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Preface

Algebraic methods have been extensively used since the very inception of the
study of rough sets and related formal approaches to vagueness. Most methods
concern logical reasoning, algebraic semantics, granularity, duality, knowledge
representation, and computation.

Results and methodologies are scattered across multiple papers in journals, and
many connections remain hidden. To remedy this situation, most of the major
approaches including the latest trends have been covered in some depth in this
research volume. It is intended to serve as a comprehensive up-to-date guide to
algebraic approaches to rough sets and reasoning with vagueness, provide strong
research directions, and connect algebraic approaches to rough sets with those for
other forms of approximate reasoning. Needless to say, it is not intended as an
introduction to the subject.

A substantial part of the content of this volume may be found distributed
over numerous recent research papers but without all the insightful perspectives,
enhancements, and restructuring that has happened due to the efforts of the
contributors. We would first of all like to thank all authors: A. Mani, Gianpiero
Cattaneo, Davide Ciucci, Bijan Davvaz, Patrik Eklund, María-Ángeles Galán-
García, Jouni Järvinen, Piero Pagliani, Sándor Radeleczki, and Ali Shakiba for their
effort.

All major semantic approaches are covered in the first seven chapters, while
related topics are considered in the remaining three. In the first chapter, commonly
used notation and terminology are fixed. In the next chapter, the connection between
closure and interior operators in lattices and specific abstract approaches to rough
sets is explained in depth by Gianpiero Cattaneo.

In the third chapter, a comprehensive account of algebraic approaches to rough
sets from the perspective of an axiomatic approach to granularity is presented by
A. Mani. She emphasizes the importance of the connections with granular operator
spaces and variants. A novel classification of granular approaches is also part of the
chapter.

Piero Pagliani has a refreshing new approach to connections among relation
algebras, algebraic modal logic, rough approximations, algebraic geometry, and
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vi Preface

topology. Collectivization of different kinds of properties has been described in
relation to semantic structures like Heyting, Nelson algebras, and variants in fine
detail.

In the fifth chapter, Jouni Järvinen and Sándor Radeleczki deal with semantics of
irredundant coverings and a subclass of rough approximations defined by tolerance
relations on information tables. The chapter also includes algorithms for handling
irredundant coverings in computational contexts.

In the sixth chapter, A. Mani considers most duality and representation results
that were developed for or have been used in algebraic approaches to rough sets
in much detail. She has introduced new adaptations and proven new results on the
connections between L-fuzzy sets and general rough sets in the chapter.

If something is less than a complement of something else, then the former is
orthogonal to the latter. Pairs of such elements (called orthopairs) have been used
to construct algebras such as BZ-Posets, HW-algebras, and variants that serve as
semantics for some abstract and concrete approaches to rough and fuzzy sets. These
and related representation results are explained in detail in the chapter on orthopairs
by Gianpiero Cattaneo and Davide Ciucci.

The second part of the book consists of three short chapters. In the first of these,
Patrik Eklund and María-Ángeles Galán-García discuss how algebraic approaches
to rough sets can be generalized to monoidal closed categories. Connections with
other information models are indicated in brief.

In the ninth chapter, Bijan Davvaz considers the generalization of rough set
theoretic concepts to the domain of rings. The connection of set-valued maps and
morphisms between rings and general rough sets is also demonstrated.

S-approximation spaces can be seen as a generalization of the neighborhood-
based approach in rough sets and Dempster–Shafer theory. Ali Shakibah develops
these for decision-making applications in multi-agent scenarios in the last chapter.

Several chapters in this volume were evaluated through the Second Reader
Method. In this method, authors suggest an expert designated as second reader and
they work together toward improving the quality of the submission.

We would like to thank all of our second readers and reviewers for their efforts.
We would also like to thank the staff of Springer for their support.

Kolkata, India A. Mani
Milano, Italy Gianpiero Cattaneo
Fuzhou, China Ivo Düntsch
July 2018
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Introduction

A. Mani, Gianpiero Cattaneo, and Ivo Düntsch

Abstract In this chapter, the content of the book is described in brief and some of
the notation and terminology is fixed.

Rough Set Theory (RST) is essentially a mathematical approach for handling
vagueness and imprecision in a wide variety of contexts. Originally introduced
in the mid eighties of the previous century by Zdislaw Pawlak, the subject has
grown tremendously in pure and applied directions from mathematical, algebraic
logical, logical, philosophical and computational perspectives. For basic references
the reader may refer to the second and third chapter of this volume. In rough set
theory,vague and imprecise information is dealt with through binary relations on a
set (for some form of indiscernibility) or covers of a set or through more abstract
operators in a set-theoretical or more general setting. In this chapter, the content of
the book is described in brief and some of the notation and terminology is fixed.

In the next chapter, Gianpiero Cattaneo focuses on a lattice theoretical interpreta-
tion of general rough sets and a specific abstract approximation operator approach.
Some emphasis is put on the connection with algebraic approaches to modal logic—
the elements of the algebra are interpreted as propositions of a modal logic that seek
to interpret fragments of reasoning with vague objects. Generalized negation opera-
tors such as the intuitionistic (or Brouwer), Pre-Brouwer, and Kleene play a crucial
role in the algebraic models considered in the chapter. Overall it has been mostly
assumed that the lower approximation operators are definable in terms of the upper
approximation or preclusion operators. Algebraic semantics of fuzzy sets including
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2 A. Mani et al.

the BZ-De Morgan algebras also developed by the author are presented. This leads
to a rough set representation of fuzzy sets. Furthermore it is shown that Halmos clo-
sure lattices (that model a S5-like modal algebra over a De Morgan algebra instead
of a Boolean algebra) are essentially equivalent to Pre-BZ lattices. Connections
among Łukasiewicz algebras and BZ algebras are also considered in detail.

In the third chapter, A. Mani presents a comprehensive approach to an axiomatic
approach to granularity in general rough sets that can be accommodated within
granular operator spaces and generalizations thereof. The approximations consid-
ered in the chapter are required to satisfy a minimum of granular properties, and a
wide array of algebraic methods that fit into such scheme of things are explained by
her. The section on approximations derived from tolerance relations is refreshingly
new, and esoteric rough sets that concern partially reflexive relations are approached
from an improved perspective. Many gaps in knowledge between cover based rough
sets and granular approaches to rough sets have been filled in the section on cover
based rough sets. Recent work on quasi-ordered approximation spaces has also been
critically presented in the section. A number on innovative algebraic approaches
were invented by A. Mani for handling generalized transitive relations. These are
presented in the section on granular approach to prototransitive rough sets. She has
also included a section on her recent research on antichain based semantics. In this
semantics, negation-like operations do not have a central role, and this approach
leads to a new class of logics of vagueness. This chapter constitutes more than one-
fourth of the present volume.

Piero Pagliani’s chapter primarily concerns the topological algebraic logic
approach to rough objects formed from point-wise approximations. This is devel-
oped from a relation algebraic, topological and algebraic logic perspective. This
approach permits the reader to understand fundamental Galois connections and
dualities in a clear way. The chapter includes a number of results published earlier
by the author, but the presentation is new. Connections among algebraic models
constructive, modal and intuitionistic logic are pointed out, and it is argued that
in at least one perspective, the logic of rough sets should be the one modeled
by Post algebras of order three, not three-valued Łukasiewicz logic or connected
mathematical objects (regular Stone algebras and the like).

Consider a collection of subsets of a set S each of which satisfy a property τ and
whose union is S. Such a collection is said to be irredundant with respect to τ , if
the removal of any one of the elements of the cover leads to a subcollection whose
union is a proper subset of S. Tolerance spaces are generalizations of approximation
spaces in which equivalences have been replaced by tolerance relations. In the
fifth chapter, Jouni Järvinen and Sándor Radeleczki present their recent research
on algebraic semantics of rough objects generated by irredundant normal covers
corresponding to a tolerance space. The collection of all rough objects formed by
point-wise approximations on a set are shown to form a Kleene algebra. Algorithms
for deciding whether a given normal cover is irredundant are also proposed in the
chapter. On the whole, this chapter complements the approach to tolerance spaces
in the previous three chapters.
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Duality and representation results are crucial for progress at many stages in any
algebraic approach to general rough sets. In the sixth chapter (Duality, Representa-
tion and Beyond), A. Mani reviews algebraic approaches to general rough and fuzzy
sets from this perspective. Results relating to representation of algebraic models
of fragments of rough set models, classical and general rough sets are explained,
critically reviewed, new proofs proposed, open problems specified and new direc-
tions are suggested. The focus is on discrete and topological dualities as opposed to
canonical dualities. Recent duality results in the literature such as those relating to
Tarski spaces and preference spaces are adapted for use in general rough contexts by
the author. She also proves new results on granular connections between generalized
rough and L-fuzzy sets. Examples for related contexts are also included. As the
results concern reasoning with vagueness, philosophical aspects of duality and
representation have been reflected on in considerable depth in the initial sections.

In the chapter Algebraic Methods for Orthopairs and induced Rough Approx-
imation Spaces, Gianpiero Cattaneo and Davide Ciucci study algebraic systems
arising from pairs of elements from a partially ordered set (poset) that share some
orthogonality between them. The nature of different types of unary negation on a
poset have been explained in the initial sections of the chapter. In posets endowed
with a De Morgan complementation, an orthopair is simply a pair of elements in
which the first component is less than the complement of the second component.
The set of all orthopairs can be endowed with minimal BZ poset, Pre-BZ lattice
and related structure under constraints on the original poset. Minimal BZ-posets in
turn induce rough approximation spaces. It is also shown that the set of orthopairs
derived from fuzzy sets cannot be endowed with a Kleene negation, while the set
of fuzzy sets with Gödel and Łukasiewicz implications form Heyting Wajsberg
algebras. Related concrete representation theorems are proved, and open problems
are posed.

The last three chapters concern recent topics that are not directly concerned with
algebraic models of facets of reasoning about vagueness.

In the chapter Rough Objects in Monoidal Closed Categories, Patrik Eklund and
María-Ángeles Galán-García build upon earlier work on monadic rough objects over
the category Set. It is shown, in brief, that algebraic semantics can be enriched to
work similarly over monoidal closed categories in general and toposes in particular.
The connection of the rough information model in such categories with the original
relational model are also explained. The proposal is significant for both logical and
practical applications. Examples for the latter are provided.

In the chapter Rough Algebraic Structures Corresponding to Ring Theory,
Bijan Davvaz essentially studies the utility of rough approximation operators over
rings. Such questions are motivated by the regular double Stone algebra model of
rough sets. Lower and upper approximations of a subset of a ring can be defined
through ideals and these have many nice properties. The approximation of an ideal
(respectively subring) by another ideal is an ideal (respectively subring). In recent
work, the author has generalized classical rough approximations of sets through
concept of lower and upper inverse of set-valued maps. These concepts are extended
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to rings and are shown to have good structure preserving properties. The chapter is
of interest in the study of the impact of rough concepts on ring theory.

An S-approximation space is essentially a generalization of the neighborhood
approach in rough sets. In the chapter S-Approximation Spaces, Ali Shakibah
introduces the basics of such spaces and properties of approximations. These are
related to three-way decision-making. From a semantic perspective, these structures
are of some interest in modal logic approaches to rough sets. Methods of combining
S-approximation spaces are also studied. These are of interest in multi agent
systems.

1 Notation and Terminology

The notation and terminology used in this book is partly fixed in this note.

• Upper case Roman alphabets will typically denote sets. Thus A, B, C may be
sets. Collections of sets or subsets are denoted by script letters like C. G will be
used to denote the granulation in a context.

• Universal sets in a context shall typically be denoted by U, V, S.
• Operators used in superscript form will be denoted by lower case Roman or

Greek letters. Thus l, u shall denote lower and upper approximation operators
(operations acting on a subset of a power-set to itself).

• Modal operators and other unary/binary operators not written in superscript posi-
tion shall be denoted by math-blackboard bold \mathbb or \mathsf alphabets.
For example, L,L can denote unary operators. If Greek letters are used for
denoting operators, then Upright Greek letters versions should be preferred (as
in \uepsilon).

• Because most of the content relates to order structures, logical or meta-logical
conjunction will be denoted by &. In a model S, (�&� −→ �) holds will be
preferred over (�,� −→ �).

• Variables (including those that are quantified over sub-collections of sets) are
typically denoted by lower case Roman alphabets.

Information tables (also referred to as information systems) are basically repre-
sentations of structured data tables. When columns for decisions are also included,
then they are referred to as decision tables. Often rough sets arise from information
systems and decision tables.

An Information Table I, is a system of the form

I := 〈O, A, {Va : a ∈ A}, {fa : a ∈ A}〉

with O, A and Va being respectively sets of Objects, Attributes and Values
respectively. fa : O �−→ ℘(Va) being the valuation map associated with attribute
a ∈ A. Values may also be denoted by the binary function ν : A × O �−→ ℘(V )
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defined by for any a ∈ A and x ∈ O, ν(a, x) = fa(x). Information tables can also
be represented as relational systems using higher order constructions.

An information table is deterministic (or complete) if

(∀a ∈ A)(∀x ∈ O)fa(x) is a singleton.

It is said to be indeterministic (or incomplete) if it is not deterministic that is

(∃a ∈ A)(∃x ∈ O)fa(x) is not a singleton.

Relations may be derived from information systems by way of conditions of
the following form: For x, w ∈ O and B ⊆ A, (x, w) ∈ σ if and only if
(Qa, b ∈ B)�(ν(a, x), ν(b, w), ) for some quantifier Q and formula �. The
relational system S = 〈S, σ 〉 (with S = A) is said to be a general approximation
space.

In particular if σ is defined by the condition Eq. (1), then σ is an equivalence
relation and S is referred to as an approximation space.

(x,w) ∈ σ if and only if (∀a ∈ B) ν(a, x) = ν(a, w) (1)

Relative to an information system, many different concepts of rough objects have
been used in the literature. These are represented in different ways. In classical
rough sets, starting from an approximation space consisting of a pair of a set and
an equivalence relation over it, approximations of subsets of the set are constructed
out of equivalence partitions of the space (these are crisp or definite) that are also
regarded as granules in many senses.

A Partial Algebra S is a tuple of the form

〈
S, f1, f2, . . . , fn, (r1, . . . , rn)

〉

with S being a set, fi ’s being partial function symbols of arity ri . The interpretation

of fi on the set S should be denoted by f
S

i , but the superscript will be dropped
unless that must be emphasized. If predicate symbols enter into the signature, then
P is termed a Partial Algebraic System. It is a Total Algebraic System (or simply an
algebraic system), when all the operations are total. The symbol S may also be used
for the set S, whenever the usage is unambiguous in the context.

Definition 1 The following properties of a binary relation R on a set S are well
known:

(∀a)(∃b)Rab (Serial)

(∀a)(∃b)Rba (Inverse-Serial)

(∀a)Raa (Reflexive)

(∀a, b) (Rab −→ Rba) (Symmetric)
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(∀a, b, c) (Rab&Rac −→ Rbc) (Euclidean)

(∀a, b, c) (Rab&Rac −→ (∃f )Rbf&Rcf ) (Strict Up-Confluent)

(∀a, b, c) (Rab&Rac & b 
= c −→ (∃f )Rbf&Rcf ) (Up-Confluent)

Definition 2 A binary relation R on a set S is weakly-transitive, transitive or proto-
transitive respectively on S if and only if S satisfies

• If Rab, Rbc and a 
= b 
= c holds, then Rac. (i.e. (R ◦R) \	S ⊆ R (where ◦
is relation composition) , or

• Whenever Rab &Rbc holds then Rac (i.e. (R ◦ R) ⊆ R), or
• Whenever Rab, Rbc, Rba, Rcb and a 
= b 
= c holds, then Rac follows,

respectively. Proto-transitivity of R is equivalent to τ (R) := R ∩ R−1 being
weakly transitive.

Definition 3 A binary relation R on a set S is semi-transitive on S if and only if S
satisfies

• Whenever τ (R)ab&Rbc holds, then Rac follows and
• Whenever τ (R)ab&Rca holds, then Rcb follows.

Ref (S), Sym(S), T ol(S), rτ (S), wτ(S), pτ(S), sτ (S), EQ(S) will respec-
tively denote the set of reflexive, symmetric, tolerance, transitive, weakly transitive,
pseudo transitive, semi-transitive and equivalence relations on the set S respectively.

By a pseudo order is meant an anti-symmetric, reflexive relation. A quasi-order
is a reflexive, transitive relation, while a partial order is a reflexive, anti-symmetric
and transitive relation. The set of pseudo, quasi and partial orders on a set S will be
denoted by πO(S), Q(S) and PO(S), respectively.

The successor neighborhoods, inverted successor or predecessor neighborhoods,
multiplicative and additive neighborhoods generated by an element x ∈ S will,
respectively, be denoted as follows:

[x] := {a; Rax} (Successor)

[x]i := {a; Rxa} (Predecessor)

[x]o := {a; Rax &Rxa} (Multiplicative)

[x]∨ := {a; Rax ∨ Rxa} (Additive)

It may be noted that successor neighborhoods have also been denoted by R−1(x)

and predecessor neighborhoods by R(x).
A cover C on a set S is any sub-collection of ℘(S). They are sometimes

confusingly referred to as partial covers. It is said to be proper just in case
⋃

C = S.
A neighborhood operator n on a set S is any map of the form n : S �−→ ℘S. It

is said to be reflexive if

(∀x ∈ S) x ∈ n(x) (Nbd:Refl)
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The collection of all neighborhoods N = {n(x) : x ∈ S} of S will form a
proper cover if and only if (∀x)(∃y)x ∈ n(y) (anti-seriality or inverse-seriality).
In particular a reflexive relation on S is sufficient to generate a proper cover on it.
Of course, the converse association does not necessarily happen in a unique way.
More details about the connection between neighborhoods and covers can be found
in the chapter on duality in this volume.

