Chapter 11 Advances in Devices that Offer Lower Limb Compression

Ravi Mani, Kittipan Rerkasem, and Raj Mani

Abstract The theme of this book is compression which is a mainstay of treatment for venous leg ulcers. In other parts of this book, there are descriptions of how elasticated garments are used, the evidence of success to heal wounds as well as the shortcomings of this technique that beg questions of how compression may be delivered using other methods. These include surgery to treat incompetence in the superficial veins, advances on traditional bandages and intermittent pneumatic compression (IPC). Initially IPC devices were recommended to treat lymphoedema, later these were used to treat venous conditions. The different uses, range of treatment times were systematically reviewed and reported to be of low level of confidence. Recent developments in devices have been reviewed in this chapter which especially complements Chap. 10 by Mark Richardson that deals with techniques of improving bandaging systems.

Keywords Intermittent compression \cdot Sequential contraction compression \cdot Calf compression \cdot Wound healing

FlowtronTM (Arjo Huntleigh, UK) the first of intermittent pneumatic compression (IPC) devices to be used to manage limb swelling, is described in another chapter in

K. Rerkasem Department of Surgery, NCD Centre of Excellence, Chiang Mai University, Chiang Mai, Thailand

Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

R. Mani (🖂)

Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

© Springer Nature Switzerland AG 2019

R. Mani

Brighton and Sussex Medical School, University of Brighton, Brighton, UK

Academic Division of Human Health and Development, Faculty of Medicine, University of Southampton, Southampton, UK

Shanghai Jiao Tong University School of Medicine, Shanghai, China e-mail: rm1@soton.ac.uk

R. Mani et al. (eds.), *Compression and Chronic Wound Management*, https://doi.org/10.1007/978-3-030-01195-6_11

this book. It is described how using either a single or more bladders and an air pump designed to quickly inflate/deflate, limb swelling can be managed. Clearly this can benefit treatment of lymphoedema and venous leg ulcers both of which are therapeutic challenges whose standardised clinical management is based on compression and wound care as required [1]. Since IPC was first described, sequential contraction compression devices (SCCD) have been reported. Recent innovations include the Flow OxTM(Otivio Olso, Norway) that works on a modified IPC method as well as Flow Aid (FA)TM (FlowAid Technologies, New York) that is a SCCD and GekoTM(FirstKind Medical): the latter two use electrical stimulation to activate muscular contractions.

Early attempts to treat venous leg ulcers using the FlowtronTM(Arjo Huntleigh, UK) technique were reported despite the evidence being from different study types (see Table 11.1) [2, 3–17]. The early FlowtronTM devices (in the 1980s) were typically shaped like a cylinder that could be inflated with a limb inside. There were practical difficulties in using these devices and clinical reports to use this device had differing aims, outcome measures and application times. Nonetheless it is clear that controlled mechanical pressure around limb can and does promote venous blood flow as presented in clear review of the physics of the technique [18]. Very recently, Flow OxTM (Otivio, Oslo, Norway) developed an innovation that uses a modified IPC technique to benefit both macro and micro vascular supply in foot skin and lower limb flow. The Flow OxTM device is essentially a sealed chamber that connects to an air pump (see Fig. 11.1). In use, a patient would position the lower limb needing treatment in the chamber, resting the foot on the rocker bottom. The top of the chamber is sealed using a flexible cuff to form an air tight compartment before the it (the chamber) is connected to the air pump within the control unit. The seal (flexible cuff) is washable in water, it has a life time of months. Air pressure within the chamber is varied between -40 mmHg below atmosphere and atmospheric pressure. Time of variation can be altered to suit needs: a setting commonly used is 10 s at -40 mmHg and 7 s at atmospheric pressure.

