
∑

st+1

(

p(st+1|st)
∑

ī∈π (pd(̄i) · p(̄i|st+1))
∑

i p(i|st+1)

)

(2)

Equation 2 represents the coverage of needs for potential upcoming tasks,
which are weight by the corresponding transition probability and the accessibility
of the input device pd(̄i) that the interaction is assigned to. The score of a profile
ω(π) may then be calculated as a weighted sum over all user-dependent scores ωu

and ω̄u respectively. Both, ωu and ω̄u are defined to be zero if no interaction is
required for the given task. The user’s priority is expressed as βu. The parameter
α ∈ [0; 1] allows to balance between the interactions needed in the ongoing work
step and those required to initiate potential upcoming tasks.

ω(π) =
∑

u

βu · (α · ωu + (1 − α)ω̄u) (3)

Finally, the interaction profile with the highest score is selected. To resolve
inconclusive cases, an appropriate linear ordering is defined and the candidate
profile with the smallest distance to the previously active profile is selected.

2.5 Technical Integration and Risk Management

The proposed scoring method needs to be integrated into the service-oriented
operating room infrastructure. To that end, an orchestration component acts as
a service consumer to the input devices, the medical devices, and the context
provider. Based on the current interaction profile, the component must react to
communicated user interactions by remote controlling the corresponding medical
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device. Therefore, the orchestration component becomes part of the command
processing chain and must respect the risk class of the controlled device, just as
the input device has to. Whenever a new low-level work step has been recognized,
the most suitable interaction profile is automatically selected. However, such a
dynamic changing of control assignments bears severe risks. Essentially, the user
needs to be informed about the current assignment of the available input devices.
This may be realized with a continuous display, as for instance proposed in [7].
To avoid an additional display, we propose a two-level risk mitigation based
on a preliminary risk analysis. Whenever the interaction profile is changed, a
temporary overlay is shown in the field of view of the surgeon, which displays
the input device assignments. And in case of uncertainties, a static interaction
can be used to show the overlay on demand. Figure 1 depicts to examples of
temporary overlays provided by the orchestration component to communicate
the recently changed assignments to the user.

Fig. 1. Overlays of a new interaction assignment of the spin-click wheel on the Visus
JiveX viewer during preparation (left) and of a new assignment of the buttons at the
endoscope camera head during sinus surgery (right).

Furthermore, the orchestration component needs to mitigate the risk of unin-
tended actions due to profile changes simultaneously to user interactions. To that
end, the profile is not changed while an interaction is ongoing, for instance a foot
pedal is pressed down. Additionally, an input device is blocked for several sec-
onds after its assignment has been changed automatically, and a visual feedback
is given in the video overlay. The feasibility of the approach may depend on
the risk management for a concrete assignment in a concrete clinical use case.
For assorted functions, for instance coagulation, the blocking time might not be
feasible and functions like these must be excluded from the dynamic assignment.
However, we expect that a broad set of functions will be manageable.

3 Experiments

We have conducted initial experiments for the Functional Endoscopic Sinus
Surgery (FESS) - a common surgery in ENT - in a demonstration setup. The
ventilation and the drainage of the paranasal sinuses are restored under endo-
scopic vision with powered shavers, suction, and other instruments. Optionally, a
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surgical navigation system is used. The demonstration setup included all neces-
sary devices and a viewer for medical records. For the initial technical validation
presented here, recordings of twenty-four previously simulated workflows were
used [5]. The workflows covered the essential surgical activities with respect to
the technical limitations. The procedures consisted of thirty-five distinguishable
activities including preparation tasks, tissue removal, cavity traversal, occasional
endoscope cleanings, medical record access, and navigation usage.

In the present experiments, we focused on the surgeon’s interactions. The
technical setup included three relevant input devices: a spin-click wheel with
three interactions, a foot switch with three pedals, and two buttons at the endo-
scope camera head. However, the spin-click wheel is not accessible to the surgeon
while using the endoscope and the endoscope camera buttons are not accessible
otherwise. Effectively, six input devices are available during the initial patient
preparation and the final after care, and five input device are available during
the endoscopic phase. The modeling of the human-machine interaction included
twenty atomic interactions, among them shaver settings and motor control, dis-
playing the navigation or the medical record viewer on the secondary display,
or scrolling through documents and pages of the medical record. The useful
combinations of these interactions were represented in fourteen interaction pro-
files. Especially the interactions for forthcoming tasks in various combinations
increased the amount of required interaction profiles.

A leave-one-out cross scenario was used to evaluate the performance of the
proposed scoring approach for the online selection of an appropriate interaction
profile. Although the simulated workflows were based on former recordings of real
interventions, the probabilities for interactions could not be determined empir-
ically. Hence, for the technical validation we assume every interaction defined
in the interaction use cases is always required, especially p(i|st) ∈ {0, 1}. Fur-
thermore, we weighted the coverage of the current needs and the forthcoming
interactions equally (α = 0.5, see Eq. 3). We analyzed the rate of availability of
the required pre-step and intra-step interactions.

4 Results

In the cross validation, 1245 work steps were analyzed, of which 1162 can include
human-machine interaction, such as capture an endoscopic image for documen-
tation purposes or configure the parameters of a medical device. Table 1 lists
the availability of the interactions in the experiments with the proposed scoring
approach. As already discussed, the interaction profiles are designed so that at
least one profile covers all required intra-step interactions for each interaction
use case. The results for intra-step interactions show that the method always
selects a profile with full coverage of the intra-step needs.

Due to the limited number of available input devices (five during endoscopy,
six otherwise), the method has to rely on the predictions of forthcoming steps.
None of the interaction profiles is capable of providing all potentially required
pre-step interactions. In 57 work steps, at least one of the required interactions
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Table 1. The availability of interactions to pre-configure and initiate (pre-step) and
of interactions required during the work steps (intra-step).

Interaction availability

Interaction Pre-step availability Intra-step availability

Display medical record 51 of 60 (0.850) —

Previous page in record — 102 of 102 (1.0)

Next page in record — 102 of 102 (1.0)

Previous document in record — 102 of 102 (1.0)

Next document in record — 102 of 102 (1.0)

Display navigation 38 of 59 (0.644) —

Back in navigation wizard — 28 of 28 (1,0)

Acquire in navigation wizard — 28 of 28 (1.0)

Next in navigation wizard — 28 of 28 (1.0)

Toggle reslice instrument — 31 of 31 (1.0)

Motor control of shaver 70 of 76 (0.921) 76 of 76 (1.0)

Decrease revolution limit 70 of 76 (0.921) 76 of 76 (1.0)

Increase revolution limit 50 of 76 (0.658) 76 of 76 (1.0)

Toggle suction 158 of 159 (0.994) 235 of 235 (1.0)

Decrease suction pressure — 159 of 159 (1.0)

Increase suction pressure — 159 of 159 (1.0)

Toggle endoscopic light 37 of 37 (1.0) 37 of 37 (1.0)

Decrease light intensity — 37 of 37 (1.0)

Increase light intensity — 37 of 37 (1.0)

Capture endoscopic image — 766 of 766 (1.0)

was not directly available for the surgeon. Overall, 2655 of the 2724 required
interactions were available (97.5%). Most of the misses occurred for the increase
of the shaver revolution limit during suction of nasal cavities and for the switch-
ing of the secondary screen. In the suction-related profiles, there is no input
device left to also provide the revolution limit increase, which is the least criti-
cal pre-step interaction. The switching of the secondary screen is assigned to a
single button in most profiles; hence, the system needs to predict whether the
navigation or the medical record will be needed next, which tends to be chal-
lenging resulting in 30 misses. However, predictions significantly contribute to
the availability rates by enforcing profiles with probable pre-step interactions.

5 Conclusion

The presented method for online selection of interaction profiles aims to sim-
plify human-machine interaction in increasingly complex surgical working envi-
ronments. The results of the preliminary technical validation indicate that the
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proposed approach has the potential to increase the surgeon’s direct control
while preserving operability with a reasonable amount of input devices. How-
ever, a careful design of the interaction profiles with respect to the clinical use
case and the technical setting is still essential. The effectiveness of empirically
determined probabilities in the model and multi-user scenarios need to be eval-
uated, both technically and pre-clinically on phantoms.

The integration of the method into a interoperable medical device ensemble
realizes an additional aspect of context-aware assistance in the operating room.
The context-aware assignment of functions to input devices will ease the com-
plexity for the staff in cases where potential risks make automation impossible.
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Abstract. Inadequate skill in performing surgical tasks can lead to med-
ical errors and cause avoidable injury or death to the patients. On the
other hand, there are situations where a novice surgeon or resident does
not have access to an expert while performing a task.

We therefore propose an interactive ecosystem for both training and
practice of surgical tasks in mixed reality, which consists of authoring of
the desired surgical task, immersive training and practice, assessment of
the trainee, and remote coaching and analysis. This information-based
ecosystem will also provide the data to train machine learning algorithms.

Our interactive ecosystem involves a head-mounted display (HMD)
application that can provide feedback as well as audiovisual assistance
for training and live clinical performance of the task. In addition, the
remote monitoring station provides the expert with a real-time view of
the scene from the user’s perspective and enables guidance by providing
annotation directly on the user’s scene. We use bedside ventriculostomy,
a neurosurgical procedure, as our illustrative use case; however the mod-
ular design of the system makes it expandable to other procedures.

Keywords: Surgical training and assessment
Medical augmented reality · Surgical simulation and modeling
Artificial intelligence

1 Introduction

The complexity of medical interventions are continuously increasing. However,
due to working-hour restrictions, increasing costs, and ethical concerns regarding
patient safety, clinical training opportunities are continuously decreasing [18].
Similarly, although modern tertiary care hospitals are built upon a hierarchy
of novice to expert training levels, a novice resident may not always have a
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senior resident or attending immediately available for help in the setting of an
emergency. This is more likely in rural areas where often there are not enough
skilled surgeons to provide expert supervision or assistance.

The above factors present an opportunity to develop a practical technological
solution that can support training and operation, including the ability to instan-
taneously connect a novice to a remote expert. Computer-based applications and
augmented reality (AR) systems are increasingly popular to support the train-
ing of medical professionals, as they can result in new educational opportuni-
ties [5]. Due to recent technical advances in commercial optical see-through head-
mounted display (OST-HMD) devices, there has been a considerable increase in
their use for augmented reality applications and their specifications have become
suitable for medical applications [12,15].

HMDs have been used in the medical domain for treatment, education, reha-
bilitation and surgery [6,7,9]. An early HMD research effort focused on giving
the surgeon an unobstructed view of the anatomy which is rendered inside the
patient’s body [17]. With the advent of Google Glass around 2013, many research
groups started to explore using an HMD as a replacement for traditional radi-
ology monitors [2,19]. The use of a HMD to visualize volumetric medical data
for neurosurgery planning was presented in [8]; together with a haptic device,
the system allows the user to scroll through the image slices more intuitively.
More recently, a generalized real-time streaming system based on OST-HMDs
was proposed for image-guided surgeries, including percutaneous screw fixation
of pelvic fractures [13].

Our prior work includes picture-in-picture visualization for neurosurgery nav-
igation on a custom HMD [3,16] and the use of OST-HMDs for training two
emergency medical tasks: needle chest decompression and initiating an intra-
venous line [4]. Our experience with the latter effort led to the conceptualization
of the interactive surgical training and operation system described herein. We
extend our prior approach by adding modules for content generation, remote
monitoring, smart assessment, and procedure analysis. The HMD-based train-
ing application is designed to be independent of the training procedure; thus,
although originally developed for emergency medical procedures, in this paper
we consider ventriculostomy, which is a neurosurgical procedure that involves
insertion of a drain within a cerebral ventricle for cerebrospinal fluid diversion
for a variety of urgent indications. We then discuss how such technology can
change the future of medical training, including by providing training data for
machine learning algorithms in an artificial intelligence module.

2 System Architecture

The overall schematic of the training and practice ecosystem is shown in Fig. 1.
This structure allows the expert surgeon to intuitively create a training module
and the trainees to then use it for practice. It also provides real-time corrective
assistance and access to the expert. We go through each element of this system
and the way it operates with the other components.
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Fig. 1. Schematic overview of the interactive surgical training and operation ecosystem
and its interconnections, (A) shows the application for generating tutorials, (B) is the
HMD-Based immersive environment for practice and training, (C) is the automatic
assessment module, (D) is the analysis of the procedure in the OR setting, (E) is the
remote monitoring station for the expert, and (F) is the offline analysis (AI) based on
data from multiple trainees.

2.1 Training Module Generation

As depicted in Fig. 1A, this authoring tool allows a skilled surgeon to intuitively
create his/her desired training module step-by-step using voice commands, with
the resulting workflow and visual elements serialized into a data asset. The
dashed line in the figure separating this module from the rest of the system
indicates that it does not need to be in real-time communication with its neigh-
boring components.

2.2 HMD-Based Training and Practice

We previously developed a software framework which can provide augmented
reality guidance that is agnostic to the procedure [4]. The workflow of each
procedure is abstracted and represented as a sequence of steps, with associated
text and visual elements. As shown in Fig. 1B, during training or actual operation
of the procedure, the workflow is dynamically loaded and parsed on the OST-
HMD. The trainee or practitioner can then use voice commands to go through
the training steps and hide or show their desired visualizations. This mode of
interaction does not involve mouse or keyboard and allows the user to focus and
perform bi-manual tasks without compromising sterility. In each step, the user
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can see the corresponding instruction, the correct position and orientation of the
tool (registered to the anatomy) if required, as well as additional information
such as medical imaging (CT, MRI, etc.) if needed. The training/operation can
support an individual user as well as multiple users in a collaborative setting.

2.3 Smart Assessment

The smart assessment component (Fig. 1C) uses a number of metrics to deter-
mine performance of the trainee and provide real-time feedback during the task.
These metrics can include the correct positioning of an instrument or its inser-
tion angle or even its very presence or motion pattern during a phase of the
surgery. This requires software to track the motion of the instrument, which
can utilize the HMD cameras, including depth camera if available, and may be
facilitated by the placement of AR tags or other markers on the instrument. In
some cases, it may be necessary to use an external tracking system that would
then be registered to the HMD. The feedback can be turned on and off based on
the skill level and/or instructor’s decision in the training or evaluation phase. It
is capable of both warning the user with audiovisual cues or providing guidance
to the user for correction.

2.4 Procedure Analysis

There are many instances where an operation fails despite having a highly skilled
surgeon and the logistics in the OR may contribute to its success. This module,
which is depicted in Fig. 1D, collects data from different sources and sensors
in the simulation or operative field, and provides post-training or post-surgery
analysis. It differs from Smart Assessment in that it looks into the ‘surgery’ in
the context of the OR setting rather than merely the ‘surgeon’ as an individual.
The feedback is not provided during the task, and instead focuses on overall
performance, the events in the OR, comparing to a database of similar procedures
or in collaboration with others. Collected data can include eye-gaze, surgeon’s
location and head motion and other pertinent sensors during the surgery, in
addition to the data record from the surgery. This data can also be provided
to the Artificial Intelligence component (Fig. 1F) for longer-term improvements,
including training of machine learning algorithms using data from multiple users.
This component also processes the data provided by the expert in the remote
station as well as the smart assessment for the trainee’s performance.

2.5 Remote Monitoring Station

As illustrated in Fig. 1E, an expert, who is typically a skilled surgeon, monitors
the trainee’s actions and is able to provide real-time feedback in the form of direct
annotation on the trainee’s screen as well as other types of audiovisual cues. This
differs from a video call because the expert has a first person view of the field, in
3D, and can provide feedback or annotation in the HMD’s immersive 3D envi-
ronment. Furthermore, communication is bidirectional and the trainee can also
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ask questions from the expert. The remote monitoring station can be advanta-
geous in situations where additional expert assistance is critical; for example,
when a particular phase of the surgery is too complex for automated assessment
(e.g., via the Smart Assessment module) or when there is a scarcity of experts in
a particular field, which is especially common in rural areas. The expert is able
to evaluate and score the user performance for each step of the procedure. The
platform subsequently saves the record and sends it to the analyzer (Sect. 2.4)
and artificial intelligence (Sect. 2.6) for further processing.

2.6 Artificial Intelligence

Recorded data from multiple users is provided to the Artificial Intelligence (AI)
module for the purpose of process improvement. This data can be used to further
train machine learning algorithms within the Smart Assessment and Procedure
Analysis modules, thereby increasing their ability to provide feedback during
or immediately after the procedure. For example, the gaze tracking data can
indicate where on the HMD screen and in the OR the surgeon is paying more
attention; AI methods may be able to use this data to identify a novice surgeon
and provide additional guidance.

3 Implementation

To verify our proposed surgical training and practice system, we selected ven-
triculostomy, or external ventricular drainage, which is a surgical procedure to
alleviate raised intracranial pressure by inserting a tube through the skull into
the ventricles to divert cerebrospinal fluid. It is done by surgically penetrating
the skull, dura mater, and brain such that the ventricle of the brain is accessed.
This is one of the most frequent and standardized procedures in neurosurgery.
However, many first and subsequent punctures miss the target, and suboptimal
placement or misplacement of the catheter is common [14]. The trajectory of the
catheter must be perpendicular to the skull at the entry point. Such 3D geomet-
rical constraints along with the described complexities make this procedure an
ideal candidate for augmented reality mediated 3D visualization to enable more
accurate targeting and higher success rates. Additionally, ventriculostomy, like
most neurosurgical procedures, can be conceptualized and segmented into crit-
ical task components, which can be simulated independently or in conjunction
with other modules to recreate the experience of a complex neurosurgical pro-
cedure [10]. Our proposed system can be used both for training on a mannequin
as well as during the real operation.

3.1 System Setup

The system setup is shown in Fig. 2b, which is also a snapshot of the training
environment taken from the remote station. To simulate this neurosurgical pro-
cedure, a skull model (A) was fixed by a Mayfield clamp (B). Two ARTags (C)
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Fig. 2. (a) Representation of display anchored images and text (top), and feature
anchored objects (bottom); (b) Remote monitoring station and system setup

were attached on the skull so that the camera can localize the designated land-
marks. Two markers were used so that if one is occluded or out of the field of
view, the camera can still see the other one.

The HMD software was developed using the cross-platform game engine
Unity1, along with C#. It was then deployed to Microsoft HoloLens2. The
software on the remote monitoring station was developed using Python. It is
cross-platform and can run on a PC, tablet, or other device.

The visual elements displayed on the HMD can be categorized based on their
property (text, image, 3D object) and on their display space (display-anchored,
feature-anchored), as shown in Fig. 2a. The location of a display-anchored object
is defined with respect to 2D screen coordinates. For the HMD wearer, it will be
fixed despite the user’s head movement. In order to visualize the feature-anchored
overlays in the correct pose, appropriate display calibration is performed so that
the trainee can localize the designated anatomical landmark in the real world
[11,20].

3.2 Tutorial Generation

The training/operation module relies on a serialized data asset (JSON) that
encodes the workflow. This module helps an expert surgeon to create this data
asset. The expert wears the HMD and using voice commands starts generating
the instructions step by step and adds the image (display-anchored) using the
front camera of the HoloLens and uses a marker to create a landmark (feature-
anchored) for the desired step, as shown in Fig. 3a.

1 Unity: https://unity3d.com/.
2 Microsoft HoloLens: https://www.microsoft.com/en-us/hololens.

https://unity3d.com/
https://www.microsoft.com/en-us/hololens
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Fig. 3. Three components of the proposed ecosystem: (a) Tutorial generation by expert
(top), angular calibration of needle (bottom). (b) HMD-based AR assistance for needle
pose correction.

3.3 HMD-Based Training and Operation

Once the tutorial is generated, the trainee can use it as shown in Fig. 3b. Here,
the HMD view of the trainee for one sample step is depicted, where the blue
text is the instruction for this step, green indicates the correct orientation of
the needle, and the yellow arrow guides the user toward the correct pose for the
needle. The top right of the screen shows the orientation error, time on task
as well as a red warning bar. Medical imaging data (CT, MRI, etc.) are also
available and can be loaded by the user’s voice command, eliminating the need
to look at a separate monitor.

3.4 Remote Monitoring Station

A snapshot of the remote monitoring station is shown in Fig. 2b. The GUI enables
the expert to stream the trainee or operator’s view and send audiovisual messages
to the HMD user. It communicates with the HMD wirelessly through the Internet
using TCP/IP to receive HMD camera frames, and UDP to provide feedback or
annotate the trainee’s view on the HMD. The delay is approximately 50–100 ms
(mostly for streaming images) in a local network setup, which is sufficient for
this communication.

3.5 Smart Assessment

In the current implementation, Smart Assessment is integrated with the remote
station and handles the tool tracking and networking. In ventriculostomy, it
measures the error in the pose of the catheter at the entry point and assists
the trainee to correct the pose using audiovisual cues. Tool tracking is done
by computer vision and calculates the sagittal and coronal angles of the tool to
determine if the needle is perpendicular to the skull. The needle is detected using
a Hough line detector and segmentation in HSV color space. Measurements are
calibrated using a goniometer as ground truth and interpolation (Fig. 3a).
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3.6 Procedure Analysis

Eye-gaze trackers (Pupil-labs3) are mounted on the HMD. They depict the real-
time gaze of the user to the remote station and aggregate both 2D and 3D
gaze-data in the form of a heat-map and save it for analysis. Location of the
operators/trainees in the OR is also tracked and saved. Other relevant data
from the surgery is also fed to this module. Another method in the application
logs each user’s performance and its corresponding score based on the smart
assessment metrics or expert feedback and saves it in a separate JSON file.

3.7 Artificial Intelligence

The Artificial Intelligence component will rely on data collected during the train-
ing/operation procedure and is an item for future work. For example, we can
attempt to assess surgical skill from a heat map of the gaze-tracking data, as
other studies have suggested that skill level and eye-gaze can be related [1].

4 Discussion

Modern surgical training has recognized the value of limiting weekly residency
training hours. However, the limit in training hours combined with the ever
increasing amount of medical knowledge an operator must master creates a
significant challenge–how does one train residents to perform complex surgi-
cal procedures safely and independently if the time allotted to train residents is
decreased? In order to bridge the gap of decreased clinical encounters to promote
the safe delivery of care and the trainees’ overall well-being, a solution that is
capable of both training and supervising surgeons in training is necessary. The
proposed system, presented in the context of a bedside ventriculostomy, has the
potential of not only training residents how to properly execute this procedure
but to also serve as a real-time platform to connect the training resident to an
expert during a live clinical scenario.

If successful, the present platform can be applied to a large variety of bedside
sterile clinical procedures that residents are expected to perform independently
early in their training. Examples of other applicable procedures that could be
simulated for training or supervised during live clinical execution include: lumbar
punctures, lumbar drains, chest tube insertion, central line insertion, intraosseous
line insertion, arterial line placement, intubation, pleurocentesis, etc. All of the
latter procedures, when taught conventionally, can be broken down into discrete
steps that make them well suited to be adapted and presented in our training
simulation platform. Similarly, all of the latter procedures can benefit from a
remote clinical expert that can help a novice troubleshoot a difficult procedure
by assisting with the small nuances that can only come from experience.

3 Pupil-labs: https://pupil-labs.com/.

https://pupil-labs.com/
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5 Conclusion

In this work, a comprehensive system for training and performing surgical tasks
in mixed reality was introduced. The system includes an authoring module,
training and practice setup, smart assessment, and a remote station for the
expert. These have been implemented for bedside ventriculostomy and our next
step is to conduct a user study with neurosurgery residents. We also plan to
extend this platform for other types of procedures that can contribute to resident
training and education. Moreover, the capture of data from the HMD, sensors,
and remote expert further enables process improvements via data mining and
training of artificial intelligence.
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Abstract. Video capture in the surgical operating room (OR) is increas-
ingly possible and has potential for use with computer assisted inter-
ventions (CAI), surgical data science and within smart OR integration.
Captured video innately carries sensitive information that should not
be completely visible in order to preserve the patient’s and the clinical
teams’ identities. When surgical video streams are stored on a server, the
videos must be anonymized prior to storage if taken outside of the hospi-
tal. In this article, we describe how a deep learning model, Faster R-CNN,
can be used for this purpose and help to anonymize video data captured
in the OR. The model detects and blurs faces in an effort to preserve
anonymity. After testing an existing face detection trained model, a new
dataset tailored to the surgical environment, with faces obstructed by
surgical masks and caps, was collected for fine-tuning to achieve higher
face-detection rates in the OR. We also propose a temporal regulari-
sation kernel to improve recall rates. The fine-tuned model achieves a
face detection recall of 88.05% and 93.45% before and after applying
temporal-smoothing respectively.

Keywords: Anonymization · Face detection · Surgical data science
Smart ORs

1 Introduction

Video cameras are pervasive within the modern operating room (OR) and
used extensively during surgery, for example in laparoscopic or robotic assisted
surgery, but with minimal video utilization. Specifically many integrated oper-
ating rooms now incorporate surveillance cameras or documentation cameras
integrated within the surgical lights or in the ceiling. The video data collected
by such devices is highly sensitive because it records events during the operation
and also the identities of staff and patients within the OR. Yet, the video can
have multiple uses in educational material or in the analysis and automation
of OR optimisation systems through surgical data science platforms [1]. To be
able to use the recorded videos in the OR, video processing must take place to
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ensure the data is anonymized and safe to be used. It is possible to approach
video anonymization through computer vision algorithms for face detection but
making such systems work well in surgical environments is difficult because the
OR has variable lighting conditions, multiple occlusion possibilities and also the
team wears surgical drapes and masks.

Fig. 1. FaceOff images, collected from Youtube, showing the faces in the surgical envi-
ronment potentially exposing sensitive information

Real-time face detection is a mature field in computer vision [2]. As with
many problems in the field, techniques using hand crafted features such as HOG
[3], have recently been superseded by convolutional neural networks (CNNs)
based approaches using deep learning for detection [4–6], pose estimation [7],
and emotion prediction [8]. The introduction of big datasets such as FDDB [10],
IJB-A [9], and WIDER [11] has empowered the use of deep learning models and
enhanced robustness and efficiency, shown by the evolution of approaches from
recurrent CNN (RCNN) [12], followed by Fast-RCNN [13], and finally Faster-
RCNN [14]. The results for these architectures are impressive but their transla-
tion into the clinical setting faces challenges because the data needs adaptation
to deal with masked faces, surgical caps and the lighting variability within the
room.

In this paper, we adopt the Faster-RCNN model pre-trained on the avail-
able WIDER dataset and we adapt it for face detection in the OR. Faces in
the OR are very different from the WIDER dataset due to masks, caps, and
surgical magnifying glasses. Detecting such faces is difficult and requires model
adaptation, which we achieve through collecting surgical data from web search
engines, labelled and used to fine-tune the model. To achieve anonymization, it
is important that the model catches as many faces as possible. A sliding window
for temporal smoothing was implemented and then applied on the detections to
have a higher chance of detecting any missed face (a false negative). Our method
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shows promising results on our validation dataset which will be made available
to the community.

2 Methods and Data

Wider Dataset. The dataset consists of 32,203 images with 393,703 faces in 61
different environments (meetings, concerts, parades, etc.). It is also worth noting
that this dataset include 166 images (in the training set) of faces in the surgical
environment. This dataset is commonly used for benchmarking face detection.
Faster RCNN is in the top 4 of all the submissions that used the WIDER dataset
to benchmark performance [15].

FaceOff Dataset. We collected 15 videos of surgical ORs from the video search
engine Youtube. All were publicly available with “Standard Youtube License”
(videos can be used freely). The keywords used for searching: surgery, real-
time surgery, surgery in the operating room/theatre, recorded surgery... Figure 1
shows a sample of the dataset. In total, the dataset consists of 6371 images
describing 12786 faces. The images show variability in scales and occlusions of
faces in the OR to achieve a good learning of the facial features in the OR.

2.1 Faster R-CNN

Faster R-CNN uses a regional proposal network (RPN) that estimates bound-
ing boxes around regions in the input image. It is scale invariant as it proposes
regions of many scales before interrogating each with one of two CNNs: ZFnet
[17] and VGG-16 [16]. The convolutional layers are shared with the RPN (unlike
the architecture in Fast R-CNN), making computation efficient. The CNNs eval-
uate regions using the intersection of union (IoU) of each anchor with the ground
truth bounding boxes of the input image during training to determine if the
region is used as a positive or negative sample. The RPN proposes around 21000
regions per image but after non-max filtering (NMF) around 2000 valid anchors
remain and only 256 positive anchors, and 256 negative anchors are then chosen
for training.

The loss function of the RPN incorporates several parts shown in the equa-
tions below:

L(pi, ti) =
1

Ncls

∑

i

Lcls(pi, p∗
i ) + λ

1
Nreg

∑

i

p∗
i Lreg(ti, t∗i ) (1)

Lcls(pi, p∗
i ) = −log(

efyi∑
jefj

) (2)

Lreg(ti, t∗i ) = smoothL1(ti − t∗i ) =

{
0.5 (ti − t∗i )

2, if |ti − t∗i | < 1
|ti − t∗i | − 0.5, otherwise

(3)
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The first part measures the error of the classifier whether the region is a
class (in this case a face) or not. Where pi is the predicted probability, p∗

i is
either 0 (when the region describes the background class) or 1 (when the region
describes the foreground class, in this case a face), and finally Ncls is the mini-
batch size (in this case 2 ∗ 256 = 512). The classifier loss as shown in Eq. (2)
is the soft-max loss of the predicted class. The second part tries to measure the
error of box regressors. Where λ is a constant, p∗

i is the predicted probability
(this means this part of the equation is only activated for positive anchors where
p∗
i = 1), ti is the predicted box, t∗i the ground truth box, and finally Nreg is the

total number of valid anchors (in this case around 2000). The box regressor loss
is the smoothing function of the predicted box as shown in Eq. (3). It tries to
minimize the difference between the predicted box and the ground truth box.

Fig. 2. The kernel size of the sliding average window is 5. The sliding average kernel
estimates the missing Box2 at frame t by averaging the corresponding detected Box2

in the adjacent frames ∈ [t − 2, t + 2].

2.2 Sliding Kernel Smoother

Despite the excellent performance of a per-frame face detection method, tempo-
ral discontinuities are still possible and need to be handled with a non-detection
driven approach. For anonymization, having a high recall (or low false nega-
tives) is the main target for the model to achieve. While the described Faster
R-CNN captures spatial information exceptionally well it can suffer from period
occlusion or failure when faces turn or enter variable illumination conditions.
But since videos will be inferred using the model, valuable temporal information
can potentially be lost. As illustrated in the Fig. 2 schematic, the model some-
times misses faces even though it successfully detected the same face in adjacent
frames. To take advantage of that, a sliding window of kernel sizes k = 3, 5, 7
were applied to smooth in the detections to be able to anonymize the missed
faces. Doing so will also generate more false positives as the smoothing kernel
does not incorporate visual information. As described in Fig. 2, the smoothing
window will apply a moving average on the centre frame t and estimates Box2

at frame t with the aim of anonymizing a missed face.
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Fig. 3. Left: An example case showing the intuition of picking the right IOU threshold
to calculate the metrics. The green and pink bounding boxes describes the ground truth
and detected face respectively. As seen in the image, the anonymization has occurred
given the area above the mask was detected. The detected region is less than half
the area of the annotated face. Therefore, a threshold of t = 0.3 was used. Right:
The precision and recall as a function of the value of the IOU threshold that counts a
detection whether its a true positive or a false positive (Color figure online)

3 Experiments and Results

Calculating Activations: Given that the model returns a bounding box, a
metric must quantify how correct is that bounding box. This section will explain
how those metrics where calculated. There are 4 detection cases that occur after
inferring the test set. The first case occurs when the intersection over union
(IOU) between the ground truth box and the predicted box is above a certain
threshold t. This detection counts as a true positive. The second case occurs
when there is no detected box close to a ground truth box. This counts as a
false negative. The third case happens when there is a detected box without a
ground truth box around it. This case counts as a false positive. Finally in the
fourth case, when the IOU of the ground truth with the detected bounding box
is lower that a threshold t, it counts as a false positive and a false negative (one
for missing the detection, and one for detecting something that is not a face).

To set the threshold t, the precision and recall were calculated for 9 possible
values. The results can be seen in the right section of Fig. 3. Intuitively speaking,
both the precision and recall will drop as the IOU threshold increase as it will
be less likely for the predicted box to be more aligned with the ground truth.
This graph shows that the precision and recall are stable between 0.1 and 0.3.
They start slowly decreasing between t ∈ [0.4, 0.5]. A sharp drop is observed
after 0.5. After evaluating the above graph, a threshold of t = 0.3 was chosen.
0.3 is a good value for the IOU threshold because faces are mostly covered with
surgical masks. The detections sometimes only cover the eye area as shown in
the left section of Fig. 3, even thought the ground truth describes the whole



FaceOff: Anonymizing Videos in the Operating Rooms 35

face including the mask. This is a good detection as it anonymizes the face and
therefore it must be counted as a true positive.

WIDER Fine-Tuning Setup: For a better anonymization, detecting normal
faces is also crucial in the operating room. For that, the model from [15] was
used. This paper fine-tuned a VGG-16 faster r-cnn trained on Imagenet using
the WIDER dataset. They used stochastic gradient descent (SGD) for 50000
iterations with base learning rate of 10−3 and then ran another 30000 iterations
with a base learning rate of 10−4.

Fig. 4. Sample detections of both models. The WIDER trained model detections are
shown in pink and the FaceOff fine-tuned model detections are shown in blue. (Color
figure online)

FaceOff Fine-Tuning Setup: After training the model described above, we
further fine-tuned the model on the newly collected dataset of faces in the OR.
We trained the model on 8485 faces in the OR for 20000 iterations. The RPN
generates 12000 and 2000 ROIs before and after applying NMF respectively.
Model uses a mini-batch (batch of regions of ROIs) size of 64 (for normalisation),
an IOU threshold of 0.7 and above to consider the ROI as an example of a face,
and an IOU threshold of 0.3 and less to consider the ROI as an example of a
background. The remaining ROIs (with IOU between [0.3, 0.7] are discarded).
Finally, a size set of 256 regions per class (256 regions for the face class, and 256
regions for the background class) is used for training.

We inferred the test set using the model trained on the WIDER dataset. The
model returned a precision of 66.84%, a recall of 75.40%, and an F1 score of
70.86%. After those promising results, we fine-tuned the model using the FACE-
OFF collected dataset with the setup discussed above. A precision of 82.58%,
recall of 88.05%, and f1 score of 85.23% was achieved. A sample of the detections
can be seen in Fig. 4.
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In the surgical environment, the model must achieve a high recall since it is
more important to detect a face than to falsely detect a face. In other words, the
volume of false negatives should be as small as possible irrespective of the volume
of false positives. To take advantage of the temporal information found in a video,
the detections where smoothed around frames with no detections. Surrounding
frames have very similar information with a high probability. Averaging the
surrounding detections around a frame should help in detect false negatives. The
disadvantage of this approach is that it is more likely to generate false positive
than detecting false negatives. After getting the detections from the FaceOff fine-
tuned Faster R-CNN model, a sliding window of kernel k = 3, 5, 7 was explored.
Table 1 shows that the kernel of size 3 performed the best achieving a recall of
93.46%.

Table 1. Surgical face detection metrics of the different models tested.

Model Precision Recall F1

Off-the-shelf 66.84% 75.40% 70.86%

Fine-Tuned on FaceOff 82.58% 88.05% 85.23%

Post-Smoothing k = 3 59.07% 93.46% 72.39%

Post-Smoothing k = 5 55.93% 93.45% 69.96%

Post-Smoothing k = 7 53.52% 93.26% 68.01%

4 Discussion and Conclusion

An increasing number of cameras are integrated in the OR (head mounted,
ceiling mounted, light integrated, etc.) and anonymization of video is impor-
tant in order to be able to use the recorded data for a wide range of pur-
poses like documentation, teaching and surgical data science. In order to auto-
matically blur faces in the recorded video, we have described a method and
dataset that adapts the state-of-the-art face detection techniques. Our FaceOff
method and dataset describe faces in the surgical environment and use temporal
smoothing to increase the recall of detection and hence increase the effectiveness
of video anonymization. We fine-tuned the Faster R-CNN pretrained on the
face-detection-benchmark WIDER dataset achieving a recall of 88.05%. Tak-
ing advantage of the temporal nature of the application (anonymizing surgical
video), a sliding average window was applied to the detections to smooth the
missed detected faces reaching a recall of 93.46% on the collected FaceOff test-
set. The work described in our study is a first step towards building the tools
and capabilities needed in order to begin taking advantage of surgical data and
building surgical data science pipelines.
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Abstract. During cardiac surgery there is an unmet need for safe trans-
fer of responsibility for patient oxygenation back and forth from the anes-
thesia to the perfusion teams. Prior to cardiopulmonary bypass (CPB),
lung ventilation is performed by the anesthesia machine ventilator and
is the responsibility of the anesthesia team. During CPB, lung venti-
lation is halted and oxygenation is performed by the CPB oxygenator
and perfusion team This recurrent transfer throughout the procedure
introduces the rare but serious possibility of a “never event”, resulting
in the patient’s lungs not being ventilated upon stopping the CPB and
potentially leading to catastrophic hypoxemia. Monitors and alarms on
the anesthesia and bypass machines would not be useful when the other
device is operating so they are routinely put into a standby mode until
needed. Consequently, in the event that the handoff is missed, there are
no alarms to catch the situation. To solve this unmet need, we propose a
novel interoperable, context-aware system capable of detecting and act-
ing if this rare situation occurs. Our system is built on the open-source
OpenICE framework, allowing it to seamlessly work with a variety of
ventilator and bypass machines.

Keywords: Cardiopulmonary bypass · Never event · Interoperability
Alarms · Surgical safety systems

1 Motivation

The entire cardiac surgical team (8–12 individuals) collectively takes responsibil-
ity for the patient’s overall safety during cardiac surgery; it is a “team of teams”,
whereby four sub-teams (surgery, anesthesia, perfusion and nursing) must collab-
orate and coordinate their actions throughout the procedure. A mission-critical
part of this responsibility is ensuring that the patient’s gas exchange (oxygen and
carbon dioxide) needs are met during cardiac surgery. The anesthesia team con-
trols the function of the lung ventilator to deliver air and supplemental oxygen
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to the patient’s lungs during inspiration and permit excretion of carbon dioxide
during expiration. While the patient is being maintained on cardiopulmonary
bypass (CPB), the responsibility for ensuring adequate ventilation shifts from
the anesthesiologist to the perfusionist: instead of exchanging gases using the
ventilator machine, the perfusionist uses the oxygenator present in-line with the
CPB circuit. During the CPB “run”, the ventilator machine and its monitors
and alarms is turned off for the duration of the run to allow unobstructed vision
of the surgical field for the surgical team. After the CPB is discontinued the
responsibility of ventilation is transferred back to the anesthesia team that must
restart the ventilator. These two mission-critical transitions of responsibilities
back and forth from the anesthesia and perfusion team require complex human-
human communication to coordinate actions involving machines that otherwise
don’t communicate between each other and introduce the rare but potentially
lethal possibility of missing the handoff, resulting in the patient not being venti-
lated and suffering from anoxic brain injury (a “never event”). Communication
breakdown is considered the most frequent cause of errors causing preventable
adverse events in surgery. We propose an interoperable, context-aware system
for cardiac surgery that specifically allows machine-machine communication and
makes it hard for the surgical team to make errors and cause patient harm by
detecting and alarming in case of missed handoff.

2 Methodology

In developing clinical alarms, it is important to build systems that support the
existing surgical workflows and communication patterns in the care teams. In
failing to do so, the new alarms are likely to cause surgical flow disruptions than
of being useful. Our goal is to develop an alarm system for an extremely rare but
potentially lethal situation, and therefore we need to create a system with a very
low false positive rate. False positives distract the surgical team, increasing risk
to the patient, and reduce confidence in the alarm system. False positives refer
to situations where the alarm indicates a condition that is not actually present.

We observed and discussed the process and cardiac surgical environment with
a number of subject matter experts at a cardiac surgery program of a teach-
ing hospital of Harvard Medical School. The proposed specific alarm is most
relevant to the anesthesia and perfusion teams, so we focused on interviewing
domain experts of these two teams. We determined that monitoring the anesthe-
sia machine ventilator’s respiratory rate and the flow rate of the CPB machine
would allow us to trigger a simple alarm for a “failure to ventilate”. We read
the ventilator rate and CPB pump speed and when the respiratory rate is zero
and the CPB pump flow rate is also zero, we know that the patient is not being
ventilated.

We prototyped this system in the Massachusetts General Hospital MD PnP
lab using a combination of physical medical devices, simulated medical devices,
and electronic and physical patient simulators as shown in Fig. 1. The setup
includes an operating room patient monitor, an anesthesia machine, an electronic
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patient simulator and a physical lung simulator. The simulators allow us to see
how the medical devices and our system respond to a wide variety of normal and
abnormal patient conditions.

Fig. 1. Medical devices and patient simulators for algorithm development and testing

The devices were integrated using the OpenICE platform [3], which trans-
lates each device’s proprietary communications protocol and data representation
to a standardized format and communications middleware. This platform allows
us to write applications around the device settings and vital signs of interest
without having to concern ourselves with the peculiarities of specific devices.
Figure 1 shows a Drager Apollo anesthesia machine, but the same respiratory
rate value could be obtained from other brands and models without making any
changes to the alarm application. This platform allows us to reuse device inter-
faces developed previously and build on safety interlock applications including
PCA safety [6], x-ray and ventilator synchronization [2], [1], and detection of
pulseless electrical activity. OpenICE is an implementation of the ASTM 2761-
09 ICE standard [4], which includes clinical scenarios around ventilator to pump
handoffs as annexes B.2.4.1 and B.2.4.2.

As an initial prototype, the purpose was to test connectivity to the required
data sources and prove the feasibility of the approach. Once initial feasibility is
demonstrated, we can plug in more complex algorithms to increase the specificity
and sensitivity of the alarm.
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We want to detect failure to ventilate with high reliability, but we only want
to trigger an alarm when it is clinically relevant. Doing so perfectly would require
our algorithm to know whether the clinicians already know that both the CPB
machine and the ventilator are turned off. Our software can’t detect what the
surgical team is thinking, but we can take some steps to make the alarm more
relevant and filter out real (not false positive) alarms that are irrelevant. One
way to filter is to delay the alarm. If both devices remain off for more than a
few seconds then there is a higher likelihood that it is not deliberate; simply
delaying the alarm by a few seconds is likely to substantially reduce the number
of clinically irrelevant alarms without significantly increasing the risk to the
patient.

Fig. 2. The OpenICE supervisor and simulated cardiopulmonary bypass pump

We developed and tested the alarm algorithm with a mix of real and simu-
lated medical devices. Figure 2 shows the OpenICE supervisor and the simulated
cardiopulmonary bypass pump. The supervisor shows the devices that are con-
nected (Apollo anesthesia machine and simulated pump) on the right and the
available applications on the left. Our alarm application is assessed through the
“Rule-Based Safety” application. The simulated bypass pump outputs pump
speed in RPM, flow rate in liters/minute, blood temperature, and a pressure
measurement. A full bypass machine includes several pumps and many other
components. For this version of the alarm, we only use the CPB flow rate and
so we have only simulated the pump.

We implemented the alarm using the OpenICE Rule-based-safety applica-
tion. This allows us to write the alarm as a script that runs under OpenICE
and accesses devices connected through the platform. The alarm has two states:
monitoring and triggered, shown in Figs. 3 and 4.

In the monitoring mode, the alarm application shows a short description of
itself, a display of the relevant device information (CPB flow rate and ventilator
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Fig. 3. The alarm system in monitoring mode

Fig. 4. The alarm system when triggered

machine respiratory rate), and a list of messages. The device information is
updated as new data is available from the devices and typically refreshes in well
under one second.

When the CPB machine reports a flow rate of zero and the ventilator machine
reports a respiratory rate of zero simultaneously, the alarm condition is reached
and the application switches to its triggered mode. In this mode, it shows an
alarm symbol, changes its border to red, sounds an audible alert tone, and dis-
plays a message indicating what has happened. It also continues to show the
live data from the devices and is currently configured to stop alarming without
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manual intervention when the alarm condition is no longer true. This allows
the surgical team to stop the alarm by increasing either the CPB flow rate or
ventilator respiratory rate without having to touch the OpenICE computer.

3 Results and Future Work

Having established an interoperable framework for building better alert systems
for the cardiac operating room, we can build on this work by developing more
advanced algorithms and by integrating the alert system with more sources of
relevant information. We expect that we could improve the sensitivity of the
alarm using information from hospital IT systems such as the medical records
system and pharmacy systems, and that we could improve the clinical relevance
using additional contextual information that would allow the algorithm to be
more reactive to the unfolding situation in the operating room. Measuring and
reacting to the cognitive load of the various team members would allow the
alert system to be responsive without interrupting critical tasks [5]. Ideally, this
system, operating through algorithms, should be viewed as an additional member
of the surgical team, offering relevant information to the right people at the right
time in a way that doesn’t interfere with the other team members’ work.

The Rule-based-safety application allowed for rapid prototyping and concept
validation, but it does not support the more advanced rules that we would like
to implement in the future. We plan to implement future iterations of the alarm
system as full applications on the OpenICE platform, which will allow us to
implement delays, thresholds based on rate of change, and other more complex
rules.

Validating alarms for rare events but potentially catastrophic events is a
challenge. There is no data set of patients injured due to failure to ventilate in
cardiac surgery and it is not practical to conduct a clinical study to collect data
on events that happen so infrequently. However, we have identified a critical
system vulnerability that makes this never event possible; if making such an
error is possible, it will happen eventually. We plan to continue testing our
implementations using a simulation environment where we can create a wide
range of clinical situations.
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Abstract. Minimally invasive procedures with flexible instruments such
as endoscopes, needles or drilling units are becoming more and more com-
mon. Their automated insertion will be standard across several appli-
cations in operation rooms of the future. In such scenarios regular re-
planning for feasible nonlinear trajectories is a mandatory step toward
automation. However, state of the art methods focus on isolated solu-
tions only. In this paper we introduce a generalized motion planning
formulation in SE(3), regarding both position and orientation, that is
suitable for these approaches. To emphasize the generalization of this for-
mulation we evaluate the performance of proposed Bidirectional Rapidly-
exploring Random Trees (Bi-RRT) on four different clinical applications:
Drilling in temporal bone surgery, trajectory planning for cardiopul-
monary endoscopy, automatic needle insertion for spine biopsy and liver
tumor removal. Experiments show that for all four scenarios the formu-
lation is suitable and feasible trajectories can be planned successfully.

Keywords: Motion planning · Nonlinear trajectories
Temporal bone surgery · Special Euclidean group
Bidirectional rapidly-exploring random trees

1 Motivation

Minimally-invasive procedures have been extensively studied in the last decades
and new solutions for various applications are an active research field [2]. These
include, among others, continuum robots for drilling in multi-port temporal bone
surgery [6], flexible needles for soft tissue [4] or flexible endoscopes [7] and allow
more precise interventions.

These approaches use instruments that share common constraints: they fol-
low nonlinear curvature constrained trajectories, and rapid re-planning is neces-
sary to ensure a continuous safe insertion. Consequently, pre- and intra-operative

c© Springer Nature Switzerland AG 2018
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Fig. 1. Exemplary clinical applications where flexible instruments can be used:
(A) temporal bone surgery for cochlear implantation (B) cardiopulmonary endoscopy,
(C) spine biopsy and (D) tumor treatment in the liver.

planning in SE(3) = R
3 × SO(3) is necessary to compute feasible trajectories

with maximum clearance to risk structures.
Isolated solutions for the underlying motion planning problems have been

proposed for many applications: computation of implant channels in intracav-
itary brachytherapy or trajectory planning for bevel tip needles [3], planning
access paths for temporal bone surgery [5] or needle planning for liver surgery
[13]. Finding feasible trajectories then requires nonholonomic motion planning
where sampling based algorithms like Rapidly-exploring Random Trees (RRT)
are well suited for [8]. Steering bevel-tip needles in soft tissue has been exten-
sively studied [1] and both RRTs [9] and sequential convex optimization [10]
have been shown to compute feasible trajectories. Convex Optimization has also
been used to plan for automated suturing [11]. Nonlinear drilling units have been
proposed to create access paths in temporal bone surgery and Bidirectional-RRT
(Bi-RRT) were used to interpolate between start and goal states in SE(3) [6].

However, these solution are tailored to their specific use case and do not
discuss a general solution. In this paper, we propose a general motion planning
formulation for nonlinear minimally-invasive interventions in OR 2.0. We extend
the formulation of Bi-RRTs introduced earlier by us [6] that exploit variable cur-
vature arcs or Bézier-splines as underlying steering functions. This extension is
suitable to form a common motion planning problem for instruments that fol-
low curvature constrained trajectories. In particular, we derive the individual
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specifications for four different clinical applications: temporal bone surgery,
cardiopulmonary endoscopy, spine biopsy and liver tumor treatment (Fig. 1).
Experiments on data sets of real patients are presented where our methods suc-
cessfully plan trajectories for the respective interventions.

2 Materials and Methods

2.1 Clinical Challenges:

All mentioned interventions - though quite similar in motion planning - offer
unique challenges.

Temporal Bone Surgery operates in a very small and dense environment
compared to other setups. Numerous obstacles - nerves, blood vessels and the
organs of the hearing and equilibrium senses - limit the free space and thus
complicate motion planning. This raises special needs for the extension of the
search tree as well as the collision detection.

In cardiopulmonary endoscopy trajectories have to be planned through tube-
like structures. Motion planning algorithms have to find feasible paths through
instead of around risk structures. Such narrow environments often need tailored
algorithm for sufficiently fast planning [14].

Spine biopsy and liver tumor treatment provide environments where the
spinal cord or branches of the hepatic artery and portal vein, respectively, form
highly sensitive regions where precise planning is critical. In fact, Sun et al. [12]
extended planning to Belief Spaces in order to limit uncertainty.

Additionally, an automatic procedure requires to continuously reevaluate the
planned path. Given the latest sensory inputs, a new trajectory must be re-
planned from the currently measured pose of the instrument to the target of the
intervention. Depending on the success of a call to solve the motion planning
problem, feedback must be given to the surgeon if the intervention can still be
carried on or if it has to be canceled due to unavailability of feasible trajectories.
Such feedback needs to come immediately to enforce a smooth intervention.

2.2 Problem Formulation

Planning is done in the special Euclidean group SE(3) = R
3×SO(3), to account

for the instrument’s position (R3) and its orientation (SO(3)), the latter repre-
sented by quaternions. The configuration space C ⊂ SE(3) is then divided into
an obstacle region CObs ⊂ C and the free space Cfree = {q ∈ C|q /∈ CObs}. Valid
start and goal states of trajectories are defined via subsets of Cfree. Given, a set
M ⊂ Cfree and the quaternion metric ρ : SO(3) × SO(3) → R (e.g. [8]),

ρ(h1, h2) = min {ρs(h1, h2), ρs(h1,−h2)}
ρs(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2),

(1)

we define the approximated set M̃(ε, φ) of M , ε ∈ R
+, φ ∈ [0, π] as,

M̃(ε, φ) = {q(x, h) ∈ Cfree | ∃ q̂(y, g) ∈ M : ‖x − y‖R3 < ε, ρ(h, g) < φ}. (2)
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Given a number of clinically ideal configurations for trajectories, such sets resem-
ble clinically acceptable states that lie in the vicinity of the position and observe
only a small perturbation in orientation. Further constraints are given by the
minimum distance dmin to risk structures, the instrument’s curvature constraint
κmax and the time Tmax, in which a feedback is required. The problem formu-
lation for an individual intervention is than expressed as:

Given,

MI ⊂ Cfree, εI ∈ R
+, φI ∈ [0, π] (3a)

MG ⊂ Cfree, εG ∈ R
+, φG ∈ [0, π] (3b)

dmin ∈ R
+, κmax ∈ R

0+, Tmax ∈ R
+ (3c)

Task: Find a path γ(t) : [0, 1] → SE(3) satisfying

γ(0) ∈ M̃I(εI , φI) (4a)

γ(1) ∈ M̃G(εG, φG) (4b)
∀t ∈ (0, 1) : ‖γ′′(t)‖ < κmax (4c)
∀t ∈ [0, 1], o ∈ CObs : ‖γ(t) − o‖

R3 > dmin (4d)

or report that no path could be found in the available time Tmax.
Figure 2 shows examples of initial and goal regions, MI ,MG, for a multi-port
cochlear access. For preoperative planning of potential access canals, a surgeon
manually defines a set of initial states at the surface of the lateral skull base
(blue arrows, left image). Three goal states are defined at the round window
of the cochlea as the ideal end points of the three canals for multi-port access
(orange arrows, right image). Once the intervention starts, re-planning of a fea-
sible trajectory might be necessary. Here, the current pose of the drilling unit
replaces the initial region (middle image, orange arrow) and one of the three
goal states is fixed as the single target state.

Fig. 2. Different initial and goal regions for cochlear implantation. (Left) Multiple
initial states at the skull’ surface (blue arrows). (Middle) A single initial state pointing
in the robot’s current direction. (Right) Three precise goal states for a multi-port
cochlear access. (Color figure online)

Note: This definition extends our previous formulation [6] to individual approx-
imations at both start and goal. With κmax = 0 it is suitable for linear
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approaches. With φI = π or φG = π it falls back to more general cases where
only the orientation at one end point of the trajectory is relevant.

2.3 Motion Planning

We use Bi-RRTs to solve the individual motion planning problems of the experi-
ments (Fig. 3). Specifically, we show that two variants of Bi-RRTs - one based on
circular arcs and 3D Dubins Paths, one based on Bézier-Splines [6] - are suitable
for our clinical exemplary anatomies.

Fig. 3. Bidirectional RRTs grow two search trees - one from the initial region (blue),
the other from the goal region (green) - and attempts to connect them in between. A
successful connection results in a feasible nonlinear trajectory (orange). (Color figure
online)

3 Experimental Results

We considered four different scenarios as shown in Fig. 1: (A) Planning of three
access canals for multi-port bone surgery at the Otobasis. (B) Trajectory plan-
ning for cardiopulmonary endoscopy. (C) Flexible needle path creation for spine
biopsy. (D) Access to metastases in the liver. For each scenario, expert annota-
tions on real CT data were used to create 3D models of the individual anatomies.
The obstacle regions CObs were built from the relevant risk structures of these
anatomies. Adequate definitions of the general problem definition are given in
Table 1. Samples of successfully planned paths in SE(3) are shown as tubes in
Fig. 4.

Otobasis Surgery: Our current drilling prototype has a curvature constraint
of 0.05 mm−1. We considered a more flexible version to have more space for
multi-port surgery. For a cochlear implant, deviations at the target should not
exceed 5◦. However, as our methods allow planning with ideal orientation, we
set ε = φ = 0 and successfully created three access canals to the cochlea with
no misalignment using a bidirectional Spline-Based-RRT.
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Table 1. Parameters for the different Problem Formulations.

κmax

mm−1
εI , εG
mm

φI , φG

degree
dmin

mm
Tmax

sec

Multi-Port Bone Surgery 0.05 0.0 0.0 0.8 0.25

Cardiopulmonary endoscopy 0.1 2.0 45 3.0 3.0

Spine-biopsy 2.5 0.0 0.0 4.0 0.25

Liver tumor ablation 2.5 0.0 0.0 4.0 0.25

Cardiopulmonary Endoscopy: Trajectories were planned both with a Spline-
Based-RRT and its bidirectional counterpart. We considered the use of flexible
endoscopes with radius 1.0 mm. Experiments with different additional safety-
distances to the vessel’s inner walls showed that planning was still possible with
dmin = 3.0 mm as a combined distance of radius and safety-distance. To create
paths with the simpler RRT, too, we allowed a small error in target location
(2.0 mm) and a quite high deviation from the supposed orientation (45◦).

Spine Biopsy: Next, we planned for percutaneous needle insertion. The minimal
distance to obstacles resembled a needle of radius 1.0 mm and a safety distance of
3.0 mm to keep away from vertebrae. The curvature constraint was set according

Fig. 4. Feasible paths for drilling units in Otobasis surgery (A), endoscopes in car-
diopulmonary interventions (B), needles in spine biopsy and liver tumor removal (C,D).
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to flexible needles currently used in research [13]. As such instruments move
along circular arcs, trajectories were computed with the Bi-RRT that extends
via circular arcs and attempts connection with 3D-Dubins-Paths.

Liver Tumor: Last, we planned a needle trajectory for tumor treatment in the
liver. A potential tumor of spherical shape was placed within the liver (Fig. 4
D) and a path interpolating between a single initial state and a single goal state
was computed. We again considered the use of flexible bevel-tip needles and thus
chose the parameters and motion planner as in the spine biopsy experiment.

Except for the second scenario, feasible trajectories were found much quicker
than the given 0.25 s. Thus, immediate feedback was possible for these scenarios.
For the endoscopic access, we had to extend the given time for solving the motion
planning problem. This can be explained by necessary adaptations for RRTs,
when planning in narrow environments [14], a feature our planners still lack.
Moreover, maximum clearance to organs in the near vicinity is often the most
important clinical requirement. Thus, after successful planning, we computed
distances to risk structures along the resulting paths by sampling points along the
trajectories every 0.1 mm. Table 2 shows the minimum, median and maximum
distances to obstacles for the four different scenarios. We observed, that the
threshold dmin is often almost perfectly matched. This is expected, as RRTs
extend their search trees randomly and no optimization is performed.

Table 2. Resulting distances to risk structures in mm.

dmin Minimum Median Maximum

Multi-Port Bone Surgery 0.8 0.80 3.22 9.63

Cardiopulmonary endoscopy 3.0 3.10 6.50 20.39

Spine-biopsy 4.0 4.15 6.46 30.70

Liver tumor ablation 4.0 4.37 9.92 58.78

4 Discussion and Conclusion

Minimally invasive surgeries with flexible instruments offer safer, more adaptable
or completely automated procedures for a variety of clinical applications. In this
paper we propose a general formulation of the necessary trajectory planning step
for OR 2.0. We evaluate the theoretical definition on four clinical applications
and show that the general formulation is adaptable to these scenarios. Further,
we show that the proposed planning algorithms, bidirectional Rapidly-exploring
Random Trees, are suitable tools to quickly compute precise nonlinear trajecto-
ries for instruments of such applications.

Currently, our planning method is purely geometric and does not consider
uncertainty of any kind. In future, we want to add an optimization step to address
noisy sensor measurements or dynamic constraints such as soft tissue deforma-
tion. For percutaneous needle insertion, convex optimization [10] has been shown
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to be an adequate technique. We expect that an adjustment of this method to
interpolation in SE(3) between start and goal states will further improve the
proposed bidirectional approach by maximizing clearance to obstacles (Table 2).
Interactive definition of the motion planning problem, subsequent trajectory
planning and its visualizations shown in this paper were implemented in a cus-
tom planning tool. We also plan to publish this work as an open-source library
to establish a general framework for nonlinear minimally-invasive interventions.
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Abstract. Surgical robotics tools using real-time computer vision algo-
rithms can detect, extract and analyze specific organs during surgery. In
order to achieve successful cochlear implant surgical operation using such
techniques, the exact cochlear length and size are required. We present
a fast cochlear length and volume size estimation method that may be
integrated in such situations. The method utilizes atlas-model-based seg-
mentation to estimate a transformation from a model to an input volume.
The result is used to transform a well-defined segmentation and a points-
set of a scala tympani to the input image that segments and estimates
the scala tympani length in a few seconds.

Given the lack of a publicly-available ground truth, the error is esti-
mated using the known length of the cochlear implants. A dataset of 71
3D images of 21 patients from various age and gender groups is used.
The estimated average scala tympani length is 29.54 mm, with 0.27 mm
standard deviation. The average scala tympani volume size is 41.56 mm3,
with 0.19 mm3 standard deviation.

The method is available as an open-source 3D Slicer plug-in and the
dataset is also publicly-available. Both the method and the dataset can
be downloaded from a public server(https://mtixnat.uni-koblenz.de).

Keywords: Surgery robot · Cochlea · Segmentation · Registration
Length · Volume size · Automatic estimation · Fast · Surgery

1 Introduction

The cochlea is a small organ in the inner part of the ear. It has a crucial role
in hearing as it filters and transfers auditory signals to the brain. Recently,
Cochlear Implants (CI) have become increasingly popular as a treatment option
for patients with severe to profound Sensori-Neural Hearing Loss (SNHL) [16].
These implants result in significant improvement in post-operative speech recog-
nition. This is mostly underpinned by the adequate match between CI electrode
frequency bands and their exact location inside the cochlea, as each audible
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frequency has a specific position inside the cochlea [11]. Cochlear Duct Length
(CDL) can also have a significant impact on the process of pre-operative electrode
selection. If the electrode has a length that is not appropriate to the cochlear
length, this can result in incomplete insertion, cochlear trauma or poor cochlear
coverage with poor matching between the electrodes and the cochlea [8].

Surgical robots are gaining popularity, primarily driven by improvements in
nanotechnology and artificial intelligence. These robots need reliable real-time
computer vision algorithms in order to detect and analyze the target organ. For
instance, during a robotic cochlear surgery [17], a reliable real-time estimation
of the length and size of the cochlea is needed e.g. to decide a suitable CI for
a specific patient. This study proposed a fast cochlear length and volume size
estimation that may benefit future surgical cochlear robots.

1.1 Related Work

By reviewing the literature, one can find major variations in the radiologi-
cal human CDL measurements with regards to used methodologies. Primarily
methodologies include three-dimensional (3D) processing and spiral coefficient
equations, which are relatively time-consuming and require deeper radiology
expertise.

Escude et al. [5] introduced an equation of spiral coefficient, which requires
only one measurement. This measurement, known as the A value, is defined as
the largest distance from the round window to the opposite cochlear lateral wall.
This equation was further modified using a linear equation by Alexiades et al.
[2] followed by Koch et al. [9]. Most recently, Iyaniwura et al [8], using conven-
tional and micro-Computed Tomographic (µCT ) images of cadaveric cochleaer
specimens, proposed an automated method for the measure of the A value, with
a significantly lower mean error than the manual method.

Other studies used 3D reconstructions of cross-sectional imaging such as
Weurfel et al. [18], measured the cochlear length of the cone beam computed
tomography of temporal bones. They measured the cochlear length with a start-
ing point at the distal bony rim of the round window and then a 3D curve was
set up from the outer edge of the bony cochlea until helicotrema [18].

This was followed by Meng et al. measuring the CDL, and the relation
between the basal turn lengths and CDL using 3D multiplanar reconstructed
CT images [10].

More recently, Rivas et al. [15] compared the automatic measurement of
the A value and automatic CDL measurement by 3D reconstruction to the
manually measured A value and CDL by two fellowship-trained neurotologists.
They concluded that the automatically measured values more reproducible and
less time-consuming compared to those done manually.

The 3D reconstruction is considered the most accurate method to get the
CDL measurements [10]. The entirety of the complex 3D shape of the cochlea
can be well evaluated and is also less liable to cutting and viewing angle errors.
However, the processing time for this technique is considerably long [10].

The development of a more consistent, less time-consuming and reproducible
method with no inter-observer variability, to determine CDL, is still needed.
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1.2 Cochlea Segmentation

Automatic cochlear analysis requires an efficient automatic segmentation algo-
rithm. A segmentation is the process of extracting an object from an input image.
Some researchers proposed automatic cochlea segmentation methods, but they
are not practical. These methods are either time consuming or they do not cover
the cochlear details. Hence, they are not suitable for a surgical robot integration
[6,12–14]. Atlas-based segmentation methods attempt to align an atlas to the
input image. The atlas usually is a well-defined histological image or a high res-
olution µCT image. Model-based segmentation methods try to fit a statistical
shape model to the input image [3,4]. This statistical shape model is generated
using many aligned and manually segmented cochlear images.