If S is a cover of the set S, then the neighborhood of x ∈ S is defined via,

nbd(x) :=
⋂
{K : x ∈ K ∈ S} (Cover:Nbd)

The minimal description of an element x ∈ S is defined to be the collection

Md(x) := {A : x ∈ A ∈ S, ∀B(x ∈ B →∼ (A ⊂ B))} (Cover:MD)

The indiscernibility (or friends) of an element x ∈ S is defined to be

Fr(x) :=
⋃
{K : x ∈ K ∈ S} (Cover:FR)

The word indiscernibility is also used in other senses.
An element K ∈ S is said to be reducible if and only if

(∀x ∈ K)K /∈ Md(x) (Cover:Red)

The collection {nbd(x) : x ∈ S} will be denoted by N. The cover obtained by the
removal of all reducible elements is called a covering reduct.

2 Ordered Algebras

In a lattice L, an element a∗ is a pseudo-complement if and only if

(∀x)a ∧ a = 0 ↔ x ≤ a∗

Pseudo-complements are unique when they exist and a lattice in which every
element has a pseudo-complement is said to be a pseudo-complemented lattice. An
element a of a pseudo-complemented lattice is dense if a∗ = 0.

In any pseudo-complemented lattice L, it is possible to define the Glivenko
congruence σ as follows:

σab if and only if a∗ = b∗

A De Morgan Lattice or a Quasi-Boolean Algebra (	ML) is an algebra of the
form L = 〈L, ∨, ∧, c, 0, 1

〉
with ∨, ∧ being distributive lattice operations and c
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satisfying

xcc = x (Complement-1)

(x ∨ a)c = xc ∧ ac (DeMorgan)

(x ≤ a ↔ ac ≤ xc) (Complement-2)

0 and 1 are the least and greatest elements of the lattice. They can also be read as
nullary operations.

It is possible to define a partial unary operation �, via x� := ∧{x : x ≤ xc}
on any 	ML. If it is total, then the 	ML is said to be complete. In a complete
	ML L,

x�
� xc (CQBA1)

x�� = x (CQBA2)

(x ≤ a −→ a� ≤ x�) (CQBA3)

xc =
∨
{a : x�

� a} (CQBA4)

A 	ML is said to be a Kleene algebra if it satisfies

x ∧ xc ≤ a ∨ ac (KA)

If L+ = {x ∨ xc : x ∈ L} and L− = {x ∧ xc : x ∈ L}, then in a Kleene
algebra all of the following hold:

(L−)c = L+ is a filter,

(L+)c = L− is an ideal,

(∀a, b ∈ L−) a ≤ bc,

(∀a, b ∈ L+) ac ≤ b, and

x ∈ L− ↔ x ≤ xc.

A Heyting algebra K , is a relatively pseudo-complemented lattice, that is it is a
bounded lattice in which the relative pseudo-complementation operation⇒ is well
defined:

(∀a, b) a ⇒ b :=
∨
{x ; a ∧ x ≤ b} ∈ K. (RPC)

The following properties of a Heyting algebra are well known:

• Heyting algebras are distributive lattices.
• A complete lattice is a Heyting algebra if and only if finite meets distribute over

arbitrary joins.
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• The pseudocomplement of an element a in a Heyting algebra is a ⇒ 0.
• The lattice of congruences Con(L) of a Heyting algebra L corresponds to the

lattice of filters F(L) of L that in turn determines the former because for each
σ ∈ Con(L) there exists a F ∈ F(L) such that σab if and only (∃x ∈ F) a∧x =
b ∧ x.

• The quotient L|σ of a Heyting algebra by a congruence is a Boolean algebra if
and only if the filter corresponding to σ includes all dense elements of L. Such
congruences are called Boolean congruences.

• The Glivenko congruence is the least Boolean congruence on a Heyting algebra.

A Quasi-Nelson algebra Q is a Kleene algebra that satisfies (∀a, b) a ⇒ (ac ∨
b) ∈ Q. a ⇒ (ac ∨ b) is abbreviated by a→ b below. Such an algebra satisfies all
of the sentences N1–N4:

x → x = 1 (N1)

(xc ∨ y) ∧ (x → y) = xc ∨ y (N2)

x ∧ (x → y) = x ∧ (xc ∨ y) (N3)

x → (y ∧ z) = (x → y) ∧ (x → z) (N4)

(x ∧ y)→ z = x → (y → z). (N5)

A Nelson algebra is a quasi-Nelson algebra satisfying N5. A Nelson algebra
can also be defined directly as an algebra of the form 〈A,∨,∧,→, c, 0, 1〉 with
〈A,∨,∧, c, 0, 1〉 being a Kleene algebra with the binary operation → satisfying
N1–N5. Further a semi-simple Nelson algebra is a Nelson algebra that satisfies the
condition:

a ∨ ac = 1 (Nelson-SS)

If L is a Heyting algebra, then the lattice

N(L) = {(a, b) : a ∧ b = 0 & (a ∨ b)∗ = 0}
is an effective lattice that is also a Nelson algebra.

A double Heyting algebra L = {L, ∧, ∨, →, �, 0, 1} is an algebra such that
{L = {L, ∧, ∨, →, 0, 1} is a complete atomic Heyting algebra and

x � x = 0 (2HA2)

x ∨ (x � y) = x (2HA3)

(x � y)∨, y = x ∨ y (2HA4)

(x ∨ y) � z = (x � z) ∨ (y � z) (2HA5)

z � (x ∧ y) = (z � x) ∨ (z � y) (2HA6)

It can be shown that completely distributive lattices are double Heyting algebras.
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A pre-rough algebra is an algebra of the form S = 〈S,�,�,⇒, L,¬, 0, 1
〉

of
type (2, 2, 2, 1, 1, 0, 0), which satisfies:

〈
S,�,�,¬, 0, 1

〉
is a QBA

LL(a) = L(a) ; L(1) = 1 ; L(a) � a = L(a) (PRA0)

L(a � b) = L(a) � L(b) ; L(a � b) = L(a) � L(b) (PRA1)

¬L¬L(a) = L(a), ; ¬L(a) � L(a) = 1 (PRA2)

(L(a) � L(b) = L(a),¬L(¬(a � b)) = ¬L(¬a) −→ a � b = a) (PRA3)

It is possible to define an operation⇒ as follows:

a ⇒ b := (¬L(a) � L(b)) � (L(¬a) � ¬L(¬b)) (RI0)

It is known that the above definition of pre-rough algebra has superfluous
conditions. A completely distributive pre-rough algebra is called a rough algebra. In
all these algebras it is possible to define an operation � by setting �(x) = ¬L¬(x)
for each element x.

An MV-algebra is an algebra of the form S = 〈S,⊕,′ , 0
〉

that satisfies the
following axioms:

(a ⊕ b)⊕ c = b ⊕ (c ⊕ a) (MV1)

a ⊕ 0 = a (MV2)

a ⊕ 0′ = 0′ (MV3)

(0′)′ = 0 (MV4)

(a′ ⊕ b)′ ⊕ b = (a ⊕ b′)′ ⊕ a (MV5)

The derived term operations� and 1 defined as per

a � b := (a′ ⊕ b′)′ and 1 = 0′,

lead to the original definition (equivalent) of MV-algebras as algebras of the form
S = 〈S,⊕,�,′ , 0, 1

〉
.

In any MV algebra it is possible to define the lattice operations ∧ and ∨ as
follows:

(∀a, b) a ∨ b := (a � b′)⊕ b

(∀a, b) a ∧ b := (a ⊕ b′)� b

The resulting derived algebra K = 〈S,∧,∨,′ , 0, 1
〉

is a Kleene algebra.



Introduction 11

A three valued Łukasiewicz algebra is an algebra of the form
L = 〈L,∧,∨,′ , μ, 0, 1

〉
in which the forgetful algebra

〈
L,∧,∨,′ , 0, 1

〉
is a

Kleene algebra and the unary operation μ satisfies the following:

¬a ∨ μ(a) = 1, (L3a)

¬a ∧ μ(a) = ¬a ∧ a, and (L3b)

μ(a ∧ b) = μ(a)∧ μ(b). (L3c)

It can be shown that these are equivalent to semi-simple Nelson algebras and
regular double Stone algebras.
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1 Introduction

In this introduction I will make some considerations in order to clarify some
preliminary points which are at the base of the present chapter. To this purpose, let us
consider a structure

〈
Σ,∧,∨,♥ ,♠ , 0, 1

〉
, named for simplicity DD algebra, which is

a lattice with respect to the binary operations of meet ∧ and join ∨, bounded by the
least element 0 and the greatest element 1. This lattice is equipped with two further
unary operations, say ♥ : Σ → Σ and ♠ : Σ → Σ , satisfying some axioms which
at the moment it is not important to specify here, since they will be the subject of
the following Sect. 2. Our interest is about a so to speak “neutral” formal structure
which allows one to make the following meta-theoretical considerations.

Sometimes it happens that different scientific communities work about the same
formal structure assigning different names with different interpretations to the same
formal terms. Relatively to the just outlined DD structure, in this chapter we
encounter three of these different positions about it, which we list and briefly discuss
now.

(TL) The first one is the topological lattice interpretation in which the elements
from Σ are interpreted as objects of a pointless approach to topology
(abstract counterpart of subsets of a concrete universe of points). The
binary operations∧ and∨ are interpreted as abstract lattice counterparts of
the intersection and union operations on subsets of the concrete universe.
The unary operation ♥ is interpreted as a complementation mapping, in
this topological lattice context denoted as ′ =♥, while the unary operation
♠ is interpreted as a closure mapping, denoted as ∗ =♠.
In this context it is possible to introduce another mapping, the interior
o = ♥♠♥ = ′∗′.
In the particular case in which Σ = P(X) is the power set of a universe
X, we will use the notations C(A) for the closure of a subset A and I (A)

for its interior.
(RAS) Another position is the abstract approach to roughness in which now the

elements from Σ are interpreted as approximable elements (i.e., elements
which can be approximated) and the unary operation ♥ continues to be
interpreted as the complementation mapping, now denoted as − = ♥.
But it is the unary operation ♠, denoted as u and defined by the law
∀a ∈ Σ , u(a) := a♠, which is interpreted as the upper approximation
map assigning to any abstract approximable element a ∈ Σ its upper
approximation u(a) = a♠.
In this context the unary operation l defined by the law l(a) := a♥♠♥ =
−(u(−(a))) is interpreted as the lower approximation map.
In the particular case of Σ = P(X) we denote by U(A) the upper
approximation of the approximable subset A and by L(A) its lower
approximation.
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(ML) Finally, the third position is the one in which the elements from Σ are
interpreted as realizations of propositions of an algebraic approach to
modal logic in which the binary operation ∧ is interpreted as algebraic
realization of the logical connective AND and the binary connective ∨ as
algebraic realization of the logical connective OR. The unary connective
♥ is interpreted as algebraic realization of the logical connective NOT,
denoted for every proposition a ∈ Σ as ¬(a) = a♥, while the unary
connective ♠ is interpreted as algebraic realization of the modal logical
connective of possibility, denoted for every proposition a ∈ Σ as μ(a) =
a♠.
In this context the unary operation ν defined by the law ν(a) := a♥♠♥ =
¬(μ(¬(a))) is interpreted as the modal logical connective of necessity.
In the particular case of Σ = P(X) we use I(A) for the necessity and
C(A) for the possibility of A.

As to the relationship between the positions (TL) and (ML) we want to be clear
in the sense that in the current chapter we are only interested in investigating
their relationship as a kind of dictionary correlating the terms of the dichotomy
“topological lattice and modal logic” (for instance a′ ↔ ¬(a) or a∗ ↔ μ(A)), and
nothing more.

Therefore we will not deal with the subtle but no less important theoretical results
of modal logic, such as theorems of completeness or soundness, or other notable
issues involving the community of logicians. These topics could be the subject of
other chapters of this book and not what will be discussed in this chapter where, as
previously emphasized, we will deal only with the terminological vocabulary that
correlates these two interpretations of the same algebraic structure, developing some
of its possible interesting theoretical results.

Part I: Standard Closures, Induced Interiors and Rough
Approximation Spaces (RAS)

After these general considerations about the “philosophy” underlying the present
chapter, we anticipate that in the Part I we deal with the notion of closure operation,
and the induced notion of interior operation, in the abstract De Morgan lattice
context described in point (TL). Then we investigate the categorical equivalence
between interior–closure operations of point (TL) and lower–upper rough approx-
imations of point (RAS). This De Morgan choice for the purpose of capturing in a
very general structure almost all the interesting results that the standard approach to
roughness based on a Boolean algebra (or its version on the power set of a concrete
universe) usually does (let us recall that a Boolean algebra is an orthocomplemented
and distributive lattice).
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This approach is not only interesting in itself since it is formulated in the weakest
structure of De Morgan lattice, allowing to obtain theoretical results in a more
general context, but also to have as concrete models both the usual fuzzy set theory
and that of quantum mechanics in the sharp and unsharp versions. In fact, it must be
stressed that these models cannot be led to the particular Boolean case since

– fuzzy set theory is based on a distributive complete lattice structure which is not
orthocomplemented, but satisfies the weaker notion of Kleene orthocomplemen-
tation [121] (and see also [17]);

– on the other hand, sharp quantum mechanics is based on a structure of ortho-
complemented complete lattice which is not distributive, but satisfies the weaker
orthomodularity condition [9] (see also [29]). Even more general is the situation
of unsharp quantum mechanics based on a Kleene orthocomplemented poset
structure which is not a lattice [13, 22, 26, 28], in relation to which, of course,
it makes no sense to speak of lattice operations and so, a fortiori, of the
corresponding distributive property.

2 Closure Operations in Lattice Context and Upper
Approximation Spaces

Let us recall the fundamental notion of closure operation, formalized in a lattice
context for instance in [8, p. 112], which can also be found in Ward [114] (always in
the abstract lattice context) and in Ore [85] (in the concrete context of the complete
lattice from the power set of a universe).

Definition 1 A De Morgan lattice with closure operation is a structure DMC =〈
Σ,∧,∨, ′, ∗, 0, 1

〉
where:

(Cl-dM1) The sub-structure 〈Σ,∧,∨, 0, 1〉 of DMC is a (not necessarily distribu-
tive) lattice bounded by the least element 0 and the greatest element 1,
∀a ∈ Σ, 0 ≤ a ≤ 1. The partial order relation induced by the lattice
operations is a ≤ b iff a = a ∧ b, or equivalently iff b = a ∨ b.

(Cl-dM2) The sub-structure
〈
Σ,∧,∨, ′, 0, 1

〉
of DMC is a De Morgan lattice, i.e.,

a bounded lattice equipped with a De Morgan unary mapping ′ : Σ �→ Σ

that satisfies for arbitrary a, b ∈ Σ the conditions:

(dM1) a = a′′ (involution condition),

(dM2) (a ∨ b)′ = a′ ∧ b′ (De Morgan law).

This mapping ′ is generically called complementation mapping.
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(Cl-dM3) The mapping ∗ : Σ → Σ , which associates with any element a from Σ

the element a∗ ∈ Σ , is a closure operation, that is for any arbitrary pair
of elements a, b ∈ Σ it satisfies the properties:

(C1) a ≤ a∗ (increasing or extensive)

(C2) a∗ ∨ b∗ ≤ (a ∨ b)∗ (sub-additive)

(C3) a∗ = a∗∗ (idempotent)

For the sake of simplicity we also say that Σ is a closure lattice instead of a De
Morgan lattice with a closure operation.

Any De Morgan lattice can be equipped with two standard closure operations.

Example 2 Let Σ be a De Morgan lattice Then, the unary operation ∗t : Σ → Σ

associating with any element a ∈ Σ the element a∗t := 1 ∈ Σ is a closure operation
called the trivial closure.

In particular it is 0∗t = 1.

Example 3 Let Σ be a De Morgan lattice. Then, the unary operation ∗d : Σ →
Σ associating with any element a ∈ Σ the element a∗d := a ∈ Σ is a closure
operation called the discrete closure.

In particular it is 0∗d = 0.

Remark 4 We make now some formal conventions in the case of a complete lattice
Σ . First of all, for any family of its elements

{
aj
}
, with j index running in the

index set J , the corresponding meet and join are denoted by ∧ {aj
}

and ∨ {aj
}
,

respectively. In the particular case of a family of two elements {a, b} this would
correspond to the notations ∧ {a, b} and ∨ {a, b}, but as done in Definition 1 and as
we will do in the sequel, we prefer to keep the standard notations a ∧ b and a ∨ b.
Sometimes, for reasons of simplicity and if this does not generate any confusion,
we will also use to write ∧aj and ∨aj instead of ∧ {aj

}
and ∨ {aj

}
.

2.1 About the Complementation Operation in De Morgan
Lattices

In this subsection we investigate some important properties of the complementation
operation ′ : Σ → Σ in De Morgan lattices. A first interesting result is the
following.

Lemma 5 In any De Morgan lattice one has that 0′ = 1 and 1′ = 0.
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We have defined the De Morgan complementation ′ by the equational condition
(dM2). This is not the unique way to make this definition according to the following
result whose proof is straightforward.

Proposition 6 Let Σ be a bounded lattice according to the point (Cl-dM1) of the
above Definition 1. Then, under condition (dM1) the following are equivalent among
them.

(dM2) (a ∨ b)′ = a′ ∧ b′ (De Morgan law),

(dM2a) (a ∧ b)′ = a′ ∨ b′ (dual De Morgan law),

(dM2b) a ≤ b implies b′ ≤ a′ (contraposition law),

(dM2c) a′ ≤ b′ implies b ≤ a (dual contraposition law).