Using these on a group of patients with peripheral arterial disease (N = 20, mean age 75 years, statistically significant increases over baseline values were reported in peak arterial flow 46% p < 0.001, peak skin blood flow or perfusion 89% p < 0.001 while mean blood flow velocity increased by 12% (6.7–75. cm/s) p = 0.03 [19]. It is postulated that the device works by modulating the air chamber pressures *without* triggering the arterio-venous reflex. The device has been used to treat chronic lower extremity wounds including a group of patients with spinal cord injury and lower extremity wounds [20]. This cohort included paraplegic and tetraplegic patients. A randomised, single centre, observed-blinded cross over study was done on patients (N = 9, age 57 years IQR 52–66 years) with chronic wounds duration 52 weeks (IQR 12–82 weeks). Flow OxTM plus standardised care was compared against stan-

	-		-	
Name (year) Alpagut (2005)	Type of study Length of study RCT 3 months	<u>N=</u> 235	 Independent variables Patient group IPC device IPC regime IPC + compression therapy vs. control (leg elevation + elastic compression 	Results Response to therapy IPC: 100% (76/76) Control: 93.7% (149/159) Time to healing IPC: 20 days (15–35 days)
			stockings) 2. Patients with post-thrombotic syndrome venous leg ulcers (VLU) 3. Device: Flowtron Plus AC 20002 (Huntleigh Healthcare, UK) 4. Regime: 1 h OD max pressure 70 mmHg	Control: 3 months (20 days–5 months) <u>Return to activity</u> IPC: 7 days Control: 25 days
Alvarez (2012)	RCT 12 months	52	 IPC + compression bandaging vs. control (compression bandaging alone) Patients with VLU and secondary lymphoedema Device: Sequential Circulator Model 2004 (BioCompression Inc., USA) Regime: 1 h BD 40–50 mmHg 	Median time to wound closure by9 monthsIPC: 141 daysControl: 211 days $(p = 0.031)$ Ulcer healing rate (mm/day)IPC: 2.3 mm ± 0.08 Control: 1.1 ± 0.04 ($p < 0.05$)Reduction in leg oedema (notsignificant)IPC: 19.1%Control: 12.0%
Coleridge smith (1989)	RCT 3 months or to healing	45	 IPC + compression stockings vs. control (compression stockings alone) Patients with VLU Device not stated Regime: Up to 4 h per day, 30–40 mmHg 	Number of ulcers healed IPC: 10/21 (48%) Control: 1/24 (4%) Median reduction in area IPC: 19.8%/week Control: 2.1%/week

 Table 11.1
 Selected reports of Intermittent Pneumatic Compression (IPC) use

(continued)

Name (year)	Type of study Length of study	N=	 Independent variables Patient group IPC device IPC regime 	Results
Dolibog (2013)	Randomised pilot study 15 days	70	 IPC vs. compression stockings vs. short-stretch bandages Patients with unilateral VLUs and chronic venous insufficiency Device: Flowtron Hydroven 12 System device (Huntleigh Healthcare, UK) Regime: 1 h OD, 60 mmHg at ankle and 40 mmHg at groin. 	Average wound size decrease in patients w/ superficial venous refluxIPC: 9.91 cm², 20.12–10.21 cm²Stockings: 9.00 cm², 19.45–10.45 cm²Bandages: 8.77 cm², 17.23–8.46 cm²Average wound size decrease in patients w/ superficial + deep venous refluxIPC: 9.33 cm², 19.35–10.02 cm²Stockings: 5.05 cm², 25.09–20.04 cm²Bandages: 2.78 cm², 24.67–21.89 cm²Proportion of completely healed ulcers in patients with superficial venous reflux after 15 days IPC: 25% Stockings: 27% Bandages: 10%
Grieveson (2003)	Randomised trial	27	 IPC vs. control (elevation of legs) Patients with chronic venous insufficiency Device: Flowpac pump (Huntleigh Healthcare Ltd, UK) IPC at variety of pressures 30–70 mmHg—Full strategy not stated 	Highest mean reduction in limb volume at 40 mmHg
Hazarika (1981)	Case series 44 weeks	21	 IPC vs. control (compression bandaging alone) Patients with VLU Device: Flowtron (Huntleigh Healthcare, UK) Regime: 2–3 h OD, 30–80 mmHg 	Number of improved ulcers IPC: 71.4% (5/7) Control: 8.3% (1/12)

Table 11.1 (continued)