2 Materials and Methods

The objective of this paper is to propose and to evaluate a new, relatively easy
and fast methodology utilizing simple computer hardware and software to calcu-
late the cochlear duct length and cochlear duct size. The proposal can be easily
integrated into a surgical robot due to its high accuracy and fast performance.
In this section, we describe briefly the dataset, the experimental design, and the
proposed method.

2.1 Datasets

A part of the standard and public Human Cochlea Dataset (HCD) was used,
the dataset is well described in [1]. This dataset contains Computed Tomog-
raphy (CT), Magnetic Resonance (MR) and Cone Beam Computed Tomogra-
phy (CBCT) modalities of patients from different age and gender groups. Each
patient has 3D images of his/her cochlea before and after the cochlear implant
surgery. The part used in the experiments contains 71 3D Images of 21 patients,
see Fig. 2 for a sample from these images.

2.2 Atlas-Model-Based Segmentation

The proposed method combines model-based and atlas-based segmentation. A
high resolution µCT image was used as a model and its manual segmentation
was used as an atlas. The atlas was aligned to the input image using image
registration technique. The model was obtained from public and standard µCT
cochlear dataset [7].

The original µCT image was too large to process in a standard PC, hence a
re-sampling procedure was necessary. The source µCT image was re-sampled
from [0.008, 0.008, 0.008] mm spacing to [0.032, 0.32, 0.008] mm spacing,
which reduced the image size from 13.4 GB to 806 MB. All DICOM slice files
were divided into groups of 100 files, each was then loaded separately into 3D
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Slicer software1 for re-sampling. After that, all re-sampled parts were combined
together to form the final re-sampled image.

Next, the image was cropped to the cochlear part only. This allows for a
smaller image size of 103.2 MB with 243× 202× 1191 voxels2 (the original was
437× 412× 2349 voxels). Following that, the two main cochlear scalae, i.e. scala
vestibuli and scala tympani, were segmented manually, see Fig. 1. The model was
the transformed manually to get a direction matrix similar to a left cochlear side.
The transformed model was automatically aligned to one of the clinical CBCT
images using ACIR [1]. ACIR is a registration method proposed for multi-modal
cochlear images. Registration is the process of aligning two or more images. The
segmentation was aligned the same way. Due to the interpolation process, a
process needed by the registration procedure that find locations of pixels when
images have different sizes, the segmentation needed to be corrected manually
to fit the CBCT image before using it as an atlas. Following correction process,
CBCT left-side cochlear atlas and its segmentation were ready to segment any
CBCT left-side cochlear image automatically.

By repeating the same process above, the model and the segmentation of CT
and MRI images were obtained. The right-side cochlear atlases were generated
by changing the direction matrix x-direction of the previous atlases and their
segmentations.

A user-friendly interface for the atlas-based segmentation method was devel-
oped as a Slicer plug-in. A summary of the segmentation process is presented
in Fig. 1 left. The user inputs the cochlear image, selects any point inside the
cochlea then obtains the segmentation result automatically in less than 5 s.

Fig. 1. Left: cochlear analysis general pipeline. Middle: Cochlea high resolution µCT
model. Right: Points set model

2.3 Cochlea Points Model

Skeletonization is the process of converting an object in an image to a thin-
ner object (skeleton) e.g. converting a rectangle to a line. It is usually used

1 www.slicer.org.
2 Voxel: volume element.

www.slicer.org
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to generate curves and lines of an object in order to obtain the object related
measurements e.g. the object’s length.

Standard skeletonization methods did not succeed on the resulting cochlear
segmentation, due to the non-regular shape of the cochlear scalae. A proposed
solution was used for addressing this problem by creating a points-set model
from a sorted-points set, see Fig. 1 right. This points-set model contains 55 points
representing the center of the scala tympani. By applying the proposed atlas-
segmentation transformation to this points-set, the length of the scala tympani
can be calculated by computing the distance between each two consecutive points
using the standard 3D distance equation:

Length =
n−1∑

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (1)

where n is the number of the points, and x, y and z, are the 3D point coordinates.
Using this approach has two benefits:

A. It is faster than skeletonization as it includes only one simple matrix multi-
plication.

B. The points can be corrected or modified later to produce different useful
measurements (e.g. measuring the inner length or the outer length of a scala).

3 Experiments and Results

A few important factors were studied in the experiments. These factors may
affect the accuracy of the estimated measurements.

The only manual step in the proposed methodology is locating the cochlea
in which the user provides a point inside the cochlear region (step 1 in Fig. 1
left). This point was used in the cropping phase, where the region around this
point was cropped. The cropped image was used in the registration phase (step
3 Fig. 1 left). The point was considered the center of the cropping, generating
a cube of 10 mm length and a 3D cropped image of about 80× 80× 80 voxels
with 0.125 mm iso spacing. These parameters were selected based on several
experiments, as the cochlea was located inside this cropped size in all tested
images.

The selection of this cropping point can be different from one user to another,
and could be different if the same user located it multiple times. The segmen-
tation result changes slightly if the cochlear locations point was different. For
justification, the cochlear point was located 10 different times for each input
image, then the average and the standard deviation of the segmentation result
were recorded. In Fig. 2, and Table 1, only three cochlear location points of one
patient are shown with their quantitative and visual results.

In Table 1, the points-set detection is related to the number of points that
transformed to the new input image, see Sect. 2.3. Notice that the quantitative
results are slightly different, while they visually look almost the same.
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Table 1. Sample of Cochlear location’s points and related results of patient 1

idx Cochlea location PointSet
detection

Scala Tympani
length

Scala
Tympani size

a [216 247 78] 91% 28.4032 41.1152

b [218 250 77] 96% 29.4105 41.3886

c [223 254 77] 98% 30.4227 41.7539

Fig. 2. Cochlear Location Change Effect, from left to right: results of point a, point b
and point c. The points locations are listed in Table 1.

To find out the error resulting from the image artifact, the actual length
of the CI was used as a reference point. The electrodes array was segmented
out from the datasets and its length was computed. Then the estimated error
is computed by comparing the computed electrodes array’s length to its actual
length.

Using different implants types, the estimated error average of the CI length
was 0.62 mm with standard deviation of 0.27 mm. The minimum and maximum
error values were 0.05 mm and 1.1 mm. It can be concluded that there will be
always a small error less than 1.5 mm (0.4 was added for more justification).

Average of the estimated scala tympani length and size were computed from
all the 71 volumes using the proposed methods.

The average estimated scala tympani length was 29.54 mm with a standard
deviation of 0.27 mm. The minimum and maximum values were 28.39 mm and
30.71 mm. The estimated average difference error between pre-and postoperative
CBCT images was 0.31 mm with a standard deviation of 0.25 mm. Similarly,
the estimated average error between preoperative MRI and CBCT images was
0.30 mm with a standard deviation of 0.22 mm. The estimated average difference
error between preoperative MRI and postoperative CBCT images was 0.32 mm
with a standard deviation of 0.30 mm.

Average of the estimated scala tympani size was 41.56 mm3 with a stan-
dard deviation of 0.19 mm3. The minimum and maximum values were 40.52 mm3

and 41.79 mm3. The estimated average difference error between pre-and post-
operative CBCT images was 0.25 mm3 with a standard deviation of 0.27 mm3.
Similarly, the estimated average error between preoperative CBCT and MRI
images was 0.16 mm3 with a standard deviation of 0.15 mm3. The estimated aver-
age difference error between postoperative CBCT and MRI images was 0.26 mm3

with a standard deviation of 0.31 mm3.
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Using an ASUS ROG G751-JT notebook (Intel Core i7-4720HQ @2.6 GHz x
8, Geforce GTX970m and 32 GB Memory), the average time of computation
per image, was 4.01 seconds with a standard deviation of 0.79 s. The compu-
tation time covers computing the transformation, generating the segmentation,
generating the cochlear 3D model, and computing the cochlea measurements i.e.
length and size.

From the results above, it seems that the CDL is long enough to accommodate
a longer CI than the ones available currently. Assuming an error of 1.5 mm and
a range of 28.39 mm to 30.71 mm, a suggested CI active length ranging from
26.8 mm to 29.2 mm can be used. However, to verify this suggestion, more clinical
datasets from different locations are needed.

Finally, Fig. 3 shows different visual results of the segmentation and the gen-
erated 3D models from different modalities.

Fig. 3. Segmentation results and the generated 3D models. left: CBCT, middle: MR
and right: CT

4 Conclusion

A real-time automatic method for cochlear images analysis is proposed. The
proposed method can be integrated into a surgical cochlear robot due to high
accuracy and fast performance. Due to the absence of a public ground truth, the
error is estimated using the cochlear implant known length in the images.

To the best of the authors knowledge, this is the first method that uses such
error estimation. The experiments showed a small length estimation error ranged
from 0.15 mm to 1.1 mm. The proposed method is implanted as a public open-
source plug-in for 3D Slicer software. Future works include more enhancement
in terms of speed and accuracy. Using a better histological model to get a seg-
mentation of the 3 cochlear scalae also should be considered in future research.
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Abstract. Procedural flow disruptions secondary to interruptions play a key
role in error occurrence during complex medical procedures, mainly because
they increase mental workload among team members, negatively impacting
team performance and patient safety. Since certain types of interruptions are
unavoidable, and consequently the need for multitasking is inherent to complex
procedural care, this field can benefit from an intelligent system capable of
identifying in which moment flow interference is appropriate without generating
disruptions. In the present study we describe a novel approach for the identifi-
cation of tasks imposing low cognitive load and tasks that demand high cog-
nitive effort during real-life cardiac surgeries. We used heart rate variability
analysis as an objective measure of cognitive load, capturing data in a real-time
and unobtrusive manner from multiple team members (surgeon, anesthesiologist
and perfusionist) simultaneously. Using audio-video recordings, behavioral
coding and a hierarchical surgical process model, we integrated multiple data
sources to create an interactive surgical dashboard, enabling the identification of
specific steps, substeps and tasks that impose low cognitive load. An interrup-
tion management system can use these low demand situations to guide the
surgical team in terms of the appropriateness of flow interruptions. The
described approach also enables us to detect cognitive load fluctuations over
time, under specific conditions (e.g. emergencies) or in situations that are prone
to errors. An in-depth understanding of the relationship between cognitive
overload states, task demands, and error occurrence will drive the development
of cognitive supporting systems that recognize and mitigate errors efficiently and
proactively during high complex procedures.
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1 Introduction

Recent estimates rank medical errors leading to preventable patient harm as the third
cause of death in the U.S. Fifty to 65% of complications experienced by hospitalized
patients are procedural in nature and 75% of adverse events occur in the
procedure/operating room [1]. Preventable errors leading to error cycles precede 80%
of deaths in complex interventional care, and understanding and managing conditions
leading to errors is critical to eliminate preventable patient harm [2]. The U.S. Institute
of Medicine identified workflow disruptions during complex procedures as a leading
contributing factor to medical errors [3]. Procedural flow disruptions secondary to
interruptions have been proposed as surrogates for errors, because they increase mental
workload and stress of interventional team members, negatively affect mental readi-
ness, impair situational awareness and increase fatigue and frustration [4].

Surgical flow disruptions play a key role in preventable error generation during
complex surgical procedures (e.g. robotic surgery). Wiegmann et al. found a linear
relationship between surgical flow disruptions and errors; as the number of disruptions
increased, so did the number of errors (r = 0.47, p < 0.05) [5]. A growing body of
research in complex systems is aiming at manipulating the timing of information
notifications in relationship to the ongoing task to minimize the preventable errors and
surgical flow disruptions [6, 7]. Distractions and interruptions decrease focus and divert
attention from the current task. The cost of distractions and interruptions have been
widely studied in the aviation and transportation industry where it has been shown that
interruption decrease performance [8, 9] and increase stress and perceived workload
[10].

In a complex medical procedural environment, the smooth execution of multi-party
dependencies often depends on the perfect synchronized coordination among the
various members of the healthcare team, the cost of interruptions or distractions can be
extremely high. Proper communication and coordination is extremely essential for the
successful execution of a complex procedure. Breakdown in the communication
workflow, or disruption of the smooth execution of the individual sub-steps can
become critical. Therefore, there is a need to decrease peri-procedural distractions and
interruptions which can increase the perceived workload among surgeons and impair
team performance [11, 12].

Increase in stress levels increases the probability of making mistakes that can have
potentially serious consequences to patient safety [13]. While some distractions such as
noise, interruptions from communication devices and external staff may be avoidable,
certain interruptions such as clinical clarifications, questions, and requests by the OR
staff, may be necessary. For the essential interruptions, unless they are critical, it is
important to be able to present them in between the operation steps, when the surgical
workload and stress is low. From a Human Computer Interaction perspective this
presents new challenges in deciding which machine generated notifications are
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absolutely critical, and when and how to present them without causing major disruption
in the clinical workflow.

In the present study we describe a novel approach for the identification of surgical
tasks imposing low vs high cognitive load during real-life cardiac surgeries. We
hypothesize that timing interruptions during moments of low mental workload will be
less likely to cause flow disruptions vs. interruptions during high workload moments.

2 Methods

In an initial cohort of 10 cardiac surgery cases, we have investigated the cardiac
surgery team performing two different complex procedures: coronary artery bypass
grafting (CABG) and aortic valve replacement (AVR). Regulatory approvals were
obtained by the local Institutional Review Board (IRB), including additional protec-
tions for employees as vulnerable subjects. Both patients and staff signed an IRB
approved informed consent form and separate authorization for the release of infor-
mation due to audio/video recording of the procedures.

2.1 Surgical Process Modeling

A surgical team process model for two common cardiac surgery procedures (CABG
and AVR) was developed by our group and described in a previous study [14]. Each
procedure was segmented in 3 stages, 13–14 steps, 160–180 sub-steps, and approxi-
mately 200 tasks. The cardiac surgery process model uses a 4-level hierarchical
structure involving four sub(teams): surgeon, anesthesiologist, perfusionist and nurse.

2.2 Audio and Video Recording

Two GoPro cameras (HERO4) were placed in the OR at the room corner and surgical
light head, and configured to record an ultra-wide (entire team) and a narrow (surgical
field) field of view at 30 frames per second and 960 pixels of video resolution. Three
stereo digital voice recorders (Sony ICD-PX440) captured audio at 44.1 kHz/192 Kbps
from three team members (surgeon, anesthesiologist and perfusionist) via a lapel
microphone. Video and audio files were recorded in MP4 and MP3 formats respec-
tively and synchronized during post-production.

2.3 Heart Rate Variability Analysis (HRV)

HRV is a validated measure of cognitive workload [15, 16]. A heart rate sensor (Polar
H7 chest strap) was used to capture beat-to-beat (R-R) intervals from three team
members (surgeon, anesthesiologist and perfusionist). We used an ultra-short-term
analysis of HRV, calculating the LF/HF ratio for each 1 min epoch, as validated by
previous studies [17]. We have also assessed self-reported cognitive load by applying
the SURG-TLX questionnaire immediately after the procedure [18].
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2.4 Dashboard for Interactive Task Analysis

A multisource database was created in Excel (format.xlsx) and connected to a data
analytics software (Tableau Desktop, version 10.4), allowing us to build an interactive
dashboard. Figure 1 illustrates our multimodal approach to capture, integrate, syn-
chronize and display data for analysis.

3 Results

In our initial cohort of 10 cardiac surgery procedures (8 CABG and 2 AVR), HRV
parameters presenting statistically significant correlation with the SURG-TLX score
were: standard deviation of normal to normal R-R intervals (SDNN) (r = −0.61,
p < 0.001), HRV triangulation index (r = −0.69, p < 0.001), maximum low frequency
(LF)/high frequency (HF) ratio (r = 0.55, p < 0.027), and number of episodes that
LF/HF ratio was >2.0 (r = 0.80, p < 0.001).

Using HRV LF/HF ratio, we identified multiple moments of low cognitive work-
load throughout the recorded procedures; these moments seem to coincide with
boundaries between tasks (Fig. 2). An interruption management system can time the
interruptions required to exchange critical information during moments of low work-
load. The approach herby described also enables us to detect cognitive load fluctuations
over time or in situations that are prone to errors.

4 Discussion

Complex procedural care is associated with high need for constant communication and
coordination. In a recent systematic review, Rivera-Rodriguez and associates found that
interruptions occur frequently in all healthcare settings but especially in complex
procedural care and that only relatively few studies examined the cognitive implica-
tions of interruptions [19]. Monk et al. have proposed to manipulate the time at which

Fig. 1. Multimodal data embed into the surgical process model.
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the notification of an information is delivered, relative to the execution of the ongoing
task; these Authors proposed that this timing impacts on the cost of the interruption
[20]. Bailey and associates have examined changes in mental workload during exe-
cution of interactive tasks [6]. They observed that workload exhibits transient decreases
at subtask boundaries, corresponding to the completion of large chunks of the task. The
majority of disrupting events in complex procedural care are related to information
exchanges through communication. Since certain types of interruptions are inherent to
complex procedural care, the patient safety field can benefit from an intelligent system
capable of identifying in which moment workflow interference has the lowest cost.

There is lack of data describing patterns and distribution of cognitive workload
among members of teams engaged in complex surgical procedural care and our
ongoing research program is aimed at closing this knowledge gap and enabling new
safety approaches. Procedural flow disruptions secondary to interruptions have been
proposed as surrogates for errors, because they increase mental workload and stress of
interventional team members, negatively affect mental readiness, impair situational
awareness and increase fatigue and frustration. Awareness of the critical importance of
flow interruptions on the quality of teamwork and their impact on patient outcomes has
considerably increased in the last decade. Currently no interruption management sys-
tem is available to the interventional team. Optimal management of flow interruptions
that are required for the acquisition or notification of mission-critical information, may
avoid disrupting the workflow and may lead to fewer error cycles and improved patient
safety. Influential cyber-human systems research suggests that interrupting tasks during
moments of lower mental workload minimizes interruption cost, as transient decre-
ments of mental workload are present at the boundary between tasks, especially after
completion of large chunks of the task. This improved understanding of variations in

Fig. 2. Identification of moments of low cognitive workload at the boundaries between steps
during cardiac surgery.
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mental workload during complex processes offers a solution to optimally time inter-
ruptions of complex medical procedures while minimizing the cost.

Our group has demonstrated that cognitive workload during cardiac surgery pro-
cedures can be monitored in near-real time and changes throughout the procedure,
alternating peaks of high workload with valleys of low workload. We have also
described a context-aware cognitive interface that can predict mental workload in real-
time based on physiological data. Fifty-two percent of disrupting events in complex
procedural care are related to communication; [5] when individuals are disrupted by an
interruption, their attention is shifted away from the primary task to the interruption
task [21]. Once this shift of working memory occurs, situation awareness of the pri-
mary task begins to decay to “make room” for the process required to deal with the
interrupting task; once the primary task is resumed, it is easy for the individual not to
remember which part of the primary task was last completed. When attention is shifted
away from the primary task, the likelihood of an error occurring upon return to the
primary task is increased. Many interruptions however are required to maintain system
performance and their high frequency is indicative of the high need for constant
communication and coordination in healthcare.

5 Conclusions

We maintain that many medical errors are mental workload problems, that workflow
disruptions are surrogates for errors, and that by timing interruptions during moments
of low mental workload, the cost of the interruption (i.e. errors) can be minimized

We therefore hypothesize that a context-aware cognitive system could help manage
the information flow in the procedural suite and avoid flow disruptions and error cycles
leading to patient harm; such system is predicated upon monitoring changes in mental
workload in real-time and delivering interruptions and notifications at the appropriate
time.

Acknowledgements. The authors wish to acknowledge the contribution, dedication and com-
mitment to excellence of the cardiac surgery team and operating room staff at the VA Boston
Healthcare System. Research reported in this publication was supported by the National Heart,
Lung, and Blood Institute of the National Institutes of Health under award number
1R01HL126896-01A1. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

References

1. Makary, M.A., Daniel, M.: Medical error-the third leading cause of death in the US. BMJ
353, i2139 (2016)

2. Gawande, A.A., Zinner, M.J., Studdert, D.M., Brennan, T.A.: Analysis of errors reported by
surgeons at three teaching hospitals. Surgery 133(6), 614–621 (2003)

3. Stefl, M.E.: To err is human: building a safer health system in 1999. Front Health Serv.
Manag. 18(1), 1–2 (2001)

Intelligent Interruption Management System 67



4. Weigl, M., et al.: Intra-operative disruptions, surgeon’s mental workload, and technical
performance in a full-scale simulated procedure. Surg. Endosc. 30(2), 559–566 (2016)

5. Wiegmann, D.A., ElBardissi, A.W., Dearani, J.A., Daly, R.C., Sundt, T.M.: Disruptions in
surgical flow and their relationship to surgical errors: an exploratory investigation. Surgery
142(5), 658–665 (2007)

6. Bailey, B.P., Iqbal, S.T.: Understanding changes in mental workload during execution of
goal-directed tasks and its application for interruption management. ACM Trans. Comput-
Hum Interact. 14(4), 1–28 (2008)

7. Miyata, Y., Norman, D.A.: Psychological issues in support of multiple activities. In:
Norman, D.A., Draper, S.W. (eds.) User centered System Design, pp. 265–284. Lawrence
Erlbaum Associates, Inc., Hillsdale (1986)

8. Latorella, K.A.: Effects of modality on interrupted flight deck performance: implications for
data link. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 42(1), 87–91 (1998)

9. Oulasvirta, A., Saariluoma, P.: Surviving task interruptions: Investigating the implications of
long-term working memory theory. Int. J. Hum. Comput. Stud. 64(10), 941–961 (2006)

10. Chen, Y.: Stress state of driver: mobile phone use while driving. Procedia Soc. Behav. Sci.
96, 12–16 (2013)

11. Wheelock, A., et al.: The impact of operating room distractions on stress, workload, and
teamwork. Ann. Surg. 261(6), 1079–1084 (2015)

12. Arora, S., et al.: Factors compromising safety in surgery: stressful events in the operating
room. Am. J. Surg. 199(1), 60–65 (2010)

13. Arora, S., Sevdalis, N., Nestel, D., Woloshynowych, M., Darzi, A., Kneebone, R.: The
impact of stress on surgical performance: a systematic review of the literature. Surgery 147
(3):318–330, 330.e311–330.e316 (2010)

14. Dias, R., et al.: Embedding real-time measure of surgeons’ cognitive load into cardiac
surgery process modeling. In: Academic Surgical Congress: 2018, Jacksonville, FL, USA
(2018)

15. Dias, R.D., Ngo-Howard, M.C., Boskovski, M.T., Zenati, M.A., Yule, S.J.: Systematic
review of measurement tools to assess surgeons’ intraoperative cognitive workload. Br.
J. Surg. 105, 491–501 (2018)

16. Thayer, J.F., Hansen, A.L., Saus-Rose, E., Johnsen, B.H.: Heart rate variability, prefrontal
neural function, and cognitive performance: the neurovisceral integration perspective on self-
regulation, adaptation, and health. Ann. Behav. Med. 37(2), 141–153 (2009)

17. Baek, H.J., Cho, C.H., Cho, J., Woo, J.M.: Reliability of ultra-short-term analysis as a
surrogate of standard 5-min analysis of heart rate variability. Telemed. J. E Health 21(5),
404–414 (2015)

18. Wilson, M.R., Poolton, J.M., Malhotra, N., Ngo, K., Bright, E., Masters, R.S.: Development
and validation of a surgical workload measure: the surgery task load index (SURG-TLX).
World J. Surg. 35(9), 1961–1969 (2011)

19. Rivera-Rodriguez, A.J., Karsh, B.T.: Interruptions and distractions in healthcare: review and
reappraisal. Qual. Saf. Health Care 19(4), 304–312 (2010)

20. Monk, C.A., Boehm-Davis, D.A., Trafton, J.G.: The attentional costs of interrupting task
performance at various stages. Proc. Human Factors Ergon. Soc. Annu. Meet. 46(22), 1824–
1828 (2002)

21. Flin, R., Youngson, G., Yule, S.: Enhancing Surgical Performance. CRC Press, Boca Raton,
FL, US (2016)

68 R. D. Dias et al.



Performance Evaluation to Improve
Training in Forceps-Assisted Delivery
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Abstract. The World Health Organization recommends a rate of
cesareans inferior than 15%. However, the actual rates in the US dou-
ble this value, while the use of obstetrical instruments, a recommended
alternative to cesareans but which requires high skill and experience,
has significantly decreased in the latest years. In this context there is a
clear demand for simulators, with special interest in learning the correct
use of Kielland’s forceps. In this work we present a virtual instrumented
simulator to improve training in the correct use of forceps proposing a
three-step protocol which guides users along the process while evaluating
their performance. We validate this protocol, following principles based
on previously published guidelines, on two types of manikins. Our results
show that the proposed solution successfully detects the incorrect posi-
tioning of the forceps in most steps, guiding the user during the training
process and providing feedback on wrong maneuvers.

Keywords: Training · Forceps delivery · Tracking system
Performance evaluation · Assessment

1 Motivation

According to the World Health Organization (WHO), the number of cesareans
performed in deliveries should be inferior to 15% due to their associated intraop-
erative complications and morbidity [4]. Fifty years ago, this rate in the US was
4.5%. However, in 2009 it ascended to 32.9% and by 2015 the registered rate
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was 32.0% [7]. These fluctuations and the significant increment recorded over
the last decades seem to be a consequence of the practice style.

The correct use of obstetrical instruments during the second stage of labor is a
good alternative to cesarean, as it has demonstrated to reduce morbidity without
increasing complications in the fetus. This reduction is especially significant when
deliveries are forceps-assisted. However, the rates of operative vaginal delivery
(OVD) have suffered an important reduction over the last decades, decreasing
in the US from 9.01% in 1990 to 3.14% in 2015 [7]. The use of these tools for
assistance requires high clinical experience and training, as poor performance can
cause damage to both mother and fetus (skull or scalp trauma, facial nerve palsy
or ocular trauma among others). Nowadays, health care providers seem to have
a lack of experience when confronting real clinical cases which require the use of
obstetrical instruments and, consequently, they may end up performing cesareans
instead. A survey conducted among resident physicians upon completion of their
residency showed that 55% of them did not feel competent to perform forceps and
vacuum deliveries [9]. These results could explain the cesareans rate increment
and the decrease of OVD.

A cross sectional study conducted in 2017 in the UK reported that more than
two-thirds of specialist trainees in obstetrics and gynecology think simulators
could improve training significantly in this area, showing special interest in the
safe use of Kielland’s forceps [12]. In our hospital, the number of cesareans
in complicated cases has been reduced in recent years while the use of forceps
(specially Kielland’s) has increased considerably. This seems to be a consequence
of the special attention given to train residents in the correct use of obstetrical
instruments through manikins, actors and simulators.

Several simulators of childbirth have been developed over the years to com-
plete novice obstetricians’ formation. These simulators can be realistic and focus
on different roles of childbirth. According to their components or features they
can be classified as: anatomical or virtual and instrumented or non-instrumented.
Anatomical simulators are useful for demonstration of obstetrical maneuvers and
for learning how to handle specific scenarios. Instrumented anatomical simulators
are more realistic, incorporating some interesting functionalities like the ability
to replicate vaginal delivery by an ejection system [5]. On the other hand, vir-
tual non-instrumented simulators include three-dimensional visualization, useful
to illustrate the fetus descent, but are more theoretical than practical. Lastly, the
virtual instrumented simulators are the most complex ones, including interaction
between simulator and student by visual and/or haptic feedback.

Many virtual-instrumented simulators have focused on measuring shoulder
extraction forces [8] while others simulate delivery with visual and haptic feed-
back [1]. Among these, some include a navigation component where the position
of obstetrical instrumentation can be displayed in real time with respect to the
manikins by means of a tracking system. The first to implement this function-
ality were Lapeer et al. in 2005 [6], developing an augmented reality interface
where the forceps placement in the fetus manikin head could be visualized in a
virtual scene using an optical tracking system. The purpose of their work was
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to evaluate skull deformations. In 2009 a new simulator called BirthSIM was
presented including also instrumented forceps, tracked by means of an electro-
magnetic tracking system. Up to date, this seems to be the best augmented
reality simulator for delivery training. However, their use of the tracked forceps
has been limited to assess the improvements of junior obstetricians [2].

In this work we present a virtual instrumented simulator to improve training
in the correct use of forceps. We propose a protocol composed of three steps
which guide the users along the process while evaluating their performance. The
evaluation principles applied are based on guidelines found in the literature as
well as experts indications. The software has been developed in 3DSlicer [3] (a
free and open-source platform for medical image analysis and visualization) for
use in combination with delivery manikins. Forceps, fetus and mother are navi-
gated through an electromagnetic tracker, while displaying their relative position
in real time on a 3D virtual scene. To evaluate the protocol, two experiments
were performed: one using a fixed manikin of a fetus head; the second, in a real
scenario with delivery manikins and performed by an expert.

2 Materials and Methods

The 3D Guidance electromagnetic tracking system (EMTS) from NDI (Northern
Digital Inc.) was used to track the position of the baby, mother and forceps
blades in real time. We chose this type of positioning device instead of an optical
tracking system as the former does not require direct view of the markers. As the
baby is initially inside the mother and covered by the belly, the use of the EMTS
was considered a better approach. However, the forceps are made of stainless
steel, which alters the field generated by the EMTS due to its ferromagnetic
properties. To overcome this issue, we 3D printed a replica of the forceps in
Alumide, a non-ferromagnetic material commonly used in 3D printing composed
of nylon filled with aluminum dust. Its model, extracted from a CT, was then
modified to include in the handle endings a special case for the sensors. Also,
four holes were added to the design of each blade for an accurate registration
between sensor and model.

The PROMPT Flex - Advanced mother and fetus manikins (Limbs and
Things) employed in our hospital for training workshops were used for exper-
iments and for generation of the 3D models (from CT scan) visualized in the
virtual scene. Also, a stand with the baby’s head in occiput anterior (OA) posi-
tion was 3D printed in polylactic acid (PLA) to carry out the initial experiment.

The software was implemented as an extension inside the open-source plat-
form 3DSlicer. The extension is composed of different modules, each with a
specific task: a registration module for setup, used to register each model with
their corresponding sensor in a fast and semi-automatic way; a learning module
to visualize the correct movement for each step; a training module to perform the
process step by step while checking if the placements are correct; an evaluation
module to record the whole process and analyze it afterwards.

In the following section, the steps taken during the process of forceps appli-
cation will be explained, together with the description of how the verification
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has been implemented. By convention, the blade with the lock is referred to as
left blade and the other as right. Figure 1 represents the reference system for
each model present in the virtual scene.

Fig. 1. Coordinate systems for mother and baby (left) and for forceps (right)

2.1 Protocol for Forceps Placement

Assembly and Presentation: Before the application, forceps are held outside
the pelvis correctly assembled and presented in the position they will have once
applied to the fetal head. For a correct assembly, the right shank must be above
the left one and below the lock. The forceps should be placed symmetrically,
being the handles at the same level. In the validation of this step, the relative
position of the shanks is compared, taking the left forceps as reference frame. If
the distances in horizontal or forwards are higher than 0.5 cm, the assembly is
considered incorrect.

For a correct presentation, if the baby is placed in OA, the forceps should
be parallel to the floor and the lock should be looking towards the fetal occiput
(upwards). If the baby is in left OA or right OA position, the blades should
form an angle of 45◦ with the floor. We defined a reference ideal position of
the forceps with this criterium, and then calculated the registration between its
actual position and this reference, extracting the rotational component of the
resulting transform. For the presentation to be correct, the AP angle (measured
in the reference frame of the baby) from the rotation matrix should be close to 0.
As 45◦ would represent another position for the fetus, a margin of 22.5◦ (45/2)
was established.

Forceps Application: The application of the forceps can be divided in three
stages: initial placement, insertion and final placement. This is done firstly with
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the left branch and then with the right one in order to avoid them crossing once
inserted, which can cause damage to the mother.

In the initial placement, the left blade is placed vertically and in contact
with the fetus head. For detecting this contact, the distance between the tip of
the forceps and the baby’s head was computed and a maximum distance of 1 cm
was defined as correct. The correct angle of the forceps was defined by an expert
and settled to be 10◦ from the vertical (SI axis of the baby) with a 10◦ margin.
For evaluation, the angle of a vector defined in the direction of the shank is
compared with the ideal one.

Then, the insertion is performed. When completed, the blades should lie over
the cheeks of the fetus covering the area between eyes and ears [10]. A study
performed on 50 full term neonates showed that a margin of at least 3 cm should
be kept between the tip of the blade and both the eye and facial nerve [2].
To verify a correct application, the distances from the tip to the outside eye
corner and to the facial nerve (area behind the ear) are computed. Also, the
distance from the tip to the cheeks is obtained, where values greater than 1 cm
are considered incorrect.

Traction: Finally, after application both blades should be easily locked.
Although the blades do not necessarily lock perfectly, the gap between the han-
dles must be always below 1 cm [11]. Before performing the traction, the final
position of the blades must be checked and the following conditions must be
satisfied [10]: the midline of the forceps must coincide with the sagittal suture;
the posterior fontanelle must be one finger breadth (2 cm) above the plane of the
shanks; the space between the heel and the baby’s head should admit no more
than a fingertip (1 cm); the distance to eyes and facial nerve must be greater
than 2.9 cm.

For validating that the forceps lie evenly against both sides of the baby’s
head and that the gap between them is 1 cm or less, the distance of each shank
to the AP axis from the baby’s reference frame is measured. The value should
be between 0 and 0.5 cm for the left blade and between −0.5 and 0 for the right
one. For measuring the distance to the posterior fontanelle, a plane is created in
the shank, whose normal is defined by the vertical axis of the forceps coordinates
system (SI). The distance between the fontanelle and the plane must be of at least
2 cm. The last two conditions enumerated are checked as explained in Step 2.

3 Experiments

For the protocol validation, an initial experiment was carried out by one of the
members of the developers team using the printed forceps and the 3D printed
head. Maneuvers for assembly, presentation and initial placement were repeated
a total of 8 times, from which 4 were correctly placed while the other 4 were
deliberately placed incorrectly. For final placement and traction, 4 correct place-
ments were recorded.
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Fig. 2. Experiments with commercial manikins (left) and 3D printed head (right).

A second experiment was implemented in a real scenario, where maneuvers
were performed by an expert (clinician with more than 14 years of experience
in the field of obstetrics and gynecology) using the 3D printed forceps and the
commercial manikins (Fig. 2). The number of recorded repetitions was the same
as in the first experiment. For the deliberate incorrect placements and assem-
blies, the expert focused on common mistakes novices do when training. These
examples were only for the first steps (before insertion) as common errors are
easier to identify in these stages.

The precision and recall for each experiment were computed. In this appli-
cation, precision is considered more relevant than recall as it is better for the
training to inform the novice that the placement is incorrect when it is not than
the opposite. For that reason, an F0.5 score was evaluated defined as:

Fβ = (1 + β2)
Precision · Recall

β2Precision + Recall
(1)

4 Results

Tables 1 and 2 show for each experiment the placements detected correctly (true
positives and true negatives) and incorrectly (false positives and false negatives).
These values are obtained for each phase of the procedure: assembly, presenta-
tion, initial and final placement (for left and right blades) and traction placement.
Table 3 shows the resulting F0.5 scores.
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Table 1. Rates of success from experiment 1

Step 1 Step 2 Step 3 Total

Assembly Presentation Init L Final L Init R Final R Traction

TP 2 4 4 2 4 1 3 20

TN 4 4 4 2 4 2 0 20

FP 0 0 0 0 0 0 0 0

FN 2 0 0 0 0 1 1 4

TP: true positive, TN: true negative, FP: false positive, FN: false negative
Init L(R): initial placement for left(right) branch
Final L(R): final placement for left(right) branch

Table 2. Rates of success from experiment 2 (expert)

Step 1 Step 2 Step 3 Total

Assembly Presentation Init L Final L Init R Final R Traction

TP 3 4 4 1 3 0 0 15

TN 4 4 4 0 4 0 0 16

FP 0 0 0 0 0 0 0 0

FN 1 0 0 3 1 4 4 13

TP: true positive, TN: true negative, FP: false positive, FN: false negative
Init L(R): initial placement for left(right) branch
Final L(R): final placement for left(right) branch

Table 3. F0.5 scores

Precision Recall F0.5

Experiment 1 1 0.83 0.96

Experiment 2 1 0.54 0.85

5 Conclusions

A new protocol for training in the correct application of forceps is presented.
The implemented software goes through every step of the process and relies in
the conditions presented in the literature and defined by experts to characterize
the correctness of each step. An electromagnetic tracking system is used to track
the position in real-time of forceps and manikins.

An initial evaluation of the software has been performed, firstly with a fixed
manikin of a baby head in OA position and later in a real scenario with an
expert using delivery commercial manikins. The results obtained from these
experiments demonstrate high performance, especially for the initial steps. Yet,
some limitations were found in the real scenario regarding the final placements.
Once inserted, the forceps are slightly deformed, which implies an incorrect rep-
resentation of the blades position in the virtual scene and therefore a wrong
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computation of the distances. This would explain the increase in the false neg-
ative rate for the final placement in step 2 and for step 3 during the second
experiment, since the real manikin deformed the forceps during these phases.

In the lights of these promising results, a further study will be performed
to assess the advantages in learning of forceps placement using this protocol.
Also, an alternative more rigid material for the forceps will be tested to avoid
deformation once inserted.
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Abstract. To prevent incidents in which surgical items are retained in a
patient’s body, a unique device system (UDS) of surgical instruments in the
operation room is required. In our previous study, we developed surgical
instruments with radio-frequency identification (RFID) tags and a UDS antenna
to assign unique identification to each instrument in operation room. The pur-
poses of the present study were to evaluate the recognition accuracy of the
antenna system during surgery and determine the usage rate of preoperatively
prepared surgical instruments. The experiments were conducted in four inguinal
hernia surgeries. The recognition accuracy of data acquisition was 97.7%. The
one cause that decreased this rate by 2.3% was occasional placement of the
RFID tags outside the radio communication range of the antenna. However,
when the surgical instruments were moved by a nurse and returned to the
antenna, the system could detect all instruments. The system could detect RFID
tags during surgery, and the accuracy was maintained when the scrub nurses
placed the instruments on the antenna unconsciously. The total usage rate of the
preoperatively prepared surgical instruments was 50.0%. Thus, half of the
surgical instruments were not used during surgery and underwent a repeated
sterilization and washing process. These instruments are exposed to high pres-
sure and temperature, increasing the risk of instrument defects. The system
described herein can clarify these rates and help to optimize the number of
surgical instruments that are prepared before surgery.

Keywords: RFID tags � Surgical instrument � Antenna

1 Background

Surgical items are retained in a patient’s body once in every 10,000 operations, and
30% of the items are surgical instruments [1, 2]. This problem is caused by complex
counts and defects of surgical instruments. First, a nurse conducts a surgical count, and
the medical staff repeatedly counts all sponges and instruments in the perioperative
period. The scrub nurse who passes the instruments to the surgeons must also
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simultaneously conduct surgical counts and provide support during the surgery. The
surgical count depends heavily on a manual count method, which has a risk of mis-
counting. The World Health Organization reported that manual counting is not fool-
proof [1] and that support by a counting system is required. Second, because the
surgical instruments are not managed individually, the causes of surgical instrument
defects are not always clear. To prevent these issues, a unique device system
(UDS) that can recognize each instrument individually in the operation room (OR) is
required.

In a general hospital, a surgical instrument set is assembled before surgery to
streamline preparation of the OR. A set consists of multiple types and numbers of
instruments, and the total number of instruments is 10 to 200. The lists of instruments
are fixed for each surgical type in each hospital. However, the list of surgical instru-
ments that are prepared before surgery is not optimized; instead, the instruments are
compiled at the surgeon’s discretion. Un-optimized sets lead to an overloaded washing
and sterilization process for surgical instruments. Too many instruments in the set will
lead to a complicated surgical count for medical staff in OR and potentially impact risks
of miscounts.

In our previous study, we developed surgical instruments with radio-frequency
identification (RFID) tags (Fig. 1) and software to recognize each instrument in the OR
[3]. Each RFID tag has a unique ID (UID) for easy identification, and each instrument
can be recognized automatically. The tag is covered by ceramic and can tolerate the
processes of washing and sterilization in the hospital. An antenna system was also
developed in that study. The system detects the RFID tag and obtains a UID when
nurses place the surgical instruments on the antenna plate. The system allows for
recording of the number of uses and defect history of each instrument. The frequently
used data of instruments being transferred from one set to another are recorded. The
results of that study suggest that this system can trace each instrument [4].

The purposes of the present study were to evaluate the recognition accuracy of the
antenna system during surgery and determine the usage rate of surgical instruments that
were prepared before surgery. Finally, we discuss the possibility of applying our
system to a workflow model and digital OR.

Fig. 1. Surgical instrument with RFID tag [3]
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2 Methods

Our system was placed on a Mayo table, which is an instrument table positioned over
the patient, and the table was then covered by a sterilized surgical drape. As the RFID
surgical instruments are placed on the table (Fig. 2), the system can automatically
detect these tags and obtain a UID. To obtain the correct number of instruments in the
present study, the instruments were visually counted using a video camera at the same
time as control data. The accuracy of the system was calculated by the following
formula (1):

Accuracy of system %½ � ¼ Sn=Vn� 100 ð1Þ

Vn: total number of instruments counted using video camera
Sn: total number of instruments counted using system
To obtain a gold standard number, the experiments were conducted in four inguinal

hernia surgeries. Sixty-one surgical instruments of 20 types with RFID tags were
prepared for hernia surgery. Fifty-seven surgical instruments of 18 types were used for
calculation of the accuracy because 3 towel forceps and 1 knife holder were not used on
the instrument table in these surgical cases. The usage rate of the instruments was
calculated by the following formula (2):

Usage rate %½ � ¼ Un=In� 100 ð2Þ

Un: number of instruments placed on the antenna
In: number of instruments in a hernia set

Fig. 2. Antenna system on Mayo table, covered with a sterilized surgical drape
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3 Results

Figure 3 shows the number of surgical instruments that were placed on the Mayo table
during surgery. The number of instruments placed on the antenna plate at the same time
ranged from 1 to 10 in this case. The data of the four hernia surgeries are shown in
Table 1; the total average accuracy of data acquisition was 97.7%. Because the RFID
tags were sometimes placed outside the radio communication range on the antenna,
they could not always be detected. However, when the surgical instruments were
moved by a nurse and returned to the Mayo table, the system could detect all
instruments.

The total usage rate of the surgical instruments in the surgical sets was 50.0%.
Nevertheless, the sets contained 57 surgical instruments including 18 types. 10 Halsted
mosquito forceps were included in the set; however, the usage rate was around 22%.
Additionally, some instrument types were not used during surgery.

Fig. 3. Count number of each type of instrument using the RFID system

Table 1. Results of clinical trial of the system

# Surgical time [minutes] System accuracy [%] Usage rate of instruments [%]

1 79 96.8 50.9
2 60 99.4 43.9
3 67 97.1 49.1
4 78 97.7 56.1
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4 Discussion

4.1 Recognition Accuracy of Surgical Instruments Using the UDS

Several previous studies have been performed in an attempt to detect surgical instru-
ments separately by image processing or barcodes [5, 6]. However, these methods fail
to detect some instruments because of overlap and the presence of blood. To recognize
barcodes, nurses must scan it one by one and wipe blood from the surface of the
instrument. This operation leads to human error and is not adequate for use in OR. In
the present study, the RFID tags communicated by radio-frequency, and the system
could detect instruments that overlapped and contained blood.

As an RFID mechanism, tags can send and receive information when the tags and
antenna are set in parallel. Scrub nurses place instruments on the table unconsciously,
and RFID tags become perpendicular to the plane of the instrument table. Therefore,
the magnetic flux from the system cannot pass the tag. This technical issue should be
resolved to acquire data of surgical instruments in the OR.

In general, the antenna structure is a single-loop antenna, and the magnetic flux is
uneven on the antenna plate. Therfore, a reader can detect the UID of instruments when
the RFID and antenna are only in parallel. The system that was developed in our
previous study used multiple antennas, resulting in multi-magnetic flux. In the present
antenna, the magnetic flux becomes smooth (Fig. 4) [7]. The system maintains an
adequate communication distance and detects RFID tags during surgery, and the
accuracy remains high when the scrub nurses set the instruments down unconsciously.

4.2 Usage Ratio of Surgical Instruments in a Set

In each hospital, surgical sets of sterilized instruments are prepared preoperatively for
specific types of procedures. There is no established list of instruments to include, and
medical staff make independent judgments about decreasing or increasing the number
of instruments. In fact, most surgical sets contain more than the required number of
instruments. However, defects of instruments have been reported despite the fact that
the instruments were not used during surgery. The inclusion of the extra instruments in
the surgical set is associated with defect formation.

Fig. 4. Magnetic flux using antenna of UDS [7]
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In this study, the rate of surgical instrument use in each set was 50%. Most of the
surgical instruments in the sets were not used during surgery, and the washing and
sterilizing processes were repeated. To prevent defects of instrument, the number of
surgical instruments must be minimized. However, because each set includes extra
instruments for emergency situations, unused instruments cannot simply be removed
from the set. Continuing clinical trials will clarify the optimal number of instruments.

The period and frequency of instrument breakdowns can be approximated by a
bathtub curve. Medical equipment (e.g., syringe pumps, electric knives) are maintained
routinely and managed individually. The period and frequency of breakdowns cannot
be estimated for surgical instruments because these instruments are not individually
managed [8]. Therefore, instrument defects unexpectedly occur during surgery.
Our UDS provides new insight into the defect rate of surgical instruments as deter-
mined by the management method.

4.3 Digitalization of Workflow and Medical Device Data

Several previous studies involved digitalization of the surgical scenario to develop a
scrub nurse robot and optimize workflow. Motion of medical staff was detected
automatically during laparoscopic surgery, and the workflow was analyzed [9]. Image
processing and an RFID system were used, and the system detected phases automat-
ically [10].

In this study, each surgical instrument was detected automatically, and the UID of
instruments and date of detection were obtained. Additionally, we are developing a
Smart Cyber Operating Theater (SCOT) as part of our project. This system connects
medical devices that are made by various companies using OPeLiNK [11]. Connecting
our system with OPeLiNK will allow for detection of surgical instruments and digi-
talization of surgical items.

4.4 Limitation of This Study

A limitation of this study is that some surgical instrument skipped Mayo table could not
detect. Usually, two surgical tables are used in a surgery. Often used instruments are
placed on Mayo table, and unused instruments at the surgical phase are placed on
another instruments table. For example, a knife holder was usually skipped Mayo table
to prevent cutting unconsciously, so it omitted from the calculations in this study. Our
study is developing new antenna for surgical table. The system will be developed, and
surgical instruments can be counted automatically.

Additionally, the described system cannot be used to attach an RFID tag to certain
instruments, such as the small clips used for brain surgery or a strip retractor that bends
at the point of RFID tag attachment. These instruments still need to be counted
manually. Miniaturization of RFID tags or coexistence of the tags with another
detection system may help to realize total management of instruments.
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5 Conclusion

Incidents in which surgical instruments are retained in a patient’s body occur even
today, and the causes are miscounting and defective surgical instruments. The final goal
of this study was to establish a surgical instrument management protocol for use in the
OR. Such an individual management system was developed in this study, and a clinical
trial was conducted to evaluate the accuracy of recognition of RFID tags and determine
the usage rate of surgical instruments. The total accuracy of data acquisition was
97.7%, and the total usage rate of the instruments in surgical sets was around 50.0%.
Our system can automatically detect these tags and obtain information during surgery;
these data can then be utilized when devising instrument sets.
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Abstract. In order to provide the right type of assistance at the right
time, computer-assisted surgery systems need context awareness. To
achieve this, methods for surgical workflow analysis are crucial. Cur-
rently, convolutional neural networks provide the best performance for
video-based workflow analysis tasks. For training such networks, large
amounts of annotated data are necessary. However, collecting a sufficient
amount of data is often costly, time-consuming, and not always feasible.
In this paper, we address this problem by presenting and comparing dif-
ferent approaches for self-supervised pretraining of neural networks on
unlabeled laparoscopic videos using temporal coherence. We evaluate our
pretrained networks on Cholec80, a publicly available dataset for surgical
phase segmentation, on which a maximum F1 score of 84.6 was reached.
Furthermore, we were able to achieve an increase of the F1 score of up to
10 points when compared to a non-pretrained neural network.

Keywords: Self-supervised learning · Temporal coherence
Surgical workflow analysis · Surgical phase recognition · Pretraining
CNN-LSTM

1 Introduction

The aim of a computer-assisted surgery (CAS) system is to provide the surgeon
with the right type of assistance at the right time. To achieve this, context
awareness is crucial. This means that the system must be able to understand
the processes currently taking place in the operating room (OR) and adapt its
behavior accordingly. Surgical workflow analysis covers the challenging topic of
perceiving, understanding, and describing surgical processes [11].
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A common approach is to analyze surgical processes by interpreting a time
series of signals that are recorded by sensors – in some cases also by humans –
in the OR. As laparoscopic surgeries are performed via camera, methods that
require only video as input sensor data are of special interest, since the video
can be collected effortlessly during surgery.

State-of-the-art video-based approaches for workflow analysis rely on deep
neural networks [1,2,9,15,18]. However, deep learning-based methods require
large amounts of labeled data for training. Especially in surgery, obtaining a
sufficient amount of annotated video data is difficult and costly.

To alleviate the problem of limited training data, it is common to pretrain
neural networks and fine-tune them afterwards. Often, networks are pretrained
using labeled data coming from another domain, such as ImageNet [4]. Another
way is to use unlabeled data from the same domain and train on a proxy task
using labels inherent in the data, which is called self-supervised learning.

For self-supervised learning from video, a number of ideas have been pro-
posed [5,8,12,13,16]. Most exploit the temporal coherence of video, which implies
that (i) consecutive frames are in temporal order, (ii) frames change slowly over
time, and (iii) frames change steadily, i.e., abrupt motions are unlikely.

The studies [12,13] propose proxy tasks based on the temporal order between
frames. In line with this, [2] use the task to order pairs of laparoscopic images for
pretraining a network for surgical phase segmentation. Surgical phase segmen-
tation [14] is the problem of recognizing the surgical phase being performed by
the surgeon at each point during surgery. Another proxy task for this problem
is to predict the progress and remaining duration of a surgery [18].

Intuitively, these tasks encourage the network to learn discriminative features
that are useful to infer the absolute or relative temporal position of a video frame.
In contrast, [5,8,16] aim at learning features that are invariant to typical alter-
ations occurring between adjacent frames, such as slight rotations or deforma-
tions. To this end, they aim to ensure that temporally close frames, which most
likely depict the same semantic scene, are mapped to similar representations in
feature space. This idea goes back to Slow Feature Analysis (SFA) [17].

In this paper, we describe and compare different approaches to exploit tem-
poral coherence while pretraining a convolutional neural network (CNN) for
surgical phase segmentation. We assume the pretraining encourages the CNN to
learn features that are invariant to irrelevant changes between adjacent frames,
such as slight movements of instruments or of the endoscope, while being dis-
criminative enough to distinguish between semantically different frames.

To promote reproducibility and to fuel future research, we made our code
available at https://gitlab.com/nct tso public/pretrain tc.

Experiments using the Cholec80 dataset [15] demonstrate that a CNN pre-
trained to exploit the temporal coherence of unlabeled laparoscopic video out-
performs a non-pretrained CNN after being fine-tuned for surgical phase seg-
mentation. When only 20 labeled videos are available, the proposed pretraining
achieves an increase from 67.8 to 78.6 as measured by F1 score.

https://gitlab.com/nct_tso_public/pretrain_tc
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2 Methods

The core of our neural network architecture for surgical phase segmentation is
a ResNet-50 CNN [6]. We initialize it with ImageNet [4] pretrained weights and
further train it on unlabeled videos of laparoscopic surgeries, using an SFA-
based approach for self-supervised learning. This encourages the CNN to map
temporally close video frames to similar representations in feature space.

More formally, the CNN learns an embedding f : R3×h×w → R
d, where R

d is
the d-dimensional feature space and R

3×h×w is the space of laparoscopic video
frames with height h, width w, and three color channels (RGB). Let It ∈ R

3×h×w

denote the frame at time step t. To suffice temporal coherence, we require that
f(It) ≈ f(It+Δ) for a small Δ with |Δ| < δ. To learn an embedding that is
discriminative and to avoid trivial solutions such as f(It) := 0, we require that
f(It) and f(It+Γ ) lie further apart in feature space when Γ is large, i.e., |Γ | > γ
(see Subsect. 2.1 for details). δ and γ are non-negative real-valued parameters.

To evaluate the efficacy of the proposed self-supervised pretraining approach,
we extend the CNN into a recurrent neural network (RNN) and fine-tune the
CNN-RNN for surgical phase segmentation using annotated laparoscopic videos
(see Subsect. 2.2). We can then compare the performance of the pretrained CNN-
RNN to the performance of a CNN-RNN that has been trained solely for the
surgical phase segmentation task (see Sect. 3).

2.1 Self-supervised Pretraining

For self-supervised pretraining, the output layer of the ResNet-50 CNN is
replaced with a fully connected layer with d = 4096 output neurons (FeatureNet).
As the CNN has been pretrained on ImageNet, we only adjust the weights of
the conv5 x layers and of the newly added fully connected layer during training.

Given a frame It, we calculate the embedding Ft := f(It) by forwarding the
frame through FeatureNet and taking the output (o1, o2, ..., od)T ∈ R

d at the last
layer. We train FeatureNet to learn a temporally coherent video frame embed-
ding using one of the following methods. Throughout this section, D denotes a
distance function, in our case the L2 norm.

(a) Training with contrastive loss
Given a video with T frames, we create a tuple (It, It+Δ, It+Γ ) by sampling t
from [0, T −1], Δ from [−δ, δ], and Γ from [−(T −1),−γ]∪[γ, T −1] uniformly
at random. Regarding FeatureNet as a Siamese network [3], we propagate the
temporally close pair (It, It+Δ) through the CNN and calculate D(Ft, Ft+Δ).
Likewise, we propagate the temporally distant pair (It, It+Γ ) and calculate
D(Ft, Ft+Γ ). Finally, we calculate the contrastive loss [5]

Lc(Ft, Ft+Δ, Ft+Γ ) = D(Ft, Ft+Δ) + max{0,mc − D(Ft, Ft+Γ )}.

This loss function encourages Ft to be close to Ft+Δ, while Ft and Ft+Γ are
enforced to be separated by margin mc.
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(b) Training with ranking loss
A training tuple (It, It+Δ, It+Γ ) is created the same way as in method (a).
Regarding FeatureNet as a Triplet Siamese Network, we propagate the triplet
(It, It+Δ, It+Γ ) through the CNN and calculate the ranking loss [16]

Lr(Ft, Ft+Δ, Ft+Γ ) = max{0,D(Ft, Ft+Δ) − D(Ft, Ft+Γ ) + mr}.

This loss function considers the distance between Ft and Ft+Δ relative to
the distance between Ft and Ft+Γ and encourages Ft and Ft+Δ to be closer
together than Ft and Ft+Γ by a margin of mr.

(c) Training with 1st & 2nd order contrastive loss
While (first order) temporal coherence requires the first order temporal
derivatives in the learned feature space to be small, i.e., Ft ≈ Ft+Δ, second
order temporal coherence [8] requires the second order temporal derivatives
to be small, i.e., Ft − Ft+Δ ≈ Ft+Δ − Ft+2Δ for a small value of Δ.
Intuitively, first order temporal coherence ensures that embeddings do not
change quickly over time, while second order temporal coherence ensures
that the changes are consistent, or steady, across neighboring frames. Apply-
ing the contrastive loss function to second order temporal coherence yields

Lc2(Ft, Ft+Δ, Ft+2Δ, Ft+Γ ) = Lc(Ft − Ft+Δ, Ft+Δ − Ft+2Δ, Ft+Δ − Ft+Γ )

In practice, we create a training tuple (It, It+Δ, It+2Δ, It+Γ ) by sampling
t, Δ, and Γ as described in method (a). Regarding FeatureNet as a
Triplet Siamese Network, we propagate the triplets (It, It+Δ, It+2Δ) and
(It, It+Δ, It+Γ ) through the network and calculate Lc2 . We then combine it
with the first order contrastive loss Lc into an overall loss Lc+c2 = Lc+ωLc2 ,
where ω = 0.5 is a non-negative real-valued weight parameter.

2.2 Supervised Fine-Tuning for Surgical Phase Segmentation

Once pretrained, we modify the CNN for surgical phase segmentation by extend-
ing it into an RNN using a long short-term memory unit (LSTM) [7] with 512
neurons. The LSTM is followed by a fully connected layer, which has one output
neuron per surgical phase. We refer to this CNN-LSTM as PhaseNet. During
fine-tuning, the weights of the CNN and the LSTM are jointly optimized. How-
ever, the weights of the ResNet-50 layers below conv5 x stay frozen.

3 Evaluation

For evaluation, we used the publicly available Cholec80 dataset [15]. It consists
of 80 videos from laparoscopic cholecystectomies, annotated with surgical phase
labels. We divided the dataset into four sets A, B, C, and D of equal size and
similar average procedure length. A, B, and C were used for training, while D
was withheld for testing. For pretraining, we extracted video frames at 5 Hz.
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Training and testing for phase segmentation was performed at 1 Hz. Each frame
was downsized to 384 × 216 px.

We trained three different versions of FeatureNet, one with each of the pre-
training variants described in Sect. 2.1. The union of sets A, B, and C (i.e., 60
videos in total) was used as training data, ignoring the labels. Each CNN was
trained for 25 epochs. Per epoch, we randomly sampled 250 tuples per video,
which were processed in batches of size 64. δ was set to 30 s (15 s for variant (c)),
γ to 120 s and mc = mr = 2. We used the Adam optimizer [10] with a learning
rate of 10−4. All newly added layers were initialized with random values from
the range ( −1√

n
, 1√

n
), with n being the number of neurons in the layer.

To evaluate the suitability of the proposed pretraining approach for surgi-
cal phase segmentation, each of the pretrained CNNs (contrastive, ranking,
and 1st & 2nd order contrastive) was extended into a PhaseNet and fine-
tuned using the labeled videos from either set A (#OPs =20), sets A and B
(#OPs =40), or sets A, B, and C (#OPs =60). As baseline, a PhaseNet with-
out self-supervised pretraining (no pretraining) was fine-tuned in the same
manner. Note that the underlying ResNet-50 CNN had still been pretrained on
ImageNet.

For fine-tuning the networks, we used the Adam optimizer [10] with a learning
rate of 10−4 and a batch size of 128. After every batch, the content of the
LSTM’s hidden state was saved and restored for the next batch. Due to hardware
restraints, gradients were only accumulated for three batches before applying the
optimizer. Training was stopped once the accuracy on the training set climbed
above 99.9%. All newly added layers were initialized as described above.

The results of evaluating each PhaseNet on test set D can be found in Table 1.
We calculated the metrics accuracy, recall, and precision as defined in [14].
The F1 score is the harmonic mean of precision and recall. The metrics were

Table 1. Performance of the baseline (first row) and the pretrained models on the
surgical phase segmentation task. #OPs denotes how many labeled OPs were used.

#OPs Accuracy Recall Precision F1 score

No pretraining 20 78.8± 12.5 72.3± 11.4 73.4± 12.9 67.8± 14.1

40 88.8± 7.7 83.2± 8.4 83.8± 9.2 80.4± 10.3

60 89.7± 6.6 82.8± 9.4 85.8± 7.6 80.8± 10.3

Contrastive 20 84.4± 10.6 77.2± 8.4 78.8± 5.3 73.9± 8.9

40 91.7± 5.5 85.4± 6.1 88.2± 5.6 83.8± 7.1

60 92.0± 4.5 86.2± 4.2 85.5± 4.8 83.6± 4.9

Ranking 20 86.1± 7.2 79.4± 6.5 82.9± 5.9 77.2± 7.4

40 90.2± 6.4 85.6± 6.2 85.2± 5.9 82.5± 7.3

60 90.3± 5.4 85.2± 6.2 86.1± 5.2 82.9± 6.9

1st & 2nd order
contrastive

20 88.1± 5.8 80.7± 5.7 83.8± 5.6 78.6± 6.1

40 90.7± 10.4 86.3± 7.5 86.9± 6.1 83.4± 10.1

60 92.7± 4.3 87.0± 4.0 87.6± 5.3 84.6± 5.4
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averaged over all operations in the test set. Table 2 presents the phase-wise results
of the best performing pretrained PhaseNet (1st & 2nd order contrastive)
compared to the PhaseNet that did not undergo self-supervised pretraining.

Table 2. Comparison of the baseline and the best performing pretrained model. We
report the average F1 scores calculated for each of the phases P1 to P7.

#OPs P1 P2 P3 P4 P5 P6 P7

No pre-training 20 64.5± 35.7 83.4± 15.9 59.0± 33.4 80.8± 14.2 62.0± 24.0 62.8± 20.2 62.4± 18.3

40 88.7± 21.6 92.3± 10.8 75.3± 29.4 90.3± 14.3 74.0± 17.6 71.7± 19.4 71.0± 14.3

60 82.4± 25.3 94.9± 5.7 81.1± 18.5 92.0± 10.9 76.1± 15.3 73.7± 17.9 65.4± 24.6

1st & 2nd order

contrastive

20 79.3± 25.7 92.2± 7.6 81.9± 14.4 91.3± 8.0 72.4± 17.5 72.8± 17.5 60.0± 24.4

40 87.6± 15.3 95.7± 7.1 86.3± 13.3 91.4± 18.1 78.5± 18.4 73.2± 21.7 71.6± 18.1

60 90.2± 14.7 97.6± 2.7 89.3± 9.9 95.9± 3.7 75.4± 19.3 76.9± 18.2 67.8± 16.6

4 Discussion

Table 1 clearly shows that all three pretrained models outperform the baseline
when being fine-tuned on the same set of labeled training data. The performance
boost is especially apparent when only 20 labeled videos are available. Here, in
terms of F1 score, pretraining achieves an increase from 67.8 to up to 78.6 while
halving the standard deviation. Pretraining still improves performance when
more labeled videos are available. Notably, the pretrained models fine-tuned on
only 40 labeled videos outperform the baseline trained on 60 videos. We con-
clude that the proposed SFA-based pretraining enables a CNN to learn feature
representations that are beneficial to the task of surgical phase segmentation.

Comparing the three pretraining variants, we do not find big differences.
All in all, using a combination of first and second order temporal coherence for
pretraining seems to offer the largest boost to performance, especially when only
few (20) labeled videos are used.

Looking at the results with respect to each surgical phase (Table 2), we see
that most phases benefit greatly from pretraining (variant 1st & 2nd order
contrastive) when only 20 labeled videos are available. The effect of pretraining
diminishes when the number of labeled videos is increased, but is still noticeable
in the majority of phases. Only the benefit to phase P7 seems negligible.

P7 contains visual similarities with P5 and P6, which makes them difficult
to distinguish. Since the phase is short (about 1 to 3 min), frames that we label
as close during pretraining may belong to previous phases. Likewise, frames
that belong to previous phases but are temporally close are not selected as
distant pair. Hence, the network learns features that are rather invariant than
discriminative with regard to phase P7 and P6 or P5.