Remark 7 The formulation (dM2) adopted in Definition 1 to introduce the notion
of De Morgan complementation has the advantage of being equational, using the
symbols ∧ and ∨ of the underlying lattice structure. In the case of a distributive
lattice without the least element 0 (and so, also without the greatest element 1)
the corresponding structure has been called distributive i-lattice by J.A. Kalman
[61]. The case of a bounded distributive lattice equipped with a De Morgan
complementation has been studied by A. Bialynicki–Birula and H. Rasiowa [6] and
H. Rasiowa [99] with the name of De Morgan algebra.

The formulation (dM2b), on the contrary, is not equational and this could be a
theoretical disadvantage, but has the advantage that it allows to introduce a notion
of De Morgan complementation ′ also in the more general context of bounded
poset structures

〈
Σ,≤, ′, 0, 1

〉
. This happens for example in the following articles:

Monteiro–Ribeiro [82] (in the abstract poset context) and, in connection with Galois
theory, Ore [86] and Everett [42] (both with a poset version of the closure).

Lemma 8 A De Morgan complementation ′ : Σ → Σ on a lattice Σ is a bijection,
which is antitone [8, p. 3], i.e., it satisfies the two mutually equivalent conditions:

(dM2b) a ≤ b implies b′ ≤ a′ (contraposition law),

(dM2c) a′ ≤ b′ implies b ≤ a (dual contraposition law).

Antitone bijections are called dual isomorphisms or also involutive anti-morphisms.

Proof The De Morgan operation is surjective since ∀a ∈ Σ , ∃a′ ∈ Σ s.t. (a′)′ = a

for the (dM1). On the other hand that the (dM2b) is true has been stated in the
formulation of Definition 1, point (Cl-dM2). Now, let ∀a, b ∈ Σ , a ≤ b⇒ b′ ≤ a′
then putting a = α′ and b = β ′ we get by (dM1) ∀α, β ∈ Σ , α′ ≤ β ′ ⇒ β ≤ α.
The converse is similar. ��



Algebraic Methods for Rough Approximation Spaces by Lattice Interior–. . . 19

Fig. 1 The six element
genuine De Morgan lattice
dM6 with two half elements
h 
= k

An element h ∈ Σ of a De Morgan lattice Σ is said to be a half element iff
h = h′ (note that since 0′ = 1 it is necessary h 
= 0). If h ∈ Σ is a half element of
Σ then h∧ h′ = h 
= 0 and h∨ h′ 
= 1. The collection of all half elements from Σ ,
called the central kernel of Σ , will be denoted by Nc

′(Σ) := {h ∈ Σ : h = h′
}
.

A De Morgan lattice is called genuine iff its central kernel contains at least two
different half elements h 
= k.

Example 9 In Fig. 1 it is shown a genuine De Morgan lattice containing two half
elements.

2.2 A Hierarchy of Complementations in De Morgan Lattices

The notion of De Morgan lattice is based on the two conditions (dM1) and (dM2)
and in some sense it is the most general definition that can be found in literature.
But now we will investigate several cases of structures stronger than this.

2.2.1 Kleene Lattices

A first strengthening of this minimal notion of De Morgan complementation
corresponds to the so-called Kleene lattice which is a De Morgan lattice whose
complementation mapping satisfies the further condition:

(K) ∀a, b ∈ Σ, a ∧ a′ ≤ b ∨ b′

This equational form is equivalent to the non-equational (and so useful in the weaker
poset context) condition:

(Ka) ∀a, b ∈ Σ, a ≤ a′ and b′ ≤ b imply a ≤ b
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Fig. 2 The five element
genuine modular Kleene
lattice K5 with a single half
element h

In a Kleene lattice Σ if there exists a half element h, this half element is unique.
A Kleene lattice is said to be genuine if the central kernel is not empty, that is it
admits a single (and so unique) half element: N ′c(Σ) = {h}.
Example 10 Figure 2 shows the Hasse diagram of a five element genuine not
distributive (modular) Kleene lattice.

2.2.2 Orthocomplemented Lattices

A further stronger version is the orthocomplemented lattice, also ortholattice (see
[8, p. 52]), in which the De Morgan complementation satisfies the further conditions:

(oc-a) ∀a ∈ Σ, a ∧ a′ = 0 (noncontradiction)

(oc-b) ∀a ∈ Σ, a ∨ a′ = 1 (excluded middle)

Trivially, these two conditions (oc-a) and (oc-b) are mutually equivalent between
them.

We are particularly interested to three stronger versions of ortholattice according
to the following.

(BL) A Boolean lattice is an ortholattice Σ which is distributive, i.e., it satisfies
one of the two mutually equivalent conditions for arbitrary three elements
a, b, c ∈ Σ:

(Bl-1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

(Bl-2) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Example 11 (The Boolean (Distributive) Lattice of All Subsets of a Uni-
verse) The paradigmatic example of Boolean lattice is the structure
OL(X) := 〈P(X),∩,∪, c,∅,X〉 based on the power set P(X) of
a nonempty universe of points X with respect to the set theoretical
operations of intersection∩, union ∪, and complementation ∀A ∈P(X),
Ac := X \ A.
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(fdQL) A fd-Quantum lattice is an ortholattice Σ which is modular, i.e., it
satisfies the following condition for arbitrary three elements a, b, c ∈ Σ

(see [8, p. 13], [60, p. 83]):

(fd-Ql) a ≤ c implies a ∨ (b ∧ c) = (a ∨ b)∧ c. (2)

(QL) A Quantum lattice is an ortholattice Σ which is orthomodular, i.e., it
satisfies one of the two mutually equivalent conditions for arbitrary two
elements a, b ∈ Σ (see [8, p. 53], or [43, 124]):

(Ql-1) a ≤ b implies a ∨ (a′ ∧ b) = b,

(Ql-2) a ≤ b′ implies a′ ∧ (a ∨ b) = b.

The Quantum (Orthomodular) Lattice of Subspaces of a Hilbert Space
Let us recall that “a (complex) Hilbert space is a vector space over the complex
numbers in which there is given a complex valued function of two variables 〈φ|ψ〉
such that: (1) For fixed φ, 〈φ|ψ〉 is a linear function on ψ , (2) 〈φ|ψ〉 = 〈ψ|φ〉, (3)
〈φ|φ〉 > 0 unless φ = 0.”

Furthermore, setting ‖φ‖ = √〈φ|φ〉, under the distance d(φ,ψ) = ‖φ − ψ‖ the
following must be satisfied: (4) H is a complete metric space (from [71, section 6];
a more complete treatment can be found in [56]).

A subspace M of a Hilbert space is any linear manifold (nonempty set closed
with respect to the algebraic operations of sum ψ + ϕ and product λ · ψ of
complex numbers λ ∈ C times vectors ψ ∈ H ) which is also topologically
closed with respect to the metric d(ψ, ϕ) = ‖ψ − ϕ‖ (for any sequence of vectors
{ψn ∈ M : n ∈ N} from M convergent to a vector ϕ ∈ H of the Hilbert space H ,
i.e., limn→∞ ‖ψn − ϕ‖ = 0, it must be ϕ ∈ M). The nonempty condition on M is
equivalently formalized by the requirement that the zero vector 0 ∈H of the linear
part of the Hilbert space must be an element of M , i.e., whatever be the subspace M

it is 0 ∈ M . There always exist two trivial subspaces of H : the zero dimensional
subspace {0} consisting of the unique zero vector and the whole space H .

The collection of all subspaces from H will be denoted M (H ), which is a
partial ordered set 〈M (H ),⊆, {0} ,H 〉with respect to the set theoretical inclusion
M ⊆ N for any pair M,N ∈M (H ). This poset is bounded by the least subspace
{0} and the greatest subspace H .

It is easy to prove that if
{
Mj ∈M (H ) : j ∈ J

}
is any arbitrary col-

lection of subspaces, then their set theoretical intersection is a subspace
too which is the g.l.b. with respect to the introduced partial ordering: i.e.,
∧ {Mj ∈M (H ) : j ∈ J

} = ∩ {Mj ∈M (H ) : j ∈ J
}
. Of course, the set

theoretical union ∪ {Mj ∈M (H ) : j ∈ J
}

is not a subspace but the l.u.b. exists
and it is

∨ {Mj ∈M (H ) : j ∈ J
} = ∩ {N ∈M (H ) : ∪ {Mj : j ∈ J

} ⊆ N
}
.
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In conclusion, the structure 〈M (H ),∧,∨, {0} ,H 〉 is a complete (bounded)
lattice such that

∪ {Mj ∈M (H ) : j ∈ J
} ⊆ ∨ {Mj ∈M (H ) : j ∈ J

}
. (4)

This lattice is not distributive. To convince ourself of this, let us consider the
following simple example.

Example 12 Consider the three dimensional Hilbert space C
3 of all triples

(x1, x2, x3) of complex numbers with the usual operations of vector sum, external
product with complex numbers, and inner product

〈(x1, x2, x3)|(y1, y2, y3)〉 =
3∑

n=1

xn · yn.

The two one-dimensional subspaces Mx = {(x1, 0, 0) : x1 ∈ C} and My =
{(0, x2, 0) : x2 ∈ C} are such that Mx ∧ My = Mx ∩ My = {(0, 0, 0)}, whereas
Mx ∨My = {(x1, x2, 0) : x1, x2 ∈ C} ⊃ Mx ∪My , i.e., it is the two-dimensional
x, y-plane containing the original two one-dimensional straight lines Mx and My .

Furthermore, in the one-dimensional subspace Md := {(x, x, 0) : x ∈ C} we
have that Md ∧ (Mx ∨ My) = Md 
= {0} = (Md ∧Mx) ∨ (Md ∧ My), i.e., this
lattice is not distributive.

Finally, coming back to M (H ), given a subspace M ∈ M (H ) its set
theoretical complement Mc is not a subspace. This drawback can be overcome
introducing for any subspace M ∈M (H ) the subset

M⊥ := {ϕ ∈H : ∀ψ ∈H , 〈ϕ|ψ〉 = 0} ,

which is a subspace ([56, Theorem 1, p. 40], [51, Theorem 1, p. 24]). Then, the
following are standard results of Hilbert space theory:

(OcH-1) ∀M ∈ M (H ) M = M⊥⊥ ([56, Theorem 9, p. 47], [51,
Theorem 5, p. 24]),

(OcH-2) ∀M,N ∈ M (H ) M ⊆ N implies N⊥ ⊆ M⊥ [51, Theorem 3,
p. 24],

(OcH-3) ∀M ∈ M (H ) M ∧ M⊥ = {0} ([56, Corollay 5.1, p. 44], [51,
Theorem 7, p. 25]).

From these results it follows that

∀M ∈M (H ), M ∨M⊥ =H , with M ∪M⊥ ⊆M ∨M⊥. (5)

Hence, the (complete) lattice OL(H ) = 〈M (H ),∧ = ∩,∨, ⊥, {0} ,H 〉 is
orthocomplemented, whose proof of orthomodularity can be found in [36, Theo-
rem 4.18, p. 46], i.e., it is a Quantum lattice.
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As to Quantum lattices we must justify the prefix “fd” relative to the modular
case. This is due to the following result (see [60, p. 85]):

• A Hilbert space H is finite dimensional (fd) iff the lattice of its subspaces is
modular.

Similarly, in [63] one can find the statement:

• One of the simplest models of the modular logic is the lattice of all linear subspaces of
an n-dimensional projective space.

The term “quantum” assigned to orthomodular (or modular) lattices is due to the
fact that the mathematical foundation of Quantum Mechanics has Hilbert spaces as
the basic structure, according to the first and seminal treatment of this argument
made by von Neumann in his book [113]. Here quantum states are represented by
nonzero vectors of a Hilbert space associated to a quantum system. An important
role is played by the yes-no (dichotomic) observables testing elementary sentences
of the form “the value of a measure of the observable lies in the subset Δ of the
real line R”, for instance “the spin of the particle is up (=1) or is down (=0)” or “the
particle is localized in this region of the space R

3”. To each of this observable is
assigned a subspace of the Hilbert space consisting of the collection of all states with
respect to which the elementary sentence is true (probability one of occurrence).

Now we give some examples of finite Boolean and Quantum lattices.

Example 13 Figure 3 is the Hasse diagram of a four element Boolean lattice.

Example 14 In Fig. 4 it is shown a fd-Quantum lattice of six elements.

Fig. 3 The Boolean lattice B4, i.e., distributive lattice with standard orthocomplementation

Fig. 4 The six element fd-Quantum lattice QL6
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This lattice is not distributive, since a ∧ (b ∨ c) = a 
= 0 = (a ∧ b) ∨ (a ∧ c).
But QL6 is modular since, for instance, the triple 0, b, c, with 0 ≤ c, is such that
0 ∨ (b ∧ c) = b ∧ c = (0 ∨ b) ∧ c; similarly, the triple a, c, 1, with a ≤ 1, is such
that a ∨ (c ∧ 1) = a ∨ c = (a ∨ c) ∧ 1.

Note that the fd-modular, not distributive, lattice QL6 is the union of the two
B4 four element Boolean lattices B1 = {0, a, a′, 1

}
and B2 = {0, c, c′, 1

}

which in Quantum Mechanics describe the spin along the z-direction and the spin
along the x-direction of a 1/2 spin particle, respectively. Their Boolean behaviour
means that singularly they describe a “classical (Boolean)” observable, whereas
the fact that their union cannot be covered by a single Boolean lattice leads to
the Heisenberg uncertainty principle since it means the theoretical impossibility
of being simultaneously measured by a unique (classical) observable. The two
observables are incompatible.

We can summarize the behavior of the above introduced ortholattices (BL),
(fdQL) and (QL) with the following chain of implications:

Boolean Lat. $⇒ fd-Quantum Lat. $⇒ Quantum Lat. $⇒ Ortho-Lat.

This chain of implications must be completed with the following further chain:

Ortho-Lat. $⇒ Kleene Lat. $⇒ De Morgan Lat.

In the present chapter we adopt the minimal notion of De Morgan complemen-
tation since in general all the theoretical results which can be proved do not require
(if not explicitly stated) the addition of further conditions, such as (K) or (oc-a,b).

2.3 About the Closure Operation in De Morgan Lattices

A first result on the closure operations is that condition (C3) is in some sense
redundant according to the following result.

Lemma 15 Under condition (C1) the following are equivalent:

(C3) a∗ = a∗∗ (idempotent)

(C3w) a∗∗ ≤ a∗ (weak idempotent)

Proof (C3) trivially implies (C3a) as particular case.
Let (C3a) be true, i.e., a∗∗ ≤ a∗. But from (C1) applied to a∗ we get a∗ ≤ a∗∗.

��
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Note that the definition of closure operation given by Definition 1 is equational.
Another interesting result is that the sub-additive property (C2) alone is equivalent
to a (non-equational) condition according to the following result.

Lemma 16 In a closure lattice Σ the following two statements are equivalent:

(C2) a∗ ∨ b∗ ≤ (a ∨ b)∗ (sub-additive)

(C2a) a ≤ b implies a∗ ≤ b∗ (isotone)

Proof Let (C2) be true. From a ≤ b we get b = a ∨ b and so b∗ = (a ∨ b)∗ ≥
a∗ ∨ b∗ ≥ a∗.

Let (C2a) be true. From a, b ≤ a ∨ b it follows that a∗, b∗ ≤ (a ∨ b)∗, i.e.,
(a ∨ b)∗ is an upper bound of the pair a, b; but a∗ ∨ b∗ is the least upper bound of
the same pair, and so a∗ ∨ b∗ ≤ (a ∨ b)∗. ��

Condition (C2a) added to conditions (C1) and (C3) allows one to introduce a
notion of closure in the more general context of a poset, which is not necessarily a
lattice [42, 82, 86].

Lemma 17 If Σ is a closure complete lattice we have the following extensions of
conditions (dM2), (dM2a), and (C2), true for any family

{
aj
} ⊆ Σ:

(dM2-L) (∨ {aj
}
)′ = ∧

{
a′j
}
;

(dM2a-L) (∧ {aj
}
)′ = ∨

{
a′j
}
;

(C2-L) ∨
{
a∗j
}
≤ (∨ {aj

}
)∗.

Proof

(dM2-L) Let us set k = ∧
{
a′j
}

then ∀j , k ≤ a′j , from which it follows that ∀j ,

aj ≤ k′, that is k′ is an upper bound of the family
{
aj
}
.

Let now c be a generic upper bound of the family
{
aj
}
, i.e., ∀j , aj ≤ c,

then ∀j , c′ ≤ a′j , i.e., c′ is a lower bound of the family
{
a′j
}

but since

k is the greatest lower bound of the same family we get c′ ≤ k, that is
k′ ≤ c for any upper bound c of

{
aj
}
, and this means that k′ is the least

upper bound of
{
aj
}
, i.e., k′ = ∨ {aj

}
, from which k = (∨ {aj

}
)′. The

proof of the (dM2a-L) is similar to the just proved (dM2-L).
(C2-L) Let us set h = ∨ {aj

}
then ∀j , aj ≤ h from which, by (C2a), it follows

that ∀j , a∗j ≤ h∗, i.e., h∗ is an upper bound of the family
{
a∗j
}

and so

∨
{
a∗j
}
≤ h∗. ��

Let us investigate some properties of the now introduced closure operation in the
general context of not necessarily complete lattices. First of all, since in general an
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element of a closure lattice Σ satisfies the increasing condition (C1), it is interesting
to single out the subset of closed elements, defined as the collection of elements
which are equal to their closure.

Formally,

C (Σ) := {c ∈ Σ : c = c∗} . (6)

This set is not empty since trivially the greatest element 1 is closed (as consequence
of 1 ≤ (C1) ≤ 1∗ ≤ 1).

