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Abstract In what follows the reader will find an exposition of the basic, albeit not
elementary, connections between Rough Set Theory and relation algebra, topology
and algebraic logic.

Many algebraic aspects of Rough Set Theory, are known nowadays. Other are
less known, although they are important, for instance because they unveil the
“epistemological meaning” of some “unexplained” mathematical features of well-
known algebraic structures.

We shall wrap everything in a simple exposition, illustrated by many examples,
where just a few basic notions are required. Some new results will help the
connection of the topics taken into account.

Important features in Rough Set Theory will be explained by means of notions
connecting relation algebra, pre-topological and topological spaces, formal (pre)
topological systems, algebraic logic and logic.

Relation algebra provides basic tools for the definition of approximations in
general (that is, not confined to particular kind of relations). Indeed, these tools
lead to pairs of operators fulfilling Galois adjointness, whose combinations, in turn,
provide pre-topological and topological operators, which, in some cases, turn into
approximation operators.

Once one has approximation operators, rough sets can be defined. In turn, rough
set systems can be made into different logico-algebraic systems, such as Nelson
algebras, three-valued Łukasiewicz algebras, Post algebras of order three, Heyting
and co-Heyting algebras.

In addition, in the process of approximation, one has to deal with both exact
and inexact pieces of information (definable and non-definable sets). Therefore, the
concept of local validity comes into picture. It will be extensively discussed because
it links the construction of Nelson algebras from Heyting ones with the notions of a
Grothendieck topology and a Lawvere-Tierney operator.

As a side effect, we obtain an information-oriented explanation of the above
logico-algebraic constructions which usually are given on the basis of pure formal
motivations.
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The exposition will move from abstract levels (pointless) to concrete levels of
analysis.

1 Introduction: Relations, Nearness and Granulation

From a general point of view, the approximation of a set A included in a universe U

amounts to answering to the following questions:

(a) What elements of U are surely, or necessarily, in A?
(b) What elements of U are not in A but sufficiently near, or possibly, in A?
(c) What elements of U are surely outside A, that is neither necessarily nor possibly

in A, that is, are necessarily outside A?

The difference with a sharp classification is crystal clear, since a sharp classifica-
tion just provides a binary answer: either an element is inside A or it is outside of it.
Otherwise stated, there is no notion of “possible in although not surely in”. There is
no indecision, no nuances: either “Yes” or “No”.

However, classification on the basis of properties or attributes demands some
more subtle answers. Suppose an item u ∈ U is in A while another item u′ ∈ U is
not in A from a classical set-theoretical point of view although it fulfils properties
or attributes very close to those of u. It could be not correct to definitely exclude
that u′ belongs to the set A. Think of some dynamic situation, where all the patients
in a hospital showing at least all the symptoms as u developed a particular disease
α and a patient u′ who shows almost all the symptoms as u but has not developed
that disease. Probably it is not safe to rule out the possibility that u′ will develop the
disease, too. Therefore, we would say that u′ belongs to a reasonable approximation
of the set A of patients suffering from α. Such an approximation is from above,
because it enlarges the actual set A: it is possible for u′ to develop α, hence it can
belong to A in the future.

The sentence “fulfilling almost all the properties as” defines a notion of nearness.
From a mathematical point of view, “almost all” defines a preorder, that is, a
binary relation R on U which is reflexive (uRu) and transitive (uRu′ and u′Ru′′
implies uRu′′): the set A of symptoms showed by patient u′ is included in the set
of symptoms B of patient u. However, this preorder should be refined, because
mathematically also the empty set ∅ is included in B, which is meaningless from a
clinical point of view. Actually, the metric underlying the adverb “almost” depends
on some particular knowledge and heuristic of the experts.

But in general R could be a binary relation denoting any sort of connection
between items (or objects) which groups objects in granules of any kind. Indeed,
there are cases in which it is difficult to recognise a “rule” behind the formation
of the given granules of objects. In this case some relation R is in action, but this
relation does not have any known “nice property”.

If the set G (U) of the granules (subsets) of U is a covering, in many cases behind
the granulation there is a tolerance relations (that is, reflexive and also symmetric:
uRu′ implies u′Ru)—see for instance [5, 18] and [36].



Lessons on the Topology and Algebra of Rough Sets 339

If G (U) forms a family of open subsets of a topological space, then we can
restore from it a preorder, or a partial order (a preorder which is antisymmetric:
uRu′ and u′Ru implies u = u′). In particular cases one obtains an equivalence
relation (reflexive, transitive and symmetric) which is the original situation studied
by Zdzisław Pawlak (see [40]).

As we shall see, also the reverse constructions hold, that is, from preorders,
partial orders or equivalence relations to topological spaces with different features.

Algebraic structures induced by rough set systems, that is, the set of all rough
sets, have been widely studied since inception. Considering only some early results,
in [41] it was shown that classical rough sets form Stone algebras. In [25] rough
sets were linked to Heyting algebras. Also [8] worked on this topic. In [28] rough
set systems were proved to form semi-simple Nelson algebras, hence three-valued
Łukasiewicz algebras. This result was improved in [3], in [4] and by other authors.
Later, rough sets have been connected to other algebras of logic, such as Post
algebras of order three, Chain-based Lattices, Heyting and bi-Heyting algebras
(see [2, 32]). In [6] and [7] rough sets were embedded in the framework of
Brouwer-Zadeh lattices and Heyting Wajsberg Algebras. More recently, interesting
investigations about more general algebras linked to rough sets have been presented
(see [46]).

Situations in which instead of topologies one has to deal with pre-topologies
have been studied (see for instance [33] and [34]). Nonetheless, in a number of
cases, preorders and partial orders occur (see for instance [16]). In these lessons we
shall deal with this specific case.

From an abstract point of view topologies are Heyting algebras, which are
particular structures which model Intuitionistic Logic in the same way Boolean
Algebras model Classical Logic. Eventually, in this case rough set systems can be
made into Nelson algebras which are built from Heyting algebras defined on the
granulation.

A natural approach to rough sets is through relation algebra. We can cite as early
works: [9, 10, 29] and [11].

It follows that we have to develop our exposition in three different framework,
which will be connected each other:

Relation algebras− Topology− Algebraic logics.

From now on, the sets we shall deal with are intended to be finite. This choice does
no harm real-word application. Moreover, it avoids some complications which could
disturb a beginner’s comprehension. Many of the results are, nonetheless, applicable
to the infinite case and, if required to avoid misinterpretation, we shall point out
when this does not happen.

Since these are lessons a few results and proofs are really new, although much
of the exposition is novel. We underline with references when a result is standard
or well-known. Otherwise the theses or the proofs are new or already given in
other publications by the author. Moreover, a number of elementary examples will
be provided. These examples are connected each other to show how the topics
intertwine.
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Usually, in the meta-language, which is classical, we write, “∃”, “∀”, “⇒”, “∧”,
“∨” and “¬” for “exists”, “for all”, “implies”, “and”, “or” and “non”, respectively.
However, in some cases to avoid confusion we use “&” instead of “∧”.

2 Lesson 1: The Relational Framework

2.1 Binary Relations and Their Algebra

Let us formally define what we can do with binary relations.

Definition 1 Let U,U ′, U ′′ be three sets. In what follows, u∗ is a dummy element
of U and u′∗ a dummy element of U ′ (that is, they represent any element of their
domain):

1. A binary relation is a subset R ⊆ U ×U ′ of ordered pairs 〈u, u′〉 of elements of
U and U ′.

2. −R := {〈u, u′〉 : 〈u, u′〉 /∈ R} is the complement of R. If R′ ⊆ U × U ′, then
R ∩ R′ and R ∪ R′ are the usual set-theoretic operations.

3. R� denotes the converse of R: R� := {〈y, x〉 : 〈x, y〉 ∈ R}. Hence, for all
u ∈ U, u′ ∈ U ′, 〈u, u′〉 ∈ R iff 〈u′, u〉 ∈ R�.

4. If Q ⊆ U ′ × U ′′, then R ⊗Q := {〈u, u′′〉 : ∃u′ ∈ U ′(〈u, u′〉 ∈ R ∧ 〈u′, u′′〉 ∈
Q)}—the right composition of R with Q. Converse is an involution with respect
to composition: R�� = R and (R ⊗Q)� = Q� ⊗ R�.

5. If A ⊆ U , then A→R := {〈a, u′〉 : a ∈ A∧ u′ ∈ U ′} is called the right cylinder of
A with respect to R. It is the relational embedding of a subset A of U in U ×U ′.
If B ⊆ U ′, then B←R := {〈u, b〉 : b ∈ B ∧ u ∈ U} is the left cylinder of B with
respect to R. It is the relational embedding of a subset B of U ′ in U × U ′.

We set A←R� := (A→R )�, the left cylinder of A with respect to R� to have the
relational embedding of A in U ′ × U and B→R� := (R←R )�, the right cylinder of
B with respect to R�, which is the relational embedding of B in U ′ × U .

A cylinder represents a set in the language of relations. In any ordered pair
〈x, y〉 of a cylinder, the element y is any element of the codomain of the
relation. This is the result and meaning of a cylindrification, that now we formally
motivate.

6. The operation R� ⊗ A→R = {〈u′, u′∗〉 : ∃u(〈u, u′〉 ∈ R ∧ 〈u, u′∗〉 ∈ A→R )} is a
right cylinder of type U ′ ×U ′. Since u′∗ is a dummy element of U the operation
can be rephrased in terms of relations and sets, as it will be formally proved in
Lemma 5:

R(A) := {u′ : ∃u(〈u, u′〉 ∈ R ∧ u ∈ A)}. (1)

R(A) is called the left Peirce product of R and A, R-neighbourhood of A, or
the filter of A, if R is an order relation, in which case we denote it by ↑ A or
↑R A if necessary.
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Similarly, the operation R⊗B→R� = {〈u, u∗〉 : ∃u′(〈u, u′〉 ∈ R∧〈u′, u∗〉 ∈ B→R�)}
can be rephrased in terms of relations and sets as:

R�(B) := {u : ∃u′(〈u, u′〉 ∈ R ∧ u′ ∈ B)} (2)

R�(B) is called the left Peirce product of R� and B (the right Peirce product of
R and B), the R�-neighbourhood of B, or the R-ideal of B, denoted also by
↓ B or ↓R B if we need to specify the relation. For any u′ ∈ U ′, u ∈ U :

(A→R )�(u′) = (A←R�)(u′) = A, (B→R�)�(u) = B←R (u) = B. (3)

7. Given two relations R ⊆ U × U ′ and Z ⊆ U × U ′′ the relation

R −→ Z = {〈u′, u′′〉 : ∀u(〈u, u′〉 ∈ R ⇒ 〈u, u′′〉 ∈ Z)} (4)

is called the right residual of R and Z. R −→ Z is the largest relation K such
that R ⊗K ⊆ Z:

R ⊗K ⊆ Z iff K ⊆ R −→ Z. (5)

If R ⊆ U × U ′ and W ⊆ U ′′ × U ′ the relation

W ←− R = {〈u′′, u〉 : ∀u′(〈u, u′〉 ∈ R ⇒ 〈u′′, u′〉 ∈ W)} (6)

is called the left residual of R and W . W ←− R is the largest relation K such
that K ⊗ R ⊆ W :

K ⊗ R ⊆ W iff K ⊆ W ←− R. (7)

The above operations can be depicted as follows:

∀
U U

U

Z

R

R

Z

∀
U U

U

W

W

R
R

For any set A ⊆ U and B ⊆ U ′, one has: R −→ A→R = {〈u′, u′∗〉 :
∀u(〈u, u′〉 ∈ R ⇒ 〈u, u′∗〉 ∈ A→R )} and R� −→ B→R� = {〈u, u∗〉 :
∀u′(〈u′, u〉 ∈ R� ⇒ 〈u′, u∗〉 ∈ B→R�)}. Since the elements decorated with ∗
are generic, one can get rid of the cylindrification and rephrase the operations in
terms of relations and sets as follows:

R −→ A = {u′ : ∀u(〈u, u′〉 ∈ R ⇒ u ∈ A)} (8)

R� −→ B = {u : ∀u′(〈u, u′〉 ∈ R ⇒ u′ ∈ B)} (9)
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The above operations are fundamental to study approximations by means of
relations.

Lemma 2 Given R ⊆ U × U ′, Z ⊆ U × U ′′ and W ⊆ U ′′ × U ′:

R −→ Z = −(R� ⊗−Z); (10)

W ←− R = −(−W ⊗ R�). (11)

Proof

−(R� ⊗−Z) = −{〈u′, u′′〉 : ∃u(〈u′, u〉 ∈ R� ∧ 〈u, u′′〉 /∈ Z)}
= −{〈u′, u′′〉 : ∃u¬(〈u′, u〉 /∈ R� ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ¬∃u¬(〈u′, u〉 /∈ R� ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ∀u(〈u′, u〉 /∈ R� ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ∀u(〈u, u′〉 /∈ R ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ∀u(〈u, u′〉 ∈ R ⇒ 〈u, u′′〉 ∈ Z)}
= R −→ Z

The other proof comes from symmetry. ��
The above equations parallel the logical equivalence α �⇒ β ≡ ¬(α ∧ ¬β)).

Definition 3 The structure 〈U,U ′, R〉, with R ⊆ U ×U ′ will be called a relational
system. If a is in relation R with b we write 〈a, b〉 ∈ R. Especially if R is an order
relation we also use the notation aRb. If R ⊆ U × U we shall write 〈U,R〉 instead
of 〈U,U,R〉.
Example 4 A relation R ⊆ U × U ′ will be usually represented by means of
a Boolean matrix with rows labelled by the elements of U and columns by the
elements of U ′. If 〈x, y〉 ∈ R then the entry of row x, column y is 1. It is 0
otherwise. The operation −→ has a higher precedence than the others. Thus, for
instance, R ⊗Q −→ Z means R ⊗ (Q −→ Z).
U = {a, b, c, d}, U ′ = {α, β, γ }, U ′′ = {�, λ,μ}, R ⊆ U × U ′, Q ⊆ U ′ × U ′′.

R α β γ

a 1 0 1
b 1 1 0
c 0 1 1
d 1 0 0

−R α β γ

a 0 1 0
b 0 0 1
c 1 0 0
d 0 1 1

R� a b c d

α 1 1 0 1
β 0 1 1 0
γ 1 0 1 0

Q � λ μ

α 1 1 0
β 0 1 0
γ 1 0 1

R ⊗Q � λ μ

a 1 1 1
b 1 1 0
c 1 1 1
d 1 1 0

Indeed, for instance, 〈a, α〉 ∈ R and 〈α, λ〉 ∈ Q, thus 〈a, λ〉 ∈ R⊗
Q. Analogously, 〈c, γ 〉 ∈ R and 〈γ,μ〉 ∈ Q, thus 〈c, μ〉 ∈ R⊗Q.
On the contrary, there is no intermediate element of U ′ linking d

and μ. And so on.
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Z η δ ε ζ ι

a 1 0 0 1 1
b 1 1 1 1 0
c 0 1 1 1 0
d 1 0 1 1 0

R −→ Z η δ ε ζ ι

α 1 0 0 1 0
β 0 1 1 1 0
γ 0 0 0 1 0

R ⊗ R −→ Z η δ ε ζ ι

a 1 0 0 1 0
b 1 1 1 1 0
c 0 1 1 1 0
d 1 0 0 1 0

Therefore, R⊗R −→ Z � Z. For instance, 〈a, ι〉 /∈ R⊗R −→ Z, while 〈a, ι〉 ∈ Z.
Since 〈a, α〉, 〈a, γ 〉 ∈ R, in order to have 〈α, ι〉 ∈ R ⊗ R −→ Z we should have
either 〈α, ι〉 or 〈γ, ι〉 in R −→ Z. In the former case also 〈b, ι〉 ∈ R ⊗ R −→ Z,
because 〈b, α〉 ∈ R, too. But 〈b, ι〉 /∈ Z. In the latter case also 〈c, ι〉 ∈ R⊗R −→ Z

because 〈c, γ 〉 ∈ R, but 〈c, ι〉 /∈ Z.

Let A = {a, b, c}. Then the right cylindrification of A is

A→R α β γ

a 1 1 1
b 1 1 1
c 1 1 1
d 0 0 0

Notice that for any u′ ∈ U ′, (A→R )�(u′) = A. Moreover,

R −→ A→R α β γ

α 0 0 0
β 1 1 1
γ 1 1 1

Thus, R −→ A = {β, γ }.

Let B = {α, γ }. The right cylindrification of B is

B→R� a b c d

α 1 1 1 1
β 0 0 0 0
γ 1 1 1 1

Then one obtains

R� −→ B→R� a b c d

a 1 1 1 1
b 0 0 0 0
c 0 0 0 0
d 1 1 1 1

. Thus, R� −→ B = {a, d}.

Lemma 5 Given R ⊆ U ×U ′, Z ⊆ U ×U ′′, W ⊆ U ′ ×U ′′, A ⊆ U and B ⊆ U ′:

R −→ Z = {〈u′, u′′〉 : R�(u′) ⊆ Z�(u′′)} (12)

R −→ A = {u′ : R�(u′) ⊆ A} (13)

R� −→ W = {〈u, u′′〉 : R(u) ⊆ W�(u′′)} (14)

R� −→ B = {u : R(u) ⊆ B} (15)

R ⊗W = {〈u, u′′〉 : R(u) ∩W�(u′′) �= ∅} (16)

R�(B) = {u : R(u) ∩ B �= ∅} (17)

R� ⊗ Z = {〈u′, u′′〉 : R�(u′) ∩ Z�(u′′) �= ∅} (18)

R(A) = {u′ : R�(u′) ∩ A �= ∅} (19)
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Proof (12), (14), (16) and (18) come straightforwardly from the definitions. We just
prove a couple of other points.
(14)⇒(15): Let B ⊆ U ′ and B→R� its right cylinder. Then from (14) R� −→
B→R� = {〈u, u∗〉 : R(U) ⊆ (B→R�)�(u∗)}. But from (3) (B→R�)�(u∗) = B. Since
u∗ is a dummy element, we can dispense with it and the cylindrification of B and
obtain (15).
(18)⇒(19): Let A→R be the right cylinder of a set A ⊆ U . Then from (18) R� ⊗
A→R = {〈u′, u′∗〉 : R�(u′) ∩ (A→R )�(u′∗) �= ∅}. But from (3) (A→R )�(u′∗) = A.
Thus R� ⊗ A→R = {〈u′, u′∗〉 : R�(u′) ∩ A �= ∅}. Since u′∗ is a dummy element,
we can dispense with it and the cylindrification of A and obtain (19). ��

3 Lesson 2: The Topological Framework

3.1 Galois Adjunctions and Their Operators

Pre-topologies and topologies are definable from a particular mathematical notion
called a Galois adjunction. It is not the usual way to introduce topologies but it is
an effective one.

Definition 6 Let O = 〈U,R〉 be an ordered set and L = 〈U,∨,∧, 0, 1〉 a bounded
lattice such that for any a, b ∈ U , aRb iff a ∧ b = b (a ∨ b = b). Let ϕ : O �−→ O
and θ : L �−→ L be two operators. Then, given any a, b ∈ U :

• ϕ is a projection if it is (a) monotonic: aRb implies 〈ϕ(a), ϕ(b)〉 ∈ R and (b)
idempotent: ϕ(ϕ(a)) = ϕ(a).

• a projection operator ϕ is a closure if it is increasing: 〈a, ϕ(a)〉 ∈ R.
• A projection operator ϕ is an interior if it is decreasing: 〈ϕ(a), a〉 ∈ R.
• θ is a modal or possibility operator if it is (a) normal: θ(0) = 0 and (b) additive:

θ(a ∨ b) = θ(a) ∨ θ(b).
• θ is a co-modal or necessity operator if it is (a) co-normal: θ(1) = 1 and (b)

multiplicative: θ(a ∧ b) = θ(a) ∧ θ(b).
• A closure operator θ on a lattice is topological if it is modal.
• An interior operator θ on a lattice is topological if it is co-modal.

Now we investigate two pairs of operators which are defined by means of a binary
relation R. In the definitions of these operators (as well as of many mathematical
operators) some logic combinations recur, namely the pairs 〈⇒,∧〉, 〈∃,∧〉, 〈∀,⇒〉,
〈∃,∀〉 and 〈∀, ∃〉. These combinations enjoy particular mathematical properties
which are inherited by the operators they define and which are introduced in the
next definition.

Definition 7 (Galois Adjunctions) Let O and O′ be two pre-ordered sets (possibly
lattices) with order ≤, resp. ≤′ and σ : O �−→ O′ and ι : O′ �−→ O be two maps
such that for all p ∈ O and p′ ∈ O′

ι(p′) ≤ p iff p′ ≤′ σ(p) (20)
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then σ is called the upper adjoint of ι and ι is called the lower adjoint of σ . This fact
is denoted by O′ �ι,σ O and we say that the pair 〈ι, σ 〉 forms a Galois adjunction
or an axiality.

Remarks 3.1 The contravariant version of (20), i.e. ι(p′) ≤ p iff p′ ≥′ σ(p)

is called a Galois connection and 〈ι, σ 〉 a polarity. Galois connections from binary
relations were basically introduced in [26] and applied in Formal Concept Analysis
(FCA) in [49]. FCA and polarities are not in the scope of the chapter. Galois
adjunctions, that is, the covariant form we are dealing with, have been introduced
in classical Rough Set Theory in [17] with the name “dual Galois connections”.
Independently and in the present general setting, which is derived from Intuitionistic
Formal Spaces (see [44] and [45]), they were applied to approximation theory
in [37].

Adjoint operators enjoy interesting properties:

Facts 3.1

1. σ preserves all existing infs (i.e. it is multiplicative), thus it is monotonic.
2. ι preserves all existing sups (i.e. it is additive), thus it is monotonic.
3. σ(a) ∨′ σ(b) ≤′ σ(a ∨ b); ι(a′) ∧ ι(b′) ≤ ι(a′ ∧′ b′).
4. σ ι is a closure operator on O′, ισ is an interior operator on O;
5. σ ι(a′ ∧′ b′) ≤ σ ι(a′) ∧′ σ ι(b′), σ ι(a′ ∨′ b′) ≥ σ ι(a′) ∨′ σ ι(b′);
6. ισ (a ∨ b) ≥ ισ (a)∨ ισ (b), ισ (a ∧ b) ≤ ισ (a)∧ ισ (b);
7. ισ ι = ι; σ ισ = σ .

For the proofs of the above Facts, see for instance [37, 38] or [39].

3.2 Galois Adjunction from Relations

Definition 8 Let R ⊆ U × U ′ be a binary relation, A ⊆ U , B ⊆ U ′. Then we
define the following operators:

1. 〈i〉 : ℘(U) �−→ ℘(U ′); 〈i〉(A) = R(A)

– the intensional possibility of A. It is also denoted by 〈R�〉(A).

2. 〈e〉 : ℘(U ′) �−→ ℘(U); 〈e〉(B) = R�(B)

– the extensional possibility of B. It is also denoted by 〈R〉(B).

3. [i] : ℘(U) �−→ ℘(U ′); [i](A) = R −→ A

– the intensional necessity of A. It is also denoted by [R�](A).

4. [e] : ℘(U ′) �−→ ℘(U); [e](B) = R� −→ B

– the extensional necessity of B. It is also denoted by [R](B).

5. int : ℘(U) �−→ ℘(U); int (A) = 〈e〉[i](A)—the interior of A.
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6. cl : ℘(U) �−→ ℘(U); cl(A) = [e]〈i〉(A)—the closure of A.
7. C : ℘(U ′) �−→ ℘(U ′);C (B) = 〈i〉[e](B)—the co-interior of B.
8. A : ℘(U ′) �−→ ℘(U ′);A (B) = [i]〈e〉(B)—the co-closure of B.

The above notation and terms have the following motivations. In a relational system
〈U,U ′, R〉, U can be interpreted as a set of items or objects and U ′ as a set of
properties, so that 〈u, u′〉 ∈ R means that object u enjoys property u′. According
to this interpretation, if u′ ∈ 〈i〉(A), then any element of A has the possibility to
enjoy u′. On the other hand, if u′ ∈ [i](A) then in order to enjoy u′ it is necessary
to be a member of A, although this is not a sufficient condition, since there can
be elements of A which does not enjoy u′ (to put it another way, at most all the
elements of A enjoy u′). A symmetric interpretation holds for 〈e〉(B) and [e](B).
The terms “necessity” and “possibility” are also associated with some models for
modal logic. A Kripke model is a relational system 〈U,R〉 equipped with a forcing
relation � between members of U and formulas, such that:

u � �α iff ∀u′(〈u, u′〉 ∈ R ⇒ u′ � α)

u � ♦α iff ∃u′(〈u, u′〉 ∈ R ∧ u′ � α)

where � is the necessity modality and ♦ the possibility. If �α� = {x : x � α}
is the domain of validity of α, then u � �α iff u ∈ [e](�α�), while u � ♦α iff
u ∈ 〈e〉(�α�). Therefore, from (15) one has [e](�α�) = (��α�) and from (17),
〈e〉(�α�) = (�♦α�). In turn, [i] and 〈i〉 model the modality operators with respect
to the reverse relation R�. For this reason we equate the symbols in the following
pairs: ([e], [R]), (〈e〉, 〈R〉), ([i], [R�]) and (〈i〉, 〈R�〉).
Notation We call the operators 〈•〉 and [•] constructors. If X = {x}, for any
operator op of the above definition, we shall usually write op(x) instead of op({x}).
If needed we write opR to specify the relation from which an operator op is defined.
A relation R ⊆ U × U ′ is called serial if R(u) �= ∅, for any u ∈ U .
From now on, if not otherwise stated given a relation R ⊆ U × U ′, A will denote a
subset of the domain U and B a subset of the codomain U ′.