To shed some light on the features learned during pretraining, we investigated
which images the network considers similar. We selected query frames {Iq} from
a video used during pretraining. Then, for each frame Iq and each video v in the
test set, we identified the frame Iq,v in v that is most similar to Iq, i.e., closest



Temporal Coherence-based Self-supervised Learning 91

to Iq in feature space. More formally, Iq,v = argminIt∈v D(f(Iq), f(It)), where
D was chosen to be the L2 norm. To calculate the embedding f , we used the 1st

& 2ndorder contrastive pretrained FeatureNet (before fine-tuning).
Figure 1 presents four selected queries. Generally, it can be seen that images

that are close in feature space show similar scenes with regard to anatomi-
cal structures and/or tool presence. The first and second query frames depict
scenes that only differ in the amount of blood visible, a trait also observed in
the retrieved frames. Likewise, the third and fourth query frames show similar
scenes. However, the third query frame is unusual as the specimen bag is closed.
Observing that the retrieved images are semantically not closely related to the
query frame, we assume that its embedding does not reflect the presence of the
specimen bag. For the fourth query frame, which is visually similar but more
representative, semantically similar frames are retrieved.

We refrain from comparing temporal coherence-based learning to other pre-
training methods for surgical phase segmentation [2,18] since these studies were
conducted using other datasets, namely EndoVis2015 (7 cholecystectomies) in [2]
and 120 cholecystectomies in [18].

Fig. 1. Image retrieval task. Each row represents one query. Left-most: Query frame.
Right: The frames closest in feature space, one per test video. Numbers denote distance
to query frame. The depicted frames are sorted with regard to this distance.

5 Summary

In this paper, we show that the temporal coherence of unlabeled laparoscopic
video can be exploited for self-supervised pretraining by training a CNN to map
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temporally close video frames onto embeddings that are close in feature space.
When extended into a CNN-LSTM architecture for surgical phase segmentation,
all pretrained models outperform the non-pretrained baseline when being fine-
tuned on the same labeled dataset. Using a combination of first and second
order temporal coherence, the pretrained models even perform similarly or better
than the baseline when less labeled data is used. Combining our approach with
temporal order-based concepts into a more holistic temporal coherence-based
pretraining method could possibly enhance the discriminative properties of the
learned embedding and improve performance even further.

Future work will address the question whether the learned embeddings can
be used for unsupervised detection of more fine-grained video segments, such as
surgical activities or steps. Furthermore, we will investigate whether the notion
of slow and steady features is beneficial for regularization during supervised
training compared to using the concept during a separate pretraining phase.
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Abstract. Surgical workflow analysis is an important topic of computer-
assisted intervention and phase recognition is one of its important tasks.
Features extracted from video frames by 2D convolutional networks were
proved feasible for online phase analysis in former publications. In this
paper, we propose to extract fine-level temporal features from video clips
using 3D convolutional networks (CNN) and use Long Short-Term Mem-
ory (LSTM) networks to capture coarse-level information. By combining
fine-level and coarse-level information, our proposed method outperforms
state-of-the-art online methods without using specific knowledge of surg-
eries and almost reaches the state-of-the-art offline performance.

1 Introduction

Computer-assisted surgery system (CAS) is an important topic of computer-
assisted intervention, which assists surgeons by giving some advice or guidances
in surgeries. To achieve this aim, Surgeries Workflow Analysis (SWA) is an
important task. Endoscopic surgery workflow analysis progresses rapidly these
years because this kind of surgeries are all performed under an endoscopic cam-
eras so that the videos are always available. In addition, endoscopic surgeries
need CAS more than other surgeries because of the limited field of view in endo-
scopic camera. With such limited field of view, it is very difficult for surgeons
to recognize the detailed positions of the camera, the targets, and some special
vessels or nerves.

Existing publications on SWA have described various types of features which
can be roughly divided into image-based features and signal-based features.
Signal-based features are extracted from signals like tool usage [14], some man-
ually defined surgical activities [11], and kinematic data [13]. Although signal-
based features yield good performance, it requires some additional devices (e.g.
RFID tags for tool signals and daVinci system for kinematic data), which is incon-
venient for many online situations. Since surgery videos are always available,
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image-based features can be more universal. At first, image-based features were
mainly extracted by manually designed rules. [2] used pixels value and its gra-
dients; [4] designed descriptors combining color, shape and texture information.
However, manually selected image features are suboptimal.

A better solution to this problem is selecting features by convolutional neural
networks (CNN) instead of manually. With appropriate setup, CNN can learn
highly distinctive features from training data. EndoNet [15] used AlexNet to
extract features and fed them to hybrid Hidden Markov Models (HMM) for
phase recognition. On the dataset of the EndoVis 2015 Workflow Challenge,
EndoNet performed the best. A recent method SV-RCNet [9], which combines
ResNet [7] and Long Short-Term Memory (LSTM) [6], is now the state-of-the-art
on Cholec80 dataset1 [15].

EndoNet used AlexNet as the basic network and extracted features from a sin-
gle frame. This limited the expressiveness of features because they contain no tem-
poral information. SV-RCNet used LSTM to mix shot features into clip features,
but since all convolutions were still in single shot, it ignores edges in time domain.
EndoNet used HMM for global optimization which performs well in its offline
version. However, online analysis is important in many applications, such as giv-
ing doctors some advice during surgery or in emergency situations. SV-RCNet’s
LSTM method can work online, but clips of 2s are too short to cover coarse-level
temporal features. Without prior knowledge inference (PKI) which is specific to
certain surgeries [9], its accuracy is 85.3%, only slightly higher than EndoNet’s.

We proposes an online SWA method Endo3D which is based on C3D net-
works [8] and LSTM. It extracted 3-D CNN features from a clip of video rather
than a single frame, which encodes fine-level temporal information. Besides, we
proposed a three-layer LSTM with sequences long enough to encodes coarse-level
temporal information into our prediction. Our proposed method outperforms SV-
RCNet (whose accuracy without PKI is 85.3%) in online recognition with 91.2%
online accuracy on Cholec80. In addition, it can also predict tool usage with 86%
Mean Average Precision (mAP). The main contributions of our method are:

1. Extract spatial-temporal features from surgery videos with an extended C3D
network.

2. Extract coarse-level information by LSTM which plays important role in
phase recognition.

3. Combine fine-level and coarse-level temporal information in an online mode.
4. Achieve state-of-the-art online phase recognition accuracy without using spe-

cific knowledge.
5. Achieve high accuracy in tool presence detection.

2 Methodology

2.1 Endo3D Network Architecture

Our model is trained in two steps (as Fig. 1 shows). The first step is fine tuning
process on a network derived from C3D. We use the fine tuned network to extract
1 http://camma.u-strasbg.fr/datasets.

http://camma.u-strasbg.fr/datasets
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features and predict tool presences. In the second step, the features are arranged
into sequence which is then be fed to 3-layer LSTM to predict workflow phases.
For every time step in sequence, our model gives a prediction for phases. The two
parts of Endo3D separately introduce fine-level (for about 4.6 s) and coarse-level
(for all the past frames) temporal information into recognition, together with
spatial information.

Fig. 1. Diagram of the proposed Endo3D method.

2.2 First Part: Video Feature Extraction

The first part of our model is shown in Fig. 2. The C3D’s fc7 layer is supposed
to compute tool presence. There is a concatenation layer fc8 after fc7 which
concatenates tool layer and fc7 for phase prediction. After training, the phase
and tool layer are left away and we use fc8 as a lv = 4103 dimensional feature.
In other words, phase layers are only used as supervisions in training. The input
of our network are 16 × 112 × 112 × 3 RGB video clips and the output feature
vectors is denoted as Vf . We downsample videos from 25 fps to 2.5 fps, and
arrange contiguous 16 frames as a clip in length of 4.6 s and with a sampling
interval of 1 s. As a result, fine-level temporal texture is introduced when doing
three-dimensional convolution in this step.

This part is trained using Adam [12]. Our tool layer’s output is activated
by sigmoid function, because tool presence detection is a multi-labeled task. We
write it as Vt whose length is the number of tools denoted as nt. Vp denotes the
phase layer’s output which is activated by softmax function. For a batch of size
N , loss function can be defined as:

L = c1 × Lt + c2 × Lp + c3 × Lregu + c4 × Lw (1)
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Lt = − 1
N

N∑
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nt∑
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[T (i)
t log(V (i)

t ) + (1 − T
(i)
t ) log(1 − V

(i)
t )] (2)

Lp = − 1
N

N∑

i=1

np∑

p=1

T (i)
p log(V (i)

p ) (3)

where Tp and Tt is groundtruth of phase and tool respectively; cis are weighting
coefficients; Lw is weight decay loss and Lregu is regularization loss, which are
set to prevent overfitting; (i) means the i-th sample in the batch.

Fig. 2. The first part: C3D network of the proposed method.

2.3 Second Part: Coarse-Level Temporal Information

Since C3D captures only fine-level temporal information we introduce LSTM
to deal with long term temporal information, which is shown in Fig. 3. fc8 vec-
tors are arranged into sequences and fed to LSTM. For every time step in the
sequence, the output will only be influenced by all the past inputs, so our method
is online. Vf,t ∈ IRlv×1 denotes the value of fc8 layer of t-th timestep (the out-
puts of former networks are strided with 1 s, so the timestep of LSTM is 1 s).
The sequence is denoted as S(T ) = [Vf,1, Vf,2, ..., Vf,T ], where T denotes the
sequence at T -th second. Because LSTM networks care nothing about the length
of sequences, we use feature sequence of all past clips as input and get output of
the same number of clips. Only the output of last timestep is used as the newest
coming prediction in testing procedure.

In order to simplify training, we expand all sequences to the same length
of ns with 0 and set their labels with background class which is different from
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Fig. 3. The second part: LSTM network of the proposed method

real phases. We also introduce a mask to mark background frames. Expanded
sequence is denoted as Ŝ(T ) = [S(T ), Olv,ns−T ] and all the sequences are now
in the same shape of lv × ns. Output sequences are np × ns dimensional binary
vectors, which is denoted as Pt,p corresponding to phase p and timestep t. Mask
is also a vector denoted as Mt. Mt = 0 if timestep t is background, otherwise
Mt = 1.

The sequence learning loss can be denoted as:

Ls = − 1
N

N∑

i=1

ns∑
t=1

np∑
p=1

M
(i)
t T

(i)
t,p log(P (i)

t,p )

ns∑
t=1

M
(i)
t

. (4)

It is a cross-entropy loss with mask to filter out background. When computing
accuracy, background results are not taken into account. Output of LSTM can
be directly used after softmax function as the confidence value without other
classifiers.

We trained the whole network from scratch. We choose 3-layer LSTM because
the number of its parameters is suitable for the difficulty of the problem and the
size of training set. If new SWA tasks are defined, the complexity of this part
can be changed.

3 Experiment

3.1 Dataset

Experiments are done on Cholec80 dataset [15], which contains 80 videos of
cholecystectomy surgeries performed by 13 surgeons. All the videos are captured
at 25 fps and are sampled to 2.5 fps. The whole set is labeled with tool presences
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and phases. Video frames are annotated with 7 phases (see Fig. 4) in 2.5 fps.
Phases are notated as P0 to P6 following the order above. For most videos,
transformations between phases follow some disciplines. Unlike Jin et al. [9], we
do not use this prior knowledges. Tools are annotated in 1 fps which also have 7
kinds2.

Fig. 4. Surgery workflow of cholecystectomy for dataset Cholec80.

For the first part, we use first 40 videos to train Endo3D feature extraction
network and the other 40 videos for validation and test. For the second part, 40
validation videos are divided to do 4-fold cross-validation, which is the same as
the division of EndoNet. In training set, there are over 200K frames with their
annotations. We arrange them into 16 frames length clips with 1 s stride and
finally get about 86K clips. The labels of clips are defined by label of the last
frame in the clip, because we want to use only past frames to extract features.
In the second step, videos are transformed into feature sequences and fit into ns,
the length of the longest one in our dataset. Only complete sequences are used
in training.

3.2 Training Parameters

Our C3D network is pretrained on sport1M dataset [10]. The fc7 and fc8 layers
are trained at the learning rate of 10−3 and initialized randomly. The layers
defined in original C3D networks are initialized using pretrained parameters and
trained at 10−4. Training for this part is setup on 2 NVIDIA GeForce 1080Ti
cards. The batch size is 24 per card. Our process is carried out using Tensorflow
[1] and training process takes 16 h for all 10K iterations. Feature extraction takes
approximately 156 ms per clip on one card.

For the last 40 videos of Cholec80 dataset, ns = 5983. The output of LSTM
network is 8D feature vector, because np = 7 for Cholec80. We trained our
2 Seven tools: Bipolar, Clipper, Grasper, Hook, Irrigator, Scissors, Specimen bag.
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model for 80 epochs with batch size 2 and initial learning rate 0.01. LSTM
process is carried out on Keras [3] and executed on a 1080Ti card. Training
process takes approximately 90 s for an epoch and it takes about 2 s to predict a
sequence, which is related to np. Because Keras implementation can not predict
dynamically with timesteps, for every new coming timestep, it computes from
the first timestep to the last one and only updates the new coming timestep’s
prediction. Changing some Keras’ backend code or implementing the method
with C language can accelerate this process.

3.3 Results

Phase Recognition. Phase recognition is measured by precision, recall, and
accuracy which are defined in [13]. The results are shown in Tables 1 and 2.
Results of EndoNet and SC-RCNet are cited from the reference paper [9,15].
Notations of all baselines are defined as follow:

– EndoNet SVM: EndoNet [15] without its HMM, which are the recognition
results feeding fc8 of EndoNet into SVM.

– EndoNet ON: the online phase recognition results of EndoNet [15]
– EndoNet OFF: the offline phase recognition results of EndoNet [15].
– SV-RCNet+PKI: the phase recognition result of SV-RCNet with prior

knowledge inference process [9].
– SV-RCNet: the phase recognition result of SV-RCNet without prior knowl-

edge inference process [9].
– C3D: the results of our phase layer’s output fine-tuned with only phase super-

vision.
– Endo3D: results of our phase layer’s output fine-tuned with proposed tool

and phase supervisions.
– Endo3D SVM: results of our fc8 after a SVM classifier.
– Endo3D LSTM: results of our proposed Endo3D process.

Table 1. Phase recognition results (%).

Method Precision Recall Acc.

EndoNet no-HMM 70.1 66.7 75.3

EndoNet ON 75.1 80.0 81.9

EndoNet OFF 85.7 89.1 92.2

SV-RCNet+PKI 90.6 86.2 92.4

SV-RCNet 80.7 83.5 85.3

C3D 63.5 59.9 69.9

Endo3D 66.4 67.0 74.7

Endo3D SVM 72.8 68.4 78.7

Endo3D LSTM 81.3 87.7 91.2

Table 2. Compare for every phase on
precision and recalls (%).

Phase Method (Precision/Recall)

ID EndoNet ON Endo3D LSTM

P0 90.0/85.5 82.8/99.8

P1 96.4/81.1 96.9/97.8

P2 69.8/71.2 69.5/71.0

P3 82.8/86.5 97.3/88.8

P4 55.5/75.57 92.3/91.7

P5 63.9/68.7 58.2/81.6

P6 57.5/88.9 72.1/82.5
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Endo3D with LSTM outperforms other online methods and is almost com-
parable to offline version of EndoNet. Only for some short phases like P0, P2
and P6, the proposed method does not perform as well as EndoNet. The result
without LSTM is comparable to EndoNet no-HMM method (which uses SVM),
and our Endo3D SVM method outperformed it. SV-RCNet without prior knowl-
edge is not as good as our method and our method can almost reach its result
with prior knowledge. C3D features perform a little worse than the proposed
method, which proves that using tool information as supervision in training and
as features in predicting phases has positive influences.

LSTM in our method and HMM in EndoNet can both improve results a
lot. According to our result, the contribution of LSTM is greater than HMM.
Theoretically, HMMs are based on transition matrix, emission matrix, whose
representation ability may be lower than LSTM. LSTM use forget gates to man-
age memories from far before, which improves performances in long sequences
learning. Besides, LSTM can be easily extended to multi-layers.

Prior Knowledge Inference (PKI) helps SV-RCNet a lot in accuracy, but we
suppose that such knowledge should be better learnt by network from videos. As
an automatic method, prior knowledge for specific dataset might not always be
available. Data-driven methods can be extended to new surgery datasets without
manually defined knowledge, which we suppose is a desirable property.

Figures 5 and 6 show the confusion matrix of 7 phases and the background for
C3D features without and with LSTM, respectively. Predictions spread on less
phases after LSTM, which shows LSTM does help filter out impossible transfor-
mations. P5 is the only phase getting worse after LSTM and it is predicted as
P3 for many cases. As Fig. 4 shows, P5 is next to P3, P4 or P6 which is the most
complex phase from the perspective of coarse-level phase transformations. Irri-
gators are mainly used in P5 which is detected with high accuracy, so from the
perspective of tool evidences, P5 is not that difficult and our prediction before
LSTM is a little higher.

Fig. 5. Confusion matrix before LSTM. Fig. 6. Confusion matrix after LSTM.
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Fig. 7. Average feature maps from Conv5b layer.

Figure 7 shows average feature maps extracted by the proposed C3D net-
works. The maps come from the last pooling layer of network and are aver-
age between channels. We arrange feature maps according to their groundtruth
phases as Fig. 7 shows. Eventhough it is hard to describe the detailed mean-
ings of deep features, we can find out that feature maps have different reaction
regions for different phases.

Table 3. Tool presence detection result (%).

Tool DPM EndoNet Endo3D

Bipolar 60.6 86.9 69.72

Clipper 68.4 80.1 95.12

Grasper 82.3 84.8 71.32

Hook 93.4 95.6 87.81

Irrigator 40.5 74.4 96.43

Scissors 23.4 58.6 87.33

Specimen bag 40.0 86.8 94.97

MEAN 58.4 81.0 86.1

Tool Presence Detection. The tool presence performance is measured by
mAP. Results about EndoNet are reported in [15]. Deformable Part Model
(DPM) [5], one of the most popular object detection method, is used as a baseline
for tool presence detection.

The results are shown in Table 3. The mAP for Bipolar, Grasper and Hook
of proposed method is lower than EndoNet, but for the other 4 tools its mAP is
higher. For Irrigator, Scissors and Clipper, the mAPs are higher for more than
15% points. As a result, average mAP for all tools of our proposed method is
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about 5 points higher than EndoNet. In fact, Grasper and Hook might occur in
almost all phases, because surgeons need them to move or grasp tissues. So these
two tools are less important as phase features. The proposed method is more sen-
sitive to tools like scissors and irrigator, whose occurrences are key information
for phase, because we train tool detection together with phase recognition.

4 Conclusions

In this paper, we focus on online phase recognition of endoscopic surgery videos
and propose a method to learn 3-D CNN features from video clips called Endo3D.
With the help of C3D and LSTM network, we combine fine-level and coarse-level
temporal texture together and use temporal-spatial information to recognize
phases. In addition, Endo3D uses tool and phase groundtruth to do multi-target
training. The proposed method outperformed the previous state-of-the-art on
public domain dataset without using specific knowledge.

Reducing the time consumption is the first thing to do in the future. As
an online method, the current processing time limits the output rate. Keras
consumes most of time because this implementation doesn’t support dynamical
input and output of LSTM nodes. Engineering improvements like a C version
test script will help a lot because average time to compute per node of LSTM is
less than 40 ms.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China under Grant 61622207.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: TensorFlow: large-scale
machine learning on heterogeneous systems (2015). Software available from http://
tensorflow.org/

2. Blum, T., Feußner, H., Navab, N.: Modeling and segmentation of surgical workflow
from laparoscopic video. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A.
(eds.) MICCAI 2010. LNCS, vol. 6363, pp. 400–407. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15711-0 50

3. Chollet, F., et al.: Keras (2015). https://github.com/keras-team/keras
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Abstract. Inferring the correspondences between consecutive video frames
with high accuracy is essential for many medical image processing and com-
puter vision tasks (e.g. image mosaicking, 3D scene reconstruction). Image
correspondences can be computed by feature extraction and matching algo-
rithms, which are computationally expensive and are challenged by low texture
frames. Convolutional neural networks (CNN) can estimate dense image cor-
respondences with high accuracy, but lack of labeled data especially in medical
imaging does not allow end-to-end supervised training. In this paper, we present
an unsupervised learning method to estimate dense image correspondences
(DIC) between endoscopy frames by developing a new CNN model, called the
EndoRegNet. Our proposed network has three distinguishing aspects: a local
DIC estimator, a polynomial image transformer which regularizes local corre-
spondences and a visibility mask which refines image correspondences. The
EndoRegNet was trained on a mix of simulated and real endoscopy video
frames, while its performance was evaluated on real endoscopy frames. We
compared the results of EndoRegNet with traditional feature-based image reg-
istration. Our results show that EndoRegNet can provide faster and more
accurate image correspondences estimation. It can also effectively deal with
deformations and occlusions which are common in endoscopy video frames
without requiring any labeled data.

Keywords: Convolutional neural network � Unsupervised learning
Image correspondences � Registration

1 Introduction

Estimating image correspondences is the base of many medical image processing and
computer vision algorithms. Traditional methods such as SIFT [1] or KLT [2] have
shown remarkable results in estimating image correspondences and registering
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endoscopy frames [3, 4], yet they are computational expensive, may fail for frames
with sparse textures, and become unreliable when objects deform (one example of
correspondences estimation by SIFT feature tracking [5], SIFT flow [1] and our method
(EndoRegNet) is shown if Fig. 1).

In recent years, methods based on deep Convolutional Neural Networks
(CNN) have been shown to be accurate in image correspondence estimation. Ji et al. [6]
developed a deep view morphing network that can predict the middle view and image
correspondences between two frames. Fischer et al. proposed FlowNet [7] which can
predict dense motion flow between two frames. However, these methods need a large
amount of labeled data for training and testing, which hamper performance when not
available because it is very difficult to generate a ground-truth for correspondences of
endoscopy images (even when using a simulator). The lack of ground-truth to allow
end-to-end network training, especially in medical imaging, has increased the popu-
larity of unsupervised or semi-supervised CNNs. For instance, Zhou et al. [8] and Garg
et al. [9] have estimated depth, and Yin and Shi [10] estimated depth, camera pose and
optical flow from images without using labeled data. Meister el al. [11] and Wang et al.
[12] however, focused mainly on unsupervised flow estimation by estimating back and
forth motion using FlowNet architecture and introducing an loss function to deal with
occlusion. Although, they have shown remarkable results in comparison to supervised
methods (e.g. FlowNet), for a more challenging dataset such as Sintel [13] which
include deformation and occlusion, their method cannot outperform supervised
methods, and needs improvements. Besides, using FlowNetS as the base of their
network structure means a requirement of a huge dataset for training. In our method, we
tackled deformation by learning parameters of a global polynomial transformation
between consecutive frames, and inspired by deep view morphing [6] we developed a
CNN that can be trained with smaller dataset. In medical imaging, De vos et al. [14]
registered cardiac MRI images through implementing a cubic B-spline transformer and
spatial transformer network [15]. Although their method can deal with deformable MRI
images, it cannot handle occlusion, which is common in colonoscopy images.

In this paper, we propose a novel CNN architecture to predict correspondences of
deformable, sparse texture endoscopy images through image registration while being
robust to occluded areas. Our method does not require labeled data. We achieved this

Fig. 1. Example of correspondences estimation by the SIFT feature tracker, SIFT flow, and our
proposed method (EndoRegNet) from consecutive colonoscopy frames, frames are overlaid,
SIFT flow and EndoRegNet are shown sparsely for better visualization of the motion.

Unsupervised Learning of Endoscopy Video Frames’ Correspondences 109



by developing a network comprising three components: (i) a Dense Image Corre-
spondences (DIC) sub-network that predicts pixel displacement between two frames as
(dx, dy) and allows local deformation; (ii) a Polynomial Transformer Parameters
(PTP) sub-network, which estimates polynomial parameters between two frames and
can produce a global motion flow which is used to regularize the output of the DIC
network; (iii) and a Visibility Mask (VM) sub-network, which predicts occluded areas
in the second frame. The output of the dense image correspondences and the poly-
nomial subnetwork are the input to a bilinear image transformer which transforms the
second image to the first one. The loss function is computed as absolute difference
between first image I1 and a transformation of second image I2 to I1 based on both
motion and polynomial transformation estimated by the DIC and PTP networks, along
with absolute difference between correspondences obtained by the PTP and DIC net-
work. Since our model performs image registration for endoscopy, we call our network
EndoRegNet. The EndoRegNet is unsupervised and there is no need for any labeled
data for training. We train the network with both simulated and real colonoscopy video
frames. Our results show excellent performance in image registration of colonoscopy
frames that are non-rigid and have sparse texture. Further, EndoRegNet can be used to
register any endoscopy video frames, or indeed other non-rigid scenes. We test
EndoRegNet on vivo datasets [16, 17]. The key contributions of the EndoRegNet can
be summarized as (i) using a polynomial transformation to regularize local pixel dis-
placement (a polynomial transformation unlike affine transformation can model
deformation between two frames, which is a main difference between our method and
other unsupervised method such as [11]); (ii) dealing with deformation by using
absolute pixel-by-pixel transformations regularized by a polynomial transformation;
(iii) refining image correspondences for occluded areas by calculating a visibility mask.
We could obtain good results by training our network even on a small medical image
dataset. The overview of our method is shown in Fig. 2.

Fig. 2. The endoscopy image registration network (EndoRegNet). DIC and PTP are dense
image correspondences and polynomial transformer parameters sub-network, Pcðxc2; yc2Þ and
Ppðxp2; yp2Þ are image correspondences estimated by DIC and PTP.
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2 Method

Our goal is to register colonoscopy frames and estimate dense image correspondences
between consecutive frames through image registration. This can be performed by
estimating pixel displacement between two frames, however a network that only
estimates pixel displacement can result in outliers and consequently a poor image
registration. Here we introduce a new approach to address this through regularizing
local pixel displacement by estimating a global transformation. In this paper, we
introduce a polynomial function of second order (as it can deal with deformations) to
determine the global transformation between two frames. Colonoscopy frames include
haustral folds which lead to occlusions, so a visibility mask similar to [6] is also
included in the model to improve registration performance by omitting occluded areas.
The EndoRegNet is introduced in the following.

2.1 Dense Image Correspondence (DIC) Sub-network

Image correspondences or the dense flow field between two consecutive frames I1; I2ð Þ
can be estimated as a relative offset of dx; dyð Þ for each point pair. Each pair of points
from I1 as target image Pðx1; y1Þ can be mapped to source image point Pcðxc2; yc2Þ
through:

xc2 ¼ x1 þ dx; yc2 ¼ y1 þ dy ð1Þ

Our DIC sub-network accepts two consecutive images as input, and estimates pixel
displacement dx; dyð Þ for each pixel. By finding the mapping relation between I1 and I2
from Eq. (1), bilinear sampling which is explained in [15] can be used to generate a
transformed image Itc which is a transformation of I2 onto I1. The DIC sub-network
minimizes the L1 norm; the absolute difference between Itc and I1, known as photo-
metric loss, which has been used in unsupervised view synthesis algorithms (e.g. [18]):
Lc ¼ Itc � I1j j.

2.2 Polynomial Transformation Parameters (PTP)

Similarly to the view synthesis approach, if we only use DIC, we will be highly subject
to outliers where individual point pairs have better matches on photometric loss but that
are not consistent with their local regions. Here, we introduce a polynomial transfor-
mation to regularize the motion of images points between I1 and I2. We map a set of
grid points Pðx1; y1Þ which indicate pixel position in a target image I1 to a source image
I2 points Ppðxp2; yp2Þ by finding second degree polynomial transformation coefficients
(hij) between them as Pp ¼ hij � P and can be extended as follows:

xp2
yp2

� �
¼ h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

� �
� x1 y1 x1y1 x21 y21 1
� �t ð2Þ

Here, Pp determines where to sample pixels from I2 to obtain transformed image Itp
which is a transformation of I2 onto I1. The PTP sub-network estimates polynomial
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coefficients hij by minimizing a photometric loss similar to DIC sub-network:
Lp ¼ Itp � I1

�� ��. Again we incorporate bilinear sampling [15] in a similar manner to DIC
to infer Itp.

2.3 Visibility Mask (VM) Sub-network

Colonoscopy frames include haustral folds which cause occlusions. This occlusion
prevents a full view of next frame and therefore increases the number of outliers
between two consecutive frames. The effect of occlusion has been reduced by deter-
mining the visible area between two frames through a visibility mask (VM) [6, 19]. The
last layer of VM sub-network has a sigmoid function that assigns one for existing
correspondences and zero when correspondences are not found by the DIC sub-
network or PTP. We modify the Lc and Lp to learn VMc and VMp which are the
visibility masks for the DIC and PTP respectively:

Lc ¼ Itc � VMc � I1j j; Lp ¼ Itp � VMp � I1
�� �� ð3Þ

2.4 Regularized DIC and Final Objective Function

To regularize local pixel displacement estimated by the DIC, we reduce the absolute
difference between global positions estimated by the PTP sub-network Pp and local
position estimated by the DIC sub-network Pc as Lr ¼ k � Pc � Pp

�� ��. Here k is a weight,
and empirically k ¼ 0:9 shows good results.

In general, the objective function for whole network can be calculated as sum of Lc
and Lp which are estimated from Eq. 3 and Lr as a regularization term:

Loss ¼ Lc þ Lp þ Lr ð4Þ

2.5 Architecture and Training Details

The first part of EndoRegNet consists of 6 convolutional layers which are shared
among other sub-networks. EndoRegNet takes two consecutive RGB frames as input of
size 224 � 224 pixels. PTP consists of three convolution layers followed by a fully
connected layer to estimate hij. The DIC sub-network is formed by three convolutional
layers, and five de-convolutional layers. The VM sub-network has six de-convolutional
layers and its last layer is a convolutional layer with a sigmoid activation function. The
EndoRegNet architecture is shown in Fig. 3.

The whole network was implemented and trained using the GPU version of Ten-
sorflow [20]. We used ADAM solver [21] with the initial learning rate of 0.0001, b1
and b2 were 0.9 and 0.999 respectively. We used multi-GPU (Nvidia). Our network
began to converge after 150,000 iterations.
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3 Dataset

Simulated and Real Colonoscopy Frames. Our dataset includes 29,000 pairs of
frames which were extracted from simulated and real colonoscopy videos. The simu-
lated frames were generated by a simulator described in [22]. The simulations were of
ten different colons, and formed 72% of the data. The real frames extracted from six
colonoscopy videos (six different patients). A 190HD Olympus endoscope was used to
perform real colonoscopy procedures, which could capture 50 frame/sec (frame size
was 1352 � 1080 pixels). We only used the informative frames for training and val-
idation and removed uninformative frames (e.g. out of focus frames or blurry or those
close to the colon wall) [23] from our computation.

Real Colonoscopy Frames. We used a colonoscopy dataset from Hamlyn Center
Laparoscopic (HCL) [24] to validate the generalization performance of our trained
network. The video frames were captured either by Olympus NBI endoscope, or a
Pentax i-scan endoscope [17]. From HCL colonoscopy videos, the video number 10
(vn10) has been chosen for our test as it contained 1250 pairs of consecutive frames.
25% of these frames were uninformative and ignored in our experiments.

Laparoscopy Video Frames. In addition to the above, we trained the EndoRegNet
with 80% of two set of laparoscopic in vivo video frames [16]. The first set contained
1220 pairs of stereo video frame, and the second set contained 5626 consecutive frames
with deformation due to tools interaction.

4 Experiments and Results

EndoRegNet was trained with 80% of our colonoscopy data, which was a mix of real
and simulated colonoscopy frames (46476 frames). The trained EndoRegNet was then
validated on real colonoscopy test data by computing mean absolute difference
(MAD) and structural similarity index map (SSIM) (please see [25]) between I1 and
resgitered image. Note that we used default parameters for SSIM as stated in original
paper [25]. Examples of SSIMs are presented in Fig. 4(a) and results as the mean of
SSIM and MAD are reported in Fig. 6. We evaluated the performance of our trained
network on real colonoscopy video frames vn10 which were obtained from [24] (b.1,
b.2) in Fig. 4. The results are presented in Fig. 6.

Fig. 3. The EndoRegNet architecture
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We trained each set of laparoscopy video frames with the pre-trained EndoRegNet.
80% of data was used for training. Examples of stereo pairs and tool interaction are
shown in Figs. 4(c, d) and 5.

In addition, we compared the results of our network with traditional image regis-
tration using polynomial transformation and SIFT flow. The correspondences were
estimated by using SIFT features explained in [5]. Results are reported in Fig. 6. Note
that the test set has not been used in training phase and for the sake of comparison we
did not apply visibility masks on registered images obtained by EndoRegNet.

Fig. 4. Examples of images and SSIM between I1, I2 and I1 and registered images by traditional
feature-based method polynomial (Ipol) transformation when SIFT is used as feature detector,
EndoRegNet PTP (Itp), SIFT flow (ISIFTflow), and DIC (Itc). Real colonoscopy from our dataset
(a), colonoscopy frames from Hamlyn (vn10) [17] (b.1, b.2), laparoscopy frame [16] (c),
laparoscopy frame when tool interacts with organs and results in deformations (d). The red
arrows show areas with deformation. Note that higher similarity leads to brighter area. (Color
figure online)
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5 Discussion and Conclusion

In this paper, we present an unsupervised method to register deformable endoscopy
video frames and estimate their correspondences. This is achieved by introducing a
novel CNN model, called EndoRegNet, which has three main parts; (i) a dense image
correspondences (DIC) sub-network, which estimates local displacement of pixels;
(ii) polynomial transformation parameters (PTP) estimator, which is used to regularizes
correspondences estimated by DIC, it can also deal with global deformations; (iii) and a
visibility mask VM sub-network, which can refine correspondences in case of an
occlusion (this is very common in colonoscopy video frames).

We trained all parts of EndoRegNet at the same time. At the test time, only DIC and
VM could be used to predict correspondences between two consecutive frames and
refine them. The results of EndoRegNet were compared with feature-based image
registration for different set of endoscopy video frames. Our results presented in Fig. 6.
show high performance of EndoRegNet and its ability to generalize to new datasets.

Fig. 5. Sample of deformed endoscopy sequences, two consecutive frames when a tool interacts
with organ (deformed region is cropped for better perception, yellow rectangle) (a), SSIM
between I1, I2 and I1 and registered image with EndoRegNet (b). (Color figure online)

Fig. 6. The mean of SSIM and MAD error of different image registration method including
polynomial (Ipol) transforms when SIFT is used as feature detector, EndoRegNet PTP (Itp), SIFT
flow, and DIC (Itc) over endoscopy frames. Our real colonoscopy test set, vn10 from Hamlyn
[17], laparoscopy test set [16], and deformed laparoscopy test set. Higher the SSIM and lower the
MAD is better.
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Note that we trained EndoRegNet on a training set and then evaluated its performance
on data that has not been observed in the training phase by computing SSIM and MAD.

Further, EndoRegNet showed excellent performance in registering deformed
sequences (e.g. Fig. 5). As shown in Fig. 5(b) warping functions such as polynomial
are inadequate to deal with the deformed images. We used a combination of local pixel
displacement DIC and a second degree polynomial transformation PTP to deal with
deformation. Particularly in Fig. (4)(b, d) it can be seen that some local strong
deformation artefacts are better handled by the combination.

Other unsupervised flow estimation methods introduced by Meister el al. [11] and
Wang et al. [12] are using FlowNet architecture but they have over 150 million
parameters and thus require a huge training dataset. This is not feasible for our
application. Instead, our proposed method provides excellent performance without
requiring a large training data. We plan to improve our deformation model by using
different objective function and convolution layers to better model long displacement
and deformation.
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Abstract. Robotic surgery has been proven to offer clear advantages
during surgical procedures, however, one of the major limitations is
obtaining haptic feedback. Since it is often challenging to devise a hard-
ware solution with accurate force feedback, we propose the use of “visual
cues” to infer forces from tissue deformation. Endoscopic video is a pas-
sive sensor that is freely available, in the sense that any minimally-
invasive procedure already utilizes it. To this end, we employ deep learn-
ing to infer forces from video as an attractive low-cost and accurate alter-
native to typically complex and expensive hardware solutions. First, we
demonstrate our approach in a phantom setting using the da Vinci Sur-
gical System affixed with an OptoForce sensor. Second, we then validate
our method on an ex vivo liver organ. Our method results in a mean
absolute error of 0.814 N in the ex vivo study, suggesting that it may
be a promising alternative to hardware based surgical force feedback in
endoscopic procedures.

1 Introduction

Robot-assisted clinical systems have been increasingly adopted due to their
advantages during surgical procedures. However, obtaining haptic feedback of
a teleoperated surgical system still constitutes a hard problem due to practical
challenges such as control loop stability. In the current version of the da Vinci
Surgical System [1] (Intuitive Surgical, Inc., Sunnyvale, CA, USA), there is no
haptic technology and no feedback on the grip forces. Surgeons depend on visual
cues to infer the forces to avoid damage to tools and anatomy since excessive
mechanical force can lead to the breakage of an end-effector string, serious artery
or nerve injury, and even post-operation trauma [2]. As a result, there is a critical
need to design force sensing systems in the field of surgical robotics.

Recently, many researchers have focused their efforts on solutions to this
problem. For instance, numerous tactile sensing devices have been developed to
estimate tactile information during static (point based) measurements, including
indentation-based contact devices, aspiration devices, optical fiber devices, and
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non-contact devices [3]. Such devices are capable of providing accurate tactile
information during static measurements of a single point, but they cannot scan
soft tissue in a dynamic way, which is not a real-time solution [4]. Another area
of investigation is directed towards using a torque sensor to model and compen-
sate for grip force. This may provide a consistent internal force compensation
based on the quantitative model, but it largely relies on the surgeon’s skills and
experience [2]. In addition, most of these hardware-based solutions have delicate
and expensive components, which often cannot withstand sterilization.

Vision based approaches are one way to overcome above limitations of hard-
ware solutions. Starting from [5], computer vision has been used to measure the
deformed object and recover the applied force from linear elasticity equations.
Recent advances in deep learning bring opportunities to such vision based force
prediction in real surgical scenarios [6–9]. For example, researchers in [6] extract
the 3D deformable structure of the heart and use a neural network with the
architecture of LSTM-RNN to predict the applied force.

In this paper, we propose a vision-based surgical force prediction model called
RGB-Point Cloud Temporal Convolutional Network (RPC-TCN). The model is
based on a spatial block that encodes information at individual time-steps from a
video and a temporal block to reason over sequences of observations. The spatial
block combines 2D features (e.g., from an RGB image) and 3D features (e.g.,
from a 3D point cloud) for a given time, while the temporal block makes use of
multiple static features via the Temporal Convolutional Network [10] (TCN) to
model force change over time. To better abstract the core feature, we apply a
pre-trained VGG16 image model [11] along with a pre-trained 3D point cloud-
based architecture called PointNet [12] to extract features from raw visual data
and then concatenate these two features to train a TCN time-series model. We
evaluate our approach on internally-collected da Vinci surgical video, and show
that our model produces highly accurate results. Figure 1 shows representative
test result on an ex vivo liver.

Fig. 1. Results of the ex vivo liver study: (A) Test result w.r.t time sequence. The blue
line represents the reference standard force and the red curve are the model predictions.
(B) A set of screenshots of the RGB image and their reference standard force and error.
(Color figure online)
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Related Work. Much work has focused on modeling tissue deformation during
force prediction, since for reasonably soft material the applied force is positively
correlated to the deformation of the tissue surface [6,8,13]. Therefore, accurately
measuring surface deformation in 3D is vitally important for vision-based force
estimation. Furthermore, depth data can then be converted to 3D point cloud.
The recently proposed PointNet [12] directly works on 3D unordered point cloud
data, which essentially breaks the pixel order limit of the 2D depth image. The
unordered point cloud is robust to camera view points and invariant to trans-
formations, which brings the potential ability to generalize to different objects.

In prior work, Temporal Convolutional Networks (TCN) have been proposed
to improve video-based analysis models [10]. The input feature vector is the
latent encoding of a spatial CNN which corresponds to each frame of the video
sequence. Here, we define an observation window which has n frames backward
and forward, centered at the current time-step t. The label for each window
is the force at time t, which corresponds to the middle vector in this window.
The intuition behind utilizing a time-series model lies with the observation that
anatomical surfaces are often deforming continuously. It is then reasonable to
introduce time-varying features to determine these forces.

In this paper, our RPC-TCN coalesces the above mentioned features to fully
grasp the vision-based properties and then make the force prediction.

2 Methodology

2.1 Dataset Collection

Since there is no open source dataset for this task, we conduct experiments both
in a phantom study and ex vivo study to generate our internal dataset. Figure 2
presents the setup details.

To collect force data, we fix the OptoForce 3D Force Sensor underneath the
phantom object to record force data. The sensor measures the force a robotic
tool applies to the phantom rather than the force at the tool tip itself. The force
sensor is accurate up to 12.5 × 10−3 N and collects 3D force observations (includ-
ing x, y, and z in the force sensor coordinate). We only use the z-component,
which is perpendicular to the planar surface the specimen is placed upon. It will
automatically re-bias each time we place an object.

RGB images and depth images are collected using a Kinect2 RGB+D cam-
era. This setup is convenient to demonstrate feasibility of the proposed fusion
of RGB images and point clouds for force prediction. In a clinical scenario, a
dedicated depth camera is not yet available. However, previous research has val-
idated a learning-based method to estimate dense depth images and surface nor-
mal maps from endoscopic surgical video, which results in high-resolution spatial
3D reconstructions to an average error of 0.53 mm to 1.12 mm [14]. Based on this
result, obtaining 3D point cloud and depth information from endoscopic video
is realistically achievable.

The object is fixed in the working area of a standard dual arm da Vinci
system [1]. As the image stream flows at 30 fps, the RGB data, depth data, and
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Fig. 2. (A) The experimental environment. (B) The depth image from the Kinect2
camera. (C) The phantom used in the experiment. The force sensor is placed under
the phantom. (D) RGB image of the phantom. (E) A fresh piece of pig liver. (F) RGB
image of the liver.

force data are synchronized to be within 10 ms. The Kinect2 RGB+D camera is
placed at four different positions to collect multiple points of view to test against
model overfitting.

2.2 RPC-TCN

Spatial Block. Figure 3 shows the overall structure of our RPC-TCN. We use
XRGB ∈ R

224×224 and XD ∈ R
151×151 to denote RGB image and depth image.

The pre-trained VGG16 network has shown good performance at localization
and classification tasks [11]. In our task, we assume that the movement of the
da Vinci tool and the feature change of the phantom is relevant for the force
prediction. Thus, we choose to fine tune the pre-trained VGG Network from the
ImageNet dataset for later regression. The output feature comes from the 2nd

classifier layer, which contains more representative variants than the last layer,
such that XV GG ∈ R

4096. Depth image XD is converted to point cloud data in
the depth camera’s coordinate system.

Depth Image to Point Cloud. In the following formula, xD and yD refer
to the coordinate pixel index in the depth image, and zD is its depth value.
x̄D, ȳD, and z̄D refer to the mean values. cx, cy and fx, fy are the intrinsic
parameters of principal point and focal length of the depth camera. We use the
maximum length in depth image to normalize the point cloud into a unit sphere.
The normalized coordinates are

xpc = (xD − cx)
zD
fx

− x̄D, (1)
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ypc = (yD − cy)
zD
fy

− ȳD, and (2)

zpc = zD − z̄D. (3)
In order to fit the input vector size of the PointNet, the original point

cloud is uniformly downsampled from 22801 to 2048 points. Next, we fine tune
the pre-trained PointNet to select the feature from the second-to-last layer,
Xptnet ∈ R

512. Finally, we concatenate these two features to a larger one,
Xcat = [XV GG,Xptnet] ∈ R

4608.

Fig. 3. The basic architecture of RPC-TCN. The spatial block extracts features from
the pre-trained VGG net and PointNet and concatenates two features. The temporal
block expands this feature to be 15 frames in a window and predict the force corre-
sponding to the middle frame.

Temporal Block. Figure 4 presents the hierarchical structure of the temporal
block. Here, we denote the concatenated feature Xcat with respect to time as
Xcat,t, then X̄cat,t = [Xcat,t−n, . . . , Xcat,t−1,Xcat,t,Xcat,t+1, . . . , Xcat,t+n]. We
define the collection of filters in each convolutional layer as W =

{
W (i)

}Fl

i=1
for

W (i) ∈ R
d×Fl−1 with a corresponding bias vector b ∈ R

Fl , where l ∈ {1, . . . , L}
is the layer index. Given the signal from the previous layer, E(l−1), we compute
activations E(l) with

E(0) = f(W ∗ X̄cat,t + b), (4)
E(l) = f(W ∗ Ē(l−1) + b), (5)

where f(·) is a non-linear activation function and ∗ is the convolution operator.
We also perform batch normalization after each convolutional layer. We compare
different activation functions and find that the Rectified Linear Units (ReLU)
perform best in our experiments. Finally, we use a linear regression at the last
fully-connected layer to predict the force, Ŷt ∈ R. We define U as the filter for
the last linear layer L and c as the bias. The process is

Ŷt = Linear(UE(L) + c). (6)
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Fig. 4. Hierarchical structure of the temporal block.

3 Experiment and Result

3.1 Experimental Setting and Dataset

In total, we obtain 61,473 samples in our phantom study and 44,413 samples
in our ex vivo liver study. The training data is randomly split to 80% of the
full dataset and 5% for validation, 15% for test in both experiments (e.g., the
phantom and ex vivo were trained and tested separately). The loss function is
Mean Squared Error (MSE) and the learning rate is initialized to be 1 × 10−5

and multiplied by 0.1 every 1000 epochs.
To test the power of the proposed algorithm, we compare to multiple algo-

rithms in both the phantom and ex vivo study. We first conduct experiments on
traditional single-frame based methods on the RGB images, called Single-frame
RGB. In this setup, we use the same VGG16 network to abstract the feature
and then construct a convolutional neural network to perform regression. Then
we compare the temporal methods, RGB-TCN and Point Cloud-TCN. In these
experiments, the features from the spatial block are the same as discussed before,
but we test the performance by separately passing them to the same TCN struc-
ture. We finally test on the RPC-TCN.

3.2 Results and Analysis

Table 1 displays the prediction accuracy of various algorithms as a comparison
on the same dataset. The percentage error is based on the maximum force mag-
nitude in the dataset, which is −239 N for the phantom study and −190 N for the
ex vivo liver study. The single-frame RGB is worse than the TCN type methods,
which supports the hypothesis that the time-scaled feature is critical to force
prediction. Compared to the other two TCN methods, our RPC-TCN presents
the best mean absolute error result with 1.45 N, corresponding to 0.604% for the
phantom study and 0.814 N, corresponding to 0.427% for the ex vivo liver study.

Figure 5(A) and (B) displays a correlation plot of our RPC-TCN result. The
correlation coefficient is 0.995 and 0.996 for our predictions on the phantom and
liver data, respectively, implying a strong relationship between the prediction
and the reference standard data. From the test error trend in Fig. 5(C) and (D),
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Table 1. Ablation study results.

Algorithm Mean Absolute Error (N) Percentage Error

Phantom Ex vivo Liver Phantom Ex vivo Liver

Single-frame RGB 7.06 10.4 3.01% 5.45%

RGB-TCN 2.51 1.74 1.05% 0.913%

Point Cloud-TCN 2.14 1.87 0.896% 0.983%

RPC-TCN 1.45 0.814 0.604% 0.427%

Fig. 5. (A), (B) Illustration of the correlation matrix between reference standard force
and the prediction force. (C), (D) Test Error trend with training epochs. The error is
calculated as mean absolute error of all test data.

we find that the single RGB image method presents much higher error, which
indicates overfitting. All three TCN based methods can converge to a relatively
low test error, while the PC-TCN and the RGB-TCN perform similarly well, but
are outperformed by the proposed RPC-TCN suggesting that the use of informa-
tion from multiple sources is indeed beneficial for vision-based force prediction.

To better understand the error distribution, we divide the force magnitude
into 7 bins, each of which spans a 20 N force interval. Figure 6(A) and (B) show
the phantom study result. We calculate the mean absolute error and the standard
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deviation error in each bin and plot them as comparison. Compared to the
Point Cloud-TCN and the RPC-TCN, RGB-TCN shows smaller error in lower
force, but it has large error and variation when the force becomes large. This
comparison indicates that the RGB-TCN is good at predicting small forces, but
it does not perform well for large force prediction.

Fig. 6. (A) Illustration of mean absolute error distribution w.r.t 7 bins. (B) Illustration
of standard deviation error distribution w.r.t 7 bins.

One of the reasons to this phenomenon is that the training data is biased in
force distribution. There are more training samples for smaller forces. A more
uniformly-distributed dataset will improve large force prediction. The Point
Cloud-TCN shows higher error in low forces, but its prediction error is more
uniformly distributed. The reason that Point Cloud-TCN is more steady than
RGB-TCN is that features of 3D point cloud are more directly related to defor-
mation than 2D features. This Point Cloud-TCN experiment also shows that
only with 3D data, our model achieves good performance, validating the power
of depth data. Our proposed RPC-TCN takes advantage of these two informa-
tion and presents a more consistent error distribution trend regardless of absolute
scale.
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The ex vivo liver study is much closer to a human-organ application com-
pared to the phantom study. Our model still reaches a low error when training
and testing in this real organ scenario. We intentionally test large force mag-
nitudes that could cause damage to tissues to be able to predict the onset of
excessively large force and, thus, warn clinicians. Training and testing images
include specularities, which improves the generalization ability to different sur-
gical scenarios.

Our current model does not evaluate the transferability to different organs.
Current results are reached by training and testing on one single phantom and ex
vivo liver. We assume the liver properties are similar across different sources, but
it still indicates a degree of overfitting to such object. Future study will include
testing on multiple organs and considering tissue biomechanical properties. The
Kinect camera and OptoForce are convenient tools to demonstrate feasibility
of vision-based force estimation. The objects in our experiments are overall flat
and thin, which enable the underneath force sensor to measure the applied force
change, but the soft tissues are still absorbing part of the touch force. Going for-
ward, however, we will consider setups that are more realistic regarding clinical
practice. This includes monocular depth estimation from RGB endoscopic video
as in [14] and slave-side force sensors to accurately measure tool tip contact
force. These must be carefully designed as obtaining ground truth forces in vivo
is non-trivial.

4 Conclusion

In this paper, we discuss a proof-of-principle system to infer forces during sur-
gical activity from RGB+D video. We propose a convolutional neural network
called RGB-Point Cloud TCN (RPC-TCN). This network combines the infor-
mation from traditional RGB+D images obtained from dense depth imagery,
and time series analysis for surgical force prediction in a robotic surgical system.
Phantom and ex vivo liver experiments yield a mean prediction error to 0.814 N.
Our results on this proof-of-principle prototype are promising and encourage fur-
ther research on 3D sensing in endoscopy to realize the proposed force sensing
approach in clinical practice.
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Abstract. We present a self-supervised approach to training convo-
lutional neural networks for dense depth estimation from monocular
endoscopy data without a priori modeling of anatomy or shading. Our
method only requires sequential data from monocular endoscopic videos
and a multi-view stereo reconstruction method, e.g. structure from
motion, that supervises learning in a sparse but accurate manner. Conse-
quently, our method requires neither manual interaction, such as scaling
or labeling, nor patient CT in the training and application phases. We
demonstrate the performance of our method on sinus endoscopy data
from two patients and validate depth prediction quantitatively using
corresponding patient CT scans where we found submillimeter resid-
ual errors. (Link to the supplementary video: https://camp.lcsr.jhu.edu/
miccai-2018-demonstration-videos/)

1 Introduction

Minimally invasive procedures, such as functional endoscopic sinus surgery, typi-
cally employ surgical navigation systems to visualize critical structures that must
not be disturbed during surgery. Computer vision-based navigation systems that
rely on endoscopic video and do not introduce additional hardware are both easy
to integrate into clinical workflow and cost effective. Such systems generally rely
on the registration of preoperative data, such as CT scans, to intraoperative
endoscopic video data [1]. This registration must be highly accurate in order
to guarantee reliable performance of the navigation system. Since the accuracy
of feature-based video-CT registration methods is dependent on the quality of
reconstructions obtained from endoscopic video, it is critical for these recon-
structions to be accurate. Further, in order to solve for the additional degrees of
freedom required by deformable registration methods [2], these reconstructions
must also be dense. Our method satisfies both of these requirements (Fig. 1).
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Fig. 1. Visual comparison of reconstructions: the green dots in the endoscopic image
(left) are 2D projections of the sparse reconstruction (middle) from a recent SfM-based
method [1]. In this example, SfM only yields 67 3D points. Our method (right) produces
a dense reconstruction with 125369 3D points, shown here from approximately the same
viewpoint as the SfM reconstruction. The higher the resolution of the input image, the
greater the number of points our method is able to reconstruct. (Color figure online)

Several reconstruction methods have been explored in the past. Multi-view
stereo methods, such as Structure from Motion (SfM) [1] and Simultaneous
Localization and Mapping (SLAM) [3], are able to simultaneously reconstruct
3D structure and estimate camera poses in feature-rich scenes. However, the
paucity of features in endoscopic images of anatomy can cause these methods to
produce sparse reconstructions, which can lead to inaccurate registrations.

Mahmoud et al. [4] propose a quasi-dense SLAM method for minimally inva-
sive surgery that is able to produce dense reconstructions. However, it requires
careful manual parameter tuning. Further, the accuracy of the reconstruction is
lower than that required for sinus surgery, where low prediction errors are critical
due to the proximity of critical structures such as the brain, eyes, carotid arter-
ies, and optic nerves. Shape from Shading (SfS) based methods explicitly [5,6]
or implicitly [7] model the relationship between appearance and depth. These
methods generally require a priori modeling of the lighting conditions and sur-
face reflectance properties. Since the true lighting and reflectance conditions are
hard to model, SfS-based methods rely on simplified models that can result in
noisy and inaccurate reconstructions, e.g., in the presence of specular reflections.

Convolutional neural networks (CNNs) have shown promising results in high-
complexity problems including general scene depth estimation [8] which bene-
fits from local and global context information and multi-level representations.
However, using CNNs directly in endoscopic videos poses several challenges.
First, dense ground truth depth maps are hard to obtain inhibiting the use of
fully supervised methods. Hardware solutions, such as depth or stereo cameras,
often fail to acquire dense and accurate depth maps from endoscopic scenes
because of the non-Lambertian reflectance properties of tissues and paucity
of features. Software solutions, such as those discussed above, do not produce
reconstructions with the density or accuracy required for our application. More
recent CNN-based methods [9] use untextured endoscopy video simulations from
CT to train a fully supervised depth estimation network and rely on another
trained transcoder network to convert RGB video frames to texture indepen-
dent frames required for depth prediction. This procedure requires per endoscope
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photometric calibration and complex registration which may only work well in
narrow tube-like structures. It is unclear whether this method will work on in-
vivo images since it is only validated on two lung nodule phantoms. Second,
endoscopic images do not provide the photo-constancy that is required by unsu-
pervised methods for depth estimation of general scenes [10]. This is because
the camera and light source move jointly and, therefore, the appearance of the
same anatomy can vary substantially with different camera poses. In addition,
texture-scarce regions make it hard to provide valuable information to guide
the unsupervised network training even if the appearance was preserved across
camera poses.

In this work, we present a self-supervised approach to training deep learn-
ing models for dense depth map estimation from monocular endoscopic video
data. Our method is designed to leverage improvements in SfM- or SLAM-based
methods since our network training exploits reconstructions produced by these
methods for self-supervision. Our method also uses the estimated relative cam-
era poses to ensure depth map consistency in the training phase. While this
approach requires the intrinsic parameters of the corresponding endoscope, it
does not require any manual annotation, scaling, registration, or corresponding
CT data.

2 Methods

We introduce a method for dense depth estimation in unlabeled data by leverag-
ing established multi-view stereo reconstruction methods. Although SfM-based
methods are only able to produce sparse reconstructions from endoscopic video
data, these reconstructions and relative camera poses have been shown to be
reliable [1]. Therefore, we use these reconstructions and camera poses to super-
vise the training of our network using novel loss functions. Doing so enables us
to produce reliable dense depth maps from single endoscopic video frames.

2.1 Training Data

Our training data consists of pairs of RGB endoscopic images, 3D reconstructions
and coordinate transformations between the image pairs from SfM, and the
rectified intrinsic parameters of the endoscope. The training data generation is
completely autonomous given the endoscopic and calibration videos and could,
in principle, be computed on-the-fly with SLAM-based methods.

For each frame, we compute a sparse depth map to store the 3D reconstruc-
tions. By applying perspective geometry, 3D points can be projected onto image
planes. Since SfM- or SLAM-based methods do not consider all frames when
triangulating one particular 3D point, we only project the 3D points onto asso-
ciated image planes. bi,j = 1 indicates frame j is used to triangulate the 3D

point i and bi,j = 0 indicates otherwise.
(
uj
i , v

j
i

)
are projected 2D coordinates

of the 3D point i in frame j. The sparse depth map Y ∗
j of frame j is
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Y ∗
j

[[
vj
i

]
,
[
uj
i

]]
=

{
zji if bi,j = 1
0 if bi,j = 0

, where (1)

zji is the depth of 3D point i in frame j. Since the reconstruction is sparse, large
regions in Y ∗

j will not have valid depth values.
We also compute sparse soft masks to ensure that our network can be trained

with these sparse depth maps and mitigate the effect of outliers in the 3D recon-
structions. This is achieved by assigning confidence values to valid regions in
the image while masking out invalid regions. Valid regions are 2D locations on
image planes where 3D points project onto, while the remaining image comprises
invalid regions. The sparse soft mask, Wj , of frame j is defined as

Wj

[[
vj
i

]
,
[
uj
i

]]
=

{
ci if bi,j = 1
0 if bi,j = 0

, where (2)

ci is a weight related to the number of frames used to reconstruct 3D point
i and the accumulated parallax of the projected 2D locations of this point in
these frames. Intuitively, ci is proportional to the number of frames used for
triangulation and the accumulated parallax. Greater magnitudes of ci reflect
greater confidence.

2.2 Network Architecture

Our overall network architecture (Fig. 2) is a two-branch Siamese network [11]
with high modularity. For instance, our single-frame depth estimation architec-
ture can be substituted with any architecture that produces a dense depth map.
We introduce two custom layers in this network architecture.

The Depth Map Scaling Layer scales the predicted dense depth map from the
single-frame depth estimation architecture to remain consistent with the scale
of the coordinate transformation. It uses the corresponding sparse depth map as
the anchor point for scale computation.

The Depth Map Warping Layer warps a scaled dense depth map to the
coordinate frame of the other input to the Siamese network using the relative
camera pose between the two frames. We implement this layer in a differentiable
manner so that the training loss can be backpropagated. These two layers work
together to generate data that is used to enforce depth consistency, described in
the following section.

2.3 Loss Functions

In the training phase, we use two loss functions that leverage the sparse depth
annotations and relative camera poses between frames produced by SfM.

The first loss function, Scale-invariant Weighted Loss, allows the network to
train with sparse depth annotations because it uses sparse soft masks as weights
to ignore regions in the training data where no depth values are available. Given a
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Fig. 2. Network architecture: our training network (top) is a self-supervised two-branch
Siamese network that uses sparse 3D points and relative camera poses from SfM to
estimate dense depth maps from pairs of images and enforce depth consistency, respec-
tively. The soft sparse mask and sparse depth map are represented as a single blue
square with dots. During the application phase (bottom), we use the trained weights
of the single-frame depth estimation architecture (Fig. 3) to predict a dense depth map
that is accurate up to a global scale. (Color figure online)

sparse depth map, Y ∗, a predicted dense depth map, Y , and a sparse soft mask,
W , the Scale-invariant Weighted Loss is defined as

Lsparse (Y, Y ∗,W ) =
1∑
i wi

∑
i

wid
2
i −

1
(
∑

i wi)
2

(∑
i

widi

)2

, where (3)

wi is the value of the sparse soft mask at pixel location i and di = log yi− log y∗
i

is the difference between the predicted and ground truth depth at location i [12].
The scale-invariance of this loss function is advantageous given the inherent scale
ambiguity of single-frame depth estimation. It makes the network potentially
generalizable to different patients, endoscopes, and anatomy because the net-
work simply needs to estimate correct depth ratios without having to estimate
the correct global scale. The global scale can vary considerably across differ-
ent scenarios and is almost impossible for the network to estimate solely from
endoscopic frames with no additional a priori information as input. Finally, it
makes the automatic training data generation in our method feasible. If the
depth estimation network is set up to predict global scale, the results from
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SfM- or SLAM-based methods must resolve scale ambiguity first. This requires
additional steps, e.g. registration to preoperative CT data, to recover the correct
global scale. However, registration usually requires manual initialization and,
therefore, user interaction. Alternatively, external tracking devices can record
data that reflects global scale information but are often not accurate and can
change the clinical workflow. With the Scale-invariant Weighted Loss, the auto-
matically generated 3D reconstructions and camera poses are directly usable for
network training. This allows our method to use all existing endoscopic videos
as training data in a fully automatic manner as long as the intrinsic parameters
of the corresponding endoscopes are known.

The second loss function, Depth Consistency Loss, adds spatial constraints
among frames in the training phase. By using the Scale-invariant Weighted Loss
only, the network does not gain any information from regions where no sparse
depth annotations are available and the training is prone to overfitting to the
measurement noise or outliers from SfM- or SLAM-based methods. The Depth
Consistency Loss helps gain more information and mitigate the overfitting issues.
It requires inputs from the Depth Map Scaling Layer and the Depth Map Warp-
ing Layer. We denote the predicted depth map of frame k as Zk and the warped
depth map, warped from its original coordinate frame j to the coordinate frame
k, as Žk,j . Pixels in Žk,j and Zk at location i are denoted žk,ji and zki , respec-
tively. The Depth Consistency Loss of frame j w. r. t. k is defined as

Lconsist (j, k) =
1
N

N∑
i=1

|žk,ji − zki |, where (4)

N is the number of pixels in the region where both maps have valid depths.
The network overall loss is a weighted combination of the two loss functions

defined above. Given the predicted dense depth map, Y , and sparse depth map,
Y ∗, the overall loss for network training with a single pair of training data from
frame j and k is defined as

L (j, k) = Lsparse

(
Yj , Y

∗
j ,Wj

)
+ Lsparse (Yk, Y

∗
k ,Wk)

+ ω (Lconsist (j, k) + Lconsist (k, j)) , where
(5)

ω is used to control how much weight each type of loss function is assigned.

3 Experimental Setup

Our network is trained using an NVIDIA TITAN X GPU with 12 GB memory.
We use two sinus endoscopy videos acquired using the same endoscope. Videos
were collected from anonymized and consenting patients under an IRB approved
protocol. The training data consist of 22 short video subsequences from Patient
1. We use the methods explained above to generate a total of 5040 original image
pairs. The image resolution is 464× 512, and we add random Gaussian noise to
image data as an augmentation method. We use 95% of these data for training
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Fig. 3. Single-frame depth estimation architecture: with the encoder-decoder architec-
ture and symmetric connection skipping mechanism, the network is able to extract
global information while preserving details.

and 5% for validation. The learning rate and the weight, ω, of the loss function
are empirically set to 1.0e−4 and 2.0e−4, respectively. For evaluation, we use
6 different scenes from Patient 1 and 3 scenes from Patient 2, each containing
10 test images as input to the network in the application phase. These depth
maps are converted to point clouds that were registered [13] to surface models
generated from corresponding patient CTs [14]. We use the residual error pro-
duced by the registration as our evaluation metric for the dense reconstructions.
The single-frame depth estimation architecture we use is an encoder-decoder
architecture with symmetric connection skipping (Fig. 3) [15].