Condition (C3) says that for any element a ∈ Σ the corresponding a∗ is closed;
this element is called the closure of a.

Remark 18 Let us recall that in [82, Fundamental Theorem 5.1] it is remarked
that, given an operation ϕ : P → P on a poset P which satisfies the only
condition (C1), in this context formalized as ∀a ∈ P , a ≤ ϕ(a), if one defines
the corresponding family of closed elements formally according to (6), Cϕ(P) :=
{c ∈ P : c = ϕ(c)}, then the operation ϕ uniquely determines the family of its
closed elements Cϕ(P). Moreover it is shown that different mappings from P
to P satisfying this only condition (C1) can generate the same family of closed
elements. But, mappings satisfying condition (C1) are uniquely determined by the
family of their closed elements if and only if they satisfy both conditions (C2a) and
(C3).

In the context of the power set P(X) of some universe X the corresponding
notion of closure, here formalized in the abstract lattice context by conditions (C1)–
(C3) of Definition 1, has been widely treated by E.H. Moore in [83] (see [8, p. 111]).
Quoting from [41]: “But probably the explicit and precise concept of closure was
introduced into analysis not before the twentieth century, when Friedrich Riesz
wrote his pioneering articles [. . . ] (1906) and [. . . ] (1909), E. H. Moore his [. . . ]
[83] (1910), and Felix Hausdorff his monograph [. . . ] (1914). To Hausdorff we
owe a systematical treatment of topological closure, its relationship to boundary,
neighborhoods etc.”.

Remark 19 It was A. Tarski who influenced modern mathematical logic by his
closure-oriented work about deductive system. Quoting [41]: “The main papers by
Tarski from 1923 to 1938 dealing with closure systems in logics are collected in the
volume Logics, Semantics, Metamathematics, translated by J.H. Woodger [108].
One of the major articles in that collection is entitled Fundamental concepts of the
methodology of the deductive sciences [107]. Here Tarski focusses on the notion of
deductive(ly closed) system, by which he means the system of all sentences derivable
by certain prescribed logical rules from given axioms [. . . ]. What Tarski establishes
first is essentially the definition of finitary closure operation (on a countable set of
sentences): he shares explicitly the laws of extensivity (C1) and idempotency (C3)
and postulates that the closure (the set of consequences via inference rules) of a set
A is the union of the closures of all finite subsets of A - a property that, he remarks,
implies monotonicity (C2a).” About this argument see also [100, p. 181].
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Coming back to the general theory, the following is an interesting result about
the structure of the family of closed elements.

Proposition 20 Let 〈Σ,∧,∨, ∗, 0, 1〉 be a bounded lattice 〈Σ,∧,∨, 0, 1〉 with a
closure operation ∗ : Σ → Σ . Then,

(i) the family C (Σ) := {c ∈ Σ : c = c∗} of its closed elements satisfies the
following conditions:

(PC1) the greatest element 1 is closed: 1 ∈ C (Σ);
(PC2) C (Σ) is closed with respect to the meet operation: let c, d ∈ C (Σ),

then c ∧ d ∈ C (Σ), i.e., C (Σ) is a meet semi-lattice.

(ii) Moreover, if Σ is a complete lattice equipped with a closure operation,
condition (PC2) must be substituted by the following:

(PCC2) C (Σ) is closed with respect to the meet of any arbitrary family of
closed elements: let {cj } ⊆ C (Σ) then ∧{cj } ∈ C (Σ).

In particular, the structure 〈C (Σ),∧, 1〉 is a complete meet semi-lattice upper
bounded by the greatest element 1 called, according to [37], closure system.

Proof

(PC1) We have already seen that the greatest element 1 is closed as consequence
of (C1) applied to it, 1 ≤ 1∗ ≤ 1.

(PC2) Let a, b be two closed elements: a = a∗ and b = b∗. Then, from a∧ b ≤
{a, b} and the isotonicity condition (C2a), equivalent to (C2), we obtain
that (a ∧ b)∗ ≤ {a∗, b∗} = {a, b}. So the element (a ∧ b)∗ is a lower
bound of the pair a, b and from this we get that (a ∧ b)∗ ≤ a ∧ b. But
from (C1) it is (a ∧ b) ≤ (a ∧ b)∗.

(PCC2) can be demonstrated with a slight modification of the proof of the now
proved point (PC2). ��

The least element 0 in general is not an element of C (Σ) since it may happen
that 0∗ 
= 0. But in the case of a complete lattice the element 0̂ := ∧ {c ∈ C (Σ)}
exists in Σ , moreover condition (PCC2) assures that it is an element of C (Σ) which
is the least element of this latter.

Example 21 In the universe X = {0, 1, 2}, let us consider the closure operation on
the Boolean lattice of all its subsets 〈P(X),∩,∪, c,∅,X〉 given by the following
table.

∅∗ = {0} {0, 1, 2}∗ = {0, 1, 2}
{0}∗ = {0} {0, 1}∗ = {0, 1, 2}
{1}∗ = {0, 1} {0, 2}∗ = {0, 1, 2}
{2}∗ = {0, 2} {1, 2}∗ = {0, 1, 2}

This is a closure according to Definition 1 in which ∅∗ = {0} 
= ∅, but all the
other axioms (C1)–(C3) are easily verified.
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Fig. 5

The Hasse diagram describing this closure, omitting the Boolean complementa-
tion Ac = X \A, is drawn in Fig. 5:

The corresponding set of closed elements is the pair of subsets C (X) = {{0},X}
whose least element is the singleton {0} 
= ∅.

The following result gives an interesting characterization of the closure a∗ of
every element a ∈ Σ under the complete lattice hypothesis.

Proposition 22 Let 〈Σ,∧,∨〉 be a nonempty complete lattice.

(TC1) Then, if Σ is equipped with a closure operation ∗ with induced family of
closed sets C (Σ) satisfying according, to Proposition 20, conditions (PC1)
and (PCC2), then the closure a∗ of any element a ∈ Σ can be expressed as

a∗ = ∧ {c ∈ C (Σ) : a ≤ c} (7)

(TC2) Conversely, let Σ be equipped with a family of its elements C (Σ) satisfying
conditions (PC1) and (PCC2) of Proposition 20, then the mapping ∗ : Σ →
Σ associating with any element a ∈ Σ the element a∗ := ∧{c ∈ C (Σ) :
a ≤ c} is a closure operation in the sense that it satisfies the closure
conditions (C1), (C2), and (C3).

Proof Let Σ be a closure complete lattice and for any element a ∈ Σ let us
construct the collectionC (a) := {c ∈ C (Σ) : a ≤ c}. This subset of Σ is not empty
since owing to condition (C1) it contains the closed element 1 ∈ C (Σ), with a ≤ 1.

Let us now suppose that ∗ is a closure operation. Since by (C3) a∗ ∈ C (Σ) and
by (C1) a ≤ a∗, then by definition a∗ is an element of C (a): a∗ ∈ C (a). Let now
c ∈ C (Σ) be a closed element such that a ≤ c, then by (C2a) a∗ ≤ c∗, and by the
fact that c is a closed element it follows that a∗ ≤ c∗ = c and so a∗ = ∧C (a).

Conversely, let us suppose that Σ is equipped with a family C (Σ) satisfying
conditions (PC1) and (PCC2). By the complete lattice condition the element a∗ :=
∧ {c ∈ C (Σ) : a ≤ c} is well defined as element of Σ and from the condition
(PCC2) it is a∗ ∈ C (Σ).



Algebraic Methods for Rough Approximation Spaces by Lattice Interior–. . . 29

Let us now prove that the correspondence a → a∗ defines a closure operation.
First of all also in this situation for any element a ∈ Σ let us define C (a) :=
{c ∈ C (Σ) : a ≤ c}.
(C1) Since a∗ is the meet of the family C (a), and in a complete lattice a is the

meet of the family Σ(a) := {x ∈ Σ : a ≤ x}, from C (a) ⊆ Σ(a), it follows
that ∧Σ(a) ≤ ∧C (a), i.e., a ≤ a∗.

(C2a) If a ≤ b then {c ∈ C (Σ) : b ≤ c} ⊆ {d ∈ C (Σ) : a ≤ d}, from which one
obtains that

∧ {d ∈ C (Σ) : a ≤ d} ≤ ∧ {c ∈ C (Σ) : b ≤ c} , i.e., a∗ ≤ b∗.

Let us recall that, according to Lemma 16, (C2a) is equivalent to (C2).
(C3) Applying the just proved (C1) to the element a∗ we get a∗ ≤ (a∗)∗. On

the other hand, from a∗ ≤ a∗ and a∗ ∈ C (Σ), it follows that (a∗)∗ =
∧ {d ∈ C (Σ) : a∗ ≤ d} ≤ a∗. So we can conclude that a∗ = (a∗)∗. ��

Point (ii) of Proposition 20 can be completed in the following way.

Proposition 23 Let 〈Σ,∧,∨, ∗〉 be a complete lattice with a closure operator ∗
and let ≤ be the partial order relation induced from the lattice operations: a ≤ b iff
a = a ∧ b (or equivalently iff b = a ∨ b).

Let ≤C be the restriction to C (Σ) of the partial order ≤ on Σ (i.e., ∀c, d ∈
C (Σ), c ≤C d iff c ≤ d), then C (Σ) is a complete lattice satisfying the following
properties:

(1) If we denote by ∧C the meet on C (Σ) with respect to the partial order ≤C we
have that

∀{cj } ⊆ C (Σ), ∧C {cj } = ∧{cj }. (8)

(2) If we denote by ∨C the join on C (Σ) with respect to the partial order ≤C we
have that

(2a) ∀{cj } ⊆ C (Σ), ∨C {cj } = ∧C
{
d ∈ C (Σ) : ∀cj ≤C d

}
,

(2b) ∀{cj } ⊆ C (Σ), ∨{cj } ≤ ∨C {cj }.
Proof

(1) The g.l.b. ∧cj in Σ means that: (a) ∀j , (∧cj ) ≤ cj and (b) ∀a ∈ Σ condition
∀j , a ≤ cj implies a ≤ (∧cj ).

On the other hand, the g.l.b. ∧C cj in C (Σ) means that: (aC ) ∀j ,
(∧C cj ) ≤C cj and (bC ) ∀d ∈ C (Σ) condition “∀j , d ≤C cj” implies
“d ≤C (∧C cj ).”

Applying (b) to the element a = (∧C cj ) ∈ C (Σ) ⊆ Σ , owing to (aC ), one
gets (∧C cj ) ≤ (∧cj ). On the other hand, condition (PCC2) of Proposition 45
assures that δ := (∧cj ) ∈ C (Σ) and so applying to this closed element
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condition (bC ), owing to (aC ), we get (∧cj ) ≤ (∧C cj ). Let us note that in
this part of the proof we have freely applied the fact that “≤C iff ≤.”

(2a) Let us set α = ∧C
{
d ∈ C (Σ) : ∀cj ≤C d

}
then ∀cj ≤C α, that is α is an

u.b. in C (Σ) of the family
{
cj
}
. Let now h be an u.b. of

{
cj
}
, that is ∀cj ≤ h,

then h ∈ {d ∈ C (Σ) : ∀cj ≤ d
}

and so α ≤ h, i.e., α is the l.u.b. of
{
cj
}

in
C (Σ). Hence we have α = ∨C

{
cj
}
. The proof of (2b) is straightforward. ��

Example 24 Let us consider the Hilbert space H generating the Quantum Lattice
OL(H ) based on the collection M (H ) of all its subspaces. On the Boolean
algebra of its power set 〈P(H ),∩,∪, c,∅,H 〉 the mapping A ∈ P(H ) →
A∗ ∈ P(H ) defined by the rule A∗ = ∩ {M ∈M (H ) : A ⊆ M} is a closure
operation satisfying conditions (C1)–(C3) for which ∅∗ = {0} 
= ∅. Trivially, the
collection C (H ) of all closed subsets with respect to this closure operation is just
M (H ), the collection of all subspaces: C (H ) =M (H ).

In this case, and according to the just proved Proposition 23, we have that the
meet in C (H )(=M (H )) of any family of subspaces∧C

{
Mj : j ∈ J

}
is their set

theoretical intersection∩ {Mj : j ∈ J
}
. But the join ∨C

{
Mj : j ∈ J

}
in C (H )(=

M (H )) of the same family is not the corresponding set theoretical union since it
is the subspace generated by this set theoretical union

∩ {M ∈M (H ) : ∪j∈JMj ⊆ M
}
.

2.4 Closure Lattices and Upper Rough Approximation Spaces
(URAS): Their Categorical Isomorphism

We are now able to give an equivalent formulation of the notion of lattice with
closure operation by the notion of upper rough approximation space, structure
defined in a non-equational way by the following.

Definition 25 An upper rough approximation space is a triple 〈Σ,U (Σ), u〉
where

(U-RAS-1) Σ stays for a structure
〈
Σ,∧,∨, ′, 0, 1

〉
of De Morgan lattice;

(U-RAS-2) U (Σ) stays for a structure 〈U (Σ),∧, 1〉 of upper bounded by 1 meet
semi-lattice, under the condition that U (Σ) ⊆ Σ;

(U-RAS-3) u : Σ → Σ is a unary operation on Σ satisfying the following
conditions for any a ∈ Σ:

(Up1) a ≤ u(a);
(Up2) u(a) ∈ U (Σ);
(Up3) ∀c ∈ U (Σ), if a ≤ c then u(a) ≤ c.

Note that these three conditions can be compacted in the unique:

∀a ∈ Σ, u(a) = min {c ∈ U (Σ) : a ≤ c} .
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Elements from Σ are called approximable and elements of the subset U (Σ) ⊆ Σ

are said to be upper crisp or also upper definable. Furthermore, the mapping u :
Σ → Σ is called the upper rough approximation map.

The elements of the lattice Σ abstractly represent the family of elements
which can be approximated by upper crisp elements from U (Σ) (i.e., they are
approximable elements). The upper crisp approximation is formalized by the upper
rough approximation map u associating with any approximable element a ∈ Σ

its upper approximation u(a) according to the condition (Up1). Condition (Up2)
assures that this upper approximation is upper crisp and the last condition (Up3)
says that this upper approximation is the best from the top by upper crisp elements.

Theorem 26 Let
〈
Σ,∧,∨, ′, 0, 1

〉
be a De Morgan lattice, simply written as Σ .

Suppose a closure lattice A = 〈Σ, ∗〉 based on Σ .
Then, the induced structure A � := 〈Σ,U (Σ), u〉 where U (Σ) := C (Σ) is

the collection of all closed elements of Σ , and u : Σ → Σ is the unary operation
on Σ defined for any arbitrary element a ∈ Σ as u(a) := a∗ (the closure of a) is
an upper rough approximation space.

Proof Let us set u(a) = a∗ and U (Σ) = C (Σ) = {c ∈ Σ : c = u(c)}. Then,
(Up1) is nothing else than the (C1) written as a ≤ u(a). (Up2) From (C3), written
as u(a) = u(u(a)), it follows that u(a) ∈ U (Σ). (Up3) Let c ∈ U (Σ), i.e.,
c = u(c), if a ∈ Σ is such that a ≤ c then by (C2a) we get u(a) ≤ u(c) = c. ��

Let us denote by C(Cl-L) the category of closure lattices and by C(U-RAS) the
category of upper rough approximation spaces, then the results of Theorem 26 can
be summarized by the following correspondence:

A ∈ C(Cl-L)
const1−−−→ A � ∈ C(U-RAS) (9)

The converse of Theorem 26 also holds.

Theorem 27 Let 〈Σ,∧,∨, 0, 1〉 be a De Morgan lattice, simply written as Σ .
Suppose an upper rough approximation space B = 〈Σ,U (Σ), u〉 based on Σ .

Then, the induced structure B� := 〈Σ, ∗〉 based on Σ equipped with the
mapping ∗ : Σ → Σ , associating with any element a ∈ Σ the element a∗ :=
u(a) ∈ Σ , is a closure operation, i.e., it satisfies the closure conditions (C1), (C2),
and (C3).

Proof Let us set a∗ = u(a) ∈ U (Σ). Then,
(C1) is nothing else than (Up1) written as a ≤ a∗. (C2a) Let a ≤ b. Then

from (Up2) the element b∗ = u(b) ∈ U (Σ) is such that, by (Up1), b ≤ b∗ and so
a ≤ b ≤ b∗. In this way we have proved that the element b∗ ∈ U (Σ) is such that
a ≤ b∗ and so from (U3) we get a∗ = u(a) ≤ b∗. (C3) From (C1) it is a∗ ≤ a∗∗.
Now we apply the (Up3) to the element a∗: if the element c ∈ U (Σ) is such that
a∗ ≤ c, then a∗∗ ≤ c. Putting c = a∗ we obtain that a∗∗ ≤ a∗. ��



32 G. Cattaneo

The results of Theorem 27 can be summarized by the correspondence:

B ∈ C(U-RAS)
const2−−−→ B� ∈ C(Cl-L) (10)

The categorical isomorphism between closure lattices and upper rough approxi-
mation spaces is given by the following result, whose proof is straightforward.

Theorem 28 Starting with a closure lattice, forming its upper rough approximation
space version and then coming back to the corresponding closure structure, one
recovers the original structure we started with. Formally,

A ∈ C(Cl-L)
const1−−−→ A � ∈ C(U-RAS)

const2−−−→ (A �)� = A

Conversely, starting from an upper approximation space, forming its closure lattice
version and then coming back to the corresponding upper approximation space
structure, one recovers the original structure we started with. Formally,

B ∈ C(U-RAS)
const2−−−→ B� ∈ C(Cl-L)

const1−−−→ (B�)� = B

Theorem 28 asserts that the category of De Morgan lattices with closure
operationC(Cl-L) (whose morphisms are structure preserving functions) and the one
of De Morgan lattices with upper approximation map C(U-RAS) (whose morphisms
are structure preserving functions) are categorical equivalent (isomorphic) between
them, according to the general category theory [68].