Through the notion of a Peirce product one arrives at the notion of a granule:

Definition 9 Let R ⊆ U × U be a binary relation, u ∈ U,A ⊆ U . The set R(u)

(i.e. 〈i〉({u})) is called the R-granule of u and R(A) = ⋃{R(a) : a ∈ A} is called
the R-granule of A.

Remarks 3.2 The above definition of R(A) is consistent with (1) of Definition 1
because the operation R(−) is additive. This can be easily proved from the very
definition of R-neighbourhoods based on the quantifier ∃. However, we shall see
below that there is another more general proof.

A set of granules of U is called a granulation. More in general, granules are
subsets of U , so that they are not necessarily generated by some binary relation.
For instance, any covering is a granulation although only particular covering are
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induced by binary relations (more precisely, particular tolerance relations—see
the Introduction). Anyway, in what follows we shall deal with preorders and
equivalence relations. These kinds of binary relations induce particular features in
the above operators, which will be essential in the algebraic analysis of rough set
systems.

We list some straightforward consequences of the above definitions and
Lemma 5:

[i](A) = {u′ : R�(u′) ⊆ A} (21)

[e](B) = {u : R(u) ⊆ B} (22)

〈i〉(A) = R(A) = {u′ : R�(u′) ∩ A �= ∅} (23)

〈e〉(B) = R�(B) = {u : R(u) ∩ B �= ∅} (24)

int (A) =
⋃
{R�(u′) : u′ ∈ [i](A)} =

⋃
{R�(u′) : R�(u′) ⊆ A} (25)

cl(A) = {u : R(u) ⊆ R(A)} = {u : ∀u′(u ∈ R�(u′)⇒ R�(u′) ∩A �= ∅)}
(26)

C (B) =
⋃
{R(u) : u ∈ [e](B)} =

⋃
{R(u) : R(u) ⊆ B} (27)

A (B) = {u′ : R�(u′) ⊆ R�(B)} = {u′ : ∀u(u′ ∈ R(u)⇒ R(u) ∩ B �= ∅)}
(28)

The following duality properties are easily obtained by means of the logical
equivalences¬∃ ≡ ∀¬ and ¬(α ∧ ¬β) ≡ α �⇒ β:

Lemma 10 〈e〉(B) = −[e](−B); 〈i〉(A) = −[i](−A)

Moreover, the operators acting on opposite directions fulfil the following adjointness
properties (see [37] and [39]):

Theorem 11 Let P = 〈U,U ′, R〉 be a relational system. Then for U′ = 〈℘(U ′),⊆〉
and U = 〈℘(U),⊆〉:

1. U′ �〈e〉,[i] U, 2. U �〈i〉,[e] U′ (29)

Proof Let A ⊆ U , B ⊆ U ′. Then (1): 〈e〉(B) ⊆ A iff for all y ∈ B, 〈e〉(y) ⊆ A, iff
for all y ∈ B if xRy then x ∈ A iff for all y ∈ B, y ∈ [i](A), iff B ⊆ [i](A). (2):
By symmetry. ��
Remarks 3.3 One can verify that all the above operators are isotonic. Moreover, ∃
and ∀ are, from the position of the sub-formula “y ∈ B” and “x ∈ A” in their
definitions, respectively lower and upper adjoints to the pre-image f−1 : ℘(Y ) �−→
℘(X) of a function f : X �−→ Y . That is, for all A ⊆ X,B ⊆ Y one has ∃f (A) ⊆ B

iff A ⊆ f−1(B) and B ⊆ ∀f (A) iff f−1(B) ⊆ A, where ∃f (A) = {b ∈ B :
∃a(f (a) = b ∧ a ∈ A)} and ∀f (A) = {b ∈ B : ∀a(f (a) = b ⇒ a ∈ A)}.
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Finally, the operators 〈•〉 has the logical structure ∃∧, while the operators [•] has
the structure ∀ ⇒ and we shall see that ∧ is lower adjoint to ⇒. Therefore, since
“e” (i.e. R-based) and “i” (i.e. R�-based) operators act in opposite directions, the
preceding result comes as no surprise.1

Remarks 3.4 From (5) it follows that ⊗ is lower adjoint to −→ with respect to the
ordered set 〈R(U,U ′),⊆〉, where R(U,U ′) = {R : R ⊆ U ×U ′}. Therefore,⊗ is
additive and from point 6 of Definition 1, R( ) is additive, too. From this observation
and Definition 8 one obtains another proof of Theorem 11.

Corollary 12 Let 〈U,U ′, R〉 be a relational system. Then for any X, Y belonging
to the due domain:

1. [i](U) = U ′; [e](U ′) = U ; [•](∅) = ∅ if the relation is serial.
2. 〈•〉(∅) = ∅; 〈e〉(U ′) = U if R is serial; 〈i〉(U) = U ′ if R� is serial.
3. 〈•〉(X ∪ Y ) = 〈•〉(X) ∪ 〈•〉(Y ).
4. [•](X ∩ Y ) = [•](X) ∩ [•](Y ).
5. 〈•〉(X ∩ Y ) ⊆ 〈•〉(X) ∩ 〈•〉(Y ).
6. [•](X ∪ Y ) ⊇ [•](X) ∪ [•](Y ).
7. int (X) ⊆ X ⊆ cl(X).
8. C (Y ) ⊆ Y ⊆ A (Y ).

Proof (1) and (2) are trivial. (3) Because 〈•〉 constructors are lower adjoints. (4)
Because [•] constructors are upper adjoints. (5) and (6) can be proved in many a
way which are worth mentioning: (a) Straightforwardly from point 3 of Facts 3.1.
(b) Using the distributive properties of quantifiers. For instance one has ∀xA(x) ∨
∀xB(x) ⇒ ∀x(A(x) ∨ B(x)), but not the opposite. Incidentally, this proves that
∀ cannot have an upper adjoint, otherwise it should be additive. (c) A ⊆ X or
A ⊆ Y implies A ⊆ X ∪ Y but not the other way around. Also (7) can be proved
in many a way: (a) straightforwardly from 5 of Facts 3.1; (b) from (25) and (26)
one trivially obtains int (X) ⊆ X and, respectively, X ⊆ cl(X); (c) by adjointness
〈e〉([i](X)) ⊆ X iff [i](X) ⊆ [i](X) and X ⊆ [e](〈i〉(X)) iff 〈i〉(X) ⊆ 〈i〉(X); but
the rightmost inequalities are tautologies. (8) is obtained by symmetry. ��

Thus, if U = U ′ and R and R� are serial, [•] and 〈•〉 are co-modal, respectively
modal, operators on 〈℘(U),⊆〉, but in general 〈•〉 are not increasing and [•] are not
decreasing. Therefore they are not interiors, respectively, closures.

Vice-versa,A and cl are closure operators, while C and int are interior operators
on 〈℘(U ′),⊆〉, respectively 〈℘(U),⊆〉. However, they are not modal, respectively
co-modal. Indeed, as like as topological interior operators, int and C are not
additive, because the internal constructors [•] are not, but they are not multiplicative
either, because the external constructors 〈•〉 are not. Symmetrically, cl and A are
neither additive nor multiplicative. We call them pretopological.

1Often, a lower adjoint is called “left adjoint” and an upper adjoint is called “right adjoint”. We
avoid the terms “right” and “left” because they could make confusion with the position of the
arguments of the operations on binary relations.
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However, it is worth noticing that u ∈ [e](B) iff R(u) ⊆ B, that is, if there exists
an R-neighbourhood of u included in B, so that [e](B) is similar to the topological
definition of an open set. In turn, u ∈ 〈e〉(B) iff R(u) ∩ B �= ∅, that is, if all
the R-neighbourhoods of u have non void intersection with B, since R(u) is the
least R-neighbourhood of u. Therefore, we are close to the definition of topological
operators. We achieve the goal if the properties of [•] and 〈•〉 join those of C and
int, respectively A and cl.

We sum up the previous results in the following table:

Modal constructors Pre-topological operators

[e](B) = {u : R(u) ⊆ B} C (B) = ⋃{R(u) : R(u) ⊆ B}
[i](A) = {u′ : R�(u′) ⊆ A} int (A) = ⋃{R�(u′) : R�(u′) ⊆ A}
〈e〉(B) = {u : u ∈ R�(B)} A (B) = {u′ : R�(u′) ⊆ R�(B)}
〈i〉(A) = {u′ : u′ ∈ R(A)} cl(A) = {u : R(u) ⊆ R(A)}

Example 13 U = {a, b, c, d}, U ′ = {α, β, γ }

R α β γ

a 1 0 1
b 1 1 0
c 0 1 1
d 1 0 0

[i]({a}) = ∅, [i]({a, b, c}) = {β, γ }, 〈i〉({a}) = {α, γ },
[e] ({α}) = {d}, [e] ({α, β}) = {b, d}, 〈e〉(α) = {a, b, d},
int ({c, d}) = ∅, int ({a, c, d}) = {a, c},
cl({a}) = {a, d}, cl({d}) = {d},
A ({α}) = {α},A ({α, β}) = {α, β, γ },
C ({α}) = {α},C ({α, β}) = {α, β}.

Given R ⊆ U × U ′, for any operator op ∈ {[e], [i], 〈e〉, 〈i〉, cl, int,C ,A } we set
Sop(D) = {(op(X) : X ∈ dom(op)}, where D is U or U ′ according to the operator.
Then we can define the following lattices:

Definition 14 Let 〈U,U ′, R〉 be a relational system. Then:

1. L〈i〉(U) = 〈S〈i〉(U),∧,∪,∅, U ′〉, where
∧

i∈I Xi = C (
⋂

i∈I Xi)

2. L[i](U) = 〈S[i](U),∩,∨,∅, U ′〉, where
∨

i∈I Xi = A (
⋃

i∈I Xi)

3. L〈e〉(U ′) = 〈S〈e〉(U ′),∧,∪,∅, U〉, where
∧

i∈I Xi = int (
⋂

i∈I Xi)

4. L[e](U ′) = 〈S[e](U ′),∩,∨,∅, U〉, where
∨

i∈I Xi = cl(
⋃

i∈I Xi)

5. Lint (U) = 〈Sint (U),∧,∪,∅, U〉, where
∧

i∈I Xi = int (
⋂

i∈I Xi)

6. Lcl (U) = 〈Scl (U),∩,∨,∅, U〉, where
∨

i∈I Xi = cl(
⋃

i∈I Xi)

7. LA (U ′) = 〈SA (U ′),∩,∨,∅, U ′〉, where
∨

i∈I Xi = A (
⋃

i∈I Xi)

8. LC (U ′) = 〈SC (U ′),∧,∪,∅, U ′〉, where
∧

i∈I Xi = C (
⋂

i∈I Xi)

Proposition 15 The structures Lop(D) of Definition 14 are complete lattices.

Proof The proof for Lint (U), Lcl (U), LA (U) and LC (U) can be found in section
1.4 of [39]. As for L〈i〉(U) we have to prove that given 〈i〉(X) and 〈i〉(Y ),
C (〈i〉(X)∩〈i〉(Y )) = inf {〈i〉(X), 〈i〉(Y )}. That is: (a) C (〈i〉(X)∩〈i〉(Y )) ⊆ 〈i〉(X)

and C (〈i〉(X) ∩ 〈i〉(Y )) ⊆ 〈i〉(Y ), and (b) if 〈i〉(Z) ⊆ 〈i〉(X) and 〈i〉(Z) ⊆ 〈i〉(Y ),
then 〈i〉(Z) ⊆ C (〈i〉(X)∩〈i〉(Y )). But (a) is obvious because C(〈i〉(X)∩〈i〉(Y )) ⊆
〈i〉(X) ∩ 〈i〉(Y ) and 〈i〉(X) ∩ 〈i〉(Y ) is included both in 〈i〉(X) and 〈i〉(Y ). As to
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(b) C(〈i〉(X) ∩ 〈i〉(Y )) = 〈i〉[e](〈i〉(X) ∩ 〈i〉(Y )) = 〈i〉([e]〈i〉(X) ∩ [e]〈i〉(Y )).
Suppose 〈i〉(Z) ⊆ 〈i〉(X) and 〈i〉(Z) ⊆ 〈i〉(Y ). Then for adjunction, Z ⊆ [e]〈i〉(X)

and Z ⊆ [e]〈i〉(Y ), so that Z ⊆ ([e]〈i〉(X) ∩ [e]〈i〉(Y ). Therefore, by isotonicity
〈i〉(Z) ⊆ 〈i〉([e]〈i〉(X) ∩ [e]〈i〉(Y )). The proof for L[i] comes from duality and by
symmetry we obtain the proof for L[e] and L〈e〉. ��

From the definitions above it follows that the lattice order of Lop(D) is inherited
from 〈Sop(D),⊆〉.
Lemma 16 Let P = 〈U,U ′, R〉 be a relational system. Then for all A ⊆ U,B ⊆
U ′:
A ∈ Sint (U) iff A = 〈e〉(B ′), A ∈ Scl(U) iff A = [e](B ′), for some B ′ ⊆ U ′
B ∈ SA (U ′) iff B = [i](A′), B ∈ SC (U ′) iff B = 〈i〉(A′), for some A′ ⊆ U

Proof If A = 〈e〉(B ′) then A = 〈e〉[i]〈e〉(B ′), from point 7 of Facts 3.1. Therefore,
by definition of int , A = int (〈e〉(B ′)) = int (A). Vice-versa, if A = int (A), then
A = 〈e〉[i](A). Hence, A = 〈e〉(B ′) for B ′ = [i](A). The other cases are proved in
the same way, by exploiting the appropriate equations of point 7 of Facts 3.1. ��
Corollary 17 (See [39]) Let P = 〈U,U ′, R〉 be a relational system. Then,

1. 〈e〉 is an isomorphism between LA (U ′) and Lint (U);
2. [i] is an isomorphism between Lint (U) and LA (U ′);
3. [e] is an isomorphism between LC (U ′) and Lcl(U);
4. 〈i〉 is an isomorphism between Lcl (U) and LC (U ′).
5. the set-theoretic complementation is an anti-isomorphism between Lcl (U) and

Lint (U) and between LC (U ′) and LA (U ′).

Proof Let us notice that the proof for an operator requires the proof for its adjoint
operator. Then, let us prove points (1) and (2) together. First, let us prove bijection
for 〈e〉 and [i]. From Lemma 16 the codomain of 〈e〉 is Sint (U) and the codomain
of [i] is SA (U ′). Moreover, for all A ∈ Sint (U),A = 〈e〉[i](A) and for all B ∈
SA (U ′), B = [i]〈e〉(B). From the adjunction properties we have:
(i) 〈e〉 is surjective onto Sint (U) and (ii) [i] is injective from Sint (U).
(iii) 〈e〉 is injective from SA (U ′) and (iv) [i] is surjective onto SA (U ′).
Moreover, if [i] is restricted to Sint (U), then its codomain is the set H = {B :
B = [i](A) ∧ A ∈ Sint (U)}. Clearly, H ⊆ SA (U ′). In turn, if 〈e〉 is restricted
to SA (U ′), then its codomain is the set K = {A : A = 〈e〉(B) ∧ B ∈ SA (U ′)}.
Clearly K ⊆ Sint (U). Therefore, (i) and (iii) give that 〈e〉 is bijective if restricted to
SA (U ′), while (ii) and (iv) give that [i] is a bijection whenever restricted to Sint (U).
Now it is to show that 〈e〉 and [i] preserve joins and meets. For 〈e〉 we proceed
as follows: (v) 〈e〉(∨

i∈I

(A (Yi))) := 〈e〉(A (
⋃

i∈I

(A (Yi)))). But 〈e〉A = 〈e〉, from

point 7 of Facts 3.1. Moreover, 〈e〉 distributes over unions. Hence the right side of
(v) equals to

⋃

i∈I

〈e〉(A (Yi)). But in view of Theorem 15, the union of extensional

open subsets is open and from Lemma 16 〈e〉(A (Yi)) belongs to Sint (U) indeed,
so that the right side of (v) turns into int (

⋃

i∈I

〈e〉(A (Yi))) = ⋃

i∈I

〈e〉(A (Yi)). (vi)
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〈e〉(⋂
i∈I

A (Yi)) = 〈e〉(⋂
i∈I

[i]〈e〉(Yi)). Since [i] distributes over intersections, the

right side of (vi) turns into 〈e〉[i](⋂
i∈I

〈e〉(Yi)) = int (
⋂

i∈I

〈e〉(Yi)). But 〈e〉 = 〈e〉A ,

so that the last term is exactly
∧

i∈I

〈e〉(A (Yi)). Since [i] is the inverse of 〈e〉, qua

isomorphism, we have that [i] preserves meets and joins, too.
As to (3) and (4) the results come by symmetry. Finally, (5) is trivial. ��
Corollary 18 For any binary relation R, L[e](U) = Lcl(U), L〈e〉(U) = Lint (U),
L〈i〉(U) = LC (U ′), L[i](U) = LA (U ′).

Example 19 Example 13 continued.

L i (U) = L (U )
L[e](U) = Lcl(U) L[i](U) = L (U ) L e (U) = Lint (U)

U
U U U

∅

{α}

{β, γ }{α, β} {α, γ }

∅

{d}

{c}{b, d} {a, d}

∅

{α}

{β, γ }

{β} {γ }

∅

{a, b, d}

{a, b, c}

{b, c} {a, c}

Thus, so far we have seen how binary relations induce modal and pretopological
operators. However, if U = U ′ and R is a preorder the operators and constructors
gain the topological properties. To prove that, first we show that if R is a preorder
then int and [i] coincide. At this point, since int is an interior operator and [i] is
comodal, we immediately obtain that int (aka [i]) is topological (see Definition 6).
By duality the same can be proved of cl (aka 〈i〉) and by symmetry for C (i.e. [e])
and A (i.e. 〈e〉).

However, we shall complete the proof in a more specific manner, this time with
a focus on the opposite direction: it will be proved that if R is a preorder, then C
(thus [e]) is the interior operator of a particular topology induced by R. Therefore,
now we enter the topological framework.

3.3 Topologies and Relations

Definition 20 Let U be a set. Then:

• Let �(U) be a distributive lattice of subsets of U which is bounded by U and ∅
and is closed under infinite unions and finite intersections. Then �(U) is called
a topology on U , its elements open sets and τ (U) = 〈U,�(U)〉 a topological
space.

• I(X) = ⋃{A ∈ �(U) : A ⊆ X} is called the interior of X and I the interior
operator of τ (U).
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• C(X) = {x : ∀A ∈ �(U)(x ∈ A⇒ A ∩X �= ∅)} is called the closure of X and
C the closure operator of τ (U). We put Γ (U) = {C(X) : X ⊆ U}—the set of
closed sets of τ (U).

Facts 3.2 From the above definitions it follows that:

• �(U) = {X : X ⊆ U ∧ I(X) = X} = {I(X) : X ⊆ U}.
• I(X) = −C(−X) and C(X) = −I(−X), any X ⊆ U .
• Γ (U) = {−A : A ∈ �(U)} and �(U) = {−A : A ∈ Γ (U)}.
• The inner logical structure of the operator I is (∀ ⇒). Indeed x ∈ I(X) iff there

exists A ∈ �(U) containing x such that ∀y(y ∈ A⇒ y ∈ B).
• The inner logical structure of the operator C is (∃∧). Indeed, x ∈ C(X) iff for

all A ∈ �(U) containing x, ∃z(x ∈ A ∧ z ∈ X).

Let now R be a binary relation on a set U , which is assumed to be at most countable.
From now on we set P := 〈U,R〉. If R is a preorder, then the family of granules
BR(U) = {R(u) : u ∈ U} is a basis of a topology on U (that is, any open set
of the topology is given by the union of a family, possibly empty, of elements of
BR(U)). This topology is called an Alexandrov topology. In this kind of topologies,
R(A) is an open set, for any A ⊆ U because the operator R(−) is additive, i.e.
R(A) ∪ R(B) = R(A ∪ B). We denote with �R(U) the family {R(A) : A ⊆ U} of
open subsets of the topology and by IR and CR its interior and, respectively, closure
operators.

In Alexandrov spaces the intersection of any family of open sets is open and
each point has a least open neighbourhood (indeed the basis BR(U) provides these
least open neighbourhoods). Moreover, in any topological space, a specialisation
preorder � can be defined as follows: x � y iff for all open set O if x ∈ O then
y ∈ O . An Alexandrov topology �R(U) is such that its specialisation preorder and
R coincide.

Remarks 3.5 The definition of a specialisation preorder can be rephrased using the
interior operator I: x � y iff for all A ⊆ U, x ∈ I(A) implies y ∈ I(A). Indeed,
given a set X it can be proved that a preorder can be defined by means of any
monadic operator on ℘(X) as follows:

x � y iff ∀A ⊆ X, x ∈  (A) �⇒ y ∈  (A).

The relation � is a preorder: clearly it is reflexive because by substituting x

for y we obtain a tautology, and it is transitive, because implication is transitive
and the universal quantifier distributes over implications. Thus we can call � the
specialisation preorder induced by  .
If we denote by IR the interior operator of an Alexandrov topology �R induced by
a preorder R, we have R =�IR

and �R = ��IR
. However, there can be Alexandrov

topologies �R(U) induced by bases BR(U) such that R is not a preorder, so that
R �=�IR

but �R = ��IR
, all the same. We shall illustrate this delicate issue in order

to avoid some traps. Moreover, to our knowledge this topic has not been treated
before.

Lemma 21 Let 〈U,R〉 be a relational space. Then ∀u ∈ U, u ∈ [i](R�(u)).
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Proof Trivially, u ∈ [i](R�(u)) iff R�(u) ⊆ R�(u). ��
Theorem 22 Let 〈U,R〉 be a relational space. Then for all A ⊆ U, int (A) =
[i](A) if and only if R is a preorder.

Proof

A) If ∃A ⊆ U such that int (A) �= [i](A) then R is not a preorder (either
reflexivity or transitivity fail). Proof. The antecedent holds in two cases: (i)
∃x ∈ [i](A), x /∈ int (A); (ii) ∃x ∈ int (A), x /∈ [i](A). In case (i) from (25) one
has that ∀y ∈ [i](A), x /∈ R�(y). In particular, x /∈ R�(x), so that reflexivity
fails. In case (ii) ∃y ∈ [i](A) such that x ∈ R�(y). Therefore, since y ∈ [i](A),
from (21) x must belong to A. Moreover, it must exists z /∈ A, 〈z, x〉 ∈ R,
otherwise x ∈ [i](A). Since 〈x, y〉 ∈ R, if R were transitive, 〈z, y〉 ∈ R, so that
y /∈ [i](A). Contradiction.

B) If R is not a preorder, then ∃A ⊆ U, int (A) �= [i](A). Proof. (i) Take A =
R�(x). From Lemma 21, x ∈ [i](R�(x)). Suppose R is not reflexive with
〈x, x〉 /∈ R. Thus x /∈ R�(x). Hence, it cannot exists an y such that x ∈ R�(y)

and R�(y) ⊆ R�(x). So, x /∈ int (R�(x)). (ii) Suppose transitivity fails, with
〈x, y〉, 〈y, z〉 ∈ R, 〈x, z〉 /∈ R. From Lemma 21, z ∈ [i](R�(z)), but y /∈
[i](R�(z)), because x ∈ R�(y) while x /∈ R�(z) so that R�(y) � R�(z). On
the contrary, y ∈ R�(z) and R�(z) ⊆ R�(z). Therefore, y ∈ int (R�(z)). We
conclude that int (R�(z)) �= [i](R�(z)).

��
We write op = op′ if for all elements X of their domain op(X) = op′(X).

Corollary 23 In a relational space 〈U,R〉, the following are equivalent: (i) R is a
preorder, (ii) C = [e], (iii) int = [i], (iv) cl = 〈i〉, (v) A = 〈e〉.
Proof (i)⇔ (iii) is Theorem 22, (ii)⇔ (iv) by duality and the other equivalences by
symmetry. ��
Corollary 24 Given a relational space 〈U,R〉, if R is a preorder, then int, [i],C
and [e] are topological interior operators; cl, 〈i〉,A , 〈e〉 are topological closure
operators.

The converse of Corollary 24 holds just partially:

Corollary 25 Let 〈U,R〉 be a SRS. If [•] and 〈•〉 are topological interior, respec-
tively closure, operators, then R is a preorder.

The proof follows from Corollary 23. However, the converse of Corollary 24 does
not hold for int, cl, A and C as the following example illustrates and Theorem 30
will prove:

Example 26

U = {v, a, b, b′, c}, and BR(U) = {{a}, {b, b′}, {a, c}, U}
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R v a b b′ c
v 0 0 1 1 0
a 0 1 0 0 0
b 0 1 0 0 1
b′ 0 1 0 0 1
c 1 1 1 1 1

R is neither reflexive (e.g. 〈v, v〉 /∈ R) nor transitive (e.g. 〈b, c〉 ∈
R and 〈c, v〉 ∈ R, but 〈b, v〉 /∈ R). Therefore, it is not a preorder.
Indeed, from the lattices below one verifies that the equalities of
Corollary 23 do not hold. However, in these lattices inf = ∩
and sup = ∪. Therefore, they are bounded distributive, hence
topologies.

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U
L i (U) LC (U)

∅

{a} {v}

{a, v}{a, b, b }

{v, a, b, b }

U

L[e](U) Lcl (U)

∅

{c}

{b, b , c} {v, c}

{v, b, b , c}{a, b, b , c}

U

L e (U) Lint (U)

∅

{v}

{v, c} {v, b, b }

{v, b, b , c}{v, a, c}

U

LA (U) L[i](U)

Albeit obvious, it is worth pointing out that if Lop =
Lop′ the equality is related to the entire lattice
which the operators output, not to the operators.
For instance 〈i〉({v}) = {b, b′} �= ∅ = C ({v}),
〈e〉({v}) = {c} �= ∅ = int ({v}), [e]({v, a}) = {a} �=
{v, a} = cl({v}) and [i]({v, b′, c}) = {v, b, b′} �=
{v, b, b′, c} = A ({v, b, b′}).