4 Results and Discussion

The mean residual error produced by registrations over all reconstructions from
Patient 1 is 0.84 (±0.10) mm and over all reconstructions from Patient 2 is
0.63 (±0.19) mm. The mean residual error for Patient 1 is larger than that for
Patient 2 due to the larger anatomical complexity in the testing scenes of Patient
1. The residual errors for all 9 testing scenes are shown in Fig. 4. Since our
method relies on results from SfM or other multi-view stereo reconstruction
methods, improvements in these methods will be reflected immediately in our
dense reconstructions. However, if these methods are not able to reconstruct any
points from training videos or if the reconstructed points and estimated camera
poses have large systematic errors, our method will also fail.



Self-supervised Learning for Dense Depth Estimation 135

Fig. 4. Mean residual errors for all testing scenes from Patients 1 and 2.

We are able to detect and ignore frames where no reconstructions are esti-
mated as well as individual outliers in reconstructions when the number of out-
liers is small relative to the number of inliers. However, there are cases where all
reconstructed points and estimated camera poses are incorrect because of the
extreme paucity of features in certain regions of the nasal cavity and sinuses.
Currently, we rely on manual checking to ensure that 2D projections of SfM
reconstructions are locked onto visual features in order to ignore erroneous recon-
structions. However, in the future, we hope to develop an automatic method to
detect these failures. Further, with training data from a single patient and evalu-
ation on only two patients, it is unclear whether our method is able to generalize
or is overfitting to this particular endoscope. Our current results also do not allow
us to know whether or not fine-tuning the network in a patient-specific manner
will improve the accuracy of reconstructions for that particular patient. In the
future, we hope to acquire a larger dataset in order to investigate this further.

Samples from our current dense reconstruction results are shown in Fig. 5
for qualitative evaluation. There are several challenges in these examples where
the traditional SfS methods are likely to fail. For example, shadows appear in
the lower middle region of the second sample and the upper right region of
the fourth sample. There are also specular reflections from mucus in the first,
third and fourth samples. With the capability of extracting local and global con-
text information, our network recognizes these patterns and produces accurate
predictions despite their presence. Figure 1 also shows a comparison between a
sparse reconstruction obtained using SfM and a dense reconstruction obtained
using our method.
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Fig. 5. Examples of dense photometric reconstructions from Patients 1 and 2: each
column captures a different region in the nasal cavity and sinuses. The top row shows
the color endoscopic images, the middle row shows the corresponding depth images
where red maps to high values and blue to low values, and the bottom row shows the
photo-realistic 3D reconstructions produced by our method. (Color figure online)

5 Conclusion

In this work, we present an approach for dense depth estimation in monocular
endoscopy data that does not require manual annotations for training. Instead,
we self-supervise training by computing sparse annotations and enforcing depth
prediction consistency across multiple views using relative camera poses from
multi-view stereo reconstruction methods like SfM or SLAM. Consequently, our
method enables training of depth estimation networks using only endoscopic
video, without the need for CT data, manual scaling, or labeling. We show
that this approach can achieve submillimeter residual errors on sinus endoscopy
data. Since our method can generate training data automatically and directly
maps original endoscopic frames to dense depth maps with no a priori model-
ing of anatomy or shading, more unlabeled data and improvements in SfM- or
SLAM-based methods will directly benefit our approach and enable translation
to different endoscopes, patients, and anatomy. This makes our method a crit-
ical intermediate step towards accurate endoscopic surgical navigation. In the
future, we hope to evaluate our method on different endoscopes, patients, and
anatomy and compare with other methods. Substituting the single-frame depth
estimation architecture with a multi-frame architecture is also a potential future
direction to explore.
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Abstract. For effective in situ endoscopic diagnosis and treatment,
dense and large areal shape reconstruction is important. For this pur-
pose, we develop 3D endoscopic systems based on active stereo, which
projects a grid pattern where grid points are coded by line gaps. One
problem of the previous works was that success or failure of 3D recon-
struction depends on the stability of feature extraction from the images
captured by the endoscope camera. Subsurface scattering or speculari-
ties on bio-tissues make this problem difficult. Another problem was that
shape reconstruction area was relatively small because of limited field of
view of the pattern projector compared to that of the camera. In this
paper, to solve the first problem, learning-based approach, i.e., U-Nets,
for efficient detection of grid lines and codes at the detected grid points
under severe conditions, is proposed. To solve the second problem, an
online shape-registration and merging algorithm for sequential frames
is proposed. In the experiments, we have shown that we can train U-
Nets to extract those features effectively for three specimens of cancers,
and also conducted 3D scanning of shapes of a stomach phantom model
and a surface inside a human mouth, in which wide-area surfaces are
successfully recovered by shape registration and merging.

1 Introduction

Endoscopic diagnosis and treatment on digestive tracts have become popular
and widespread because of effectiveness on finding tumors in early-stage or little
suffering on surgery. For this reason, an easy to deploy, accurate tumor size
estimation technique is required for endoscopic systems and has been intensively
researched. On our continuous works on the development of a 3D endoscope
system to automatically measure the shape and size of living tissue based on
active stereo, we made non-contact measurement systems by making ultra-small
projectors which are possible to be inserted through the instrument channel of
c© Springer Nature Switzerland AG 2018
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ordinary endoscopes [1–5]. Using those devices, we have successfully measured
several ex vivo human tumor samples. One significant limitation of the current
systems is that it easily fails to recover shapes because of strong subsurface
scattering and specular effects which is common in internal tissue. Another issue
is that shape reconstruction area was relatively small because of limited field of
view of pattern projector compared to that of the camera of the endoscope.

In this paper, to solve the pattern detection problems caused by complicated
surface reluctances, such as sub-surface scattering and specularities, we propose
a learning-based approach, which is based on CNNs (convolutional neural net-
works). To apply CNN to oneshot scan, we used two types of U-Nets for line
detections (horizontal and vertical) and code detection, since each of the tasks
is simplified and easy to learn. Then, at a decoding phase, two outputs of the
U-Nets from the single captured image are integrated to make the final output,
i.e., detected lines with ID. Using the final output, 3D shapes are reconstructed
by light sectioning method using decoded IDs.

Since each region of reconstruction is small, online shape-registration and
merging algorithm for sequential frames is required to recover the wide structures
of the entire shape. For the purpose, we propose a shape registration and merging
algorithm in the paper. In the method, we introduce RBF-based shape densifing
algorithm to fill holes between grid lines. Then, ICP based registration is applied
followed by incremental fusion of the shape of each frame to the global space,
i.e., TSDF in our technique. Final shapes are reconstructed by marching cubes
algorithm.

In the experiments, a learning-based technique is evaluated by comparing
several real tissues with previous techniques [5], proving the effectiveness of our
method. Then, our online shape-registration and merging algorithm is applied
to a shape model, i.e., phantom model, of a stomach and a part of a real human
body, i.e., inside mouth, to show the successful results of the technique.

2 Related Work

For 3D reconstruction method using endoscopes, techniques using shape from
shading (SFS) [6] or binocular stereo [7] have been proposed. However, these
techniques often have stringent assumptions on the images that can be processed,
or, in the case of binocular stereo, require specialized endoscopes. As an exam-
ple of active stereo applications in endoscopy, in [8] a single-line laser scanner
attached to the head of the scope was used to measure tissue shapes, however,
the scope head needed to be directed in parallel to the target, which limited
the practical applicability of the technique. Lin et al. proposed 3D endoscope
system using colored, middle-sized circle dots [9]. Compared to their work, our
system uses structured light composed of sharp lines, which can be used for accu-
rate 3D reconstruction using light sectioning triangulation. This is important for
obtaining small shape details of the target. Recently, Furukawa et al. extended
their grid pattern based active stereo system by using DOE (diffractive opti-
cal element) with “gap coding” technique solving typical issues for endoscopic
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Fig. 1. The system configuration (the left image), the DOE pattern projector (the
middle column), and the projected pattern (the right column). The images of the
middle column are the appearance of the projector (inserted through the instrument
channel) and the pattern illumination projected on a white wall. The images of the
right column are the projected pattern and the codewords embedded into the pattern,
where S colored in red, L in blue, and R in green. S means edges of the left and the
right sides have the same height, L means the left side is higher, and R means the right
is higher. (Color figure online)

systems [4,5]. This paper solves practical issues for applying the technique to
real bio tissues.

For integrating multiple shapes, registering multiple shapes by ICP algorithm
[10] has been a widely-used solution. Similarly, signed distance field (SDF) repre-
sentation has been widely used for fusing multiple shapes [11]. Recently, Kinect-
Fusion [12] integrates those methods so that online shape reconstruction can
be realized, where sequentially-captured 3D shapes are incrementally registered
and fused into a single model.

3 Overview

3.1 System Configuration

A projector-camera system is constructed by inserting a fiber-shaped, micro
pattern projector into the instrument channel of a standard endoscope as shown
in Fig. 1. For our system, we used a FujiFilm VP-4450HD system coupled with
a EG-590WR scope. The DOE-based pattern projector is inserted through the
instrument channel of the endoscope the projector slightly protrudes from the
endoscope head as shown in Fig. 1 and emits the structured light.

The light source of the projector is a green laser module with a wavelength
of 517 nm. The laser light is transmitted through a single-mode optical fiber to
the head of the DOE projector. In the head, the light is collimated by grin lens,
and go through the DOE. The DOE can project a fine, complex pattern at a
greater depth range.
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In terms of pattern design, we use a grid pattern with gapped lines, whose
features are reported to be robust to blurring [4]. The pattern is shown in Fig. 1.
The vertical lines of the pattern are all connected and straight, whereas the
horizontal line segments are designed so that adjacent line segments have variable
vertical gaps at the grid points. With this configuration, a higher-level ternary
code emerges from the design with the following three codewords: S (the end-
points of both sides have the same height), L (the end-point of the left side is
higher), and R (the end-point of the left side is higher). The codes of the pattern
of Fig. 1 (right column, top) are shown by color in Fig. 1 (right column, bottom).

Since the vertical lines of the pattern are straight lines, we can apply light
sectioning method for 3D triangulation using these lines. By using light section-
ing method, we can get accurate 3D points on these lines, which is important
for capturing small details of the target surface.

3.2 Algorithm Overview

We record sequence of images captured by the endoscope camera, while project-
ing the structured light shown in Fig. 1. Then, every image the captured sequence
is analyzed to obtain shape information of the frame. The reconstructed shapes
are 3D curves corresponding to the vertical lines of the grid pattern. Since the 3D
curves are sparse, we convert the shape information to frame-wise depth images,
then, process the depth images with the KinectFusion algorithm.

The 3D reconstruction of each frame consists of two stages, such as pattern
decoding stage and 3D reconstruction stage as shown in Fig. 2. The pattern
decoding stage is processed by CNNs, which are trained to extract grid-like
structures, and the gap codes in the captured images. In the 3D reconstruction
stage, the extracted grid structures and code information are analyzed, and the
IDs of all the detected vertical lines are decided, and 3D curves are reconstructed
by light-sectioning method.

For training CNNs (learning phase in Fig. 2), actual patterns are projected
onto the strong subsurface scattering objects and captured by a camera. Then,
correct lines and code IDs are manually given as the ground truth. It is a tough
task even for humans, thus, learning data augmentations such as image transla-
tions or rotations are used to decrease the burden. Then, parameters and kernels
of U-Net [13] are estimated for lines and IDs independently using deep learning
framework so that cost functions are minimized. The cost function is basically
a difference between an output of U-Net and the ground truth.

In the decoding phase, the captured image is first applied to CNNs for verti-
cal and horizontal line detections. At the same time, the image is also applied to
CNN for region-wise classification of local feature codes embedded into the pat-
tern. Then, both results are combined to produce final output, i.e., detected lines
with estimated local codes in the pattern. By using the image with detected lines
with pattern ID as the input, 3D shapes are recovered in the 3D reconstruction
stage. Since a single local code is not sufficient for unique decision of correspon-
dences, information of connectivity and the epipolar constraints are used with a
voting scheme to increase robustness, similarly as [14]. Once correspondences of



Wide-Area Shape Reconstruction by 3D Endoscopic System 143

Decoding phase

CNN

Captured data of pattern 
projected object

Integration to make line with ID

3D reconstruction stage

Calibration parameters Light sectioning 
method

Pattern information

3D shape

CNN

Pattern detection and decoding stage

Captured 
data

Ground 
truth

CNN

Captured 
data

Ground 
truth

CNN

Line detection

ID base segmentation

Learning phase

Fig. 2. Overview of CNN-based decoding and 3D reconstruction for oneshot scan. Note
that we have two CNNs for vertical and horizontal line detections, and another CNN
for decoding IDs of grid points.

the detected curves are retrieved, 3D shapes are reconstructed by light sectioning
method.

Since many of the KinectFusion implementations require depth images, we
generate depth images from the sparse 3D curves. Then, the depth images are
processed by KinectFusion algorithm. Within the module, the depth images
are fused to a volume, where shapes are represented as TSDF (truncated signed
distance field). Once all the frames are fused into one volume, the module outputs
the fused surface.

4 CNN-based Feature Detection and Decoding for Active
Stereo

A major feature of the projected pattern is a grid-like structure and discrete
codes given to each grid point. The grid-like structure is composed of vertical
and horizontal line segments. In the pattern, a discrete feature (gap code) is
attached to each of the grid point represented by the level gap between the left
and right edges of the grid point. The classes of the code are either of S/L/R as
shown in Fig. 1 (right column, bottom).

We extract grid-structure and gap-code information using U-Nets [13]. We
use U-Nets because this network structure can use global image structures to
detect local image features. Because the projected pattern has global structure
of grid, we can expect U-Nets use this structure information for detecting local
line features to improve performance.

4.1 Detection of Grid Structures

The training process of a U-Net for detecting vertical lines is as follows. First,
image samples of the pattern-illuminated scene is collected. Then, the vertical
line locations for the image samples are designated manually as curves of 1-dot
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widths. The 1-dot width curves such as shown in Fig. 3(b) and (d) are too sparse
and narrow to be directly used as regions of training data. Thus, regions with
5-dot width of left and right side of the thin curves are extracted, and labeled
as 1 and 2, respectively, as shown in Fig. 3(c) and (e). The rest of the pixels are
labeled as 0. These 3 labeled images are used as training data. Then, a U-Net
is trained to produce such labeled regions using the loss function of the softmax
entropy between the 3-labeled training data and the 3-D feature map produced
by the trained U-Net.

Label 1 Label 2

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Training data for U-Nets: (a) An example of captured pattern. (b) Manually
annotated vertical line. (c) Manually annotated horizontal line. (d) Training labels for
horizontal-line detection. (f) Manually annotated gap codes. (g) Training labels for
code detection. In the training data for horizontal-line detection, the discontinuity at
the grid points are intentionally connected in the training data. In the training data for
code detection, background pixels are treated as “don’t care” data for the loss function.

By applying the trained U-Net to the image, we can get the 3-labeled image,
where left and right side of the vertical curves are labeled as 1 and 2, respectively.
Thus, by extracting the 2 horizontally-adjacent pixels where the left is 1 and
the right is 2, and connecting those pixels vertically, vertical curve detection is
achieved.

The horizontal curve detection is achieved similarly. However, the horizontal
edges may be disconnected due to the gaps at the grid points. Even in those
cases, training data is provided as continuous curves that go through the center
point of the gaps as shown in Fig. 3(e). By optimizing a U-Net using such training
data, we can expect results where horizontal curves are detected as continuous
at grid points, even if they are actually disconnected by gap codes.

An advantage of using U-Net for line detection of the grid structure is that the
U-Net can be implicitly trained to use not only local intensity variation, but also
more global information such as repetitive information of grid-like structures. A
supporting evidence, that we have experienced is that, if we process an image
sample that is scaled so that the training image set does not include the similarly-
scaled images, the line-detection performance noticeably worsens.
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4.2 Detection of Pattern Codes

In the proposed method, identification of gap codes is processed by directly
applying U-Net to the image signal, not from the line detection results. Thus,
the gap code estimation does not depend on line segment detection, which is
advantageous for stable detection of gap codes. Note that such a direct method
is not easy to implement by conventional image processing.

The training data generation is shown in Fig. 3 (bottom row). In the training
process, the white background pixels of Fig. 3 (bottom row, right column) are
treated as “don’t care” regions.

The advantage of directly detecting the pattern code is that the stability of
the code detection. Since, in the previous work [14], identification of gap codes
have been achieved by using results of line detection, failure of line detection or
failure of grid-structure analysis consequently leads to code-detection failures.
The proposed method is free from such problems of sequential processing.

5 Registration and Fusing Multiple Captured Frames

For the KinectFusion implementation, we use Kinfu module of point cloud library
[16]. Since this module requires depth images for inputs, we generate depth
images from the sparse 3D curves.

To convert the sparse 3D curves into a dense depth image, we use Radial
basis function for interpolation of the 3D curves. Radial basis function (RBF)
has been a common tool for 3D shape interpolation from point sets [15]. In
the case of the proposed system, we only require 2D depth map for the camera
viewpoint of the frame, not a general 3D shape; thus, the problem becomes much
simpler.

First, the reconstructed 3D curves are stored in 2D maps in camera view.
Then, for each 3D point on the curves, a tangent plane is estimated by fitting
the neighbor point set (neighbor points are defined by 2D distances on the 2D
view) to a 2D plane by 2D linear regression.

Then, the tangent planes of all the curve points are fused using the weights
of the radial basis function. In the proposed system we use 2D Gaussian kernel
for the RBF. The resulting height function h(x, y) is

h(x, y) =
∑

i k(x − xi, y − yi){ai(x − xi) + bi(y − yi) + zi}∑
i k(x − xi, y − yi)

, (1)

where k(x, y) is an RBF kernel defined by k(x, y) = exp(−x2+y2

2σ2 ), (xi, yi) is the
2D position of the i-th point in the camera view, zi is the depth of the i-th point
from the camera view, ai and bi are the coefficients of the tangent plane fit by
the linear regression, σ is a scale parameter of RBF. In our case, we set this value
to about average apparent size of the grid in captured images. We calculate the
value of (1) for each pixel of the depth image.

Then, the depth images are processed by KinectFusion algorithm. We used
Kinfu module of PCL (point cloud library) [16]. The view pose of the depth
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image is registered with the volume 3D shape represented as TSDF by ICP
algorithm using depth error and normal error criterion. Then the depth data
is fused into the TSDF. The fused points are extracted after all the frames are
processed.

6 Experiment

6.1 Evaluation of CNN Based Line Detection

To show effectiveness of the proposed pattern-feature extraction for endoscope
images, we measured specimens of cancers that are resected from patients. The
appearance, captured image by the 3D endoscope, outputs of the U-Nets for line
detection and code labels are shown in Fig. 4(a)–(d) respectively. The grid struc-
tures and codes that are extracted from the U-Net results are shown in Fig. 4(e).
For comparison, grid-structures and codes detected by a previous method [4] are
shown in Fig. 4(f). The 3D reconstruction results of this sample are shown in
Fig. 4(g). Although the captured image (Fig. 4(b)) is low-resolution and includes
significant noises, the extracted grid structure (Fig. 4(e)) is stable. By comparing
Fig. 4(e) with Fig. 1(right column, bottom), we can confirm that the gap codes
extracted by the U-Net is reasonably accurate. The manually counted code-
detection error rate of Fig. 4(e) was 4.5%, whereas that of the result of baseline
method [4] (Fig. 4(e)) was 18.6%. Using the decoded pattern, the 3D shape of
the pattern-projected regions are mostly reconstructed as shown in Fig. 4(f).

Fig. 4. Grid and code detection results for a specimen of a cancer: (a): The appearance
of the sample. (b) The captured image. (c) U-Net output for horizontal-line detection.
(d) U-Net output of code detection. (e) Extracted grid-structures and codes. Compare
(e) with pattern codes shown in Fig. 1. The counted error rate of (e) was 4.5%. (f) Grid-
structures and codes extracted by a previous method [4]. Compare (f) with Fig. 1. The
counted error rate of (f) was 18.6%. (g) The reconstructed 3D shape.
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Fig. 5. Grid and code detection results for two specimens of cancers: (a, d) Captured
images. (b, e) Extracted grid-structures and codes. (e, f) Magnified regions of (b) and
(e), and the corresponding pattern regions.

Grid and code extraction results for other two specimens are shown in Fig. 5,
where (a) and (d) are the captured images, (b) and (e) are the extracted grid
and code structures, and (c) and (f) are the magnified code structures and the
corresponding pattern regions. The regions of (c) and (f) are shown as cyan rect-
angles of in (b) and (e). The specimen of (a–c) was affected by strong subsurface
scattering, however, the extracted codes were reasonably accurate. The image
(d) has highly affected by highlights, and the grid structure was missing at the
saturated area itself. However, the grids and codes around the saturated area
became accurate enough so that the 3D shape can be successfully reconstructed.
Those results confirm the stability of our feature-extraction method even if the
data condition is low.

6.2 Simultaneous Localization and 3D Mapping

Then, we apply our online shape registration and merging algorithm to both a
phantom model of a stomach and a part of a real human body, i.e., inside a
mouth. About calibration, we pre-calibrated the projector-camera system using
sphere-based calibration [2].

We first captured shapes of the stomach model for evaluation purpose.
Results are shown in Fig. 6. In Fig. 6(a), the area of the recovered shape from
a frame of the captured sequence is shown by the red rectangle. Figure 6(b) is
the captured image of the red rectangle where the grid pattern is projected to
the surface. In the image, we can observe that grid lines are disconnected by the
complicated shape of the surface of the model, however, curves and IDs detected
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Fig. 6. An example of capturing a phantom model of a stomach: (a) The appearance
of the phantom model. (b) A captured image of red rectangle in (a). (c) The CNN
result of grid and code detection of (b). Compare (c) with Fig. 1. (d) Fused shape (the
region of blue polygon in (a)). (Color figure online)

by our method resulting in grids and codes shown in Fig. 6(c). The integrated
shape generated by the online registration and merging algorithm is shown in
Fig. 6(d). We can confirm that a large area is successfully recovered as well as
keeping high-frequency shape details. For quantitative evaluation, we selected
three points that can be identified from shape features on the merged surface
(A, B, and C in Fig. 6(d)), and compared lengths of them with the ground truth
values measured from the real model (A, B and C in Fig. 6(a)). The results
shown in Table 1 confirm that the scale of the shape is correct.

Table 1. Estimated and true lengths of line segments shown in Fig. 6.

Line segments in Fig. 6 Real distance Estimated distance

AB 67 mm 63 mm

AC 25 mm 25 mm

BC 55 mm 56 mm

Finally, we captured shapes inside a mouth of a human. A captured image,
the pattern detection result, the single-frame shape from the shown image, and
the final integrated shape are shown in Fig. 7. With this experiments, we can
confirm that the grid-structure and codes are robustly detected even with live
tissues captured by an ordinary endoscopic system. In addition, a large area
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is successfully recovered without losing high-frequency shape details, which are
clearly observed in Fig. 7(h) where small shape details in the top (a subimage of
(a)) is also shown in the right 3D CG shading results (a subimage of (d)).

)c()b()a(

(d) (e) (f)

Fig. 7. An example of capturing surfaces inside a mouth: (a) A captured image. (b)
The extracted grid-structures and codes of (a). Compare (b) with Fig. 1. (c) The recon-
structed shape from (a). (d) The merged shape. (e) Small shape details restored by
shape fusion (top: subimage of(a), bottom: subimage of (d)). (f) The merged shape
from another viewpoint.

7 Conclusion

This paper proposed a CNN-based grid pattern detection algorithm for active
stereo to solve pattern degradation problem caused by subsurface scattering and
specularities. Two independent networks, i.e.U-Nets, are constructed and trained
for both line detection and code based segmentation purposes, respectively. They
are integrated to retrieve robust and accurate line detection results with pattern
IDs. With our experiments using several target objects with strong subsurface
scattering and specular effects, the proposed method shows stable detection of
the grid structure and codes that are embedded into the grid points. In addition,
3D shapes of strong subsurface scattering objects are successfully reconstructed,
which is only scarcely reconstructed even with the previous technique which is
designed to robust to blurring effects. In the future, in-vivo experiments for test
and real diagnosis purposes are important for real system.



150 R. Furukawa et al.

Acknowledgment. This work was supported by JSPS/KAKENHI 16H02849,
16KK0151, 18H04119, 18K19824, and MSRA CORE14.

References

1. Aoki, H., et al.: Proposal on 3D endoscope by using grid-based active stereo. In:
The 35th EMBC (2013)

2. Furukawa, R., et al.: Calibration of a 3D endoscopic system based on active stereo
method for shape measurement of biological tissues and specimen. In: The 36th
EMBC, pp. 4991–4994 (2014)

3. Furukawa, R., et al.: 2-DOF auto-calibration for a 3D endoscope system based on
active stereo. In: The 37th EMBC, pp. 7937–7941, August 2015

4. Furukawa, R., et al.: 3D endoscope system using DOE projector. In: The 38th
EMBC, pp. 2091–2094 (2016)

5. Furukawa, R., Naito, M., Miyazaki, D., Baba, M., Hiura, S., Kawasaki, H.: HDR
image synthesis technique for active stereo 3D endoscope system. In: The 39th
EMBC, pp. 1–4 (2017)

6. Visentini-Scarzanella, M., Stoyanov, D., Yang, G.: Metric depth recovery from
monocular images using shape-from-shading and specularities. In: ICIP, Orlando,
USA, pp. 25–28 (2012)

7. Stoyanov, D., Scarzanella, M.V., Pratt, P., Yang, G.-Z.: Real-time stereo reconstruc-
tion in robotically assisted minimally invasive surgery. In: Jiang, T., Navab, N.,
Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 275–282.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9 34

8. Grasa, O., Bernal, E., Casado, S., Gil, I., Montiel, J.: Visual slam for handheld
monocular endoscope. IEEE Trans. Medical Imaging 33(1), 135–146 (2014)

9. Lin, J., Clancy, N.T., Stoyanov, D., Elson, D.S.: Tissue surface reconstruction aided
by local normal information using a self-calibrated endoscopic structured light
system. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI
2015. LNCS, vol. 9349, pp. 405–412. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24553-9 50

10. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL
tentative, International Society for Optics and Photonics, pp. 586–606 (1992)

11. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: Proceedings of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques, pp. 303–312. ACM (1996)

12. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and track-
ing. In: 2011 10th IEEE International Symposium on Mixed and Augmented Real-
ity (ISMAR), pp. 127–136. IEEE (2011)

13. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: MICCAI, Springer (2015) 234–241

14. Furukawa, R., Morinaga, H., Sanomura, Y., Tanaka, S., Yoshida, S., Kawasaki,
H.: Shape acquisition and registration for 3D endoscope based on grid pattern
projection. In: The 14th ECCV. Volume Part VI. (2016) 399–415

15. Carr, J.C., Fright, W.R., Beatson, R.K.: Surface interpolation with radial basis
functions for medical imaging. IEEE transactions on medical imaging 16(1), 96–
107 (1997)

16. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: Robotics and
automation (ICRA), 2011 IEEE International Conference on, IEEE (2011) 1–4

https://doi.org/10.1007/978-3-642-15705-9_34
https://doi.org/10.1007/978-3-319-24553-9_50
https://doi.org/10.1007/978-3-319-24553-9_50


Proceedings of the 7th International
Workshop on Clinical Image-Based

Procedures: Translational Research in
Medical Imaging (CLIP 2018)



Patch-Based Image Similarity
for Intraoperative 2D/3D Pelvis

Registration During Periacetabular
Osteotomy

Robert B. Grupp1(B), Mehran Armand2,3, and Russell H. Taylor1

1 Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
grupp@jhu.edu

2 Department of Mechanical Engineering, Johns Hopkins University,
Baltimore, MD, USA

3 Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA

Abstract. Periacetabular osteotomy is a challenging surgical procedure
for treating developmental hip dysplasia, providing greater coverage of
the femoral head via relocation of a patient’s acetabulum. Since fluo-
roscopic imaging is frequently used in the surgical workflow, computer-
assisted X-Ray navigation of osteotomes and the relocated acetabular
fragment should be feasible. We use intensity-based 2D/3D registration
to estimate the pelvis pose with respect to fluoroscopic images, recover
relative poses of multiple views, and triangulate landmarks which may
be used for navigation. Existing similarity metrics are unable to con-
sistently account for the inherent mismatch between the preoperative
intact pelvis, and the intraoperative reality of a fractured pelvis. To mit-
igate the effect of this mismatch, we continuously estimate the relevance
of each pixel to solving the registration and use these values as weight-
ings in a patch-based similarity metric. Limiting computation to ran-
domly selected subsets of patches results in faster runtimes than existing
patch-based methods. A simulation study was conducted with random
fragment shapes, relocations, and fluoroscopic views, and the proposed
method achieved a 1.7 mm mean triangulation error over all landmarks,
compared to mean errors of 3 mm and 2.8 mm for the non-patched and
image-intensity-variance-weighted patch similarity metrics, respectively.

Keywords: X-ray navigation · 2D/3D registration
Periacetabular osteotomy

1 Introduction

Developmental dysplasia of the hip (DDH) is a condition with lower than nor-
mal coverage of the femoral head. Patients with DDH frequently exhibit signifi-
cant discomfort and are consequently less mobile. Severe arthritis is a common
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long-term consequence of untreated DDH, therefore surgical treatment is
expected during the lifetime of a patient [1]. The periacetabular osteotomy
(PAO) is a surgical procedure designed to preserve the natural joint of young
patients with DDH [2]. In order to relocate the joint and increase femoral head
coverage, the acetabulum must be freed from the remainder of the pelvis by
performing osteotomies along the ilium, ischium, posterior column, and pubis.
Many clinicians use intraoperative fluoroscopy to manually navigate osteotomes
while performing the cuts. Even with fluoroscopic guidance, the ischial and pos-
terior osteotomies introduce the risk of joint breakage due to their closeness to
the acetabulum. Furthermore, the fluoroscopic views are difficult to mentally
interpret and accurate determination of femoral head coverage remains a chal-
lenge after its relocation [3]. A simulated set of PAO osteotomies with fragment
movement, along with corresponding simulated fluoroscopic images, are shown in
Fig. 1.

Fig. 1. A simulated example of periacetabular osteotomies and a fragment reposition
is shown in (a). The corresponding simulated fluoroscopic images are shown in (b).

Leveraging optical tracker navigation systems, several computer-assisted
PAO approaches have been proposed to either track the osteotomes or estimate
the pose of the acetabular fragment [4–6]. These systems require the attachment
of at least one rigid body fiducial to a patient’s bone and, in order to perform
an accurate registration of the pelvis, require a tracked pointer tool to be swept
across the surface of the relevant bone structures. This requires a larger incision
than typically used for PAO and eliminates the use of more modern, minimally
invasive, approaches [7]. Taking into account these limitations and the prevalence
of fluoroscopy use in PAO, we believe X-Ray navigation is a more prudent app-
roach for computer-assisted navigation of osteotomes and bone fragment pose.

The pose of a patient’s anatomy with respect to the fluoroscopy coordi-
nate frame may be estimated using intensity-based 2D/3D, X-Ray/CT, regis-
tration [8]. Using multiple views, 3D points with respect to the pelvis coordinate
frame may be triangulated. The motion of the fragment may be captured and
reported by measuring the positions of landmarks prior to fragment relocation
and afterwards. Navigation of the osteotome with respect to the pelvis is feasible
by estimating the locations of an osteotome’s landmarks. Most C-Arm models
do not report the relative pose information of each view, therefore a fiducial
object is typically used to establish a common coordinate frame and recover the
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multi-view geometry. By using the pelvis as a fiducial, we avoid the introduction
of new objects into the surgical workflow and fluoroscopic field of view.

Many methods exist to accurately register an intact pelvis with a single X-
Ray view [8], however PAO requires registration of the fractured pelvis with a
relocated acetabulum. Poor triangulation performance may result from irreg-
ular mis-registrations across views, since a fractured pelvis for PAO yields an
intraoperative reality that is inconsistent with the preoperative model. For exam-
ple, registration of a particular view may be drawn to the pelvis fragment with
iliac crest, while registration of another view may be drawn to the acetabulum.
In [9,10], 2D/3D registration of fractured bone fragments was proposed, both
requiring preoperative CT of the bone fragments. However, for PAO the fracture
is created intraoperatively when 3D imaging is generally not available. Manual
masking of the model discrepencies in 2D is time consuming and will delay
the surgical workflow. By dividing the similarity computation across patches,
and weighting each patch proportionally to the variance of image intensities,
[11] demonstrated registrations robust to the presence of metallic objects. Since
intensities corresponding to the relocated acetabular region have significant vari-
ance, this weighting is not effective for PAO pelvis registration.

In this paper, we use a preoperative weighting of 3D anatomical regions rep-
resenting each region’s expected contribution to an accurate registration of the
fractured pelvis. Using the current estimate of the pelvis pose, this weighting
is projected into 2D at each optimization iteration and, after some additional
processing, applied as weights for a patched similarity metric. To the best of
our knowledge, iterative adjustment of patch weightings has not been done in
this way for 2D/3D registration. By treating the patch weightings as a dis-
tribution over the most useful pixels during registration, computation in early
optimization iterations may be restricted to small random subsets of patches,
resulting in reduced runtimes. These methods were evaluated with a simulation
study accounting for various fragment shapes and movements. With respect to
rotation and translation registration errors and landmark triangulation error,
the methods using iteratively adjusted weights outperformed existing similarity
metrics.

2 Methods

2.1 2D/3D Registration Overview

The primary objective of X-Ray/CT, single-view, single-object, rigid registra-
tion is to compute the rigid transformation between the coordinate frame of
a preoperative model and the coordinate frame of the X-Ray imager. In this
paper, we use an intensity-based registration approach, formulated as the opti-
mization problem in (1). S represents a similarity metric between 2D images:
the intraoperative fluoroscopic image, IX , and a digitally reconstructed radio-
graph (DRR). DRRs are created via the projection operator, P, which uses a 3D
volume of attenuations, ICT , and the volume’s pose with respect to the imaging
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coordinate frame, θ. R applies a regularization in order to penalize less plausible
poses.

arg min
θ∈SE(3)

S (IX ,P (ICT ; θ)) + R (θ) (1)

In this paper, we follow a multi-resolution approach, solving (1) at a low 2D res-
olution and using that solution as the initialization for (1) at a higher resolution.
The initialization to the low resolution level is determined by a 2D/3D paired-
landmark registration. We follow the approach of [12] and use the CMA-ES
optimizer at the lower resolution. At the second resolution, the BOBYQA opti-
mization algorithm is used and regularization is replaced with box constraints.
The object pose is parameterized by the se(3) Lie algebra with SE(3) reference
point at the previous estimate of the object’s pose with respect to the perspective
projection coordinate frame and a center of rotation about the volume center.

In this work we only consider square shaped patches, defined by the center
row, cr, center column, cc, and radius, r. A computation over an entire image is
equivalent to computation on a single image patch with size equal to the entire
image extent. The Normalized cross-correlation (NCC) similarity metric over a
patch is defined in (2).

SNCC (I1, I2; cr, cc, r) =
cr+r∑

i=cr−r

cc+r∑

j=cc−r

(I1 (i, j) − μI1) (I2 (i, j) − μI2)
σI1σI2 (2r + 1)2

(2)

Within the patch, the means of image intensities are denoted by μI1 and μI2 ;
σI1 and σI2 denote the corresponding within patch standard deviations. NCC
assumes a linear relationship between the intensity values of each image, which is
not satisfied by paired intraoperative fluoroscopy and DRRs derived from a CT
with a single effective energy. Computing NCC on the Sobel X and Y derivatives
of the 2D images attempts to overcome this limitation and is defined in (3).

SGNCC (I1, I2; cr, cc, r) = SNCC (∇XI1,∇XI2; cr, cc, r)
+ SNCC (∇Y I1,∇Y I2; cr, cc, r)

(3)

Computing (3) with a single patch, of size equal to the 2D image extent, shall
be referred to as Grad-NCC. Calculating (3) over a set of patches distributed
over the image, and combining the values in a weighted sum is shown in (4).

SPGNCC (I1, I2;P (r) , w) =
∑

(k,l)∈P (r)

w (k, l) SGNCC (I1, I2; k, l, r) (4)

The set of all patch centers available within an image with patch radius, r, is
defined as Pcomplete(r). The similarity metric using Pcomplete(r) with a constant
weighting shall be referred to as P-Grad-NCC. Non-uniform patch weightings
are used to emphasize that specific pixels should have more influence over the
registration process. As in [11], the variances of image intensities within patches
may be used as a weighting; this method will be referred to as P-Grad-NCC-Var.
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2.2 Iterative Calculation of Patch Weights

An ideal weighting will have largest values at 2D locations that are both feature-
rich and consistent with the preoperative model. Weights at locations expected
to confound the registration will be assigned lower values. To help achieve this,
we rely on a preoperative 3D labeling which divides the pelvis into regions that
are expected to produce useful and model-consistent features when forward pro-
jected. A 3D weight image is computed using a manually specified lookup table
defined over 3D labels. Regions about the iliac crest, pubis ramus, sacrum-ilium
junction, and vertebrae are assigned large weights, while areas corresponding to
the ilium wing and soft-tissue are given smaller weights. Very low weights are
assigned to regions which are expected to change intraoperatively, such as the
femur or any potential location on the acetabular fragment.

Several projection operations are performed using the current estimate of the
pelvis pose. A mask, M , of 2D pixel locations where it is likely for a mismatch
with our preoperative model to occur, is computed by casting rays and checking
for collision with possible fragment or femur regions in the preoperative plan. A
2D boundary edge map of the pelvis is derived by checking for rays which inter-
sect the intact pelvis’ surface, and also have an adjacent ray not intersecting the
surface. Edges overlapping with expected mismatch locations in M are pruned.
Next, the edge map is dilated and pruned once more. An initial 2D weighting
is produced through a maximum intensity projection of the 3D weight image.
Every 2D weight value corresponding to an edge pixel is scaled by 10. This allows
edge features consistent with the model to dominate the registration. Weight val-
ues at locations overlapping in M are scaled by 0.1. This effectively serves as

Fig. 2. The surface rendering of a preoperative set of 3D labels used for iterative weight
computation is shown in (a); (b) depicts a corresponding coronal slice. The light green
spheres encompass possible acetabular fragment and femoral head relocations, and are
most likely to project to 2D pixels inconsistent with the preoperative model. The iliac
crest, left and right pubis rami, vertebrae, ilium wing, soft-tissue, etc. are all assigned
different labels, allowing for a diverse assignment of 3D weightings. An example of
the 2D weights is shown in (c). In areas expected to represent a relocated acetabular
fragment, the femur, soft-tissue, or air, the weightings are very low. Areas expected
to contain the pubis ramus and iliac crest are weighted the largest, since we believe
those features will be most helpful. Other areas, such as vertebrae are given moderate
weights, since they are expected to help with registration, but not be as helpful as the
iliac and pubis regions. (Color figure online)
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an automatic masking of regions which are believed to be inconsistent with our
preoperative pelvis model. The set of 2D weights is normalized to sum to 1.

The method employing this strategy is referred to as P-Grad-NCC-Pr. The
3D preoperative labels used throughout this paper, along with a corresponding
2D weighting, is shown in Fig. 2.

2.3 Randomly Selecting a Subset of Patches

We may treat the complete set of weightings as a categorical distribution over
the available patches in an image. A subset of patches, P ′(r) ⊆ Pcomplete(r) may
be sampled using this distribution. An updated weighting is obtained by re-
normalizing the subset of original weights corresponding to the patches in P ′(r).
Computation is restricted to patches that are perceived to contain the most use-
ful information for registration, by iteratively calculating weightings and then
sampling random patches. In order to achieve convergence, after each optimiza-
tion iteration the number of patches is grown by a factor equal to the golden
ratio: (1 +

√
5)/2. Once the number of random patches exceeds the maximum

number of patches in the image, the metric reverts to using all patches. Random
patch sampling is only incorporated at the lower resolution level; the full set
of patches is used at the second resolution level. This method using randomly
selected patches is referred to as P-Grad-NCC-Pr-R. An example of randomly
selected patches during a registration is shown in Fig. 3.

Fig. 3. Randomly sampled patches used during a registration. (a) iteration 1; 10
patches. (b) iteration 3; 26 patches. (c) iteration 5; 68 patches. (d) iteration 9; 466
patches. (e) iteration 17; 21,892 patches. All patches were used after iteration 17. In
(a)–(d), the patches are concentrated in areas consistent with the preoperative model,
and which also have strong edge features and high contrast.

2.4 Simulated Data

Simulated data is derived from pre and postoperative CT scans of a cadav-
eric specimen (male, 88 years), for which a PAO was performed by an experi-
enced clinician. Initial segmentations of the preoperative pelvis and femurs were
obtained through an automated method [13], and refined manually. A rigid reg-
istration was performed to map the postoperative CT to the preoperative CT.
Points along each of the osteotomies in the postoperative CT were manually
digitized and transformed into the preoperative coordinate frame. Planes were



Patch-Based Image Similarity for Intraoperative 2D/3D Pelvis Registration 159

fit to the transformed osteotomy points to obtain a baseline set of osteotomies.
The segmentation of the acetabular fragment is determined by the set of pelvis
labels contained within the convex hull defined by the cutting planes. Various
fragment shapes were created by randomly rotating each cutting plane normal
and translating by a random amount in the updated normal direction. Collision
detection against other bones was conducted to ensure randomly sampled move-
ments of the fragment and femur were valid. Soft-tissue is incorporated into the
fluoroscopic image simulation by warping fragment and femur voxels within the
volume and overwriting any overlapping soft-tissue voxels. Random intensities
in the HU range of muscle are used to fill any “holes” left by relocating the
acetabulum and femur. Fluoroscopic images were simulated similar to the pro-
cedure described in [14]. Figure 1 shows a relocated simulated fragment, and the
corresponding set of 2D fluoroscopic images.

2.5 Evaluation Metrics

Registration rotation and translation errors are reported in the perspective pro-
jection coordinate frame with center of rotation located at the true location of
the volume centroid. The anatomical landmarks used for triangulation evalu-
ation were the relocated femoral head (FH), the anterior superior iliac spine
(ASIS), anterior inferior iliac spine (AIIS), greater sciatic notch (GSN), inferior
obturator foramen (IOF), and the superior pubis symphysis (SPS). These land-
marks are useful as they correspond to the relocated fragment and measurement
of possible BB locations, or are in close proximity to possible osteotomies and
the measurement of osteotome positions. For each fragment movement, the rel-
ative poses of three fluoroscopic views were estimated using pelvis registration
transformations. The previous imaging world frame was replaced with the pelvis
frame and each landmark position was triangulated.

3 Experiments and Results

3.1 Simulation Study Parameters

CT scans were acquired using a Toshiba Aquilion One with both 0.5 mm slice
spacing and thickness, and resampled to 1 mm isotropic spacings. Using the left
side of the specimen, 15 random fragments were sampled, and 20 random move-
ments were sampled for each fragment. Three fluoroscopy images were simulated
from soft-tissue volumes created for each fragment movement. The first view was
initialized as an anterior-posterior view, followed by a random perturbation of
the pelvis pose. To obtain the second and third views, random orbital rotations
in opposite directions were applied to the first view, followed by a small rigid
perturbation. This resulted in a total of 900 simulated fluoroscopy images.

Five random registration initializations were created for each fluoroscopic
image by simulating a point picking process, followed by a landmark-based reg-
istration. Human error was simulated by adding random noise to each 3D land-
mark and to each landmark visible in the 2D image. Each initialization was used
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to run a registration for the following similarity metrics: Grad-NCC, P-Grad-
NCC, P-Grad-NCC-Var, P-Grad-NCC-Pr, P-Grad-NCC-Pr-R. A total of 4500
total registrations per similarity metric were completed.

Simulated fluoroscopic images were 1536 × 1536 pixels, with 0.194 mm/pixel
isotropic spacing. A source to detector distance of 1020 mm and principal point
at the center of the detector were used.

For CMA-ES, a population size of 100 was used for all registrations, across all
similarity metrics. Downsampling of 8× was done in each 2D dimension for the
CMA-ES stage and 4× for the BOBYQA stage. Patches of size 11×11 pixels were
used at the lower resolution level, and patches of 19× 19 pixels were used at the
higher resolution level. The initial number of random patches used at the lower
resolution level was 10. Computation of DRRs and the Grad-NCC similarity
metric were performed on the GPU. The remainder of the similarity metrics
were parallelized CPU implementations. All registration trials were computed
with dual Intel Xeon E5-2690 v2 CPUs and a single NVIDIA GeForce GTX
TITAN Black GPU.

3.2 Simulation Study Results

Fourteen registration trials were discarded, corresponding to initialization off-
sets greater than 20◦ or 100 mm. Single-tailed Mann-Whitney U-Tests were per-
formed to compare the errors of P-Grad-NCC-Pr and the remaining methods.
Acceptance of the alternative hypothesis indicated that the errors of P-Grad-
NCC-Pr were drawn from a distribution with smaller median than the errors of
the other method. A p-value threshold of 0.005 was used in each test.

The rotation and translation components of the initialization and registra-
tion errors are shown in Table 1. Each similarity metric performed well with
respect to rotation, all with mean rotation error angles less than 1◦, however
the patched similarity metrics with forward projected weights had the smallest
mean rotation errors. With respect to the total rotation angle error, there was no
statistical difference between P-Grad-NCC, P-Grad-NCC-Pr, and P-Grad-NCC-
Pr-R, however significantly larger errors were indicated for Grad-NCC and P-
Grad-NCC-Var. Most translation error was found in the depth direction (Z). The
patched similarity metrics achieved the best performance with respect to mean
translation errors. No statistical differences were indicated for the total trans-
lation errors of P-Grad-NCC, P-Grad-NCC-Pr, and P-Grad-NCC-Pr-R. Grad-
NCC and P-Grad-NCC-Var both had statistically larger total translation errors
than P-Grad-NCC-Pr.

Landmark triangulation errors are summarized in Table 2. Grouping all land-
marks together, P-Grad-NCC-Pr and P-Grad-NCC-Pr-R had the smallest mean
errors and were not significantly different. Considering individual landmarks
except the GSN, P-Grad-NCC-Pr and P-Grad-NCC-Pr-R had the smallest mean
errors. The only landmark for which a non-forward projected method did not
have a significantly larger result was the GSN. ASIS and AIIS errors were larger
than errors of the remaining landmarks. We believe this is due to inconsis-
tent misalignments of the anterior iliac spine (AIS) across the views used for
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Table 1. Rotation/translation offsets from ground truth. Rotation units are degrees
and translation units are mm. Statistically significant results are indicated with ∗.

Component Initialization Grad-NCC P-Grad-NCC P-Grad-NCC-Var P-Grad-NCC-Pr P-Grad-NCC-Pr-R

Rot. Total 2.0 ± 1.2∗ 0.6 ± 0.5∗ 0.4 ± 0.8 0.7 ± 0.9∗ 0.4 ± 0.7 0.4 ± 0.7

X 1.1 ± 1.0∗ 0.3 ± 0.5∗ 0.3 ± 0.6∗ 0.4 ± 0.7∗ 0.3 ± 0.6 0.3 ± 0.6

Y 1.1 ± 0.9 0.4 ± 0.4∗ 0.2 ± 0.5∗ 0.3 ± 0.5∗ 0.2 ± 0.4 0.2 ± 0.4

Z 0.9 ± 0.8 0.2 ± 0.2 0.1 ± 0.3 0.2 ± 0.4 0.1 ± 0.2 0.1 ± 0.2

Trans. Total 13.5 ± 10.9∗ 3.5 ± 4.6∗ 2.6 ± 5.0 4.0 ± 6.4∗ 2.3 ± 4.6 2.3 ± 4.6

X 1.0 ± 1.2∗ 0.4 ± 0.5 0.3 ± 0.7 0.5 ± 0.9 0.2 ± 0.6 0.2 ± 0.6

Y 1.1 ± 1.0∗ 0.6 ± 0.7 0.4 ± 0.7∗ 0.7 ± 0.9∗ 0.4 ± 0.6 0.4 ± 0.6

Z 13.3 ± 10.9∗ 3.3 ± 4.6 2.5 ± 5.0 3.8 ± 6.4 2.2 ± 4.6 2.2 ± 4.6

Table 2. Landmark triangulation errors from ground truth for initialization and each
similarity metric. Units are mm. Statistically significant results are indicated with ∗.

Landmark Initialization Grad-NCC P-Grad-NCC P-Grad-NCC-Var P-Grad-NCC-Pr P-Grad-NCC-Pr-R

FH 6.1 ± 6.3∗ 1.9 ± 5.5∗ 1.6 ± 5.3∗ 2.4 ± 5.8∗ 1.6 ± 5.6 1.6 ± 5.8

ASIS 13.0 ± 11.7∗ 4.7 ± 8.5∗ 3.2 ± 8.7∗ 3.7 ± 8.7∗ 2.9 ± 8.8 2.9 ± 8.8

AIIS 9.5 ± 9.2∗ 3.6 ± 7.3∗ 2.5 ± 7.4∗ 3.1 ± 7.5∗ 2.3 ± 7.6 2.3 ± 7.7

GSN 5.5 ± 4.1∗ 1.5 ± 1.2∗ 0.9 ± 1.7 1.4 ± 1.9∗ 1.0 ± 2.0 1.0 ± 2.0

IOF 4.1 ± 3.1∗ 1.6 ± 1.7∗ 1.1 ± 2.1∗ 2.3 ± 3.4∗ 0.9 ± 1.9 0.9 ± 1.9

SPS 4.0 ± 3.0∗ 4.8 ± 2.8∗ 2.0 ± 1.8∗ 3.8 ± 3.2∗ 1.6 ± 1.5 1.6 ± 1.4

Combined 7.0 ± 7.7∗ 3.0 ± 5.5∗ 1.9 ± 5.4∗ 2.8 ± 5.7∗ 1.7 ± 5.5 1.7 ± 5.5

triangulation. Compared to the rami of the ischium and pubis, the AIS is ori-
ented parallel to the viewing directions, causing AIS image features to have
less influence on image similarity than features associated with the ischium and
pubis.

The mean registration runtimes, in seconds, were 2.5± 0.5, 8.0± 0.8,
7.9± 0.9, 8.4 ± 2.5, 6.9 ± 3.0, for Grad-NCC, P-Grad-NCC, P-Grad-NCC-
Var, P-Grad-NCC-Pr, P-Grad-NCC-Pr-R, respectively. Using random subsets
of patches yields a speedup while not sacrificing performance.

4 Discussion and Conclusion

Accurate registration of the fractured pelvis during PAO is an essential compo-
nent of an X-Ray navigation system for osteotomes and fragment relocations.
Through simulation, we have demonstrated the feasibility of a pelvis registra-
tion which is robust to the mismatch between the preoperative pelvis model
and the intraoperative fractured pelvis. Patch weightings are updated during
each optimization iteration, resulting in significantly improved registration and
triangulation performance compared with two existing methods. Using random
subsets of patches when iteratively updating weights was shown to have equiv-
alent performance to using all patches and also have shorter runtimes.

We believe that a careful GPU implementation of P-Grad-NCC-Pr-R should
have runtimes on par, or quicker than, the runtimes of Grad-NCC. The most
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significant speedup could be obtained by limiting DRR computation to only pix-
els used by the similarity metric. At each iteration, the CMA-ES optimization
evaluates a large number of objective functions, each requiring a DRR. A popula-
tion size of 100 was used, resulting in 3, 686, 400 pixels per iteration. In contrast,
a maximum of 121, 000 pixels are required when using ten 11 × 11 patches; a
reduction of 97% in the number of pixels. We originally used a fixed number
of random patches for P-Grad-NCC-Pr-R, however this resulted in poor conver-
gence and excessive runtimes. Analysis should be conducted to determine the
optimal growth factor, and why a growth factor is necessary. Preoperative anno-
tation and planning is time consuming, however this process may be automated
by registering the preoperative CT to a statistical model. We plan to perform
validation studies against fluoroscopy from cadavers which have undergone PAO.
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Abstract. Robotic surgery with preoperative imaging data for planning
have become increasingly common for surgical treatment of patients. For
surgeons using robotic surgical platforms, maintaining spatial awareness
of the anatomical structures in the surgical area is key for good out-
comes. We propose a Mixed Reality system which allows surgeons to
visualize and interact with aligned anatomical models extracted from
preoperative imagery as well as the in vivo imagery from the stereo
laparoscope. To develop this system, we have employed techniques to 3D
reconstruct stereo laparoscope images, model 3D shape of the anatomical
structures from preoperative MRI stack and align the two 3D surfaces.
The application we have developed allows surgeons to visualize occluded
and obscured organ boundaries as well as other important anatomy that
is not visible through the laparoscope alone, facilitating better spatial
awareness during surgery. The system was deployed in 9 robot assisted
laparoscopic prostatectomy procedures as part of a feasibility study.

Keywords: Mixed reality · AR · VR · Robot assisted prostatectomy

1 Introduction

Robotic assisted laparoscopic surgery carried out from platforms such as the da
Vinci surgical system has been widely used to treat patients. This treatment app-
roach uses preoperative imaging for diagnosis and planning purposes. Experts
in [19] emphasize that surgery is spatial manipulation, and that a system which
can combine information from multiple modalities and present it in way that
gives surgeons the best spatial awareness possible would be very useful. Surgeons
report using preoperative imaging for surgical planning, to build a mental map
of the anatomical structures. They then constantly refer to it during surgery by
merging, in their mind, the current laparoscopic view and the preoperative infor-
mation to make critical decisions. Our interactions with the surgeons performing
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Robot Assisted Laparoscopic Prostatectomy (RALP) revealed that pinpointing
the interface of the prostate with the neurovascular bundle can be very chal-
lenging. Recognizing the ideal point of incision in the prostate-vesical junction
is a difficult but critical task especially in the presence of prostate cancer at the
prostatic base, or a median prostatic lobe that is outside the direct field of view.
During RALP procedure, a surgeon might have to periodically step away from
the robot’s console and consult the preoperative MRI data to plan their next
course of actions. This involves the surgeons scrolling through MRI stacks on
a 2D monitor provided by picture archiving and communication (PAC) system
in order to spatially orient their current position with respect to the prostate,
tumor and other critical anatomy. To expedite this process and present the pre-
operative information to the surgeons in a more effective way, we have developed
a Mixed Reality system for assisting laparoscopic radical prostatectomy.

Cohen et al. conducted a user study which indicated that augmenting pre-
operative data onto the surgeon’s view during RALP is useful [3] at key stages of
the procedure. Augmented Reality (AR) systems that combine pre-operative and
intra-operative information by overlaying virtual pre-operative objects on real
intra-operative scenes have received significant attention from researchers as a
tool to assist surgical procedures, specially robotic assisted procedures [5,10,20].
Alignment of pre-operative and intra-operative data which forms a very critical
part of such AR systems are usually prone to errors and thus can be misleading
or distracting. While augmenting surface features of the organ would still be
useful, visualizing the features under the surface of the organ is still challeng-
ing, and with an augmented reality system the surgeon is still limited to only a
few viewing angles (defined by the position of the laparoscope) of the aligned,
augmented imagery. Virtual Reality (VR) systems have been typically used to
run simulation for training surgeons for robotic surgery (MDVT-Mimic da Vinci
Trainer) [12,15]. VR has also been used to spectate as well as for remote guid-
ance (VIPAR) [17] during robotic surgical procedures for training and education
purposes. It has also been used as a tool to view 3D pre-operative data for diag-
nosis and planning purposes. While VR provides an effective framework to view
and explore pre-operative data, it does not fuse pre-operative and intra-operative
data thus limiting its applicability during surgery. Keeping these limitations of
AR and VR in mind we have developed a Mixed Reality (MR) system which is
intended to be used during surgery to guide the procedure. It is designed to sup-
plement or replace the 2D monitors used by the surgeons periodically during the
procedure for consulting pre-operative data to asses their current state and plan
future actions. Augmenting the intra-operative data into the virtual environment
with pre-operative data presents all the required information is the same space.
The system also provides enhanced visualization and interactive abilities.

2 System Components

The proposed MR system for RALP has the following modules: Shape
Modeling , Stereo Reconstruction , Shape Registration and Interactive
Visualization .
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Shape Modeling Module: 3D rendering and registration of the shape
extracted from MRI data requires a dense and complete surface. Preoperative
MRI image stacks are semi-automatically labeled by experts, giving us a series
of 3D contours with low resolution in the Z-direction of the stack, but these are
neither dense nor complete surfaces. To facilitate visualization and registration
we model patient specific prostate shape using the hybrid shape model proposed
in [13] which is a combination of Extended Superquadrics (ESQ) and Radial
Basis interpolation Function (RBF). Fitting the model involves first estimating
parameters of the ESQ and then using the residual error to solve for the RBF
parameters. Once the model is fit, the points on the surface of the shape satisfy
the equation

F (x, y, z)
ε1
2 + G(x, y, z) = 1. Where, (1)

F (x, y, z) =

[( |x|
a

)2/ε2

+
( |y|

b

)2/e2
]ε2/ε1

+
( |z|

c

)2/ε1

and (2)

G(x, y, z) =
N∑

j=1

wjλ(dj). (3)

G(x, y, z) corresponds to the RBF where λ is a Gaussian with compact sup-
port, dj is the cosine distance of (x, y, z) from the jth RBF center, wj is a
weight associated with jth RBF center. F (x, y, z) corresponds to the ESQ and
its parameters include size parameters (a, b, and c), and exponents (ε1 and ε2)
which are cubic spline interpolation functions. To reconstruct the shape from
the shape model parameters, we use geodesic domes based on an icosahedron
that generate approximately uniformly spaced points on a sphere. These points
are first projected onto the ESQ and then scaled using the RBF function. Given
the points on a geodesic dome D, they are used to reconstruct the shape S as
shown below.

S =
D

F (D)
ε1
2

· (1 − G(D)). (4)

The geodesic dome also gives us the triangular faces for constructing the mesh.
The point resolution of the reconstructed shape is controlled by the dome fre-
quency. This representation allows us to model the 3D shape of annotated MRI
imagery, and quickly generate a meshed surface and point cloud of desired res-
olution for rendering and registration respectively.

The hybrid shape model was used to model the glands and organs but it was
not best suited for vascular structures. For vascular structures like the Neuro-
Vascular bundle we employ Iso-surface fitting and Poisson surface interpolation
[11] to reconstruct the entire 3D surface from labeled contours. We construct a
uniformly sampled 3D volume of size L × B × D where L and B are the height
and width of the MRI stack and D is the number of labeled 3D contours. The
value at a voxel in the volume is set as 0 if it lies within the contour else set as
the distance to the nearest in-plane contour point. An Isosurface is fit to this
volume, normals are estimated at the contour points, the contour points along
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with their normals are transformed from image space to metric space and finally
Poisson surface reconstruction is performed to recover the dense 3D surface mesh
for visualization.

Stereo Reconstruction Module: The da Vinci surgical system uses a high
resolution stereoscopic laparoscope which captures two images at 1280× 1024
resolution. This allows for 3D reconstruction using stereo reconstruction meth-
ods. The stereo laparoscope is calibrated using Zhang’s calibration method [22].
We follow the traditional shape from calibrated stereo pipeline [8], using semi-
global block matching algorithm [9] for computing stereo disparity from recti-
fied images. The reconstructed point cloud is noisy and has errors. We place a
depth threshold to eliminate distant points reconstructed erroneously, then we
use DBSCAN [6] to find dense clusters to remove noise and erroneous points.
The processed point cloud is used as the target shape to register the preoperative
shape. For visualization, we perform Delaunay triangulation of the reconstructed
points in the image space to define a triangular mesh. The dense reconstructed
points from stereo are connected using the computed triangular mesh, triangles
that are too large or are too narrow and elongated are removed as these might
correspond to discontinuities in depth. This allows us to render the stereo model
as mesh with texture corresponding to the input image frames.

Shape Registration Module: To help surgeons spatially orient themselves to
the surgical area, we align the shape from MRI to the surface of the prostate as
seen through the laparoscope. This allows surgeons to visualize the position of the
tumor and the spatial relation to other critical organs around the prostate. There
have been different approaches to align preoperative data to laparoscopic data.
The imaging modalities are pre-calibrated and the laparoscopic camera tracked
to initially align and maintain alignment [7,21]. In these approaches, tracking
can be error prone due to large camera motion and deformations of the organs.
Point correspondences between preoperative and live images are used to find the
transformation for alignment [16]. The lack of correspondences, occlusions and
noise affects the robustness of such methods. Fiducial markers can be used for
correspondences [18]. In [21], multi-modal registration technique is used. Imaging
modality such as the 3D ultrasound is used in which identifying the prostate
boundary is relatively easy. The two modalities are calibrated with each other,
and the live camera is tracked to maintain alignment. Using fiducial markers and
imaging modalities such as the 3D ultrasound might not be preferred during the
surgery as they are intrusive. Su et al. [20] use manual initial alignment followed
by ICP [1,2] based refinement using manually marked or automatically detected
key points on the surface of the organ. This approach requires identifying key
points used for alignment. In our case, when the surgeon is using the system, the
anatomical structures are no longer being manipulated, and there are no active
deformations of the organ that needs to be tracked. So we use the landmark
free registration approach proposed in [14], which we found to work better than
ICP for our data. This method requires no additional equipments, no known
correspondences, and is robust to outliers and small scale non-rigid deformations.
The method uses fuzzy correspondences to solve for the transformation that
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maximizes the overlap between the two shapes. Since the method is designed to
work for point clouds, the implicit form of the shape from MRI is used to generate
uniformly spaced points on the surface of the prostate. The transformation is
initialized using prior knowledge of the scene; the surgeon’s view of the prostate,
using the standard laparoscope placement for RALP, has the apex at the top, the
bladder at the bottom and the rectum behind the prostate. Once registered, the
shape from MRI and the shape from stereo can be visualized in the interactive
mixed reality system.

Visualization Module: We have used the Unreal Engine 4 to develop an inter-
active application. Within the application surgeons can view the current recon-
structed stereo view, the MRI shape, and stereo shape registered to the MRI
shape. Meshes are rendered using different material properties to emphasize
organ differences. The prostate is rendered as a wire-frame, giving it a readily
identifiable 3D shape, but also to create a form of transparency that allows the
surgeon to see occluded surfaces of other organs. Other organs are rendered in
contrasting colors, with specular and diffuse components to allow users to intu-
itively understand the 3D shape. The textured stereo model is rendered using
purely emissive color so artificial shadows and shading are not a problem. The
Unreal engine supports a wide variety of hardware including major head mounted
device (HMD) for visualization, and supports motion controls. This means our
application allows the surgeon to hold the models and manipulate it using intu-
itive motion controls for grabbing and manipulating. If the surgeons think that
the shape alignment is incorrect they can also manually align them in the mixed
reality application. The application supports standing and room scale interface,
allowing surgeons to lean, physically walk around, or virtually teleport using
motion controls. This allows for novel viewing points that can help the surgeons
to visualize patient specific anatomy better.