Note that this result is not so trivial. Indeed, if we have two categories of algebraic
structures, say A and B, with two constructive methods for passing from one to the

other, say A
const1−−−→ B and B

const2−−−→ A, then in general

A ∈ A
const1−−−→ A � ∈ B

const2−−−→ (A �)� 
= A

and

B ∈ B
const2−−−→ B� ∈ A

const1−−−→ (B�)� 
=B

3 Interior Operations Induced from Closures and Lower
Approximation Spaces

The notion of interior operation dual to the closure operation with respect to the De
Morgan mapping ′ : Σ → Σ , which as stressed in Lemma 8 is a bijection on the
lattice Σ , is given by the following result.
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Theorem 29 Suppose a closure lattice A = 〈Σ,∧,∨, ′, ∗, 0, 1
〉
. The mapping

o : Σ → Σ defined by the law

∀a ∈ Σ, ao := ((a′)∗)′ (11)

is an interior operation, i.e., it satisfies the followings:

(I1) ao ≤ a (decreasing)

(I2) (a ∧ b)o ≤ ao ∧ bo (sub-multiplicative)

(I3) ao = aoo (idempotent)

Analogously to the closure case, the induced structure I = 〈Σ,∧,∨, ′, o, 0, 1
〉

is
said to be an interior lattice instead of a De Morgan lattice with interior operation.

Remark 30 Condition (I3) can be more economically expressed in the weak form

(I3w) ao ≤ aoo (weak idempotent)

Indeed, applying the decreasing condition (I1) to the element ao we get the inverse
of the (I3w): (ao)o ≤ ao, leading to the condition (I3).

Also in this interior case the equational sub-multiplicative property (I2) alone is
equivalent to a non-equational condition according to the following result.

Lemma 31 In an interior lattice Σ the following two statements are equivalent:

(I2) (a ∧ b)o ≤ ao ∧ bo (sub-multiplicative)

(I2a) a ≤ b implies ao ≤ bo (isotone)

Note that from Eq. (11) and the De Morgan condition (dM1) it follows that dually
the closure can be expressed as

∀a ∈ Σ, a∗ = ((a′)o)′ (12)

Suppose an interior lattice
〈
Σ,∧,∨, ′, o, 0, 1

〉
. Since in general ao ≤ a, the

subset of open elements is defined as the collection of elements which are equal to
their interior.

Formally,

O(Σ) = {h ∈ Σ : h = ho} .

This set is not empty since the least element 0 is open (from (I1) it is 0 ≤ 0o ≤ 0).
Condition (I3) says that for every a ∈ Σ the element ao, called the interior of a,

is open.
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Taking into account the relationship between interior and closure expressed by
Eq. (11) we have that

a is closed (a = a∗) iff a′ is open (a′ = a′o), (13a)

or dually that

a is open (a = ao) iff a′ is closed (a′ = a′∗). (13b)

Thus, taking as primitive the notion of closed set C (Σ), we have that O(Σ) = {h ∈
Σ : ∃c ∈ C (Σ) s.t h = c′}.

Of course, the dual of Proposition 20 holds.

Proposition 32 Let 〈Σ,∧,∨, o, 0, 1〉 be a bounded lattice 〈Σ,∧,∨, 0, 1〉 with an
interior operation o : Σ → Σ . Then,

(D-i) the family O(Σ) := {h ∈ Σ : h = ho} of all its open elements satisfies the
following conditions:

(PO1) the least element 0 is open: 0 ∈ O(Σ).
(PO2) O(Σ) is closed with respect to the join of any pair of open elements,

i.e., if o, h ∈ O(Σ) then o ∨ h ∈ O(Σ).

(D-ii) Moreover, in the case in which Σ is a complete lattice, then also the dual of
point (ii) of Proposition 20 holds:

(POO2) O(Σ) is closed with respect to the join of any arbitrary family of
open elements: if {oj } ⊆ O(Σ) then ∨{oj } ∈ O(Σ).

Hence, the structure 〈O(Σ),∨, 0〉 is a complete join semi-lattice lower
bounded by the least element 0.

This result leads to the dual of Proposition 22.

Proposition 33 Let 〈Σ,∧,∨〉 be a nonempty complete lattice.

(TO1) Then, if Σ is equipped with an interior operation o with induced family of
open sets O(Σ) satisfying conditions (PO1) and (POO2), then the interior
ao of any element a ∈ Σ can be expressed as

ao = ∨ {o ∈ O(Σ) : o ≤ a} (14)

(TO12) Conversely, let Σ be equipped with a family of its elements O(Σ) satisfying
conditions (PO1) and (POO2), then the mapping o : Σ → Σ associating
with any element a ∈ Σ the element ao := ∨{o ∈ O(Σ) : o ≤ a} is an
interior operation in the sense that it satisfies the interior conditions (I1),
(I2), and (I3).
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3.1 Interior Lattices and Lower Rough Approximation Spaces
(LRAS): Their Categorical Isomorphism

In the case of an interior lattice we can introduce the dual of the definition 25
according to the following.

Definition 34 An lower rough approximation space is a triple 〈Σ,L (Σ), l〉 where

(L-RAS-1) Σ stays for a structure
〈
Σ,∧,∨, ′, 0, 1

〉
of De Morgan lattice;

(L-RAS-2) L (Σ) stays for a structure 〈L (Σ),∨, 0〉 of lower bounded by 0 join
semi-lattice, under the condition that L (Σ) ⊆ Σ;

(L-RAS-3) l : Σ → Σ is a unary operation on Σ satisfying the following
conditions for every a ∈ Σ:

(Lo1) l(a) ≤ a;
(Lo2) l(a) ∈ L (Σ);
(Lo3) ∀o ∈ L (Σ), if o ≤ a then o ≤ l(a).

Note that these three conditions can be compacted in the unique:

∀a ∈ Σ, l(a) = max {o ∈ L (Σ) : o ≤ a} .

Elements from Σ are called approximable and elements of the subset L (Σ) ⊆ Σ

are said to be lower crisp or also lower definable. Furthermore, the mapping l :
Σ → Σ is called the lower rough approximation map.

The dual versions of Theorems 26–28 in this interior context can be summarized
in the following unique result.

Theorem 35 In the context of a De Morgan lattice
〈
Σ,∧,∨, ′, 0, 1

〉
, simply

denoted as Σ , we have the following.

(1) Suppose a De Morgan lattice equipped with an interior operation I = 〈Σ, o〉.
Then the induced structure I � := 〈Σ,L (Σ), l〉, where L (Σ) = O(Σ)

coincides with the set of all open elements of Σ and l : Σ → Σ is the mapping
defined for any element a ∈ Σ as l(a) := ao (the interior of a), is a lower rough
approximation space.

(2) Let F = 〈Σ,L (Σ), l〉 be a lower rough approximation space based on the De
Morgan lattice Σ , with L (Σ) = {h ∈ Σ : h = l(h)} and the mapping l : Σ →
Σ satisfying conditions (Lo1)–(Lo3). Then the induced structure F� := 〈Σ,o 〉
based on Σ and equipped with the map o : Σ → Σ associating with any
element a ∈ Σ the element ao := l(a) ∈ Σ is an interior operation, i.e., it
satisfies the interior conditions (I1), (I2), and (I3).

(3) The two structures of interior lattice and lower rough approximation space are
categorically equivalent.
Indeed, if I is an interior lattice with induced lower rough approximation
space I �, then (I �)� = I .
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Conversely, if F is a lower rough approximation space with induced interior
lattice F�, then (F�)� = F .

4 Abstract Rough Approximation Spaces (RAS) as Merge
of Upper and Lower Approximations

As noticed, the notions of closure and interior are equational, but in order to grasp
the intuitive aspects of rough approximations of something we have introduced
the equivalent non-equational structures of lower and upper rough approximation
spaces.

The abstract notion of rough approximation space as introduced in [14], and
further on developed in [16, 20, 21] (with the categorical isomorphism with interior–
closure spaces treated in [18, 19]), is the merge of these two structures of lower and
upper rough approximation spaces according to the following definition.

Definition 36 Let 〈Σ,U (Σ), u〉 be an upper rough approximation space based on
a De Morgan lattice Σ , with U (Σ) = C (Σ) the collection of all closed elements of
the closure isomorphic structure, and let 〈Σ,L (Σ), l〉 be the induced dual, by De
Morgan complementation, lower rough approximation space, with L (Σ) = O(Σ)

the collection of all open elements of the interior isomorphic structure.
Then, the merge of these two structures 〈Σ,L (Σ),U (Σ), r〉, where r : Σ �→

L (Σ) × U (Σ) = O(Σ) × C (Σ) is the mapping which associates with any
element a ∈ Σ its lower–upper (open–closed) rough approximation r(a) =
(l(a), u(a)) = (ao, a∗), with l(a) = ao ∈ O(Σ), u(a) = a∗ ∈ C (Σ), and
l(a) = a0 ≤ a ≤ u(a) = a∗ (see conditions (I1) and (C1)), is the induced abstract
rough approximation space.
(From now on we use only the formulae O(Σ) and C (Σ) instead of the equivalent
L (Σ) and U (Σ).)

In this rough approximation space context, an element e is said to be crisp (or
exact, also sharp) iff r(e) = (e, e), i.e., its rough approximation is the trivial one,
and this is equivalent to ask that e ∈ E (Σ) := C (Σ) ∩ O(Σ), i.e., it is a clopen
element. Thus, the set of all clopen elements is the collection of crisp elements.

As previously pointed out, the non-equational conditions defining the lower
and the upper approximation maps, (Lo1)–(Lo3) and (Up1)–(Up3), capture the
intuitive aspects of an expected rough approximation as the best approximation of
the element a from the bottom (resp., top) by lower (resp., upper) crisp elements.

The diagram of Fig. 6 summarizes the results about abstract rough approxima-
tion spaces by the behavior of the rough approximation map.

Let us quote the following statement from [15], concerning the meta-theoretical
discussion about roughness principles, which in the original version involves the
rough approximation of subsets A from the power set P(X) of some universe X,
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Fig. 6 The rough approximation map induced from interior-closure operations

here translated into the general abstract case of rough approximation of elements a

from a De Morgan lattice Σ .

An important remark relative to these considerations has to do with some aspects, in general
hidden in rough set literature, which can be listed in the following Conditions for Rough Set
Theory [. . . ].

(RC1) The Condition of Roughness Coherence: the lower approximation l(a) of the
element a must be less or equal than a itself and the upper approximation u(a)

must be greater or equal than a: l(a) ≤ a ≤ u(a).

The comparison is made by the partial order relation≤ [induced by] the De Morgan
lattice Σ [. . . ].

(RC2) The Condition of Crispness: it is possible to single out [two] classes of [lower
crisp and upper crisp elements O(Σ) and C (Σ), respectively,] such that either the
lower and the upper approximations are crisp, i.e., they describe precise concepts
(or properties).

(RC3) The Condition of Best Approximation: the lower and upper approximations are not
only crisp, but they also give the best approximation of any [element a] by crisp
elements [from the bottom and the top, respectively].

Conditions (RC1), (RC2), and (RC3) are, of course, formal definitions of coherence, cri-
spness, and best approximation, respectively.

A different discussion is centered on the fact that a formal theory in order to describe
roughness must satisfy these three conditions, that now assume the role of the following
meta-theoretical requirement:

(RMTP) A formal theory about roughness based on a De Morgan lattice Σ must satisfy
the three conditions (RC1), (RC2) and (RC3).

This should be an interesting element of debate inside the rough set community since, at
least at the level of the covering case [see Sect. 15.1] or of incomplete information systems
[see Sect. 16.1], one can found some approaches to rough set theory in which only the
coherence principle is satisfied, but neither the crispness and so nor the best approximation
conditions are considered. This corresponds to the acceptance of [the following weaker]
meta-theoretical principle of roughness:

(w-RMTP) In order to have a mathematical theory describing roughness [. . . ] the only
condition (RC1) is required to be satisfied.

This means that in some context rough set theory is characterized by the weak
requirement that an approximation satisfies the unique condition of coherence that the
lower approximation must be less or equal to the element which is approximated, and in
its turn this element must be less or equal to its upper approximation. No requirement about
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crispness and best approximation is taken into account in the development of the theory.
And this is a meta-theoretical decision also if hidden in many cases.

On the other hand the more complete approach, from my point of view, is the one that
also in some more generic cases furnishes the right approach to rough approximation [. . . ]
according to the (RMTP) principle. This means that it must satisfy not only the coherence
principle, but also it must discriminate what is crisp (precise) [. . . ] as an a priori knowledge
about the system, and then define a rough approximation not only by the minimal coherence
condition, but also by a pair of crisp best approximations from the bottom and the top,
respectively.

A similar discussion has been proposed in [39] (and see also its sequel [40]).

4.1 Rough Approximation Spaces by Orthopairs

Now we consider another way to represent rough approximations by open–open
pairs, different from the one schematized by the diagram of Fig. 6 consisting in
open–closed pairs. To this aim let us introduced a binary relation of orthogonality
on the De Morgan lattice structure

〈
Σ,∧,∨, ′, 0, 1

〉
according to the following

definition:

∀a, b ∈ Σ a ⊥ b iff a ≤ b′ (15)

Let us list the formal properties satisfied by this orthogonality relation ⊥ on Σ ,
comparing them with the corresponding properties characterizing the partial order
relation ≤ on Σ which as well known are of being: reflexive, anti-symmetric, and
transitive.

The binary relation of orthogonality satisfies the following:

(og-1a) ∀a ∈ Σ, a ⊥ 0 (0-irreflexive)

(og-1b) ∀a ∈ Σ, a ⊥ a iff a ≤ a′ (1-kernel irreflexive)

(og-2) ∀a, b ∈ Σ, a ⊥ b implies b ⊥ a (symmetric)

(og-3) ∀a, b, c ∈ Σ, a ≤ b and b ⊥ c imply a ⊥ c (⊥ -absorbing)

Note that in the case of an ortholattice for which conditions (oc-a,b) hold, the (og-
1b) must be substituted by the condition

(ol-1b) ∀a ∈ Σ, a ⊥ a implies a = 0 (irreflexive).

If given an ortholattice Σ we define as Σ0 := Σ \{0}, then the restriction⊥0 on this
latter of the orthogonality relation defined on Σ by Eq. (15) satisfies the following:

(ol0-1) ∀a, b ∈ Σ0, a ⊥0 b implies a 
= b (irreflexive)

(ol0-2) ∀a, b ∈ Σ0, a ⊥0 b implies b ⊥0 a (symmetric)

(ol0-3) ∀a, b, c ∈ Σ0, a ≤ b and b ⊥0 c imply a ⊥0 c (⊥ -absorbing)
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Note that if one introduces on Σ0 the binary relation S = Not ⊥, then the above
two conditions (ol0-1) and (ol0-2) are translated in the following involving S ,
respectively:

(sim-1) ∀a ∈ Σ0, aS a (reflexive)

(sim-2) ∀a, b ∈ Σ0, aS b implies bS a (symmetric)

Reflexive and symmetric binary relations are called similarity relations (after
Poicaré [96]), also used in the context of modal logic semantic (see [32]), or
tolerance relations (after Zeeman [123]) in the context of incomplete information
systems (see [116]). A similarity space or tolerance space is then a pair (X,S )

based on a universe of points X equipped with a similarity (tolerance) relation S .
In a De Morgan lattice with closure operation the open element a∼ = e(a) :=

a∗′ ∈ O(Σ) is defined as the exterior of a ∈ Σ .
Given the definition of orthogonality (15), we have that the usual relationship

between interior and closure of an element ∀a ∈ Σ , ao ≤ a∗ = (a∼)′ can be
equivalently formulated in the following way:

∀a ∈ Σ, ao ⊥ a∼ (i.e., [l(a) = ao] ⊥ [a∼ = e(a)])

In this way, we can consider the open–open pair

∀a ∈ Σ, (l(a), e(a)) ∈ O(Σ)× O(Σ) with l(a) ⊥ e(a), (16a)

equivalently

∀a ∈ Σ, (ao, a∼) ∈ O(Σ)×O(Σ) with ao ⊥ a∼. (16b)

Hence, we can introduce the rough approximation map by orthopairs (also⊥-rough
approximation map) as the mapping r⊥ : Σ → O(Σ)×O(Σ), associating with any
element a ∈ Σ the orthopair r⊥(a) := (ao, a∼) = (l(a), e(a)) ∈ O(Σ) × O(Σ),
under the orthogonality condition ao ⊥ a∼ (i.e., l(a) ⊥ e(a)) [14, 24, 25].

The ⊥-rough approximation space based on the De Morgan closure lattice Σ is
then the structure 〈Σ,O(Σ), r⊥〉.

Let us stress that any De Morgan complementation a ∈ Σ → a′ ∈ Σ , as
involutive (i.e., (dM1)) antimorphism (i.e., (dM2b)), is a bijection on Σ which
allows the identification a ↔ a′. In particular we can identify a∗ ↔ (a∗)′ = a∼,
from which the further identification (ao, a∗) ↔ (ao, a∼) can be considered, with
(ao, a∗) ∈ O(Σ) × C (Σ) whereas (ao, a∼) ∈ O(Σ) × O(Σ). Hence, the rough
approximations r(a) = (ao, a∗) based on ordered pairs ao ≤ a∗ depicted in Fig. 6
can be bijectively identified with the rough approximations r⊥(a) = (ao, a∼) based
on orthopairs ao ⊥ a∼ depicted in Fig. 7.
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Fig. 7 The rough approximation map by orthopairs

5 Galois Connections, Similarity Relations and Induced
Closure Operations: An Elementary Introduction

In this section I treat, without going into excessive details, the theory of Galois
connection [42, 86], whose fundamental points are now outlined making reference
to the Birkhoff book [8]. The main interest is to show that they generate closure
operation as particular structures.