Remarks 3.6 Corollary 24 amends point (iv) of Corollary 1 of [35] and point (ii)
of Facts 3 of [36], which state also the converse implication, erroneously. However,
one can state that if {R(A) : A ⊆ U} is a topology, then 〈U,R〉 is a renaming of the
elements of a preorder 〈U ′, R〉. To see this, we need some results about the duality
between topologies �R(U) from preorders R and the specialisation preorder�IR

.

Lemma 27 If R ⊆ X×X is transitive, then ∀x, y ∈ X, 〈x, y〉 ∈ R implies R(y) ⊆
R(x). If R is reflexive, then R(y) ⊆ R(x) implies 〈x, y〉 ∈ R.

Proof Suppose 〈x, y〉 ∈ R and z ∈ R(y). Then 〈y, z〉 ∈ R and by transitivity
〈x, z〉 ∈ R so that z ∈ R(x). Thus, R(y) ⊆ R(x). Vice-versa, if R(y) ⊆ R(x) then
for all a, 〈y, a〉 ∈ R implies 〈x, a〉 ∈ R. In particular 〈y, y〉 ∈ R by reflexivity.
Hence 〈x, y〉 ∈ R. ��
Theorem 28 Let 〈U,R〉 be a relational system such that R is preorder. Then the
specialization preorder induced by [i] coincides with R� and that induced by [e]
coincides with R.
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Proof If x �[i] y then for all A ⊆ X, x ∈ [i](A) implies y ∈ [i](A). Therefore,
R�(x) ⊆ A implies R�(y) ⊆ A, all A. In particular, R�(x) ⊆ R�(x) implies
R�(y) ⊆ R�(x). But the antecedent is true, so the consequence must be true,
too, so that R�(y) ⊆ R�(x). Since R is reflexive, so is R� and from Lemma 27,
〈x, y〉 ∈ R�. The opposite implication is proved analogously by transitivity. The
thesis for [e] and R is a trivial consequence. ��
Corollary 29 Let CR be the operator induced by a preorder 〈U,R〉. Then CR is the
interior operator IR of the Alexandrov topology induced by R.

Proof If R is a preorder then from Corollary 23, CR = [e]. Therefore, from
Theorem 28, the specialisation preorder induced by CR coincides with R which, in
turn, coincides with the specialisation preorder of the Alexandrov topology induced
by R. ��

Obviously, if R is symmetric (as in equivalence relations), then R = R�, with all
the simplifications due to this fact which operates for standard Rough Set Theory.
Now we prove that CR of Example 26 is a topological interior operator, that is,
multiplicative. The proof is based on the following fact:

Theorem 30 Let L = 〈L,∧,∨〉 be a lattice and  an interior operator on L such
that (a) ∧  (b) ≥  (a ∧ b) and L = { (x) : x ∈ L} is a sublattice of L. Then
 is multiplicative.

Proof Since L is a sublattice of L, for all x, y ∈ L,  (x) ∧  (y) =  (z) for
some z ∈ L. Since  (x) ≤ x and  (y) ≤ y,  (x) ∧  (y) ≤ x ∧ y. Therefore,
 (z) ≤ x∧y so that from isotonicity and idempotency of we obtain (z) =   
(z) ≤  (x ∧ y). To prove multiplicativity of we then just need (z) ≥  (x ∧ y),
which is given by hypothesis. ��

LCR
(U) is a sublattice of ℘(U), therefore, in LCR

(U), inf = ∩ and CR fulfils
the hypotheses of the theorem. So we obtain that for any X,Y ⊆ U , CR(X) ∩
CR(Y ) = CR(X ∩ Y ).2

Let R ⊆ U × U be such that CR is a topological interior operator. Then LCR

is a distributive lattice, hence a topology �CR
(U). Let �CR

be the specialisation
preorder induced by CR . It is possible to prove that the interior operator IC�R

and CR coincide and that there is a transformation from R to �CR
. Moreover,

this transformation is given by the operation −→. However, this topic and its
mathematical connections are still under investigation.

Example 31 The specialisation preorder �C induced by the lattice LC (U) of
Example 26 is the one given in Example 34 below.

2A direct proof of point 6 of Facts 3.1 runs as follows. Let x ∈ CR(X∩Y). Therefore, ∃y, x ∈ R(y)

and R(y) ⊆ X ∩ Y . It follows that R(y) ⊆ X and R(y) ⊆ Y , so that x ∈ CR(X) and x ∈ CR(Y )

which amounts to x ∈ CR(X) ∩ CR(Y ). Therefore, CR(X ∩ Y) ⊆ CR(X) ∩ CR(Y ).
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3.4 Approximation and Topology

In view of the notions introduced so far, the above three questions can be given
precise mathematical answers. Let A ⊆ U , R ⊆ U ×U a “nearness relation” of any
kind, and x ∈ U :

1. x is in necessarily in A if all the elements R-near x are in A. Since u is R-near x

if u ∈ R(x), we obtain that x is necessarily in A if R(x) ⊆ A. Let us set:

(lR)(A) = {x : R(x) ⊆ A} (30)

It is easy to see that for any x ∈ U , {R(X) : x ∈ R(X)} is a neighbourhood
system, so that if R is a preorder x ∈ (lR)(A) if there is an open set of �R(U)

containing x and included in A.
2. x is possibly in A if there is some element R-near x which is in A. Thus, x is

possibly in A if R(x) ∩A �= ∅. Let us set:

(uR)(A) = {x : R(x) ∩ A �= ∅} (31)

If R is a preorder, R(x) is the least open set containing x, so that the previous
condition implies that all open sets containing x has non void intersections
with A.

3. Finally, x is necessarily outside A if x ∈ −(uR)(A), that is, if R(x) ⊆ −A, i.e.
x ∈ (lR)(−A).

Theorem 32 Given a relational space 〈U,R〉,

(i) (lR)(A) = [e]R(A). (ii) (uR)(A) = 〈e〉R(A). (32)

Proof (i) From (22) and (30). (ii) From (24) and (31). ��
Therefore all the previous results about the extensional constructors apply to the

approximation operators.

Definition 33 Given a relational space (U,R) and A ⊆ U :

1. (lR)(A) is called the lower approximation of A.
2. (uR)(A) is called the upper approximation of A.
3. 〈U, (lR)〉 is called an approximation space and is denoted with AS(U/R).

In view of Lemma 10, 〈U, (lR)〉 is enough to define an approximation space.
If R is a preorder we identify AS(U/R) with the Alexandrov topological space
〈U,�R(U)〉, and we have the following correspondences:

• (lR)(A) is the interior IR(A) of A,
• (uR)(A) is the closure CR(A) of A,
• (bR)(A) = (uR)(A) ∩ −(lR)(A) is the boundary BR(A) of A,
• (eR)(A) = −(uR)(A) = (lR)(−A) is the exterior of A, denoted by ER(A).
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The usual topological transformations via the complement hold trivially:
−(lR)(A) = (uR)(−A), hence−(uR)(A) = (lR)(−A).

The reader is invited to pay attention that, for instance, (bR)(A) is a notion which
applies to any R, while BR(A) works just if R is a preorder, and so on.

Example 34 U = {v, a, b, b′, c}

c b b
A

c b b
A

R v a b b c

v 1 1 1 1 1

a 0 1 0 0 0

b 0 0 1 1 0

b 0 0 1 1 0

c 0 1 0 0 1

a

v

P U,R
R(a) = {a}
R(c) = {a, c}
R(v) = {v, a, b, b , c}
R(b) = R(b ) = {b, b }
A = {b, b , c}
(lR)(A) = {b, b }
(uR)(A) = {v, b, b , c}

Remarks 3.7 It is worth noticing that, provided R is a preorder:

(lR)(A) = {x : R(x) ⊆ A} (33)

=
⋃
{R(x) : R(x) ⊆ A} =

⋃
{R(X) : R(X) ⊆ A} (34)

=
⋃
{O ∈ �R(U) : O ⊆ A}. (35)

Formula (33) can be used to define lower approximations on the basis of any binary
relation R. However, this formula does not guarantee a proper lower approximation,
that is, less than or equal to the set to be approximated and, dually, R does not
guarantee a proper upper approximation. For instance, if R is not reflexive and x /∈
R(x), then x ∈ (lR)(R(x)), trivially, so that (lR)(R(x)) �⊆ R(x). Even worst, if
R(x) = ∅, then for any set A, x belongs to (lR)(A), according to (33), while it
does not belong to (uR)(A). An odd situation: x necessarily belongs to A but not
possibly.

Formula (34) serves the same purpose and by definition the resulting lower
approximation is proper. But (33) coincides with (34) only if R is at least a preorder.
Indeed, if a ∈ (lR)(A) then R(a) ⊆ A. But by reflexivity of R, a ∈ R(A). It follows
that a ∈ ⋃{R(x) : R(x) ⊆ A} and we can conclude (lR)(A) ⊆ ⋃{R(x) : R(x) ⊆
A}. Conversely, assume a ∈⋃{R(x) : R(x) ⊆ A}. Then for some b ∈ U , a ∈ R(b)

and R(b) ⊆ A. By transitivity, R(a) ⊆ R(b) ⊆ A, so that a ∈ (lR)(A) and we
conclude

⋃{R(x) : R(x) ⊆ A} ⊆ (lR)(A).
If R is an equivalence relation then 〈U,�R(U)〉 is a Pawlak approximation space,

R(x) is an equivalence class, BR(U) is a partition and any element of �R(U) is
the union of equivalence classes so that its complement is a union of equivalence
classes, too. As a consequence, 〈U,�R(U)〉 is a 0-dimensional topological space,



358 P. Pagliani

i.e. any open set is closed and vice-versa: they are clopen. In this case the upper
approximation can be defined in this way: (uR)(A) =⋂{O ∈ �R(U) : A ⊆ O}.
If R is a preorder, then by setting ��α� = (lR)(�α�) and �♦α� = (uR)(�α�) the
approximation space 〈U, (lR), (uR)〉 is a model of the modal logic S4 (or, more
precisely, if U is finite, S4.1). If R is an equivalence relation, the modelled logic is
S5.

Geometrically we can depict this fact by embedding �R(U) into the powerset
℘(U) which with the intersection, union and complement operators provides the
ambient Boolean algebra. Notice that one can generalise this approach by defining
a modal space as a pair 〈L, L′〉 such that L′ is embeddable in L and setting for any
a ∈ L, �(a) =⊔{x : x ∈ L′ & a∧x = x} and ♦(a) = �{x : x ∈ L′ & a∨x = a},
where �,� give the lattice order of L′, while ∧,∨ give the order of L, provided the
two orders are linked by some coherence property (see [12, 14]).

4 Lesson 3: The Algebraic Framework

If (U,R) is a preorder then the lattice 〈�R(U),∩,∪,∅, U〉 can be made into a
Heyting algebra. If R is an equivalence relation, it is a Boolean algebra. Therefore,
we have to explore these notions, from a general point of view.

4.1 Heyting Algebras

Definition 35

• A structure H = 〈X,∧,∨,¬,�⇒, 1, 0〉 is a Heyting algebra if 〈X,∧,∨, 1, 0〉 is
a bounded lattice, ¬a = a �⇒ 0, and the following holds, for any x, a, b ∈ X:

x ∧ a ≤ b iff x ≤ a �⇒ b (36)

The operation x �⇒ y is called the relative pseudo-complementation of x with
respect to y and ¬x is called the pseudo-complementation of x.

• A Heyting algebra such that for any element x, ¬¬x = x (or equivalently x ∨
¬x = 1), is called a Boolean algebra.

The relative pseudo-complement x �⇒ y is the largest element of H (more
precisely, of the carrier X) whose meet with the antecedent x is less than or equal
to y. In other terms, x �⇒ y is what x needs to reach y. The relation (36) which
defines the relative pseudo-complementation may be re-written by parametrizing
the operation with the shared argument a, as follows:

∧a(x) ≤ b iff x ≤�⇒a (b)
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From (20) it immediately appears that in a Heyting algebra ∧ is lower adjoint to
�⇒ and �⇒ is upper adjoint to ∧. Therefore, ∧ is additive, so that due to the very
properties of adjointness Heyting algebras are distributive lattices: for all a, b and
c, a ∧ (b ∨ c) = (a ∧ b)∨ (a ∧ c).

Notice that in Heyting algebras ¬(a ∨ b) = ¬a ∧ ¬b but ¬(a ∧ b) ≥ ¬a ∨ ¬b,
witness the killing case ¬(a∧¬a). In Boolean algebras also the second De Morgan
law holds, because ¬¬a = a.

The following standard results will be useful in Sect. 6.5:

Lemma 36 (Cf.[1] and [42]) In any Heyting algebra H, (1) b ≤ a �⇒ b. (2)

�⇒ is monotonic (i.e. order preserving) in the second argument, and antitonic (i.e.
order reversing) in the first, that is a ≤ b implies c �⇒ a ≤ c �⇒ b, and b �⇒
c ≤ a �⇒ c, any c. (3). a ≤ ¬¬a. (4) a �⇒ b ≤ ¬b �⇒ ¬a. (5) ¬ is antitonic.
(6) ¬¬ is monotonic.

Also the following results are standard, but a glance to their proofs is worthwhile,
to see how adjunction work.

Theorem 37 In any Heyting algebra

1. ¬¬ preserves �⇒ and finite meets.
2. ¬(a �⇒ b) = ¬¬a ∧ ¬b.

Proof (1) The proof for �⇒ will be given in a footnote of Theorem 87. As for
meet, since ¬¬ is monotonic,¬¬(x∧ y) ≤ ¬¬x and ¬¬(x ∧ y) ≤ ¬¬y, therefore
¬¬(x ∧ y) ≤ ¬¬x ∧¬¬y. On the other hand, ¬¬x ∧¬¬y ∧¬(x ∧ y) ≤ 0. From
adjunction one obtains¬¬x∧¬¬y ≤ ¬(x∧y) �⇒ 0 = ¬¬(x∧y). (2) Since�⇒
is monotonic in the second argument, ¬a = a �⇒ 0 ≤ a �⇒ b. But ¬ is antitonic
so that ¬(a �⇒ b) ≤ ¬¬a. Moreover,�⇒ is antitonic in the first argument so that
b = 1 �⇒ b ≤ a �⇒ b and, hence, ¬(a �⇒ b) ≤ ¬b and we conclude that
¬(a �⇒ b) ≤ ¬¬a ∧ ¬b. On the other hand, since a �⇒ b ≤ ¬b �⇒ ¬a and
¬b∧(¬b �⇒ ¬a) ≤ ¬a, one obtains that ¬¬a∧¬b∧(a �⇒ b) ≤ ¬¬a∧¬a ≤ 0
so that by adjunction ¬¬a ∧ ¬b ≤ (a �⇒ b) �⇒ 0 = ¬(a �⇒ b). ��

4.2 Heyting Algebras from Topological Spaces

We now define Heyting algebras using the family of open subsets of a topological
space. Indeed, abstract Heyting algebras can be considered the pointless companion
of the properties of “concrete” topologies, that is open sets populated by points.
In this respect, Heyting algebra are part of Algebraic Geometry. In a sense,
Heyting algebras are obtained by “zooming-out” topological spaces, while, in turn,
topological spaces are obtained by “zooming-in” Heyting algebras. The duality
theorem provides such a zooming-in, which will be discussed in the next section.



360 P. Pagliani

Definition 38 Let 〈U,�(U)〉 be a topological space, A,B ∈ �(U):

1 := U (37)

0 := ∅ (38)

A ∧ B := A ∩ B (39)

A ∨ B := A ∪ B (40)

A �⇒ B := I(−A ∪ B) (41)

¬A := A �⇒ ∅ = I(−A) = −C(A) (42)

Theorem 39 �(U) equipped with the above operations, is a Heyting algebra.

The proof is folklore in mathematical logic (indeed, it is key to the very duality
theorem for Heyting algebras). It is easy to verify that X �⇒ Y =⋃{Z : Z ∩X ⊆
Y }, so that ¬X =⋃{Z : Z ∩X = ∅}.

If 〈U,R〉 is a pre-ordered space, by �R(U) we denote three objects: (i) the
set of all order filters (or up-sets) of 〈U,R〉, (ii) the Alexandrov topology of the
topological space τ (U) = 〈U,�R(U)〉, (iii) the Heyting algebra with the operations
of Definition 38.

Example 40 Example 34 continued. The relational space (U,R) induces the fol-
lowing topological space 〈U,�R(U)〉, a.k.a. Heyting algebra:

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

Verify: {a, c} �⇒ {a} = {a, b, b′}.
¬{a} = {b, b′}, ¬{b, b′} = {a, c}, {a} ∪ ¬{a} =
{a} ∪ {b, b′} = {a, b, b′} � U .
The operators ¬ and (lR)(−) are different though
formally both correspond to I−. Indeed, ¬ applies to
elements of the algebra and not to generic subsets of
U , as (lR) does.
¬I({b, b′, c}) = I − I({b, b′, c}) = I − {b, b′} =
{a, c} I(−{b, b′, c}) = I({a, v}) = {a}. There-
fore, ¬(lR)(A) �= (lR)(−A). Indeed, ¬(lR)(A) =
IC(−A) �= I(−A) = (lR)(−A). It is immediate to
verify that the specialisation preorder � is R itself.
For instance c � a because a is in all the open sets
containing c, but not the converse.
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4.3 Duality

The relationship between finite Heyting algebras H and preorders is expressed in
terms of duality. We say that an element x of a (at most countable) Heyting algebra
H is co-prime, if x = ∨

X implies x ∈ X. In other words, x is not the union
of elements different from it. Let J (H) be the set of co-prime elements of H and
J(H) = (J (H),") where " is the reverse of the order ≤ of H. Let �"(J(H)) =
{↑" X : X ⊆ J (H)} be the set of all the order filters of J(H) and H(J(H)) =
〈�"(J(H)),⊆〉. Then H and H(J(H)) are lattice isomorphic. The isomorphism ϕ

is given by: ϕ(a) = {p ∈ J (H) : p ≤ a} (pay attention that ≤ is the order in H).
Moreover, J(H(J(H))) and J(H) are order isomorphic.

Notice that H is used both as an algebraic structure and a constructor of algebraic
structures.

The elements of J (H) may be thought of as “abstract points”. If the elements
of H are thought of as “properties”, then abstract points are bundles of properties
(which means that points have their properties as proxies). This interpretation is
supported mathematically. In fact, let 2 = 〈{0, 1}, 0 ≤ 1〉 be the so called Sierpiński
frame. Let ψ : H �−→ 2 be a lattice homomorphism. If the elements of H are
seen as a properties, then the true kernel ψ−1(2), which is {x : ψ(x) = 1}, is a
principal filter ↑≤ p = {x : p ≤ x} in H and, intuitively, gathers together the
“virtual points” which fulfil the property p, for some p. If a point a fulfils a property
p, we write p |� a. The element p of H which generates the filter is the least
“virtual point” fulfilling that property. Otherwise stated, p is both a property and
the representative of the “virtual points” which fulfil p itself. Therefore we can
denote this homomorphism ψ with−→p . Under this respect, the isomorphism ϕ gains
a straightforward interpretation:

ϕ(a) = {p ∈ J (H) : a ∈↑≤ p} = {p ∈ J (H) : a ∈ −→p −1(1)} = {p ∈ J (H) : p |� a}

The set ℋℴ𝓂(H, 2) of all the homomorphism from H to 2 is, thus, the set of
properties representing the virtual points which fulfil them. There is a bijection
between J (H) and ℋℴ𝓂(H, 2). Therefore we consider J (H) to be the set of
abstract points defined by H. Now the reverse order" is understood: x " y in J(H)

if and only if ↑≤ x ⊆↑≤ y and from Lemma 27, if y ≤ x in H, then ↑≤ x ⊆↑≤ y.
Actually, this is the order on ℋℴ𝓂(H, 2).

Example 41 In order to appreciate the construction of abstract points through
duality, let us start with an abstract version H of the Heyting algebra of Example 40.
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1

1

0

α β

δγ

1

0

1

2H

0

α β

δγ

0

1

2H

(H, 2)
α

γ β

1

J(H)

∅

{α} {β}

{α, β}{α, γ }

{α, β, γ }

{α, β, γ, 1}
H(J(H))

Notice, for instance, that there is no homomorphism
−→
δ because if all the elements

of ↑ δ were mapped on 1 and the others to 0, then
−→
δ (α) = 0,

−→
δ (β) = 0 so that−→

δ (α ∨ β) = −→δ (δ) = 1 �= −→δ (α) ∨ −→δ (β) = 0. And the same happens to all the
non co-prime elements of H. The properties fulfilled by δ are: ϕ(δ) = {p ∈ J (H) :
p ≤ δ)} = {α, β} =↑" {α, β}.
If H is a lattice of set (that is, a topological space), it might be the case that the
abstract points are fewer than the original points. Indeed, if two points p,p′ cannot
be separated by means of an open set (i.e. by means of a “personal” property),
the homomorphism makes them collapse onto the same abstract point. In other
words, from a topological point of view H and H(J(H)) are isomorphic but not
homeomorphic. We shall see later that the collapse of such “redundant” points is
called T0-ification (or soberification) of the space.3

This is what can be seen in our example, indeed.

3In the infinite case there can occur a dual situation: there are not enough points to separate
properties. In this case the dual operation of T0-ification is called spatialisation.
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Example 42 Example 13 continued.

{a}

{a, c} {b, b }
J R(U))

{{a}} {{b, b }}

{{a}, {b, b }}{{a}, {a, c}}

{{a}, {a, c}, {b, b }}

{{a}, {a, c}, {b, b }, {a, b, b , c, v}}

H(J R(U)) ∅{a, b, b , c, v}

It is evident that H(J(�R(U)) and �R(U) are isomorphic but the isomorphism ϕ

makes the two “twin” points b and b′ collapse onto the single abstract point {b, b′}.
In fact, it maps the two-points element {b, b′} onto the singleton {{b, b′}}. In turn,
J(�R(U)) is order isomorphic to (U/≡,≤), where≡ is defined as p ≡ p′ iff pRp′
and p′Rp and ≤ is the order inherited by the equivalence classes from R: [x]≡ ≤
[y]≡ if and only if xRy (equivalently, one can set p ≡ p′ iff p � p′ and p′ � p,
where � is the specialisation preorder of the topological space 〈U,�R(U)〉).

5 Rough Sets and the Algebras of Rough Set Systems

A rough set is an equivalence class on the powerset ℘(U) modulo the equivalence
of the two approximations (lR)( ) and (uR)( ):

Definition 43 Let AS(U/R) be an approximation space, with R any binary relation
on U . Two sets A,B ∈ ℘(U) are said to be rough equal, denoted A ≈ B, if
(lR)(A) = (lR)(B) and (uR)(A) = (uR)(B). A rough set is an equivalence class
modulo≈. The rough set of a set A is denoted as [A]≈.

Since the two approximations uniquely define a rough set, given any subset A of U ,
[A]≈ can be represented in the following ways (see Definition 33):

Definition 44 Let AS(U/R) be an approximation space and A ⊆ U .

1. 〈(lR)(A), (uR)(A)〉—increasing representation—Icr(A)

2. 〈(uR)(A), (lR)(A)〉—decreasing representation—Dcr(A)

3. 〈(lR)(A), (eR)(A)〉—disjoint representation—Dsj (A)

4. 〈(lR)(A), (bR)(A)〉—boundary representation—Bdr(A)

Let us focus our attention on the decreasing and disjoint representations:
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Definition 45 Let AS(U/R) be an approximation space. Then we set:

Dsj (AS(U/R)) = {〈(lR)(A), (eR)(A)〉 : A ⊆ U} (43)

Dcr(AS(U/R)) = {〈(uR)(A), (lR)(A)〉 : A ⊆ U} (44)

The above representations are interchangeable. For instance, the following functions
link decreasing represented and disjoint represented rough sets:

ρ : Dsj (A) �−→ Dcr(A); ρ(〈a1, a2〉) = 〈−a2, a1〉 (45)

ρ−1 : Dcr(A) �−→ Dsj (A); ρ−1(〈a1, a2〉) = 〈a2,−a1〉 (46)

The justification of these functions are straightforward. For instance, ρ oper-
ates as follows given a1 = IR(X) and a2 = −CR(X) for some X ⊆ U :
ρ(〈IR(X),−CR(X)〉 = 〈−CR(X), IR(X)〉 = 〈CR(X), IR(X)〉, which is the
decreasing representation of the rough set of X.

Notation In view of the above discussion, if R is a preorder from now on the
approximation space AS(U/R) will be considered a topological space and identified
with its topology �R(U). The system of rough sets from this space in disjoint
representation will be denote by Dsj (�R(U)) and in decreasing representation by
Dcr(�R(U)).

Example 46 Continued from Example 34 where A = {b, b′, c}:
• Icr(A) = 〈{b, b′}, {b, b′, c, v}〉 • Dcr(A) = 〈{b, b′, c, v}, {b, b′}〉
• Dsj (A) = 〈{b, b′}, {a}〉 • Bdr(A) = 〈{b, b′}, {c, v}〉
Below we depict the entire rough set system, in disjoint and in decreasing
representation induced by the approximation space AS(U/R) which is depicted in
Example 40 and we identify with the topology �R(U).