3 System Evaluation

In this section we will discuss our evaluation approach for the proposed system.
This includes performance evaluation, user evaluation, and a feasibility test per-
formed by deploying the system during 9 RALP procedures. A recording system
was developed that can connect to the stereo DVI output ports of the da Vinci
surgical system. We have selected individual stereo pairs of key portions of the
9 procedures for our evaluation.

Shape Representation Module: The shape model is fit to MRI data offline
before the procedure begins. We fit the shape model to points extracted from
MRI data. A model with 294 parameters took, on average, 7.5 s to fit to the 3D
points with an average error of 0.36 mm.

Stereo Reconstruction Module: We evaluated the stereo reconstruction
module by reconstructing 24 video sequences of 12 frames each. The dispar-
ity range for semi global block matching algorithm was set to [−160, 160]. Stereo
reconstruction of the laparoscope image pair, meshing of the reconstructed point
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cloud and noise removal takes, on average, took 10.6 s to run per frame. An image
pair produces approximately 10000 to 20000 points with about 20000 to 40000
triangular faces. We only reconstruct every 5th pixel in the image which still
gives us a dense enough mesh for visualization.

Shape Registration Module: We evaluated the registration scheme on data
from total 9 patients. The shape registration module takes, on average, 21.5 s
to align the stereo reconstructed model to the shape model from MRI. The
registration process is a hierarchical approach which starts with a low resolu-
tion model of the point clouds and moves to progressively higher resolutions.
We run the registration method with 2 levels of hierarchy. This was sufficient
since the initialization, based on the prior knowledge of the scene, leads to good
registration. For registration we used points on the stereo shape that were recon-
structed from the central 40% of the image as these points mostly corresponded
to the prostate. To measure the accuracy of the registration scheme, we use
the cloud compare utility [4] to measure distances between the reconstructed
prostate points and the aligned prostate surface from MRI. The mean error of
registration was 1.45 mm. Figure 1 shows sample histogram of registration errors
for one of the patients data.

Fig. 1. Shape registration accuracy: shown from left to right are, aligned prostate
regions from stereo and MRI, points from stereo prostate shape color-mapped based on
the distance to the prostate surface from MRI, and histogram showing the distribution
of distances.

Visualization Module: Performance in mixed reality is critical as drops in
frame rate can lead to nausea, and user discomfort. The shape model and stereo
reconstruction can both be tuned to modify the density of the models allowing
us to choose for higher quality or less computational load. We have settled on
125, 000 polygons for our application, as this allows us consistent frame rate with
dense looking models. Our application supports both the Oculus Rift CV1 with
touch controls and the HTC Vive, and allows for standing and room-scale on
both platforms. The application maintains a consistent 90 frames per second on
the visualization platform, which is the maximum supported frame rate for both
the Oculus Rift and the Vive. This frame rate maximizes user comfort and none
of the experts reported motion sickness or any other discomfort.

User Evaluation: We presented the application to a group of 7 experts which
included surgeons and radiologists. Each user was given a few minutes to move
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around and explore the mixed reality space and interact with the models. After
having an opportunity to experiment and view the application, they were given
a survey asking about their experience and preferences. After experiencing our
system, every expert who was polled liked the application and felt that they
could better orient themselves spatially. Many pointed out anatomical features
unique to the patient that would influence how they proceed. While the sys-
tem automatically aligned pre-operative and intra-operative shapes, the ability
to manually align the models quickly using intuitive motion controls was also
deemed useful (Fig. 2).

Fig. 2. A screen shot showing a surgeon interacting with the system.

Feasibility Test: The system described above was deployed during 9 RALP
procedures. To our knowledge this was the first time ever such a system was
used during the procedure. The imaging platform was connected to the da Vinci
surgical robot through the passive DVI output ports to collect and process stereo
images from the laparoscope. The Visualization platform was set up in one of the
corners, away from the surgical table and close to the robot’s console. The setup
did not interfere with the procedure or the functioning of the robot. The stereo
laparoscopes were calibrated prior to being used in the surgery. Pre-operative,
segmented MRI (axial with resolution of 0.23× 0.23× 3 mm) data was provided
to us 1–5 days prior to the procedure. 3D shape of the anatomical structures
were reconstructed from the labeled contours and were available for visualization
before the surgery. During surgery, when the surgeon found the need to consult
pre-operative data, he requested for it. Our system, then captured the current
view of the surgery, performed stereo reconstruction, ran shape alignment, and
then loaded the models into the mixed reality application. Once ready the sur-
geon interacted with the models in the virtual space to plan his/her next course
of actions. During the course of a procedure, a surgeon typically used our sys-
tem 4 times: (i) Before the surgery, he/she interacted with the 3D anatomical
models extracted from pre-operative MRI to build a plan for the surgery. (ii)
When the prostate was first visible, to re-confirm the spatial relation between
critical anatomical structures. (iii) Prior to bladder neck sparing, to visualize
the interface between the prostate and the bladder before separating the bladder
from the prostate. (iv) Prior to apical dissection, which involves separating the



Mixed Reality Guidance For RALP 171

prostate from the urethra. Our system took approximately 3 minutes from the
time of initiating stereo image capture to being able to view the models in virtual
space. This includes the time spent verifying the outputs of each module before
visualizing them. The system, when run end-to-end takes less than a minute
from capture to visualization. The surgeons spent approximately a minute using
the application each time, during the surgery. They stated that it was easy for
them to use the system and the turnaround time was quicker than anticipated.
The surgeons stated that, the tool helped visualize the spatial relation between
anatomical structures and orient better during the surgery.

4 Results and Discussion

Procedures in all 9 deployments of the system were successfully completed with-
out any complications. Our system integrated into the current work-flow of the
surgery by replacing/augmenting the 2D monitors and mouse interface of the
PAC system with a full immersive and interactive 3D visualization that assists
surgeons during surgery. The alignment of the 3D models lets them quickly local-
ize spatially within the surgical area seen through the laparoscope and strategize
on how to move forward with the procedure. The alignment proposed by our
system was deemed correct for 7 patients, one of them was slightly mis-aligned
which they had to correct manually and one of them had failed alignment due
to inaccuracy in stereo reconstruction caused by blood/fat lodging on one of the
camera’s lens. During the feasibility study, on multiple occasions, the surgeon
explained how the system helped him make a quick decision on the approach
to take, which would not have been possible for him to do without our system.
For example, in one of the cases the surgeon conducted a wider excision of the
Neuro-Vascular bundles (NVB) based on the information he saw using our sys-
tem that the lesion had invaded the NVB (see Fig. 3). Similarly, in another case,
based on the information the surgeon saw in our system he conducted wider
excision of the bladder neck (see Fig. 4). Both these pieces of information were
not clear when looking at the MRI stack and the laparoscopic images separately.

One of the major criticisms of the system was that it required an external
HMD and motion controllers to visualize and interact with the models. The
surgeons stated that it would be more convenient if the visualization and the
interaction can be done at the robot’s console.

We see the advantages of using our system being two-fold. One, it helps
improve patient health and two, it is a convenience for the surgeons perform-
ing the procedure. While a broader randomized study is required to evaluate
the effectiveness of the system in improving patient health, the results from the
feasibility study indicate that such a system would help surgeons make deci-
sions during the procedure thus being a convenience tool. This is encouraging to
continue developing and improving the system.
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Fig. 3. (A): Surgeon’s view before nerve sparing. Marked by letter N is the NVB
and by letter P is the prostate gland. (B): Intra-operative and Pre-operative models
aligned (White mesh: prostate, Pink: rectum). (C): Different view of the aligned models
(Yellow: NVB Black: tumor). It can be seen that the tumor is extending into the NVB.
(D): A close up of the model as seen in the HMD by the surgeon (Blue: urethra,
Magenta: prostate, Yellow: NVB, Black: Tumor, Beige: seminal vesicle and in Pink:
rectum). (Color figure online)

Fig. 4. From left to right: (1) Surgeon’s view before bladder neck sparing. (2) aligned
pre-operative and intra-operative models. (Magenta: prostate, Green: bladder). (3–4)
Different views of pre-operative models showing tumor extending into bladder (Gray:
Tumor). (Color figure online)

5 Conclusion and Future Work

We have developed a system which fuses pre-operative and intra-operative image
data and presents it in a virtual 3D space for visualization and interaction using
HMD and motion controllers to surgeons performing RALP. Through a feasibil-
ity study we have shown that the system could help improve spatial awareness
during surgery and also help in making decisions at key stages of the procedure.
To our knowledge this was the first time that such a system was deployed during
RALP. Moving forward we are working towards developing a system that can
integrate the visualization and interaction module into the surgical robot’s con-
sole. We also wish to study the effectiveness of the system in long term patient
outcome.
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Abstract. The deep brain stimulation (DBS) is a symptomatic treat-
ment technique used mainly for movement disorders, consisting of chronic
electrical stimulation of subcortical structures. To achieve very pre-
cise electrode implantation, which is necessary for a good clinical out-
come, many surgical teams use electrophysiological recording around the
assumed target, planned in pre-operative MRI images. In our previous
work, we developed a probabilistic model to fit a 3D anatomical atlas
of the subthalamic nucleus to the recorded microelectrode activity in
Parkinson’s disease (PD) patients. In this paper, we extend the model
to incorporate characteristic landmarks of the target nucleus, manually
annotated in pre-operative MRI data. We validate the approach on a set
of 27 exploration five-electrode trajectories from 15 PD patients. The
results show that such combined approach may lead to a vast improve-
ment in optimization reliability, while maintaining good fit to the electro-
physiology data. The combination of electrophysiology and MRI-based
data thus provides a promising approach for compensating brain shift,
occuring during the surgery and achieving accurate localization of record-
ing sites in DBS surgery.
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1 Introduction

The deep brain stimulation (DBS) is a well established treatment method for
late-stage Parkinson’s disease (PD), essential tremor, dystonia and other move-
ment disorders. It consists of surgical placement of a permanent stimulation
electrode into subcortical structures and chronic electrical stimulation using a
stimulator implanted commonly in the chest cavity. In order to achieve a high
level of symptom suppression with low side-effects, a highly accurate positioning
of the stimulation contact is necessary, yet challenging. In case of the DBS for
PD, which is the main focus of this study, the most common target – the sub-
thalamic nucleus (STN) – is around 10 mm long along its longest axis and has
a relatively low contrast in pre-operative MRI scans (see Fig. 1). Moreover, the
optimal stimulation target is even smaller and lies in the dorsolareral motory
subregion of the STN.

A typical implantation procedure starts with a pre-operative MRI scanning,
which is used for target nucleus localization and surgical planning. In order to
mitigate brain shift and other inaccuracies, occurring during the surgery, most
surgical teams then employ intra-operative microelectrode recording (MER) of
electrophysiological activity in the vicinity of the planned target, using typically
up to five parallel microelectrodes. In clinical practice, the individual MER sig-
nals are evaluated manually by a neurologist and the target nucleus is identified
based on a characteristic firing pattern.

Over previous years, researchers have suggested several automatic classifica-
tion methods for the MER signals, based most commonly on signal power and
spectral properties of the MER, some of which got recently included into clini-
cal software tools for microexploration [1,2]. Despite the apparent benefits these
methods may have for implantation efficiency, they provide no spatial mapping of
the electrophysiological findings or explicit MER localization within the nucleus,
necessary for both clinical and research applications.

In our recent study [3], we presented a probabilistic model, which allows map-
ping of an anatomical STN atlas to the recorded multi-electrode MER directly
and thus provides MER classification and localization at the same time. However,
due to the inherent anisotropy and low spatial distribution of the MER (we used
a common “Ben-gun” setting with 5 parallel MER trajectories, spaced 2 mm
apart in a cruciform configuration, with signals recorded at steps of 0.5 mm),
the MER data provide accurate information about size of the STN along the
axis of the electrodes around the planned target but provide substantially less
information about the shape of the STN in other anatomical directions.

In this paper, we investigate the possibilities of fusion of our previous model
with additional information obtained from the pre-operative MRI imagery, by
combining atlas rotation and scaling based on pre-operative MRI landmarks
with additional position refinement and brain shift estimation using the MER
data. We validate the properties of the extended models on a set of 27 multi-
electrode trajectories from 15 PD patients. As both approaches are not without
limitations, we also outline the possibility to perform a complete fusion of MRI
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and MER data to estimate the patient-specific stn shape, as well as the brain
shift directly at the same time.

Fig. 1. Illustration of STN size and contrast in an axial slice of pre-operative
T2-weighted MRI image: STN contour (red, right hemisphere) and characteristic
hypointensity (green circle, left hemisphere) (Color figure online)

2 Methods

2.1 Common Definitions

Throughout this text, we use transformation vector r with 9 degrees of freedom
to transform a 3D surface-based atlas into patient-specific coordinates.

r = [t, s,γ], (1)

where t = [tx, ty, tz] is the translation, s = [sx, sy, sz] scaling and γ = [γx, γy, γz]
rotation along/around the x (medial → lateral), y (posterior → anterior) and z
(ventral → dorsal) axis. We use the 3D STN atlas from [4] in a form of standard
3D triangular mesh but any surface-based STN atlas can be used as well. As
a reference, we use a set of 12 characteristic STN landmark points (plus the
anterior and posterior commissure: AC and PC) as in [5], which were identified
by an experienced neurologist on the atlas, as well as on pre-operative MRI data
of each patient.

The MER recordings are represented in the feature vector x = {x1, ..., xN},
recorded at corresponding spatial locations L = {l1, ..., lN }. The vector x con-
sists of a single feature, the normalized signal root-mean-square of the whole
MER signal (NRMS) as in [6]. For the purposes of validation, we use manual
annotation of each MER signal as STN or non-STN, done by an experienced
neurologist during the surgery.
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2.2 Imaging-Only Method (allPoints)

As a reference, we use a method based solely on pre-operative MRI data and
STN landmark points annotated therein, the allPoints. This method uses 12
characteristic landmarks on the STN boundaries, defined previously in [5] and
coordinates of the anterior and posterior commissure. The method then finds
a full 9-DOF transformation to minimize the least-square distance between the
characteristic points on the atlas and in given patient’s manually annotated
MRI data.

2.3 Basic Electrophysiology-Only Model (nrmsCon)

This model forms the basis for the extended models below and has been presented
in our previous paper [3]. Simply put, the model shifts, scales and rotates and
the 3D atlas around the MER recording sites in a way that the high NRMS
values are encapsulated in the STN atlas volume and the low NRMS values are
excluded (owing to the higher neuron density and thus higher NRMS values
inside of the STN).

In more formal terms, model assumes different distribution of NRMS val-
ues observed inside and outside of the STN (emission probabilities, modeled
using separate log-normal distributions), and fuzzy boundaries of the STN atlas
(membership probabilities modeled using a logistic function). These parameters
form together the parameter vector Θ, which is estimated from training data. In
order to fit the atlas to MER recordings of a particular patient (NRMS values x
measured at locations L), the model finds parameters r∗, which maximize the
likelihood, defined as:

r∗ = arg max
r

L(r|{x,L},Θ) = arg max
r

p({x,L}|r,Θ) (2)

where the probability of a single observation {xi, li} being in state s is given by
the product of the emission probability and membership probabilities

p({xi, li ∈ s}|r,Θ) = p(xi|li ∈ s, r,Θ) · p(li ∈ s|r,Θ) (3)

The joint probability for a single observation is then computed as a summa-
tion over both states possible states (INside and OUT side the STN):

p({xi, li}|r,Θ) = p({xi, li ∈ IN}|r,Θ) + p({xi, li ∈ OUT}|r,Θ) (4)

To compute the joint probability of the whole observation sequence of N
MER, we näıvely assume conditional independence given model parameters and
compute the joint probability as:

p({x,L}|r,Θ) =
N∏

i=1

p({xi, li}|r,Θ) (5)

The maximum shift is constrained to ±5 mm in any direction, maximum
scaling to ±25% in each direction and rotation maximum ±15◦ around each axis,
the model is thus abbreviated nrmsCon. For more details on model structure
and fitting, please refer to the aforementioned publication [3] or the thesis [7].
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2.4 The Proposed Combined Model (nrmsBrainShift)

We introduce the following way to fuse the electrophysiology-based model with
prior information about STN size and rotation, contained in the pre-operative
MRI landmarks: In the first step, the allPoints landmark-based transformation is
used to compute atlas scaling and rotation. Subsequently, the MER-based model
described above is used to estimate the translation parameters t, and thus to
estimate the brain shift. The model is also capable of additional modification
of the scaling and rotation parameters, which are regularized. The probability
density function for all observations from Eq. (5), is modified as follows:

p({x,L}|r, Θ̂) =
N∏

i=1

p({xi, li}|r, Θ̂) ·
∏

m∈{s,γ}
p(rm|Θ̂)w, (6)

where the additional term p(rm|Θ̂) penalizes deviation from the initial allPoints
scaling and rotation, using likelihood of the normal distribution (p(rm|Θ̂) =
1/

√
2πσ2

m · exp(− (x−rm)2

2σ2
m

)), centered at the initial value of given parameter
rm, with standard deviation σm estimated from the training data and stored
in the extended parameter vector Θ̂. The exponent w represents a weight-
ing parameter, which can be used to set the trade-off between MER-based
(w → 0) and MRI-based (w → ∞) fitting. We evaluated the results for
w ∈ {0, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}.

2.5 Performance Evaluation

In order to estimate the out of sample performance of the proposed method
and due to the relatively small sample size (in terms of whole patient sets),
we employed the leave one subject out (LOSO) procedure. In each iteration we
kept one subject’s data (maximum two 5-electrode trajectories for bi-laterally
implanted patients) for model fitting and evaluation, while all other data were
used to obtain the parameters Θ.

To compute performance metrics, we use two approaches:

(i) Machine-learning metrics where we count the number of STN MER
recordings (according to expert MER labels), correctly encapsulated in the
atlas volume at the final position (true positives), or falsely excluded from
the atlas volume (false negatives). True negatives and false positives are
computed analogously from the non-STN labeled MERs. Standard perfor-
mance measures are calculated: sensitivity, specificity and accuracy.

(ii) Evaluation of transformation parameters, obtained from the tested
model, compared to least-squares transformation of the atlas to the STN
landmark points in the pre-operative MRI data of given patient (see the
allPoints method below). Here, we assume that the pre-operative data pro-
vides accurate information about the rotation and scaling of the atlas, but
does not provide a good estimate of the translation vector t due to the
non-negligible brain-shift.
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3 Results and Discussion

3.1 Collected Data

For validation of the method, we use a dataset from 27 explorations in 15
PD patients with complete 3D information and another 9 explorations from 4
patients without information on spatial recording locations, used in the training
phase to estimate Θ (or Θ̂) only. But was excluded from validation. Altogether,
we used 175 electrode trajectories and 4538 recorded MER signals from 19 PD
patients.

Table 1. Classification results (LOSO validation-set)

Method w Accuracy Sensitivity Specificity

Mean (sd) Mean (sd) Mean (sd)

allPoints 78.7 (8.7)% 44.6 (19.8)% 92.3 (4.9)%

nrmsCon 88.0 (5.3)% 68.3 (14.6)% 95.6 (5.4)%

nrmsBrainShift 0 88.3 (5.4)% 69.8 (14.1)% 95.5 (5.6)%

0,1 86.6 (5.4)% 60.7 (15.0)% 96.6 (3.2)%

1 86.4 (5.7)% 60.6 (15.1)% 96.4 (3.4)%

Fig. 2. Evaluation of the dependency of the proposed nrmsBrainShift method on the
weighting parameter sigma, by computing Pearson’s correlation coefficient for each
transformation parameter with the reference allPoints method for varying values of
the weighting coefficient w. Note that the translation parameters tx, ty,tz are not
penalized and are thus unaffected by the value of w.
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Fig. 3. Examples of model fit using the proposed nrmsBrainShift method (left), fusing
electrophysiology data with MRI landmarks, the MRI-landmark-only allPoints method
(center) and the electrophysiology-only nrmsCon (right) on data from patient No. 5
(right STN). The final STN atlas position after fitting is shown in purple, width of the
five microelectrode trajectory cylinders denotes the NRMS value, while colors denote
manual labels: STN in yellow, non-STN in grey. MER positions inside the result-
ing model are denoted by black points, planned target by red o. The nrmsBrainShift
method provides an anatomically more reasonable fit at the cost of slightly lower accu-
racy. (Color figure online)

3.2 Fitting Results

The classification results on validation data is shown in Table 1. Although the
electrophysiology-based nrmsCon achieves much better fit to the electrophysiol-
ogy data, than the MRI-based allPoints method, there was almost no correlation
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of the scaling and rotation parameters with the reference allPoints method. As
we assume the prevailing source of inaccuracy during surgery to be due to dis-
placement, rather than deformation, we expected the only differences in terms
of shift/translation. On the presented dataset, the nrmsCon model achieved the
pre-set optimization constraints (min/max scaling and rotation) in 47 cases,
which accounted for more than 30% of the fits (and 19 out of 27 trajectories).
The method apparently leads to overfitting, providing good classification at the
cost of diverging from anatomically reasonable transformation.

In contrast, the newly proposed combined nrmsBrainShift technique achieved
only slightly lower classification accuracy, while maintaining reasonable trans-
formation - a fact illustrated also in the Fig. 2.

The impact of the weighting coefficient on divergence from anatomically rel-
evant location is illustrated in Fig. 3. While high values of w lead to a highly
constrained fit, where the only changes are in the translation parameters, low
values of w lead to more flexible fit to the MER data at the cost of lower verac-
ity of the transformation. Comparing the properties to the Table 1, it is clear
that increasing w towards one leads to only a minor drop in classification accu-
racy, and a more marked drop in sensitivity. Overall, the sensitivity is the most
problematic parameter for all methods, which is likely due to the inability of the
model to adapt more flexibly to patient-specific STN shapes.

4 Conclusion

While the previously published electrophysiology-only nrmsCon model [3]
proved electrophysiology-based fitting feasible, a subsequent detailed investiga-
tion revealed strong overfitting with too harsh model transformation, leading to
unlikely results.

Fortunately, the proposed model using the pre-operative landmarks to ini-
tialize (and potentially constrain) the fitting, achieves comparable accuracy - i.e.
ability to correctly contain STN-labeled MER locations - while maintaining
anatomically accurate scaling and rotation. The main drawback of the method
is thus in the necessity to identify the 12 landmark points in pre-operative data.
We believe, that similar probabilistic framework could be used for direct auto-
matic fusion of pre-operative MRI data, which would eliminate the need for the
manual landmark labelling and increase the ability of the model to adapt to
inter-individual differences in STN shape.

Overall, the fusion of pre-operative MRI data with electrophysiology pro-
vides a promising option for increasing accuracy of electrode localization both
intra-operatively, as well as during offline evaluation in research studies on DBS
mechanisms and STN physiology.
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Abstract. Twin-to-twin transfusion syndrome (TTTS) is a complica-
tion of monochorionic twin pregnancies in which arteriovenous vascular
communications in the shared placenta lead to blood transfer between
the fetuses. Selective fetoscopic laser photocoagulation of abnormal blood
vessel connections has become the most effective treatment. Preopera-
tive planning is thus an essential prerequisite to increase survival rates
for severe TTTS. In this work, we present the very first TTTS fetal
surgery planning and simulation framework. The placenta is segmented
in both magnetic resonance imaging (MRI) and 3D ultrasound (US) via
novel 3D convolutional neural networks. Likewise, the umbilical cord
is extracted in MRI using 3D convolutional long short-term memory
units. The detection of the placenta vascular tree is carried out through
a curvature-based corner detector in MRI, and the Modified Spatial
Kernelized Fuzzy C-Means with a Markov random field refinement in
3D US. The proposed TTTS planning software integrates all aforemen-
tioned algorithms to explore the intrauterine environment by simulating
the fetoscope camera, determine the correct entry point, train doctors’
movements ahead of surgery, and consequently, improve the success rate
and reduce the operation time. The promising results indicate potential
of our TTTS planner and simulator for further assessment on clinical
real surgeries.

Keywords: Twin-to-twin transfusion syndrome
Fetal surgical planning and simulation · MITK
Computer vision · Deep learning
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1 Introduction

Twin-to-twin transfusion syndrome (TTTS) is a rare and fatal condition that
affects around 10–15% of monochorionic twin pregnancies between 16–26 weeks
of gestation. This syndrome is caused by the presence of small anastomoses
in the placenta vasculature that let the twins exchange an unbalanced blood
flow [1]. The most effective treatment of severe TTTS is fetoscopic laser
photo-coagulation and it consists in closing blood vessels connecting the twins.
Nevertheless, in up to 33% of operated pregnancies, some inter-twin vascular
connections remain open causing a recurrence of the TTTS [1].

TTTS surgery is very complex and risky because of several constraints to
the fetal clinical setting. Firstly, the placenta position, size and shape greatly
varies between pregnancies. Secondly, there is a tiny space to move the fetoscope
and the field-of-view is limited. Thirdly, the exact localization of the vessels to
coagulate is usually not known ahead of surgery [2]. If the surgeon is not able
to reach and coagulate all the anastomoses, reentry in a different point is not
allowed (i.e., one-shot procedure), as it is associated with high mortality [1].
Hence, the choice of the entry point is the most critical factor of the intervention
as it directly affects the fetoscope maneuverability and the possibility to reach
all the anastomoses.

Prenatal evaluation of placental abnormalities is mainly performed by Ultra-
sound (US) B-scan and Doppler images. US allows fast assessment of the fetus
and appears to be safe when following clinical guidelines. TTTS diagnosis can
also benefit from fetal magnetic resonance imaging (MRI), which offers out-
standing visualization of both the fetal anatomy and its tissue characterization.
However, it has limited availability and does not provide complete real-time
imaging although dynamic sequences can be acquired [3]. The registration and
fusion of MRI with real-time US can therefore be of interest in prenatal diagnosis
of targeted anastomoses during the laser ablation therapy.

Related Work. The work proposed by [4] illustrated the feasibility of planning
the TTTS preoperative phase with MRI and computerized volume rendering.
Authors studied and rendered the anatomy of each amniotic cavity and fetus,
the umbilical cord insertions and the location of the inter-twin membrane in
relation to the port placement. The optimum port entry point was calculated,
as well as the length and angle required to reach the target region. However,
authors did not implement a user-specific application to provide real functional-
ity and visualization. Also, they did not segment the placenta vasculature which
plays a key role in TTTS fetal surgery. The presented study was not validated
quantitatively as the 3D reconstructions were performed almost manually.

Contribution. In this paper we present the first TTTS planning software ori-
ented to clinical use. Novel computer vision and deep learning algorithms are
integrated to create a 3D model of the womb including the placenta and its vas-
cular tree, and the umbilical cord of both twins, extracted from MRI and 3D US.
The fetoscope entry point is estimated taking into account the cord insertions
located on the placenta surface. Our framework is also capable to simulate the
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movements of the fetoscope and the camera visualization to explore the entire
placenta volume. Therefore, our TTTS planning software can aid fetal surgeons
to know more about the intrauterine environment (i.e., placental vascular tree,
boundary between the vascular hemispheres), determine a suitable entry point,
train the fetoscope movements before the intraoperative phase, and consequently,
successfully improve the performance rate and reduce the surgery time.

2 Methods

The TTTS surgical outcome depends greatly on choosing the right entry point
so that all the anastomoses can be individuated and properly coagulated. To
plan the ideal insertion point, we developed an application to load MRI and
3D US images and create a personalized 3D model of the mother uterus. It
also provides tools to explore the best entry point and simulate the surgeons’
fetoscope movements, calculating the probability that all the targets can be
favorably reached. The following subsections describe our software (see Fig. 1).

Pre-processing

Super-resolution 
reconstruction

Placenta segmentation
3D CNN

Umbilical cord segmentation
3D CNN LSTM

Vessels segmentation
Corner detector

Module 1. Fetal MRI

Placenta segmentation
3D CNN

Vessels segmentation
MSKFCM and MRF

Module 2. Fetal 3D US

Pre-processing

Placenta registration
Signed Distance Maps

Vessels registration 
Signed Distance Maps
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+

Module 4. TTTS planning

Module 5. TTTS simulation

Insert 
fetoscope

Choose best 
entry point

Explore 
placenta model

Simulate
fetoscope view

Save surgery 
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Save 
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Fig. 1. Modules of our TTTS preoperative planning and simulation framework.

Module 1. Fetal MRI. The acquisition of 3D MRI is challenging in fetal setting
because maternal respiratory motion and fetal movements cause motion artifacts
between individual slices. To reduce this effect, we acquire several stacks for the
whole womb in axial, sagittal and coronal views. Those stacks are resampled to
0.75 × 0.75 × 3.5 mm3, normalized, denoised and fused together using a super-
resolution reconstruction method [5].

Once the MRI is reconstructed a 3D Convolutional Neural Network (CNN)
[6] to automatically segment the placenta is defined as follows:

f(
[
v, {s(j)}j∈A

]
; θ) = fout ◦ fL ◦ ... ◦ f2 ◦ f1 ◦ f(

[
v, {s(j)}j∈A

]
; θ1), (1)
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where ◦ denotes the composition operator, θ represents the CNN parameters,
and the output is a binary value indicating whether the voxel belongs to the
placenta or not. Each network layer in Eq. 1 contains a set of filters, with each
filter being defined by:

x(l + 1) = fl(x(l); θl) = σ(W�
l x(l) + βl), (2)

where σ(.) represents a non-linearity, Wl and βl denote the weight and bias
parameter, and x(1) =

[
v, {s(j)}j∈A

]
. The last layer L of the model in Eq. 1

produces a response x(L + 1), which is the input for fout(.) that contains two
output nodes, where layers L and out are fully-connected. The training of the
model minimizes the binary cross entropy loss.

Small vessels are also quite difficult to recognize in MRI scans, because the
size of their lumen is close to the spatial resolution limit of the images. We
apply the corner definition (i.e., high intensity variations in all directions due to
the amniotic fluid and the placenta texture) to efficiently recognize peripheral
vessels, since they appear as dark and non-tubular areas attached to the placenta
surface [6]. To detect corners, our method finds the extrema of the Gaussian
curvature, which is the product of the minimum and maximum values of the
local curvature estimated from the following partial derivatives [7]:

K =
I2x(IyyIzz − I2yz) + 2IxIxz(IyIyz − IzIyy) + cycl.(x, y, z)

I2x + I2y + I2z
, (3)

where Iu and Iuv denote the first and second partial derivative w.r.t u and
u, v ∈ {x, y, z}, respectively, of image I(x, y, z), and cycl. (x, y, z) stands for a
cyclic permutation of the coordinates.

To extract the umbilical cord a 3D CNN similar to [8] and Eq. 1 is also
implemented. The motivation behind the addition of a Long Short-Term Mem-
ory (LSTM) recurrent model is to explore the spatial dependences across adja-
cent MRI slices and learn image features that capture the global (and intricate)
anatomical structure of the umbilical cord. Hence, three main phases define our
recurrent network: a down-sampling step, a recurrent component and an up-
sampling step. The former deploys four convolutional layers with 53 volumetric
kernels followed by a rectified linear unit (ReLU) and 23 max-pooling opera-
tions. The recurrent mechanism extracts global features that capture the spatial
changes of the MRI slices and compensates the max-pooling reduction. The
last up-sampled stage is based on four convolutional layers followed by ReLU
and several feature map concatenation modules (that combines both the up-
sample layer output and the parallel feature extraction). The final segmentation
is obtained by a soft-max function.

Module 2. Fetal 3D US. The US volumes are down-sampled to 128 × 128 ×
64, in which the central part (more information) is preserved.

We also adopt a 3D CNN architecture [9] to segment the placenta. The down-
sampling path operates at different resolutions via three convolutional layers with
53 kernels and PReLu non-linearities. The up-sampling path enlarges the spa-
tial resolution of the feature maps to gather and assemble information. Residual
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functions are employed to gather fine details and improve the model convergence.
The final output is converted to a binary segmentation using a soft-max func-
tion. A multiple refinement is subsequently applied to reduce the false positives.
An automatic thresholding is computed as the mean of the voxel values in the
original US weighted by its gradient image. Afterwards, a morphological closing
operation eliminates isolated dark voxels to refine the placental boundary. A
2D slice-by-slice filter is employed to detect and remove unconnected structures
associated to smallest non-placenta regions.

Regarding the placental vascular tree, three different classes are considered to
fully describe the intrauterine environment. The darkest voxels stand for blood
vessels, placenta cavities, amniotic fluid and acoustic shadows. The gray voxels
apply to the various mother and fetus tissues. Finally, the brightest voxels cor-
respond to bone and gases. The goal is to identify the structures linked to the
darkest voxels to further extract the peripheral blood vessels only. The unsu-
pervised classification is automatically done via the Modified Spatial Kernelized
Fuzzy C-Means (MSKFCM) [10]. We initialize three MSKFCM centroids using
a Kd-tree based K-means estimator. Each mean represents the statistical distri-
bution of intensity values in the voxels associated to different uterus tissues. To
refine the resulting fuzzy segmentation, a maximum a posteriori Markov random
field (MRF) [11] is employed. The Mahalanobis distance is iteratively updated
to measure the distance between each voxel in the original US to a set of known
classes provided by the MSKFCM labeled image. The initial MSKFCM mask is
provided as MRF input to guarantee an accurate segmentation of the vessels.

Module 3. Fetal MRI + 3D US. Registration of fetal MRI and 3D US is chal-
lenging due to several factors such as the choice of a suitable similarity measure
(i.e., the relationship between MRI and US intensities is difficult to express),
the artefacts existent in US acquisitions (i.e., acoustic shadows, attenuation and
reverberations), among others.

To overcome some of these issues, we directly register the output segmenta-
tion mask of the placenta in MRI and 3D US. Once the placenta is aligned, we
employ the same transformation to register the placenta vasculature. Because of
its large field-of-view we select the MRI image modality as fixed volume and the
3D US as moving volume. More specifically, we employ a Danielsson mapping
[12] to compute the signed distance field for the placenta output segmentation
mask in MRI. Such filter returns: (1) a signed distance map with the approxi-
mation to the euclidean distance, (2) a voronoi partition, and (3) a vector map
relating the current voxel with the closest point of the closest object to this
voxel. Afterwards, the same mapping is performed on the 3D US mask of the
placenta. A BSpline transformation is subsequently computed to register both
image modalities (the mask and the original image for placenta). Finally, iden-
tical transformations are applied for the placental vasculature co-registration.

Module 4. TTTS Planning. Once the personalized model of the patient is
obtained, we provide several functionalities to virtually place the fetoscope into
the mother’s womb. The fetal MRI was clinically selected as the most relevant
image modality to plan the surgery due to its large anatomical field-of-view.
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A fetoscope mesh was previously generated via 3DSlicer1 using the plug-in
IGT-CreateModels. The original direction of this mesh is named doriginal =
(0, 0,−1) = (dox, doy, doz), and its length meshLength.

A multi-planar widget initializes the axial, sagittal and coronal views and the
3D model. The clinician places two points in an axial slice: the entry (pentry)
and target (ptarget) points. Both points create a new directional vector named
dplanning (see Eq. 4). Following 3D classical linear algebra, we apply a rotation
transform to place the mesh following dplanning.

dplanning = pentry − ptarget = (dpx, dpy, dpz) (4)

At this point, we need to solve a system of equations where the rotation axis
and the angle α are both unknown variables. The rotation axis is calculated by
the cross product of doriginal and dplanning (see Eq. 5):

doriginal × dplanning = | doriginal | · | dplanning | · sin α =

⎡
⎣

x y z
dox doy doz
dpx dpy dpz

⎤
⎦ (5)

where the rotation angle can be isolated as α =
arccos

[
(dpx·dox+dpy·doy+dpz ·doz)√

(d2
px+d2

py+d2
pz)

]
π

180
.

Afterwards, the mesh is translated to ptarget − dplanning × meshLength, so
that the tip of the fetoscope reaches the destination point. At this point, it is
essential to know the anatomical constraints (i.e., range of movement of the
fetoscope) derived from the insertion point of the fetoscope into the uterus. The
rotation point is finally computed automatically from the intersection between
the vector dplanning and the uterus mesh through an oriented bounding box
(OBB) tree [13]. The rotation point will be used in the simulation module.

Furthermore, the interface of this module gives the clinician the opportunity
to eliminate and edit both the pentry and ptarget points.

Module 5. TTTS Simulation. The fetoscope insertion is simulated using two
different 3D render windows (see Fig. 4). One allows the clinician to explore
the registered 3D model being the main reference space. The other offers an
intrauterine visualization provided by the virtual camera located at the tip of
the fetoscope mesh. The simulation reproduces a real clinical intervention.

The aforementioned virtual environment is implemented in VTK2. A new
vtkRenderWindow interactor is deployed in the second render window to enable
the mouse navigation. By clicking the left button of the mouse, the interactor
captures its position on the display, and returns a rotation transform that will
move the fetoscope mesh to the desired direction.

More specifically, the proposed method takes into account three references:
the center of the VTK render window, the clicked point and the rotation point

1 3DSlicer: https://www.slicer.org.
2 The Visualization Toolkit (VTK): https://www.vtk.org.

https://www.slicer.org
https://www.vtk.org
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(see Fig. 2). These points located on the display are converted to world coordi-
nates into the 3D scene. These world coordinates allow us to compute iteratively
the rotation needed to move the fetoscope in the scene. We take advantage of
the previous Eqs. 4 and 5 to calculate this transform, where doriginal = d center

and dplanning = dmouse clicked.

Fig. 2. Simulation scheme to show the computation of the fetoscope rotation.

In addition, the simulation interface offers the following functionalities: (1)
show the range of movement of the fetoscope using a virtual cone, (2) highlight
the area of the placenta that can be reached from the planned insertion point,
(3) record the trajectory of the fetoscope, (4) show or hide the umbilical cord
insertions on the placenta surface, and (5) save the TTTS surgical planning.

3 Experimental Results

Database. An in-house database provided by the Hospital Cĺınic de Barcelona
was used according with its Ethical Research Committee and the current legis-
lation. MRI and 3D US scanning of 12 monochorionic twin pregnancies between
25–37 gestational weeks were collected using a Siemens MAGNETOM Aera 1.5T
(Fat Saturated (FS): 1.5, Echo Time (TE): 98 ms and Repetition Time (TR):
1200 ms). Each fetus had several MRI volumetric data in different views (axial,
sagittal and coronal) with slice dimension 256 × 208, slice thickness 3.5 mm, and
voxel spacing 1.42 mm2. The 3D US scanning were collected using a GE Voluson
E10 (GE Healthcare, Milwaukee, WI, USA) with a curved electronic matrix 4D
probe transducer.

Programming Environment. The software uses proven open source technol-
ogy such as VTK, ITK3, MITK4, and Qt5. Supplementary programming lan-
guages (i.e., C++, Python and Bash Shell scripting) and libraries (i.e., Tensor-
flow6) are also used to implement the aforementioned segmentation and registra-
tion algorithms. The experimentation was executed on an Intel Core i7 2.60 GHz,
16 GB of RAM with Fedora 24 and a NVIDIA GeForce GTX Titan X.
3 The Insight Segmentation & Registration Toolkit (ITK): https://itk.org.
4 The Medical Imaging Interaction Toolkit (MITK): http://mitk.org/wiki/MITK.
5 Qt framework: https://www.qt.io.
6 Tensorflow library: https://www.tensorflow.org.

https://itk.org
http://mitk.org/wiki/MITK
https://www.qt.io
https://www.tensorflow.org
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Experiments. Module 1 and 2 are quantitatively tested using the following
metrics (see Table 1): Dice and Jaccard coefficients, Area under ROC (AUC),
Sensitivity, and Specificity. A heterogeneous set of images from different placenta
positions and twin pregnancies is used to cover a real clinical environment.

Results are accurate (see Table 1) although some regions inside the uterus
(i.e., fetal tissues) possess a texture similar to that of the placenta and for
this reason some non-placenta pixels are misclassified. There is room for further
improvement in the case of blood vessels extraction. The color Doppler modality
has been a great support to validate 3D US placental vasculature segmentation.
So far, the MRI/3D US registration assessment has been done clinically by tak-
ing advantage of the surgeons’ anatomical knowledge. More work is required to
accurately fuse the registered vessels.

Table 1. Performance measures (i.e., Dice, Jaccard, AUC, Sensitivity and Specificity)
for placenta, vessels and umbilical cord segmentation methods from MRI and 3D US.

Modality Segmentation Dice Jaccard AUC Sensitivity Specificity

Placenta 0.75 ± 0.11 0.63 ± 0.07 0.80 ± 0.08 0.67 ± 0.12 1.0
MRI Vessels 0.85 ± 0.06 0.73 ± 0.10 0.88 ± 0.06 0.77 ± 0.10 1.0

Umbilical cord 0.79 ± 0.03 0.71 ± 0.02 0.82 ± 0.07 0.71 ± 0.03 0.86 ± 0.05

Placenta 0.88 ± 0.07 0.79 ± 0.10 0.94 ± 0.03 0.90 ± 0.07 0.98 ± 0.02
3D US Vessels 0.79 ± 0.05 0.66 ± 0.08 0.84 ± 0.03 0.73 ± 0.07 0.99

Fig. 3. User interface of the proposed TTTS planning and simulation software (from
left to right and up to down): (1) Module 1: Fetal MRI, (2) Module 2: Fetal 3D US,
(3) Module 3: Fetal MRI + 3D US, and (4) Module 4: TTTS planning.
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Fig. 4. User interface of Module 5 (from left to right): (1) reference and fetoscope cam-
era scenes with both umbilical cord insertions (purple), and (2) reference and fetoscope
camera scenes with cone illumination and fetoscope trajectory (black). (Color figure
online)

Figures 3 and 4 show the interface and tools of the proposed TTTS surgi-
cal planning and simulation framework. We performed a usability trial with a
post-test questionnaire to gauge what doctors think about our application. Two
different expert surgeons successfully tested the software and reported clinical
feedback. Both agreed on the clear visualization of the 3D anatomical models,
as well as the comfortable user-experience provided by the current functionali-
ties. Nevertheless, they agreed on the importance of simulating the laser burn
to know exactly the already coagulated vessels. A fixed orientation of the uterus
in all tabs with respect to the patients’ position was also required to avoid a
reference-free navigation.

4 Discussion and Conclusion

We present the first TTTS surgery planning and simulation software. State-of-
the-art computer vision and deep learning algorithms are integrated together to
generate a full 3D model of the womb from MRI and 3D US. The movements of
the fetoscope and the camera visualization used to examine the mother uterus
are also simulated through an intuitive and easy-to-use user interface. Hence, the
main objective of the presented application is to enable doctors ahead of TTTS
surgery by knowing the correct entry point of the fetoscope, the movements
and the estimation of an approximate trajectory that will traverse the vascular
hemisphere. In short, this software aims to increase the success rate and survival
of both twins.

The proposed framework is validated on a set of 12 (monochorionic) twin
pregnancies between 25–37 weeks of gestation. Dice coefficients of 0.75 ± 0.11,
0.85 ± 0.06 and 0.79 ± 0.03 are achieved for placenta, vessels and umbilical
cord segmentation from MRI, respectively. Similarly, Dice coefficients of 0.88
± 0.07 and 0.79 ± 0.05 are obtained for placenta and its vasculature from 3D
US, respectively. Nevertheless, there is room for further improvement. Although
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MRI/3D US placenta registration is assessed under anatomy experience of doc-
tors, the fidelity of the resulting 3D model needs to be improved. In near future,
we will investigate how the current simulation module can mimic the laser abla-
tion of placental vessels as well as the fetoscope motion constraints in order to be
as realistic as possible. In addition, several 3D reference markers regarding the
patients’ position and orientation are required to improve the user experience.
We are also planning to move soon in the clinical evaluation phase.
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Abstract. Cephalometric analysis is an important tool used by dentists
for diagnosis and treatment of patients. Tools that could automate this
time consuming task would be of great assistance. In order to provide
the dentist with such tools, a robust and accurate identification of the
necessary landmarks is required. However, poor image quality of lateral
cephalograms like low contrast or noise as well as duplicate structures
resulting from the way these images are acquired make this task diffi-
cult. In this paper, a fully automatic approach for teeth segmentation is
presented that aims to support the identification of dental landmarks.
A 2-D coupled shape model is used to capture the statistical knowledge
about the teeth’s shape variation and spatial relation to enable a robust
segmentation despite poor image quality. 14 individual teeth are seg-
mented and labeled using gradient image features and the quality of the
generated results is compared to manually created gold-standard segmen-
tations. Experimental results on a set of 14 test images show promising
results with a DICE overlap of 77.2% and precision and recall values of
82.3% and 75.4%, respectively.

Keywords: Coupled shape model · Automatic segmentation
Cephalometric dental X-ray image

1 Introduction

Radiographic images are a common tool used for diagnosis in dentistry. They
support the dentist in identifying many teeth related problems. Caries, infections
and bone abnormalities would be hard or impossible to detect during visual
inspection only. This allows the dentist to choose the optimal treatment plan for
the patient. There exist two categories of dental radiographic images: intra-oral
and extra-oral [9]. Intra-oral images are obtained inside the patient’s mouth and
only show specific regions of the set of teeth or individual teeth. They are mostly
used to get more detailed information. Extra-oral images like cephalograms or
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panoramic radiographs capture the entire teeth region as well as the surrounding
areas and provide fundamental information about the teeth of a patient.

Cephalometric analysis aims to extract this fundamental information from
lateral cephalometric images. Therefore, several different landmark positions on
soft tissue, dental or bony structures have been defined and identified in the
image. The type and number of landmarks varies between different analysis
methods (e.g. Steiner, Schwarz, Ricketts). Linear and angular measurements are
computed based on the relative position of these landmarks. Figure 1 shows an
example for a cephalometric analysis using different landmarks.

Several methods for automatic landmark detection in lateral cephalograms
have been proposed in the past. In 20141 and 20152, Wang et al. [9] organized
two Grand Challenges at the International Symposium on Biomedical Imaging
(ISBI) on this topic and compared the performance of state-of-the-art meth-
ods. The best results were achieved by approaches utilizing Random Forests
for classifying the intensity appearance of different landmarks while exploiting
the spatial relations between landmarks using statistical shape models. Lindner
et al. [6] presented a fully automatic landmarks annotation (FALA) where Ran-
dom Forest regression-voting is used for both the detection of the skull and the
localization of individual landmarks. Recently, Arik et al. [1] employed a con-
volutional neural network to detect landmarks and a statistical shape model to
refine the landmark potions.

Despite all these efforts, the detection of these landmarks is still done manu-
ally or semi-automatically in the clinical context which is a very time consuming
process [6]. Moreover, most of the presented approaches rely on the publicly
available dataset from the ISBI 2015 Grand Challenge [9] which is composed of
400 images and features 19 landmarks positions. However, these 19 landmarks
only include two dental landmarks, namely the incisal edge of the maxillary and
mandibular central incisor (upper and lower incisal incision). Other dental land-
marks like the root tip of the central incisors, the tip of the mesiobuccal cusp of
the first molar or the posterior point of occlusion are not included and therefore
not covered by these approaches.

To fill this gap, we propose an approach for fully-automatic teeth segmen-
tation in these lateral cephalograms. To the best of our knowledge, there does
not exist any other automatic segmentation method for teeth in cephalomet-
ric radiographs. The generated segmentations can later be used to support the
identification of the dental landmarks by directly using the detected teeth con-
tours of the corresponding teeth. Furthermore, the model could be extended
to include more structures like bones or skin to further support the identifica-
tion of additional landmarks and increase the robustness of the detection. Teeth
segmentation in cephalograms is a challenging task. The lateral cephalogram is
a projection of the patients skull onto a 2-D image plane from a lateral posi-
tion which results in overlapping structures. This is especially evident in the
teeth region. Asymmetries between the teeth on the left and right hemisphere

1 http://www-o.ntust.edu.tw/∼cweiwang/celph/.
2 http://www-o.ntust.edu.tw/∼cweiwang/ISBI2015/challenge1/.

http://www-o.ntust.edu.tw/~cweiwang/celph/
http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge1/
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Fig. 1. An example of a lateral cephalogram (left) and the result of a manual cephalo-
metric analysis (right).

of the patients like shape variations or different spatial configurations as well
as variations in the head position of the patient during image acquisition result
in duplicate structures. Like other radiographs, cephalograms also suffer from
intensity variations, noise or low contrast.

To overcome these challenges, in this paper an approach for the automatic
segmentation of teeth in lateral cephalometric radiographs using a coupled-shape
model is presented. 14 individual teeth (excluding wisdom teeth) are segmented
and labeled using a coupled shape model approach based on [10]. The 2-D cou-
pled model combines the statistical knowledge about the shape of each tooth
with information about their spatial relation. This combination of gradient image
features (bottom-up information) with a priori statistical knowledge about the
shape and position of the teeth (top-down information) leads to a more robust
segmentation process [7], especially in case of poor image quality or unreliable
image features. However, when local search algorithms like active shape models
are used to find suitable image features, statistical models highly depend on a
good initialization [4]. To solve this problem, we present a pre-processing step
that will compute the required parameters like position and scale for the initial-
ization of the model. The initialized model is then adapted to the cephalometric
images using a step-wise adaptation process.

2 Methods

2-D Coupled Shape Model. The presented segmentation method is based on a
coupled shape model consisting of individual deformable model items which are
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(a) Mandibular jaw line (b) Spa line

Fig. 2. Extraction of the two lines used for the approximation of the orientation of the
occlusal plane. The left image in (a) and (b) depicts the contours found in the binary
image. The colors indicate different line segments after contour splitting. The thick
green and red line represent the detected jaw-line and spa-line, respectively. (Color
figure online)

coupled by their spatial relation. It has already been successfully used on 3-D CT
images in order to segment different structures in the head & neck area [8] and for
teeth segmentation in 2-D panoramic radiographs, where it was combined with
a convolutional neural network to handle the initialization [10]. The individual
2-D deformable model items are represented as statistical shape models and are
generated using a point distribution model (PDM) [2] and principal component
analysis (PCA). The contour of an individual item is hereby represented by
100 landmark points in form of the 2-dimensional pixel coordinates. During
PCA, only the principal components describing 95% of the shape variation are
kept. Additionally, each individual item also contains its relative position in
relation to the center of mass of the complete model, described by an affine 2-D
transformation. The coupled model is then created by combining all individual
items, each one containing its shape information and its relative position. For
more details about the 2-D coupled shape model, please refer to [10].

The coupled shape model used in this approach contains 14 individual teeth,
namely the central and lateral incisors, the canine, first and second pre-molar
and first and second molar, both maxillary and mandibular for the right hemi-
sphere of the patient. The reason for only using the teeth of one hemisphere of
the patient and not the complete set of 28 teeth is the lateral position the image
is captured from. The teeth on both hemispheres will by roughly superimposed
onto each other during image acquisition. However, the teeth are never perfectly
superimposed but rather sightly shifted (mostly in horizontal direction), result-
ing in duplicated structures with a high overlap. Since the value and direction of
the shift between the two hemispheres are arbitrary for each individual image,
no meaningful statistical information will be gained by using the full set of 28
teeth. Wisdom teeth have not been included in the model due to the limited
amount of training data available. The coupled model was trained based on a
set of 14 manually annotated lateral cephalometric images.

Model Initialization. A robust initialization of the mean model in terms of posi-
tion and scale is required in order to adapt the model to the image features
and segment the teeth successfully. Estimates for both of these values are com-
puted from the input image. Additionally, the orientation of the occlusal plane is
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(a) Successful init. (b) Successful init. (c) Failed initialization

Fig. 3. Results of the automatic initialization process which estimates position, rota-
tion and scale of the mean model. In example (c) the scale estimation was incorrect.

estimated and considered during model initialization. As a first step, histogram
equalization and normalization are applied to the input image to ensure a similar
brightness and contrast among all images. Then, several references are extracted
from the image.

The estimation of the orientation of the occlusal plane is based on the
mandibular jaw line and a line close to the anterior nasal spine (spa). Both
are extracted from a binarized version of the input image using a contour seg-
mentation based on the detection of zero crossings of the Laplacian of Gaussian
(Log) (cf. Grau et al. [3]). The set of closed contours is split into parts based
on the curvature of individual line fragments. The sought-after lines can then
be extracted based on their length and orientation (see Fig. 2). The orientation
of the occlusal plane is approximated by the orientation of the bisecting-line of
those two lines.

The initial position of the mean model is determined by finding the tip of the
central incisors. The region of interest (RoI) is restricted using the previously
detected lines. After applying a binary thresholding (Otsu) to the RoI, pre-
defined starting positions are used to analyze the contour of the binary mask and
detect the target points. A rough approximation of these tip points is sufficient
for a good initial model position. In order to estimate the scale factor for the
initialization, the size of individual teeth in the input image is approximated. A
reference line is defined using the previously determined position of the incisors
as an anchor point in combination with the approximated orientation of the
occlusal plane. Individual teeth are then separated similar to the approach of
Jain and Chen [5]. Integral projection is used to compute the sum of pixel values
along lines perpendicular to the reference line. The ‘gaps’ between teeth can
be detected by analyzing these sum for local minima. After removing outliers,
the scale factor for the initialization is computed by comparing the detected
distances to the known distances of the mean model.

Model Adaptation. After the initializing the model in terms of position, rotation
and scale, the model is adapted to the input image. The adaptation is done by
minimizing an energy functional:

E(f, t) = Eext(f, t) + λEint(f) (1)
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Fig. 4. Three examples of successful segmentation results.

Hereby, Eext is the external energy which is responsible for ensuring that the
contour of model items moves in the direction of strong image features. Eint

is the internal energy which restricts the model to stay within or close to the
learned configuration space. t stands for the transformation describing the global
position of the model and f for the vector describing the configuration of the
coupled model. A gradient descent optimizer is used for the optimization process.
The transformation parameters t are optimized first, and then the configuration
and transformation parameters f, t are optimized jointly. Please refer to [10] and
[8] for more information.

A multi-step approach is used to adapt the model to the image features which
are gradient features computed on the input image. Thereby, the size of the set
of model items which are actively adapted to the input image is progressively
increased. This is done to ensure the best possible overlap between a model item
and the corresponding teeth in the image before adapting the respective model
item. All model items which are not actively matched to image features are only
passively modified through the learned statistical information. Initially, only the
incisors are adapted since they are used for the model initialization and therefore
always have a good overlap. The teeth farther away from the incisors (e.g. molars)
might, at that point, not match as good, depending on the patient’s configuration
of the teeth (cf. Fig. 3(b)). By adapting these teeth during a later adaptation
step, they have already been (passively) moved closer to their correct position
and more reliable image features can be found. Starting from the central incisors,
a new category of teeth (i.e. lateral incisor, canine, first pre-molar, and so on)
is added after each adaptation step until the complete set of teeth is actively
adapted. The final step of the adaptation process is a refinement step. Here, the
contour of the individual teeth is only adpated based on the gradient features
and no longer restricted by the statistical information. The final segmentation
result of each individual tooth is stored as a binary image.

3 Experiments and Results

The presented fully-automatic segmentation approach has been evaluated on a
separate test set of 14 manually annotated cephalometric images (referred to as
gold-standard segmentations). These 14 images were not part of the training set.
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Table 1. The mean plus standard deviation, minimum and maximum values for dif-
ferent metrics used for comparing the segmentation results of the 12 successful cases
to manually created gold-standard segmentations.

Precision Recall Accuracy Specificity F-score DICE

Mean 0.823 0.754 0.813 0.852 0.782 0.772

Std. Dev. ±0.058 ±0.070 ±0.038 ±0.029 ±0.057 ±0.057

Min. 0.683 0.728 0.754 0.795 0.688 0.679

Max. 0.912 0.914 0.862 0.912 0.848 0.840

The test images have a resolution of either 1800× 2148 pixels or 1935× 2400
pixels. As a first step, it was visually inspected if the model was positioned,
rotated and scaled correctly by the automatic initialization process since the
quality of the final segmentation highly depends on a good initialization. Visual
inspection was used because the multi-step adaptation approach only requires
a good overlap of certain structures. The initial position was considered to be
correct, if the incisor teeth of the mean model are overlapping with the incisor
teeth in the input image. This was the case for all 14 test cases. The rotation
of the model was regarded as correct if the orientation of the occlusal plane of
the initialized mean model and the orientation of the occlusal plane of the teeth
in the image are roughly the same. This was also true for all 14 test instances.
The scale estimate was considered to be correct if the size of the scaled mean
model roughly matches the size of the set of teeth in the input images. This
estimation was sufficiently accurate for 12 out of the 14 test cases. For the two
failed cases, the initial size of the model was too large. While the incisor teeth
are still positioned correctly, the molar teeth are far away from their intended
position. Even with the multi-step adaptation process, the model was unable
to segment the teeth successfully in these cases. Figure 3 shows two correct and
a failed initialization. The incorrect scale factor was caused by an incorrect
separation of the teeth based on the integral projection, i.e. some teeth were not
separated at all. Therefore, the reference values extracted from the image were
too large, resulting in a too big scale factor for the model.

The final teeth segmentations of the 12 cases with a successful initializa-
tion have been compared to manually created gold-standard segmentations and
evaluated in terms of the following metrics: precision, recall, accuracy, speci-
ficity, f-score and dice overlap. Since both specificity and accuracy consider the
amount of background-pixels that have been correctly labeled as background
(true-negatives), the evaluation needs to be restricted to a smaller region to
retrieve meaningful results. Therefore, the evaluation is only performed on the
minimum bounding box that covers both automatic- and gold-standard segmen-
tation. The metric values for an individual test instance are computed by first cal-
culating the values for each tooth separately. Then, these values are averaged over
all teeth in that test instance. Finally, the average is computed over the remain-
ing 12 instances. Table 1 shows the average metric values as well as minimum
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Table 2. Average metric values for individual teeth of the lower jaw. Tooth number
correspond to the following teeth: 1 = second molar, 2 = first molar, 3= second premo-
lar, 4 = first premolar, 5= canine, 6= lateral incisor, 7= central incisor.

tooth 1 tooth 2 tooth 3 tooth 4 tooth 5 tooth 6 tooth 7

Precision 0.855 0.896 0.940 0.828 0.774 0.825 0.780

Sensitivity 0.823 0.855 0.790 0.761 0.754 0.683 0.636

Accuracy 0.824 0.864 0.859 0.796 0.805 0.845 0.821

Specificity 0.822 0.874 0.946 0.847 0.845 0.930 0.915

F-score 0.837 0.874 0.854 0.785 0.758 0.746 0.695

Dice 0.829 0.865 0.846 0.776 0.747 0.736 0.686

Table 3. Average metric values for individual teeth of the upper jaw. Tooth number
correspond to the following teeth: 1 = second molar, 2 = first molar, 3= second premo-
lar, 4 = first premolar, 5= canine, 6= lateral incisor, 7= central incisor.

tooth 1 tooth 2 tooth 3 tooth 4 tooth 5 tooth 6 tooth 7

Precision 0.819 0.787 0.903 0.877 0.829 0.767 0.647

Sensitivity 0.712 0.821 0.844 0.805 0.776 0.679 0.613

Accuracy 0.765 0.767 0.846 0.807 0.806 0.820 0.760

Specificity 0.830 0.706 0.849 0.807 0.836 0.894 0.833

F-score 0.757 0.798 0.871 0.836 0.797 0.717 0.623

Dice 0.749 0.788 0.860 0.825 0.786 0.707 0.611

and maximum values for each category. Exemplary segmentation results are
depicted in Fig. 4.

The metric values for individual teeth of the upper provided in Table 3, the
ones for the lower jaw are provided in Table 2.

4 Discussion

The presented approach uses a coupled shape model to segment teeth in lateral
cephalograms. The statistical knowledge about the shape and spatial configura-
tion of the teeth is useful to handle the challenges of cephalometric images, like
overlapping structures, noise low and contrast. Instead of only relying on image
information, the a prior knowledge about the teeth helps to guide the search
for suitable image features. The proposed initialization process provides robust
estimates in terms of model placement and rotation. Only the scale estimation
leaves room for improvement as it failed in 2 out of 14 cases, making a successful
adaptation impossible. To the best of our knowledge, this is the first approach
that successfully performs automatic teeth segmentation in lateral cephalograms.

Wisdom teeth have not been included in the model at the moment. There
exists a high variation in their position and shape in between individual patients
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and not all patients have some or all wisdom teeth. With the limited amount
data available, a meaningful shape model and estimate of their spatial position
could not be computed. Wisdom teeth can be added in a future version of the
model when sufficient training data is available.

From experience with other data modalities, we know that the approach is
able to handle missing teeth, if the space originally occupied by the missing tooth
is present. In that case, the mean shape model of the corresponding tooth can be
placed into the gap and subsequent teeth can be positioned correctly. However,
subsequent teeth will be labeled incorrectly if the gap is too small or no longer
present. In the current test set, no patient was missing any teeth except for
wisdom teeth. Overall, the presented approach provides promising segmentation
results on a test set of 14 images.

Based on the segmentation result, a robust identification of dental landmarks
for the cephalometric analysis should be possible. Moreover, many of the refer-
ences extracted from the image for the model initialization can also be used
to identify other landmarks. The statistical model can furthermore easily be
extended to include additional structures like skin and bones to further improve
the robustness of the segmentation and provide references for even more cephalo-
metric landmarks.

5 Conclusion and Future Work

In this paper an automatic model-based approach for teeth segmentation in
lateral cephalograms was presented. It provides a robust segmentation of the
teeth and is an good basis for identifying dental landmarks for cephalometric
analysis. Out of a set of 14 test images, 12 could be segmented successfully. For
the 2 unsuccessful cases, the initialization of the model failed due to incorrect
scale estimation. The achieved average DICE overlap is 77.2%. Average precision
and recall values are 82.3% and 75.4%, respectively.

Future work includes increasing the robustness of the scale estimation for
initialization and improving the segmentation accuracy. The amount of training
data could be extended based on the data from the 2015 ISBI Grand Challenge
on cephalometric landmark detection. However, manual labeling of all these
images would be required. Most importantly, the approach is to be extended
to identify the dental landmarks based on the segmentations and potentially
other landmarks as well.

Acknowledgements. We thank Dr. Jan H. Willmann, University Hospital of
Düsseldorf for providing the cephalometric images used in this work.
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Abstract. The amounts of muscle and fat in a person’s body, known
as body composition, are correlated with cancer risks, cancer survival,
and cardiovascular risk. The current gold standard for measuring body
composition requires time-consuming manual segmentation of CT images
by an expert reader. In this work, we describe a two-step process to fully
automate the analysis of CT body composition using a DenseNet to
select the CT slice and U-Net to perform segmentation. We train and
test our methods on independent cohorts. Our results show Dice scores
(0.95−0.98) and correlation coefficients (R = 0.99) that are favorable
compared to human readers. These results suggest that fully automated
body composition analysis is feasible, which could enable both clinical
use and large-scale population studies.

1 Introduction

Body composition (the amounts of fat and muscle in the body) is associated with
important outcomes like cancer risk and survival [8,12]. The standard for analy-
sis of body composition is to manually segment the body compartments through
a single computed tomography (CT) image at the level of the third lumbar ver-
tebra (L3) [12]. This approach was shown to strongly correlate with whole-body
assessments [14,15]. Slice selection and manual segmentation by an expert ana-
lyst require over 20 min per scan in our experience. This time-intensive method
has limited the feasibility of population-scale research on body composition.
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In this paper, we propose a fully automated method to estimate a patient’s
body composition from an abdominal CT scan and validate the method across
two large scale and diverse datasets. Although automated methods may enable
the analysis of muscle and fat distributions across entire abdominal scans, in this
work we seek to replicate the gold standard manual approach by segmenting a
single CT slice.