Name (year)	Type of study Length of study	N=	 Independent variables Patient group IPC device IPC regime 	Results
Kumar (2002)	RCT 4 months	47	 IPC + 4-layer bandaging vs. control (4-layer compression) Patients with VLU Device: Not stated Regime: Used for 1 h BD 	Number of ulcers healed IPC: 20/23 ulcers (87%) Control: 23/25 healed (92%)
McCulloch (1994)	RCT 6 months	22	 IPC + standard compression (Unna boot) vs. control (Unna boot) Patients with VLU Device: Not stated Regime: Twice weekly for 1 h each session at 55 mmHg 	Number of ulcers healedIPC 12/12 (100%)Control 8/10 (80%)Mean healing rate (cm2/day)IPC 0.15 cm²/dayControl 0.08 cm²/day ($p = 0.05$)
Mulder (1990)	Cohort study 1 year	10	 IPC vs. Unna boot Patients with VLU Device: not stated (from Kendall Healthcare, UK) Regime: IPC used OD for 1 h in morning then 2 h in evening 	All patients healed 1 patient healed by 4 months (p < 0.01)
Nikolovska (2002)	RCT 6 months	80	The efficacy of intermittent pneuma tic compression in the treatment of venous leg ulcers 1. IPC vs. control 2. Patients with VLU 3. Device: not stated 4. Regime: IPC used for 1 h OD for 5 days a week, 40–50 mmHg	<u>Number of ulcers healed</u> IPC: 25/40 (62.5%) Control: 11/40 (27.5%)
Nikolovska (2005)	Randomised trial 6 months/until ulcer completely healed	104	 Rapid vs. slow IPC Patients with VLU Device: not stated Rapid vs. slow IPC, specific regimes not stated 	Complete ulcer healing Rapid IPC 45/52 (86.5%) Slow IPC 32/52 (61.5%) <u>Mean healing rate/day</u> Rapid IPC 0.09 cm ² /day Slow IPC 0.04 cm ² /day (P = 0.0002)

 Table 11.1 (continued)

(continued)

			1. Independent	
			variables	
	Type of study		2. Patient group	
Name	Length of		3. IPC device	
(year)	study	N=	4. IPC regime	Results
Pekenmaki	Open clinical	8		IPC + conservative treatment
(1987)	trial	0	1. IPC + compression therapy vs. control	shortened ulcer healing time vs.
(1907)	ulai		(compression therapy	conservative treatment alone
				conservative treatment alone
			alone) in post- thrombotic leg ulcers	
			2. Patients with	
			post-thrombotic	
			syndrome VLU	
			3. Device: not stated	
			4. Regime: not stated	
	D. 677	1.		
Rowland	RCT	16	1. IPC vs. control	<u>Ulcer size</u>
(2000)	6 months		(compression therapy	No significant difference
			using Septopress	Lower limb volume
			bandaging)	No significant difference
			2. Patients with VLU	
			3. Device: Flowtron	
			(Huntleigh	
			Healthcare, Australia)	
			4. Regime: IPC used	
			for 1 h BD	
0.1.1	DOT	64	(morning + evening)	
Schuler	RCT	54	1. IPC + elasticated	Complete ulcer healing:
(1996)	6 months		stockings graduated	IPC: 20/28 (71%)
			compression	Control: 15/25 (60%)
			stockings vs. control	Healing rates
			(Unna boot)	IPC: 76%
			 Patients with VLU Device: HomeRx 	Control: 64%
			(Kendall Healthcare,	– not significant
			UK)	
			4. Regime: IPC applied	
			for 1 h each morning	
			and 2 h each evening	
			(40–50 mmHg)	
Smith	RCT	45	1. IPC + compression	Number of VLU bested
	3 months	43	stockings vs. control	Number of VLU healed IPC: 10/21 47.6%
(1990)	5 monuis		(compression	Control: $1/23 4.3\% (P = 0)$
			stockings alone)	$\frac{\text{Control. 1/25 4.5\% (F = 0)}}{\text{Median healing rate (area/week})}$
			2. Patients with VLU	IPC: 19.8%
			3. Device: not stated	Control: 2.1% ($p = 0.046$)
			(provided by	(p = 0.040)
			Kendall Healthcare,	
			UK)	
			4. Device: IPC applied	
			for 4 h a day,	
			between 40 and	
			50 mmHg	
			Johnning	

Table 11.1 (continued)

Fig. 11.1 Shows a subject with his foot resting on the rocker sole of the Flow Ox^{TM} air chamber. The controller housing the air pump is the cylindrical device with a flexible hose to connect to the air chamber. The seal (or flexible cuff) is washable. Used with Permission of OtivioTM (Otivio, Olso, Norway)

dard care alone over 8 weeks. Flow Ox wasTM used for 2 h in patients' homes, PWAT (a validated scoring system) was used to assess wound changes.