, U

, {a, c, b, b

, {a, b, b , {a, c

a}, {b, b , {a b, b }, {a, c

a}, b, b }, {aa, c}, {b, b

a, c}, a, b, b },

a, b, b , c},

U, R(U))

,

v},

v, c}, v, b, b },

v, a, c}, {a v, b, b , c}, v, b, b }, {b, b

U, {a v, b, b , c}, {b, bv, a, c}, {a, c

U, {a, c U, {a, b, b

U, {a, b, b , c

U,U R(U))
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The following table shows the Dsj image of ℘(U). If only b is in a set X then the
corresponding set with b′ is omitted (for instance, 〈{c, v, b} stays also for {c, v, b′}).
First Dsj (∅) = 〈∅, U〉, Dsj (U) = 〈U,∅〉. Then:

X {v} {c}, {c, v} {a}, {a, v} {a, c}, {a, c, v}
Dsj(X) 〈∅, {a, b, b′, c}〉 〈∅, {a, b, b′}〉 〈{a}, {b, b′}〉 〈{a, c}, {b, b′}〉

X {b}, {b, v} {c, v, b}, {c, b} {a, b}, {a, v, b} {a, c, v, b}, {a, c, b}
Dsj(X) 〈∅, {a, c}〉 〈∅, {a}〉 〈{a}, ∅〉 〈{a, c}, ∅〉

X {b, b′}, {b, b′, v} {b, b′, c}, {b, b′, v, c} {a, b, b′}, {a, b, b′, v} {a, b, b′, c}
Dsj(X) 〈{b, b′}, {a, c}〉 〈{b, b′}, {a}〉 〈{a, b, b′},∅〉 〈{a, b, b′, c},∅〉

The reader can verify that Dcr(�R(U)) = ρ(Dsj (�R(U)).
For instance, ρ(〈{a}, {b, b′}〉 = 〈−{b, b′}, {a}〉 = 〈{v, a, c}, {a}〉.

Any ordered pair of Dcr(�R(U)) has a closed set of 〈U,�R(U)〉 as first element
and an open set as second, which is included in the closed set. Closed sets are
order-ideals in (U,R), while open sets are order-filters. Notice that any open set
of 〈U,�R(U)〉 is a closed set in 〈U,�R�(U)〉, and vice-versa.

Now we have to pay attention to a basic fact. The ordered pair 〈{v, a, c},∅〉 is
made of the above ingredient, namely, decreasing elements of �R(U). Still it is
not the representation of any rough set. Indeed, assume {v, a, c} = (uR)(X) and
∅ = (lR)(X), for some subset X of U . Since a ∈ (uR)(X), R(a) ∩ X �= ∅. But
R(a) = {a}, so that a ∈ X. Therefore, R(a) ⊆ X and we conclude that a ∈
(lR)(X), which contradicts the assumption (lR)(X) = ∅.

In turn, the ordered pairs of Dsj (�R(U)) are made of disjoint open sets.
However, the disjoint ordered pair 〈{b, b′},∅}〉 is made of these ingredients, but it
is not a rough set. Indeed, if the second element, ∅, is the complement of the upper
approximation (i.e. closure) of a set X, then this upper approximation is U , so that
a belongs to it. Hence, from the previous reasoning one obtains that a should be in
the lower approximation of X, too, which is not the case.

Pay attention that this problem does not occur because the lower approximation,
in the first case, or the complement of the upper approximation, in the second case,
are empty sets. Consider the following example:

Example 47 U = {v, a, b, c} and R is the partial order below:

v

a cb
〈{a}, {c}〉 is a pair of disjoint open sets, but if {a} =
IR(X) then R(b) �⊆ X and since R(b) = {b}, b /∈
X. So, b ∈ −X. In consequence R(b) ⊆ −X and
b ∈ IR(−X) = −CR(X), which, therefore, cannot
be {c}.

Actually, the next sections are focused on obtaining Dsj (�R(U)) from the lattice
of all the ordered pairs of disjoint elements of a topological approximation space
�R(U), which now we formally define:
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Definition 48 Let �R(U) be an approximation space with R a preorder.
Dsj (U/R) = {〈a1, a2〉 : a1, a2 ∈ �R(U) & a1 ∩ a2 = ∅}
If we want, instead, a lattice of decreasing elements, we have to decide “elements
of what?”. Since the first element, in decreasing representation, is the closure of a
set X, it cannot belong to �R(U). For instance 〈{a, c}{a}〉 is a pair of decreasing
elements of �R(U) but it does not represent any rough set. Actually, the first
element of a decreasing representation of rough sets is the complement of some
open set of �R(U) which is an open set in �R�(U). If R is an equivalence relation
then R = R�, so we do not notice the difference. But if R is a preorder or a partial
order then we must take care with it.

In particular we have to take care of the definition of the operations which
manipulate ordered pairs of decreasing elements, because in some cases they
transform elements of the topology �R(U) into elements of the opposite topology
�R�(U). We shall see this interesting point at due time. By now, our analysis
will focus on the disjoint representation which make it possible to operate just on
elements of a single structure.

Now we have to face another problem.
As we have seen, if we take the set of all ordered pairs of disjoint elements

of �R(U), which we denote by Dsj (U/R), respectively of all the ordered pairs of
decreasing elements in �R�(U)×�R(U), denoted Dcrj (U/R)), we have elements
which do not represent any rough set.

From the above discussion, we need a way to exclude from Dsj (U/R) the
ordered pairs which do not fulfil the following condition:

X1 ∪X2 ⊇ S (47)

where S is the set of all isolated points: S
⋃{x : R(x) = {x}}.

In Example 94 below one can see an illustration of what we have to do, with
some mathematical means.

From Dcr(U/R) we have to exclude the ordered pairs which do not fulfil the
condition X1 ∩ S = X2 ∩ S.

To end this section, we sum up the issue. If R(X) = {x} then topologically x is
an isolated point. Isolated points cannot belong to the boundary of any set, for the
reason illustrated in Example 47, which formally runs as follows: if x ∈ X, then
R(x) ⊆ X so that x ∈ IR(X). If x /∈ X, then x ∈ −X so that R(x) ⊆ −X and,
in consequence, x ∈ IR(−X). In the first case x ∈ CR(U) but x /∈ −IR(X). In the
second case x ∈ −IR(X) but x /∈ CR(X). In both cases x /∈ CR(X) ∩ −IR(X) =
BR(X).
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6 Rough Set Systems, Grothendieck Topologies
and Lawvere-Tierney Operators

The fact that any isolated point must belong either to the positive part (lR)(X), or
to the negative part−(uR)(X) of a rough set, is a sort of Excluded Middle localized
on S. Indeed, in general given x ∈ U and X ⊆ U , the assignment of x to X is given
by a three-valued characteristic function:

χx(X) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈ (lR)(X)

1/2 if x ∈ (uR)(X) ∩ −(lR)(X)

0 if x ∈ −(uR)(X)

(48)

But if x ∈ S, then χ takes just value 0 or 1.
Intuitively, Classical Logic is locally valid on S.
Local validity is a notion wide studied in Algebraic Geometry which provides a

powerful tool, Grothendieck topology, which we shall apply in this Section.

6.1 Grothendieck Topologies and Local Validity

Definition 49 (Grothendieck Topology) Let P = 〈U,R〉 be a preorder. We recall
that �R(U) = {R(X) : X ⊆ U} is the set of all order filters over P. A Grothendieck
topology on the preorder P is a map J : U �−→ ℘(�R(U)); J[x] ⊆ �R(R(x)) such
that:

GT1. R(x) ∈ J[x],∀x ∈ U ,

GT2. R(x ′) ∩ S ∈ J[x ′],∀x ′ ≥ x,∀S ∈ J[x].
GT3. ∀x ∈ U,∀S ∈ J[x],∀S′ ⊆ R(x) such that S′ ∈ �R(U), if ∀x ′ ∈ S,R(x ′) ∩

S′ ∈ J[x ′], then S′ ∈ J[x].

If a filter S belongs to J[x], we say that S covers x. J[x] is called the open-cover
system of x. G = {J[x] : x ∈ U} and 〈P, G〉 is called an ordered site.

From a “granular” point of view, Grothendieck topologies formalize the notion “To
be locally true” in the following sense: a property P is locally true at point x in a
granulated space S if every granule G such that x ∈ G contains a granule G′ such
that x ∈ G′ and G has property P , that is, the validity set �P � is included in G′.

If S is a topological space, as in the case we are dealing with, then one substitutes
“open neighbourhood” for “granule” and obtains that a topological space S has
property P locally valid at a point x, if the set of P -neighbourhoods of x (i.e. the set
of neighbourhoods of x included in �P �) is cofinal in the neighbourhood filter of x.
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By definition, a Grothendieck open-cover of x is a set of open neighbourhoods of x

in the given topology.

Example 50 In our standard example �R(U), suppose �P � = {a}, then c �|� P . But
the granules (i.e. open neighbourhoods) containing c are {a, c}, {a, c, b, b′}, and U

an all of them contain {a}. So P is locally valid at c. On the contrary, for instance, b
has three granules containing {a} (they are {a, b, b′}, {a, c, b,′ } and U ), but there is
an open neighbourhood of b not containing {a} and it is {b, b′}. So P is not locally
valid at b (or at b′, of course).

As much as the family of open (closed) sets of a topology induces an interior
(closure) operator, an ordered site induces a particular operator. This operator is
partially an interior and partially a closure operator of a usual topology (and we
shall see the reason why).

6.2 Lawvere-Tierney Operators

Any Grothendieck topology induces on �R(U) a closure operator J : J (A) = {x :
A∩R(x) ∈ J[x]}. In other terms, if A = �P � then J (A) is the set of points in which
P is locally valid. J is a Lawvere-Tierney operator which we define at pointless
level:

Definition 51 (Lawvere-Tierney Operators) Given a Heyting algebra H, J :
H ��⇒ H is a Lawvere-Tierney operator if the following hold:

• x ≤ J (x)—inflation,
• J (J (x)) = J (x)—idempotence,
• J (x ∧ y) = J (x)∧ J (y)—multiplicativity.

From multiplicativity we obtain monotonicity: if x ≤ y then J (x) ≤ J (y).
The above properties has the following intuitive motivations:
In the first place, since x is more specialised than y if it enjoys more properties

than y, that is, it belongs to open sets from which y is excluded, but not the other
way around, conversely we say that a property P is stronger than Q if its domain
of validity is “more specialised” than that of Q. So we have: (i) If the property P

is stronger than property Q, then P is locally stronger than Q. (ii) The domain of
validity of P is stronger than the domain of local validity of P . (iii) The domain of
local validity of the domain of local validity of a property P equals the domain of
local validity of P itself. (iv) The domain of local validity of (P ∧Q) is the inf of
the domains of local validity of P and Q.

We have seen that given a Grothendieck topology we can produce a Lawvere-
Tierney operator connected to it. Now, symmetrically, we restore a Grothendieck
topology from a Lawvere-Tierney operator on �R(U). The following result can be
found in [15] or [23].
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Lemma 52 Given a preorder P = 〈U,R〉 and a Lawvere-Tierney operator J on
�R(U), the family

{J[x] : J[x] = {R(x) ∩X : x ∈ J (X) & x ∈ U} (49)

is a Grothendieck topology.

Definition 53 (Local Validity in an Ordered Site) A forcing relation |� between
elements of P and the set I of formulas of propositional Intuitionistic logic is a
relation |�⊆ U ×I , such that for any formula α ∈ I , p ∈ U :

If p |� α then ∀p′(p′ ∈ R(p) ⇒ p′ |� α). (50)

which means that if p ∈ �α� then p ∈ [e]|�(�α�). Clearly, for any α, �α� belongs to
�R(U).

Given an ordered site 〈P, G〉, we say that a formula α is locally valid at point
p ∈ P, in symbols p |� 〈l〉(α), if R(p) ∩ �α� covers p in the topology G, that is, if
{p′ ≥ p : p′ |� α} belongs to the open-cover system of p in G.

Example 54 The following is a Grothendieck topology which we name Gδ for
reasons that will be clear soon:

x a b b′ c v

J δ[x] {{a}} {{b, b′}} {{b, b′}} {{a}, {a, c}} {{a, b, b′}, {a, b, b′c}, U}

Let us compute J δ({a}), where J δ is the Lawvere-Tierney operator induced by
Gδ: R(a)∩ {a} = {a} ∈ J δ[a], R(c)∩ {a} = {a} ∈ J δ[c]. For no other x, R(x)∩ {a} ∈
J δ[x]. So J δ({a}) = {a, c}. The other cases follow suit. Therefore, if �P � = {a} then
P is locally valid at c even if c /∈ �P �, as anticipated in Example 50.

X ∅ {a} {b, b′} {a, b, b′} {a, c} {a, b, b′, c} U

J δ(X) ∅ {a, c} {b, b′} U {a, c} U U

Vice-versa, given J δ we can compute Gδ. For instance J δ[c] is obtained as c ∈
J δ({a}), J δ({a, c}), J δ({a, b, b′}), J δ({a, b, b′, c}) and J δ(U). Therefore:

J δ[c] = {R(c) ∩ {a}, R(c) ∩ {a, c}, R(c) ∩ {a, b, b′}, R(c) ∩ {a, b, b′, c}, R(c) ∩ U }
= {{a, c} ∩ {a}, {a, c} ∩ {a, c}, {a, c} ∩ {a, b, b′}, {a, c} ∩ {a, b, b′, c}, {a, c} ∩ U }
= {{a}}, {a, c}}.

Notice that for any x, J δ[x] = {Y : J δ(Y ) = J δ(X) & Y ⊆ X}.
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6.3 Congruence

For the comfort of the reader we recall some definitions and results.

Definition 55 (Congruence) Let L = 〈U, ϕ〉 be a set equipped with an n-ary
operation ϕ and ≡ an equivalence relation on U . Then ≡ is called a congruence if
for all a1 . . . an, b1 . . . bn ∈ U, a1 ∈ [b1]≡, . . . , an ∈ [bn]≡ implies ϕ(a1, . . . , an) ∈
[ϕ(b1, . . . , bn)]≡. If this is the case, we say that ≡ is compatible with ϕ.

Therefore, given a Heyting algebra H and an equivalence relation≡ on H we say
that≡ is a∧-congruence if it is compatible with ∧, that is if a1 ∈ [b1]≡, a2 ∈ [b2]≡
implies a1 ∧ a2 ∈ [b1 ∧ b2]≡. Similarly we define the notion of ∨-congruence and
�⇒-congruence. If all the three compatibilities are satisfied, we say that ≡ is a
Heyting algebra-congruence. Remember that 0 =∨ ∅ and 1 =∧ ∅.

Lemma 56 Let L = 〈U, ϕ〉 and L′ = 〈U ′, ϕ〉 be two sets equipped with the same n-
ary operation ϕ. Let f be an homomorphism between L and L′. Set for all a, b ∈ L,
a ≡f b ⇐⇒ f (a) = f (b). Then ≡f is a congruence on L.

Proof The standard and straightforward proof is the following: Since ≡f is
defined by means of an equality, then it is an equivalence. Now assume a1 ∈
[b1]≡f , . . . , an ∈ [bn]≡f . Hence, since f preserves ϕ, f (ϕ(a1, . . . , an)) =
ϕ(f (a1), . . . , f (an)). But by assumption f (ai) = f (bi). Therefore, f (ϕ(a1, . . . ,

an)) = ϕ(f (b1), . . . , f (bn)) = f (ϕ(b1, . . . , bn)), so that ϕ(a1, . . . , an) ∈
[ϕ(b1, . . . , bn)]≡f . ��

The congruence≡f is called the kernel of f .

Definition 57 (Quotient Structure) Let L = 〈U, ϕ〉 be a set with an n-ary
operation ϕ and ≡ an equivalence relation on L. Then:

1. U/≡ := {[a]≡ : a ∈ U} is called the quotient set of U .
2. For all a, b ∈ U , define ϕ≡([a]≡, [b]≡) := [ϕ(a, b)]≡. Then L/≡ := 〈U/≡, ϕ≡〉

is called the quotient structure of L.

If there is no risk of confusion, we write ϕ also for ϕ≡, thus, for instance, ∧ instead
of ∧≡.

Lemma 58 If L is a lattice and ≡ a congruence on L, then L/≡ is a lattice and
the map q : L �−→ L/≡; q(a) = [a]≡ is a homomorphism. The map q is called the
natural quotient map.

Theorem 59 (Fundamental Homomorphism Theorem for Lattices) Let L and
L′ be lattices and f an homomorphism of L onto L′. Then the map g : L/≡f �−→ L′
given by g([a]≡f ) = f (a) is independent of the representative a, that is, for all
a, b ∈ L, [a]≡f = [b]≡f implies g([a]≡f ) = g([b]≡f ).
Moreover g is an isomorphism between L/≡f and L′.



Lessons on the Topology and Algebra of Rough Sets 371

Finally, if q is the natural quotient map, then≡q and≡f coincide and the following
diagram commutes, that is, g(q) = f :

L/≡f

L L

g

f

Example 60 Consider the abstract Heyting algebra of Example 41.

0

α β

δγ

1

0

1

2

HH

[0, β]≡f

[α, δ]≡f

[ 1]≡f

H/ ≡f

0

α β

δγ

1f

g

6.4 Lawvere-Tierney Operators and Heyting Algebra
Congruences

Lemma 61 Let H be a Heyting algebra and a∈H. Let us set the following operator
on H:

J a(x) = a �⇒ x (51)

Then J a is a Lawvere-Tierney operator.

Proof This is a standard result in Algebraic Geometry (see [23]). However we
provide a simple proof which exhibits how adjointness properties may be used.
Indeed, in any Heyting algebra H, from the adjointness property, y ∧ a ≤ x iff
y ≤ a �⇒ x, for any y. But x ∧ a ≤ x and one obtains x ≤ a �⇒ x, hence J a is
increasing. Idempotence follows from the following equations: a �⇒ (a �⇒ x) =
(a∧a) �⇒ x = a �⇒ x. This is an application of the Curry property of ∧ and�⇒
which can be obtained from adjointness: x ≤ y �⇒ (w �⇒ z) iff x∧y ≤ w �⇒ z

iff x ∧ (y ∧ w) ≤ z, that is, x ≤ (y ∧ w) �⇒ z. Finally, multiplicativity derives
again from the multiplicativity of upper adjoints and �⇒ is upper adjoint. ��
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Lemma 62 Let H be a Heyting algebra and F a filter on H. Let us define for all
a, b ∈ H, a ≡F b iff ∃f ∈ F such that a ∧ f = b ∧ f . Then ≡F is a Heyting
algebra congruence.

Proof Suppose x ∈ [y]≡F and z ∈ [w]≡F . Then for some f ∈ F , x ∧ f = y ∧ f

and z∧ f = w∧ f . Now, (x ∨ z)∧ f = (x ∧ f )∨ (z∧ f ) = (y ∧ f )∨ (w∧ f ) =
(y ∨ w) ∧ f . Hence, x ∨ z ∈ [y ∨ w]≡F . Dually one obtains ∧-compatibility.
We have to prove the case of �⇒, that is, (x �⇒ z) ∧ f = (y �⇒ w) ∧ f .
Now, let q ∧ x ≤ z Then q ∧ f ∧ x ≤ z ∧ f . From the congruence assumptions
we obtain q ∧ f ∧ y ≤ w ∧ f and, a fortiori, q ∧ f ∧ y ≤ w, which means that
q∧f ≤ y �⇒ w∧f . Since q is arbitrary among the elements a such that a∧x ≤ z,
in particular we can set q = x �⇒ z, obtaining x �⇒ z ∧ f ≤ y �⇒ w ∧ f .
With a symmetric reasoning we obtain y �⇒ w ∧ f ≤ x �⇒ z ∧ f and conclude
x �⇒ z ∧ f = y �⇒ w ∧ f . ��

In particular, if F is a principal filter generated by the element p, one has that
a ∧ f = b ∧ f for some f ∈ F if and only if a ∧ p = b ∧ p. However, if we set
F̂ (a) = a ∧ p, we indeed have that a ≡p b ⇐⇒ F̂ (a) = F̂ (b) is a congruence,

but F̂ is not a Lawvere-Tierney operator, because F̂ (a) ≤ a.
Anyway, there is a Lawvere-Tierney operator J such that≡J coincides with≡F̂ ,

and it is Jp:

Theorem 63 Given a Heyting algebra H and p ∈ H, set a ≡p b if and only if
a ∧ p = b ∧ p and let a ≡Jp b iff Jp(a) = Jp(b). Then ≡p coincides with ≡Jp .

Proof A proof is given in Proposition 7.4.2 of [39]. A straightforward proof is the
following, anyway. The lower adjoint of Jp is ∧p. From this the result is just an
application of the adjointness relation (cf. (4.1)). ��

Therefore, given an Heyting algebra H and an element a ∈ H, ≡J a is a
congruence on H. Here we report a more general result about the relation between
congruence and Lawvere-Tierney operators on a Heyting algebra (see [15]):

Theorem 64 Let ≡ be a congruence on a Heyting algebra H. Define:

J≡ : H �−→ H; J≡(p) =
∨
{x : x ≡ p} (52)

Then J≡ is a Lawvere-Tierney operator and x ≡ b iff J≡(x) = J≡(y), that is, ≡
and ≡J≡ coincide.

Proof We just prove the first part. From (52) p ≤ J≡(p) and J≡(J≡(p)) = J≡(p)

since J≡(p) is a maximal element. From p ≡ J≡(p) and q ≡ J≡(q) one sees that
(p ∨ q) ≡ J≡(p)∨ J≡(q). Therefore, again for (52), J≡(p)∨ J≡(q) ≤ J≡(p ∨ q).
Suppose now p ≤ q . Then p∨q = q so that J≡(p)∨J≡(q) ≤ J≡(p∨q) = J≡(q).
Thus, J≡ is monotone. Similarly, J≡(p)∧J≡(q) ≤ J≡(p∧q). But from p∧q ≤ p

and p ∧ q ≤ q monotonicity gives J≡(p ∧ q) ≤ J≡(p) and J≡(p ∧ q) ≤ J≡(q) so
that J≡(p ∧ q) ≤ J≡(p) ∧ J≡(q), from which multiplicativity follows. ��
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Actually, there is a one-one correspondence between Heyting algebra congru-
ences ≡ and Lawvere-Tierney operators which can be found in [15].

In particular we obtain:

Theorem 65 Let H be a Heyting algebra and J a Lawvere-Tierney operator on H.
Let us set for all a, b ∈ H,

a ≡J b ⇐⇒ J (a) = J (b) (53)

Then ≡J is congruence on H.

Later in this chapter we provide a proof for a particular important case of the above
theorem that we are going to introduce.

6.5 Dense Elements of a Heyting Algebra

If not otherwise stated, in this section H will denote a Heyting algebra and a, b,

a1, b1, x, y, . . . will denote elements of H.

Definition 66 An element x ∈ H is said to be dense if ¬x = 0. It is called regular
if ¬¬x = x.

The following is immediate:

Theorem 67 An element δ is dense iff ¬¬δ = 1 iff for all x ∈ H, x ∧ δ �= 0.

Theorem 68 If D is the filter of all dense elements of H, then for all a, b ∈ H,
a ≡D b iff ¬a = ¬b iff ¬¬a = ¬¬b.

The relation ≡D is called Glivenko congruence. The proof is a standard result in
Geometric Logic (see [23]). However, we give an algebraic proof in the case D is a
principal filter generated by an element δ which, therefore, is the least dense element
of H.4

Lemma 69 Let δ be the least dense element of H. Then for all a, δ∧ a = δ∧¬¬a.

Proof a ∨ ¬a ≤ ¬¬a ∨ ¬a and both terms are dense elements in H. Therefore,
δ ≤ a ∨ ¬a ≤ ¬¬a ∨ ¬a. Hence, δ ∧ (a ∨ ¬a) = δ = δ ∧ (¬¬a ∨ ¬a), which
means (δ ∧ a) ∨ (δ ∧ ¬a) = δ = (δ ∧ ¬¬a) ∨ (δ ∧ ¬a). Since δ ∧ ¬a is disjoint
from the other terms of the disjunctions, one obtains δ ∧ a = δ ∧ ¬¬a. ��
Corollary 70 Let δ be the least dense element of H, then for all a, b, δ ∧ a = δ ∧ b

if and only if ¬a = ¬b.

4If H is finite then it has the least dense element. An infinite Heyting algebra, instead, may lack
this element.
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Proof ¬a = ¬b if and only if ¬¬a = ¬¬b. Therefore, from Lemma 69 one
obtains: δ∧a = δ∧b iff δ∧b = δ∧¬¬a iff δ∧a = δ∧¬¬b iff δ∧¬¬b = δ∧¬¬a

iff δ ∧ ¬b = δ ∧ ¬a. From these equations ¬a = ¬b. ��
Corollary 71 If δ is the least dense element of H, then a ≡J δ b if and only if
¬¬a = ¬¬b.

Lemma 72 Let a ≤ x ≤ ¬¬a. Then ¬a = ¬x and, thus, ¬¬a = ¬¬x.

Proof From the hypothesis one has ¬¬¬a ≤ ¬x ≤ ¬a, that is, ¬a ≤ ¬x ≤ ¬a.
Therefore, ¬a = ¬x. ��
Lemma 73 Let a ≤ b and for some y, b ∧ y ≤ a. Then a ∧ y = b ∧ y.

Proof From a ≤ b and b ∧ y ≤ a one obtains, respectively, a ∧ y ≤ b ∧ y and
b∧ y ∧ y ≤ a ∧ y, that is, b∧ y ≤ a ∧ y. Therefore, a ∧ y ≤ b∧ y ≤ a ∧ y, so that
a ∧ y = b ∧ y. ��
Lemma 74 Let a ≤ x ≤ ¬¬a. Then x �⇒ a is dense.

Proof From Lemma 72 ¬¬a = ¬¬x. Moreover, from Theorem 37, ¬(x �⇒ a) =
¬¬x ∧ ¬a = ¬¬a ∧ ¬a = 0. We conclude that x �⇒ a is dense. ��
Lemma 75 Let δ be dense. Then ¬(δ �⇒ a) = ¬a.