Our method therefore breaks the problem of analyzing a CT series down into
two steps. First, a convolutional neural network (CNN) model is used to identify
a slice at the L3 level, as described in Sect. 3.2. Next, the chosen slice is passed to
a segmentation model (Sect. 3.3) to estimate the cross-sectional areas of muscle,
subcutaneous fat, and visceral fat. See Fig. 1 for an overview of the workflow.

We demonstrate on a large and diverse dataset that efficient, repeatable
and accurate automatic body composition analysis is possible from routinely-
acquired CT images (Sect. 4).

2 Related Work

A number of previous works [5–7,10,11] have demonstrated automated methods
to segment body fat and/or muscle from axial CT images. Typically these have
depended on handcrafted procedures. In this work, we take a different approach
using deep learning methods trained on expert-annotated data.

Of particular note is the work of Popuri et al. [11] who use a finite element
model (FEM) based approach to segmentation regularised by a statistical defor-
mation model (SDM) prior and achieve high accuracy on a large and diverse
dataset, but assume pre-selected slices at the L3 and T4 (thoracic) levels. They
also demonstrate segmentation of muscle and fat, but do not make the clinically
significant distinction between visceral fat and subcutaneous fat.

Lee et al. [7] previously demonstrated quantification of muscle tissue from
single L3 slices using fully convolutional networks. We improve upon this work by
using more modern segmentation architectures, resulting in better performance,
and add the ability to segment visceral and subcutaneous fat in order to provide
a more comprehensive assessment of body composition. Furthermore we add a
slice-selection step to allow the model to operate on entire CT series without any
human intervention, opening up the potential for large-scale cohort analysis.

Fig. 1. Overview of the body composition workflow
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Belharbi et al. [1] perform slice selection using convolutional neural networks
and use a regression approach on the maximum intensity projection (MIP)
image. We adopt a similar approach and show that the preprocessing to find
the MIP is unnecessary and regression based on a single axial slice is highly
accurate.

3 Methodology

3.1 Cohorts

The training cohort (Dataset A) used in this study is composed of 595 CT scans
from subjects with biopsy-proven pancreatic adenocarcinoma who were treated
at any of several collaborating centers (Brigham and Women’s Hospital, Dana-
Farber Cancer Institute, and others). Our group has previously used this cohort
to demonstrate that body composition, as determined through manual segmenta-
tion through the L3 vertebral body, is associated with overall survival in patients
with pancreatic adenocarcinoma [2], and that muscle area is associated with out-
comes in critical care patients [3]. Scan parameters, the use of intravenous and
oral contrast, and imaging hardware varied widely across the cohort. All scans
were reviewed by a radiologist and a representative slice through L3 was selected.
The three body compartments were manually segmented by trained image ana-
lysts using Slice-O-Matic software (Tomovision, Canada). Standard attenuation
constraints were used: −29 to 150 HU for muscle and −190 to −30 HU for fat
[12]. All segmentations were reviewed and corrected by a board-certified radi-
ologist (MR). Dataset A was randomly divided into 412 training, 94 validation
and 89 segmentation test series.

The testing cohort (Dataset B) is composed of 534 CT scans from subjects
with lymphoma treated at a single institution (Massachusetts General Hospital).
Scan parameters and imaging hardware varied across the cohort. Slice selection
and manual segmentation were performed by a trained image analyst and revised
by a board-certified radiologist (FF). Of the total number of series, 512, 473,
and 514 series had manual segmentations for muscle, subcutaneous fat, and
visceral fat respectively. Segmentation in this cohort used the same attenuation
constraints but was performed in Osirix (Pixmeo, Geneva). This dataset was
used to test the full body composition estimation framework.

3.2 Slice Selection Model

The first step in our method is to automatically identify a slice at the L3 level
from the full CT volume to be passed on to the segmentation model. We pose
this problem as a slice-wise regression problem, which operates on each slice of
the volume independently, followed by post-processing to choose a single slice.

This allows us to use a more efficient 2D network model and allows us to
work on a per DICOM image basis, reducing network complexity and avoiding
the need to deal with series with different slice spacings, whilst still considering
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a slice’s local context in the selection process. The model takes as input a 2D
CT slice, downsampled to a 256 × 256 image, and learns to predict a single
continuous-valued output representing the offset of that slice from the L3 region
in the craniocaudal direction. Instead of directly predicting this offset, we find it
advantageous to saturate this value into the range 0 to 1 using a sigmoid function,
such that the model learns to focus its discriminatory capability within the area
around the L3 region. If we define the z-coordinate of a slice as its location along
the craniocaudal axis (the ‘Slice Location’ field in the DICOM metadata) and
the z-coordinate of the L3 slice in that series is known to be zL3 then the model
learns to predict the regression target r (z) where,

r (z) =
1

1 + e−τ(z−zL3)
(1)

and τ is a free parameter defining the size of the region of interest. Based on
preliminary experiments, we found τ = 20 mm to be a suitable value.

We experimented with variations on two state-of-the-art CNN architectures:
ResNeXt [16] and DenseNet [4]. Each of these architectures has recently achieved
excellent performance on large-scale image classification tasks and is designed to
overcome common problems with training very deep neural networks by intro-
ducing skip connections to allow gradients to propagate more directly back to
earlier layers of the network. To adapt the architectures for regression, we replace
the final fully-connected layer and softmax activation with a fully-connected layer
with a single output unit and a sigmoid activation function in order to output a
number in the range 0 to 1. We then apply a mean absolute error loss between
this output and the regression target r (z).

Since these architectures were originally developed for the task of multi-class
natural image classification on very large-scale datasets, we experiment with
various aspects of the architecture in order to find the optimal design for our
purposes. The model architectures are shown in Fig. 2. For the ResNeXt archi-
tecture, we experiment with the initial feature width, f , and the cardinality, C,
of the grouped convolution layers. For the DenseNet architecture we experiment
with the number of layers b in each dense block and the ‘growth rate’ k, which
is the number of features added by each convolutional layer.

At test time, the full series is passed into the model as a sequence of individual
slices. The predicted offsets are placed into an array using the known slice order-
ing, and the values are smoothed using a small Gaussian kernel (σ = 2 slices) in
order to incoporate local context. Then the location where this smoothed signal
crosses 0.5 (corresponding to z − zL3 = 0 during training) is chosen as the L3
slice. If there are multiple such locations, the slice closest to the head is chosen.

3.3 Tissue Segmentation Model

Once a slice has been selected according to the slice selection model (Sect. 3.2),
the full 512 × 512 slice is passed to a segmentation model for body compo-
sition analysis. The segmentation network is based on a U-Net model [13],
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Fig. 2. Schematics of networks: below ResNeXt, above DenseNet. Red blocks indicate
convolutional layers described by their kernel dimensions and number of output fea-
tures. All convolutional layers are followed by a batch normalization layer followed by
a rectified linear unit (ReLU) activation. Green blocks represent pooling layers. ‘/2’
indicates that the conv/pool layer has a stride of 2, otherwise the stride is 1. In the
ResNeXt model ‘grp= C’, indicates that the layer is a grouped convolution layer with
a cardinality of C. In the DenseNet transition blocks ‘[0.5]’ indicates that the number
of output features is half the number of input features (a compression factor of 0.5).
(Color figure online)

which has previously proved highly effective in a number of biomedical image
segmentation tasks. We add batch normalization before each activation and
change the loss function of the network to be a soft Dice maximization loss [9]
in order to deal with class imbalances between three tissue classes and the back-
ground class. The full loss function is defined as the sum of the three soft Dice
losses for the three non-background classes (muscle, visceral fat, and subcuta-
neous fat), i.e.

L = −
3∑

c=1

(
2
∑N

i=0 pi,c qi,c + ε
∑N

i=0 pi,c +
∑N

i=0 qi,c + ε

)
(2)

where pi,c ∈ [0, 1] is the predicted probablility (softmax output) of pixel i belong-
ing to class c and qi,c ∈ {0, 1} is the ground truth label for pixel i (1 if pixel i
belongs to class c, otherwise 0). ε is a small constant that avoids divide-by-zero
problems, and was set to 1 in all experiments.

We experiment with different numbers of downsampling/upsampling modules
in the architecture, d, the number of convolutional layers per module, l, and the
initial number of features in the network f .

3.4 Training Details

All models were trained from scratch using the Keras deep learning library with
the Tensorflow backend on Nvidia V100 or P100 GPU hardware. Input image
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intensities were windowed at train and test time to match the standard viewing
range with the center at 40 HU and a width of 400 HU, and then normalized
into the range 0–255. For all models, the Adam optimizer was used with a batch
size of 16 images and the training images (and segmentation masks in the case
of the segmentation model) were augmented during training by applying small
random translations of up to 0.05 times the image size in both the horizontal and
vertical directions, drawn from a uniform distribution, and also small rotations
of up to 5◦ in either direction, also drawn from a uniform distribution.

For the slice selection models, training lasted for 75 epochs with the learning
rate initially set to 0.001 and reduced by a factor of 10 at 1

2 and 3
4 of the way

through the training process. Every slice from the training set series was used
as a single training sample along with its known r (z) value.

For the segmentation model, training lasted for 100 epochs and the learning
rate was initially set to 0.1 with the same decay schedule. The L3 images from
the test set series were used along with their manual segmentation masks.

4 Experiments and Results

4.1 Model Selection

The different model architectures were evaluated through their performance on
the validation subset of Dataset A. These results are shown in Table 1. It can
be seen that the performance of the ResNeXt and DenseNet models is broadly
similar, and that in both cases relatively small models can achieve high accuracy.
It is worth noting that the DenseNet models are typically far smaller (in terms
of number of parameters) than the ResNeXt models. For this reason, we chose
the DenseNet model with l = 12, k = 12 as the final slice selection model.

It can also be seen that the hyperparameters of the U-Net segmentation
model do not significantly effect the results, but there is a weak trend that deeper
models with more downsampling and upsampling modules achieve a higher accu-
racy, probably reflecting the increased capacity of the network to capture global
context. Accordingly, we selected the U-Net model with d = 5, l = 1, f = 16 as
the segmentation model for further experiments.

4.2 Test Results

Results for the segmentation step in isolation using the selected models on the
test partition of Dataset A are shown in Table 2. The Dice similarity coefficient
(DSC) is used to measure the difference between the automatic segmentation
and the manual ground truth. Our results improve upon those of Lee et al. [7],
who had an average DSC of 0.93 for muscle, suggesting that the additional rep-
resentational power of the U-Net and the more informative three-class training
labels were effective at improving network accuracy. Additionally, our results
improve upon those of Popuri et al. [11] who achieved Jaccard indices of 0.904
for muscle, and 0.912 for fat (visceral and subcutaneous as a single class) which
correspond to DSC values of 0.950 and 0.954.
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Table 1. Model selection results for the two tasks on the validation partition of Dataset
A. Above slice selection using mean absolute error loss, below segmentation using the
Dice loss (a perfect overlap between all three classes would have a loss of 3).

Architecture ResNeXt DenseNet
f 16 32 64 16 32 64 - - - - - - - - -
C 1 1 1 32 32 32 - - - - - - - - -
b - - - - - - 6 6 6 12 12 12 18 18 18
k - - - - - - 12 18 24 12 18 24 12 18 24

Loss (×10−2) 2.62 2.38 2.64 2.48 2.25 2.53 2.67 3.04 2.68 2.28 2.64 2.75 2.66 2.62 2.31

Architecture U-Net
d 4 4 4 4 4 4 5 5 5 5 6 6
f 16 16 16 32 32 32 16 16 16 32 16 16
l 1 2 3 1 2 3 1 2 3 1 1 2

Loss 2.937 2.935 2.941 2.939 2.942 2.934 2.944 2.938 2.938 2.942 2.937 2.942

The full validation was then performed on Dataset B treating the two mod-
els as a single process that takes in a full abdominal CT series and produces
estimates of body composition in terms of square cross-sectional area of muscle,
subcutaneous fat, and visceral fat. In this case, the DSC is not an appropriate
measure because the segmentation may be performed on a different slice from
the ground truth mask. Table 2 compares the accuracy of the different tissue
types and Fig. 3 shows some example outputs.

The mean absolute localization error on the Dataset B test set was 9.4 mm,
which lies within the range of the L3 vertebra on the majority of patients.

The slice selection model takes approximately 0.5 s to 1.0 s per series to run
on our Nvidia V100 GPU hardware, with a further 0.02 s to 0.025 s for the
segmentation model. This compares to the times reported in [11] of 0.60 s for
the segmentation step alone on a CPU (although our model does make use of
GPU hardware). This makes our approach suitable for use for large scale cohort
studies and deployment within a clinical environment (Fig. 4).

Table 2. Test results on unseen data. Above Segmentation results on the test partition
of Dataset A, below body composition estimation on Dataset B.
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Musc.: 100/101 cm2

Subc.: 332/308 cm2

Visc.: 63/78 cm2

Musc.: 152/155 cm2

Subc.: 191/193 cm2

Visc.: 116/118 cm2

Musc.: 196/189 cm2

Subc.: 409/465 cm2

Visc.: 318/260 cm2

Fig. 3. Example results on two randomly-chosen series from the test dataset (Dataset
B) and one with poor subcutaneous and visceral fat prediction (third row): left manu-
ally selected L3 slice, center L3 slice chosen by slice selection model, right automatically
segmented slice showing muscle (red), subcutaneous fat (green) and visceral fat (blue).
Areas given in the fourth column are estimated/true values. (Color figure online)

Fig. 4. Scatter plots of predicted tissue area versus ground truth tissue area for the
three tissue types in Dataset B. Black dashed line indicates perfect prediction (y = x).
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5 Conclusions

We have demonstrated that a two-stage convolutional neural network model can
estimate the abdominal muscle and fat areas on abdominal CT scans with high
accuracy. We demonstrate higher segmentation accuracy and faster computation
times than the current state of the art. These findings could enable population-
scale research on metabolism by dramatically decreasing the costs associated
with this type of analysis. This could ultimately make routine assessment of
body composition a feasible part of the clinical imaging workflow.

References

1. Belharbi, S.: Spotting L3 slice in CT scans using deep convolutional network and
transfer learning. Comput. Biol. Med. 87, 95–103 (2017)

2. Danai, L.V., et al.: Altered exocrine function can drive adipose wasting in early
pancreatic cancer. Nature 558(7711), 600–604 (2018). https://www.ncbi.nlm.nih.
gov/pubmed/29925948

3. Foldyna, B., et al.: Computed tomography-based fat and muscle characteristics
are associated with mortality after transcatheter aortic valve replacement. J. Car-
diovasc. Comput. Tomogr. 12(3), 223–228 (2018). http://www.sciencedirect.com/
science/article/pii/S1934592518300571

4. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017)

5. Kim, J.Y., et al.: Computerized automated quantification of subcutaneous and vis-
ceral adipose tissue from computed tomography scans: development and validation
study. JMIR Med. Inform. 4(1), e2 (2016)

6. Kullberg, J., et al.: Automated analysis of liver fat, muscle and adipose tissue
distribution from CT suitable for large-scale studies. Sci. Rep. 7(1), 10425 (2017)

7. Lee, H., et al.: Pixel-level deep segmentation: artificial intelligence quantifies muscle
on computed tomography for body morphometric analysis. J. Digit. Imaging 30(4),
487–498 (2017)

8. Martin, L., et al.: Cancer cachexia in the age of obesity: skeletal muscle depletion
is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol.
31(12), 1539–47 (2013)

9. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 Fourth International Confer-
ence on 3D Vision (3DV), pp. 565–571, October 2016

10. Parikh, A.M., et al.: Development and validation of a rapid and robust method
to determine visceral adipose tissue volume using computed tomography images.
PLoS ONE 12(8), e0183515 (2017)

11. Popuri, K., Cobzas, D., Esfandiari, N., Baracos, V., Jägersand, M.: Body compo-
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Marta Diez-Ferrer2 , Antoni Rosell2 , and Debora Gil1

1 Computer Vision Center, Autonomous University of Barcelona,
08193 Barcelona, Spain

{esmitt.ramirez,csanchez,agnesba,debora}@cvc.uab.es
2 Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain

{marta.diez,arosell}@bellvitgehospital.cat

Abstract. Bronchoscopy examinations allow biopsy of pulmonary nod-
ules with minimum risk for the patient. Even for experienced broncho-
scopists, it is difficult to guide the bronchoscope to most distal lesions and
obtain an accurate diagnosis. This paper presents an image-based codifi-
cation of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D
anatomy of each patient is codified as a binary tree with nodes represent-
ing bronchial levels and edges labeled using their position on images pro-
jecting the 3D anatomy from a set of branching points. The paths from
the root to leaves provide a codification of navigation routes with spa-
tially consistent labels according to the anatomy observes in video bron-
choscopy explorations. We evaluate our labeling approach as a guiding
system in terms of the number of bronchial levels correctly codified, also
in the number of labels-based instructions correctly supplied, using gen-
eralized mixed models and computer-generated data. Results obtained
for three independent observers prove the consistency and reproducibility
of our guiding system. We trust that our codification based on viewer’s
projection might be used as a foundation for the navigation process in
Virtual Bronchoscopy systems.

Keywords: Biopsy guiding · Bronchoscopy · Lung biopsy
Intervention guiding · Airway codification

1 Introduction

Suspicious pulmonary nodules might be diagnosed with a histopathologic anal-
ysis on a sample of biopsy tissue, which can be extracted in minimally invasive
bronchoscopic examinations. A main restraint of flexible bronchoscopy is the
difficulty to determine the best pathway to peripheral lesions. According to [1],
physician’s accuracy at defining proper 3D routes is only on the order of 40%

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): OR 2.0/CARE/CLIP/ISIC 2018, LNCS 11041, pp. 214–222, 2018.
https://doi.org/10.1007/978-3-030-01201-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01201-4_23&domain=pdf
http://orcid.org/0000-0001-7573-631X
http://orcid.org/0000-0003-3435-9882
http://orcid.org/0000-0002-7747-9924
http://orcid.org/0000-0002-0207-8157
http://orcid.org/0000-0003-0877-7191
http://orcid.org/0000-0002-2770-4767


Image-Based Bronchial Anatomy Codification for Biopsy Guiding 215

for ROIs located near airways at fourth generation or less, with errors beginning
as early as second generation.

Despite recent advances, a few novel endoscopy techniques seem to increase
diagnostic yield to 70–80% and still radiate the patient. The diagnostic yield
could be improved by reducing the radiation and costs and with the support of
imaging technologies which may better guide the physician to the target lesion.

Virtual bronchoscopic (VB) systems [2] are used to reconstruct computed
tomography (CT) data into three-dimensional representations of the tracheo-
bronchial tree. VB systems allow for pairing virtual and real-time bronchoscopy,
being useful for guiding ultrathin bronchoscopes and other devices in diagnostic
interventions [3]. During exploration, indicating the planned path on the current
intra-operative video could increase the intervention efficiency whereas reducing
radiation to clinical staff. To accurately guide the operator across the planned
path, assisted navigation, such as electromagnetic [4], radial probe ultrasound [5]
or image-based virtual bronchoscopic navigation [6,7], should identify in intra-
operative videos the different airway levels that VB follows.

According to Khan [3], the main advantage of virtual bronchoscopic navi-
gation (VBN) whether electromagnetic navigation or radial probe ultrasound is
its lower cost including consumables. Furthermore, during the procedure, VBN
might provide information on the airways in cases where video bronchoscopic
frames do not display the tracheobronchial tree due to either blood, mucus or
airway swelling. The main disadvantage of VBN is the lack to capture the real-
time information about both 3D position and directional guidance from the
operator point of view [3]. The codification of patient’s airways 3D anatomy
includes a labeling of the bronchial levels traversed across the navigation path.
This can help the operator to identify the path to follow and, as consequence,
to improve VBN intra-operative guidance.

The codification of patient’s airways 3D anatomy is a main point in the
development of a computer-assisted system for diagnosis, treatment planning,
and follow-up of pulmonary diseases. Several works are concerned with the cod-
ification and matching for improving registration of 3D scans in assessment of
obstructive pulmonary diseases. Airways 3D anatomy is usually described as a
graph using the bifurcations and end-points of the segmentation skeleton [8]. The
variability across acquisitions and patients, as well as, imperfections in segmen-
tation and skeletonization introduce missing and spurious branches that hamper
further matching and labelling of the constructed graphs. Usual solutions include
pruning of small skeleton branches [9] or tree-matching strategies able to cope
with topological changes [10,11].

Concerning airways labeling, this process is mainly restricted to anatomi-
cal names identified by matching unlabeled airway trees to atlas-based labeled
models. Even for methods successfully handling topological changes of the air-
way tree [12], anatomical labeling in human airway trees is well defined up to the
segmental level. This restricts the number of labels to 20–32 bronchial segments
[10], is a major inconvenience for distal navigation in biopsy guiding. A recent
work [13] proved the feasibility of labeling at sub-segmental levels using spatial
3D information of branches.
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In this paper, we present a graph-based codification of airways for guiding
bronchoscopy interventions in lung cancer biopsy procedures. Contrasting other
approaches, we use a graph structure to prune bifurcations introduced by imper-
fections in the segmentation and skeletonization. Our proposal uses geometrical
aspects (i.e. branching levels) of the segmentation skeleton to obtain an appro-
priate codification for guiding. Also, we label the airways using their position
in 2D images (quadrant-based approach), projected from the perspective of the
viewer which is obtained from virtual VB explorations. As far as we know, this is
the first work using virtual explorations to label airways according to their posi-
tion in video-bronchoscopy 2D frames. We provide a sub-segmental personalized
labeling to generate intuitive routing instructions for physicians.

2 Codification of Airways Navigation Paths

A navigation path across airways can be given by the sequence of the navigated
bronchial levels labeled in such a way that the branch to follow is identified into
intra-operative bronchoscopy videos. The complete structure of all bronchial
levels is represented using a graph with nodes. This structure is defined by
bronchial levels and edges labeled according to the position that bronchi would
have in bronchoscopic explorations.

Airways are tubular structures with their geometry determined by the cen-
terline given by bronchi lumen center. The airways centerlines correspond to
the skeleton of segmented volumes, and they allow the construction of a tree-
based structure on bronchi branching. The skeleton of a segmented volume is
encoded using the Kerschnitzki et al. [14] approach, where a graph represents its
branching geometry using nodes and edges. For instance, this approach was pre-
viously used to segment airways amongst match CT-videos bronchial structure
with encoded airways, using landmarks in the anatomical structure [15,16].

The nodes of the graph correspond to the skeleton branching points and its
edges represent branch connectivity. The Depth-First Search (DFS) algorithm
considers the trachea as the root node, and it allows directs the graph to depth
levels; this allows associate a level for each of its nodes to define a binary rooted
tree structure. DFS also defines the relationship parent/children each time a
bronchi branch is found, being the bifurcations before skeleton end-points the
leaves of the tree. This parent/children relationship lets encoding the tree struc-
ture using two adjacency matrices, see Fig. 1, for fast computing of graph oper-
ations (e.g. cycle detection, graph matching, maximum flow, and others). The
first matrix represents the node tree connectivity in a binary matrix, and the
second one is a matrix of 3D segments that keeps the list of 3D skeleton points
(i.e. (x, y, z) ∈ R3) that connect each pair of adjacent nodes. Each position in
the matrix of 3D segments is composed by a list of equally spaced points.

Skeleton false branches that not belong at bronchial anatomy, introduce extra
nodes in the graph structure that hinder the codification of bronchial levels.
These branches correspond to intermediate nodes of first order (i.e. with only
one child), in the adjacency matrix connecting two nodes, namely vi, vj , of
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different order (either a leaf or a node of order two). Intermediate nodes are
deleted from the two adjacency matrices removing their rows and columns, and
updating the position i, j with the adjacency information and the list of skeleton
points connecting vi, vj .
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Fig. 1. Binary and segments matrices codifying airway anatomy as rooted tree. The
colored positions in both matrices, represent the parent/children relationship.

A navigation route is defined as a node sequence vk0, vk1, . . . vkj−1, vkj , con-
necting a leaf node (vkj) with the root (vk0). A final navigation path inside
the segmented volume is the collection of skeleton 3D points extracted from the
matrix of 3D segments by considering the entrances given by (k0, k1), . . . , (kj −
1, kj). To provide an edge labeling consistent with intra-operative visual informa-
tion, a navigation route was simulated. This route is created across the segmented
volume and projects the segmented 3D geometry at each traversed bronchial level
to obtain a collection of virtual images of the intra-operative path. The position
of the projected bronchi in such virtual images provides our edge labeling for
intuitive routing.

Then, in a navigation route, to each pair of consecutive nodes, vk−1, vk, a
camera is placed in one of the skeleton points at a given distance dk from the
end node vk. This distance permits capture the complete border of lumen’s
border for bifurcations. Next, the camera target point is set to vk, and the up
vector is accumulated during path traversal (i.e roll axis) using the Frenet-Serret
frame. Also, the camera field of view is set to 120◦ to ensure full visibility of
geometry in virtual frames. Accordingly, dk varies on each segment being set to
0.2 × dist(vk−1, vk). The scene projected at each level is given by the following
simplified representation of the essential bronchial 3D structure. We project two
lines from vk to its children nodes v1

k+1 and v2
k+1, called S1 and S2 respectively.
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This allows a clear identification of the lines in virtual images, each projected
line has a different primary color, red and green. Thus, each line is codified in a
different RGB channel.

To label each projected line, the virtual image is split into four quadrants
centered at the projected position of vk. Since quadrants represent the spa-
tial distribution of airway lumens in bronchoscopic frames during traversal of
bronchial levels, each projected segment will be labeled according to the quad-
rant it belongs to. Then for each point of the projected segment, the position of
the quadrant they belong to is computed. For this, the mode and average values
are considered. The mode indicates the predominant quadrant where each seg-
ment belongs. When two or three segments lie on the same quadrant, they are
counterclockwise ordered according to their average.

The labeling process is described in the visual scheme shown in Fig. 2. Figure
shows an outline of airways and a navigation path with its branching nodes
labeled. The figure also displays a camera positioned at distance dk from the
node vk, and the segments S1, S2 colored in red and green respectively. The
rectangular images show the simplified scene projected over the complete airway
anatomy. The most left image is split into four colored quadrants: Q1 = red,
Q2 = green, Q3 = yellow, Q4 = blue, to illustrate that S1 lies in Q1 and S2
in Q2.

Y X
Z vk

vk-1 dk

v1
k+1

v2
k+1

S1

S2

S1inQ1S2inQ2

S1

S2

Fig. 2. Edge Labelling Procedure: the camera captures an image at distance dk from
the vk, projecting lines to children at level k + 1. Image is split into quadrants to label
line segments S1, S2. (Color figure online)

Using edge labels, navigation paths are encoded with a set of spatial instruc-
tions specified by the labels of the edges linking path nodes, Q1-Q3-Q1-Q2-
Q4. This agrees to route a path with instructions (up/right/left/down at every
branch) which are natural for physicians [17]. Such instructions mean “at first
bifurcation take the first quadrant, after the third, . . . , and so on”. Since these
instructions are not intuitive to follow during an intervention, we replace quad-
rant names for upper-right, upper-left, lower-left and lower-right indicating each
quadrant in a more natural language.
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3 Experiments and Discussion

The capabilities of our labeling for bronchoscopy guiding were evaluated, mainly
focus in two aspects: identification of the bronchial levels traversed, and valida-
tion of bronchi orientation in projected images as intuitive instructions for distal
routing. To do so, a set of virtual explorations on CT volumes using an interac-
tive simulation platform developed in Unity were developed.

For each CT-scan of a patient, four virtual explorations were generated, cover-
ing the four main lobes: left and right upper lobes, noted LUL, RUL, and left and
right lower lobes, noted LLL, RLL. These paths were performed using the central
navigation without rotation around the scope. For each path, a sequence of intu-
itive instructions (upper-left, upper-right, down-left, down-right) was extracted
using our method. These instructions were validated by three experts who tried
to reproduce the path in the simulation platform using the instructions supplied
at each level detected by the graph. Experts were asked to identify instructions
not corresponding to an actual branching level to define a false level rate (FLR).
At each bifurcation where an expert could not reproduce the route previously
simulated, was also recorded to define a false instruction rate (FIR).

Data were managed and evaluated through generalized mixed models using
software R version 3.2.5. For each quality score (FLR, FIR), a different Poisson
model was adjusted to include the segmental lobe as a factor. Moreover, a ran-
dom subject effect to account for intra-individual variability among cases and a
random effect to model inter-observer variability:

log(FIRijk) = β0 + β1Lobe + Pati + Obsj + εijk

log(FLRijk) = β0 + β1Lobe + Pati + Obsj + εijk

for Pati ∼ N(0, σPat) denoting the random effect that models intra-patient
variability, Obsj ∼ N(0, σObs) the random effect for inter-observer variability
and Lobe (with values LUL, RUL, LLL, RLL) for the grouping factor of the
four segmental lobes considered. Model assumptions were validated by means of
residual analysis and influential values. The model coefficients, p values and 95%
confidence interval (CI) for significance in main effects were also computed. The
CIs values were back transformed to the original scale for their interpretation.
Furthermore, a p value < 0.05 was considered statistically significant.

For our tests, ten cases were considered with paths reaching between the
sixth and twelfth bronchial level. Descriptive statistics, for instance, the average
and standard deviation (SD), also the model adjustment for both, FLR and FIR
as percentage way, are shown in Table 1. There are not any significant differences
across lung lobes for the rate of false detected levels with average overall values
in the range 3±7. Nevertheless, the lower left lung lobe has a significantly worse
(p-val < 0.01) rate of false instructions with CIs equal to (5.2, 20.6)%.

The increase in the FIR value for the lower left lung lobe is mainly due
to the confusing instructions at the third generation, just after the LUL-LLL
branching point. Although the 3D geometry around the third generation presents
two branching points (thus, two levels), they are not appreciated in the projected
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Table 1. Models for FLR and FIR.

Descriptive Model Descriptive Model
FLR FIR
(%) mean SD coeff p-val CI (%) mean SD coeff p-val CI

RLL 0.0 0.0 1 - (0.0,1.6) 2.8 4.6 1 - (0.6, 5.2)
LLL 3.3 7.2 0.5 0.33 (0.0, 3.4) 13 11.7 1.3 <0.01 (5.2, 20.6)
RUL 1.8 3.5 0.4 0.4 (0.0, 3.0) 1.7 4.0 -0.35 0.06 (0.1, 3.4)
LUL 7.0 12.4 1.0 0.07 (0.0, 6.0) 6.4 8.7 0.64 0.08 (2.2, 10.5)

images due to a short distance between them. In fact, in projected images, the
LLL lumen is not visually identified and three airway lumens that correspond
to the projection of LLL next generation are visible. Therefore, from the point
of view of the operator, there are three possible airways to follow at the same
level, while for our codification there are two consecutive levels with two airways
each.

Figure 3 illustrates this phenomenon. Whereas the 3D structure in front of the
camera contains the segments vk → v1

k+1 and vk → v2
k+1 as well as v1

k+1 children
segments v1

k+1 → v1
k+2 and v1

k+1 → v2
k+2, its projection shown in the right image

only shows lumens corresponding to v2
k+1, v1

k+2, v2
k+2. This visual artifact also

occurs in intra-operative videos as the top image illustrates. The image shows
a frame extracted at the same position from an exploration performed on the
patient, which is used to generate the simulated image shown below.

v2
k+1

v1
k+2

v2
k+2

v2
k+1

v1
k+1

v1
k+2 v2

k+2

Fig. 3. System failure at spatially close bifurcations, where projections skip one of
them and show three possible airways to follow.
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4 Conclusions

We have introduced a codification of the bronchial anatomy, for biopsy guiding
based on a symbolic representation of each patient’s airway anatomy as a binary
rooted tree. Tree nodes represent the bronchial levels, and their edges are labeled
according to the position of bronchi in virtual video bronchoscopy. This provides
to physicians intuitive instructions during biopsy guiding.

Experiments on data simulating different routes to each pulmonary lobe allow
the validation of our approach as a system for supplying instructions in biopsy
guiding (with the successful average guiding of 94.7%±9.1% in the cases). Also,
we might correctly codify up to the tenth generation, forward of that, our seg-
mentation approach needs some improvements. The statistical analysis detected
a bias in instructions for the left lower lobe introduced by the spatially close
consecutive levels, which are visualized as a single level with three lumens in
the projected images. In such cases, the system should issue a single instruction
instead of two. To avoid this phenomenon, the tree codification may be merged
consecutive levels into a single level, considering the branching point distance).

Although this is an off-line validation with simulated data, we might con-
clude that a guiding system based on bronchi orientation in 2D projections is
feasible and simple enough, and it might be easily deployed in operating rooms
with low costs. The integration of this approach into an interactive navigation
support system is currently under development [18], and we have the confidence
to compare it with the LungPoint system in a near future.
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Abstract. Delineation of organs at risk (OAR) on CT images is a cru-
cial step in the planning of radiotherapy treatment. Manual delineation
is time-consuming and high interrater variability is observed within and
across radiotherapy centers. Automated delineation of OAR is fast and
can lead to more consistent treatment plans. We developed an auto-
delineation tool based on a 3D convolutional neural network (CNN)
to automatically delineate 16 OAR structures in head and neck can-
cer (HNC) patients. The CNN was trained off-line using 70 previously
collected patient datasets and implemented to be available on-line in
clinical routine practice. The tool was applied prospectively for delin-
eation of 20 consecutive new HNC cases within the department of Radi-
ation Oncology, with subsequent manual editing and approval of the
contours by the clinical expert. Validation based on the automatically
proposed and edited contours shows that the auto-delineation tool is
able to achieve highly accurate segmentation results for most OAR. As
a result, 3D delineation time is reduced to less than 19 min on aver-
age (about 1min/structure), compared to usually 1 h or more without
auto-delineation tool.

Keywords: Auto-delineation · Deep convolutional neural network
Deep learning · Organs at risk · Radiotherapy

1 Introduction

Cancer is a major disease worldwide with head and neck cancers (HNC) among
the most common cancers in Europe [1,20]. State of the art treatment of patients
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diagnosed with HNC often involves external beam radiotherapy (RT). Treatment
planning systems (TPS) are used in radiotherapy to determine an optimal treat-
ment plan for each patient. Precise delivery of ionizing radiation to the tumor
increases probability of local tumor control while maximally sparing healthy
tissue in order to avoid treatment complications.

Accurate delineation of target volumes and OAR on the planning CT is
required to ensure proper plan and dose optimization. In clinical practice, the
delineation is performed manually by radiation oncologists (RO) based on pub-
lished guidelines and is time consuming [12]. The delineation strongly depends on
experience level, knowledge and preferences of a RO, leading to high intra- and
interobserver variability [2]. Consequently, the induced variations may affect the
final treatment plan [2,14]. Automatic delineation can improve accuracy, consis-
tency and reproducibility of contours leading to more consistent treatment plans
within and across radiotherapy centers [12,19].

Atlas-based models are widely used to automatically segment OAR in
HNC [4,12,19]. Prior knowledge is incorporated in the form of atlases, which
are registered to the target image using deformable image registration tech-
niques [12].

Recently, machine learning approaches, in particular deep learning based on
convolutional neural networks (CNN), proved their success in many computer
vision tasks such as object detection [5], semantic segmentation [11] and classifi-
cation [8,10,18] and are becoming a state-of-the-art approach in medical imaging
as well (e.g. [7,16]), including RT planning (e.g. [13]). For HNC in particular,
Ibragimov et al. [6] developed a convolutional neural network extended with
Markov random fields for segmentation of OAR in HNC patients. Men et al. [12]
published a deep deconvolutional network focusing on the auto-delineation of the
target volumes in HNC patients. Cardenas et al. [3] used convolutional neural
networks for delineation of high risk oropharyngeal target volumes.

To investigate the clinical potential of CNN-based auto-delineation, we devel-
oped and implemented such a tool and integrated it within the conventional
planning workflow within the department of Radiation Oncology of UZ Leuven.
The tool is applied on-line, i.e. results are available to the radiation oncologist
within few minutes after invoking the tool at the start of the planning procedure.
The tool generates delineations of multiple (up to 16) organs at once, includ-
ing: brainstem, spinal cord, parotid glands, submandibular glands, mandible,
oral cavity, left and right cochlea, supraglottic and glottic larynx, upper esopha-
gus and pharyngeal constrictor muscles (PCM). The auto-delineation results are
imported in the planning system and visually inspected and edited as needed
by the clinical expert. We report on our initial clinical experience with a quan-
titative and qualitative evaluation of the tool based on clinical feedback for 20
actual planning cases. Auto-delineated contours are generally well perceived by
the radiation oncologists and reduce overall delineation time drastically. Due to
the generic nature of the underlying CNN, the implementation is easily extend-
able to other organs.
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2 Materials and Methods

2.1 Data Acquisition

The dataset used for training of the CNN consist of planning CT images of
70 patients and their OAR delineations. All patients were diagnosed with a
tumor in head and neck region and received RT treatment. All CT images were
acquired using the same clinical protocol on the same CT scanner in our institute
(Somatom Sensation Open, Siemens Healthcare, Forchheim Germany). During
CT acquisition, all patients were immobilized in treatment position using a ther-
moplastic mask. The auto-delineation tool is validated on planning CT images
of 20 new HNC patients, which were consecutively acquired in clinical prac-
tice between April and May 2018. The auto-delineation tool was prospectively
applied to these new cases to assess both the performance of the underlying 3D
CNN and the impact on the RT planning workflow in daily routine clinical prac-
tice. Two patients received right parotidectomy, one patient left parotidectomy
and four patients total laryngectomy before RT treatment, which means that
the right (left) parotid resp. upper esophagus, inferior pharyngeal constrictor
muscle and larynx were surgically removed and were consequently not present
in the planning CT image of the patient.

2.2 3D Convolutional Neural Network: DeepVoxNet

A 3D convolutional neural network (DeepVoxNet) based on previous work from
Kamnitsas et al. [7], is developed to automatically segment OAR in HNC for RT
treatment planning. This end-to-end automated delineation network predicts a
class label for each voxel present in a CT image [15]. CT images are normalized
and resampled to a voxel size of 1× 1× 3 mm3 as a preprocessing step. Data
augmentation is performed by introducing Gaussian noise and randomly flip-
ping images. For computational efficiency, a patch based approach (19× 19× 13
voxels) is used in which multiple voxels are predicted at once. The network has
four inputs (instead of two in [7]) that receive subvolumes of the image at dif-
ferent resolutions. Each input is followed by 10 convolutional layers and is then
upsampled to the original resolution. The output of these four pathways are
concatenated in the feature dimension and followed by two final convolutional
layers and the classification layer. This multi-scale approach allows the network
to consider both fine details in the immediate neighborhood as more coarse infor-
mation in a wider environment when making a prediction. The parametric ReLU
is used as activation function. Adam optimizer and dropout were used during
training. As postprocessing steps, connected component analysis and smoothing
are performed using MeVisLab modules (version 2.7.1).

2.3 Implementation

The auto-delineation tool using the proposed CNN and postprocessing steps, is
deployed for testing in clinical practice within the Radiation Oncology depart-
ment of UZ Leuven. New HNC planning cases follow the automated delineation
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protocol, which is summarized in Fig. 1. A patient’s planning CT is transferred to
the Medical Image Research Center using a DICOM server (OsiriX [17]) followed
by auto-delineation of the OAR using the online auto-delineation tool running
on a GPU server. The auto-delineation tool is built using MeVisLab (version
2.7.1) and combines three different steps. First, preprocessing is performed by
normalising the CT image and resampling it to a voxel size of 1× 1× 3 mm3.
Consequently, contours of all OAR are predicted using DeepVoxNet followed by
connected component analysis and smoothing as postprocessing steps. The final
contours are transferred to the Radiation Oncology department in DICOM for-
mat and imported into the TPS (Eclipse, Varian Medical Systems, Palo Alto,
CA, USA). If necessary the structures are corrected by a junior RO and there-
after approved by a senior RO. Corrected contours are transferred back to the
Medical Image Research Center and extra clinical feedback on delineation qual-
ity and efficiency is collected. Plan and dose optimizations are performed using
the standard clinical workflow. This clinical implementation allows us to gather
feedback fast and efficiently to further improve auto-delineations of OAR.

Fig. 1. Overview of clinical implementation.

2.4 Validation Process

Both a quantitative and qualitative validation is performed to assess the per-
formance of the auto-delineation tool as well as its impact on the clinical work-
flow. Quantitative analysis is achieved using three similarity measures calculated
in 3D including: Dice similarity coefficient (DSC), Hausdorff distance (H) and
average symmetric surface distance (ASSD), which each determine the similarity
between auto-delineated structures and the approved structures. Moreover, the
RO recorded the time necessary to correct auto-delineated structures for each
patient.
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A qualitative validation is performed based on clinical assessment. The RO
classifies the 3D delineation of each structure for each patient as ‘good’, ‘ade-
quate’ or ‘insufficient’ depending on the perceived performance of the auto-
delineation and the amount of extent of the manual corrections.

3 Validation Results

3.1 Quantitative Validation

Quantitative validation results reported in DSC (%), H (mm) and ASSD (mm)
are summarized in Figs. 2, 3 and Table 1. The DSC values show diverse results
for different anatomical structures. Brainstem, mandible, oral cavity, parotid
glands, submandibular glands and spinal cord show highly accurate delineations
on average, with mandible receiving the highest average DSC of 95.9% and the
submandibular gland the lowest average DSC of 78.8%. Intraclass variations are
rather low, which means that DeepVoxNet is able to consistently delineate the
same structure. In contrast, higher intraclass variations are noticed for cochleae,
pharyngeal constrictor muscles (PCM), larynx and the upper esophagus, with
DSC values ranging from 0% to 100%. Cochleae are small structures and usually
consist of one or two slices on the planning CT, such that even small correc-
tions can have a large impact on DSC, resulting in a lower average DSC for the
cochleae. Both the left and the right cochlea were once not recognized by the net-
work and consequently not delineated, which explains the DSC value of 0%. The
delineation results for pharyngeal constrictor muscles perform approximately
the same as reported in literature [9]. Although some good auto-delineations
of PCM, glottic and supraglottic larynx are obtained, leading to DSC values
above 80%, the network fails to achieve accurate segmentation results when the
tumor is located close to the PCM, glottic and supraglottic larynx. Moreover
the transition between the PCM or glottic and supraglottic larynx are the most
challenging parts to achieve high accuracy.

The average symmetric surface distance (ASSD) is below 3 mm for all struc-
tures except for the upper esophagus (7.81 mm) and the oral cavity (10.07 mm).
The mandible, cochleae, spinal cord, brainstem and the right submandibular
gland are the structures with the least corrections, resulting in an ASSD of less
than 1 mm. Same trends are observed when evaluating Hausdorff distances. The
ASSD and H highlight the influence of volume on DSC values. Although both
cochleae reached lower average DSC with high intraclass variations, the cochleae
achieved the best performance on ASSD scores compared to other structures.

The upper esophagus shows poor results on all three similarity measures with
an average DSC of only 36.4% and Hausdorf distance of more than 3.6 cm. This
can be explained by the fact that the training set only contains delineations of
the upper part of the esophagus, hence labeled as ‘upper esophagus’ in Figs. 2
and 3. However, when correcting the auto-delineations, the RO extended the
delineation of the upper esophagus caudally for some patients due to a lower
located tumor, which explains the lower averaged similarity measures for the
structure.
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Fig. 2. DSC results of auto-delineations vs. corrected contours for various organs at
risk (left axis).

Fig. 3. ASSD for auto-delineations vs. corrected contours. Triangles represent outliers
above 25 mm (see text for explanation)
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Figure 4 visualizes correction time per patient, recorded by the RO for cor-
recting all the OAR delineations of a specific patient, with on average about
290 2D contours per patient. The average correction time recorded by the RO is
15 min, which is less than one minute for each 3D structure. The proposed auto-
delineation tool predicts 3D contours in less than 4 min using a GPU server.
This drastically decreases overall delineation time to about 19 min from approx-
imately 45–120 min, measured in our institute.

Fig. 4. Correction time recorded by the RO necessary to correct all the OAR for each
patient separately

3.2 Qualitative Validation

The auto-delineated structures are overall well perceived in clinical practice,
Fig. 5. Mandible, brainstem, cochleae and spinal cord are perceived as ‘good’ for
more than 80% of the cases, which is in line with the results from the quantitative
validation. Every organ is more classified as ‘good’ than as ‘insufficient’ except
for the upper pharyngeal constrictor muscle. The delineation of this structure
needed in general more corrections, which is also observed in the quantitative
validation. The upper esophagus however, scored remarkably well on the clinical
score although the quantitative results are rather poor. Although the esophagus
was not fully delineated, the auto-delineation of the upper part of the structure
was well perceived in clinical practice.
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Table 1. Results of auto-delineation reporting volume in ml, Average Symmetric Sur-
face Distance (ASSD) in mm, Hausdorff Distance (H) in mm and Dice Similarity Coef-
ficient (DSCD) in % for each organ seperately. The results are compared with the
largest dice similarity coefficient for auto-delineation algorithms (DSCL) and inter-
rater variability (DSCI) reported in literature in the last two columns.

Organ V (ml) H (mm) ASSD (mm) DSCD (%) DSCL (%) DSCI (%)

Brainstem 21.67 6.52 0.84 91.5 81.0 [9] 83.0 [19]

Left cochlea 0.04 1.64 0.34 75.4 69.0 [9] 37.0 [19]

Right cochlea 0.06 1.66 0.41 73.1 63.0 [9] 36.0 [19]

Upper esophagus 8.60 35.8 7.66 34.8 - 87.1 [14]

Glottic larynx 2.32 11.14 2.40 39.4 - 49.0 [19]

Mandible 42.71 6.48 0.60 95.9 89.5 [6] -

Oral cavity 83.97 23.18 10.07 83.5 - -

Supraglottic larynx 9.83 11.09 2.22 71.2 - 60.0 [19]

Left parotis 22.06 11.27 1.35 86.3 79.0 [9] 76.1 [14]

Right parotis 20.75 10.06 1.05 89.7 79.0 [9] 76.5 [14]

PharConsInf 2.72 9.62 1.98 57.9 66.0 [9] 50.0 [19]

PharConsMid 2.59 12.65 1.99 60.9 57.0 [9] 50.0 [19]

PharConsSup 4.55 14.74 2.05 46.1 36.0 [9] 44.0 [19]

Left submandibular 5.83 7.72 1.47 78.8 69.7 [6] -

Right submandibular 5.87 5.54 0.83 87.7 73.0 [6] -

Spinal cord 11.26 4.26 0.39 95.9 87.0 [6] 79.5 [14]

Fig. 5. Clinical assessment of the RO reported in percentage of 3D contours for which
segmentation performance was perceived as “good”, “adequate” or “insufficient”.
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4 Discussion and Conclusion

We developed an online auto-delineation tool for organs at risk in HNC patients
in the context of RT treatment planning. The auto-delineation tool, based on 3D
CNN (DeepVoxNet) is deployed in clinical practice to evaluate the performance
of auto-delineations and to asses the impact on the clinical workflow.

Manual delineations are sensitive to interrater variability, leading to incon-
sistent treatment plans. Dice similarity coefficients of interrater variability pub-
lished in literature are summarized in Table 1 [14,19]. A high interrater variabil-
ity is observed for smaller organs such as: cochleae, upper esophagus, supraglottic
larynx and PCM. The inter observer variability stresses the difficulty of auto-
matic delineations of the OAR. Segmentation results of organs at risk using both
atlas-based methods and deep learning, have been reported in literature [4,19]
DeepVoxNet [15] is able to provide better segmentation results for organs at risk
in head and neck patients compared to results published in literature (Table 1).
Ibragimov et al. [6] was the first to propose a convolutional neural network for
auto-delineations of OAR in HNC patients. Our results reported in DSC, tend
to exceed the results of [6].

Our initial experience shows that in general, only small corrections are neces-
sary for clinical acceptance of auto-delineated contours for most of the structures.
The largest corrections for clinical acceptance are observed for the upper esoph-
agus and glottic area while mandible needed the least corrections. Moreover the
automated workflow is less time consuming, reducing the delineation time to
19 min in total compared to 45 min–120 min if manually delineated.

References

1. Borras, J.M., et al.: How many new cancer patients in Europe will require radio-
therapy by 2025? An ESTRO-HERO analysis. Radiother. Oncol. 119, 5–11 (2016)

2. Brouwer, C.L., Steenbakkers, R.J.H.M., Heuvel, E.V.D., Duppen, J.C., Navran,
A.: 3D variation in delineation of head and neck organs at risk. Radiat. Oncol.
7–32 (2012)

3. Cardenas, C.E., et al.: Deep learning algorithm for auto-delineation of high-
risk oropharyngeal clinical target volumes with built-in dice similarity coefficient
parameter optimization function. Int. J. Radiat. Oncol. Biol. Phys. 101(2), 468–
478 (2018)

4. Fortunati, V., et al.: Tissue segmentation of head and neck CT images for treatment
planning: a multiatlas approach combined with intensity modeling. Med. Phys.
40(7), 071905 (2013)

5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp.
580–587, June 2014

6. Ibragimov, B., Xing, L.: Segmentation of organs-at-risks in head and neck CT
images using convolutional neural networks. Med. Phys. 44(2), 547–557 (2017)

7. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for
accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)



232 S. Willems et al.

8. Krizhevsky, A., Sulskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information and Processing
Systems (NIPS), vol. 60(6), pp. 84–90 (2012)

9. La Macchia, M., et al.: Systematic evaluation of three different commercial soft-
ware solutions for automatic segmentation for adaptive therapy in head-and-neck,
prostate and pleural cancer. Radiat. Oncol. 7(1), 1 (2012)

10. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 7–12 June 2015, pp. 3431–3440 (2015)

12. Men, K., et al.: Deep deconvolutional neural network for target segmentation of
nasopharyngeal cancer in planning computed tomography images. Front. Oncol. 7,
315 (2017)

13. Men, K., Dai, J., Li, Y.: Automatic segmentation of the clinical target volume and
organs at risk in the planning CT for rectal cancer using deep dilated convolutional
neural networks. Med. Phys. 44(12), 6377–6389 (2017)
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Abstract. Automatic lesion segmentation in dermoscopy images is
an essential step for computer-aided diagnosis of melanoma. The der-
moscopy images exhibits rotational and reflectional symmetry, however,
this geometric property has not been encoded in the state-of-the-art
convolutional neural networks based skin lesion segmentation methods.
In this paper, we present a deeply supervised rotation equivariant net-
work for skin lesion segmentation by extending the recent group rota-
tion equivariant network. Specifically, we propose the G-upsampling and
G-projection operations to adapt the rotation equivariant classification
network for our skin lesion segmentation problem. To further increase the
performance, we integrate the deep supervision scheme into our proposed
rotation equivariant segmentation architecture. The whole framework is
equivariant to input transformations, including rotation and reflection,
which improves the network efficiency and thus contributes to the seg-
mentation performance. We extensively evaluate our method on the ISIC
2017 skin lesion challenge dataset. The experimental results show that
our rotation equivariant networks consistently excel the regular coun-
terparts with the same model complexity under different experimental
settings. Our best model also outperforms the state-of-the-art challeng-
ing methods, which further demonstrate the effectiveness of our proposed
deeply supervised rotation equivariant segmentation network.

1 Introduction

Skin cancer has become the most prevalent cancer in the United States [12],
and melanoma is the most deadly form of skin cancer, leading to over 9,000
deaths in the Unite States in 2017 [13]. A common technique used by dermatol-
ogists for diagnosing skin diseases is the dermoscopy, which enables observation
by enhancing the visual effect of pigmented skin lesions. Lesion segmentation
in dermoscopy images is an essential component in the diagnosis of skin dis-
eases. However, segmenting skin lesions by dermatologists is time-consuming
and error-prone to inter- and intra-observer variabilities. Moreover, due to the
growing shortage of dermatologists per capita, the automatic lesion segmenta-
tion in dermoscopy images would be beneficial to more people [8]. Convolutional
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neural networks (CNNs) have proven to be very powerful models for a board
array of image recognition tasks. In the domain of skin lesion segmentation,
all leading methods adopted CNN-based methods [2,16,17]. For example, Yuan
et al. [17] proposed a deep convolutional neural network (DCNN), trained it with
multiple color spaces, and achieved the best performance in the ISIC 2017 skin
lesion segmentation challenge. Yu et al. [16] explored the network depth property
and proposed a deep residual network with more than 50 layers for automatic
skin lesion segmentation.

Fig. 1. Convolution layer is translation equivariant (a); but convolution is not rotation
equivariant (Zoom in to see the detailed comparison), as shown in (b).

The success of these CNN-based models can be partially attributed to the
effectiveness of weights sharing in the convolution layer, where the translation
equivariance is preserved. To be specific, translating a layer’s input produces the
corresponding translation in the layer’s output. As shown in Fig. 1(a), shifting
the input of the convolution leads to the predictable shifting in the output. This
translation equivariance property of convolution is effective in most perception
tasks, where the same weights can be used to encode the local spatial pattern
and reduce the model parameter to avoid overfitting. Unlike natural images,
dermoscopy images exhibit not only translation symmetry but also rotation and
flipping symmetry as well. However, if one rotates the convolution input, the
generated output does not necessarily rotate in a predictable manner, as shown
in Fig. 1(b). Previous works utilized data augmentation technique like rotation
and flipping, to encourage the network to learn rotation and flipping covariance.
Even though this strategy could regularize the network to learn the equivariance
on the training set, there is no guarantee that the equivariance property will
generalize to other images. Moreover, forcing the network to learn the redundant
knowledge introduced by different data transformations would reduce the model
efficiency. Specifically, with the same level of model complexity, the regular CNN
needs to learns not only the discriminative features but only the input rotations
and reflections. Furthermore, comparing with natural images, the biomedical
images are scarce and more difficult to obtain, and it is highly demanded to
design an efficient network to improve the model efficiency.

We consider to improve the network efficiency by encoding the rotation
and flipping equivariance into the network, in which the network preserves the
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equivariance inherent without relying on data augmentation. Recently, there
are some works have made significant progress for rotation equivariant net-
works [6,10]. Cohen et al. [6] explored rotation and reflection equivariant inher-
ent network for classification problems, where the feature learned in the G space
exhibits rotation equivariance. In this paper, we propose a deeply supervised
rotation equivariant network by extending G-CNN [6] for skin lesion segmen-
tation. Our network encodes the translation, rotation and flipping symmetry
of dermoscopy images, and thus improves the skin lesion segmentation perfor-
mance. Specifically, we design the G-upsampling layer and the G-projection layer
for the segmentation task with the G-convolution layer. The G-upsampling layer
upsamples the features in the G space and the G-projection layer performs aver-
age pooling over the rotation dimension and then projects features from the G
space to Z space, making the whole network rotation equivariant. To better stabi-
lize the learning processing of the proposed network, we also integrated the deep
supervision [4,9] in our network to further improve the performance. Compared
with the plain convolution neural networks, our network enjoys a substantially
higher degree of weight sharing, and increases the expressive capacity of the net-
work without increasing the number of parameters. We extensively evaluate our
method on the ISIC 2017 skin lesion segmentation challenge. The results demon-
strate the efficiency of our proposed rotation equivariant segmentation network,
and our method outperforms other state-of-the-art methods on the challenging
dataset. Several works [1,14,15] also explore the rotation equivariant network
in the biomedical image domain. However, our work further explores the equiv-
ariant segmentation networks with deep supervision scheme [4,9] for automatic
lesion segmentation in dermoscopy images.

2 Method

In this section, we first introduce the concept of group equivariant convolution
(G-convolution), and then describe the proposed G-upsampling and G-projection
layers for the segmentation task. Finally we present our proposed deeply super-
vised rotation equivariant framework.

2.1 G-convolution

The regular first convolution layer is a function that maps the input to feature
maps with K channels f : Z2 → R

K . The function can be described as Eq. 1.

[f ∗ ϕ](x) =
∑

y∈Z2

∑

k

fk(y)ϕk(x − y), (1)

where ϕk denotes the convolution kernel.
To encode rotation equivariance in the network, Cohen et al. [6] proposed to

conduct convolution on groups, where the group p4 consists of all compositions
of translations and rotations by 90◦ about any center of rotation in the grid, and
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Fig. 2. The illustration of the G-convolution, G-upsampling and G-projection oper-
ation. Except the G-projection layer, we only show 1 channel in all other layers to
simplify the illustration.

the group p4m additionally includes reflections. Specifically, for the input layer,
the (Z2 → G) convolution is defined as

[f ∗ ϕ](g) =
∑

y∈Z2

∑

k

fk(y)ϕk(g−1y), (2)

where g is a transformation in the predefined group p4 or p4m. Then, in the
following layers, feature maps and filters are both functions on G and the (G →
G) convolution can be described as

[f ∗ ϕ](g) =
∑

h∈G

∑

k

fk(h)ϕk(g−1h) (3)

2.2 G-upsampling and G-projection for Segmentation Problem

In the segmentation problem, the down-sampled feature maps need to be upsam-
pled in the G space for pixel-level prediction, and thus we design the G-
upsampling layer. The convention upsampling layer performs upsample opera-
tion for feature maps at the spatial dimension. In the G space, the G-upsampling
layer performs upsample operation over all eight rotations (for group p4m) at
each spatial position, as shown in Fig. 2.

To enable the equivariant network to produce final score maps for skin lesion
segmentation, we also define the (G − Z

2) projection layer.

fk(y) =
1

|G|
∑

G

(fk(h)), (4)
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where |G| denotes the number of element in group G. For example, it equals
to 4 for group p4 and 8 for group p4m. With the G-upsampling layer and the
G-projection layer, we can design a segmentation network, which is equivariant
to the input symmetric transformations.

2.3 Deeply Supervised G-FCNs

The deeply supervised rotation equivariant network is based on the ResNet34 [7]
architecture, where we replace the convolution layer, upsampling layer to the G-
convolution, G-upsampling and G-projection layers. As shown in Fig. 3, we use
three 2×2 G-upsampling layers and one G-projection layer following the feature
maps generated by ResNet34. We also adopt the U-net like long-skip connections
to preserve the low-level features. The deep supervision mechanism is performed
by upsampling at three different spatial resolution of features, and the final
result is the weighted combination of three segmentation predictions. Since all
the elements in the network are equivariant to 90◦ rotation and reflection of the
input, the whole framework also preserves the rotation equivariant property. In
other words, if one clock-wise rotates the input image 90◦, the network output
will rotate in the same manner. Readers can find more details about the network
architecture from our code1.
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Fig. 3. The framework of our proposed rotation equivariant network for skin lesion
segmentation. The network is based on ResNet34 backbone, and is integrated with
deep supervision and U-Net connections. All the regular operations are replaced to
G-convolution, G-upsampling, and G-projection operations. The whole architecture is
equivariant to input symmetric transformation. In other words, if one rotate the input
for 90◦, then the prediction score would rotate in the same way. Note that we omit the
pooling operation, ReLU activations to simplify the illustration.

1 https://github.com/xmengli999/Deeply-Supervised-Rotation-Equivariant-
Network-for-Lesion-Segmentation.

https://github.com/xmengli999/Deeply-Supervised-Rotation-Equivariant-Network-for-Lesion-Segmentation
https://github.com/xmengli999/Deeply-Supervised-Rotation-Equivariant-Network-for-Lesion-Segmentation
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3 Experiments and Results

3.1 Dataset and Evaluation Metrics

We evaluate our method on the dataset of ISIC 2017 skin lesion segmentation
challenge [5], which consists of a training set with 2000 annotated dermoscopic
images, a validation set with 150 images, and a testing set with 600 images.
The image size ranges from 540 × 722 to 4499 × 6748. To keep balance between
segmentation performance and computational cost, we first resize all the images
to 224 × 224 using bicubic interpolation. For evaluation metric, we follow the
challenge instructions to employ five evaluation metrics, including jaccard index
(JA), dice coefficient (DI), pixel-wise accuracy (AC), sensitivity (SE) and speci-
ficity (SP). Note that the final rank is determined according to JA in the ISIC
2017 skin lesion segmentation challenge.

Table 1. Ablation study of the deeply supervised rotation equivariant network.

Model No. of para Evaluation metrics

JA DI AC SE SP

ResnetFCN34* 22.8M 71.27 80.21 91.39 78.31 96.78

(RE)-ResnetFCN34* 22.8M 74.54 83.27 92.58 81.05 97.59

DS-U-ResnetFCN34* 23.2M 74.38 83.06 92.51 82.52 97.14

(RE)-DS-U-ResnetFCN34* (ours) 23.2M 76.65 85.00 93.27 84.61 96.80

(RE)-DS-U-ResnetFCN34 (ours) 23.5M 77.23 85.60 93.55 85.40 97.15

3.2 Implementation Details

All the experiments were implemented using PyTorch [11], and were trained with
stochastic gradient descent (SGD) algorithm (momentum is 0.9) from scratch.
The learning rate is set to 0.01 and decays at epoch 60. All the models are trained
for 70 epochs. As for experiments with the plain convolution, we employed data
augmentation like 90◦ rotation and flipping. The main loss function and the deep
supervision branches are trained with cross entropy loss. The weights for main
loss and deep supervision are 0.7, 0.2 and 0.1 respectively.

3.3 Ablation Study

Table 1 shows the segmentation performance on the test dataset with different
configurations. ResnetFCN34* refers to the FCN-based Resnet34 network, while
(RE)-ResnetFCN34* and DS-U-ResnetFCN34* are the rotation equivariant and
deeply supervised with long range U-Net connections counterparts, respectively.
The * denotes that we remove the first pooling layer from the original Resnet34
network, following the setting in [6]. Note that all the rotation equivariant net-
works are performed with group p4m [6]. To analyze the effectiveness of rotation
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equivariant network fairly, all the comparison are performed with the same model
complexity. Specifically, compared with the original filter numbers in Resnet34,
the number of filters is divided by roughly

√
8 in each G-convolution layer.

From the comparison in Table 1, we can see that the rotation equivariant
network largely excels the plain counterpart, with 3.27% improvement on JA.
The deeply supervised version also improve the JA performance significantly.
When integrate the deep supervision with U-Net connections into the rotation
equivariant network ((RE)-DS-U-ResnetFCN34*), we can further improve the
segmentation performance (2.27% on JA). To better adapt the network for our
skin lesion segmentation task, we replace the first pooling layer of ResnetFCN34
with a G-convolution with stride of 2 and denoted the deeply supervised rotation
equivariant version as (RE)-DS-U-ResnetFCN34. It is observed that (RE)-DS-
U-ResnetFCN34 achieves the best performance on the all evaluation metrics
excepting for SP, demonstrating the superiority and effectiveness of rotation
equivariant networks under same level of model complexity.

Table 2. Comparison with state-of-the-art methods on the ISIC 2017 test dataset.

Team JA DI AC SE SP

Our Method 0.772 0.856 0.936 0.854 0.972

Yuan and Lo [17] 0.765 0.849 0.934 0.825 0.975

Berseth [2] 0.762 0.847 0.932 0.820 0.978

Bi et al. [3] 0.760 0.844 0.934 0.802 0.985

RECOD 0.754 0.839 0.931 0.817 0.970

Jer 0.752 0.837 0.930 0.813 0.976

NedMos 0.749 0.839 0.930 0.810 0.981

INESC 0.735 0.824 0.922 0.813 0.968

Shenzhen U (Lee) 0.718 0.810 0.922 0.789 0.975

3.4 Comparison with Other Methods

We compare our result with state-of-the-art results on the ISIC 2017 testing
dataset. There are totally 21 submissions and the top results are listed in Table 2.
Yuan et al. [17] trained a CNN network with multiple color spaces and achieves
the best performance on the skin lesion segmentation challenge. Our best model,
trained from scratch on the single RGB color space, outperforms other state-of-
the-arts in the test dataset of the ISIC challenge. This comparison validates the
effectiveness of our proposed deeply supervised rotation equivariant network in
the skin lesion segmentation task.