This pilot study aimed to determine patient compliance and to explore wound healing potential. It reported 90% compliance to Flow Ox^{TM} use, additionally there was a significant trend in wound healing in 4/4 patients while on Flow Ox^{TM} plus standard care. To truly appreciate these findings, one must consider the study group who were paraplegic or tetraplegics a cohort with limited mobility, often have functional venous disease and on whom, compression bandaging is very difficult to use. A few clinical images of wounds are shown in Fig. 11.2.

11.1 Change in Contraction Patterns

A sequential contraction compression device (SCCD) compresses calf muscles in sausage like fashion: top and bottom squeezed while middle is held open: this forces venous flow out of bottom (filling the middle) and top (towards the thigh) while the middle segment fills but neither expels nor allows downward flow. Then the reverse follows with top and bottom segments open while middle is closed forcing flow out of the middle segment but not permitting any inflow at the bottom and no reflux from the top segment. The FlowAid FA100 Sequential Continuous Contraction Device (SCCD) electrically stimulates specific groups of calf muscles. These contractions, which run from distal to proximal along the leg, cause a peristaltic wave of compressions. This compresses the deep veins, causing venous outflow and, secondarily, arterial inflow.

The FlowAid FA100 SCCD system (FlowAid Medical Technologies Corporation, NY, USA) is a handheld unit using four electrodes to deliver electrical currents at three pre-set contraction frequencies to suit such different conditions as Venous, Arterial, Lymphoedema, and Diabetic Neuropathy. It is recommended that the

Leg

Heel

Fig. 11.2 (a) Shows four images of two lower extremity chronic wounds both treated with Flow OxTM for 8 weeks. A is the status at baseline and B after 8 weeks treatment with Flow OxTM in the study. Images on the Left of are of a chronic wound on the medial aspect of the leg while those on the *Right* show a chronic wound on a heel. Notice the Leg A wound is deep with rounded edges while the same wound in B below, is mostly fully covered with epithelium. The wound the heel on (Right) is extensive as can be seen in A. After treatment with Flow OxTM improvement in size as well as the quality surrounding skin may be observed in B. Wounds on heels are difficult to manage. From Sundby ØH, Høiseth LO, Mathiesen I et al. The acute effects of lower limb intermittent negative pressure on foot macro and microcirculation in patients with peripheral arterial disease. PLOSONE https://doi.org/10.1371/jounral.pone.017900 June 2017. Reproduced with permission https://physoc.onlinelibrary.wiley.com/hub/journal/2051817x/ about/permissions. (b) presents a chronic wound on the forefoot treated with Flow Ox. The patient is diabetic with renal failure. On account of the open wound, he was not offered a transplant. Using the Flow Ox device, resulted in improvement over 26 weeks associated with an increase in ABI (ankle brachial pressure index) in the treated leg. This a classic example of improved macro and microvascular flow resulting from use of Flow Ox. Used with Permission from Otivio, Oslo, Norway

b WOUND HEALING IN A PATIENT WITH DIABETES AND RENAL FAILURE TREATED WITH FLOW OX™ (OTIVIO, OSLO, NORWAY

7 year old wound Not offered kidney transplant due to open wound Significant long term improved blood flow Now on the transplant list for a new kidney ABI 1 0.969 0.9 0.767 0.8 0.7 0.641 0.663 0.6 0.5 Week 0 Week 28 FlowOx Control foot

Fig. 11.2 (continued)

Male 45 years old

device be used for 1.5 h both in the morning and in the evening for optimal performance. Patients may choose a comfortable resting position or be ambulant when the device is in operation. Figure 11.3 shows four electrodes placed on the lower leg over the calf muscles using the FA100 SCCD. The handheld unit houses the controller and the rechargeable power supply.

An evaluation of the FA100 SCCD device to determine effects on popliteal vein blood flow in volunteers (n = 11, 22 limbs (age 25–45 years)) showed that FA100 increases flow in the popliteal vein 317% and active dorsi flexion of the foot 437% compared to the passive resting sitting position [21]. Gimmelreich [22] studied the effect of FA100 SCCD on patients with bilateral chronic venous insufficiency (CVI) to determine the effects of reducing afterload by measuring ankle and calf circumference on patients. Patients with CVI (N = 15) who were being treated with compression to manage their conditions were included. Patients applied FA100 SCCD following their prescribed elasticated stocking or IPC compression. Initially all subjects were treated and had their ankle and calf circumferences measured at baseline and following 2 h FA100 SCCD treatment. Patients on FA100 SCCD plus compression group continued

to use the SCCD treatment for 2 h twice daily for 30 days while others were on compression garments before returning to the clinic for ankle and calf measurements.