Proof ¬(δ �⇒ a) = ¬¬δ ∧ ¬a = 1 ∧ ¬a = ¬a ��
Corollary 76 Let δ be dense. Then δ �⇒ a ≤ ¬¬a.

Proof δ �⇒ a ≤ ¬¬(δ �⇒ a) = ¬(¬(δ �⇒ a)) = ¬¬a. ��
Theorem 77 Let H be a Heyting algebra with least dense element.

1. Let δ be a dense element. Then δ �⇒ a = a or δ �⇒ a = ¬¬a.
2. Let δ be the least dense element of H. Then δ �⇒ a = ¬¬a.
3. Let δ be the least dense element of H. Then δ �⇒ a = ¬a �⇒ ¬δ.

Proof (1) We have two cases: C1: ¬¬a ∧ δ ≤ a and C2: ¬¬a ∧ δ � a. Case
C1. By adjointness, from ¬¬a ∧ δ ≤ a one obtains ¬¬a ≤ δ �⇒ a and from
δ �⇒ a ≤ ¬¬a, provided by Lemma 76, δ �⇒ a = ¬¬a. This result encompasses
also the case a = 0, because ¬¬0 = 0. Case C2. Let x = δ �⇒ a. Therefore, from
adjunction x∧δ ≤ a. From Lemma 6.18, x ≤ ¬¬a. It cannot be x = ¬¬a, because
from assumption ¬¬a ∧ δ � a, so that both x ∧ δ ≤ a and x ∧ δ � a ought to be
true. Since δ � a, this contradiction occurs for every x such that a � x ≤ ¬¬a. It
follows that x must be a itself.
(2) If in the proof of (1) one uses the fact that δ ∧ a = δ ∧ ¬¬a because δ is
the least dense element, one obtains the result. Alternatively, from Theorem 63 and
Lemma 69, δ �⇒ a = δ �⇒ ¬¬a ≥ ¬¬a. So, from Lemma 76 we obtain the
proof. Another proof exploits adjunction: from Lemma 69 ¬¬a ∧ δ = a ∧ δ ≤ a so
that by adjunction¬¬a ≤ δ �⇒ a. But from (1) δ �⇒ a ≤ ¬¬a. (3) is a corollary
of (2) because ¬a �⇒ ¬δ = ¬a �⇒ 0 = ¬¬a. ��
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Therefore, the Lawvere-Tierney operator J δ, with δ least dense element of a
Heyting algebra H can be re-written as ¬¬. Now we prove the specialisation to J δ

of Theorem 65.

Theorem 78 The relation a ≡¬¬ b iff ¬¬a = ¬¬b is a congruence on H.

Proof a ∈ [x]¬¬ and b ∈ [y]¬¬ iff ¬¬a = ¬¬x and ¬¬b = ¬¬y which implies
¬¬a∧¬¬b = ¬¬x∧¬¬y. But in view of Theorem 37.(1), ¬¬ preserves meets so
that one obtains ¬¬(a ∧ b) = ¬¬(x ∧ y) and can conclude that a ∧ b ∈ [x ∧ y]¬¬.
Regarding disjunction, ¬¬(a ∨ b) = ¬¬(x ∨ y) iff ¬(¬a ∧ ¬b) = ¬(¬x ∧ ¬y).
But from the hypothesis of congruence, ¬a = ¬x and ¬b = ¬y, therefore, the
latter equation is true. A similar proof holds for�⇒: from the hypothesis¬¬a �⇒
¬¬b = ¬¬x �⇒ ¬¬y. Since ¬¬ preserves �⇒ we obtain ¬¬(a �⇒ b) =
¬¬(x �⇒ y) and we conclude that a �⇒ b ∈ [x �⇒ y]¬¬. From this and the fact
that ¬¬0 = 0 (or because ¬¬¬a = ¬a) one obtains the congruence for ¬. ��

Clearly the same result can be obtained from Theorem 63 plus Lemma 62.
So far we have seen the properties of Lawvere-Tierney operators on an abstract

Heyting algebra, and in particular the operator J δ. Now we discuss the same
properties in terms of Heyting algebras of an Alexandrov topology �R(U). In this
way we zoom-in the abstract structures, populate them with points and see how the
above manipulations act on them.

In this kind of spaces there is a fundamental example of Grothendieck topology
and conjugate Lawvere-Tierney operator, which will be key to our construction: the
so-called dense topology and its corresponding local operator.

Definition 79 Let τ (U) = 〈U,�(U)〉 be a topological space on a set U and X ∈
�(U). Then:

X is called dense in τ (U) if C(X) = U. (54)

X is called regular in τ (U) if IC(X) = X. (55)

Facts 6.1 The abstract (pointless) notions of Definition 66 and the concrete (with
points) ones coincide. Indeed, for any open set X of a topology �(U), C(X) = U

iff −C(X) = ∅ iff I(−X) = ∅ iff ¬X = 0. Moreover, IC(X) = IC(− − X) =
I(−I(−X)) = ¬¬X.

Definition 80 (Dense Topology) Given a finite topological space τ (U) on a set U

the dense topology is obtained by tacking the least dense element δ and using the
Lawvere-Tierney operator J δ on the Heyting algebra �(U).
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From the very definition (41) of �⇒ the following is straightforward:

Theorem 81 Given a topological space τ (U), for any X ∈ �(U), J δ(X)

= I(−δ ∪X).

Theorem 82 For any X ∈ �(U), J δ(X) = IC(X).

Proof From Theorem 77.(2). ��
As before, we call Gδ the Grothendieck topology induced by the operator J δ .

Therefore, given any open set O ∈ �R(U), in the ordered site 〈Gδ, P〉 a point p is
covered by O iff p ∈ ¬¬O (i.e. p ∈ IC(O)). Clearly, if p ∈ O then p ∈ IC(O),
but the interesting fact is when p /∈ O .

The following result is well-known and it is the translation at the point-level of
the above theorems:

Lemma 83 Let 〈Gδ, P〉 be the ordered site induced by the Lawvere-Tierney oper-
ator J δ. Let α be any Intuitionistic formula. Let us set for any p ∈ U , p |� 〈l〉(α)

iff �α� covers p in the ordered site. Then p |� 〈l〉(α) iff ∀p′(p � p′ ⇒ ∃p′′(p′ �
p′′ ∧ p′′ |� α)).

So this is the origin of the Grothendieck topology of Example 54, which the reader
can use an example of what we have just said.

In general, an upper adjoint is just multiplicative. When it is also additive we
are in a particular situation that will be analysed later during the discussion about
standard rough set systems. By now we have an operator J δ which does not preserve
disjunctions. However, the image of J δ, actually of any Lawvere-Tierney operator,
can be made into a Heyting algebra. This structure is very important to Rough Set
Systems.

6.6 The Boolean Algebra of the Regular Elements of a Heyting
Algebra

Given an operator ϕ on a lattice L, let us denote with Fϕ(L) the set of its fixed
points: Fϕ(L) := {x : x ∈ L ∧ ϕ(x) = x}. If ϕ is idempotent, then Fϕ(L), is just
the image of ϕ.

So, we have seen that given an Heyting algebra H the image FJ δ (H) of the
operator J δ inherits from H the operations ∧ and �⇒, but not ∨.

However on FJ δ (H) one can set a disjunction � and obtain a Boolean algebra.
We prove it in a general manner. The starting point is a classical result:

Lemma 84 [Tarski] Let L be a complete lattice and ϕ a multiplicative and
monotone operator on L. Then the set of fixed points of ϕ, Fϕ(L), is a complete
lattice.
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Proof (See [15]) Let a, b ∈ Fϕ(L). Let F a,b
ϕ := {x : ϕ(x) ≤ x & a, b ≤ x}

and set a � b := ∧
F a,b

ϕ . Since L is complete, such inf exists in L. We have to
show that it belongs to Fϕ(L). Since a, b ≤ a � b by monotonicity ϕ(a), ϕ(b) ≤
ϕ(a � b) which means a, b ≤ ϕ(a � b). Similarly it is proved that if x ∈ F a,b

ϕ ,
then ϕ(x) ∈ F a,b

ϕ , too. But by definition, if x ∈ F a,b
ϕ then a � b ≤ x. It follows

that for all such x, a � b ≤ x, hence ϕ(a � b) ≤ ϕ(x) ≤ x, so that by definition
ϕ(a � b) ≤ a � b and one concludes that a � b ∈ F a,b

ϕ . Hence ϕ(a � b) ∈ F a,b
ϕ and

from this, a � b ≤ ϕ(a � b). Therefore, ϕ(a � b) = a � b, so a � b ∈ Fϕ(L) and,
moreover, for all x, y ∈ Fϕ(L), a, b ≤ x implies a � b ≤ x. ��

Now we show that in the case of the operator J δ, alias ¬¬, the above operation
� is the double negation of the disjunction ∨ of H:

Lemma 85 Let the lattice L of Theorem 84 be a Heyting algebra H and ϕ be ¬¬.
Then for all a, b ∈ F¬¬(H), a � b = ¬¬(a ∨ b).

Proof Since p ≤ ¬¬p the requirement ϕ(p) ≤ p turns into ¬¬p = p. Therefore,
F a,b
¬¬ = {x : ¬¬(x) = x & a, b ≤ x}. Since ¬¬(a ∨ b) is a fixed point, it

belongs to F¬¬ and we have just to show that for all y such that ¬¬y = y and
a, b ≤ y, ¬¬(a ∨ b) ≤ y. Now, if a, b ≤ y, then a ∨ b ≤ y. By monotonicity,
¬¬(a ∨ b) ≤ ¬¬y = y. ��

As a corollary of Theorem 84, it is easy to show that ⇑ ϕ = {x : x ≤ ϕ(x)} and
⇓ϕ= {x : ϕ(x) ≤ x} are complete lattices. In the case of operator ¬¬, x ≤ ¬¬x,
all x ∈ H. Therefore ⇑ϕ= H and ⇓ϕ= F¬¬(H), because x ∈⇓¬¬ iff ¬¬x ≤ x ≤
¬¬x.

From Theorem 84, it can be proved that if H is a Heyting algebra, then for any
Lawvere-Tierney operator J on H, FJ (H) is a Heyting algebra, too (remember that
J is idempotent, so that for all x, J (x) is a fixed point):

Theorem 86 (See [15]) Given a Heyting algebra H, for any Lawvere-Tierney
operator J on H, the set FJ (H) = {J (x) : x ∈ H} forms a Heyting algebra.

Proof Since J is multiplicative, FJ (H) is closed under ∧ because if a = J (a) and
b = J (b), a ∧ b = J (a) ∧ J (b) = J (a ∧ b). Define on FJ (H) a disjunction � as
above. We have to show the distributive property for elements of FJ (H): p ∧ (a �
b) = (p ∧ a) � (p ∧ b). Actually, since in one sense it works, we have to show that
p∧ (a � b) ≤ (p∧ b)� (p∧ b). Trivially, p∧ a ≤ ((p∧ a)� (p∧ b)) and p∧ b ≤
((p∧a)�(p∧b)). Hence, by the adjunction relation, a ≤ p �⇒ ((p∧a)�(p∧b))

and b ≤ p �⇒ ((p ∧ a) � (p ∧ b)). Again by applying adjunction, p ∧ (p �⇒
((p ∧ a) � (p ∧ b))) ≤ (p ∧ a) � (p ∧ b). By monotonicity and multiplicativity of
J , J (p)∧ J ((p �⇒ ((p ∧ a) � (p ∧ b)))) ≤ J ((p ∧ a)� (p ∧ b)). One more time
by adjunction J ((p �⇒ ((p∧ a)� (p∧ b)))) ≤ J (p) �⇒ J ((p∧ a)� (p∧ b)) =
p �⇒ ((p∧a)�(p∧b)). The equation holds because p, a and b are fixed points of
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J which is multiplicative. Therefore, from the proof of Tarski’s theorem one obtains
a � b ≤ p �⇒ ((p ∧ a) � (p ∧ b)) and finally, again adjunction gives the thesis:
p ∧ (a � b) ≤ (p ∧ b) � (p ∧ b). ��

But FJ δ (H) is not only a Heyting algebra. In fact, one has a ≡J δ b iff ¬a = ¬b

and, therefore, from Definition 35, FJ δ (H) is a Boolean algebra5:

Theorem 87 FJ δ (H) with the operation ∧,�,¬ forms a Boolean algebra.6

If X is an element of the Heyting algebra �R(U) one has that the families JX[x] are

congruence classes of ≡JX and if A ∈ JX[x] then JX(A) = ⋃
JX[x]. In other terms,

JX(A) is the top element of the ≡JX congruence class of A.

Example 88 Consider the preorder of Example 13 and the corresponding Heyt-
ing algebra (aka Alexandrov topology) of Example 40. The elements {a, b, b′},
{a, b, b′, c} and U are dense and {a, b, b′} is the least dense element δ of the algebra.

a α, l (α)

v

P

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U)

∅

{a, c} {b, b }

U

FJ δ R(U))

c l (α) ←→ b

δ

b

5One obtains a Boolean algebra from a Heyting one by applying another Lawvere-Tierney operator,
namely Bx(p) = (p �⇒ x) �⇒ x. The congruence relation is a ≡ b iff a �⇒ x = b �⇒ x. If
x = 0, a ≡ b iff ¬a = ¬b. By definition a is a fixed point of Bx if (a �⇒ x) �⇒ x ≤ a, so that
if x = 0, a is a fixed point if ¬¬a ≤ a, hence if ¬¬a = a.
6Moreover, by means of � we have a proof that ¬¬ preserves �⇒:

¬¬(a �⇒ b) = ¬(¬¬a ∧ ¬b) = ¬(¬¬a ∧ ¬¬¬b)

= ¬¬(¬a ∨ ¬¬b) = ¬a � (¬¬b)

= ¬(¬¬a) � ¬¬b = ¬¬a �⇒ ¬¬b

The last equation is legal because it is calculated in the Boolean algebra FJ δ (H) of the regular
elements of H.
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The arrows represent the action of the operator J δ. The elements connected by
arrows form a congruence class of ≡J δ .

J δ({a}) � J δ({b, b′})=J δ(J δ({a}) ∪ J δ({b, b′}))
=J δ({a, c} ∪ {b, b′}) = J δ({a, b, b′, c})
=U=J δ({a, b, b′})=J δ({a} ∪ {b, b′}).

Let us see some instance of operations of the Heyting algebra �R(U): {a, b, b′} �⇒
{a} = {a, c} and¬{a} = {b, b′}, so that¬¬{a} = {a, c}. FJ δ (�R(U)) is a Boolean
algebra in which {a, c} � {b, b′} = J δ({a, c} ∪ {b, b′}) = ¬¬{a, b, b′, c} = U .

Notice, also, that {a, c} and {b, b′} are regular elements. However they are not
complemented in �R(U) because their union is {a, b, b′, c}, not the top element U .
On the contrary, U and ∅ are both regular and complemented. If we drop v from
P, in �R(U) the aforementioned elements are complemented. Furthermore, in this
case all the regular elements are complemented. Also this is a particular situation
which will be discussed during the analysis of standard rough set systems.

We have seen that if �α� = {a}, then c |� 〈l〉(α), although c �|� α. Obviously,
a |� 〈l〉(α). On the contrary, v �|� 〈l〉(α) because R(v) ∩ {a} = {a} /∈ J δ[v]. In fact,
for instance, b ∈ R(v) but �α� �⊆ R(b). Notice that v |� 〈l〉(β) iff δ ⊆ �β�.

Finally, from the very definition of J δ[c] one can trivially verify that �α� is locally
valid at c in the intuitive sense discussed at the beginning of the section: R(c) ∩
�α� = {a, c} ∩ {a} = {a} and {a} ∈ J δ[c]. In Example 54 we have proved it by

computing J δ({a}).
Definition 89 Let H be a Heyting algebra and ≡ a congruence on it. If H/≡ is a
Boolean algebra, then ≡ is called a Boolean congruence.

If A ⊆ δ, then ≡JA is a Boolean congruence. However if A � δ, then a paradoxical
situation is obtained. In fact, if �α� = A, then it is not dense so that there exists an
x such that x |� ¬α. Hence x ∈ ¬�α� = �α� �⇒ ∅ = JA(∅). In consequence,
∅ ∈ JA[x]. But since x |� ¬α, then R(x) ⊆ �¬α� so that R(x) ∩ �α� = ∅, which is

a member of JA[x], and one concludes that x |� 〈l〉(α). That is, ¬α is valid at x and
nonetheless α is locally valid at x itself, as well.

Example 90 Consider the operator J {b,b′}.
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∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U)

X J {b,b }(X)

∅ {a, c}
{a} {a, c}

{a, c} {a, c}
{b, b } U

{a, b, b } U

{a, b, b , c} U

U U

G{b,b }

x J
{b,b }
[x]

a {∅, {a}}
b {{b, b }}
b {{b, b }}
c {∅, {a}, {a, c}}
v {{b, b }, {a, b, b }, {a, b, b , c}}

Therefore, if �α� = {b, b′} then a |� 〈l〉(α) and c |� 〈l〉(α) because R(a)∩�α� =
∅ and ∅ ∈ J

{b,b′}
[a] , and the same holds for c. Thus, we have the paradoxical situation

that a |� ¬α, c |� ¬α and both a and c force 〈l〉(α).

In view of the above discussion, if a is a non-dense element of a Heyting algebra,
that is, ¬a �= 0, then we call J a and its related Grothendieck topology paradoxical
Lawvere-Tierney operator and, respectively, paradoxical Grothendieck topology.

6.7 Grothendieck Topologies and Rough Set Systems

Now we see how all the above machinery applies to Rough Set Systems.
Let us start with standard rough sets. Therefore, we are given a set U and an

equivalence relation E ⊆ U × U . We know that we have to use the set of all
singletons S as the parameter for the Lawvere-Tierney operator JX. What does it
happen to the conjugate Grothendieck topology GS?

The approximation space �E(U) is a Heyting algebra which, in particular, is
a Boolean algebra. In this algebra the only dense element is the top element U .
If the set of singletons in �R(U) coincides with U , then for any O ∈ �R(U)),
JU(O) = O , so that GU = {{O} : O ∈ �E(U)}. Since U is the least (actually only)
dense element of the algebra, we know that FJU (�E(U)) is a Boolean algebra, but
in this case the disjunction is ∪ itself. In fact, FJ S (�E(U)) equals �E(U) for the
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very reason that for any O , JU(O) = O and from the previous results we know
that JU(O) = ¬¬O because U is the least dense element of �E(U). In turn,
�E(U) equals the Boolean algebra B(U) = 〈℘(U),∩,∪,−,∅, U〉 because for any
x ∈ U , E(x) = {x}. This is consistent with the fact that in the Boolean algebra
B(U), ¬¬O = O , any O because in this algebra the negation ¬ is the set-theoretic
complement.

Example 91 Let U = {a, b, b′, c} and E = {〈x, x〉 : x ∈ U}. Then:

∅

{b} {b }

{b, b }

{a}

{a, b} {a, b }

{a, b, b }

{c}

{b, c} {b , c}

{b, b , c}

{a, c}

{a, b, c} {a, b , c}

U

E(U) FJ U E(U))

Since for all X ∈ R(U) (i.e.
X ∈ ℘(U)) J U(X) = X,
one has for instance: J U

[b] =
{{b} ∩ {b}, {b} ∩ {a, b} . . . {b} ∩
{a, b, b }, . . .} = {{b}}. Therefore,
GU = {{{a}}, {{b}}, {{b }}, {{c}}} and
FJ U E(U)) = E(U). Thus, for
any α interpreted on E U,E ,
for any X ∈ U , one has x l (α)

iff x α. That is, local and global
validity coincide.

Things drastically change if the set S of singletons in �R(U) is strictly less than U .
Usually, in the rough set community it is assumed that there are no singleton classes
in U/E. If in many real-work applications this assumption may be acceptable, in
a broader framework it is questionable because, actually, also the real word is not
made of just incomplete information but of a melange of complete and incomplete
information. In the complete part Classical Logic is locally valid while it can be
assumed that the global logic is three-valued.

Now we frame this issue in the case of Rough Set Systems induced by preorders
because it has a particular logic importance, it is a broader point of view and because
the issue of singleton granules cannot be avoided if the items we are dealing with
are connected by means of a preorder or, even worst, a partial order P. In fact, if in
P there is at least a non infinite chain, the greatest point x of this chain is an isolated
point because R(x) = {x}.

In preorders we can have both maximal and pre-maximal points, that is, points x

such that if x ≤ y then y ≤ x. If x is a pre-maximal point, then the cardinality of
R(x) may be greater than 1. For instance, in our Example b and b′ are pre-maximal
and R(b) = R(b′) = {b, b′} and both b and b′ can be in the boundary of some set.
For instance, b, b′ ∈ B({a, b}).
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From the point of view of an information order, however, the larger an infor-
mation the smaller the set of items it filters. This is the so-called “Loi de Port
Royal” (Low of Port Royal: “L’extension, ou étendue varie in proportion inverse
de l’intension comprehénsion”). Thus, extension and intention are contravariant. If
we intend “strictly contravariant”, that is, if we are interested not in items but in
information increases, items which are not separable by means of granules play
exactly the same role with respect of our knowledge. If this is the case, one would
instead use topological spaces where points are not redundant with respect to the
available properties, a.k.a. open sets. These spaces, as we have already mentioned,
are called sober, or, which is the same in the finite case, T0 topological spaces:

Definition 92 (T0-Spaces) A topological space τ (U) is said to be T0 if for each
two points x, y ∈ U , if x �= y there exists an open set O such that x ∈ O and
y /∈ O .

Therefore, a space is T0 if any two different points are separable by means of an
open set. In our interpretation: any two different items are separable by means of
some property. That is, there is at least a property which is enjoyed by one item but
not by the other.

T0 spaces are obtained from any space τ (U) with specialisation preorder �, by
taking the quotient set U/ ≡�, where x ≡� y if and only if x � y and y � x, and
setting for all O ∈ �(U), ϕ(O) = {[x]≡� : x ∈ O}. The topology �(U/ ≡�) =
{ϕ(O) : O ∈ �(U)} is called the T0-ification of �(U) and ϕ is an isomorphism
between it and �(U). Notice that ϕ is the extension to ℘(U) of the natural map q
of Lemma 58: ϕ(O) = {q(x) : x ∈ O}.

If P = 〈U,�〉 is a preorder (in particular the specialisation preorder of a
topological space τ (U)), then on U/ ≡� we can define the relation [x]≡� "
[y]≡� ⇐⇒ x � y. It is immediate to verify that " is a partial order. Indeed,
reflexivity and transitivity are inherited from � and if [x]≡� " [y]≡� and [y]≡� "
[x]≡� then x � y and y � x so that x ≡� y and, in conclusion, [x]≡� = [y]≡� .

Let τ (U) be an Alexandrov space with specialisation preorder �. Let P/ ≡�:=
〈U/ ≡�,"〉. Then �"(P/ ≡�) = �(U/ ≡�) and it is isomorphic to �(U).
The isomorphism from �(U) to �(U/ ≡�) is ϕ. However, the two isomorphic
topologies are not homeomorphic, because if x �= y but x ≡ y, then q(x) = q(y),
so that an open set ϕ(O) of �(U/ ≡�) can have less points than O .

As it is clear, one can chose a representative of [x] and obtain a partial order
P′ on the new set U ′ ⊆ U . It is not difficult to verify through q that �(P′) and
�"(P/ ≡�) are homeomorphic.
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Example 93 Consider again our standard point-level example on U =
{v, a, b, b′, c}. The specialisation preorder � is R (in fact �R(U) is an Alexandrov
topology). Therefore, the T0-ification of �(U) is:

{[∅]≡ }

{[{a}]≡ } {[{b, b }]≡ }

{[{a}]≡ , [{b, b }]≡ }{[{c}]≡ , [{a}]≡ }

{[{c}]≡ , [{a}]≡ , [{b, b }]≡ }

{[{c}]≡ , [{a}]≡ , [{b, b }]≡ , [{v}]≡ }

R(U/≡ )

ϕ({a, b, b }) = {[a] , [{b, b }]≡ }

It is clear that duality produces a T0-ification. Anyway, if we are interested in the
granules, then T0-ification is not an appropriate move. In what follows we show
what happens algebraically in case the space is not T0-ficated and when it is. We
shall see that the algebraic structure of Rough Set Systems induced by the first case
will be sensibly transformed, as well as the logical properties of the systems (that
is, the logic they model).

Moreover, we also show the algebraic and logic difference between the case H
is a generic Heyting algebra and the case H is a Boolean algebra. The latter case in
the classical one.

First, we present the topic from the point-level perspective of Rough Set Theory.
Then we develop it at the abstract level. After that, we zoom-in again to achieve the
intermediate, or hybrid, level of algebras of concrete open sets.

7 Algebras of Rough Set Systems

Given a granulation �R(U) induced by a preorder P = 〈U,R〉, the issue concerning
singletons is how to filter the set Dsj (U/R) of all the ordered pairs of disjoint
elements of �R(U) in order to have just elements actually representing the pairs
〈(lR)(X),−(uR)(X)〉 for some X ⊆ U .

As it is already clear, the solution is obtained by applying the Lawvere-Tierney
operator J S , where S is the union of all isolated points of �R(U) intended as a
topology. That is, S = {x : R(x) = {x}}.
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7.1 Defining the Set of Rough Sets

Remember that �R(U) is a Heyting algebra and S is an element of this algebra.
So for any element O of the algebra (any open set) we can define the operator
J S(O) = S �⇒ O .

What is the mechanism that makes J S act as a filter which is able to discern true
from apparent rough sets? The answer, as we are going to see, is that J S forces
any element of S to be in the first or in the second element of a rough set when it is
represented by an ordered pair of disjoint elements 〈(lR)(X),−(uR)(X)〉. But what
is the mathematical and logical significance of J S?