4 Conclusion

In this paper, we present a deeply supervised rotation equivariant segmentation
network for skin lesion segmentation by utilizing the recent findings on rota-
tion equivariant CNNs. We design the G-upsampling and G-projection layers to
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enable our network for the segmentation task, and introduce the deep super-
vision mechanism to improve performance. Our network encodes the rotation
and reflection symmetry of dermoscopy images, and significantly improves the
skin lesion segmentation performance. Our method has achieved the best per-
formance on the ISIC 2017 skin lesion segmentation challenge dataset. Future
works include the extension of equivariance to arbitrary rotation and scaling.
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Abstract. This study develops approaches for the automated referral of indi-
viduals with Lyme disease using erythema migrans rash (EM) images with
clinical-grade or ‘in the wild’ characteristics. We develop a pre-screener using a
Deep Convolutional Neural Network (DCNN) that classifies EM vs. other
conditions, including either control/unaffected skin, or skin presenting with
other confuser lesions. We test and report performance metrics for the proposed
approach on this dataset including Cohen’s Kappa coefficient, area under the
receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity,
specificity. The machine classification yields accuracy (and error margin) of
93.04% (1.49), AUC of 0.9504 (0.0156), and Kappa of 0.7549 (0.0586), which
is a significant improvement over previously published state-of-the-art methods.
Results also suggest substantial agreement between machine and expert clinician
annotated gold standard images. The DCNN model developed for this skin
classifier is made publicly available and can potentially be used by others for
transfer learning to other types of skin lesion classification models including
those for skin cancer.

1 Introduction

This study aims to leverage deep learning (DL) and DCNNs [1–6, 8, 19, 20] for
prescreening of Lyme disease [9–15]. Lyme disease is the most common vector-borne
disease in the United States, with over 300,000 new cases annually. Borrelia
burgdorferi is the causative bacterial agent of Lyme disease, and it is transmitted
through the bite of an infected tick into the skin of the affected individual. Infection
progresses through three stages, advancing from skin-limited disease to disseminated
disease affecting the nervous, cardiac, and rheumatologic systems. In the majority of
cases, the initial skin infection is manifested by a round or oval red skin lesion called
erythema migrans (EM), which is a direct result of bacterial infection of the skin and
marks the first stage of Lyme disease. Treatment with oral antibiotics is highly effective
in early, uncomplicated cases. Therefore, recognition of EM is crucial to early diag-
nosis and treatment, and ultimately, prevention of potentially devastating long-term
complications.
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Erythema migrans typically occurs 1 to 3 weeks after the initial tick bite and
expands centrifugally by as much as a centimeter per day. Classically, the lesion will
also display central clearing as it expands, leading to the hallmark bull’s-eye rash of
Lyme disease. However, many individuals will not display this finding and the majority
of individuals are unable to recall a tick bite, making early diagnosis challenging. EM
usually persists for weeks during which its visual recognition is the primary basis for
the clinical diagnosis of early Lyme disease. Following this early period, untreated EM
usually disappears or progresses to disseminated disease through the spread of infection
through the bloodstream. Diagnosis of early Lyme disease is usually made based on
clinical signs and symptoms and history of potential exposure to ticks, due to the lack
of reliable serologic blood testing early in the disease course [9, 10]. Blood tests are
insensitive during the early phase of infection and are not recommended because of the
high false negative rate at the time of initial EM presentation. Only 25 to 40% will have
positive results during the acute phase of infection. Direct detection of bacteria in blood
or biopsy samples can be performed, but are generally unavailable in non-research
settings and not practical due to the time required for results [11].

The clinical diagnosis of early Lyme disease and EM is still a challenge. This is
because EM may take on a variety of appearances besides the characteristic ring-
within-a-ring, or bull’s-eye rash. The majority (80%) of EM lesions in the US lack the
central clearing [13] of the stereotypical bull’s eye lesion and appear uniformly red or
bluish red (Fig. 1). Thus, they are often mistaken for a spider bite or bruise. A small
percentage (4–8%) of skin lesions have a small central blister, which may lead to the
incorrect diagnosis of shingles (herpes zoster) [14]. Approximately 20% of patients
have multiple skin lesions arising from the spread of infection through the bloodstream,
which often have an atypical appearance. Atypical skin lesions are often misdiagnosed,
which results in delayed diagnosis and treatment and increases risk of long-term
complications.

Fig. 1. Examples of EM with atypical (top) and classic bull’s-eye (bottom) presentations.
(sources: left: https://commons.wikimedia.org/wiki/Category:Erythema_migrans; right: JHU)
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Previous studies have shown that the general population does not correctly identify
EM skin lesions that lack the classic bull’s-eye appearance and misidentify this con-
dition approximately 80% of the time. As 80% of skin lesions do not have the bull’s
eye appearance [15], this means that approximately 60% of all EM lesions may be
misdiagnosed by patients (80% of 80%). Machine-based prescreening of skin lesions
associated with Lyme disease has the potential to identify a high percentage of both
typical and atypical lesions, thereby decreasing the incidence of misdiagnosis of early
Lyme disease.

Prior to 2012 and the demonstration of significant improvement in object recog-
nition performance on ImageNet via the use of DCNNs (AlexNet [4]), object classi-
fication in computer vision was largely based on applying traditional classifiers to
hand-engineered image features [18]. DCNNs have replaced these approaches for both
computer vision and medical imaging tasks (e.g. [1, 2]), and recently, they have been
successfully used for performing a number of medical imaging diagnostics, including
identifying skin cancer [12]. To the best of our knowledge, however, Lyme disease
detection from skin lesions has only been addressed thus far using classical ML
approaches [16].

This study aims to expand on prior state of the art with the following novel and
salient contributions: (a) we develop a novel, carefully clinician-annotated dataset
called Lyme1600, which includes over 1600 images with several types of fine-grained
annotations for skin lesions, mostly focused on EM, but also including other confuser
lesions and clear/unaffected cases; this dataset size is over two orders of magnitude
larger than prior non-public datasets previously studied (such as [16] having 143
images), and (b) we develop a baseline DCNN approach that achieves a significant
performance improvement over prior state of the art, and demonstrates substantial
agreement with human clinician annotations. We make the DCNN model for this
classifier publicly available; it can potentially be used by others for fine tuning and
transfer learning for addressing classification of other types of skin affects including
skin cancer lesions.

2 Methods

Problem Statement: We pose the problem as a 2-class classification problem, classi-
fying images into patients that have EM (Lyme disease) vs. individuals that have no
skin lesions or another skin condition, including confounding skin lesions. The main
confusers that are considered in this second class include cases of herpes zoster (HZ),
also known as shingles. HZ was used as the principal confuser with the rationale that
the main application envisioned here is a pre-screening tool, possibly implemented as a
smartphone application, that could help individuals self-identify and screen lesions
suspicious for Lyme disease. An acute onset rash, such as HZ, might prompt an
individual to suspect Lyme disease and seek medical attention. This application is
targeted towards such individuals for whom such a tool would provide a means of
disambiguation.

246 P. Burlina et al.



Data: As an annotated, and publicly available dataset for the study of machine pre-
screening of Lyme disease and EM is not available and as there is a paucity of clinical
images having the associated consent and approval required for use in this research, an
image dataset was created using publicly available images extracted from the web. This
strategy was motivated by a recent study [12] on skin cancer where online images were
also successfully leveraged—after careful annotation—for generating DL classification
models of referable skin cancers. The online images of skin lesions leveraged in this
study principally include EM, herpes zoster, other non-Lyme skin lesions, and normal
skin. Such images were mined from online sources, after which clinicians (J.A., A.R.,
and E.N.) were tasked with carefully annotating the images based on the visual
appearance and the estimated size of the skin lesions. Clinicians were asked to do a
whole image classification first using a high level labeling of the pathology, followed
by a fine grained annotation that included the type of specific EM that was present (e.g.
simple vs. diffuse). Additional curation steps included a machine-based removal of full
or near duplicates, followed by human assessment for the presence of duplicates and
the removal of inappropriate images. Following this, a subset of images was selected to
include images with moderate to high probability of depicting EM or herpes zoster (and
other confounding skin lesions). Images with a low probability of EM or HZ diagnosis
were excluded from the dataset. In the end, a 2-class partitioning of those images into
affected (C0) and unaffected (C1) classes was performed (Table 1).

DL Approach: Recent advances in DL performance have been realized via a number of
factors including the development of large labeled datasets, the availability of markedly
increased computational power via graphic processing units, and various algorithmic
improvements. DCNNs, used here, form feature representations at increased levels of
abstraction via multiple layers of processing [1, 2] and solve discriminative problems
(e.g. classification). Here, a DCNN takes a skin image as input and produces proba-
bilities that the image belong to one of several specific classes of pathologies (EM vs. no
EM here) as output. Our study uses the ResNet50 [8] DCNN architecture. ResNet was
originally conceived as a means of producing deeper networks and include specific
design patterns such as bottleneck and skip connections that make the output of
upstream layer directly available to downstream layers. Our implementation used the
Keras and TensorFlow frameworks. We used transfer learning and fine-tuned the
original ResNet50 weights using the skin classification problem addressed herein. We
used stochastic gradient descent with Nesterov momentum = 0.9 for training, with
initial learning rate set to 1E-3. The training scheme used an early stopping approach,
which terminates training after 10 epochs of no improvement of the validation accuracy.
We used a categorical cross entropy loss function. Dynamic learning rate scheduling
was also used, in which we multiplied the learning rate by 0.5 when the training loss did
not improve for 10 epochs. A batch size of 32 was used. Data augmentation was used
and included horizontal flipping, blurring, sharpening, and changes to saturation,
brightness, contrast, and color balance. We are making the DCNN model, with trained
weights, available at https://github.com/neil454/lyme-1600-model.

N-Fold Validation: The datasets were further subdivided into training and testing
subsets. We used a K-fold cross-validation method, with K = 5, where four folds were
employed for training and one fold was used for testing (with rotation of the folds for 5
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runs). One training fold was further equally subdivided into two parts, with one used
for validation and stopping conditions. In sum, the train/validation/test partition dis-
tribution was 70%/10%20%, respectively.

Performance Metrics: The performance metrics used in this study included accuracy,
F1, sensitivity, specificity, PPV (Positive predicted value), NPV, (Negative predicted
value) and kappa score, which discounts chance agreement [7]. Since any classifier
trades off between sensitivity and specificity, to compare methods, we used ROC (re-
ceiver operating characteristic) curves, showing detection probability (sensitivity) vs.
false alarm rate (100% - specificity) and AUC (area under curve) was computed.

3 Results

Results of experiments are shown for applying the above method to the data partitioned
using 5-fold cross validation. Table 1 shows the class partitions, Table 2 the resulting
metrics, and Fig. 2 the resulting ROC curve. Results show promising accuracy of
93.04%. The ROC curve shows that one can operate with 90% sensitivity and above
while having a specificity ranging in the 75% to 85% range, a tradeoff which suggests a
potential for deployment as a pre-screener. Kappa score of 0.7549 also demonstrates
substantial agreement with the human-annotated gold standard.

Table 2. Performance metrics for five-fold cross validation

Metric Value Standard deviation

Accuracy 93.04 1.49
Sensitivity/Recall 75.66 7.28
Specificity 96.90 0.48
PPV/Precision 84.35 2.79
NPV 94.73 1.51
Kappa 0.7549 0.0586
Positive Likelihood 24.94 4.72
Negative Likelihood 0.25 0.076
F1 Score 0.7967 0.0502
AUC 0.9504 0.0156
Confusion matrix |1344 43|

|75 233|

Table 1. Class balancing and characteristic table

Class Number of samples

C0: control, unaffected, and confuser lesions including herpes zoster 1387
C1: erythema migrans 308
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4 Discussion

Data sets of EM rashes with annotation for research or teaching purposes are not
currently widely available. Only one large study of EM rash characteristics in the United
States from 2002 has been done. Physician review of images in that dataset reported an
unexpected diversity in the appearance of EM lesions, with only 10% of lesions having
the classic central clearing and ring-within-a-ring target appearance [17]. The photos of
EM lesions from that study had not been analyzed further using computerized
approaches. To our knowledge, only one other study of computer-assisted detection of
EM has been reported in the literature [16]. That study [16] used machine learning
methods including boosting, SVM, naïve Bayes, and neural nets (but not DL) applied on
hand-designed image features, and was tested with a smaller dataset of 143 EM rash
images. Reported accuracies ranged from 69.23% to 80.42%. These results are a tes-
timony to the difficulty in addressing the problem of how to discern between the varied
presentations of the EM lesions. By comparison, our results, performed on a much larger
dataset, and images taken ‘in the wild’, show notable enhancements in performance.

Because of the lack of publicly available labeled datasets for EM ML studies, the
use of photographs from online image banks was made necessary in this study in order
to obtain an adequate number of images, particularly as we addressed a less common
condition such as erythema migrans. In doing so, our work followed the approach of a
recently published high-impact study investigating detection of skin cancer using
DCNNs [12], which also exploited online images to produce a curated training dataset
and corresponding model. While our dataset is still being developed with new types of
confounding pathologies and lesions such as tinea corporis, our goal is to release it in
the future once the study has completed procuring all examples of confusing lesions
and all annotation has been done. In the meantime, we are making the classification
model available online.

Fig. 2. ROC curve for the proposed pre-screener
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One limitation of the current dataset includes the fact that individuals with dark skin
are underrepresented. In addition, certain characteristics inherent to online images, such
as variability in viewpoint/angle, lighting, and photo resolution, made the problem
more challenging. At annotation time, the inability to verify the skin lesion through
inspection at different angles or magnification in order to estimate the size of the skin
lesion in some cases was an issue. However, images for which there was significant
ambiguity or uncertainty in diagnosis due to these factors were excluded. We were also
limited in our ability to verify diagnoses through corroborating clinical and laboratory
data. However, this limitation is mitigated by the fact that diagnosis of both EM and the
principal confuser considered here, HZ, are primarily clinical—that is, the diagnosis of
these conditions relies primarily on visual inspection and suspicion. There is no uni-
versally accepted “gold standard” diagnostic test for Lyme disease given the variable
reliability of serologic testing and the impractical nature of culture identification of the
organism in the clinical setting. Meanwhile, the gold standard for diagnosis of herpes
zoster consists of PCR or culture detection of varicella zoster virus from skin lesions,
but this is usually not performed for diagnosis given the characteristic clinical
appearance and symptoms associated with the rash.

In sum, considering all of the elements above, our study was able to substantially
advance the state of the art in automated Lyme prescreening with DL models that have
significant promise for clinical deployment as pre-screeners. Such an application would
prove to be of great utility given the challenges of diagnosing Lyme disease at an early
stage when treatment is effective and can prevent the otherwise serious long-term
complications associated with advanced Lyme disease. Based on our results, an
application using DL is likely more sensitive than patient self-assessment and may even
be more accurate than diagnosis by a general non-specialist physician, who would
ordinarily serve as the screening gatekeeper for acute onset rashes such as EM. Given
the frequent under-diagnosis of EM, the use of automated detection would be beneficial
by increasing the number of patients who seek further medical assessment for EM
rashes and minimizing the number of cases that go unevaluated and undiagnosed, with
an expected positive effect on patient morbidity. Future work will involve studying
multi-class problems such as also trying to separately identify the HZ and other con-
founding classes, which may lead to improved performance for the 2-class EM
problem.

5 Conclusion

We make several contributions to automated EM and Lyme disease detection: we
develop the first carefully clinician-annotated large dataset for the study of ML-based
diagnostics of Lyme disease, including cases of affected, confuser, and control images.
We propose a pre-screener for EM using DCNNs that shows substantial agreement
with expert human clinician gold standard annotations and make this model publicly
available.
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Abstract. Development of computer-aided diagnosis (CAD) tool for
severity assessment of psoriatic plaques is important to assist the der-
matologists to overcome the human limitation. In this paper, a pioneering
attempt is made to build a Convolutional Neural Network (CNN) model
to classify a skin image with respect to its severity class. However, the
commonly used loss functions like categorical cross entropy and mean
square error ignores the underlying ordinal class relationships (distance
between predicted and actual class) which are important for the present
problem. In this paper, the Earth Mover’s Distance based loss function is
proposed for training CNN since it takes into account the corresponding
ordinal class relationships. Separate CNNs are trained for severity scor-
ing corresponding to three plaque characteristics- erythema (redness),
scaling (silveryness) and induration (elevation). Mean accuracy (MA),
mean absolute error (MAE) and Kendall’s τb are used for performance
evaluation. The experimental result shows that the proposed ordinal clas-
sification technique outperforms the traditional approaches.

Keywords: Psoriasis image · Psoriatic plaque · Erythema · Scaling
Induration · Convolutional Neural Network · Ordinal loss · Dataset

1 Introduction

Psoriasis is a chronic, immune-mediated, relapsing, inflammatory skin disease
and usually associated with itch. The prevalence of psoriasis varies 1%–12%
among different populations worldwide [1]. This disease develops when the
immune system mistakes a normal skin cell for a pathogen and sends out faulty
signals that cause overproduction of new skin cells. This disease can be diag-
nosed by visual and haptic inspection. The visual changes of outer skin surface
due to this disease include development of elevated red scaly dry patches with
well-demarcated borders on the skin surface. However, the shape, size, color and
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distribution of these patches vary. In dermatology, these patches are termed as
psoriatic plaque [13].

No drug is available yet to cure psoriasis completely but the severity can be
controlled by suitable drug doses. As the drug response varies among different
patients thus development of reliable severity assessment procedure is required
to decide the type and dose of the drugs as well as measure disease progress
and drug’s efficacy. Dermatologists use Psoriasis Area Severity Index (PASI) [5]
for estimating severity. PASI considers two major aspects of the disease: ratio
of body surface area affected by this disease and the severity of the plaques
formed on the skin surface. The severity of the plaque is determined by the
visual disorder formed on the affected skin regions. Three different aspects are
considered for severity of the plaques: degree of redness or erythema, thickness
or induration and scaling or desquamation. All aspects are scored with a value
between 0−4. Table 1 contains a sample image for every severity class.

Table 1. Visualization of psoriasis plaques with different severity scores.

Severity
Factor

Absent (0) Mild (1) Moderate (2) Severe (3)
Very Severe

(4)

Erythema
(Redness)

Scaling
(Silvery-
ness)

Induration
(Elevation)

The severity factors are determined by the dermatologists in an eye esti-
mation technique. The severity assessment procedure suffers from both inter-
and intra-observer variability. Hence, development of an automated and robust
system for severity assessment of psoriatic plaque is necessary for clinical stud-
ies. Some approaches have already been proposed for automatic scoring of scal-
ing [2] and erythema [4,6,7,12]. In [14], an image based system is also proposed
to compute the aggregated severity score according to plaque characteristics.
In [11], an attempt has been made to assess the erythema, scaling and indura-
tion scores from psoriatic plaque images. However, all of these approaches con-
sider the present severity grading task as an image classification problem but fail
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to capture the underlying ordinal relationship among the severity labels. This
motivates us to develop CNN based ordinal classifiers for severity assessment of
psoriatic plaques.

To summarize, the key contributions of this paper are: (i) a pioneering
attempt towards developing a deep convolutional neural network based ordi-
nal classifier for predicting severity score of psoriatic plaque, (ii) a new loss
function is used for training a CNN which can capture the ordinal relationship
among the class labels, (iii) two pre-trained CNN models (namely, ResNet-50 and
Mobile Net) trained on imagenet dataset are fine-tuned to develop the severity
assessment classifiers, and finally, (iv) the performance of the proposed CNN is
compared with several baselines.

2 Methodology

2.1 Convolutional Neural Network

Nowadays, Convolutional Neural Network (CNN) is widely used for image clas-
sification tasks as it relieves the researchers from designing hand-engineered
feature descriptors and automatically develops powerful mathematical models
directly from the training images. These models are made up of multiple pro-
cessing units and each processing unit consists of trainable weights and biases.
In the training phase, the network parameters are updated by comparing the
distribution of predicted class labels with the actual class labels of the training
images. A brief description of the traditional categorical cross entropy (CCE)
loss and the mean square error (MSE) loss functions are given below.

Suppose, for a C-class (C > 2) single-label image classification problem, the
ground truth of a particular image is given by a binary vector G of length C
such that Gi = 1 whenever i = k and 0 otherwise. The output of the CNN is a
probability distribution P of length C such that its ith entry (Pi) represents the
predicted probability of the ith class. Now the definition of CCE loss and the
MSE loss are given in Eqs. 1 and 2.

LCCE = −
C∑

i=1

Gi ln(Pi) (1)

LMSE =
C∑

i=1

(Pi − Gi)2 (2)

2.2 Ordinal Classification and Limitation of CCE and MSE Loss

In the present severity assessment task, there exists an ordinal relationship
among the severity grades. Suppose, the actual and predicted severity score of a
misclassified image is K and K1 respectively. Then, we would prefer the classifier
to have the least possible absolute difference |K − K1|. But it can be seen from
Eqs. 1 and 2, CCE and MSE loss ignores this relationship since CCE only con-
siders the probability of the correct class and MSE is invariant to permutation
of probabilities of incorrect classes.
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2.3 Proposed Loss Function

Motivated from [9], for the present classification task, we used the Earth Mover’s
Distance (EMD) based loss function. Let XCDF

i denote the ith element of the
cumulative distribution of X then the loss function is as follows:

LEMD =
C∑

i=1

(PCDF
i − GCDF

i )2

=
C∑

i=1

(
i∑

j=1

Pj −
i∑

j=1

Gj)2

=
k−1∑

i=1

( i∑

j=1

Pj

)2

︸ ︷︷ ︸
A

+
C∑

i=k

( i∑

j=1

Pj − 1
)2

︸ ︷︷ ︸
B

(3)

where k is the correct class. According to Eq. 3, when i < k, increasing the value
of Pi increases the value of A whereas when i ≥ k, increasing the value of Pi

decreases the value of B. Since, in A, Pi occurs (k − i) times hence, the value of
LEMD increases as |i − k| increases. Similarly, in B, for i ≥ k, Pi occurs (C − i)
times hence, the value of LEMD increases as |i−k| increases. Thus the proposed
loss function trains the network in such a way that the class label farthest from
actual class gets less probability.

3 Experimental Setup

Dataset: In this research, an image dataset of seven hundred seven (707) psori-
atic plaque images having expert annotated severity scores for erythema, scaling
and induration is used. This dataset is built by cropping sub-images from a
dataset of psoriasis images collected from 80 patients. The original images are
collected in an uncontrolled environment by layman photographers with differ-
ent view angle, distance, lighting condition and varying background. Apart from
photographic limitation and skin color tone variation, the presence of several
artefacts like hair, wrinkle etc. make the severity assessment task challenging.

Network: As the data volume is small, the training of a Convolutional Neural
Network (CNN) from scratch does not produce satisfactory performance. Fine-
tuning of pre-trained network is opted for the present classification task. Two
pre-trained networks ResNet-50 [8] and Mobile Net [10] trained on imagenet
dataset are considered for fine-tuning. ResNet-50 is chosen due to its impressive
performance on imagenet classification. The mobile net is chosen as it contains
comparatively fewer parameters but produces good performance on imagenet
classification.

Training: In this paper, the performance of the developed system is reported on
the basis of 7-fold cross validation. The model is trained with stochastic gradient
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descent optimizer using a batch size of 4 images, momentum of 0.9, weight decay
of 10−6 and with the learning rate of 0.001. For every fold, the network is trained
10 times and the trained model which ends with minimal loss is chosen for
prediction of test images. Horizontal and vertical flipping augmentation is used
for improving the generalization ability of the classifiers.

Baselines: In this paper, the performance of the CNN trained with proposed
ordinal loss minimization is compared with four baselines. First two CNNs are
trained with traditional categorical cross entropy (CNNCCE) and mean-square
error (CNNMSE) loss minimization. In the third approach (CNNRegr), the
severity scores are projected into C equal partitions in [0, 1] and the CNN is
trained in such a way that the ith class (i = 1, 2, ...C) image outputs a value in
[ i−1

C , i
C ]. The last approach is the decomposition (CNNDecomp) of the C class

classification problem into C − 1 binary classification problems where the ith

classifier predicts whether an image has classification label more than i or not.
Then these trained classifiers are used to predict class labels of the test images. It
is worth mentioning that the binary CNNs are trained with binary cross-entropy
loss minimization. Among all considered baselines, only the last two classifiers
can capture the ordinal relationship among the labels.

Performance Evaluation Metrics: The performance of the trained CNN is
measured with three different evaluation metrics- (i) Mean Accuracy (MA), (ii)
Mean Absolute Error (MAE) and (iii) Kendall’s τb. The value of MA lies in
[0, 1] and a higher value represents better performance. A lower value of MAE
represents better performance. On the other hand, Kendall’s τb measures the
association or rank correlation between two measured quantities. The τb value
lies in [−1,+1], where, +1 is the maximum agreement between the prediction and
the ground truth class labelling, 0 represents no correlation between them and
−1 represents maximum disagreement. MAE and Kendall’s τb are used since
MA ignores the ordinal relationship between predicted and actual class for a
misclassified image.

Suppose, there are N test images having a discrete class label in [1, C].
Let Y p

i , Y g
i represent the predicted and the ground-truth class label of the ith

test image respectively. Then the mathematical expressions of these metrics are
shown in Eqs. 4, 5, 6.

MA =
1
N

N∑

i=1

δ(Y g
i , Y p

i ); δ(x, y) =

{
1, if x = y

0, otherwise.
(4)

MAE =
1
N

N∑

i=1

|Y g
i − Y p

i | (5)

τb =

∑N
i,j=1 Ĉi,jCi,j√∑N

i,j=1 Ĉ2
i,j

∑N
i,j=1 C2

i,j

,where
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Ĉij =

⎧
⎪⎨

⎪⎩

1, if Y p
i > Y p

j

−1, if Y p
i < Y p

j

0, otherwise.
Cij =

⎧
⎪⎨

⎪⎩

1, if Y g
i > Y g

j

−1, if Y g
i < Y g

j

0, otherwise.
(6)

4 Results and Discussion

The average performance (metrics described in Sect. 3) of Mobile Net and
ResNet-50 for erythema, scaling and induration scoring using considered
approaches are listed in Table 2. According to Table 2, the performance of the
chosen networks trained with proposed loss function outperforms the same net-
work trained with CCE or MSE loss minimization. However, the networks trained
with CCE and MSE loss minimization produce comparable performance. We
receive poor performance when the CNN is trained for regression (Regr) out-
put. This justifies the fact that the sensitivity of this method towards presence of
noise in test images affects the performance badly. So, this approach is unsuitable
for the present task. On the other hand, binary decomposition approach outper-
forms the CNN models trained with CCE and MSE loss minimization. However,
in most cases, this approach is beaten by the proposed method. Obviously, the
success of the binary decomposition approach depends on the robustness of all
decomposed classifiers and a weak classifier may affect the whole classification
scheme adversely. According to Table 2, among all considered approaches, the
best performance is achieved when ResNet-50 is fine-tuned with EMD loss min-
imization. Some images in our dataset along with their actual and predicted
severity scores with respect to erythema, scaling and induration predicted by
the best models are given in Fig. 1.

Table 2. Experimental Result

Method Erythema Scaling Induration

MA (%) MAE τb MA (%) MAE τb MA (%) MAE τb

MobileNet CNNMSE 57.14 0.521 0.763 57.28 0.523 0.775 59.97 0.443 0.757

CNNCCE 57.57 0.501 0.779 57.14 0.502 0.790 58.84 0.457 0.748

CNNRegr 47.52 0.605 0.737 45.54 0.634 0.734 55.45 0.504 0.721

CNNDecomp 56.01 0.508 0.777 58.84 0.471 0.804 60.54 0.431 0.766

Proposed 59.69 0.488 0.781 59.26 0.478 0.800 60.11 0.446 0.758

ResNet-50 CNNMSE 58.27 0.478 0.791 58.56 0.487 0.790 58.84 0.444 0.764

CNNCCE 59.26 0.467 0.796 59.83 0.457 0.809 61.39 0.410 0.772

CNNRegr 45.97 0.632 0.728 43.71 0.655 0.729 48.23 0.581 0.686

CNNDecomp 58.56 0.474 0.792 59.83 0.465 0.803 62.52 0.409 0.775

Proposed 61.10 0.440 0.812 62.66 0.430 0.820 63.51 0.390 0.782

The psoriasis image dataset developed for [11] is reused in our research.
In [11], the best models for erythema and induration were obtained from the
AlexNet based MTL network and for scaling it was from the AlexNet based
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GT:(3,3,2) GT:(2,3,2) GT:(3,1,2) GT:(1,1,1) GT:(3,3,2)
Pred:(3,3,2) Pred:(2,3,2) Pred:(3,1,2) Pred:(1,1,1) Pred:(3,3,2)

GT:(1,2,1) GT:(2,2,1) GT:(3,1,2) GT:(3,3,2) GT:(3,1,2)
Pred:(1,3,1) Pred:(2,2,2) Pred:(4,1,1) Pred:(2,2,2) Pred:(4,0,1)

Fig. 1. Psoriasis images and their ground-truthed (GT) and Predicted (Pred) severity
scores achieved from the best classifiers. The scores are given in (Erythema, Scaling,
Induration). The errors are highlighted in yellow. (Color figure online)

STL network. The performance was evaluated with average correct classification
accuracy, without and with ±1 tolerance1, combined average classification accu-
racy2 without and with ±1 tolerance (see footnote 1). In Table 3, the first row
contains the previous best result and the second row contains the result pro-
duced by our best model. According to Table 3, our model redefines the current
state of the art.

Table 3. Comparison with the state of the art. WoT refers without tolerance and WT
refers with tolerance.

Method Individual Mean Accuracy Overall Mean
AccuracyErythema Scaling Induration

WoT WT (±1) WoT WT (±1) WoT WT (±1) WoT WT (±1)

[11] 60.68 93.64 58.98 94.77 61.10 93.78 27.58 86.28

Our 61.10 95.47 62.66 95.19 63.51 97.45 28.43 89.11

5 Conclusion

A novel loss function is designed to make CNN suitable for ordinal classification
and used for automatic severity assessment of psoriatic plaques. The use of such

1 Maximum deviation of predicted scores for an image lies in [−1, 1].
2 Erythema, scaling and induration all scores are correct.
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loss function is a pioneering attempt. The proposed learning scheme successfully
improves the classification performance. Specifically, improvement of MAE and
τb in comparison to the considered baselines justifies the advantage of training
a CNN with ordinal loss minimization. The proposed loss minimization in CNN
training can be employed for other image based severity prediction from medical
images, age group estimation from face images [3] etc.

References

1. Chandran, V., Raychaudhuri, S.P.: Geoepidemiology and environmental factors of
psoriasis and psoriatic arthritis. J. Autoimmun. 34(3), J314–J321 (2010)

2. Delgado, D., Ersbφll, B., Carstensen, J.M.: An image based system to automat-
ically and objectively score the degree of redness and scaling in psoriasis lesions.
In: Proceedings fra den 13. Danske Konference i, p. 130 (2004)

3. Escalera, S., et al.: Chalearn looking at people 2015: apparent age and cultural
event recognition datasets and results. In: 2015 IEEE International Conference on
Computer Vision Workshop (ICCVW), pp. 243–251, December 2015

4. Fadzil, M.H.A., Ihtatho, D.: Modeling psoriasis lesion colour for PASI erythema
scoring. In: International Symposium on Information Technology, ITSim 2008, vol.
2, pp. 1–6. IEEE (2008)

5. Fredriksson, T., Pettersson, U.: Severe psoriasiseoral therapy with a new retinoid.
Dermatologica 157, 238–244 (1978)

6. Gupta, M.D., Srinivasa, S., Madhukara, J., Antony, M.: Random forest based
erythema grading for psoriasis. In: 2015 IEEE 12th International Symposium on
Biomedical Imaging (ISBI), pp. 819–823, April 2015

7. Hani, A.F.M., Prakasa, E., Nugroho, H., Asirvadam, V.S.: Implementation of fuzzy
c-means clustering for psoriasis assessment on lesion erythema. In: 2012 IEEE
Symposium on Industrial Electronics and Applications (ISIEA), pp. 331–335. IEEE
(2012)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016

9. Hou, L., Yu, C.-P., Samaras, D.: Squared earth mover’s distance-based loss for
training deep neural networks. arXiv preprint arXiv:1611.05916 (2016)

10. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861 (2017)

11. Pal, A., Chaturvedi, A., Garain, U., Chandra, A., Chatterjee, R.: Severity grading
of psoriatic plaques using deep CNN based multi-task learning. In: 23rd Interna-
tional Conference on Pattern Recognition (ICPR 2016), December 2016

12. Raina, A., Hennessy, R., Rains, M., Allred, J., Diven, D., Markey, M.K.: Objective
measurement of erythema in psoriasis using digital color photography with color
calibration. In: 2014 36th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pp. 3333–3336, August 2014

13. Roenigk, H.H.: Psoriasis Basic and Clinical Dermatology. Informa Healthcare
(1998)

14. Shrivastava, V.K., Londhe, N.D., Sonawane, R.S., Suri, J.S.: A novel approach to
multiclass psoriasis disease risk stratification: machine learning paradigm. Biomed.
Signal Process. Control. 28, 27–40 (2016)

http://arxiv.org/abs/1611.05916


Generating Highly Realistic Images
of Skin Lesions with GANs

Christoph Baur1(B), Shadi Albarqouni1, and Nassir Navab1,2

1 Computer Aided Medical Procedures (CAMP), TU Munich, Munich, Germany
c.baur@tum.de

2 Whiting School of Engineering, Johns Hopkins University, Baltimore, USA

Abstract. As many other machine learning driven medical image anal-
ysis tasks, skin image analysis suffers from a chronic lack of labeled data
and skewed class distributions, which poses problems for the training of
robust and well-generalizing models. The ability to synthesize realistic
looking images of skin lesions could act as a reliever for the aforemen-
tioned problems. Generative Adversarial Networks (GANs) have been
successfully used to synthesize realistically looking medical images, how-
ever limited to low resolution, whereas machine learning models for chal-
lenging tasks such as skin lesion segmentation or classification benefit
from much higher resolution data. In this work, we successfully syn-
thesize realistically looking images of skin lesions with GANs at such
high resolution. Therefore, we utilize the concept of progressive growing,
which we both quantitatively and qualitatively compare to other GAN
architectures such as the DCGAN and the LAPGAN. Our results show
that with the help of progressive growing, we can synthesize highly real-
istic dermoscopic images of skin lesions that even expert dermatologists
find hard to distinguish from real ones.

1 Introduction

Just like for many other medical fields, the problems of data scarcity and class
imbalance are also apparent for machine learning driven skin image analysis.
In the ISIC2018 challenge, the provided dataset comprises only 10,000 labeled
training samples, and the class distribution is heavily skewed among the seven
categories of skin lesions, due to the rare nature of some pathologies. In order to
tackle the problem of limited training data, state-of-the-art approaches for skin
lesion classification and segmentation rely on heavy data augmentation [9,18] or
webly supervised learning [11]. As an alternative, synthetic images could open
up new ways to deal with these problems. Generative Adversarial Networks
(GANs) [5] have shown outstanding results for this task. In the computer vision
community, GANs have been successfully used for the generation of realistically
looking images of indoor and outdoor scenery [3,13], faces [13] or handwritten
digits [5]. Some conditional variants [10] have also set the new state-of-the-art
in the realms of super-resolution [8] and image-to-image translation [6]. A few of
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(a) Real Images (b) PGAN Samples

(c) DCGAN Samples (d) LAPGAN Samples

Fig. 1. Samples generated with the different models.

these successes have been translated to the medical domain, with applications
for cross-modality image synthesis [16], CT image denoising [17] and for the pure
synthesis of biological images [12], PET images [2], and OCT patches [14]. First
successful attempts for medical data augmentation using GANs have been made
in [1,4], however at a level of small patches.

In contrast to many other medical classification problems, skin lesion seg-
mentation and classification models often utilize ImageNet-pretrained models,
meaning that these rely on input data with resolutions of 224×224 px or higher.
For image synthesis, this implies that higher resolution images need to be gen-
erated without trading off realism. Thoroughly engineered, unconditional archi-
tectures such as DCGAN [13] or LAPGAN [3] have proven to work well for
high quality image synthesis from noise, however at fairly low resolution. Con-
ditional approaches [15] have shown that both high quality and high resolution
image synthesis up to 2048 × 1024 px is possible when mapping from semantic
labelmaps to synthetic images with a hierarchy of conditional GANs, however
this setting requires well structured input into the generator. Recently, progres-
sive growing of GANs (PGAN) [7] has shown outstanding results for realistic
image synthesis of faces at resolutions up to 1024 × 1024 px, without the need
for any conditioning.

Contribution. In this work, we synthesize skin lesion images at sufficiently
high resolution while ensuring high quality and realism. For our experiments,
we utilize dermoscopic images of benign and malignant skin lesions provided by
the ISIC2018 challenge1. For data synthesis, we employ the PGAN and compare

1 https://challenge2018.isic-archive.com/.

https://challenge2018.isic-archive.com/
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it to the DCGAN and the LAPGAN. As PGANs can natively only synthesize
images whose size is a power of 2, we aim for a target resolution of 256× 256 px,
such that State-of-the-Art classifiers could potentially leverage the samples. A
quantitative comparison of the image statistics of the synthetic and real images
shows that the PGAN matches the training dataset distribution very well, and
visual exploration further corroborates its superiority over the other approaches
in terms of sample diversity, sharpness and artifacts. Ultimately, we evaluate the
quality of the PGAN samples in a user study involving 3 expert dermatologists
as well 5 Deep Learning experts, showing that the experts have a hard time
distinguishing between real and fake images.

The remainder of this manuscript is organized as follows: We first briefly
recapitulate the GAN framework as well as the different GAN concepts before
we describe the experimental setup. Afterwards, we introduce the dataset, evalu-
ation metrics, provide a quantitative comparison of the aforementioned concepts
for skin lesion synthesis and the results of our user study. We conclude this paper
with a discussion and an outlook on future work.

2 Skin Lesion Synthesis

2.1 Generative Adversarial Networks

The original GAN framework consists of a pair of adversarial networks: A gen-
erator network G tries to transform random noise z ∼ pz from a prior distribu-
tion pz (usually a standard normal distribution) to realistically looking images
G(z) ∼ pfake. At the same time, a discriminator network D aims to classify
well between samples coming from the real training data distribution x ∼ preal
and fake samples G(z) generated by the generator. By utilizing the feedback
of the discriminator, the generator G can be adjusted such that its samples are
more likely to fool the discriminator in its classification task, ultimately teaching
the generator to approximate the training dataset distribution. Mathematically
speaking, the networks play a two-player minimax game against each other:

min
G

max
D

V (D,G) = Ex∼preal(x)[log(D(x))] + Ez∼pz(z)[1 − log(D(G(z)))] (1)

In consequence, as D and G are updated in an alternating fashion, the dis-
criminator D becomes better in distinguishing between real and fake samples
while the generator G learns to produce even more realistic samples.

In this work, we employ three different GAN concepts for the task of high
resolution skin lesion synthesis, namely the DCGAN, the LAPGAN and finally
the very recent PGAN. An overview of the setup is given in Fig. 2.

The DCGAN architecture is a popular and well engineered convolutional GAN
that is fairly stable to train and has proven to yield high quality results at a
resolution of 64× 64 px. The architecture is carefully designed with concepts
such as leaky ReLu activations to avoid sparse gradients and a specific weight
initialization to allow for a robust training.
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Fig. 2. An overview of the PGAN employed for skin lesion synthesis.

The LAPGAN is a generative image synthesis framework inspired by the concept
of Laplacian pyramids. In essence, it consists of a hierarchy of GANs, where
the first generator G0 is trained to synthesize low-resolution images from noise.
Successive generators Gi are targeted to map from lower-resolution images of
the previous generator Gi−1 to residual images, which have to be added to the
upsampled, input in order to obtain compelling higher resolution images.

The PGAN utilizes the idea of progressive growing [7] to facilitate high resolu-
tion image synthesis from noise at unprecedented levels of quality and realism.
Opposed to the LAPGAN, the PGAN consists only of a single generator and
a discriminator, which both start as small networks which grow in depth and
model complexity during training (see Fig. 2). Gradually, the output-resolution
of the generator and the input-resolution to the discriminator are simultane-
ously ramped up, leading to a very stable training behavior and very realistic,
synthetic images at resolutions up to 1024 × 1024 px.

3 Experiments and Results

In the first part of our experiments, we train a PGAN, and to prove its superiority
over other concepts, also a DCGAN and a LAPGAN for skin lesion synthesis at
a resolution of 256 × 256 px. In succession, we investigate the properties of the
synthetic samples both quantitatively and qualitatively. In the second part of
our experiments, we conduct a user study to verify the realism of the generated
images.

3.1 Dataset

For our experiments, we utilize the ISIC2018 dataset consisting of 10,000 der-
moscopic images of both benign and malignant skin lesions (see Fig. 1a). The
megapixel dermoscopic images are center cropped to square size and downsam-
pled to 256 × 256 px. No data augmentation or pre-processing was applied.
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Fig. 3. Artifacts produced by the different models. DCGAN samples show characteris-
tic checkerboard patterns (left), LAPGAN produces high frequency artifacts (middle),
whereas PGAN has only problems synthesizing hair (right).

Fig. 4. Walking along the visual manifold of synthetic PGAN samples.

3.2 Evaluation Metrics

A variety of methods have been proposed for evaluating the performance of
GANs in capturing data distributions and for judging the quality of synthe-
sized images. In order to evaluate visual fidelity, numerous works utilized either
crowdsourcing or expert user studies. We also conduct such a user study to rate
the realism of our synthetic images. In addition, we discuss visual fidelity of the
generated images with a focus on diversity, realism, sharpness and artifacts. For
quantitatively judging sample realism, the Sliced Wasserstein Distance (SWD)
has recently shown to be a reasonably good metric for approximately comparing
image distributions [7], thus we also make use of it.

3.3 Image Synthesis

We trained a PGAN as described in [7] from all 10,000 images, as well as
a DCGAN and a LAPGAN. The PGAN has been trained for 3M iterations,
until the SWD between the synthetic samples and the training dataset did
not decrease noticeably any further. For a valid comparison, the LAPGAN and
DCGAN were also trained for the same amount of iterations.

Per model, we then generate 10,000 synthetic images and compare their dis-
tribution to the real data by means of the SWD (see Table 1). Since the SWD
constitutes an approximation, we also compute the SWD between the real data
and itself to obtain a lower bound. In comparison, the lowest SWD is clearly
obtained with the PGAN samples, whereas the DCGAN and LAPGAN perform
considerably, but equally worse. This is also reflected by a visual exploration of
the samples (see Fig. 1 for a comparison of samples generated with the different
models). The DCGAN samples are prone to checkerboard artifacts (Fig. 3, left)
and can thus easily be identified as fake. The LAPGAN samples (Fig. 3, middle)
seem more realistic and diverse, but close inspection shows a vast amount of high
frequency artifacts, which again, negatively impact realism of these samples. The
PGAN samples (Fig. 3, right) seem highly realistic, alone filamentary structures
such as hair raise suspicion.
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Table 1. Sliced Wasserstein Distances (SWDs) between the real and generated samples
from different models. Closest to the lower bound (i.e. SWD between real images and
themselves) is the PGAN, whereas the distribution of DCGAN and LAPGAN samples
differs considerably from the real one.

Lower bound PGAN vs Real DCGAN vs Real LAPGAN vs Real

4.3360 20.0197 94.71508 96.68380

Table 2. Confusion matrix coefficients, Accuracy, TPR & TNR per voter.

DLE1 DLE2 DLE3 DLE4 DLE5 ED1 ED2 ED3

TP 50 30 36 26 26 27 35 29

FP 26 10 9 16 20 11 18 17

FN 0 20 14 24 24 23 15 21

TN 4 20 21 14 10 19 12 13

ACC 0.675 0.625 0.712 0.500 0.450 0.575 0.587 0.525

TPR 1.000 0.600 0.720 0.520 0.520 0.540 0.700 0.580

TNR 0.133 0.666 0.700 0.466 0.333 0.633 0.400 0.433

Exploring the Visual Manifold. Since the PGAN samples look so compelling,
there might be a chance that the model memorized the training dataset. There-
fore, we explore the manifold of synthetic samples. The smooth transitions among
samples provide clear evidence that memorization did not occur (see Fig. 4).

3.4 Visual Turing Test

In order to juge realism of the generated images, we conduct a so-called Visual
Turing Test (VTT) involving 3 expert dermatologists (ED) and 5 deep-learning
experts (DLE). Each participant is asked to classify the same random mix of
generated and real images as being either real (class 1) or fake (class 0). The
DLEs are familiar with common GAN artifacts and are thus expected to be
skilled to identify unplausible generated images, even though they do not have
experience in judging actual skin lesion images. On the other hand, the EDs
are not aware of these deep-learning induced image artifacts, but instead know
about the gamut of possible skin lesion phenotypes.

Using the PGAN, we first generate 30 synthetic images, which are then mixed
with 50 randomly chosen images from the real training dataset. In the VTT, we
present each participant with these 80 images in random order and let him/her
classify. The performances of all the participants in terms of the TPR (how many
real images have been identified as real), the FPR (how many fake images have
ben classified as real) and the Accuracy are reported in Fig. 5a. Performance
statistics among EDs and DLEs are provided in Fig. 5b), and the complete user
study details can be found in Table 2. Interestingly, the classification accuracy is
slightly lower for the EDs than for the DLEs. Overall, the accuracy is just slightly
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(a) TPR, FPR and Accuracies of all the
voters, color coded by expert type.

(b) Boxplots for the classification accura-
cies of DLEs (left) and EDs (right).

Fig. 5. Visual Turing Test results

above 50%, implying that the experts can distinguish between real and fake just
slightly better than chance. Thereby, not all fakes have been mistaken as real (on
average 56%), but on average 42% of the real images have also mistakingly be
identified as fake. All in all, none of the participants is able to reliably distinguish
the fake samples from real ones, leading to the conclusion that these synthetic
samples are in fact highly realistic.

4 Discussion and Conclusion

We have shown that with the help of PGANs, we are able to generate extremely
realistic dermoscopic images, which carves open new opportunities to tackle the
problems of data scarcity and class imbalance. Yet, it is unclear to which extent
these synthetic data provide additional information to supervised deep learning
models. In fact, a variety of questions need to be answered, such as (i) whether
there is an information gain in the synthetic samples over the actual training
dataset, (ii) if the gain is higher than using standard data augmentation and
(iii) how many training images are in fact required to obtain reliable generative
models. Noteworthy, we trained the PGAN ignoring the presence of different
classes. For generating images along with class information, one would need to
leverage labeled data and effectively train a single model per class. Further, the
synthetic images are not always perfect. In particular, the methodology has to
be enhanced to account for filamentary structures. In future work, we aim to
perform large scale experiments and strive to answer these question.

Overall, we have shown that we can synthesize images of skin lesions at
yet unprecedented levels of realism. In fact, the level of realism is so high such
that experts from both the medical and the deep-learning fields were not able
to reliably distinguish real images from generated ones. This leaves us confident
that such synthetic data can be leveraged for new data augmentation approaches.
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Abstract. Melanoma is the most fatal type of skin cancer. Non-invasive
melanoma detection is crucial for preliminary screening and early diag-
nosis. Among various image based techniques, hyperspectral imaging is a
tool with great potential for melanoma detection since it provides highly
detailed spectral information beyond the human vision capability. How-
ever, so far no hyperspectral image dataset has been published, although
some pilot methods have been studied. In this paper, we introduce a
hyperspectral dermoscopy image dataset for melanoma detection. This
dataset consists of 330 hyperspectral images with 16 spectral bands each
in the visible wavelength, containing images of melanoma, dysplastic
nevus, and other types, all histopathologically validated. To build a base-
line for melanoma detection, we evaluate several classification methods
on the dataset.

Keywords: Skin cancer · Melanoma · Hyperspectral imaging
Dermoscopy · Dataset

1 Introduction

Skin cancer accounts for the most common among all newly diagnosed cancers
in Australia and in USA [1,2]. The Cancer Council Australia estimated that two
in three Australians will be diagnosed with skin cancer by the time they are
70 years old [1]. Skin cancer can be classified as melanoma and non-melanoma.
Melanoma is the most deadly type of all skin cancers [1], although it is not the
most prevalent type.

An early screening of melanoma can greatly increase the chance of cure. Dur-
ing the diagnosis process, dermoscopy has been widely used to provide a detailed
and magnified view of skin. However, it is still a challenging problem to overcome
the subjectivity of dermatologists in differentiating melanoma from benign pig-
mented lesions, as melanoma shows great similarity with nevus, solar lentigo etc.
Although experienced clinicians can make initial screening, histology of biopsy
is the only confident way of final diagnosis. This, however, is often restricted
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by the available resources. Therefore, an early computer aided screening of skin
cancer is of high interest to help dermatologists to make the diagnosis objective
and to increase the speed and accuracy of pre-diagnosis.

Existing computer aided systems for melanoma detection are mainly devel-
oped based on clinicians’ visual assessment methods, such as the ABCD (asym-
metry, border, color, dimension) rules [3]. In many cases, the early decision also
combines existence of subtle features, such as irregular streaks [4], pigment net-
work [5], and blue-white veil [6] etc. In more recent, deep learning based methods
have been proposed so as to avoid development of hand crafted features [7–10],
which has demonstrated state-of-the-art detection performance.

Traditional imaging systems normally capture color or grayscale images in
the visible wavelengths. They do not have the capability of detecting fine changes
of skins with respect to the light wavelength change. Hyperspectral imaging is
a technique that combines both spatial information provided by conventional
imaging system and spectral information of imaging spectroscopy. Compar-
ing with traditional imaging system, besides characterising the spatial distri-
bution of pigmented skin lesion, hyperspectral imaging provides the potential
of measuring concentration of melanin and hemoglobin molecular by analysing
reflectance spectra. Therefore, this technology gradually attracts the attention
in skin related medical imaging [13], such as burn characterization [14] and
gunshot assessment [15]. A melanoma mouse model was build on hyperspectral
imaging [18], which shows the potential of diagnostic improvements. Hyperspec-
tral melanoma images were analysed by Zherdeva et al. [16], with band selection
method proposed to select the most informative wavelength for cancer detec-
tion [17]. Nagaoka et al. proposed a melanoma discrimination index method
using hyperspectral data in the visible to near infrared wavelength range [19],
which achieved high sensitivity on a small dataset.

Most existing hyperspectral imaging systems are expensive and not portable.
Some of them use line-scan hyperspectral cameras, which are slow in image acqui-
sition. These have generated a lot of hurdles in clinical operation and producing
a public hyperspectral skin image dataset for research purpose. In this paper, we
introduce a hyperspectral dermoscopy imaging dataset captured using a portable
real-time imaging system. The dataset contains 330 dermoscopy images which
are all histology verified, including 85 melanomas, 175 dysplastic nevi and 70
other pigmented lesions (solar lentigo, IEC, nevi and Seborrheic Keratosis). Each
image has 16 bands, covering the wavelength from 465 nm to 630 nm. We also
provide bounding boxes on melanocytic human skin lesions to support the train-
ing and evaluation of melanoma detection methods.

The rest of the paper is organised as follows. We present the dataset and its
statistics in Sect. 2. The baseline detection approach and experimental results
are given in Sect. 3. Finally, conclusions are drawn in Sect. 4.

2 Hyperspectral Dermoscopy Dataset

This section introduces the imaging system and how to calibration of captured
images. It also provides basic data analysis on different skin images.
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Fig. 1. Spectral responses at a pixel on original and calibrated images.

2.1 Imaging System and Calibration

The main hardware of the image system includes a portable device and an Ximea
MQ022HG-IM-SM4X4-VIS camera. The portable devices consists of a Raspberry
PI, a 7 in. touch screen, an 8G Raspberry PI compatible MicroSD card, and a set
of nickel–metal hydride batteries, all sealed in a box. Together with the portable
device, the camera can be put on top of dermatoscope to capture magnified
image of skin lesion. The dermatoscope provides visible light from LED, with
which the Ximea camera is capable of capturing hyperspectral images of 16
bands from 465 nm to 630 nm. Each band image is constituted of approximately
512× 272 pixels. The Ximea camera is only 32 grams in weight and can capture
hyperspectral images at up to 170 cubes per second. The camera is operated
using a lab developed software which allows image capture and management.

Each captured image consists of 1024 × 2048 pixels arranged in 256 × 512
blocks of spatial information. Each block contains 4 rows and 4 columns of
grayscale values, corresponding to spectral information from 16 wavelength-
indexed bands. Therefore, each image can be converted into a 256 × 512 × 16
data cube, which is later processed with dark and white calibration as well as
camera based spectral correction. In dark calibration step, we deducted a dark
image (captured with lens cap on) from the captured image. For white calibra-
tion, we normalised the image with the mean of the selected region from a white
calibration board. Finally, we performed spectral calibration, which multiplies
the image with a correction matrix corresponding to the sensitivity function
associated with the CMOS sensor of the camera. The three preprocessing steps
can be formulated as:

I =
Io − Ib
Iw − Ib

C (1)

where Io is the original data cube converted from the raw image, Ib is the black
reference data cube, Iw is the white reference data cube which is obtained by
capturing image of the white calibration board under the dermatoscope, and C
is a 16× 16 correction matrix which is related to the camera. Figure 1 shows the
comparison of a sample spectral response after different operations of calibration.
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(a) Dysplastic Nevi

(b) Melanoma

Fig. 2. Band images of two samples.

2.2 Data Collection and Basic Spectral Analysis

The collection of this hyperspectral dermoscopy image dataset is a joint collabo-
ration between our research team and a local Skin Cancer Clinic. Before the data
collection, we went through an ethics approval, so only the clinic staff can get in
contact with the patients and get their consent. All patient’s privacy information
are protected without being released to people other than the clinic. The clinic
doctor helped to collect the images with the developed portable hyperspectral
imaging device and a dermatoscope of 10 times of magnification. All images were
captured before biopsy which were later taken to pathologists for final diagnosis.
Then, all the images were labeled according to diagnosis reports. The first stage
data collection started from 6th January, 2017 and ended on 18th February,
2018.

In total 330 hyperspectral dermoscopy images with good quality were selected
to build the dataset. These include 80 melanoma images, 180 dysplastic nevus
images and 70 other images for solar lentigo, IEC, nevi and Seborrheic Keratosis.
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We manually labelled the legion regions using bounding boxes. Two dysplastic
nevi and melanoma data samples with bounding boxes are illustrated in Fig. 2.
We also show in Fig. 3 some sample images of each lesion class in the dataset,
including melanoma, solar lentigo, IEC, dysplastic nevi, nevi and Seborrheic
Keratosis.

Fig. 3. Sample images in the dataset (the 11th band). First row from left to right:
melanoma, solar lentigo and IEC. Second row from left to right: dysplastic nevi, nevi
and Seborrheic Keratosis.

To compare the spectral responses of typical targets in the captured image,
we plot sample responses of melanoma (green plus sign), dysplastic nevus (red
dots), hair (blue stars) and normal skin (cyan triangles) in Fig. 4. Among all the
spectra, normal skin shows the highest intensities, as it is inherently lighter than
other lesions. Intensities of hair, dysplastic nevus and melanoma are roughly in
the same level of intensity, although hair spectrum is slightly less steady than
the other two. Moreover, we notice that cancer/non-cancer spectra are close
to each other, which implies effective spectral-spatial analysis methods shall be
developed to distinguish them.

3 Baseline Method

To validate the feasibility of the proposed dataset, we developed a sparse coding
method [20,21] to classify the images in the hyperspectral dataset, and com-
pared the results with those obtained on RGB images of the same scene. The
RGB images were generated from the hyperspectral images by sampling band
images at 630 nm, 546 nm and 465 nm, which roughly correspond to the centers
of the red (610–700 nm), green (500–570 nm), and blue (450–500 nm) wavelength
ranges [22].

The baseline method has three main steps. First, we randomly sampled spec-
tral responses from the labelled bounding boxes in the training images. The
bounded image is evenly divided into grids, with half of the points in each grid
used to produce a sparse dictionary. Then sparse codes were calculated on each
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Fig. 4. Different regions and their spectral responses. (a) Melanoma. (b) Nevus and
normal skin. (c) Hair. (d) Corresponding spectral responses. (Color figure online)

image followed by max pooling to convert the image into a vector. Finally, the
vectorised images were used to train a multi-class SVM classifier. Please note
that this baseline method is purely based on spectral analysis. In RGB image
classification, we used the same SVM classifier, but adopted local binary pat-
terns [23] for feature extraction. In the experiments, we randomly sampled 60
images from each class as training samples, and used the rest images as the
testing samples. The random split of training and testing sets were done for five
times with the mean and standard deviation of the results reported.

3.1 Experimental Results

We use sensitivity (ratio between true positive and all positive cases) and speci-
ficity (ratio between true negative and all negative cases) to evaluate the per-
formance of our sparse coding method. Since melanoma is considered as the
true case, all correctly predicted melanoma samples are true positive, while all
wrongly predicted other cases are false negative. In the classification, we tried
both three-class (melanoma VS dysplastic nevi VS Other type) and two-class
(melanoma VS dysplastic Nevi) settings.

The result comparison is given in Table 1. It can be seen that the perfor-
mance of classification based on hyperspectral images is much better than that
from RGB images. This proves that spectral information is useful for melanoma
detection. Moreover, all 2-class classification results are better than 3-class clas-
sification. Standard deviations of all 3-class classification results are high, due
to the large variation and the small size of the third class, namely the other
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type. We also tested the case when the size of the lesion is added as an addi-
tional feature for hyperspectral image classification. The results show that the
performance is improved, which implies that size is an important feature for
differentiating melanoma from the other types.

Table 1. Comparison of classification performance.

Image type Feature Classes SE % STD % SP % STD %

Hyperspectral Sparse codes 3 69.33 19.82 72.95 1.74

Hyperspectral Sparse codes 2 84.00 7.60 72.10 6.00

Hyperspectral Sparse codes + size 3 77.33 14.61 73.61 1.00

Hyperspectral Sparse codes + size 2 80.00 6.67 80.70 6.91

Hyperspectral Size 3 76.55 3.87 66.67 19.44

Hyperspectral Size 2 82.63 2.00 68.00 8.69

RGB LBP 3 55.44 3.99 46.09 10.91

RGB LBP 2 64.56 2.82 62.67 18.62

4 Conclusion

We have presented a hyperspectral imaging dataset of 330 histology verified skin
lesion images. The images in the dataset are calibrated and with lesion regions
provided using bounding boxes. This dataset provides a foundation for further
research on hyperspectral imaging techniques and its usefulness in early screen-
ing of skin cancers using image based approaches, namely wavelength analysis.
The experimental results on a baseline approach show that pure spectral analysis
is not sufficient to reliably detect melanoma. More effective spectral-spatial data
analysis approach and advanced classification approaches are yet to be devel-
oped. In the future, we will also continue to explore and collaborate with skin
cancer clinics for more data collection.
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Abstract. In this paper, we propose an automatic approach to skin
lesion region segmentation based on a deep learning architecture with
multi-scale residual connections. The architecture of the proposed model
is based on UNet [22] with residual connections to maximise the learning
capability and performance of the network. The information lost in the
encoder stages due to the max-pooling layer at each level is preserved
through the multi-scale residual connections. To corroborate the efficacy
of the proposed model, extensive experiments are conducted on the ISIC
2017 challenge dataset without using any external dermatologic image
set. An extensive comparative analysis is presented with contemporary
methodologies to highlight the promising performance of the proposed
methodology.

Keywords: Skin lesion · FCNs · Residual connection · U-Net

1 Introduction

Medical imaging is an emerging and successful tool increasingly employed in
precision medicine. It aids in making a medical decision for providing appropriate
and optimal therapies to an individual patient. Skin Cancer is one such disease
which can be identified through medical imaging using dermoscopic techniques.
There are many types of skins cancers, but we can broadly put them in to two
general categories viz., Non melanoma and Melanoma. Non-melanoma cancers
are unlikely to spread to other parts of the body but Melanoma is likely to spread
to other parts of the body and is known to be aggressive cancer. Malignant
Melanoma is a cutaneous disease. It affects the melanin producing cells known
as melanocytes. Melanoma is likely to be fatal, it has caused more deaths than
any other type of skin disease [18]. The dermoscopic acquisition of a skin image
targets segmentation into two regions: lesion and normal skin. The affected part
of an organ or a tissue due to a disease or an injury is generally termed as lesion.
Efficient and accurate segmentation of the lesion region in dermoscopic images
aids in classification of various skin diseases. Furthermore, the severity of the
diseases can be predicted through various grading techniques which result in
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early identification of a skin disease which plays a vital role in the treatment
and cure of the disease.

2 Literature

In the existing literature, several attempts have been made to develop a more
robust and efficient segmentation of the lesion region in dermoscopic and non-
dermoscopic clinical images. The methods for skin lesion segmentation can
be segregated into the following categories [8] viz., thresholding, active con-
tours, region merging methods [13] and deep learning architectures. Some meth-
ods [7,16] have been proposed on non-dermoscopic images which address skin
lesion segmentation based on colour features and textural properties respectively.
The method in [15] addresses the illumination effects and artifacts. These meth-
ods apply post processing steps for refining the segmentation results. In [19], a
deep convolutional neural network (CNN) has been proposed which combines
both local texture and global structure information to predict a label for each
pixel for segmentation of the lesion region. In [11], an automated system for
skin lesion region segmentation has been proposed to classify each pixel based
on pertinent geometrical, textural and colour features which are selected using
Ant Colony Optimization (ACO). The complementary strengths of a saliency
and Bayesian framework are applied to distinguish the shape and boundaries
of the lesion region and background in [2]. In [23], an unsupervised method-
ology based on the wavelet lattice, shift and scale parameters of wavelets has
been proposed for the segmentation of skin lesion regions in dermoscopic images.
In [6], image-wise supervised learning is proposed to derive a probabilistic map
for automated seed selection and multi-scale super-pixel based cellular automata
to acquire structural information for skin lesion region segmentation. A Guas-
sian membership function is applied for image fuzzification and to quantify each
pixel for skin segmentation [12].

Despite several methods being available for segmentation of lesion region in
images of skin diseases, there is still scope for exploring new models, which are
efficient and provide better segmentation. Thus, in this work, we propose a deep
residual architecture inspired by UNet [22] for skin lesion segmentation. The rest
of this paper is organized as follows: Sect. 3 elaborates the proposed model for
the segmentation of skin lesion region. Section 4 gives the experimental analysis
and comparative analysis. Section 5 gives a conclusion.

3 Proposed Method

The proposed methodology for automatic skin lesion region segmentation using
deep learning architecture is shown in Fig. 1. The architecture is inspired from
UNet [22] and residual network [17]. The input to the network is RGBH (Red,
Green, Blue and Hue planes respectively) of a dermoscopic image and the output
is binary segmented image with white and Black pixels representing the affected
skin and non-affected regions respectively. There are four important components
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in the proposed network. The first is construction of a multi-scale [14] image
pyramid input which makes the network scale invariant. The second is a U-shape
convolutional network, to learn a vivid hierarchical representation. The third is
to incorporates residual learning to preserve spatial and contextual information
from the preceding layers. The residual connections are used at two levels. Firstly,
at each step of the contracting (encoder) and expansive (decoder) path of the U-
Net and another short connection between the multi-scale input and expansive
(encoder) path of respective step. The information lost in the encoder stages
due to the max-pooling layer at each level is preserved through the multi-scale
residual connection. Finally, a layer with binary cross-entropy loss function based
on Jaccard index [3] is included for classification of pixels.