In the test limb after 30 days, there were statistically significant reductions in circumference at ankle (21.9%, p < 0.05) and calf (19.5%, p < 0.01) respectively. Statistically significant trends were evident in the calf even after 2 h of FA100 use. By comparison, using standard compression (elasticated stocking or IPC) there were no significant changes versus the baseline except at the ankle at 30 days, where there was a reduction of 7.23% (p < 0.05). This is a very useful objective measure of improved venous outflow activity and helpful surrogate measure of wound healing. Complete compression cycles (distal to proximal) of the FA100 SCCD are far higher than any of the IPC devices in current use.

Two different chronic wounds that responded well to FA100 SCCD use are shown in Fig. 11.4a–d.

11.2 GEKOTM (FirstKind)

The GekoTM device uses neuro-electrical stimulation as described in Chap. 10. The device is small and may be neatly position on the popliteal nerve in the space behind the knee as shown in Fig. 10.4. In use, the level of stimulation current is adjusted to

Fig. 11.4 (**a**, **b**) show a chronic venous leg ulcer in the malleolar region of the leg that responded to FA treatment for 4 weeks. This wound was circumferential. Reproduced with Permission from FlowAid Medical Technologies, New York. (**c** (left) and **d** (right)) show healing in a chronic wound on the heel of a 72 year old male that are difficult to treat with success. The wound started as a war injury and was very painful. Use of FA 100 3 h daily resulted in dramatic healing and much decreased pain. Reproduced with Permission from FlowAid Medical Technologies, New York

obtain muscle movements which in turn stimulates venous outflow and arterial inflow. The device is battery powered and is a single use device.

The aim of using the GEKO is to mimic walking: by stimulating the peroneal nerve, muscle groups in the calf are stimulated which in turn increases venous blood flow which has potential to benefit some patients at risk of venous thromboembolism. NICE has "recommended GEKOTM use in patients with a high risk of venous thromboembolism when other mechanical/pharmacological methods of prophylaxis are impractical or contraindicated with the National Health Service in England" [23]. FlowtronTM (Arjo Huntleigh, UK) is also recommended for use to prevent venous

thromboembolismTM especially in maternity hospitals in the UK. Returning to basics, the property to improve venous outflow is a significant step towards better wound health.

11.3 Conclusion

External calf compression using pneumatic and electro-stimulation permit venous outflow to increase which in turn, benefits reduction of oedema. And since reduction of oedema benefits wound healing, this benefits tissue health. There is evidence both laboratory based and from the clinic that Flow OxTM and Flow (FA) devices have the capacity to improve wound healing.

The study using FlowAid by Gemmerlich [22] et al. measured changes in ankle and calf circumference and found significant reductions in both parameters. This augers well for the device and the use of calf and ankle circumference as a surrogate measure of wound healing. The Flow OxTM device promoted healing in patients with spinal lesions: every patient who needs compression must get it—the universal question is how to deliver it? These innovative devices have shown their promise. Both Flow Aid (FA) and Flow OxTM studies have shown high patient compliance. There is a great deal to come from these devices to benefit patients with chronic wounds and limb swelling.

References

- Mani R, Margolis D, Shukla VK, et al. Optimal use of technology to manage chronic lower extremity wounds a consensus document. Int J Low Extrem Wounds. 2016;15(2):102–19.
- Nelson EA, Hillman A, Thomas K. Intermittent pneumatic compression for treating venous leg ulcers. Cochrane Databas Syt Rev. 2014;(5):CD001899. https://doi.org/10.1002/14651858. CD001899.pub4.
- Alpagut U, Dayioglu E. Importance and advantages of intermittent external pneumatic compression therapy in venous stasis ulceration. Angiology. 2005;56(1):19–23.
- Alvarez O, Wendelken M, Markowitz L, Parker R, Comfort C. Effectiveness of intermittent pneumatic compression for the treatment of venous ulcers in subjects with secondary (acquired) lymphedema. Vein. 2012;5(1):32–4.
- Coleridge Smith PD, Sarin SA, Wilson LAA, Scurr JH. Intermittent pneumatic compression improves venous ulcer healing. Phlebologie '89. Paris: John Libbey Eurotext; 1989. p. 1146–8.
- Dolibog P, Franek A, Taradaj J, Polak A, Dolibog P, Blaszczak E, et al. A randomized, controlled clinical pilot study comparing three types of compression therapy to treat venous leg ulcers in patients with superficial and/or segmental deep venous reflux. Ostomy Wound Manage. 2013;59(8):22–30.
- Grieveson S. Intermittent pneumatic compression pump settings for the optimum reduction of oedema. J Tissue Viability. 2003;13(3):98–100.
- 8. Hazarika EZ. Chronic leg ulcers. The effect of pneumatic intermittent compression. Practitioner. 1981;225:189–92.