Let us consider again our example:

Example 94 Consider the preorder P of Example 34 and the Heyting algebra or
topology or approximation space �R(U). The set of all singletons is S = {a}. The
action of the operator J S on �R(U) is the following:

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U) The Grothendieck topologyGS

J S[a] = {{a}}
J S[b] = J S

[b ] = {∅, {b, b }}
J S[c] = {{a}, {a, c}}
J S[v] = {{a}, {a, c}, {a, b, b }, {a, c, b, b }, U}

This topology gives us some information. For instance, in no ordered pair the
open set {b, b′} can have ∅ as partner even if ¬S = {b, b′}. In fact the presence of
∅ in J S

[b] and J S
[b′] tells us that a partner must be found between S and ¬¬S, in our

case {a} and {a, c}. Actually, the only elements which can have ∅ as a partner in a
disjoint pair, are the members of ↑ S. Therefore, the following filtration is applied
by J S on Dsj (U/R):
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The framed elements are
discharged by the filtration
J S . Indeed, ∅ ∪ {b, b S.
Therefore, the ordered
pairs , {b, b and

b, b }, are filtered
out. A fortiori , is
discharged. The rough set
system R(U)) is
then the lattice without the
framed elements depicted in
Example 34., U

, {a, c, b, b

, {a, b, b , {a, c

, {b, b , {a b, b }, {a, c

, b, b }, {aa}, {b, b

a},a, c}, {b, b b, b },

a, c}, a, b, b },

a, c, b, b },

U, Dsj (U/R)

Remarks 7.1 The Grothendieck topology above is paradoxical, like the one of
Example 90. In a sense, the very filtration rules out the paradoxical situations.

Now we transform Dsj (U/R) into Dsj (�R(U)) step by step, explaining the
inner mathematical and logical mechanisms of the transformation. At the end of
the process we will find that Dsj (�R(U)) is a particular structure called Nelson
algebra that we define at the pointless level:

Definition 95 (Nelson Algebras) A lattice N = 〈A,∧,∨,∼,−→, 0, 1〉 is a
Nelson algebra if:

1. 〈A,∧,∨,∼, 0, 1〉 is a de Morgan lattice, that is, a distributive lattice such that for
all a, b,∼∼ a = a and∼ (a∨b) =∼ a∧ ∼ b. Therefore,∼ (a∧b) =∼ a∨ ∼ b

and a ≤ b iff ∼ b ≤∼ a.
2. a∧ ∼ a ≤ b∨ ∼ b, so that it is also a Kleene algebra.
3. The operation−→ fulfils the following adjunction property:

a ∧ c ≤∼ a ∨ b ⇐⇒ c ≤ a −→ b (56)

Nelson algebras are a bit tricky to one who is just familiar with Classical or
Intuitionistic logic, that is, Boolean or Heyting algebras. Indeed we have that
∼∼ a = a but nonetheless, ∼ a ∨ a ≤ 1. This suggests that ∼ is not a pseudo-
complementation, otherwise the lattice would be a Boolean algebra. In turn, −→ is
not a relative pseudo-complementation. Indeed the adjunction property fulfilled by
−→ is (56) and we have that ∼ a ≤ a −→ 0. So we can define two other negations
and an additional implication. This operations will play a key role in the connection
of Nelson algebras and rough set systems.



386 P. Pagliani

�a := a −→ 0 (57)

a ⊃ b :=∼� ∼ a ∨ b ∨ (�a∧� ∼ b) (58)

¬a := a ⊃ 0 =∼� ∼ a (59)

The negation ∼ is called strong negation because one has ∼ a ≤�a, and � is
intended to be an intuitionistic negation (it is the implication of the 0-element). We
shall see, that � is far from replicating a pseudo-complementation, because a∧�a
is not 0 and �� is not able to grasp classical tautologies. In a particular case, that
we shall discuss below, � is a dual pseudo-complementation, this is the reason of
the symbol, while ¬ turns into a real pseudo-complementation. Anyway, all finite
Nelson lattices are, also, Heyting algebras (but there are infinite Nelson lattices
which are not Heyting algebras). What we will show is that if a Nelson algebra
is semi-simple, then the relative pseudo-complementation is definable by means of
the very operations of the Nelson algebra itself.

Definition 96 A Nelson algebra is called semi-simple if a∨�a = 1, any a.

The link between this abstract structure and the concrete structure Dsj (�R(U))

is given by the duality theory of Nelson algebras. Therefore the first step is the
construction of the dual space of a Nelson algebra from an abstract point of view.

So, let N be a Nelson algebra. We recall that we assume that N is finite and that
our meta-theory is Classical Logic. Define on J (N) the following endomorphism:

f (x) = min≤N (J (N) ∩ −{∼ b : b ∈↑≤N x}) (60)

where min≤N and ↑≤N refer to the lattice order ≤N of N, which is a partial order.
The restriction to J (N) of this order will be denoted by ≤.

It can be proved that f is a linear involutive anti-order isomorphism in J(N) =
〈J (N),≤〉, that is, x ≤ y implies f (y) ≤ f (x), x ≤ f (x) or f (x) ≤ x and
f (f (x)) = x. Moreover, the following interpolation property holds:

if a ≥ f (a), b ≥ f (a), a ≥ f (b), b ≥ f (b)

then ∃c ∈ J (N) such that c ≤ a, c ≤ b, f (a) ≤ c, f (b) ≤ c.

That is, there is an intermediate element which prevents f and the order of J (N)

from crossing. If N were a Kleene algebra, then the interpolation property could fail.
The space N (J(N)) := 〈J (N),≤, f 〉 is called a Nelson space.

Actually, a Nelson space is any preorder N (U) = 〈U,≤, f 〉 where f is an
endomorphism with the properties above. A Nelson algebra is restored from a
Nelson space N (U) by defining the following operations on �≤(U):

• 1 := U , 0 := ∅
• A ∨ B := A ∪ B, A ∧ B := A ∩ B

• A −→ B = −C≤(A ∩ f (A) ∩ −B)

• ∼ A := U ∩ −f (A)
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One has that N(N (U)) := 〈�≤(U),∨,∧,−→,∼, 0, 1〉 is a Nelson algebra. In
particular N(N (J(N))) is isomorphic to N.

In the process, we see also that �A := −C≤(A ∩ f (A))—i.e. A −→ 0.
All this is very useful, but if we start from an approximation space �R(U), how to

define the involution f ? What is the relation between f and the granulation provided
by �R(U)?

In order to answer, let us observe, in the first place, that a Nelson space can be
split into two parts linked by the involution f .

Notation In order to avoid confusions later, the universe of a Nelson space will
be denoted by U∗.

Definition 97 Given a Nelson space N (U∗) = 〈U∗,≤, f 〉, define

U+ := {x ∈ U∗ : x ≤ f (x)}, with an order ≤+ inherited from N (U∗)

U− := {x ∈ U∗ : f (x) ≤ x}, with an order ≤− inherited from N (U∗)

Let kf : �≤(U∗) �−→ �≤+(U+)×�≤+(U+) := 〈U+ ∩X,U+ ∩ −f (X)〉.
Define the following operations where inside the ordered pairs the operations are
those of the Heyting algebra �≤+(U+) (i.e. ∧ = ∩, ∨ = ∪ and so on):

• 1 := 〈U+,∅〉, 0 = 〈∅, U+〉
• 〈X1,X2〉 ∨ 〈Y1, Y2〉 := 〈X1 ∨ Y1,X2 ∧ Y2〉
• 〈X1,X2〉 ∧ 〈Y1,X2〉 := 〈X1 ∧ Y1,X2 ∨ Y2〉
• ∼ 〈X1,X2〉 := 〈X2,X1〉
• 〈X1,X2〉 −→ 〈Y1, Y2〉 := 〈X1 �⇒ Y1,X1 ∧ Y2〉
• �〈X1,X2〉 := 〈¬X1,X1〉
• ¬〈X1,X2〉 := 〈X2,¬X2〉
It is possible to show that Nkf (N (U∗)) := 〈kf (�≤(U∗)),∧,∨,∼,−→, �, 0, 1〉 is
a Nelson algebra. Just notice, that any X ∈ �≤(U∗) is an up-set (i.e. a ≤ filter).
Therefore, if x ∈ X ∩ U+ then for each y ∈ U+, if x ≤ y then y ∈ X and, thus,
y ∈ X ∩ U+. That is, X ∩ U+ is an up-set in U+ (a ≤+ filter), hence belongs to
�≤+(U+). Similarly, since X is an up-set in U∗, f (X) is a down-set in U∗ (a ≤
ideal) because f is order reversing. In consequence,−f (X) is an up-set in U∗ and,
again,−f (X) ∩ U+ is an ≤+ filter.

Example 98 Although we shall prove only later that Dsj (U/R) is a Nelson algebra,
in order to follow the construction of the dual space let us assume it is a Nelson
algebra and consider a pointless version of it.
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0

a

b c

d e r

h ig

ml n

o p

q

1

N

a

b

d

c

g

l r

1

J(N)

0 a b c d e r g h i l m n o p q 1
∼ 1 q p o n m l i h g r e d c b a 0

Notice that the strong negation of x is symmetric to x. J (N) = {a, b, c, d, g, l, r, 1}.
Let us calculate the involution f :
f (a) = min≤N − {∼ x : x ∈↑≤N a} = min≤N− ↓≤N (∼ a) = min≤N− ↓≤N

q = min≤N {1} = 1; f (b) = min≤N− ↓≤N (∼ b) = min≤N− ↓≤N p =
min≤N {l, o, q, 1} = l. The reader now has the mechanism. Then:
f (d) = min≤N− ↓≤N (∼ d) = min≤N− ↓≤N n = min≤N ↑≤N g = g.
f (g) = min≤N− ↓≤N i = min≤N ↑≤N d = d; f (l) = min≤N ↑≤N b = b.
f (c) = r and f (r) = c.
The circled elements form the subset U+ while the boxed ones form U−.
It is easy to verify, for instance, that given the up-set {c, r, 1, l}, f ({c, r, 1, l}) =
{c, r, a, b} which is a down-set. Therefore, −f ({c, r, 1, l}) = −{c, r, a, b} =
{d, g, l, 1} is an up-set.

Now we know what our goal is. So the first step is to transform our approximation
space (Heyting algebra, Alexandrov topology) �R(U) into the space previously
denoted as �≤+(U+). Then we have to define from it the duplicate space �≤−(U−),
an order≤ glueing the two spaces into a preorder on U∗ = U+∪U− and, finally, an
involution f on U∗ fulfilling the properties discussed above, with respect to ≤. The
resulting space N (U∗) is a Nelson space. After that, we are eventually in position
to transform �R(U) into the Nelson algebra Nkf (N (U∗)) and prove that its domain
(or carrier) is Dsj (�R(U)). Since from now to the end of the section the universe U

of our approximation space �R(U) plays the role of U+, let us use the last symbol
(with our usual R which turns into≤+). Thus, now the approximation space �R(U)

is called �≤+(U+).
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A particular attention is due to the involution f , because it is strictly connected
with the singleton issue. Indeed, look at the role of f in the definition of
Nkf (�≤(U∗)). It actually decides which elements not belonging to the open set
X1 = U+ ∩X are allowed to belong to X2. In fact, suppose that X ∈ �≤(U∗) and
U+ ∩ X = I≤+(A) for some subset A of U+ (aka U ). We know that I≤+(A) is
an up-set in U+ and C≤+(A) a down set in U+ therefore a down-set in U∗. Vice-
versa, if X is a down-set in U∗, it is a down set also in U+. But we have seen that
actually f (X) is a down-set in U∗. Indeed, f (X)∩U+ “is” the closure C≤+(A). In
consequence,−f (X)∩U+ is the complement of the closure of A, that is,−C≤+(A)

(to see that, we need only to prove−(f (X) ∩ U+) = −f (X) ∩U+).
Now, how can f rule out from −f (X) the elements c of A which are isolated

in �≤+(U+) and are not already in X? Or, which is the same, how can it put c in
f (X)? How does f work?

We need a formal definition of a notion we have already seen:

Definition 99 Let P = 〈P,≤〉 be a preorder. An element x ∈ P is said to be pre-
maximal if ∀y ∈ P(x ≤ y ⇒ y ≤ x). It is called maximal if ∀y ∈ P(x ≤ y ⇒
y = x).

Clearly, if ≤ is a partial order then the two notions coincide. Notice that in the case
P is the dual space J(A) of a Nelson algebra or a Heyting algebra A, then the order
of J(A), x ≤ y ⇐⇒ ↑ (y) ⊆↑ (x), is a partial order because it is induced by the
subset relation⊆ which is an extensional relation, so that if X ⊆ Y and Y ⊆ X then
X = Y .

Now, c is isolated in 〈U+,≤+〉 if ↑≤+ c = {c}. And this happens if and only if c

is a maximal element in ≤+.
We have to pay attention to a fact that maybe evaded the reader: U+ and U− must

have the same cardinality (otherwise f is not an anti-isomorphism), however it is not
required they are disjoint. In Example 98 they are disjoint, but their definitions do
not imply disjunction. So, let us investigate their, possibly not empty, intersection.

Theorem 100 Let N (U∗) = 〈U∗,≤, f 〉 be a Nelson space. Let B = U+ ∩ U−.
Then:

1. c ∈ B if and only if f (c) ∈ B.
2. If ≤ is a partial order, then c ∈ B if and only if f (c) = c.
3. If c ∈ B then c is maximal or pre-maximal in 〈U+,≤+〉 (maximal if ≤+ is a

partial order).

Proof (1) If c ∈ B then c ∈ U+ and c ∈ U−, so that f (c) ≤ c ≤ f (c). From this
it is immediate to see that f (c) ∈ B, too: c ≤ f (c) gives f (f (c)) ≤ f (c) and
f (c) ≤ c gives f (c) ≤ f (f (c)). The reverse is obvious. (2) comes trivially from
(1). (3) Suppose now that for x ∈ U+, c ≤ x, so that f (x) ≤ f (c). Since x ∈ U+,
x ≤ f (x) and we immediately obtain the following relation: x ≤ f (x) ≤ f (c) ≤
c ≤ x ≤ f (x). Therefore, f (c) ≤ f (x), so that x ≤ c. Hence c is pre-maximal or
maximal (therefore, maximal if ≤ is a partial order). ��
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Remarks 7.2 The reverse implication of Theorem 100.(3) does not hold: if c is pre-
maximal (maximal), then not necessarily c ∈ U+ ∩ U−. This is important, because
it means that it depends on the application to decide if a maximal element c is to be
set to f (c) = c, which, indeed, is the case of rough set systems, as we are going to
see.

We have enough material to proceed with our construction. Given an approximation
space �≤+(U+) take a copy �≤−(U−), where ≤− is the reversed order of ≤+ (i.e.
≤+� =≤−). If≤+ is a preorder (partial order), then≤− is a preorder (partial order),
too. The elements of U− will be decorated by an apex “−”, while the corresponding
elements in U+ will be decorated by “+”. As we have just seen, it is possible for
some element to have both decorations (if it belongs to U+ ∩U−).

Define now a relation ϕ ⊆ U+ × U− as follows: ϕ(x+) = {x−}. Therefore,
ϕ�(x−) = {x+} and for x+−, ϕ(x+−) = ϕ�(x+−) = {x+−}. Clearly, ϕ is an order
anti-isomorphism between U+ and U−. The new relation ϕ enables the definition
of the final order ≤ on U∗ = U+ ∪ U−. The intermediate step is the definition of
an order connecting U+ and U−. It is defined passing through ϕ in the composition
≤+ ⊗ϕ⊗ ≤−. It is then possible to prove that ≤:=≤+ ∪ ≤− ∪(≤+ ⊗ϕ⊗ ≤−) is
the required order on U∗ = U+ ∪U−: it preserves both≤+ and≤− and glues them
together in a minimal way. Finally, we define the involution f on U :

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x− if x = x+

x if x = x+−

x+ if x = x−
(61)

It is a little bit long but not difficult to prove that f satisfies the required properties
so that the space N (U∗) = 〈U∗,≤, f 〉 is a Nelson space. In consequence
Nkf (N (�≤(U∗))) is a Nelson algebra of ordered pairs of disjoint elements of
�R+(U+).

In synthesis, we have transformed a Heyting algebra into a Nelson one applying
a particular filtration which operates as follows. In the first place, let us focus our
attention to the involution f . From the above discussion, it is evident that if x ∈ U+
then f (↑≤+ x) ∩ U+ = C≤+({x}). Therefore, if x is an isolated point in �+≤(U+)

(i.e. ↑≤+ x = {x}) and x /∈ X but x ∈ f (X), for some X ∈ �≤(U), then we do
have x neither in U+ ∩ X nor in U+ ∩ −f (X). Suppose that for some A ⊆ U+,
X ∩ U+ = I≤+(A) so that U+ ∩ −f (X) = −C≤+(A). Therefore x would belong
to the boundary of A, which is impossible for isolated points.

But suppose f (x) = x. Then x /∈ X ∩ U+ if and only if f (x) /∈ X. In
consequence, x ∈ −f (X) and, finally x is in U+ ∩ −f (X), that is, x ∈ −C≤+(A).
It follows that if S is the set of isolated points of �≤+ and we put f (c) = c for
all c ∈ S, then there is a one-one correspondence between the set {−C≤+(A) :
A ∈ ℘(U+)} and the set {X+ ∩ −f (X) : X ∈ �≤(U∗)}, that is, the set
{X2 : 〈X1,X2〉 ∈ kf (�≤(U∗))}. This is the tricky part, because �≤+(U+) is by
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definition {I≤+(A) : A ∈ ℘(U+)}. Otherwise stated, in 〈X1,X2〉 the element X1 is
not affected by the choice of the subset of maximal elements.

Example 101 In this example we use our familiar preorder P = 〈U,R〉. But to
follow the construction comfortably, we rename its elements by setting U+ instead
of U and ≤+ instead of R. Therefore, now our approximation space is called
�≤+(U+).

b−b

v−

c−

a−

a+

c+ b+b

v+

U+

U−
We are not obliged to force any point
into the intersection of U+ and U−,
but since we want to represent rough
sets, we must put in U+ ∩ U− all the
isolated points, that is, all the maximal
points ofU+. In our case a+. Therefore
we obtain the following lattice, where
the elements are linked by the preorder
≤+ ∪ ≤− ∪(≤+ ⊗ϕ⊗ ≤−) which is
shown below.

b−b

v−

c−

a+−

c+ b+b

v+

U∗

≤+ v+ c+ b+ b a+
v+ v+
c+
b+
b

a+

1 1 1 1 1
0 1 0 0 1
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

≤− v− c− b− b a−
v−
c−
b−
b

a−

1 0 0 0 0
1 1 0 0 0
1 0 1 1 0
1 0 1 1 0
1 1 0 0 1

ϕ v c− b− b a−

c+
b+
b

a+

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

≤+ ⊗ϕ⊗ ≤− v− c− b− b a−
v+
c+
b+
b

a+

and finally

≤ v+ c+ b+ b a+− v− c− b b−
v+
c+
b+
b

a+−
v−
c−
b−
b

1 1 1 1 1
0 1 1 0 1
1 0 1 1 0
1 0 1 1 0
1 1 0 0 1

1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 0 0
0 0 1 1 0 1 0 1 1
0 0 1 1 0 1 0 1 1
0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 1

It is clear that the codomain of ≤+ ⊗ϕ is just a renaming of the codomain of ≤+,
from U+ to U−, so that ≤+ ⊗ϕ⊗ ≤− amounts to ≤+ ⊗≤+�. So we obtain:
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The above pre-ordered space together with the involution f of (61) is our Nelson
space N (U∗) = 〈U∗,≤, f 〉. Now let us apply to N (U∗) the transformation kf .
We compute some instances.

kf ({b+, b′+, b−, b′−, v−}) = 〈U+ ∩ {b+, b′+, b−, b′−, v−}, U+ ∩−f ({b+, b′+, b−, b′−, v−})〉
= 〈{b+, b′+}, U+ ∩ −({b+, b′+, b−, b′−, v+})〉
= 〈{b+, b′+}, U+ ∩ {v−, c+, a+−, c−}〉 = 〈{b+, b′+}, {c+, a+−}〉.

kf ({b+, b′+, b−, b′−, v−, c−}) = 〈{b+, b′+}, {a+−}〉.
Since f (a+−) = a+−, for any X ∈ �≤(U+) it is not possible to exclude a+− from
both X1 and X2 in kf (X) = 〈X1,X2〉.
Notice, indeed, that in the construction of the present space we have applied the
Grothendieck topology of Example 94. On the contrary, consider the Nelson space
N (U∗) of Example 98 and set X = {c, r, 1, g, l}. Then kf (X) = 〈{c},∅〉 which
corresponds in the present space to 〈{b+, b′+},∅〉. So, a (i.e. a+) is excluded both
from the interior and the complement of the closure of X.

Observe now that from Theorem 100 we can put f (c) = c for all c ∈ S for the
very reason that S is the set of isolated, hence maximal, points of �≤+(U+). Since
↑ S contains all the dense elements of �≤+(U+), it induces a Boolean congruence.

Indeed, the above construction is an instance of the following general result at the
pointless level which shows how to transform Heyting algebras into Nelson ones.

Theorem 102 (Sendlewski) Let H be a Heyting algebra and ≡ a Boolean
congruence on H. Then:

N≡(H) = {〈a1, a2〉 : a1 ∧ a2 = 0 and a1 ∨ a2 ≡ 1} (62)

equipped with the abstract version of the operations of Definition 97 is a Nelson
algebra N≡(H). If a ∼= b ⇐⇒ a −→ b ∧ b −→ a, then ∼= is a congruence with
respect to all the operations of N≡(H) but the strong negation∼ and N≡(H)/ ∼= is
isomorphic to H. Moreover, Nkf (N (J(N≡(H)))) = N≡(H). Finally, all the Nelson
algebras N such that N/ ∼= is isomorphic to H are isomorphic to N≡(H) for some
Boolean congruence≡.

Remarks 7.3 With “abstract version” of the operations we mean, for instance, ∼
〈a1, a2〉 = 〈a2, a1〉 or 〈a1, a2〉 −→ 〈b1, b2〉 = 〈a1 �⇒ b1, a1 ∧ b2〉.
The congruence∼= takes into account just the first elements of the ordered pairs. But
these are the elements of H. Therefore it is immediate that N≡(H)/ ∼= is isomorphic
to H, provided≡ is a Boolean congruence. If we look at this result from the point of
view of Nelson spaces, we see that there is a one-one correspondence between the
subsets of the set M of the maximal elements of the dual space of H and the Boolean
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congruences of H. The least Boolean congruence corresponds to M itself and to
our operator J δ discussed above because M is the least dense element of H. This
congruence will play a key role that we see after showing how Boolean congruences,
that is, subsets of maximal elements, are connected to rough set systems from the
point of view of the transformation N≡.

The dual space of a Heyting algebra is a partial order. So, any pre-maximal
element is maximal. But if we start with a preordered system we have to take into
account the subsets of pre-maximal and maximal elements. We have adapted the
dual construction of Theorem 102, due to [47], to the finite case and preorders. In
the process, we have found Theorem 100. Moreover, we have linked the Boolean
congruence ≡ to Lawvere-Tierney operators and Grothendieck topologies. This
link enables us to understand the importance of ≡ in the construction of rough set
systems.

In fact, the rough set companion of Theorem 102, expressed in terms of Lawvere-
Tierney operators, is:

Theorem 103 Let �R(U) be an approximation space and S the set of its isolated
elements. Let us set:

N≡
JS

(�R(U)) = {〈X1,X2〉 ∈ �R(U) : X1 ∩X2 = ∅ and X1 ∪X2 ≡J S U}

Then Dsj (�R(U)) = N≡
JS

(�R(U)).

Proof The proof is immediate: In the first place, S is a subset of maximal elements
of 〈U,R〉. So ≡J S is a Boolean congruence.

Moreover, if X1∪X2 ≡J S U then S �⇒ (X1∪X2) = S �⇒ U = U . It follows
that S ⊆ (X1 ∪X2).

Let X1 = IR(A) and X2 = −CR(A) for some A ⊆ U . Then for each c ∈ S

either c ∈ IR(A) or c ∈ −CR(A). ��
Consider Example 101. It is easy to verify that kf (�≤(U∗)) = N≡

J {a} (�R(U))

and that they coincide with the lattice Dsj (�R(U)) of Example 46 once we get rid
of the decoration +.

We can see the above construction from a different point of view: it provides an
information-like interpretation of the filtration clause “≡ 1” which appears not only
in the definition of Nelson algebras, but also of Stone algebras and Łukasiewicz
algebras. Three-valued Łukasiewicz algebras will be linked to rough set systems in
the next Section. Now we have to conclude the story about rough set systems from
preorders and partial orders, with a particular and interesting case.
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7.2 Rough Set Systems Based on Partial Orders and Effective
Lattices

7.2.1 Constructive Logic with Strong Negation: CLSN

The Hilbert-style axioms of Nelson Logic, called Constructive Logic with Strong
Negation—CLSN—are essentially the axioms for Nelson algebras. There is also
an equational definition which can be found in [42]. A Natural Deduction-style
set of rules can be found in [39]. Kripke models for CLSN were introduced by
Thomason (see [48]). They are partial orders, that for a familiar reason we denote
with 〈U+,≤+〉, equipped with a standard forcing relation |� for positive formulas,
that is, if p |� α then for all p′ ≥ p, p′ |� α. In Kripke models for Intuitionistic
logic, the forcing clause for the intuitionistic negation ¬ is defined as p |� ¬α if
for all p′ ≥ p, p′ �|� α. In Thomason’s models the strong negation ∼ of CLSN is
defined as like as a positive formula: p |�∼ α implies that for all p′ ≥ p, p′ |�∼ α.
It is only required that if p |� α then p �|�∼ α.