3.1 Multi-scale Input Layer

The proposed method has similar architecture to the methodology in [14] for con-
structing the multi-scale input by using an average pooling layer to downsample
the images naturally and construct a multi-scale input in the encoder path. These
scaled input layers are used to increase the network width of decoder path and
also as a shortcut connection to the encoder path to increase the network width
of the decoder path.

3.2 Network Structure

U-Net [22] is an efficient fully convolutional network which has been proposed for
biomedical image segmentation. The proposed architecture adopts similar archi-
tecture consisting of two blocks placed in U-shape as shown in Fig. 1. The block
with green color (Fig. 2(a)) represents the residual downsampling block and the
red color (Fig. 2(b)) represents residual upsampling block. A 2 × 2 max-pooling
operation with stride 2 for downsampling is used and at each stage number of
feature channels chosen in the proposed architecture are shown in Fig. 1. The left
side path consist of repeated residual downsampling block (henceforth referred
as resDownBlock) which are connected to the corresponding residual upsam-
pling block (henceforth referred as resUpBlock). This connection is shown with
dotted lines in Fig. 1 similar to U-Net, where the feature maps of resDownBlock
is concatenated to the corresponding resUpBlock. Along with the u-connection,
there are also short connections between the Multi-scale input at each step of the
U-Net with the corresponding resUpBlock by convolving the scaled input with
3× 3 convolution which avoids convergence on a local optimal solution and thus
helps the network to achieve good performance in complex image segmentation.

3.3 Residual-Down-sampling Block(resDownBlock)

The structure of resDownBlock consists of two 3× 3 convolutions, each followed
by a rectified linear unit (ReLU). A shortcut connection of the input layer is
added with the output feature-maps of the second convolution layer before pass-
ing to the ReLU as shown in Fig. 2(a). Batch Normalization is adopted between
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Fig. 1. Proposed architecture of Multi-Scale Residual UNet

(a) (b)

Fig. 2. (a) Details of resDownBlock, (b) Details of resUpBlock (Color figure online)

convolutional layer and rectified linear units layer as well as during the shortcut
connection. The max-pooling layer in the resDownBlock has a kernel size of 2×2
and a stride of 2. Excluding the initial resDownBlock in the encoder path all
other resDownBLocks receives the concatenated output feature-maps from the
preceding block with the scaled input.

3.4 Residual-Up-sampling Block(resUpBlock)

The structure of resUpBlock consists of two 3 × 3 convolutional layers, each fol-
lowed by a rectified linear unit (ReLU) and a shortcut connection of the input
layer is added with the output feature-maps of second convolution layer along
with the shortcut connection of the scaled input image before passing to the
ReLU as shown in Fig. 2(b). There is a Concatenation layer, which concate-
nates the upsampled feature-maps from previous block with the feature-maps of
resDownblock. According to the architecture, the resolution of resDownBlocks
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output should match with the resUpBlock’s input for adding the upsampling
layer in the beginning of each block. Batch Normalization is adopted between
convolutional layer and rectified linear units layer similarly as mentioned in the
above section.

4 Experiments

In order to evalute the efficacy of the proposed model, experiments have been
conducted on the ISIC 2017 Challenge [10] official dataset. The dataset con-
sists of dermoscopic images with 2000 training, 150 validation and 600 test sam-
ples respectively. The proposed network is implemented using the Keras neu-
ral network API [9] with Tensorflow backend [1] and trained on a single GPU
(GeForce GTX TITAN X, 12 GB RAM). The network is optimized by Adam
optimizer [20] with an initial learning rate of 0.001. For increasing the number
of samples during the training phase, we have used standard geometrical (linear)
data augmentation techniques, namely rotation(−45◦ to +45◦), horizontal and
vertical flipping, translation and scaling (−10% to +10%)) of the input image.
We choose 256 × 256 square images with batch size of 4 samples. The number
of learning steps at each epoch is set to 1000. We have exploited RGB and HSI
color space model for deriving RGBH (Red, Blue, Green and Hue Channels of
dermoscopic images) as input data to the network to capture the color variations
in the data. Figure 3 presents the lesion region segmentation for few test samples
with overlay of segmentation results. The overlay consists of differentiations viz.,
blue, green and red overlays representing false negatives, true positives and false
positives respectively. It is evident that the proposed model effectively captures
the lesion region without any post-processing steps.

To evaluate the performance of the segmentation, we have use Accuracy
(AC), Jaccard Index (JA), Dice coefficient (DI), Sensitivity (SE) and Specificity
(SP). Consider βtp, βtn , βfp and βfn which represent the number of true pos-
itive, true negative, false positive and false negative respectively. All the above
mentioned metrics are computed using Eqs. (1)–(5):

Accuracy(AC) =
βtp + βtn

βtp + βtn + βfp + βfn
(1)

Sensitivity(SE) =
βtp

βtp + βfn
(2)

Dice coefficient(DI) =
2 ∗ βtp

2 ∗ βtp + βfp + βfn
(3)

Specificity(SP ) =
βtn

βtp + βfn
(4)

JaccardIndex(JA) =
βtp

βtp + βfp + βfn
(5)



282 G. M. Venkatesh et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. The visual examples of lesion region segmentations, 1st row are test images, 2nd

row corresponding ground truth images and 3rd are output of the segmented lession
region (Color figure online)

Figure 4 presents the segmentation results of the proposed model compared to
other methods in the literature by depicting number of test samples in each bin,
where each bin in x-axis represents the Jaccard Index range, y-axis represents
number of test samples. The results of our method is presented in Table 1. From
Table 1, it is evident that the proposed method outperforms the other methods
in terms of Accuracy, Dice Coefficient and Sensitivity. The results of our method
is quite competitive for the ISIC 2017 dataset in comparison with the methods
which have shown top performance in the literature.

Table 1. Comparison of Skin Lesion Segmentation on ISIC 2017.

Method Accuracy Dice Co-efficient Jaccard Index Sensitivity Specificity

Yading Yuan [24] 0.934 0.849 0.765 0.825 0.975

Our Method 0.936 0.856 0.764 0.83 0.976

Matt Berseth [4] 0.932 0.847 0.762 0.82 0.978

popleyi [5] 0.934 0.844 0.76 0.802 0.985

Euijoon Ahn [5] 0.934 0.842 0.758 0.801 0.984

RECOD Titans [21] 0.931 0.839 0.754 0.817 0.97
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Fig. 4. Graphical representation of Jaccard Index on overall test set.

5 Conclusion

In this work, we have proposed a deep architecture for skin lesion segmentation
termed as Multi-scale residual UNet. From the results in Fig. 3, it can be observed
that the boundaries of lesion regions and the background are well separated and
differentiable. Furthermore, the proposed model uses only ≈16M parameters
when compared to other well known conventional deep architectures for various
complex applications. To further improve the performance, in our future work
visual saliency shall be explored in conjunction with deep features and post
processing methods based on Conditional Random fields.
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Abstract. Early detection and segmentation of skin lesions is crucial for
timely diagnosis and treatment, necessary to improve the survival rate
of patients. However, manual delineation is time consuming and sub-
ject to intra- and inter-observer variations among dermatologists. This
underlines the need for an accurate and automatic approach to skin lesion
segmentation. To tackle this issue, we propose a multi-task convolutional
neural network (CNN) based, joint detection and segmentation frame-
work, designed to initially localize the lesion and subsequently, segment
it. A ‘Faster region-based convolutional neural network’ (Faster-RCNN)
which comprises a region proposal network (RPN), is used to generate
bounding boxes/region proposals, for lesion localization in each image.
The proposed regions are subsequently refined using a softmax classifier
and a bounding-box regressor. The refined bounding boxes are finally
cropped and segmented using ‘SkinNet’, a modified version of U-Net. We
trained and evaluated the performance of our network, using the ISBI
2017 challenge and the PH2 datasets, and compared it with the state-of-
the-art, using the official test data released as part of the challenge for
the former. Our approach outperformed others in terms of Dice coeffi-
cients (>0.93), Jaccard index (>0.88), accuracy (>0.96) and sensitivity
(>0.95), across five-fold cross validation experiments.

1 Introduction

Recent trends indicate a growing number of skin cancer diagnoses worldwide,
each year. In 2016, approximately 80,000 new cases of skin cancer were expected
to be diagnosed, with 10,000 melanoma related deaths (the most aggressive form
of skin cancer), in the USA alone [1]. Clinical screening and diagnosis typically
involve examination by an expert dermatologist, followed by histopathological

S. Vesal and S. Malakarjun Patil contributed equally to this article.

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): OR 2.0/CARE/CLIP/ISIC 2018, LNCS 11041, pp. 285–293, 2018.
https://doi.org/10.1007/978-3-030-01201-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01201-4_31&domain=pdf


286 S. Vesal et al.

analysis of biopsies. These steps however, invariably suffer from high inter-rater
and inter-center variability, and studies have shown that patient survival rates
improve to over 95%, following early detection and diagnosis of melanomas. To
reduce variability in the screening process, computer-aided-diagnosis (CAD) sys-
tems, which enable automatic detection, lesion segmentation and classification
of dermoscopic images, in a manner robust to variability in image quality and
lesion appearance, are essential.

Segmentation is an essential initial step, for CAD of skin lesions [2] and
melanoma in particular. This is because melanoma is typically diagnosed based
on the ‘ABCD’ criterion, which takes into account the shape-characteristics of
lesions (such as diameter, asymmetry, border irregularity, etc.), together with
appearance, or the ‘seven-point checklist’ [3]. Consequently, the quality of the
initial segmentation is crucial to the subsequent evaluation of diagnostic met-
rics such as border irregularity and lesion diameter. Several deep learning-based
approaches have been proposed, for skin lesion segmentation in recent years, for
example - a multi-task CNN was formulated in [4], which simultaneously tackled
lesion segmentation and two independent binary classification tasks; the winners
of the ISBI 2016 skin lesion segmentation challenge [5], employed a fully convo-
lutional residual network (FCRN), with more than 50 layers for segmentation
and integrated it within a 2-stage framework for melanoma classification; and
in [6], a multi-modal, multi-task CNN was designed, for the classification of the
seven-point melanoma checklist criteria, and skin lesion diagnosis.

We proposed a CNN-based segmentation framework called ‘SkinNet’ [7]
recently, to segment skin lesions in dermoscopic images automatically. The pro-
posed CNN architecture was a modified version of the U-Net [8]. SkinNet employs
dilated convolutions in the lowest layer of the encoder-branch, to provide a more
global context for the features extracted in the image. Additionally, the model
replaced the conventional convolution layers in both the encoder and decoder
branches of U-Net, with dense convolution blocks, to better incorporate multi-
scale image information.

In this paper, we propose a novel two-stage approach for skin lesion detection
and segmentation where we first localize the lesion, and subsequently segment
it. The recently developed ‘faster region-based convolutional neural network’
(Faster-RCNN) [9], a form of multi-task learning, is utilized for lesion localiza-
tion. For each image, a number of bounding-boxes are initially generated by a
region proposal network (RPN). Subsequently, each proposed region is jointly
classified (as containing the object of interest or not) and refined using a soft-
max classifier, and a bounding-box regressor. Following refinement, the detected
regions are cropped and segmented using SkinNet.

2 Methods

A fully automatic CAD system for analyzing dermoscopic images, must first be
able to accurately localize, and segment the lesion, prior to classifying it into
its sub-types. The framework devised in this study for skin lesion segmentation
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comprises, an initial localization step, using a network designed for object detec-
tion, followed by segmentation using a modified U-Net. The overall network was
trained using the ISBI 2017 challenge (training) dataset [10].

Fig. 1. Faster-RCNN architecture: Top left box represents the base network, box on the
right represents the region proposal network (RPN) and the bottom left box represents
the RCNN.

A network similar to the original Faster-RCNN was constructed for the initial
task of lesion localization. The network’s main components are summarized in
Fig. 1. These include: (a) shared convolution layers (henceforth referred to as
the base network) to extract both low- and high-level features from the input
image; (b) a region proposal network (RPN) [9], which predicts anchor boxes
and the probability that the predicted box contains a lesion; and (c) a region-
based convolution network (RCNN) which refines the regions of interest (ROIs)
generated in the preceding RPN step, by predicting the class (lesion present
vs absent), and bounding box coordinates. Following localization, and selection
of the refined regions, lesions were segmented within the estimated bounding
boxes, using SkinNet. Henceforth, we refer to the combined localization and
segmentation framework proposed in this study as, Faster-RCNN+SkinNet.

The Base Network: In order to extract discriminative features within the
shared layers, we employed the pre-trained (on ImageNet) ResNet50 residual
network [11]. The network was split into two parts, the first comprising the
initial 87 layers was used as the base network, and the remaining layers were
used for classification and regression in the final RCNN (refer to Fig. 1). The 87
layers were chosen based on experiments wherein, the number of layers of the
base network were varied. Each trial was evaluated in terms of the Intersection-
over-Union (IoU) of the bounding boxes predicted by the Faster-RCNN for each
image, with respect to their ground truths, resulting in the chosen configuration.
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Region Proposal Network: Following feature extraction, nine anchor boxes
of various scales and aspect ratios were generated, centered on distinct, non-
overlapping 3×3 patches of the feature map obtained from the base network, for
each image. These anchors were generated at scales of [128, 256, 512], and aspect
ratios of [1 : 1, 1 : 2, 2 : 1]. The RPN was designed to predict the coordinates
of these anchors for all patches, and their probability of containing a lesion.
The similarity between the anchor boxes and the ground truth bounding boxes
(generated using the training masks provided) was measured using IoU, and used
to create references used by the RPN (as synthetic ground truths) to predict
the probability of the anchors containing a lesion. These anchor boxes were
labeled as positive, negative or neutral, based on IoU thresholds of 0.7 and 0.4,
respectively. We ensured that the ground truth bounding boxes each had at
least one corresponding positive anchor box, and if not, the neutral anchor box
with the highest IoU was labeled positive. The RPN was implemented as a set of
convolution layers, where each anchor box was first convolved with a 3×3 kernel,
and subsequently, with five 1 × 1 kernels, resulting in five feature maps. Each
of these feature maps in turn represent the coordinates of each anchor box, and
its probability of containing a lesion. This process was repeated nine times, for
each of the nine types of anchor boxes we considered, resulting in 9 × 5 feature
maps that were predicted per image.

Classification and Bounding Box Regression: Classification of each region
proposed by the RPN required feature maps of fixed sizes, as input to the RCNN.
These were generated using region of interest (ROI) pooling. During ROI pool-
ing, each feature map from the RPN was cropped and resized to 14× 14× 1024
via bilinear interpolation. Next, max pooling with a 2×2 kernel was used, result-
ing in a final 7 × 7 × 1024 feature map for each proposal. Finally, we used the
remaining layers of the ResNet50 architecture (excluded in the base network),
implemented as time-distributed layers, for the RCNN. Time-distributed convo-
lution layers were used to avoid iterative classification and regression training
and to accommodate the varied number of regions proposed per image, by the
RPN. The RCNN subsequently classifies each proposal as lesion/non-lesion, and
adjusts the bounding box coordinates to fit the lesion completely. Non-Maximum
suppression with a threshold of 0.5 was used as a final step, to remove redundant
bounding boxes.

Skin Lesion Segmentation: The final set of ROIs estimated for each image,
using the Faster-RCNN based localization network, are subsequently, used as
inputs for segmentation, by SkinNet [7] which we proposed in our recent studies.
This segmentation network was designed to incorporate both local and global
information, beneficial for any segmentation task. In segmentation networks such
as the U-Net, the lowest level of the network connecting the encoder and decoder
branches, has a small receptive field, which prevents the network from extracting
features that capture non-local image information. We addressed this issue by
using dilated convolution layers in the lowest part of the network. The encoded
features are convolved with successively increasing dilation rates, which in turn,
successively increases the size of the receptive field. The encoder and decoder
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Fig. 2. Some examples of detected lesions and their respective IoU scores. The green
and red bounding boxes represent the ground truth and predicted boxes, respectively.
(Color figure online)

branches of SkinNet each comprise, three down- and up-sampling dense convo-
lution blocks. These blocks incorporate multi-scale information through the use
of dense convolution layers, where, the input to every layer is a concatenation
of output feature maps, from all preceding convolution layers.

Losses: The losses used for RPN and RCNN classification are cross-entropy, and
categorical cross-entropy, respectively. Mean squared error (MSE) was used as
the regression loss in both the RPN and the RCNN. The ground truth for the
bounding box regression was generated manually using the binary masks pro-
vided in the training dataset, for the ISBI 2017 challenge [10]. Many traditional
segmentation networks employ cross-entropy [8] as a loss function. However, due
to the small size of the lesion in dermoscopy images, cross-entropy is biased
towards the background of the image. Consequently, for SkinNet, we used a dice
coefficient loss function ζ(y, ŷ) = ζ(y, ŷ) = 1−∑

k

∑
n ynkŷnk∑

n ynk+
∑

n ŷnk
. The dice loss

was chosen as experimental evidence suggested that it is less affected by class
imbalances. Here, ŷnk denotes the output of the model, where n represents the
pixels and k the classes (i.e. background vs. lesion). The ground truth masks are
one-hot encoded and denoted by ynk. We take one minus the dice coefficient in
order to constrain the loss to zero.

Training Procedure: A four-step training process for each batch was used
in our approach. In the first step, we trained the RPN for a batch, generating
numerous region proposals. Subsequently, the classification and bounding box
regression branches of the RCNN were trained for the same batch. During both
these steps, the weights of the base network were also fine tuned to enable the
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Table 1. Distribution of the ISBI 2017 challenge and PH2 datasets.

Dataset Training data Validation data Test data Total

ISBI2017 2000 150 600 2750

PH2 - - 200 200

network to learn task specific features. Next, the weights of the base network
were frozen and the RPN was fine tuned, to predict the anchor boxes. Finally, the
classification and regression branches of the RCNN were also fine tuned, once
again keeping the weights of the base network fixed. The proposed detection
method was trained for 100 epochs, using the Adam optimizer with a learning
rate of 0.001. The model achieved an accuracy of 95.0% on the validation set
(20% of the training set) and 94.0% on the test set (10% of the training set)
respectively, for an overlap threshold of 0.9. Example outputs of lesion detection
on test data are depicted in Fig. 2, which clearly highlight the high detection
accuracy of the proposed approach.

3 Results and Discussion

Datasets: In order to evaluate the performance of our approach, we trained
and tested it on two well-known public datasets, namely, the ISBI 2017 chal-
lenge dataset [10] and the PH2 [12] dataset. The former includes 2000 dermo-
scopic images and their corresponding lesion masks. These images are of various
dimensions ranging from 1022 × 767 to 6688 × 4439. In addition to the training
set, the organizers also provided a validation set comprising 150 images, and an
additional test set with 600 images for final evaluation. The PH2 dataset contains
200 images, each 786 × 560 in size, and acquired at a magnification of 20×. We
used these images purely as unseen data, to test the ability of our framework to
generalize to images obtained from a different database. All images were resized
to 512 × 512 × 3. The number of images from both datasets used for training,
validation and testing, are summarized in Table 1.

Evaluation Metrics: We used the metrics employed in the ISBI 2017 challenge,
to evaluate segmentation performance, namely, Specificity (SP), Sensitivity (SE),
Jaccard index (JI), Dice coefficient (DC) and Accuracy (AC), across five-fold
cross validation experiments. Table 1 summarizes segmentation accuracy, evalu-
ated using each of these metrics, for SkinNet and Faster-RCNN+SkinNet, on the
ISBI 2017 test set and the PH2 data set. It also compares the achieved results
with the state-of-the-art, which were trained and tested on the same data. For
the ISBI 2017 test data, Faster-RCNN+SkinNet outperformed SkinNet and all
other methods in terms of AC, DC, JI and SE. In particular, it achieved an
average DC and JI score of 93.4% and 88%, respectively, which is significantly
higher than all other methods. Visual assessment of the segmentation accu-
racy of Faster-RCNN+SkinNet relative to SkinNet, depicted in Fig. 3, confirms
the superiority of the former relative to the latter. Furthermore, for the PH2
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Fig. 3. Segmentation outputs using SkinNet and Faster-RCNN+SkinNet for different
lesion sizes. The blue rectangle represents the detected bounding box. The green con-
tour represents the ground truth segmentation, while the red and yellow represent the
outputs of Faster-RCNN+SkinNet and SkinNet, respectively. (Color figure online)

Table 2. The segmentation accuracy results for different methods on ISBI 2017 chal-
lenge test data.

Datasets Methods AC DC JI SE SP

ISBI2017 Yuan et al. [13] 0.934 0.849 0.765 0.825 0.975

SLSDeep [14] 0.936 0.878 0.782 0.816 0.983

NCARG [15] 0.953 0.904 0.832 0.975 0.888

FrCN [16] 0.956 0.896 0.813 0.890 0.974

SkinNet 0.932 0.851 0.767 0.930 0.905

Faster-RCNN+SkinNet 0.968 0.934 0.880 0.971 0.913

PH2 FrCN [16] 0.952 0.914 0.841 0.945 0.955

Faster-RCNN+SkinNet 0.964 0.946 0.899 0.952 0.925

dataset, our method once again outperformed a state-of-the-art approach [16],
in terms of AC, DC, JI and SE, highlighting its ability to generalize to images
acquired from other databases. These results and comparisons, clearly outline
the improvement in segmentation accuracy achieved by the proposed approach,
relative to the state-of-the-art, and by extension, the benefit of formulating a
multi-task learning approach, for skin lesion segmentation (Table 2).
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4 Conclusion

The multi-task framework proposed in this study for joint lesion localization and
segmentation, significantly outperformed the state-of-the-art, on two public test
data sets. The results outline the significant benefits of object localization and
multi-task learning, as auxiliaries to segmentation tasks. The proposed frame-
work thus shows promise for the automatic analysis of skin lesions in dermoscopic
images, for improved diagnosis and clinical decision support.

Acknowledgements. This study was partially supported by the project - BIG-
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Abstract. Skin cancer is by far the most common type of cancer. Early
detection is the key to increase the chances for successful treatment
significantly. Currently, Deep Neural Networks are the state-of-the-art
results on automated skin cancer classification. To push the results fur-
ther, we need to address the lack of annotated data, which is expensive
and require much effort from specialists. To bypass this problem, we
propose using Generative Adversarial Networks for generating realistic
synthetic skin lesion images. To the best of our knowledge, our results
are the first to show visually-appealing synthetic images that comprise
clinically-meaningful information.

Keywords: Skin cancer · Generative models · Deep learning

1 Introduction

Melanoma is the most dangerous form of skin cancer. It causes the most deaths,
representing about 1% of all skin cancers in the United States1. The crucial point
for treating melanoma is early detection. The estimated 5-year survival rate of
diagnosed patients rises from 15%, if detected in its latest stage, to over 97%, if
detected in its earliest stages [2].

Automated classification of skin lesions using images is a challenging task
owing to the fine-grained variability in the appearance of skin lesions. Since the
adoption of Deep Neural Networks (DNNs), the state of the art improved rapidly
for skin cancer classification [6,7,15,19]. To push forward, we need to address
the lack of annotated data, which is expensive and require much effort from
specialists. To bypass this problem, we propose using Generative Adversarial
Networks (GANs) [8] for generating realistic synthetic skin lesion images.

GANs aim to model the real image distribution by forcing the synthesized
samples to be indistinguishable from real images. Built upon these genera-
tive models, many methods were proposed to generate synthetic images based
1 http://www.cancer.net/cancer-types/melanoma/statistics.
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on GANs [10,16,17]. A drawback of GANs is the resolution of the synthetic
images [20]. The vast majority of works is evaluated on low-resolution datasets
such as CIFAR (32×32) and MNIST (28×28). However, for skin cancer classifi-
cation, the images must have a higher level of detail (high resolution) to be able
to display malignancy markers that differ a benign from a malignant skin lesion.

Fig. 1. Our approach successfully generates high-definition, visually-appealing,
clinically-meaningful synthetic skin lesion images. All samples are synthetic. Details
can be found in Sect. 2.

Very few works have shown promising results for high-resolution image gen-
eration. For example, Karras et al.’s [11] progressive training procedure generate
celebrity faces up to 1024× 1024 pixels. They start by feeding the network with
low-resolution samples. Progressively, the network receives increasingly higher
resolution training samples while amplifying the respective layers’ influence to
the output. In the same direction, Wang et al. [20] generate high-resolution
images from semantic and instance maps. They propose to use multiple dis-
criminators and generators that operate in different resolutions to evaluate fine-
grained detail and global consistency of the synthetic samples. We investigate
both networks for skin lesion synthesis, comparing the achieved results.

In this work, we propose a GAN-based method for generating high-definition,
visually-appealing, and clinically-meaningful synthetic skin lesion images. To the
best of our knowledge, this work is the first that successfully generates realistic
skin lesion images (for illustration, see Fig. 1). To evaluate the relevance of syn-
thetic images, we train a skin cancer classification network with synthetic and
real images, reaching an improvement of 1% point. Our full implementation is
available at https://github.com/alceubissoto/gan-skin-lesion.

2 Proposed Approach

Our aim is to generate high-resolution synthetic images of skin lesions with
fine-grained detail. To explicitly teach the network the malignancy markers
while incorporating the specificities of a lesion border, we feed these informa-
tion directly to the network as input. Instead of generating the image from
noise (usual procedure with GANs), we synthesize from a semantic label map
(an image where each pixel value represents the object class) and an instance
map (an image where the pixels combine information from its object class and its
instance). Therefore, our problem of image synthesis specified to image-to-image
translation.

https://github.com/alceubissoto/gan-skin-lesion
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2.1 GAN Architecture: The pix2pixHD Baseline

We employ Wang’s et al. [20] pix2pixHD GAN, which improve the pix2pix net-
work [10] (a conditional image-to-image translation GAN) by using a coarse-to-
fine generator, a multi-scale discriminator architecture, and a robust adversarial
learning objective function. The proposed enhancements allowed the network to
work with high-resolution samples.
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Fig. 2. Summary of the GAN architecture. In the bottom-left, we show the pipeline.
We detail both discriminator and generator, and the blocks that compose them. We
show the parameters for each convolutional layer: k is the kernel size; n is the number of
channels; and s is the stride. The number that follows both Downsample and Upsample
blocks are the numbers of channels.

For generating 1024 × 512 resolution images, we only take advantage of the
Global generator from pix2pixHD. This generator’s output resolution fits with
the minimum common size of our dataset images. It is composed of a set of
convolutional layers, followed by a set of residual blocks [9] and a set of decon-
volutional layers.

To handle global and finer details, we employ three discriminators as Wang
et al. [20]. Each of the three discriminators receives the same input in different
resolutions. This way, for the second and third discriminator, the synthetic and
real images are downsampled by 2 and 4 times respectively. Figure 2 summarizes
the architecture of the GAN network.

The loss function incorporates the feature matching loss [17] to stabilize the
training. It compares features of real and synthetic images from different layers
of all discriminators. The generator learns to create samples that match these
statistics of the real images at multiple scales. This way, the loss function is a
combination of the conditional GAN loss, and feature matching loss.
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2.2 Modeling Skin Lesion Knowledge

Modeling meaningful skin lesion knowledge is the crucial condition for synthe-
sizing high-quality and high-resolution skin lesions images. In the following, we
show how we model the skin lesion scenario into semantic and instance maps for
image-to-image translation.

Semantic map [12] is an image where every pixel has the value of its object
class and is commonly seen as a result of pixel-wise segmentation tasks.

To compose our semantic map, we propose using masks that show the pres-
ence of five malignancy markers and the same lesions’ segmentation masks. The
skin without lesion, the lesion without markers, and each malignancy marker are
assigned a different label. To keep the aspect ratio of the lesions, while keeping
the size of the input constant as the same of the original implementation by
Wang et al. [20], we assign another label to the borders, which do not constitute
the skin image.

Instance map [12] is an image where the pixels combine information from
its object class and its instance. Every instance of the same class receives a
different pixel value. When dealing with cars, people, and trees, this information
is straightforward, but to structures within skin lesions, it is subjective.

To compose our instance maps, we take advantage of superpixels [1]. Super-
pixels group similar pixels creating visually meaningful instances. They are used
in the process of annotation of the malignancy markers masks. First, the SLIC
algorithm [1] is applied to the lesion image to create the superpixels. Then, spe-
cialists annotate each of the superpixels with the presence or absence of five
malignancy markers. Therefore, superpixels are the perfect candidate to differ-
entiate individuals within each class, since they are already in the annotation
process as the minimum unit of a class. In Fig. 3 we show a lesion’s semantic
map, and its superpixels representing its instance map.

Next, we conduct experiments to analyze our synthetic images and compare
the different approaches introduced to generate them.

(a) Real image (b) Superpixels (c) Semantic label map

Fig. 3. A lesion’s semantic map, and its superpixels representing its instance map.
Note how superpixels change its shape next to hairs and capture information of the
lesion borders, and interiors.
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3 Experiments

In this section, we evaluate GAN-based approaches for generating synthetic skin
lesion images: (1) DCGAN [16], (2) our conditional version of PGAN [11], and (3)
our versions of pix2pixHD [20] using only semantic map, and (4) using seman-
tic and instance maps. We choose DCGAN to represent low-resolution GANs
because of its traditional architecture. Results for other low-resolution GANs do
not show much of an improvement.

3.1 Datasets

For training and testing pix2pixHD, we need specific masks that show the pres-
ence or absence of clinically-meaningful skin lesion patterns (including pigment
network, negative network, streaks, milia-like cysts, and globules). These masks
are available from the training dataset of task 2 (2,594 images) of 2018 ISIC
Challenge2. The same lesions’ segmentation masks that are used to compose
both semantic and instance maps were obtained from task 1 of 2018 ISIC Chal-
lenge. We split the data into train (2,346 images) and test (248 images). The test
is used for generating images using masks the network has never seen before.

For training DCGAN and our version of PGAN, we use the following datasets:
ISIC 2017 Challenge with 2,000 dermoscopic images [5], ISIC Archive with 13,000
dermoscopic images, Dermofit Image Library [4] with 1,300 images, and PH2
dataset [13] with 200 dermoscopic image.

For training the classification network, we only use the ‘train’ set
(2,346 images). For testing, we use the Interactive Atlas of Dermoscopy [3] with
900 dermoscopic images (270 melanomas).

3.2 Experimental Setup

For pix2pixHD, DCGAN (official PyTorch implementation) and PGAN (except
for the modifications listed below), we keep the default parameters of each imple-
mentation.

We modified PGAN by concatenating the label (benign or melanoma) in
every layer except the last on both discriminator and generator. For training,
we start with 4 × 4 resolution, always fading-in to the next resolution after 60
epochs, from which 30 epochs are used for stabilization. To generate images of
resolution 256 × 256, we trained for 330 epochs. We ran all experiments using
the original Theano version.

For skin lesion classification, we employ the network (Inception-v4 [18])
ranked first place for melanoma classification [14] at the ISIC 2017 Challenge. As
Menegola et al. [14], we apply random vertical and horizontal flips, random rota-
tions and color variations as data augmentation. Also we keep test augmentation
with 50 replicas, but skip the meta-learning SVM.

2 https://challenge2018.isic-archive.com.

https://challenge2018.isic-archive.com
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3.3 Qualitative Evaluation

In Fig. 4 we visually compare the samples generated by GAN-based approaches.
DCGAN (Fig. 4a) is one of the most employed GAN architectures. We show

that samples generated by DCGAN are far from the quality observed on our
models. It lacks fine-grained detail, being inappropriate for generating high-
resolution samples.

Despite the visual result for PGAN (Fig. 4b) is better than any other work
we know of, it lacks cohesion, positioning malignancy markers without proper
criteria. We cannot pixel-wise compare the PGAN result with the real image.
This synthetic image was generated from noise and had no connection with
the sampled real image, except it was part of the GAN’s training set. But, we
can compare the sharpness, the presence of malignancy markers and their fine-
grained details.

(a) DCGAN (b) Ours (c) Ours (d) Ours (e) Real

Fig. 4. Results for different GAN-based approaches: (a) DCGAN [16], (b) Our version
of PGAN, (c) Our version of pix2pixHD using only semantic map, (d) Our version of
pix2pixHD using both semantic and instance map, (e) Real image. In the first row, we
present the full image while in the second we zoom-in to focus on the details.

When we feed the network with semantic label maps (Fig. 4c) that inform
how to arrange the malignancy markers, the result improves remarkably. When
combining both semantic and instance maps (Fig. 4d), we simplify the learning
process, achieving the overall best visual result. The network learns patterns of
the skin, and of the lesion itself.

3.4 Quantitative Evaluation

To evaluate the complete set of synthetic images, we train a skin classification
network with real and synthetic training sets and compare the area under the
ROC curve (AUC) when testing only with real images. We use three different
synthetic images for this comparison: Instance are the samples generated using
both semantic and instance maps with our version of pix2pixHD [20]; Seman-
tic are the samples generated using only semantic label maps; PGAN are the
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samples generated using our conditional version of PGAN [11]. For statistical
significance, we run each experiment 10 times.

For every individual set, we use 2,346 images, which is the size of our training
set (containing semantic and instance maps) for pix2pixHD. For PGAN, there
is not a limitation in the amount of samples we are able to generate, but we
keep it the same maintaining the ratio between benign and malignant lesions.
Our results are in Table 1. To verify statistical significance (comparing ‘Real +
Instance + PGAN’ with other results), we include the p-value of a paired samples
t-test. With a confidence of 95%, all differences were significant (p-value < 0.05).

Table 1. Performance comparison of real and synthetic training sets for a skin cancer
classification network. We train the network 10 times with each set. The features present
in the synthetic images are not only visually appealing but also contain meaningful
information to correctly classify skin lesions.

Training data AUC (%) Training data size p-value

Real 83.4 ± 0.9 2,346 2.5 × 10−3

Instance 82.0 ± 0.7 2,346 2.8 × 10−5

Semantic 78.1 ± 1.2 2,346 6.9 × 10−8

PGAN 73.3 ± 1.5 2,346 2.3 × 10−9

Real + Instance 82.8 ± 0.8 4,692 1.1 × 10−4

Real + Semantic 82.6 ± 0.8 4,692 1.2 × 10−4

Real + PGAN 83.7 ± 0.8 4,692 2.6 × 10−2

Real + 2×PGAN 83.6 ± 1.0 7,038 2.0 × 10−2

Real + Instance+ PGAN 84.7 ± 0.5 7,038 –

The synthetic samples generated using instance maps are the best among the
synthetics. The AUC follows the visual quality perceived.

The results for synthetic images confirm they contain features that character-
ize a lesion as malignant or benign. Even more, the results suggest the synthetic
images contain features that are beyond the boundaries of the real images, which
improves the classification network by an average of 1.3% point and keeps the
network more stable.

To investigate the influence of the instance images over the achieved AUC
for ‘Real + Instance + PGAN’, we replace the instance images with new PGAN
samples (‘Real + 2×PGAN’). Although both training sets have the same size, the
result did not show improvements over its smaller version ‘Real + PGAN’. Hence,
the improvement over the AUC achieved suggests it is related with the variations
the ‘Instance’ images carry, and not (only) by the size of the train dataset.

4 Conclusion

In this work, we propose GAN-based methods to generate realistic synthetic skin
lesion images. We visually compare the results, showing high-resolution samples
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(up to 1024 × 512) that contain fine-grained details. Malignancy markers are
present with coherent placement and sharpness which result in visually-appealing
images. We employ a classification network to evaluate the specificities that
characterize a malignant or benign lesion. The results show that the synthetic
images carry this information, being appropriate for classification purposes.

Our pix2pixHD-based solution, however, requires annotated data to generate
images. To overcome this limitation, we are working on different approaches
to generate diversified images employing pix2pixHD without additional data:
combining different lesions’ semantic and instance masks, distorting existing
real masks for creating new ones, or even employing GANs for the easier task
of generating masks. Despite the method used, taking advantage of synthetic
images for classification is promising.
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Abstract. Deep learning models show remarkable results in auto-
mated skin lesion analysis. However, these models demand considerable
amounts of data, while the availability of annotated skin lesion images
is often limited. Data augmentation can expand the training dataset by
transforming input images. In this work, we investigate the impact of
13 data augmentation scenarios for melanoma classification trained on
three CNNs (Inception-v4, ResNet, and DenseNet). Scenarios include
traditional color and geometric transforms, and more unusual augmen-
tations such as elastic transforms, random erasing and a novel augmen-
tation that mixes different lesions. We also explore the use of data aug-
mentation at test-time and the impact of data augmentation on various
dataset sizes. Our results confirm the importance of data augmentation
in both training and testing and show that it can lead to more perfor-
mance gains than obtaining new images. The best scenario results in an
AUC of 0.882 for melanoma classification without using external data,
outperforming the top-ranked submission (0.874) for the ISIC Challenge
2017, which was trained with additional data.

Keywords: Skin lesion analysis · Data augmentation · Deep learning

1 Introduction

Deep learning has achieved impressive results in computer vision tasks, including
skin lesion analysis [4]. However, deep learning models are data-hungry, and
collecting and annotating skin lesion images can be challenging.

In image classification tasks, knowledge transfer and data augmentation are
regularly employed for small datasets. Knowledge transfer usually takes place
by initially training a Convolutional Neural Network (CNN) in a large source
dataset (e.g., ImageNet) and using its weights as a starting point for training
in the smaller target dataset [10]. Data augmentation goal is to add new data
points to the input space by modifying training images while preserving semantic
information and target labels. Thus, it is used to reduce overfitting.

c© Springer Nature Switzerland AG 2018
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In this work, we: (i) investigate the impact of applying diverse data augmen-
tation techniques to three different CNN architectures (namely Inception-v4 [13],
ResNet [5], and DenseNet [6]); (ii) investigate the impact of data augmentation
on different dataset sizes; and (iii) evaluate the use of different data augmenta-
tion methods during test-time, aiming to reduce generalization error. We con-
ducted the experiments on the ISIC Challenge 2017 dataset [3] for melanoma
classification task.

2 Related Work

Data augmentation is broadly used in CNN architectures, such as AlexNet [8],
Inception [7,13,14], ResNet [5], and DenseNet [6]. These architectures are trained
on the ImageNet dataset , which contains millions of annotated images. Some
examples of data augmentation techniques are color modifications and geometric
transforms (rotation, scaling, random cropping).

Models can also benefit from data augmentation on test-time. Krizhevsky
et al. [8] average the predictions on 10 patches (cropped from the center plus the
four corners and then flipped) extracted from each test image. Szegedy et al. [14]
report gains with a method that generates 144 patches by cropping images at
different resolutions, when compared with the 10-crop method. These methods
are commonly used in competitions to increase final performance but can be
expensive for production.

Data augmentation is also extensively employed in skin lesion classification, a
task that has much less available training data. Data augmentation is ubiquitous
among top-ranked submissions in the ISIC Challenge 2017 [1,9,11].

Some works specifically explore data augmentation for skin lesion analy-
sis [12,15,16]. Vasconcelos and Vasconcelos [16] report gains in performance
by using data augmentation with geometric transforms (rotations by multiples
of 90◦; flips; lesion-preserving crops), PCA-based color augmentation, and spe-
cialist warping that preserves lesions symmetries and anti-symmetries. Valle et
al. [15] highlight the importance of using data augmentation for both training
and testing. They averaged the predictions for 50 augmented test samples. Pham
et al. [12] compare the effects of data augmentation on classifiers (SVM, neural
networks, and random forest) trained with features extracted with a pretrained
Inception-v4. Their results indicate that using more samples in test data aug-
mentation (100 vs. 50) increases the model’s performance.

In this work, we further investigate the use of data augmentation for skin
lesion analysis, by comparing: test techniques (testing on a single image; test
data augmentation; and test cropping, commonly employed in CNN architectures
for image classification); 13 different data augmentation scenarios, including a
novel augmentation; and the effects of data augmentation on different dataset
sizes.
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3 Methodology

3.1 CNN Architectures

We evaluated every experiment on three very deep CNNs that are widely used
in computer vision problems: Inception-v4 [13], ResNet-152 [5], and DenseNet-
161 [6]. We chose these networks as they achieve increased depth with different
design choices and represent the state of the art in image classification.

The Inception-v4 [13] architecture has modules that concatenate feature
maps from parallel convolutional blocks, leading to increased width and depth.
Residual Networks (ResNets) [5] use shortcut connections between layers, allow-
ing even deeper networks. Densely Connected Networks (DenseNets) [6] con-
catenate the output of each layer to all subsequent layers inside a dense block,
increasing the parameter efficiency and reducing overfitting.

Since we used the same optimization hyperparameters for the three networks,
we do not intend to compare the numeric values alone, but rather compare big-
picture results and trends.

3.2 Data Augmentation Techniques

We evaluated 13 data augmentation scenarios, comprising different image pro-
cessing techniques, and some combinations of them. Table 1 describes the imple-
mentation details for each scenario. Figure 1 shows examples of all scenarios.

Fig. 1. Examples of augmentation scenarios, described in Table 1.

3.3 Training and Evaluation

We trained each network with Stochastic Gradient Descent (SGD) with a
momentum factor 0.9, batch size of 32, starting learning rate 1e−3, reduced
to 1e−4 after the 10th epoch. The training data was shuffled before each epoch.
The networks were initialized with weights trained on the ImageNet dataset,
and fine-tuned with the ISIC Challenge 2017 train dataset (2000 images) [3].
The experiments were implemented with PyTorch (pytorch.org). Augmentations
were implemented with torchvision and imgaug (github.com/aleju/imgaug).

https://pytorch.org/
https://github.com/aleju/imgaug
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Table 1. Augmentation scenarios. Scenarios J to M represent augmentations compo-
sitions applied in the presented order.

ID Name Description

A No Augmentation No data augmentation. Only preprocess images, as
described in Sect. 3.3

B Saturation, Contrast,
and Brightness

Modify saturation, contrast, and brightness by random
factors sampled from an uniform distribution of
[0.7, 1.3], simulating changes in color due to camera
settings and lesion characteristics

C Saturation, Contrast,
Brightness, and Hue

As described in B, but also shift the hue by a value
sampled from an uniform distribution of [−0.1, 0.1]

D Affine Rotate the image by up to 90◦, shear by up to 20◦, and
scale the area by [0.8, 1.2]. New pixels are filled
symmetrically at edges. This can reproduce camera
distortions and create new lesion shapes

E Flips Randomly flip the images horizontally and/or vertically

F Random Crops Randomly crop the original image. The crop has
0.4 − 1.0 of the original area, and 3/4 − 4/3 of the
original aspect ratio

G Random Erasing Fill part of the image (area up to 30% of the original
image) with random noise. The transformation is
applied with a probability of 0.5. Implemented as
described in [17]. The network may benefit from
occlusion by learning to look for different lesion
attributes

H Elastic Warp images with Thin Plate Splines (TPS). The warp
is generated by defining the origins as an evenly-spaced
4 × 4 grid of points, and destinations as random points
around the origins (by up to 10% of the image width on
each direction). This can produce new lesion shapes
while maintaining medical attributes

I Lesion Mix Mix two lesions, by inserting part of a foreground lesion
(cut by its segmentation mask) into a background
lesion. We apply Gaussian blur to the foreground lesion
to avoid sharp edges, and equalize its color histogram
with respect to the segmented background lesion. The
resulting image is labeled as melanoma only if one of
the two original lesions was labeled as melanoma. This
can simulate clinical conditions with two lesions occur
at the same location. We did not apply this transform
at test-time

J Basic Set F → D → E → C

K Basic Set + Erasing F → G → D → E → C

L Basic Set + Elastic F → D → H → E → C

M Basic Set + Mix I → F → D → E → C
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All images were resized offline to a maximum width or height of 1024 pixels
to avoid expensive resizing during training. On training, images were resized to
the default input sizes for each network (224 × 224 for DenseNet and ResNet;
299 × 299 for Inception-v4), although larger sizes were possible due to global
average pooling. Images were normalized (subtract from the mean and divide by
the standard deviation) based on the ImageNet dataset, in which the networks
were pretrained. Augmentations were randomly applied online during training.

We applied early stopping to interrupt the training, monitoring the AUC
value for the ISIC Challenge 2017 official validation dataset (150 images) for
each epoch. The AUC value was calculated by averaging the predictions for
16 randomly augmented copies of each validation image, by applying the same
transforms used during training. The early stopping monitor interrupted the
training when the validation AUC did not improve after 8 epochs. The final
test AUC was calculated on the ISIC Challenge 2017 official test dataset (600
images) in three different ways: (i) inputting the original test images to the
network; (ii) averaging the predictions for 64 randomly augmented copies of each
test image; (iii) averaging the predictions for 144 patches produced by cropping
each test image as described in [14]. The weights used for testing were selected
from the best AUC in the validation dataset. The validation-time and test-time
augmentations followed the same transforms as the training.

For every setup, we run 6 separate trainings to reduce the effects of random-
ness. We used Sacred (github.com/IDSIA/sacred) to organize all experiments.

To guarantee reproducibility, we provide the documented source code used
in the experiments (github.com/fabioperez/skin-data-augmentation).

4 Results and Discussion

4.1 Augmentation on Training and Testing

In this section, we discuss the results of train and test data augmentation for
the proposed scenarios. Figure 2 summarizes the results.

Scenario C (saturation, contrast, brightness, and hue) resulted in better AUC
than scenario B (saturation, contrast, brightness) for all three networks. How-
ever, both color transforms performed worse than scenario A (no augmentation)
with 144 crops on ResNet. Geometric transforms—affine (B), random crops (F),
and elastic transformations (H)—had more consistent improvements among all
three networks.

Random erasing (G) shows little improvements for Inception and DenseNet,
but produce worse results than scenario A (no augmentation) with ResNet. Using
144 crops was better than test data augmentation, probably due to the destruc-
tive behavior of the method. When combined with other transformations (sce-
nario K), random erasing reduced the test AUC in comparison with scenario J
(basic set combining traditional augmentations).

Scenario H (elastic) shows promising results, but when applied with other
common augmentation techniques (L) also performed worse than scenario J.
This may occur due to deformations produced by the combined augmentation.

https://github.com/IDSIA/sacred
https://github.com/fabioperez/skin-data-augmentation


308 F. Perez et al.

Fig. 2. Mean AUC values for augmentation scenarios. Each color and marker represent
a prediction method: • original image; � test-time data augmentation (64 images); �
144 crops. Error bars represent the standard deviation for 6 runs. Values reported on
ISIC Challenge 2017 test set. (Color figure online)

Lesion mix (I and M) had worse performances when compared to other aug-
mentations, indicating that the generated images were not useful. We presume
that the produced images were not able to preserve relevant features from both
source lesions.

Scenario J (basic set) yields the best AUC values for all three networks: 0.854
for Inception-v4, 0.882 for ResNet, and 0.879 for DenseNet. The top-ranked
submissions for melanoma classification scored 0.874 [11], 0.870 [1], 0.868 [9].
They used, respectively, 9640, 9600, and 3444 images for training. Our method
achieved a higher AUC with ResNet and DenseNet without additional data.
Scenario J also has the highest AUC for the validation set in all three networks.

For every scenario, averaging augmented samples or 144 crops resulted in bet-
ter performance than predicting on the original image alone. Even when no data
augmentation was employed during training, 144 crops significantly increased
the AUC, indicating that the model can benefit from different representations
of the input image.

For ResNet and DenseNet, 144 crops has similar results to using data aug-
mentation on test-time. Considering that we used 64 augmented samples vs 144
crops, test data augmentation can lead to faster inference.

Particularly, Inception-v4 has a worse performance with 144 crops than with
test data augmentation in most scenarios. This may indicate that Inception-v4
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suffers from overfitting, considering that data augmentation produced similar
patterns on both training and testing.

4.2 Impact of Data Augmentation on Different Dataset Sizes

We trained each network on random subsets of 1500, 1000, 500, 250, and 125
images of the original data to analyze the effects of having limited training data.
We generated a random subset for each one of the 6 runs. Figure 3 summarizes
the results.

Fig. 3. Mean AUC values for different training dataset sizes, randomly sampled from
the ISIC Challenge 2017 training dataset. Colors and markers represent the use of data
augmentation: � no data augmentation; � train data augmentation (scenario J); • train
and test data augmentation (scenario J, averaging each test image on 64 augmented
samples). Bands represent the standard deviation for 6 runs. Values reported on ISIC
Challenge 2017 test set. (Color figure online)

Applying data augmentation (scenario J) during both training and testing
noticeably improved performance for datasets with 500 or more images. Data
augmentation for training only worsened the results for very small data sizes
(<500 images) and led to little or no improvement for other sizes, showing the
importance of applying data augmentation during test-time.

The impact of data augmentation on Inception-v4 was more perceptible than
on other networks, which may be caused by the regularizing properties of ResNet
and DenseNet architectures. Training Inception-v4 with 500 images and data
augmentation resulted in better performance than training with 1000, 1500 or
2000 images without augmentation. ResNet and DenseNet achieved a higher
AUC with 1000 images and data augmentation than with 1500 and 2000 images
without augmentation. This indicates that, in some cases, using data augmenta-
tion can be more effective than adding new training data. Nevertheless, employ-
ing data augmentation does not reduce the importance of adding new data,
giving that the network can benefit from both.
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5 Conclusion

The results highlight the positive impact of using data augmentation for training
melanoma classification models. Moreover, models can also benefit from test data
augmentation.

The best augmentation scenario (J), which combines geometric and color
transformations, surpasses the top-ranked AUC values for the ISIC Challenge
2017 without any additional data. Fine-tuning hyperparameters and model
ensembling may result in additional performance gains.

Lesion mix augmentation (scenarios I and M) have inferior results when com-
pared with other scenarios. We implemented this augmentation through hand-
crafted image processing techniques, which may not be appropriate for produc-
ing reliable images. More advanced approaches, such as Generative Adversarial
Networks or other generative architectures [2], might lead to better results.
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Abstract. Neural networks have emerged as a successful tool to solve
end-to-end classification problems, potentially applicable in many diag-
nostic settings once trained with a sufficient number of existing annota-
tions. Nevertheless, in such training it is often nontrivial to enter already
available domain knowledge. We herein propose a simple approach of
inputing any such information as additional layers to a network. This
may then yield better performance by allowing for networks with fewer
parameters that can be tuned with fewer annotations and with better
generalization capabilities. This can also allow for interpretability of a
deep network, by quantifying attribution to such additional inputs. We
study this approach for the task of skin lesion classification, where we
focus on prior knowledge in the form of pigment networks as they are
known visual indicators of certain skin lesions, e.g. melanoma. We used a
public dataset of dermoscopic images, where a low number of feature seg-
mentations and a high number of classifications are provided in disjoint
datasets. By including information from learned pigment network seg-
mentations, the recall for malignant melanoma was seen to increase from
0.213 to 0.4. To help interpret the results, we also quantified the “atten-
tion” to pigment networks paid by the deep classifier both location- and
channel-wise.

Keywords: Deep learning · Attention · Interpretability · Dermoscopy

1 Introduction

Skin cancer is one of the most prevalent types of cancer [1,2] and there is a
growing need for accurate and scalable decision support systems for skin diseases.
To assist doctors in making correct diagnoses, decision support systems can be
trained on dermoscopic images, the same type of input data that dermatologists
often use for an initial assessment.

The International Skin Imaging Collaboration (ISIC) [7,10] provides public
datasets of dermoscopic images and organizes challenges where state-of-the-art
(SoA) methods in this field can compete. These datasets allow researchers to
design data-driven systems for the detection of skin diseases. Although in recent

c© Springer Nature Switzerland AG 2018
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years high accuracy has been achieved with different Deep Learning approaches
[7,9,10], most methods do not provide a mechanism to make use of prior medical
knowledge.

In this work, we present a novel approach that tackles this issue. We aim at
leveraging the predictive power of a deep convolutional neural network (CNN)
while providing functionalities to understand which factors influence the net-
work’s prediction. We further quantify the attention that the trained classifier
pays to each feature channel and image location, as a means to demonstrate our
conclusions.

(a) Skin lesion (b) Pigment network (c) Streaks

Fig. 1. Annotation of dermascopic structures overlaid on images [7].

Related Work. Esteva et al. recently presented a CNN-based approach that
outperformed certified dermatologists at differentiating benign and malignant
lesions [9]. They used transfer learning and a disease partitioning algorithm for
the generation of optimal training classes. They further computed saliency maps
that highlight the importance of every pixel for the final prediction. However,
the saliency maps provide only little interpretable information, such as the fact
that the network mainly focuses on pixels belonging to the lesion rather than on
the background.

Codella et al. used a mixture of hand-coded features and features extracted
by deep CNNs to achieve SoA results on the dataset of the ISBI 2016 “Skin
Lesion Analysis Towards Melanoma Detection” challenge [6,10]. Despite lever-
aging color features and shape descriptors for lesions, their approach does not
facilitate an intuitive way of understanding the system’s predictions.

The extensive work of López-Labraca et al. [13] is closely related to our
approach. They employed sophisticated, hand-crafted filters to detect relevant
dermoscopic structures (see Fig. 1). For a given lesion image, malignancy scores
of different dermoscopic structures were computed and then combined to form
a single diagnosis (malignant or benign). The authors were able to generate
comprehensive reports containing the final diagnosis and the detected structures
along with their respective malignancy scores. Nonetheless, their proposed app-
roach requires extensive feature engineering and, in contrast to deep learning
methods, is limited to features that are already known to dermatologists.
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Building on the same idea, González-Dı́az presented a method that used
dermoscopic structures in combination with ResNet50, a deep residual network
[8,11]. An input image was fed into a segmentation network that produced proba-
bility maps of eight different dermoscopic structures. These maps were then used
to modulate the latent representation of the input image at a hidden layer in the
ResNet50. Using this CNN-based method, González-Dı́az achieved the best score
for the detection of seborrheic keratosis in the ISBI 2017 “Skin Lesion Analy-
sis Towards Melanoma Detection” challenge [7]. However, despite making use
of known dermoscopic structures, this method does not provide interpretable
information as the work of López-Labraca et al., where hand-crafted features
were employed [13]. Furthermore, it is unclear to what extent the segmentations
of the dermoscopic structures influence the final diagnosis.

2 Methods

Overview. Our method consists of two stages. Given an input image of a skin
lesion, we first employ a segmentation network (SN) to detect dermoscopic struc-
tures that dermatologists consider to be important for disease classification (see
Fig. 1). We focus on pigment networks as they are known indicators for malignant
melanoma and benign nevi. Furthermore, they are the dermoscopic structures
that are segmented with the highest confidence by our SN. In a second stage,
the output of the network is stacked on top of the existing RGB channels of
the original image, and then the resulting four-channel input is used to train a
classifier network (CN) for each considered type of disease.

Additionally, we introduce two measures of attention given by the classifier
network, namely the channel-wise and location-wise attention. These measures
allow us to quantify how much attention the classifier is paying to the provided
dermoscopic structure compared to the rest of the input data.

Material and Dataset. For the detection of pigment networks, we trained our
SN with the dataset provided by the ISBI 2017 “Skin Lesion Analysis Towards
Melanoma Detection” challenge [7]. It consists of 2000 training images and 600
testing images with superpixel level annotations of different types of dermoscopic
structures, one of which is the pigment network. Every image is labeled with one
of three classes: Melanoma, nevus, or seborrheic keratosis.

For the disease classification task, we trained our CN on the datasets released
for the “ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection” chal-
lenge [7,17]. It comprises 10,015 images belonging to one of seven classes:
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign
keratosis, dermatofibroma, or vascular lesion. For simplicity, we will from now
on call the datasets DS2017 and DS2018, respectively.

Methodology Overview. Since the images exhibit varying dimensions, they
were resized to 224 × 224 pixels. Both datasets were augmented with random
rotations of 90◦, 180◦ and 270◦, as well as vertical and horizontal flips. The
algorithms for pigment network segmentation SN and disease classification CN
were implemented in Tensorflow [3], both by extending the code provided by [5].
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Detection of Pigment Networks. The detection task was formulated as a
pixel-wise binary segmentation problem with a foreground and a background
class. Due to the large class imbalance by background pixels, we reduced the
original training set to a subset containing only those images where a pigment
network was annotated. Note that this may result in a biased segmenter SN
because it has been trained to always detect a pigment network somewhere in
the image. Nevertheless, the subsequent disease classifier CN still sees the actual
image and may choose to ignore this segmented area, if that does not facilitate
the classification. Accordingly, our motivation was to have an (over-)sensitive
SN, in order to let the subsequent CN decide how much importance to give
to the allegedly-detected pigment network. Although such a two-step approach
can be argued to potentially be inferior to an end-to-end solution, the former
allows us to facilitate dedicated datasets and train targeted models, giving us
more control over each step.

For SN, we employed a shallow U-Net [14] that outputs probability maps
for the occurrence of pigment networks. To further alleviate the problem of
background dominance, the Sørensen-Dice coefficient was used as loss function.

Disease Classification. We evaluated two types of classifiers: (i) ResNet50
(with 50 layers) pre-trained with images from the 2014 ImageNet Large Scale
Visual Recognition Challenge [15], and (ii) the shallower ResNet18 (with 18
layers) proposed by He et al. [11], which we trained from scratch.

Fig. 2. Input images and their corresponding attribution maps (red = positive contri-
bution, blue = negative contribution). (Color figure online)

Attention. Our attention measures are based on so-called attribution meth-
ods. Given a deep CNN with input x = [x1, ..., xN ] ∈ R

N and output f(x) =
[f1(x), ..., fC(x)] ∈ R

C , attribution methods compute the contribution Ri,c of
every input pixel xi to a specific target neuron fc. Different types of attribution
methods have been proposed in the past, such as the perturbation- and gradient-
based approaches [4]. We herein employed a simple method of input × partial-
derivative [16], which is fast and worked for generating successful attribution
maps for our purposes (see Fig. 2). This metric defines attribution component
Ri,c of an input pixel xi to a target neuron fc as follows:

Ri,c := xi · ∂fc(x)
∂xi

. (1)

Based on (1) we propose two quantities to measure the attention that a CNN
pays to each input channel and image location.
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Channel-wise attention (Ac) is defined as the ratio of contribution from a par-
ticular structure channel c to the contributions of all K channels:

Ac :=

∑N
i=1 R2

i,c
∑K

k=1

∑N
i=1 R2

i,k

. (2)

Location-wise attention (AL) captures the local attention in the image space,
again as a ratio. The numerator contains the contributions of all channels except
for the dermoscopic structure channel c. The contributions are weighted with p,
the local probability of the dermoscopic structure; and the denominator contains
the corresponding unweighted contributions:

AL :=

∑N
i=1 pi · ∑K−1

k=1 R2
i,k

∑K−1
k=1

∑N
i=1 R2

i,k

. (3)

We used the implementation of Ancona et al.1 to compute the contribution
values and to generate the attribution maps.

3 Results and Discussion

Segmentation. Examples for segmentations of pigment networks are depicted
in Fig. 3. We trained and tested on DS2017 because at the moment of this writ-
ing, SoA results for DS2018 are not yet publicly available for comparison. As
seen in Table 1, our pigment network segmentation results are not as accurate
but comparable to the SoA results by Kawahara & Hamarneh from the ISBI
2017 “Skin Lesion Analysis Towards Melanoma Detection” challenge [7] in der-
moscopic structure segmentation [12]. Note that our goal herein was not to
perfect the SN stage, but rather to investigate if and how any information that
SN provides can be further used in classification.

Fig. 3. Input images and segmented pigment networks (green = true positives, red =
false positives, black = true negatives, blue = false negatives) (Color figure online)

Classification. For the classification experiments, we used the DS2018 training
set and applied an 80%-10%-10%-split into training, validation and test set.
Table 2 and 3 show the classification scores of ResNet18 and ResNet50 with and
without additional pigment network channel.
1 DeepExplain repository24May2018: https://github.com/marcoancona/DeepExplain.

https://github.com/marcoancona/DeepExplain
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Table 1. Evaluation scores for the segmentation of pigment networks

Method ROC AUC Accuracy Recall Specificity

Kawahara and Hamarneh [12] 0.945 0.951 0.803 0.956

U-Net 0.914 0.901 0.786 0.904

For ResNet18, the ROC AUC values do not change significantly when the
pigment network channel is added. Despite a slight overall decrease in ROC AUC
values, Table 3 shows that the F1-score for the crucial melanoma class increases
thanks to a clear improvement of the recall from 0.213 to 0.400. This is even
better than the recall obtained by the much more complex ResNet50. In terms
of ROC AUC values, ResNet50 still performs best. Notice however, that adding
the pigment network channel to the input of ResNet50 actually leads to lower
ROC AUC values, recall, and F1-scores.

Table 2. ROC AUC values. ME = Melanoma, MN = Melanocytic Nevus, BCC =
Basal Cell Carcinoma, AK = Actinic Keratosis, BK = Benign Keratosis, DF = Der-
matofibroma, VL = Vascular Lesion.

Method ME MN BCC AK BK DF VL

ResNet18 (raw images) 0.893 0.927 0.940 0.929 0.877 0.840 0.986

ResNet18 (raw images
+ pigment networks)

0.866 0.917 0.929 0.921 0.847 0.851 0.966

ResNet50 (raw images) 0.896 0.954 0.969 0.968 0.930 0.932 0.992

ResNet50 (raw images
+ pigment networks)

0.855 0.913 0.918 0.923 0.854 0.896 0.964

Table 3. Recall, precision, and F1-score for Melanoma.

Method Recall Precision F1

ResNet18 (raw images) 0.213 0.629 0.318

ResNet18 (raw images + pigment networks) 0.400 0.428 0.414

ResNet50 (raw images) 0.353 0.633 0.454

ResNet50 (raw images + pigment networks) 0.193 0.579 0.289

As seen in Table 4, the channel-wise attention Ac as well as the location-wise
attention Al for melanoma and melanocytic nevus are clearly higher in the case
of ResNet18. This suggests that ResNet50 is not focusing its attention on the
parts of the image that are medically relevant. The pre-trained ResNet50 may
require more sophisticated fine-tuning if an additional channel is to be used. In
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our approach, only the weights of the first convolutional layer and the final fully-
connected layer were learned whereas all weights in-between were pre-trained and
frozen. Since the images from the 2014 ImageNet Large Scale Visual Recognition
Challenge [15] are very different from dermoscopic images, it might be benefi-
cial to use more general pre-trained feature representations from a higher layer
and start learning from there. However, this is in turn computationally more
expensive.

Table 4. Attention measures Ac, AL for additional pigment network channel. ME =
Melanoma, MN = Melanocytic Nevus.

Network Ac for ME Ac for MN AL for ME AL for MN

ResNet18 0.263 0.176 0.161 0.155

ResNet50 0.035 0.034 0.029 0.054

4 Conclusion

We showed that the recall and the F1-score for the detection of melanoma can be
improved by providing a CNN with an additional input channel that contains rel-
evant prior knowledge. Furthermore, we demonstrated that our proposed atten-
tion measures can help to identify where a CNN focuses its attention. In a next
step, one might consider integrating more than just information about pigment
networks in the input. Other dermoscopic structures such as streaks and dots
could be used to further improve existing classifiers, e.g. for non-melanocytic
lesions.
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