6 Formal Concepts Induced by Galois Connections

Let us consider a binary relation G on the cartesian product X×V of two nonempty
sets, i.e., G ⊆ X × V , with xG v denoting the fact that (x, v) ∈ G .

In this section we adopt the terminology of Formal Concept Analysis (FCA).
Let us recall that FCA is formulated on the notion of a formal context, which is a
binary relation G between a set of objects X and a set V of properties or attributes.
The set of objects of a formal concept is referred to as the extension, and the set of
properties as the intension. They uniquely determine each other. When xG v we say
that the object x possesses the property v, or that the property v is possessed by the
object x [45, 115].

The binary relationG induces set-theoretical operators from sets of objects to sets
of properties, and from sets of properties to sets of objects, respectively. A formal
concept is defined as a pair (A,Z) of a set of objects A ⊆ X and a set of properties
Z ⊆ V connected by the two set-theoretical operators.

Precisely, for any pair (A,Z) of subsets with A ⊆ X and Z ⊆ V , according to
[8, p. 122] let us define the polar A# of A and the polar Z† of Z as follows:

A# := {v ∈ V : ∀a ∈ A, aG v} and Z† := {x ∈ X : ∀z ∈ Z, xG z} (17)

So, A# ⊆ V is a subset of V whose elements v ∈ V can be characterized by the
property written in the compact form AG v, whereas Z† ⊆ X is a subset of X whose
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elements x ∈ X are characterized by the property written in the compact form xGZ.
Formally,

A# := {v ∈ V : AG v} and Z† := {x ∈ X : xGZ} (18)

In the case of a single object x ∈ X the corresponding collection of all properties
possessed by it, i.e., {x}#, in literature is also denoted by xG . Similarly in the case of
a single property v ∈ V the collection of all objects which possesses this property,
i.e., {v}†, is usually denoted by G v. Under these assumptions, for any subset A ∈
P(X) and any subset Y ∈P(V ) we have the following.

A# = {v ∈ V : A ⊆ G v} =
⋂

a∈A
aG

Y † = {x ∈ X : Y ⊆ xG } =
⋃

y∈Y
G y

The so-introduced two mappings # :P(X) �→ P(V ) and † :P(V ) �→ P(X)

define a Galois connection between the Boolean algebras of subsets P(X) and
P(V ) since they satisfies the characteristic conditions:

(GC1) A ⊆ B implies B# ⊆ A#

(GC2) Z ⊆ Y implies Y † ⊆ Z†

(GC3) A ⊆ (A#)† and Z ⊆ (Z†)#

Moreover, setting Pv(a) := aG v from “∀a ∈ A1∪A2, Pv(a)” iff “∀a ∈ A1, Pv(a)

and ∀a ∈ A2, Pv(a)” iff “A#
1 ∩ A#

2” (and respectively for Px(z) := xG z) it follows

(GC4) (A1 ∪ A2)
# = A#

1 ∩ A#
2 and (Y1 ∪ Y2)

† = Y
†
1 ∩ Y

†
2

This condition (GC4) can be extended to arbitrary families of subsets of X, and
arbitrary families of subsets of V .

We now show as the notion of formal contexts provides a common framework
for the study of rough set theory and formal concept analysis, if rough set theory
is formulated on the basis of two universes X and V (for a discussion about this
argument see [117], with associated references). Precisely, the polar A#, as subset
of V , gives rise to the new subset, (A#)† ⊆ X, and the polar Z†, as subset of X, gives
rise to the new subset, (Z†)# ⊆ V . In this way we can introduce two mappings:

• the first is a transformation of the power set P(X) on itself, ∗ :P(X) �→P(X),
defined by the correspondence A→ A∗ := (A#)†, and

• the second is a transformation of the power set P(V ) on itself, � : P(V ) �→
P(V ), defined by the correspondence Z→ Z� := (Z†)#.

The main result is summarized by the following.
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Theorem 37 The transformations

A→ A∗ := (A#)† on P(X)

Z→ Z� := (Z†)# on P(V )

are both closure operators, the first on the Boolean complete lattice P(X) and the
second on the Boolean complete lattice P(V ), both as particular concrete cases of
de Morgan complete lattices with closure operation. Hence, following the discussion
of Sect. 2.3 we have the following:

(i) The collections of closed sets relatively to these closures are respectively

C (X) := {C ∈P(X) : C = C∗} = {C ∈P(X) : C = C#†}
C (V ) := {K ∈P(V ) : K = K�} = {K ∈P(V ) : K = K†#}

Let us recall that these two families are nonempty (X ∈ C (X) and V ∈
C (V )) and closed with respect to arbitrary intersection, i.e., closure systems,
according to Proposition 20.

(ii) Moreover, according to the general theory developed in Sect. 3, the transfor-
mation

A→ Ao := Ac ∗ c = Ac #† c

is an interior operation on P(X) and the transformation

Z→ Z� := Z c� c = Zc †# c

is an interior operation on P(V ).
(iii) Finally, and according to Sect. 4, the pair rX(A) = (Ao,A∗) is the rough

approximation of A in P(X) and rV (Z) = (Z�, Z�) is the rough approxi-
mation of Z in P(V ).

Let us denote by ∅X (resp., ∅V ) the empty set of X (resp., V ). Then, in general
∅X (resp., ∅V ) is not a closed element of C (X) (resp., C (V )).

Example 38 Let X = {a, b}, V = {0, 1}, and G1 = {(a, 0), (a, 1)}. Then, (∅X)# =
V and so (∅X)∗ = V † = {a} 
= ∅X. Dually, for G2 = {(a, 0), (b, 0)} one has that
(∅V )� = {0} 
= ∅V .

Following [45, 115], from a formal context one can introduce the notion of formal
concept.

Definition 39 A formal concept in the context (X, V,G ) is a pair (A,W) ∈
P(X)×P(V ) such that A = W † and W = A#. Hence,

(i) (A,W) is a formal concept iff (A,W) = (W †, A#).

A first result is the following one.
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Proposition 40 If the pair (A,W) is a formal concept then (A,W) = (A∗,W�).

In other words, if (A,W) is a formal concept then A is X-closed (A ∈ C (X)) and
W is V -closed (W ∈ C (V )).

Proof Since A = W † and W = A# imply A = W † = (A#)† = A∗ and W = A# =
(W †)# = W�, the statement is proved. ��
The converse of this proposition does not work, as the following example shows.

Example 41 Let X = {a, b, c}, V = {0, 1}, and G = {(b, 0)}. Then the subset {b}
is X-closed since {b}# = {0} from which it follows {b}#† = {0}† = {b} and trivially
V is V -closed. Hence, ({b}, V ) ∈ C (X)× C (V ), but {b}# 
= V .

Proposition 42 Let L be the collection of all formal concepts from the context
(X, V,G ). Then, the binary relation ' on L ×L defined by

(A1,W1) ' (A2,W2) iff A1 ⊆ A2, (or equivalently iff W2 ⊆ W1) (19)

is a partial order relation with respect to which L is a lattice whose meet and join
operations of any pair (A1,W1) and (A2,W2) of formal concepts are the following:

(A1,W1) � (A2,W2) = (A1 ∩ A2, (W1 ∪W2)
�) (20a)

(A1,W1) � (A2,W2) = ((A1 ∪ A2)
∗,W1 ∩W2) (20b)

This lattice is complete since the above meet and join operations can be extended to
arbitrary families of formal concepts.

Proof Let A1 ⊆ A2, from W1 = A#
1 and W2 = A#

2 it follows, by (GC1), that
W2 = A#

2 ⊆⊆ A#
1 = W1. Now it is easy to prove that Eq. (19) defines a partial

order.
Moreover, from the definition of formal concepts A1 = W

†
1 and A2 = W

†
2 from

which it follows (A1 ∩ A2)
# = (W

†
1 ∩W

†
2 )

# = (GC4) = (W1 ∪W2)
†#.

On the other hand, by Proposition 40 A1, A2 are both X-closed and so, by the
property (i) of Theorem 37 of C (X), also A1∩A2 is closed: (A1∩A2)

∗ = A1∩A2.
Hence, ((W1∪W2)

�)# = (W1∪W2)
†#† = (GC4) = (W

†
1 ∩W †

2 )
#† = (A1∩A2)

∗ =
A1 ∩ A2. In conclusion the pair (A1 ∩ A2, (W1 ∪ W2)

�) is a formal concept. It
is straightforward to prove that Eq. (20) define (complete) lattice meet and join
operations. ��

As stated at the beginning of this section, I would have only made an introduction
to the fundamental properties of formal concept analysis as a particular application
of Galois connection theory. People who want to approach this topic can access
the work of Yao first mentioned (see also [98, 118–120]). Furthermore, Düntsch
and Gediga pointed out that the set-theoretical operators used in formal concept
analysis and rough set theories have been considered in modal logics, and therefore
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referred to them as modal-style operators [38, 47, 48]. They have also demonstrated
that modal-style operators are useful in data analysis.

7 Tarski Closure and Interior Operations

In the notion of closure introduced by Definition 1 there is no requirement about the
least element 0. But, for instance in the Ore paper [86] in which a closure operation
is defined on a poset according to conditions (C1), (C2a), and (C3), one can found
the statement “when a zero element exists in the partially ordered set it is customary
the make the fourth axiomatic assumption:

(C0) the zero element is closed : 0∗ = 0. ”

Similarly, in the context of the power set of a universe, Ore says “by an additional
definition one prescribes that the void set is closed” [85].

Let us recall that in the context of the power set P(X), Boolean lattice of
subsets of a universe X, an operation ∗ : P(X) → P(X) which satisfies all
conditions (C1), (C2), (C3), and (C0), determines a structure 〈P(X),∗ 〉 which in
[77] has been called (F)-space. As to the axiom (C0) let us quote the following
Monteiro statement from [77]: “It must be remarked that the axioms (C1), (C2)
and (C3) are the characteristic axioms of the notion of closure property; see for
example [8]. Axiom (C0) enters in the proof of the following property, which is an
essential property [. . . ]: a point a of the universe X cannot have the point a itself
as accumulation point. Into the systems which verify the axioms (C1), (C2) and
(C3), it is generally possible to suppose that the axiom (C0) is also verified, we can
consequently identify the notion of (F)-space with the notion of closure property.”

In the paper [82] Monteiro and Ribeiro stressed that “(C3) is the condition α) that
Appert [2] has studied in his Thesis. An interesting and unexpected example of this
(F)-space is the one which can be recognized taking the ensemble of meaningful
propositions of any deductive discipline and for closure operation the one which
assigns to any set of such propositions the set of its consequences (by the rules of
inference of the involved discipline). See for this subject Tarski [107].” To tell the
truth in the quoted Tarski papers Axiom (C0) is not explicitly formulated also if
it seems to be reasonable to add, in the interpretation discussed in Remark 65 of
Sect. 2 about closure operation as “the set of consequences via interference rules,”
the additional condition that the set of consequences obtained by an empty set of
axioms is empty, i.e., condition (C0).

These considerations lead to investigate as interesting argument closure opera-
tions which satisfy besides the usual conditions (C1), (C2), and (C3), of closure
introduced in Definition 1 the further condition (C0) requiring that also the zero
element must be closed. This will be the argument of the present section in which
closures of this kind, for the reasons now discussed, are called Tarski closure
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operations. As Tarski closure lattice we mean a De Morgan lattice equipped with a
Tarski closure.

Coherently with the considerations now made, we note that if Σ is a De Morgan
lattice equipped with a closure operation ∗ : Σ → Σ satisfying the only conditions
(C1)–(C3), but not the (C0), then it is always possible to modify the closure
definition of ∗ in a new definition ∗T in order to have a Tarski closure according
to the following definition:

∀a ∈ Σ, a∗T :=
{
a∗ if a 
= 0

0 if a = 0

Of course, conditions (C1)–(C3) continue to be satisfied by the new closure for
every pair of elements a, b both different from 0, while conditions (C1) and (C3)
are valid when a = 0. Condition (C2) is also satisfied when one or both elements
a, b is 0.

Example 43 Let us consider the trivial closure ∗t : Σ → Σ defined by the law
∀a ∈ Σ , a∗t = 1, introduced in Example 2, with respect to which 0∗t = 1. Then the
modified closure, denoted as a∗tT and given by

∀a ∈ Σ, a∗tT :=
{

1 if a 
= 0

0 if a = 0

is a Tarski closure.

Example 44 In Fig. 8 it is applied the procedure now discussed for transform a not
Tarski closure on a Kleene lattice with unique half element b (at the left side where
0∗ = b 
= 0) into a Tarski closure (at the right side where 0∗ = 0).

In the Tarski complete lattice case the statement of Proposition 20 must be
modified in the following manner.

Fig. 8 Tarski closure realization at the right side of a not Tarski closure at the left side
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Proposition 45 Let Σ be a De Morgan complete lattice equipped with a Tarski
closure operation. Then, the family C (Σ) := {c ∈ Σ : c = c∗} of its closed
elements satisfies the following conditions.

(PC1a) The least element 0 and the greatest element 1 are both closed: 0, 1 ∈
C (Σ);

(PCC2) C (Σ) is closed with respect to the meet of any arbitrary family of closed
elements: let {cj } ⊆ C (Σ) then ∧{cj } ∈ C (Σ).

So, the structure
〈
C (Σ),∧,∨, ′, ∗, 0, 1

〉
is a pre topological lattice of closed

elements in the sense that it satisfies the two abstract lattice conditions (PC1a) and
(PCC2) of a topology of closed elements, without the further important topological
condition of being closed with respect to finite join (it is not a join semi-lattice).

With respect to Tarski closure, Proposition 22 must be completed in the point
(TC2) asserting that besides condition (C1)–(C3) condition (C0) is also satisfied;
indeed, this follows from the definition of 0∗ = ∧ {c ∈ C (Σ) : 0 ≤ c}, the fact that
by (PC1a) it is 0 ∈ C (Σ), and from the trivial condition 0 ≤ 0. The results of
Proposition 23 continue to apply in their original statements.

As in the case of a closure operation, on the basis of a Tarski closure, one
can apply Eq. (11) in order to obtain the dual (with respect to the De Morgan
complementation) Tarski interior operation which is characterized by the conditions
(I1) ao ≤ a (decreasing), and (I2) sub-multiplicative with the equivalent version of
isotonicity “a ≤ b implies ao ≤ bo ”, and (I3) aoo = ao (idempotency), plus the
following dual of the closure condition (C0):

(I0) the greatest element is open : 1o = 1 (normalization).

The decreasing condition (I1) leads one to introduce the collection of Tarski open
elements O(Σ) := {h ∈ Σ : h = ho} and in the Tarski complete lattice case the
statement dual of Proposition 45 holds.

Proposition 46 Let Σ be a De Morgan complete lattice equipped with a Tarski
interior operation. Then, the family O(Σ) := {h ∈ Σ : h = ho} of its open
elements satisfies the following conditions.

(PO1a) The least element 0 and the greatest element 1 are both open: 0, 1 ∈
O(Σ);

(POO2) O(Σ) is closed with respect to the join of any arbitrary family of open
elements: let {hj } ⊆ O(Σ) then ∧{hj } ∈ O(Σ).

So, the structure
〈
O(Σ),∧,∨, ′, o, 0, 1

〉
is a pre topological lattice of open elements

in the sense that it satisfies the two abstract lattice conditions (PO1a) and (POO2)
of a topology of open elements, without the further important topological condition
of being closed with respect to finite meet (it is not a meet semi-lattice).

The Tarski versions of closed and open elements C (Σ) and O(Σ) in general do
not coincide, neither one is a subset of the other. Thus, it is worthwhile to consider
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also the set of all clopen elements, E (Σ) := C (Σ) ∩ O(Σ), which in this Tarski
context contains both the least element 0 and the greatest element 1 of the lattice Σ .

The notion of rough approximation space (RAS) introduced in Definition 36 of
Sect. 4 can be specified in the case of Tarski interior-closure operations from a
complete lattice case according to the following.

(RAS-T) Let Σ be a De Morgan complete lattice equipped with a Tarski closure
u(a) = a∗ and induced Tarski interior l(a) = ao = a′∗′. Then the
Tarski rough approximation space is the structure 〈Σ,O(Σ),C (Σ), r〉
where:

(1) Σ is the collection of all approximable elements;
(2) O(Σ) = {d ∈ Σ : d = do = l(d)} is the join complete semi-lattice

of all lower crisp elements, containing both the elements 0, 1 ∈
O(Σ) (pre topological lattice of open elements);

(3) C (Σ) = {c ∈ Σ : c = c∗ = u(c)} is the meet complete semi-lattice
of all upper crisp elements, containing both the elements 0, 1 ∈
C (Σ) (pre-topological lattice of closed elements);

(4) r : Σ → O(Σ) × C (Σ) is the rough approximation map
associating with any approximable element a ∈ Σ the open–
closed crisp pair r(a) = (ao, a∗) = (l(a), u(a)), consisting of
the lower crisp approximation l(a) = ao ∈ O(Σ) expressed by
Eq. (14) and the upper crisp approximation u(a) = a∗ ∈ C (Σ)

of a expressed by Eq. (7), satisfying the meta-theoretical principle
(RMTP) of roughness coherence (RC1), crispness (RC2), and best
approximation (RC3).

The following result will be useful in the sequel.