Therefore, in the Intuitionistic case, �¬α� can be calculated from �α�. In
particular, given an Heyting algebra �R(U), �¬α� = −CR(�α�). On the contrary,
there is not a function sending �α� to �∼ α�. Actually, there can be α and β such that
�α� = �β� but �∼ α� �= �∼ β�, a situation which does not occur for ¬. In a sense,
∼ α is an “explicit negation” not an “implicit” one as ¬α; one has to positively state
where α is false.

Therefore, it is natural to represent the evaluation of a CLSN formula α by means
of an ordered pair of disjoint elements κ(α) = 〈�α�, �∼ α�〉.

Clearly, there are states p such that p �|� α and p �|�∼ α because it is not
required the existence of maximal states m such that either m |� α or m |�∼ α. This
behaviour is different from the one of intuitionistic negation, because by its very
definition if α is not forced by some state above p, then p |� ¬α. Otherwise stated,
in models for CLSN it is not required that eventually all formulas are decidable.

This behaviour is mirrored by the dual construction of Nelson algebras. In fact,
if there is a maximal p which is required to decide every formula α, than p must be
either in �α� or in �∼ α�. Therefore, in the dual construction one must put f (p) = p

so that p must be maximal. But from the Remarks 7.2 this is not mandatory for
maximal elements, as Example 98 shows.

Pay attention that both in the case of pre-orders and partial orders if p is
not maximal or pre-maximal and still we put f (p) = p, then in view of
Theorem 100.(3), f cannot be an involutive anti order isomorphism and for X =
{p : f (p) = p}, the filter ↑ X does not contain all the dense elements of
�≤+(U+) so that N≡

JX
(�≤+(U+))/ ∼= is isomorphic to another Heyting algebra

H′ �= �≤+(U+).
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Example 104 If we set X = {a, c}, then JX gives:

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U)

J {c,a}

, U

, {a, b, b , c

, {a, c a, c}, {b, b

a, c},b, b }, {a, c

a, b, c},

U,

N≡
J {a,c} R(U))

∅

{a, c} {b, b }

{a, b, c}

U

N≡
J {a,c} R(U))/ ∼=

The relations between H and H′ are not in the scope of our chapter. Therefore,
we focus our attention on maximal and pre-maximal states.

From a logical point of view, since formula are evaluated on order filters, the
distinction between partial and pre orders, hence between maximal and pre-maximal
states, is not very important. On the contrary, it is relevant from the point of view
of rough sets. In fact, in order to be approximated through a relation R on U , a
subset A of U is “evaluated” on the points of �R(U), so that, as we are going to
see, there is a difference if R is a partial order or a preorder. More precisely, the
difference concerns the existence of maximal states. From now on, therefore, we
consider partial orders or preorders bounded by maximal states.

We have two extreme cases and an intermediate one: (1) No maximal states
decide every formula. (2) All the maximal states decide every formula. (3) Some
maximal states but not all decide all formulas.

In the first case, the filtering congruence relation is ≡J ∅ , so it is required that
∅ ⊆ X1 ∪ X2 which is a relation always fulfilled. In particular in the resulting
Nelson lattice the pair 〈∅,∅〉 appears, which represents a state of “complete absence
of information”.

Notice that∼ 〈∅,∅〉 = 〈∅,∅〉. An element a such that∼ a = a is called central.
Central elements are fixed elements of the negation, thus. In Nelson algebras there
can be only one central element.

The intermediate case is the generic one discussed so far. The lattice of Exam-
ple 98 (a.k.a. Dsj (U/R)) illustrates the first extreme case. The other intermediate
case will be discussed in the next section.

Example 105 Let us drop from our standard preorder P the element b′. Then R

turns into a partial order Q on a set W = {a, b, c, v}. Suppose we are given just
one CLSN formula α to be evaluated on 〈W,Q〉. Then the situations at the maximal
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state a, are the following (below any diagram the corresponding κ(α) is displayed):

a α

c b ∼ α

v

a ∼ α

c b α

v

a α

c b α

v

a}, {b b}, {a

a ∼ α

c b ∼ α

v

a α

c b

v

a ∼ α

c b

v

a

c b ∼ α

v

a

c b α

v

a, b}, , {a, b

a}, , {a , {b b},

In the last case, κ(α) is the central element , .

a

c b

v

,

But if the parameter of the operator JX is the set of maximal elements M , then
only the first four cases are admitted. Notice again that ordered pairs are not admitted
not because they have an empty component. In fact 〈M,∅〉 and 〈∅,M〉 are admitted
(for another counterexample see the next section).

Before analysing the second and fundamental extreme case, we display some
interesting relations between the three negations. We need an easy but useful lemma:

Lemma 106 Let 〈a1, a2〉 be a pair of disjoint elements of a Heyting algebra. Then
a1 ≤ ¬a2 and a2 ≤ ¬a1.

Proof Immediate from adjointness: a1∧a2 ≤ 0 if and only if a1 ≤ a2 �⇒ 0 = ¬a2
if and only if a2 ≤ a1 �⇒ 0 = ¬a1. ��

Moreover, it is not difficult to verify that for any two elements a = 〈a1, a2〉 and
b = 〈b1, b2〉 of any Nelson algebra N≡Jx (H) of ordered pairs of disjoint elements
of a Heyting algebra H (hence with ≡J x not necessarily a Boolean congruence) the
following hold:

a ≤ b if and only if a1 ≤H b1 and b2 ≤H a2. (63)

(i) ¬a ≤∼ a ≤�a, (ii) if a ≤ b then ∼ a ≤∼ b, ¬a ≤ ¬b, �a ≤�b (64)

(i) ¬¬¬a ≥ ¬a, (ii) ∼∼∼ a =∼ a, (iii) ��� ≤�a (65)
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(i)��a ≥∼�a = ¬ ∼ a = ¬�a ≤ a, (ii) ¬¬a ≤∼ ¬a =� ∼ a =�¬a ≥ a

(66)

(i) ��a ≥ a only if a2 = ¬a1, (ii) ¬¬a ≥ a only if ¬¬a2 = a2 (67)

By easy inspection using Lemma 106. For instance, (66).(ii) is immediate from (i):
∼ ¬a =∼ ¬ ∼∼ a =∼∼� ∼ a =� ∼ a. As to (67) a = 〈a1, a2〉 and from
Lemma 106 ��a = 〈¬¬a1,¬a1〉. Clearly ¬¬a1 ≥H a1 and ¬a1 ≥H a2, so that
the first pair is above the second only if a2 = ¬a1. In turn, ¬¬a = 〈¬a2,¬¬a2〉
and ¬a2 ≥H a1, ¬¬a2 ≥H a2, so that now we need ¬¬a2 = a2 (we recall that
〈a1, a2〉 ≤ 〈b1, b2〉 iff a1 ≤H b1 and b2 ≤H a2).

Example 107 Consider the following examples from the lattice Dsj (�(U)) of
Example 46: ��〈{a},∅〉 = 〈{a, c}, {b, b′}〉 which is incomparable with 〈{a},∅〉
because {a} ⊆ {a, c} but also ∅ ⊆ {b, b′}.

Similarly, ¬¬〈∅, {a}〉 = 〈{b, b′}, {a, c}〉 which is incomparable with 〈∅, {a}〉.
��〈∅, {a}〉 = 〈∅, U〉 ≤ 〈∅, {a}〉 and ¬¬〈{b, b′}, {a}〉 = 〈{b, b′}, {a, c}〉 ≤
〈{b, b′}, {a}〉. On the contrary, ��〈{a}, {b, b′}〉 = 〈{a, c}, {b, b′}〉 ≥ 〈{a}, {b, b′}〉
and ¬¬〈∅, {a, c}〉 = 〈{b, b′}, {a, c}〉 ≥ 〈∅, {a, c}〉.

7.3 Effective Lattices, the Logic E0 and Rough Set Systems

Now we have to focus on the particular case in which the preorder, or the partial
order, is bounded by a set M of maximal states. From a rough set perspective, this
means that the set S of isolated elements coincides with M . What are the logical
consequences of this situation? Otherwise stated, what does it happen if in a model
every state has a state above it which decides every formula?

In view of Theorem 83, in such model for any formula α, �α∨ ∼ α� is locally
valid everywhere. This is the main feature which makes CLSN transform into a
new logic called E0. This logic (also called Effective Logic 0) was introduced for
studying program synthesis and program specification (see [24]) and its algebraic
models were studied in [27]. This logic was presented by means of rules of Natural
Deduction by adding to the rules for CLSN the following schemas:

(T 1)

[α] [α]

[β] [∼ β] [∼ β]
(α)

(T 2)

[∼ α] [∼ α]

[β]
(α)
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Now, let us translate the two rules in the operation of a Nelson algebra N≡(H)

of ordered pairs of disjoint elements of a Heyting algebra H. In what follows we
put a = κ(α), b = κ(β), a = 〈a1, a2〉, b = 〈b1, b2〉, and so on. Remember that
a −→ b = 1 iff a1 ≤H b1. Then, since the first element of κ(b∧ ∼ b) is b1∧b2 = 0,
we have:

(i) (a −→ 0) −→ T(∼ a); (ii) (∼ a −→ 0) −→ T(a) (68)

Moreover, from the two rules it is possible to derive

T(∼ α) ≡∼ T(α). (69)

Let us set T(a) = 〈T1, T2〉 and from the above ingredients discover what T1 and T2
must be.

From (68).(i) and T(∼ α) ≡∼ T(α) one has �a −→∼ T(a). From (68).(ii) one
obtains � ∼ a −→ T(a). Since �a = 〈¬a2, a2〉 and �a = 〈¬a1, a1〉 it must be:

(i) ¬a2 ≤H T1, (ii) ¬a1 ≤H T2, so (iii) ¬T1 ≤H ¬¬a2, (iv) ¬T2 ≤H ¬¬a1
(70)

From Lemma 106 we have:

(i)¬¬a1 ≤H ¬a2, (ii) T1 ≤H ¬T2, (iii) T2 ≤H ¬T1 (71)

From (70).(ii) and (71).(i) ¬¬a1 ≤H ¬a2 ≤H T1. From this, (70).(iv) and (71).(ii)
¬¬a1 ≤H T1 ≤H ¬T2 ≤H ¬¬a1. In consequence: ¬¬a1 = T1 = ¬T2. Therefore,
¬T1 = ¬a1. From this and (71).(iii) T2 ≤H ¬a1 and from (70).(ii) T2 ≤H ¬a1 ≤H
T2, so that T2 = ¬a1. We conclude that:

T(a) = 〈¬¬a1,¬a1〉 for any a of a Nelson algebra modelling E0. (72)

Now, in a generic Nelson algebra we do have ��a = 〈¬¬a1,¬a1〉, but we cannot set
T(a) =��a because of (69). In fact, ∼��a = ¬¬ ∼ a = 〈¬a1,¬¬a1〉. Therefore
it should be ¬a1 = ¬¬a2 and ¬a2 = ¬¬a1, all a. However, usually in Nelson
algebras these equations do not hold. Look at the following model:

v

a α c αb κ(α) a}, {c , ∼ (κ(α)) a},¬¬{a
b, c}, {a , while ∼ κ(α) c},¬{c
c}, {a, b .

The reader has immediately recognised the problem: b does not decide α or ∼ α.
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At this point we must find the conditions for a Nelson algebra to make ¬a1 =
¬¬a2, which, obviously, is the same as ¬¬a1 = ¬a2.

Lemma 108 Let L be a distributive lattice, a, b, c ∈ L, a ∧ b = 0 = a ∧ c. Then
a ∨ b = a ∨ c if and only if b = c.

Proof If a ∨ b = a ∨ c then (a ∨ c) ∧ b = (a ∨ b) ∧ b = b. Therefore, b =
(a ∧ b)∨ (c ∧ b) = 0 ∨ (c ∧ b) so that b ≤ c. Similarly one proves that c ≤ b. The
converse implication is more than trivial. ��
Theorem 109 Let N≡(H) be a Nelson algebra of ordered pairs of disjoint elements
of a Heyting algebra H. Then for any 〈a1, a2〉 ∈ N≡(H), ¬a1 = ¬¬a2 if and only
if ≡ is ≡J δ , where δ is the least dense element of H.

Proof If 〈a1, a2〉 ∈ N≡
J δ

(H) then [〈a1 ∨ a2〉]¬¬ = [1]¬¬. It follows that
[〈a1 ∨ a2〉]¬¬ = [〈a1 ∨ ¬a1〉]¬¬. Since a1 ∧ a2 = 0 and a1 ∧ ¬a1 = 0,
then [a1]¬¬ ∧ [a2]¬¬ = [0]¬¬ and [a1]¬¬ ∧ ¬[a1]¬¬ = [0]¬¬. Moreover,
[a1 ∨ a2]¬¬ = [a1]¬¬ � [a2]¬¬ = [a1 ∨ ¬a1]¬¬ = [a1]¬¬ � [¬a1]¬¬. Therefore,
from Lemma 108 [a2]¬¬ = [¬a1]¬¬ and we conclude ¬¬a2 = ¬¬¬a1 = ¬a1.
The example above proves the converse (more precisely, it proves the contrapositive
of the converse implication, that is, if ≡ is not the minimal Boolean congruence,
then—see Lemma 106—¬a1 ≥H ¬¬a2). ��

In [30] the above result is provided by a parallel algebraic and proof-theoretic
derivation.

If an approximation space �R(U) is induced by an order R upper bounded by
maximal elements (i.e. with no infinite ascending chains), like any finite partial
order, then the set of maximal elements of R is the set of isolated points, which for
the philosophy of Rough Set Theory, are completely describable items, that is, items
which are describable with no ambiguity by the given properties. In consequence
Dsj (�R)(U) = N≡

J δ
(�R)(U). In this case the intrinsic logic (in the sense of [21])

of the rough set system is E0, not CLSN (see [19]):

Theorem 110 Let �R(U) be an approximation space such that R is an order
with no infinite ascending chains, and S the set of its maximal elements. Then
N≡

JS
(�R(U)) = Dsj (�R(U)).

Example 111 Consider the partial order of Example 105. The set of maximal
elements is S = {a, b}. Below we show the Nelson space built on 〈W,Q〉 with
the usual decorations “+” and “−” and the resulting Nelson lattice of ordered pair
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of elements of �Q(W) without the decoration “+”.

v−

c−

a+−

c+ b+−

v+

W ∗

N (W ∗) W ∗,≤, f

,W

, {a, b, c

, {a, b b}, {a, c

b}, {aa}, {b

a, b},a, c}, {b

a, c, b},

W,

N≡
JS Q(W))

Pay attention that if we apply the above construction to our preorder 〈U,R〉
enlarging S to a set S′ containing also the pre-maximal states, then N≡

JS′ (�R(U))

is, indeed, an effective lattice, but it is a sublattice of Dsj (�R(U). For instance,
Dsj ({a, b}) = 〈{a},∅〉 which is not an element of N≡

JS′ (�R(U)). In fact in this

lattice R(b) and R(b′), that is, {b, b′}, must be included either in the first or in the
second element of any ordered pair. Practically, N≡

JS′ (�R(U)) is the above lattice

with b′ added in any element containing b. Hence it is a lattice quite different from
Dsj (�R(U)) which is shown in Example 46.

7.4 Algebraic Logic from Equivalence Relations

Originally, Rough Set Theory was based on equivalence relations (see [40]). Also
in this case the intrinsic logic of the resulting rough set system changes drastically
according to the filter JX.

Lemma 112 An approximation space �R(U) with R an equivalence relation and
equipped with the Heyting algebra operations of Definition 38 is a Boolean algebra.

Proof A Heyting algebra such that ¬¬a = a is a Boolean algebra. The topological
space �R(U) is made of clopen (closed and open subsets). Hence, if A ∈ �R(U)

then−A ∈ �R(U). In consequence for any A,B ∈ �R(U), I(−A∪B) = −A∪B,
so that ¬A = −A. Therefore ¬¬A = −− A = A. ��
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Lemma 113 If B is a Boolean algebra, then for any a ∈ B, ≡J a is a Boolean
congruence.

Proof Trivial: the only dense element of a Boolean algebra is 1 and since a ≤ 1,
any a, ↑ a contains all dense elements (actually the only one). ��
Lemma 114 Let B be a Boolean algebra, then for any congruence ≡J a , N≡Ja (B)

is a semi-simple Nelson algebra.

Proof For any a ∈ N≡Ja (B), a∨�a = 〈a1, a2〉∨〈¬a1, a1〉 = 〈a1∨¬a1, a2∧a1〉 =
〈1, 0〉 = 1. ��

Semi-simple Nelson algebras are the same mathematical objects as three-valued
Łukasiewicz algebras. We explain this correspondence by showing interesting facts
connected to rough sets.

In semi-simple Nelson algebras the operation ¬ is a pseudo-complementation:
¬a, that is, 〈a2,¬a2〉, is the maximal element 〈x1, x2〉 such that x1 ∧ a1 = 0 and
x2∨a2 = 1. This may be surprising, because the complement of a1 in the underlying
Boolean algebra is its pseudo-complement¬a1, not a2. But we have to consider that
in any Nelson algebra of ordered pairs of a Heyting algebra H, a ≤ b if and only if
a1 ≤H b1 and b2 ≤H a2. Therefore, the orders of the first and the second elements
are contravariant. It follows that 〈x1, x2〉 is the pseudo-complement of 〈a1, a2〉 if x2
is the minimal element z such that z∨a2 = 1 and x1 is the maximal element w such
that w ∧ a1 = 0 and w ∧ x2 = 0. But, ¬a2 is the minimal complement of a2 to 1
(it is its supplement, indeed—see Definition 123). And a2 is the maximal element
disjoint from ¬a2.

However, we give a proof, by introducing another kind of implication, which is
fundamental to understand the intrinsic logic of rough set systems from equivalence
relations.

Theorem 115 In a Nelson algebra N≡(B) with B a Boolean algebra, the operation
⊃ defined in (58) is a relative-pseudocomplementation

The proof can be found in [32] or in [39].7 As a corollary, since ¬a = a ⊃ 0, one
obtains that ¬a is the pseudo-complement of a.

Excursus
Now we have enough material to discuss a point we have left open: how to

define the Nelson operations on a decreasing representation Dcr(�R(U))? If R

is an equivalence relation the answer is straightforward, as we shall see. But if R

is a preorder some difficulties arise. We recall that any element 〈A1, A2〉 of the
decreasing representation belongs to �R�(U) × �R(U) and that �R�(U) is a co-
Heyting algebra with respect to �R(U).

It is a tricky point. For meet and join there is no problem: a ∧ b = 〈A1 ∩
B1, A2∩B2〉 and analogously for∨. For the strong negation just a little effort gives:

7The first proof was presented in [28]. In that paper there is a misprint: ¬(¬B2 ∪ A2) instead of
(¬B2 ∪ A2).
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∼ 〈A1, A2〉 = 〈−A2,−A1〉. Now we apply the map ρ of (45) which transforms a
disjoint representation into a decreasing one. Thus pay attention that before applying
ρ, ∼ 〈A1, A2〉 = 〈A2, A1〉 while after applying ρ, ∼ 〈A1, A2〉 = 〈−A2,−A1〉. Let
us then verify that ρ(∼ a) =∼ ρ(a): ρ(∼ a) = ρ(〈A2, A1〉) = 〈−A1, A2〉 =
〈−A1,− − A2〉 =∼ 〈−A2, A1〉 =∼ ρ(a). It is more difficult to define the impli-
cation. In disjoint representation a −→ b = 〈A1 �⇒ B1, A1 ∩ B2〉 so ρ(〈A1 �⇒
B1, A1 ∩ B2〉) = 〈−(A1 ∩ B2), A1 �⇒ B1〉 = 〈−A1 ∪ −B2, A1 �⇒ B1〉. Now,
ρ(a) = 〈−A2, A1〉, ρ(b) = 〈−B2, B1〉. It follows that given a = 〈A1, A2〉 and b =
〈B1, B2〉 in decreasing representation a −→ b = 〈−A2 ∪ B1, A2 �⇒ B2〉. Notice
that A2 �⇒ B2 = IR(−A2 ∪ B2). Therefore, �a = a −→ 〈0, 0〉 = 〈−A2,¬A2〉.
One more time, notice that the first element is a set-theoretic complementation while
the second is the interior of a set theoretic complementation. Finally, the definition
of ¬ is interesting, and tricky: in disjoint representation ¬a = 〈a2,¬a2〉. Hence
ρ(¬a) = 〈−¬A2, A2〉 = 〈−IR(−A2), A2〉. In consequence, for a in decreasing
representation ¬a = 〈−IR(A1), A1〉 = 〈�A1,−A1〉, where � is the pseudo-
complementation of the opposite Heyting algebra �R�(U). In fact, −IR(X) =
−CR�(X) = IR�(−X) =�X. Rephrased with the constructors introduced in the
first lesson, if a is in decreasing representation, then ¬a = 〈[i]R(−A1), A1〉 =
〈−〈i〉R(−A1), A1〉, while �a = 〈−A2, [e]R(A2)〉.

At an abstract level, in view of Theorem 11, these operations require a Boolean
algebra equipped with a topological modal operator M and a topological co-modal
operator L such that 〈M,L〉 is an axiality (an adjoint pair). Alternatively, we need a
bi-Heyting algebra providing ¬ and �.

But in the case R is an equivalence relation, R = R� and �R(U) is a topology
of clopen sets. Then things are much easier and the operations are smoother: in the
first place, there are no chains of alternate topological operators, that is, CRIR = IR
and IRCR = CR . This fact simplifies a lot, since any Xi has the form IR(Y ) for
some Y ⊆ U . Furthermore, �a = 〈¬A2,¬A2〉, ¬a = 〈¬A1,¬A1〉 and a −→ b =
〈A2 �⇒ B1, A2 �⇒ B2〉, where ¬Xi is the set-theoretic complement of Xi and
Xi �⇒ Yj = −Xi ∪ Yj .

7.5 Rough Set Interpretation of Tautologies
and Contradictions

The following hold in any Nelson algebra N≡Jx (H):

1 ≥ a∨�a ≥ a ∨ ¬a = a∨ ∼ a ≥ 〈x, 0〉 (73)

0 ≤ a ∧ ¬a ≤ a∧�a = a∧ ∼ a ≤ 〈0, x〉 (74)
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(73) and (74) are easily proved: a∨�a = 〈a1 ∨ ¬a1, 0〉 ≥ 〈a1 ∨ a2〉 = a ∨ ¬a.
Symmetrically, a ∧ ¬a = 〈0, a2 ∨ ¬a2〉 ≤ 〈0, a1 ∨ a2〉 = a∧�a. But a1 ∨ a2 ≥ x,
by definition of the domain of the algebra. Therefore, a ∨¬a ≥ 〈x, 0〉 and a∧�a ≤
〈0, x〉.

If N≡Jx (H) is semi-simple:

(i) ¬¬¬a = ¬a, (ii) ���a =�a (75)

(i) ��a =∼�a = ¬ ∼ a ≤ a, (ii)¬¬a =∼ ¬a =� ∼ a ≥ a (76)

(i) a∨�a = 〈1, 0〉; (ii) a ∧ ¬a = 〈0, 1〉 (77)

(75), (76) and (77) come from (65), (66) and (67) because ¬¬a1 = a1 and ¬¬a2 =
a2. (77) comes trivially from the fact that a1 ∨ ¬a1 = a2 ∨ ¬a2 = 1, so that
a∨�a = 〈a1 ∨ ¬a1, 0〉 = 〈1, 0〉 and a ∧ ¬a = 〈0, a2 ∨ ¬a2〉 = 〈0, 1〉.

Suppose �R(U) is a topology and a = Dsj (X) = 〈IR(X),−CR(X)〉 for X ⊆
U . Then:

a∨ ∼ a = a ∨ ¬a = 〈IR(X) ∪ −CR(X),∅〉 = 〈−BR(X),∅〉 (78)

a∨�a = 〈IR(X) ∪ IR − IR(X),∅〉 = 〈IR(X) ∪ IRCR(−X),∅〉 (79)

Opposite relations hold for the contradictions:

a∧ ∼ a = a∧�a = 〈∅,−BR(X)〉 (80)

a ∧ ¬a = 〈∅,−CR(X) ∪ IR −−CR(X)〉 = 〈∅,−CR(X) ∪ IRCR(X)〉 (81)

Therefore, we note that contradictions are not equivalent to 0 and tautologies are not
equivalent to 1 because of the presence of an “indecision area”, that is, the boundary
of a set.

In the case �R(U) is a Boolean algebra, so that Dsj (X) is an element of a semi-
simple Nelson algebras, since the open sets of �R(U) are clopen, IRCR(−X) =
CR(−X) = −IR(X), so that a∨�a = 〈U,∅〉 and a ∧ ¬a = 〈∅, U〉, as anticipated
by (77).

What about, then, Dsj (BR(X)) itself? It is 〈IR(BR(X)),−CR(BR(X))〉. But
since BR(X) is the intersection of two closed sets, that is, CR(X) and −IR(X),
it is itself a closed set. In consequence,

Dsj (BR(X)) = 〈IRBR(X),−BR(X)〉 =∼�(a∧ ∼ a) =∼�(a∧�a) (82)

In the semi-simple case, since IRBR(X) = BR(X), Dsj (BR(X)) =
〈BR(X),−BR(X)〉. Therefore, BR(X) is an exact set.
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7.6 Double Negations, Modalities and Approximations

The following are immediate in any Nelson algebra:

(i) ¬¬a = 〈¬a2,¬¬a2〉, (ii) ��a = 〈¬¬a1,¬a1〉 (iii) ��a ≤ ¬¬a (83)

In what follows, I and C stand for IR and, respectively, CR .