11 Advances in Devices that Offer Lower Limb Compression

- 9. Kumar S, Samraj K, Nirujogi V, Budnik J, Walker MA. Intermittent pneumatic compression as an adjuvant therapy in venousulcer disease. J Tissue Viability. 2002;12(2):42–4.
- McCulloch JM, Marler KC, Neal MB, Phifer TJ. Intermittent pneumatic compression improves venous ulcer healing. Adv Wound Care. 1994;7(4):22–4. 26
- Mulder G. Study of sequential compression therapy in the treatment of non-healing chronic venous ulcers. Wounds. 1990;2:111–5.
- Nikolovska S, Pavlova LJ, Petrova N, Gocev G. The efficacy of intermittent pneumatic compression in the treatment of venous leg ulcers. Mac Med Rev. 2002;5:56–9.
- Nikolovska S, Arsovski A, Damevska K, Gocev G, Pavlova L. Evaluation of two different intermittent pneumatic compression cycle settings in the healing of venous ulcers: a randomized trial. Med Sci Monit. 2005;11(7):CR337–43.
- Pekanmaki K, Kolari PJ, Kiistala U. Intermittent pneumatic compression treatment for postthrombotic leg ulcers. Clin Exp Dermatol. 1987;12:350–3.
- Rowland J. Intermittent pump versus compression bandages in the treatment of venous leg ulcers. Aust N Z J Surg. 2000;70(2):110–3.
- Schuler JJ, Maibenco T, Megerman J, Ware M, Montalvo J. Treatment of chronic venous ulcers using sequential gradient intermittent pneumatic compression. Phlebology. 1996;11(3):111–6.
- Smith PC, Sarin S, Hasty J, Scurr JH. Sequential gradient pneumatic compression enhances venous ulcer healing: a randomized trial. Surgery. 1990;108(5):871–5.
- Morris RJ, Woodcock JP. Evidence-based compression prevention of stasis and deep vein thrombosis. Ann Surg. 2004;239(2):162–71. https://doi.org/10.1097/01.sla.0000109.77.194.66.
- Sundby ØH, Høiseth LO, Mathiesen I, et al. The acute effects of lower limb intermittent negative pressure on foot macro and microcirculation in patients with peripheral arterial disease. PLoS One. 2017;12(6):e0179001. https://doi.org/10.1371/jounral.pone.0179001.
- Sundby ØH, Irgrens I, Høiseth LO, Mathiesen I, et al. Intermittent mild negative pressure applied to the lower limb in patients with spinal cord injury and chronic lower limb ulcers: a cross over pilot study. Spinal Cord. 2018;56(4):372–81. https://doi.org/10.1038/ \$41393.018-0030-4.
- Shashar D, Rosenblaum J, Miller M, Heldingberg E, Tamir J. Evaluation of a novel compressive device on popliteal venous blood flow. Angiology. 2016;4:178. https://doi. org/10.4172/2329-9495.1000178.
- Gemmelreich D, Karsilnov V, Litman V, Rosenblaum J. Sequential contraction compression devices reduce leg circumference in patients with chronic venous insufficiency. J Vasc Med Sur. 2016;4:4. https://doi.org/10.4172/2329-6925.1000283.
- 23. Summers JA, Clinch J, Radhakrishnan M, et al. The geko[™] electro-stimulation device for venous thromboembolism prophylaxis: a NICE medical technology guidance. Appl Health Econ Health Policy. 2015;13(2):135–247. https://doi.org/10.1007/s40258-014-0139-0.