Lemma 47 Let l : Σ → Σ be a Tarski interior operation with associated
collection of open elements O(Σ). Then,

∀a ∈ Σ, ∀o ∈ O(Σ), o ≤ a iff o ≤ l(a) (21)

Proof Let o ≤ a, then by isotonicity l(o) ≤ l(a), but from the hypothesis that o is
open o = l(o) ≤ l(a). Conversely, let o ≤ l(a), then for decreasing property (I1) it
follows that o ≤ l(a) ≤ a. ��

Part II: Closure-Interior Operations as Variations
of the Standard Version

Once stated the categorical isomorphism between closure lattices and upper approx-
imation spaces, it is possible to introduce a hierarchy of closure operators starting
from the standard closure version given in Definition 1, or better from the Tarski
closure admitting the (C0) condition regarding the closure of the zero element.
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This is just the case we are investigating with: the formalization of the closure (and
induced interior) operator gives the hint to explore other axiomatic lattice versions
of the condition (C1)–(C3) (or (I1)–(13)) in order to fit the richness of situations
which can be described by them.

All the closure versions which we shall treat in the present part are characterized,
in particular, by the assumption (C0) of closure of the zero element.

8 Kuratowski Closure and Induced Interior Operations

A Kuratowski (topological) closure operation on a De Morgan lattice Σ is a unary
operation ∗ on Σ which satisfies the conditions (C0), (C1), and (C3) of Tarski
closure definition, but in which the sub-additive condition (C2) is substituted by
the stronger property:

(C2K) a∗ ∨ b∗ = (a ∨ b)∗ (additive)

About this argument we can cite from Rasiowa–Sikorski [100]: “The closure
operation ∗ satisfies the conditions (C0), (C1), (C2K) and (C3). These Axioms
are due to Kuratowski [65]. For a detailed exposition of the theory of topological
spaces see e.g. Kelley [62], Kuratowski [66, 67].” In the introduction of his paper,
Nakamura [84] says: “The concept of closure was axiomatized by F. Riesz and
Kuratowski [66] on the field of sets, and Terasaka [110] generalized it onto abstract
Boolean algebras. The object of this note is to extend it onto general lattices.
Incidentally, ‘combinations of topologies’ of G. Birkhoff [7] are treated from more
general point of view.” Quoting M. Ward [114]: “These axioms are satisfied by
Kuratowski’s closure operator over a Boolean algebra with points [66].” For a
more recent treatment see also the Birkhoff book [8, p. 116]. Finally, according to
Halmos “a closure operator is a normalized [(C0)], increasing [(C1)], idempotent
[(C3)], and additive [(C2K)] mapping [. . . ]. The first systematic investigation of the
algebraic properties of closure operators was carried out by McKinsey and Tarski
[73].”
In agreement with all these quotations, in the sequel we shall call Kuratowski closure
operation any topological closure on a De Morgan lattice.

A De Morgan lattice equipped with a Kuratowski closure operation is simply
called a Kuratowski closure lattice.

Note the following result.

Proposition 48 Under conditions (C1) and (C3) the additive property (C2K) is
equivalent to the simultaneous verification of the two conditions:

(C2Ka) a ≤ b implies a∗ ≤ b∗ (isotonicity).
(C2Kb) a = a∗ and b = b∗ imply (a ∨ b)∗ = a ∨ b (topological closure).
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Fig. 9 At the left side the Boolean lattice and at the right side the Tarski no Kuratowski closure

Comparing the (C2Ka,b) with the (C2a), according to Lemma 16 equivalent to
the (C2), it follows that any Kuratowski closure is a Tarski closure, but the converse
is not true.

Example 49 In the double Hasse diagrams of Fig. 9 we show a Tarski closure lattice
which is not Kuratowski since, for instance, a∗ ∨ b∗ = f 
= (a ∨ b)∗ = f ∗ = 1.
Generally, x∗ ∨ y∗ < (x ∨ y)∗ for x, y = a, b, c with x 
= y, whereas x∗ ∨ y∗ =
(x ∨ y)∗ for x ≤ y.

Given a Kuratowski (i.e., topological) closure operator, the Kuratowski (i.e.,
topological) interior operator dually defined according to Eq. (11) satisfies con-
ditions (I0), (I1), (I3), plus the following property which substitutes the condition
(I2):

(I2K) ao ∧ bo = (a ∧ b)o (multiplicative).

Moreover, we have the dual of Proposition 48.

Proposition 50 Under conditions (I1) and (I3) the multiplicative property (I2K) is
equivalent to the simultaneous satisfaction of the two conditions:

(I2Ka) a ≤ b implies ao ≤ bo (isotonicity).
(I2Kb) a = ao and b = bo imply (a ∧ b)o = a ∧ b (topological interior).

Also in this case, in the sequel we shall call Kuratowski interior operation any
topological interior defined on a De Morgan lattice. A De Morgan lattice equipped
with a Kuratowski interior operation is simply called a Kuratowski interior lattice.

From the point of view of pointless topology of a Kuratowski lattice Σ , we have
the following “completion” of the results of Propositions 32 and 20 about interior
and closure operations, respectively.

Proposition 51 Let Σ be a Kuratowski lattice. Then,

(1) The family O(Σ) of all open elements, besides conditions (PO1a) and (PO2)
(or (POO2) in the case of a complete lattice), satisfies the further condition:
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(PO3) O(Σ) is also closed with respect to the lattice meet operation: let o, h ∈
O(Σ), then also o ∧ h ∈ O(Σ).

Therefore, in the case of a Kuratowski complete lattice we have that the
collection O(Σ) is just a true pointless lattice topology of open elements, in
the sense that it contains the two elements 0, 1 but besides the closure with
respect to arbitrary join of open elements, it is also closed with respect to finite
meet of open elements.

(2) The family C (Σ) of all closed elements, besides conditions (PC1a) and (PC2)
(or (PCC2) in the case of a complete lattice), satisfies the further condition:

(PC3) C (Σ) is also closed with respect to the lattice join operation: let c, d ∈
C (Σ), then also c ∨ d ∈ C (Σ).

Therefore, in the case of a Kuratowski complete lattice we have that the
collection C (Σ) is just a true pointless lattice topology of closed elements,
in the sense that it contains the two elements 0, 1 but besides the closure with
respect to arbitrary meet of closed elements, it is also closed with respect to
finite join of closed elements.

This leads to the following characterization of rough approximation spaces
isomorphic to Kuratowski complete lattices.

(RAS-K) Let Σ be a De Morgan complete lattice equipped with a Kuratowski
closure u(a) = a∗ and induced Kuratowski interior l(a) = ao = a′∗′.
Then the Kuratowski rough approximation space is the structure
〈Σ,O(Σ),C (Σ), r〉 where

(1) Σ is the collection of all approximable elements;
(2) O(Σ) = {d ∈ Σ : d = do = l(d)} is the pointless topological

lattice of all lower crisp elements (i.e., open elements);
(3) C (Σ) = {c ∈ Σ : c = c∗ = u(c)} is the pointless topological

lattice of all upper crisp elements (i.e., closed elements);
(4) r : Σ → O(Σ) × C (Σ) is the rough approximation map

associating with any approximable element a ∈ Σ the open–closed
crisp pair r(a) = (ao, a∗) = (l(a), u(a)), consisting of the lower
crisp approximation l(a) = ao ∈ O(Σ) defined by Eq. (14) and the
upper crisp approximation u(a) = a∗ ∈ C (Σ) of a defined by (7),
satisfying the meta-theoretical principle (RMTP) of roughness
coherence (RC1), crispness (RC2), and best approximation (RC3).

Remark 52 In literature one can find the definition of Čech closure as a weaker
notion with respect to the Kuratowski one, in the sense that conditions (C0), (C1),
and (C2K) are satisfied but not the idempotency condition (C3) (see [31], and also
[105]). Concrete examples of Čech closures will be encountered in the cases of
global coverings of a concrete universe discussed in Sect. 15.2 and of incomplete
information systems discussed in Sect. 16.1.
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Now we are interested to the converse of Proposition 50, but we formalize it in
the most interesting case for future developments of a complete lattice.

Proposition 53 Let
〈
Σ,∧,∨, ′, 0, 1

〉
be a De Morgan complete lattice, simply

denoted by Σ . Then,

(1) if Σ is equipped with an algebraic topology of open elements O(Σ), i.e., a
subset of Σ satisfying conditions (PO1a), (POO2), and (PO3), then introduced
for any element a ∈ Σ the corresponding (open) element

ao := ∨ {o ∈ O(Σ) : o ≤ a}

one has that the mapping o : Σ → Σ , a → ao is a Kuratowski interior
operation, i.e., all conditions (I0), (I1), (I2K), and (I3), are satisfied.
In other words, any abstract topological space of open elements 〈Σ,O(Σ)〉
induces in a canonical way a Kuratowski interior complete lattice 〈Σ, o〉;

(2) if Σ is equipped with an algebraic topology of closed elements C (Σ), i.e., a
subset of Σ satisfying conditions (PC1a), (PCC2), and (PC3), then introduced
for any element a ∈ Σ the corresponding (closed) element

a∗ := ∧ {c ∈ C (Σ) : a ≤ c}

one has that the mapping ∗ : Σ → Σ , a → a∗ is a Kuratowski closure
operation, i.e., all conditions (C0), (C1), (C2K), and (C3), are satisfied.
In other words, any abstract topological space of closed elements 〈Σ,C (Σ)〉
induces in a canonical way a Kuratowski closure complete lattice 〈Σ, ∗〉.

8.1 Kuratowski Interior and Closure Operations on the Power
Set of a Concrete Universe X

The Kuratowski approach to topology based on a concrete universe of points X

has been developed by him in [65] and then further on completed in [66] (and
see also [100, p. 13]). Adopting the formal denotation from H. Rasiowa and
R. Sikorski, a topological space by an internal operation is formalized by a
mapping I : P(X) → P(X) associating with any subset A ∈ P(X) the subset
I (A) ∈P(X), called the interior of A, in such a way that the following properties,
called in [62, p. 43] Kuratowski axioms, are satisfied (corresponding to the abstract
lattice case of Theorem 29, with condition (I2) substituted by (I2K) and the addition
of condition (I0)):

(I0-X) I (X) = X,
(I1-X) I (A) ⊆ A,
(I2-X) I (A ∩ B) = I (A) ∩ I (B),
(I3-X) I (I (A)) = I (A).
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Given the interior operator I :P(X)→ P(X) satisfying the above conditions
(I0-X)–(I3-X), if the orthocomplement of A in P(X) is denoted by −A := X \ A
then the corresponding closure operation C : P(X) → P(X) is defined by the
law ∀A ∈ P(X), C(A) := −(I (−(I (A)))), this last simply written as −I − (A),
which trivially satisfies the following:

(C0-X) C(∅) = ∅,
(C1-X) A ⊆ C(A),
(C2-X) C(A ∪ B) = C(A) ∪ C(B),
(C3-X) C(C(A)) = C(A).

In this way we can consider the concrete structure K(X) := 〈P(X),∩,∪,−, I,
C,∅,X〉 consisting of the Boolean algebra of subsetsB(X) := 〈P(X),∩,∪,−,∅,
X〉 based on the power set P(X) of the universe X, equipped with a Kuratowski
interior operation I and induced Kuratowski closure C = −I−.

As usual the inclusions (I1-X) and (C1-X) allow one to introduce the collections

O(X) := {O ∈P(X) : O = I (O)} and C (X) := {K ∈P(X) : K = C(K)}

of open and closed sets, respectively.
According to the general results of Proposition 51, the family O(X) (resp.,

C (X)) is a real topology of open (resp., closed) sets for X since

(Top1) the empty set and the whole space are both open (resp., closed) sets,
(Top2) it is closed with respect to the union (resp., intersection) of any arbitrary

family of open (resp., closed) sets, and
(Top3) it is closed with respect to the intersection (resp., union) of any finite family

of open (resp., closed) sets.

Let us recall the relationships between the two families O(X) andC (X): K is closed
iff Kc is open, and O is open iff Oc is closed.

Relatively to the above notions of concrete Kuratowski interior and closure
operations and the induced definitions of open and closed sets, we have that:

(RAS-KX) The Kuratowski rough approximation space is the structure RAS(X)

:= 〈P(X),O(X),C (X), r〉 where r : P(X) → O(X) × C (X)

is the mapping associating with any subset A of X the open–closed
pair of subsets of X given by r(A) := (I (A),C(A)) which satisfies
the canonical rough meta-theoretical principle (RMTP) of coherence,
crispness, and best approximation.

As to the coherence, this is the consequence of (I1-X) and (C1-X), ∀ ∈ P(X),
I (A) ⊆ A ⊆ C(A); moreover, conditions (I3-X) and (C3-X) assure the crispness
conditions I (A) ∈ O(X) and C(A) ∈ C (X). Formally, we have the diagram of
Fig. 10.

Let us take into account that we are also interested to the exterior of the subset
A of X defined as E(A) := X \ C(A) ∈ O(X), which is open as set theoretical
complement of a closed set.
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Fig. 10 Rough approximation on P(X) of the subset A

Fig. 11 Ortho-rough approximation on P(X) of the subset A

If the standard way to give a rough representation of an approximable subset A of
X consists of a topological open-closed pair r(A) = (I (A),C(A)) ∈ O(X)×C (X),
under the inclusion relation between an open-closed pair I (A) ⊆ C(A) depicted
in Fig. 10, as discussed in Sect. 4.1 there is an equivalent way of giving this
representation by means of the so-called ortho-pairs. This corresponds to consider
a rough approximation space RAS(X)⊥ := 〈P(X),O(X), r⊥〉 where the ortho-
rough approximation map is the application r⊥ : P(X) → O(X) × O(X)

associating with any subset A of X its ortho-rough approximation r⊥(A) :=
(I (A),E(A)), under the orthogonality relation I (A) ∩ E(A) = ∅. Formally, we
have the diagram of Fig. 11.

8.1.1 From Topological Spaces to Kuratowski Interior-Closure
Operations

In this subsection we anticipate some considerations relatively to the approach to
topology in order to coincide with the development which will be done in Sect. 15.3
of Part III. In this regard, let us recall the very important notion of base for a
topology. In literature one can find different definitions of this concept, obviously
equivalent to each other (for instance in [100]), but we adopt one that presents a
slight change to that found in [62, theorem 11, p. 47] according to the following.
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Definition 54 A family β = {Bj ∈P(X) : j ∈ J
}

(indexed by the index set J )
of subsets of X is said to be a base for a topology of X iff

(Co1) ∅ ∈ β,
(Co2) X = ∪ {Bj : j ∈ J

}
,

(Co3) for any pair Bi and Bj of subsets from β a collection {B̂k : k ∈ K} (with
K ⊆ J ) of subsets from β exists such that Bi ∩ Bj = ∪{B̂k : k ∈ K}.

The two conditions (Co1) and (Co2) define a covering of X, where the further
condition (Co3) is the one which characterizes topological covering. A subset O
of X is an open set iff it is the union of some sets of the base, i.e., iff O =
∪{Bk ∈ β : k ∈ K ⊆ J }. The collection of all open sets induced from the base
β will be denoted by Oβ(X) and it is easy to prove that it satisfies the required
conditions (PO1a), (POO2), and (PO3), for a topology of open sets.

Now we can apply the results of Proposition 53 for defining the interior of any
subset A of X. As expected the following result holds.

Proposition 55 Let a concrete universe X be equipped with a topological covering
(i.e., a base for a topology) β with induced family of open sets Oβ(X). If for any
subset A of X one defines the subset

I (A) := ∪ {O ∈ Oβ(X) : O ⊆ A
} = ∪{B ∈ β : B ⊆ A} (22)

then the mapping I : P(X) → P(X) A → I (A) is a Kuratowski interior
operation.

8.2 Kuratowski Interior and Closure Operations on the Lattice
of Fuzzy Sets on a Concrete Universe

Following Zadeh [121], let us recall that in a given universe of points X a fuzzy set
is a mapping f : X→ [0, 1] whose collection will be denoted as F (X) := [0, 1]X.

A particular subset of F (X) := [0, 1]X is the collection of all crisp sets, i.e.,
the two values functions χ : X → {0, 1} whose collection is {0, 1}X. In particular
if for any subset A ∈ P(X) we denote by χA the characteristic function of A

defined for every x ∈ X as χA(x) = 1 if x ∈ A, and = 0 otherwise, we have
that {0, 1}X = {χA : A ∈P(X)}. Two particular crisp sets are 0 := χ∅, defined as
∀x ∈ X,0(x) = 0, and 1 := χX, defined as ∀x ∈ X, 1(x) = 1. In the sequel we are
interested, for every fuzzy set f ∈ F (X) to the following subsets of X called the
certainty-yes, certainty-no, and possibility domains of f , respectively:

A1(f ) := {x ∈ X : f (x) = 1} A0(f ) := {x ∈ X : f (x) = 0} (23a)

Ap(f ) := {x ∈ X : f (x) 
= 0} (23b)
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On F (X) some useful binary operations can be introduced. They are defined for
any pair of fuzzy sets f, g ∈ F (X) and every point of the universe x ∈ X by the
following laws:

(f ∧ g)(x) := min{f (x), g(x)} (24a)

(f ∨ g)(x) := max{f (x), g(x)} (24b)

The useful two unary operations are defined for every f ∈ F (X) and every x ∈ X

by the laws:

f ′(x) := (1− f )(x) and f o(x) = χA1(f )(x) (25)

Now it is easy to prove that

(1) the structure K(F (X)) := 〈F (X),∧,∨, ′, 0, 1
〉

is the Kleene complete
distributive lattice of all fuzzy sets which is not De Morgan since there exists
the genuine (i.e., not crisp) fuzzy set 1/2 ∈ F (X) defined for every x ∈
X by (1/2)(x) := 1

2 for which the Kleene condition holds: (K) ∀f, g ∈
F (X), (f ∧ f ′) ≤ 1/2 ≤ (g ∨ g′). The Kleene complementation is not an
orthocomplementation since the half fuzzy set 1/2 is such that 1/2 ∧ 1/2′ =
1/2 
= 0 and 1/2 ∨ 1/2 = 1/2 
= 1.
This structure was highlighted for the first time by Zadeh in his paper [121],
where however he recognized only the De Morgan properties (dM1) and (dM2)
of the operation ′, but not the validity of (K).