Theorem 116 Let �R(X) be a topology. Then for all X ⊆ U :

Dsj ((lR)(X)) = 〈I(X),−CI(X)〉, Dsj ((uR)(X)) = 〈IC(X),−C(X)〉 (84)

¬¬Dsj (X) = 〈IC(X), ICI(−X)〉, ��Dsj (X) = 〈ICI(X), IC(−X)〉 (85)

��Dsj ((lR)(X)) =��Dsj (X), ��Dsj ((uR)(X)) = ¬¬Dsj (X) (86)

¬¬Dsj ((lR)(X)) =��Dsj (X), ¬¬Dsj ((uR)(X)) = ¬¬Dsj (X) (87)

Dsj ((lR)(X)) ≤��Dsj ((lR)(X)) =��Dsj (X) ≤ (88)

≤ ¬¬Dsj (X) = ¬¬Dsj ((uR)(X)) ≤ Dsj ((uR)(X)) (89)

Proof First, ¬ − X = −C(−X) = I(X), ¬¬ − X = I − I(− − X) = I − I(X),
and so on. Second, ICI(X) ⊆ IC(X). In view of these equations and dis-equations
the proofs are just easy calculations. For instance, (85) is proved as follows:

¬¬Dsj (X) = ¬¬〈I(X),−C(X)〉 = 〈¬ − C(X),¬¬ − C(X)〉 =
= 〈I−−C(X), I− I−−C(X)〉 = 〈IC(X), I − IC(X)〉 =
= 〈IC(X), ICI(−X)〉 ��

Theorem 117 Let �R(U) be a Boolean algebra, then for all X ⊆ U ,

Dsj ((lR)(X)) =��Dsj (X), Dsj ((uR)(X)) = ¬¬Dsj (X) (90)

In other terms, the following diagrams commute:

X ·

· ·
(lR)

Dsj

Dsj

X ·

· ·
(uR)

Dsj

Dsj

¬¬

Proof (90) is based on the fact that �R(U) is made of clopen sets, so that for all
X ⊆ U , IC(X) = C(X) and CI(X) = I(X). It follows from (85) and (84) that
��Dsj (X) = 〈ICI(X), IC(−X)〉 = 〈I(X), IC(−X)〉 = Dsj ((lR)(X)). The other
equation comes from duality. ��
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Actually, ��Dsj (X) = Dsj ((lR)(X)) = 〈I(X),−I(X)〉 follows from
IC(−X) = C(−X) = −I(X). Similarly, ¬¬Dsj (X) = Dsj ((uR)(X)) =
〈C(X),−C(X)〉. Indeed, if B is a Boolean algebra, then in the semi-simple Nelson
algebra N≡(B), ¬¬a = 〈¬a2, a2〉 and ��a = 〈a1,¬a1〉, any a.

We know that ¬¬(Dsj (�R(U)) is a Boolean algebra if equipped with ∩,�
and ¬, where ¬ is the set-theoretic complementation. In case R is an equivalence
relation, we prove something special:

Theorem 118 Let N be a semi-simple Nelson algebra and ¬¬(N) the lattice of
regular elements of N. Then � coincides with ∨.

In Theorem 117 it was actually proved that in semi-simple Nelson algebras ¬¬ is a
topological closure operator, hence it is additive. Another proof is the following: if
N is semi-simple, then ¬ is a pseudo-complementation. It follows that ¬¬(¬¬a ∨
¬¬b) = ¬(¬¬¬a ∧ ¬¬¬b) = ¬(¬a ∧ ¬b). In Sect. 7.8 we shall prove that
¬(x ∧ y) = ¬x ∨ ¬y. Hence, ¬(¬a ∧ ¬b) = ¬¬a ∨ ¬¬b.

In a rough set perspective, one can prove by easy calculation that

¬¬Dsj (X ∪ Y ) = ¬¬Dsj (X) ∪ ¬¬Dsj (Y ).

Therefore, ¬¬(¬¬Dsj (X) ∪ ¬¬Dsj (Y )) = ¬¬¬¬Dsj (X ∪ Y ) =
¬¬Dsj (X ∪ Y ) = ¬¬Dsj (X) ∪ ¬¬Dsj (Y ).

Notice, on the contrary, that Dsj (X ∪ Y ) ≥ Dsj (X) ∪Dsj (Y ), because IR(X ∪
Y ) ⊇ IR(X) ∪ IR(Y ).

It is natural to ask what is the element x of this algebra such that ¬¬a = J x(a)

for any element a.

Theorem 119 Let B be a Boolean algebra. Then for any a ∈ B, the least dense
element of N≡Ja (B) is 〈a, 0〉.
Proof An element 〈x1, x2〉 is dense if ¬〈x1, x2〉 = 〈x2,¬x2〉 = 0. Hence x2 = 0.
But because of the filtration clause, x1 ∨ 0 ≥B a. In consequence x1 ≥B a. ��
Corollary 120 In any semi-simple Nelson algebra N≡Ja (B), J 〈a,0〉(x) = ¬¬x,
any x.

Proof From Theorem 77.(1). ��
So we have seen that the set J 〈a,0〉(N≡Ja (B)) forms a subalgebra of N≡Ja (B).

All the elements of this subalgebra are regular and complemented. The set of
complemented elements of an algebra is called center of the algebra.

Theorem 121 Given a semi-simple Nelson algebra, for any element a, if a = ¬¬a

then all the three negations are complementations of a.

Proof From (66) and (76) ¬¬¬a =�¬¬a =∼ ¬¬a. Therefore, from (77) all the
three negations are complementations of ¬¬a. ��

In view of (76).(i), the above result does not hold for generic elements.
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From the above discussion and Definition 6, ∼� =�� = ¬� is a necessity
operator L and ∼ ¬ = ¬¬ =�¬ is a possibility operator M.

Example 122 Consider the usual preorder P without the elements v and c. Then
we obtain an equivalence relation E = {〈a, a〉, 〈b, b〉, 〈b′, b′〉, 〈b, b′〉, 〈b′, b〉} on a
set Z = {a, b, b′}. The only isolated element is a. Below we depict the Boolean
algebra �E(Z), the resulting Nelson space and the rough set system Rsj (�E(Z))

as the lattice N≡
J {a} (�E(Z)) without decorations “+”:

∅

{a} {b, b }

Z

E(Z)

a+− b+ b

b− b

Z∗,≤, f

, Z

, {a a}, {b, b

a},b, b }, {a

Z,

N≡
J {a} E(Z))

Notice that 〈Z∗,≤, f 〉 is not obtained from the dual space of �E(Z) but from
〈Z,E〉. In fact, as we have seen, the dual space of �E(Z) is a T0-ification in which
b and b′ collapse into a single point {b, b′}.

Dsj ({a}) = 〈{a}, {b, b′}〉. Dsj ({a, b}) = 〈{a},∅〉. Notice that if X is an exact
set, that is, X = (lR)(X) = (uR)(X), then Dsj (X) is a regular element of the
algebra. The exact sets are {a}, {b, b′}, Z and ∅. Their Dsj -images lay in the center
of N≡

J {a} (�E(Z)). Let us verify some cases: ¬〈{a},∅〉 = 〈∅, Z〉. 〈{a},∅〉 it the
least dense element. ¬〈∅, {a}〉 = 〈{a}, {b, b′}〉. ¬〈∅, {a}〉 ∧ 〈∅, {a}〉 = 〈∅, Z〉.
¬〈∅, {a}〉 ∨ 〈∅, {a}〉 = 〈{a},∅〉. �〈∅, {a}〉 = 〈Z,∅〉. �〈∅, {a}〉 ∧ ¬〈∅, {a}〉∧ =
〈∅, {a}〉. ¬¬〈{a},∅〉 = 〈Z,∅〉. ��〈{a},∅〉 = 〈{a}, {b, b′}〉.

7.7 Negations and Dual Pseudo-Complementation

Given a semi-simple Nelson algebra N≡(B), from a Boolean algebra B, we know
that a ⊃ b is the pseudo-complement of a relative to b and ¬a the
pseudo-complement of a. If we reverse the order of ⊃ we obtain another operation:

Definition 123 (Pseudo-Supplementation) Let L be a bounded lattice, if for all
a, b, x ∈ L the following holds:

a ∨ x ≥ b if and only if x ≥ a ⊂ b (91)

then a ⊂ b is called the psudosupplement of a relative to b. The element a ⊂ 1 is
called pseudo-supplement of a.
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Therefore, a ⊂ b is the least element x such that a ∨ x ≥ b. In other terms, ⊂ is
lower adjoint to ∨. In consequence ∨ is multiplicative, so that L is distributive.

Theorem 124 Let N be a semi-simple Nelson algebra, then

a ⊂ b =∼ (∼ a ⊃∼ b) (92)

Let us verify that for any a in N, a ⊂ 1 =�a: ∼ (∼ a ⊃∼ b) =∼ (∼� ∼∼
a∨ ∼ b ∨ (� ∼ a∧� ∼∼ b)) =∼ (∼�a∨ ∼ b ∨ (� ∼ a∧�b)). Therefore,
a ⊂ 1 =∼ (∼�a ∨ 0 ∨ (� ∼ a ∧ 0)) =∼ (∼�a) =�a.

This justifies why � and ¬ have dual properties, for instance with respect to the
De Morgan laws, as we shall see in the next section.

Definition 125 (Co-Heyting Algebras) A bounded distributive lattice L such that
a ⊂ b is defined for all a, b ∈ L, is called a co-Heyting algebra.

Definition 126 (Bi-Heyting Algebras) A bounded distributive lattice L such that
it is both a Heyting and a co-Heyting algebra is called a bi-Heyting algebra.

Notice that the system of all closed subsets of a topological space is a co-Heyting
algebra in which given two closed sets X and Y , X ⊂ Y = C(Y ∩ −X) and �X =
C(−X) = −I(X). This justifies the definition of the operations for the decreasing
representation Dcr(�R(U)) that were provided in the excursus before Sect. 7.5.

Given a co-Heyting algebra, in [22] William Lawvere defined a boundary
operation δ(a) := a∧�a and pointed out that this operation fulfils the following
rule δ(a ∧ b) = (δ(a) ∧ b) ∨ (a ∧ δ(b)). This rule is consistent with our spatial
intuition, if we think of two overlapping sets. Moreover, it is consistent with the
Leibniz rule for differentiation of a product: d

dx
(a · b) = da

dx
· b + a · db

dx
.

But in Sect. 7.5 we have seen, indeed, that given a semi-simple Nelson algebra
N≡

JS
(�R(U)), with R an equivalence relation, Dsj (X)∧�Dsj (X) “represents” the

boundary of X (see [31]).
We now prove that in a semi-simple Nelson algebra N≡(B) the Leibniz rule holds

for δ(x) = x∧�x:

(a ∧ b)∧�(a ∧ b) = 〈a1 ∧ b1, a2 ∨ b2〉 ∧ 〈¬(a1 ∧ b1), a1 ∧ b1〉
= 〈0, a2 ∨ b2 ∨ (a1 ∧ b1)〉 = 〈0, (a2 ∨ b2 ∨ a1) ∧ (a2 ∨ b2 ∨ b1)〉
= 〈0, a2 ∨ b2 ∨ a1〉 ∨ 〈0, a2 ∨ b2 ∨ b1〉
= 〈a1 ∧ ¬a1 ∧ b1, a2 ∨ b2 ∨ a1〉 ∨ 〈a1 ∧ b1 ∧ ¬b1, a2 ∨ b2 ∨ b1〉
= (〈a1, a2〉 ∧ 〈¬a1, a1〉 ∧ 〈b1, b2〉) ∨ (〈a1, a2〉 ∧ 〈b1, b2〉 ∧ 〈¬b1, b1〉)
= ((a∧�a) ∧ b) ∨ (a ∧ (b∧�b))
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We conclude the section with these straightforward results on rough set systems:

Theorem 127 Let B be a Boolean algebra and≡ a congruence on B. Then:

H(B) := 〈N≡(B),∨,∧,¬,⊃, 0, 1〉 is a Heyting algebra.

CH(B) := 〈N≡(B),∨,∧, �,⊂, 0, 1〉 is a co-Heyting algebra.

BH(B) := 〈N≡(B),∨,∧,¬, �,⊃,⊂, 0, 1〉 is a bi-Heyting algebra.

Corollary 128 Let �R(U) be an approximation space with R an equivalence
relation. then H(�R(U)) is a Heyting algebra, CH(�R(U)) is a co-Heyting
algebra, and BH(�R(U)) is a bi-Heyting algebra.

7.8 Negations and De Morgan Laws

By definition, both De Morgan laws hold for the strong negation∼. On the contrary,
by means of some calculation we obtain:

¬(a ∧ b) = ¬a ∨ ¬b, (93)

¬(a ∨ b) = 〈a2 ∧ b2,¬(a2 ∧ b2)〉 ≤ 〈a2 ∧ b2,¬a2 ∨ ¬b2〉 = ¬a ∧ ¬b (94)

�(a ∨ b) =�a∧�b (95)

�(a ∧ b) = 〈¬(a1 ∧ b1), a1 ∧ b1〉 ≥ 〈¬a1 ∨ ¬b1, a1 ∧ b1〉 ≥�a∨�b. (96)

The same equalities and disequalities hold for double negated elements, too. For
instance, ¬(¬¬a ∧ ¬¬b) = ¬¬¬a ∨ ¬¬¬b.

Also, ¬(��a∨��b) ≤ ¬��a ∧ ¬��b and so on, while ¬(��a∧��b) = ¬��a ∨
¬��b.

Pay attention that the above relations hold for the operations¬ and � in a generic
Nelson algebra N. On the contrary, if ¬ is the pseudo-complementation of N qua
Heyting algebra (for instance if N is a finite Nelson lattice), then¬(a∧b) ≥ ¬a∨¬b,
while ¬(a∨b) = ¬a∧¬b. Symmetrically, if � is the dual-pseudocomplementation
in the co-Heyting algebra Nop then �(a ∨ b) ≤�a∧�b and �(a ∧ b) =�a∨�b.

If the Nelson algebra is semi-simple, things change sensibly. In fact, in this
case the Nelson operator ¬ is really a pseudo complementation and � a co-
pseudocomplementation. Clearly, we expect that the De Morgan law for Heyting
algebras and co-Heyting algebras hold:

¬(a ∨ b) = ¬a ∧ ¬b and �(a ∧ b) =�a∨�b.

It holds because the same is valid in the underlying Boolean algebra.
The law (93) suggests that semi-simple Nelson algebras can be made into

Heyting algebras with very peculiar properties, because that law does not hold in
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general for pseudo-complementation. Symmetrically for their co-Heyting algebras.
Indeed, in [43] it was proved that if (93) and (95) hold then �¬ and ¬� are
idempotent operators and �¬a is the least complemented element above a, while
¬�a is the largest complemented element below a.

In fact we have seen in Theorem 117 that in semi-simple Nelson algebras,
�¬ = ¬¬ =∼ ¬ and ¬� =�� =∼� correspond to topological modal (possibility)
and, respectively, topological co-modal (necessity) operators which project an
element a onto the sublattice of regular elements which is, also, the sublattice of
complemented elements of the algebra.

Actually, another reason why the above De Morgan laws hold in semi-simple
Nelson algebras is a general result by Johnstone (see [20]): in a Heyting algebra
H, the De Morgan law (93) is equivalent to the fact that the set of regular elements
form a sublattice of H. And in Theorem 118 it was proved that this is the case for
semi-simple Nelson algebras, indeed.

7.9 Changing Information and Changing Logic

We have mentioned that semi-simple Nelson algebras are equivalent to three-valued
Łukasiewicz algebras. Now we enter some details.

Definition 129 (Łukasiewicz Algebra) A three-valued Łukasiewicz algebra is a
distributive lattice 〈A,∨,∧,∼, 0, 1〉 with two additive and multiplicative unary
operations ϕ1, ϕ2 satisfying:

ϕ1(x) ≥ ϕ2(x), ϕi(x)∨ ∼ ϕi(x) = 1, ϕi(x)∧ ∼ ϕi(x) = 0, ϕi(∼ x) =∼ ϕi(x)

ϕi(ϕj (x)) = ϕj (x), x ∨ ϕ1 = ϕ1(x), x ∧ ϕ2 = ϕ2(x), ϕi(0) = 0, ϕi(1) = 1

∼ x ∧ ϕ2(x) = 0, ∼ x ∨ ϕ1(x) = 1, y ∧ (x∨ ∼ ϕ1(x) ∨ ϕ2(y)) = y.

It is possible to prove (see [39] or [32]):

Theorem 130 Let B be a Boolean algebra and ≡ a congruence on B. Then:
L(B) := 〈N≡(B),∨,∧,∼, ϕ1, ϕ2, 0, 1〉 is a three-valued Łukasiewicz algebra,
where ϕ1 =�¬ =∼ ¬ = ¬¬ and ϕ2 = ¬� =∼� =��.

Corollary 131 Let �R(U) be an approximation space with R an equivalence
relation. Then, L(�R(U)) is a three-valued Łukasiewicz algebra.

See Example 122.
It is interesting to note that our relative pseudo-complementation ⊃ of Theo-

rem 115 coincides with the so-called Moisil residuation � which is definable in
three-valued Łukasiewicz algebras: a � b := b∨ ∼ ϕ1(a)∨ (∼ ϕ2(a)∧ ϕ1(b)).
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Semi-simple Nelson algebras or three-valued Łukasiewicz algebras represent the
case in which the filtration congruence≡ is generic, that is,≡ is≡J a for 0 ≤ a ≤ 1.
What happens in the extreme cases, that is, when a = 1 and a = 0?

We have seen that N≡
J1 (�R(U)) is a Boolean algebra isomorphic to �R(U). If,

instead, a = 0, then we obtain a Post algebra of order three.

Definition 132 (Post Algebra) A Post algebra of order three is a Heyting algebra
〈A,∨,∧,�⇒,¬, 0, 1〉 equipped with a three chain element 0 = e0 ≤ e1 ≤
e2 = 1 and two unary multiplicative and additive operators D1,D2 such that, for
1 ≤ i, j ≤ 2:

D1(x) ∨ ¬D1(x) = 1, Di(¬x) = ¬Di(x), Di(Dj (x)) = Dj (x)

x = (D1(x) ∧ e1) ∨ (D2(x) ∧ e2) - monotonic representation of x

Di(x �⇒ y) = (D1(x) �⇒ D1(y)) ∧ (D2(x) �⇒ D2(y))

Di(ej ) =
{

1 for 1 ≤ i ≤ j ≤ 2

0 for 2 ≥ i � j ≥ 0

Let then P = 〈A,∨,∧,�⇒,¬, e0, e1, e2,D1,D2, 0, 1〉. Since Di(x) ∨ ¬Di(x) =
(D1(Di(x)) ∨ ¬D1(Di(x)) = 1, it is evident that for any x, Di(x) belongs to the
centre of P.

Post algebras of order three are special cases of three-valued Łukasiewicz
algebras. In fact, if a Łukasiewicz algebra L = 〈A,∨,∧,∼, ϕ1, ϕ2, 0, 1〉 has a
chain 0 ≤ δ ≤ 1, by setting D1 = ϕ1, D2 = ϕ2, ¬x =∼ D1(x), one obtains a
Post algebra of order three (see [32]).

Notice that, indeed,∼ D1(x) =∼ ϕ1(x) =∼∼ ¬x = ¬x.
Now we exhibit a Post algebra of ordered pairs of disjoint elements (see [32]).

We have just noticed that Di(x) is complemented. Moreover, D1(x) =∼ ¬(x). In
view of (65) and Theorem 121, this suggests that the underlying algebra is Boolean.
Therefore, let B be a Boolean algebra and ≡ be the largest congruence on B. Let
N≡(B) be a set of ordered pairs of disjoint elements of B. We have already seen
that since ≡ is the largest congruence on B, 1 ≡ 0 so that any pair of disjoint
elements of B is admitted by the filtration rule a1 ∨ a2 ≡ 1, hence also 〈0, 0〉 is.
We know that N≡(B) can be made into a three-valued Łukasiewicz algebra and
how to transform it into a Post algebra of order three. We only need a chain of
values. Obviously, e0 = 〈0, 1〉 and e2 = 〈1, 0〉. We claim that e1 is 〈0, 0〉. Clearly,
〈0, 1〉 ≤ 〈0, 0〉 ≤ 〈1, 0〉. Moreover D1(〈0, 0〉) =∼ ¬〈0, 0〉 =∼ 〈0, 1〉 = 1 and
D2(〈0, 0〉) =∼�〈0, 0〉 =∼ 〈1, 0〉 = 0.
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Now, the largest congruence on B is ≡J 0 . So, we obtain:

Theorem 133 Let B be a Boolean algebra, then

P(B) := 〈N≡
J0 (B),∨,∧,¬,⊃,∼ ¬,D1,D2, e0, e1, e2〉

is a Post algebra of order three, if D1 =∼ ¬, D2 =∼�, e0 = 〈∅, U〉, e1 = 〈∅,∅〉
and e2 = 〈U,∅〉.
From the rough set perspective, given an approximation space �R(U) with R an
equivalence relation, we obtain a Post algebra of order three if and only if there are
no isolated elements:

Theorem 134 Let R be an equivalence relation on a set U such that there are no
isolated elements, then N?≡

J0 (�R(U)) = Dsj (�R(U)) and

P(�R(U)) := 〈N≡
J∅ (�R(U)),∨,∧,¬,⊃,∼ ¬,D1,D2, e0, e1, e2〉

is a Post algebra of order three.

We have noticed that the intermediate value of the above Post algebra is 〈0, 0〉which
is the least dense element of the algebra. And we have also noticed that given
a Boolean algebra B and a ∈ B, 〈a, 0〉 is the least dense element in the lattice
〈N≡Ja (B),∨,∧,¬, 0, 1〉, therefore also in L(B) we can set a chain 0 = 〈0, 1〉 =
e0 ≤ e1 = 〈a, 0〉 ≤ e2 = 〈1, 0〉 = 1.

However, D1(e1) = ϕ1(e1) =∼ ¬〈a, 0〉 =∼ 〈0, 1〉 = 1, which is consistent
with Post algebras, but D2(e1) =∼�e1 =∼ 〈¬a, a〉 = 〈a,¬a〉 ≥ 〈0, 1〉 = 0, while
in Post algebras D2(e1) = D2(e0) = 0.

Actually, if one assumes 〈a, 0〉 as intermediate value, one obtains another kind of
lattices, called chain-based lattices, namely P2-lattices which are generalisations
of Post algebras (see [13]).

Example 135 Let P = {a, a′, b, b′} and E be the equivalence relation depicted
below together with the Boolean algebra �E(P), the resulting Nelson space and
Dsj (�E(P )) as the Post algebra of order three N≡

J∅ (�E(P )) without decora-
tions ’+’. For instance, Dsj ({a, b} = 〈∅,∅〉, Dsj ({a, a′, b}) = 〈{a, a′},∅〉,
Dsj ({a, a′}) = 〈{a, a′}, {b, b′}〉.
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E a a b b

a

a

b

b

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

∅

{a, a } {b, b }

U

E(P )

a+ a b+ b

b− ba− a

U∗,≤, f

, U

, {a, a , {b, b

,a, a }, {b, b

a, a },

b, b }, {a, a

b, b },

U,

N≡
J∅ E(P ))

8 Conclusions

In many respects, the logic of rough sets is still to be defined. In the case of classic
rough sets based on equivalence relations, we have seen that their logic depends
on the geometry of isolated points. In other terms, it depends on the set of items
completely describable by the given properties, that is, items which are singled out
by the properties, or information, we have. If all the items can be isolated by the
properties, then we obtain a Boolean algebra. This is no surprise if we think of
Classic Logic as the logic of perfect information: either α or ¬α. If some pieces of
information are complete and other are incomplete, and we gather the completely
describable items into a set S, then we obtain a semi-simple Nelson algebra, i.e. a
three-valued Łukasiewicz algebra, in which the pair 〈S,∅〉 is the least dense element
and a local top element, in the sense that classical tautologies takes values between
〈S,∅〉 and the absolute top element 〈U,∅〉. Vice-versa, all classical contradictions
are between ∼ 〈S,∅〉 = 〈∅, S〉 and the absolute bottom element 〈∅, U〉, so that
〈∅, S〉 is a local bottom element. If no items are completely described, then S =
∅ and rough set systems turns into Post algebras of order three, where the local
top and bottom elements fuse into a state 〈∅,∅〉 of complete indecision or totally
uninformed situation. Since it is often assumed that there are no isolated points, or
completely described items, then the logic of rough sets should be the one modelled
by Post algebras of order three, not three-valued Łukasiewicz logic or connected
mathematical objects (regular Stone algebras and the like).
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However, in our opinion, the real world is a melange of perfect and imperfect
information. Then three-valued Łukasiewicz logic, or Constructive Logic with
Strong Negation plus an axiom for a∨�a = 1 approximate the intrinsic logic of
rough sets. But they are not able to account for the double nature of perfect and
imperfect information which is implicit in these algebraic models as it is shown
by the fact that any such algebra is the product of a Post algebra of order three,
modelling the imperfect part, and a Boolean algebra modelling the perfect part.
Look at the Łukasiewicz algebra of Example 122. It is the product of the Boolean
algebra B whose (in this case only) atom is {a} and a Post algebra P with elements
built on the indiscernible elements b and b′:

, {a

a}, ×
B

, {b, b

,

b, b },

=
P

, {a , , {b, b

, {a , , a}, , , {b, b

a}, , ,, {a , b, b },

a}, , b, b },

Notice that the product of the least (only) dense element of B, that is, the top element
〈{a},∅〉 and the least dense element of P, which is the intermediate value 〈∅,∅〉,
gives the least dense element of the resulting three-valued Łukasiewicz algebra.

Finally, if an approximation space is induced by a partial or pre-order bounded
by maximal states, then the intrinsic logic of the rough set system is E0. In particular
all the usual approximation spaces induced by a finite partial order are of this kind.
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