(2) The unary operation o : F (X)→ F (X), f → f o := χA1(f ) is a Kuratowski
interior.
We only prove the condition (I2K), all the other conditions are straightforward
to prove. First of all, let us note that trivially for any pair of subsets A,B ∈
P(X) it is χA ∧ χB = χA∩B . Let f, g ∈ F (X) be two fuzzy sets, then f o ∧
go = χA1(f ) ∧ χA1(g) = χA1(f )∩A1(g). Now, we have to consider (f ∧ g)o =
χA1(f∧g); but x ∈ A1(f ∧ g) iff min{f (x), g(x)} = 1 iff f (x) = 1 and g(x) =
1 iff x ∈ A1(f ) ∩ A1(g). Therefore, (f ∧ g)o = χA1(f∧g) = χA1(f )∩A1(g) =
f o ∧ go.

In this way we have obtained the Kleene distributive complete lattice with Kura-
towski interior operation of all fuzzy sets F(F (X)) := 〈F (X),∧,∨, ′, o, 0, 1

〉
.

Note that the orthogonality relation between pairs of fuzzy sets f, g ∈ F (X) is
the following, where the sum (f + g) of two fuzzy sets is defined as usual ∀x ∈ X,
(f + g)(x) := f (x)+ g(x), which in general is not a fuzzy set:

f ⊥ g iff f ≤ g′ iff (f + g) ∈ F (X). (26)
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From this it follows that the orthogonality between pairs of crisp sets χa, χB ∈
{0, 1}X is the following

χA ⊥ χB iff A ∩ B = ∅. (27)

The closure of any fuzzy set f ∈ F(F (X)) is the crisp set f ∗ := f ′o′ =
χAp(f ) characteristic function of the possibility domain. Of course, the mapping
∗ : F (X)→ F (X), f → f ∗ = χAp(f ) is a Kuratowski closure operation.

The collection of open fuzzy sets with respect to the Kuratowski interior,
O(F (X)) := {f ∈ F (X) : f = f o} = {0, 1}X, is just the set of all crisp sets.
Similarly, the collection of all closed fuzzy sets with respect to the Kuratowski
interior C (F (X)) := {f ∈ F (X) : f = f ∗} = {0, 1}X also in this case is the
set of all crisp sets. Hence, we are in a situation in which the collections of open
and closed elements coincide, O(F (X)) = C (F (X)). Topologically, we have to
do with a family of clopen fuzzy sets simply denoted as E (F (X)) := O(F (X)) =
C (F (X)). The study of Kuratowski lattices whose collections of open and closed
elements coincide will be the argument of the forthcoming section under the name
of Halmos interior–closure lattices.

We conclude this subsection about fuzzy sets depicting the diagram of the rough
approximation map in the case of fuzzy set theory in Fig. 12.

Recalling the definition of exterior as the complement of the closure, we have
that the exterior of a fuzzy f is f∼ = f ∗′ = χA0(f ), i.e., the characteristic function
of the certainty-no (also impossibility) domain of f . Therefore, the corresponding
ortho-rough approximation of the fuzzy set f is depicted by Fig. 13, once taken into
account the orthogonality relationship A1(f ) ∩ A0(f ) = ∅ between the certainty-
yes and the impossibility domains of f .

Owing to the one-to-one and onto correspondence between characteristic func-
tions (crisp sets) from {0, 1}X and subsets from the power set P(X), denoted
as χA ←→ A, one can identify the ortho-rough approximation of a fuzzy set
r⊥(f ) = (χA1(f ), χA0(f )) ∈ E (F (X)) × E (F (X)) and the ortho-pair of subsets
of the universe X, (A1(f ),A0(f )) ∈P(X)×P(X) with A1(f ) ∩ A0(f ) = ∅.

Fig. 12 Rough approximation of the fuzzy set f
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Fig. 13 Ortho-rough approximation of the fuzzy set f

9 The Halmos Closure and Induced Interior Operations

In this section we will investigate a further strengthening of the Kuratowski (and so
also of the Tarski) closure operation according to the following definition.

Definition 56 A Halmos closure operation on a De Morgan lattice Σ is a mapping
∗ : Σ �→ Σ which satisfies the following conditions for arbitrary a, b ∈ Σ:

(C1) a ≤ a∗ (increasing)

(C2K) a∗ ∨ b∗ = (a ∨ b)∗ (additive)

(sC3) a∗ ′ ∗ = a∗ ′ (closure interconnection)

A Halmos closure lattice is any De Morgan lattice equipped with a Halmos closure
operation.

This definition has been introduced by Halmos in [52] (collected in [53]) on the
basis of a Boolean algebra structure as the algebraic formalization of the existential
quantifier, where it is pointed out that “The concept of existential quantifier occurs
implicitly in a brief announcement of some related work of Tarski and Thompson
[109]”. In the context of the abstract approach to roughness theory we prefer to
generalize this structure to the more general case of de Morgan lattices, keeping the
terminology of closure instead of the one of quantifier.

From this definition it seems that the convention adopted before to always assume
the closure of the zero element is not required explicitly. But in the following result
this impression fails to comply with.

Lemma 57 Under conditions (C1) and (sC3) the closure of the zero elements
follows.

[(C1) and (sC3)] $⇒ (C0) 0∗ = 0 (normalized)
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Proof From (C1) applied to the element 1 and the fact that this is the greatest
element of the lattice, we get 1 ≤ 1∗ ≤ 1, i.e., 1∗ = 1. From (sC3) applied to
the element 1 it follows that 1∗′∗ = 1∗′ = 1′. Taking into account Lemma 5, i.e.,
1′ = 0, we obtain 1∗′∗ = 0, and from 1∗ = 1 it follows that 1′∗ = 0 and from 1′ = 0
we conclude that 0∗ = 0. ��

Let us now prove an interesting result which will be useful for the next
proposition.

Lemma 58 Condition (C2K) implies isotonicity of closure operation. Formally:

(C2K) $⇒ (a ≤ b implies a∗ ≤ b∗).

Proof Let a ≤ b, i.e., b = a ∨ b, then b∗ = (a ∨ b)∗ = (C2K) = a∗ ∨ b∗ ≥ a∗. ��
The following result assures that Halmos closure is a Kuratowski closure.

Proposition 59 Let Σ be a De Morgan lattice with an operation ∗ : Σ �→ Σ which
satisfies conditions (C0), (C1), and (C2K). Then the following implication holds:

(sC3) ∀a ∈ Σ, a∗ ′ ∗ = a∗ ′ implies (C3) ∀a ∈ Σ, a∗ = a∗∗

In other words, any Halmos closure operation is a Kuratowski closure operation,
and so a fortiori a Tarski closure operation. That is,

Halmos closure $⇒ Kuratowski closure $⇒ Tarski closure (28)

Proof Applying condition (C1) to the element a∗ we get a∗ ≤ a∗∗. From (C1)
a ≤ a∗ and (sC3) we obtain a ≤ a∗′∗′, which applied to a∗′ leads to a∗′ ≤ a∗′∗′∗′. On
the other hand, from a ≤ a∗′∗′, by Lemma 58 the isotonicity of closure holds, and so
a∗ ≤ a∗′∗′∗ follows. Using the contraposition law of De Morgan complementation
we get a∗′∗′∗′ ≤ a∗′. Therefore, a∗′ = a∗′∗′∗′, i.e., a∗ = a∗′∗′∗ = (a∗′∗′)∗ = (sC3) =
(a∗′′)∗ = a∗∗. ��
Example 60 There are Kuratowski closure which are not Halmos, as shown by the
double Hasse diagrams of Fig. 14. The Hasse diagram at the left side corresponds
to an orthocomplemented lattice which is not distributive ((a ∧ b) ∨ c = c 
= f =
(a ∨ c) ∧ (b ∨ c)). At the right side we have a Kuratowski closure which is not
Halmos (b∗′ = a 
= d = b∗′∗).

Proposition 61 In any De Morgan lattice, under conditions (C1) and (sC3), the
following two are equivalent:

(C2a) a ≤ b implies a∗ ≤ b∗ (isotone)

(C2K) (a ∨ b)∗ = a∗ ∨ b∗ (additive)

Proof That (C2K) implies isotonicity as been proved in Lemma 58.
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1 = 0 1 = 1∗ = e∗

d = c e = b f = a d = d∗ = a∗ e f = f
∗ ∗= b

a = f b = e c = d a b c = c∗

0 = 0∗0 = 1

Fig. 14 At the left side the orthocomplemented not distributive lattice and at the right side the
Kuratowski not Halmos closure

Conversely, let (C1) and (sC3) be true. Then if (C2a) holds from a∗, b∗ ≤ (a ∨
b)∗, by contraposition, (a ∨ b)∗′ ≤ a∗′, b∗′ follows, i.e., (a ∨ b)∗′ is a lower bound
of the pair a∗′, b∗′. Let c be any other lower bound of the same pair: c ≤ a∗′, b∗′;
then from (C2a) it follows c∗ ≤ a∗′∗, b∗′∗ and applying the contraposition law c∗′ ≥
a∗′∗′, b∗′∗′ = (sC3) = a∗, b∗ ≥ a, b, i.e., c∗′ is an upper bound of the pair a, b

from which it follows that a ∨ b ≤ c∗′, which (using isotonicity (C2a)) implies
(a ∨ b)∗ ≤ c∗′∗ and by contraposition c∗′∗′ ≤ (a ∨ b)∗′. From (C1) we get c ≤ c∗ =
(sC3) = c∗′∗′ ≤ (a ∨ b)∗′.

In conclusion, we have obtained that (a∨b)∗′ is a lower bound of the pair a∗′, b∗′;
moreover if c is a generic lower bound of the same pair a∗′, b∗′ the necessarily c ≤
(a∨b)∗′. That is (a∨b)∗′ = a∗′∧b∗′, from which it follows that (a∨b)∗ = (a∗∨b∗),
which is the condition (C2K). ��

Note that if one introduces the dual notion of interior operation ao := a′ ∗ ′ then
the condition (sC3) characterizing Halmos closure as different from Kuratowski (or
Tarski) closure can be equivalently expressed according to the following:

Lemma 62 In a De Morgan lattice equipped with a mapping a→ a∗ and the dual
a → ao := a′∗′, without any required condition on these mappings, the following
statements are mutually equivalent among them:

(sC3) ∀a ∈ Σ, a∗′ = a∗′∗

(sC3a) ∀a ∈ Σ, ao = ao∗

(sC3b) ∀a ∈ Σ, a∗ = a∗o

Proof Indeed, applying (sC3), ∀a ∈ Σ , a∗′ = a∗′∗, to the element a′ we get ∀a ∈
Σ , a′∗′ = a′∗′∗, i.e., ao = ao∗, which is (sC3a). Conversely, applying (sC3a), ∀a ∈
Σ , ao = ao∗, to the element a′ we obtain a′o = a′o∗, from which it follows a′′∗′ =
a′′∗′∗, i.e., a∗′ = a∗′∗, which is (sC3). On the other hand, a∗′ = a∗′∗ iff a∗ = a∗′∗′
iff a∗ = a∗o. ��
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Note that (sC3a) means that in Halmos structures the interior ao of any element
a is closed and (sC3b) that the closure a∗ of any element a is open.

Lemma 63 Under the conditions of Lemma 62 the further equivalence holds:

(sC3b) ∀a ∈ Σ, a∗ = a∗o (mixed interconnection)

(sI3) ∀a ∈ Σ, ao′ = ao′o (interior interconnection)

Proof Indeed, making use of the definition of interior, condition (sC3b) assumes the
form a′o′ = a′o′o, true for any a; hence applying this result to the element a′ we get
ao′ = ao′o. Conversely, from (sI3) ao′ = ao′o, using the definition ao = a′∗′ we get
a′∗′′ = a′∗′′o, i.e., a′∗ = a′∗o. Applying this last result to the element a′ we have that
a∗ = a∗o. ��
Proposition 64 Let H = 〈Σ,∧,∨, ′, ∗, 0, 1

〉
be a Halmos closure lattice. The

interior operator o : Σ → Σ defined by the law ∀a ∈ Σ , ao := a′ ∗ ′ can be
characterized by the following properties

(I1) ao ≤ a (decreasing)

(I2K) ao ∧ bo = (a ∧ b)o (multiplicative)

(sI3) ao′o = ao′ (interior interconnection)

where the dual of condition (sC3), interconnecting closure with De Morgan nega-
tion, has been substituted by the equivalent formulation (sI3), interconnecting inte-
rior with De Morgan negation. The induced structure H � = 〈Σ,∧,∨, ′, o, 0, 1

〉

is a Halmos interior lattice.
Moreover, using the equivalence between (sC3b) and (sC3) stated in Lemma 62

and the implication of Proposition 59, the further implication holds:

(sC3b) ∀a ∈ Σ, a∗ = a∗ o implies (I3) ∀a ∈ Σ, ao = aoo

That is, any Halmos interior operator is a Kuratowski interior operator, and so also
a Tarski interior operator.

Analogously to the closure case expressed by Lemma 57, from (I1) and (sI3) it
is possible to prove that the condition (I0) of normalization, 1 = 1o, holds.

If as usual we denote by C (Σ) (resp., O(Σ)) the collection of all closed (resp.,
open) elements, condition (sC3) can also be expressed saying that for any a ∈ Σ

the element a∗ ′ is closed and condition (sI3) that for any a ∈ Σ the element ao ′ is
open.

Remark 65 Condition (sC3b) can be more economically expressed as

(sC3w) ∀a ∈ Σ, a∗ ≤ a∗ o
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Indeed, condition (I1) applied to the element a∗ leads to ∀a ∈ Σ , a∗ o ≤ a∗.

The following property characterizes De Morgan lattices with Halmos closure
relatively to De Morgan lattices with Kuratowski closure.

Proposition 66 Let Σ be a De Morgan lattice with a topological (i.e., Kuratowski)
closure operation. Then the following are equivalent:

1. the topological closure operation satisfies condition (sC3), i.e., it is Halmos;
2. the collection of closed elements and the collection of open elements coincide:

C (Σ) = O(Σ).

Proof Let (sC3) be true. Then if a ∈ C (Σ) we have that a = a∗ = (sC3b) = a∗o,
i.e., a ∈ O(Σ). On the other hand, if a ∈ O(Σ) then a = ao = (sC3a) = ao∗, i.e.,
a ∈ C (Σ).

Let ∗ be a Kuratowski closure and let C (Σ) = O(Σ). From condition (C3)
of idempotency of Kuratowski closure it follows that a∗ is closed and so, by
hypothesis, it is also open, i.e., a∗ = a∗o, which is condition (sC3b) equivalent
to (sC3). ��
Lemma 67 Let Σ be a Halmos closure lattice. Then, under condition C (Σ) =
O(Σ) we have that the collection of all clopen elements is defined as E (Σ) :=
C (Σ) ∩ O(Σ) = C (Σ) = O(Σ).

Proof Let C (Σ) = O(Σ), then E (Σ) = C (Σ) ∩ O(Σ) = C (Σ) ∩ C (Σ) =
C (Σ) = O(Σ). ��

In the present Halmos case the results about the categorical isomorphism between
closure lattices and upper approximation spaces given by Theorems 26–28 and
the corresponding categorical isomorphism between interior lattices and lower
approximation spaces expressed by Theorem 35 can be formulated in the following
way.

Theorem 68 Any Halmos closure–interior lattice H � = 〈Σ,∗ ,o 〉 consisting of
a De Morgan lattice Σ equipped with a Halmos closure ∗ and induced Halmos
interior o = ′∗′ operations, with set of closed elements C (Σ) and open elements
O(Σ) coinciding between them and forming the set of crisp (clopen) elements
E (Σ) = C (Σ) = O(Σ),

is categorically equivalent

to the abstract approximation space for rough theories H � = 〈Σ,E (Σ), l, u〉
equipped with an upper approximation map u(a) = a∗ and a lower approximation
map l(a) = ao satisfying the further condition that E (Σ) = C (Σ) = O(Σ).

Proof If Σ is a Halmos closure-interior lattice, then by Proposition 59 it is also a
Kuratowski closure-interior lattice, and so a fortiori also a Tarski closure-interior
lattice. Thus from Theorems 26 and 27, the point (1) of the dual Theorem 35, and
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the just proved Proposition 66, we obtain an abstract rough approximation space for
which the sets of upper and lower crisp elements coincide.

Conversely, let us consider a rough approximation space whose set of upper and
lower crisp elements coincide. By Theorem 27 the upper part generates a closure
operator satisfying conditions (C1), (C2), and (C3). In Sect. 3.1 we have seen that
the zero element 0 is open, i.e., 0 ∈ O(Σ), and owing to the condition C (Σ) =
O(Σ) we obtain that 0 ∈ C (Σ), i.e., the condition (C0) of Tarski closure. From the
condition (C3) it follows that for any element a the corresponding closure is closed,
i.e., a∗ ∈ C (Σ), but from the hypothesisC (Σ) = O(Σ) it follows that a∗ ∈ O(Σ),
i.e., a∗o = ao, which is the condition (sC3b) equivalent to (sC3).
Now, condition (C2) is equivalent to the isotonicity (C2a) of Sect. 2 and so, by
Proposition 61 we obtain that also condition (C2K) is verified. ��

Let us recall that in the interpretation of open and closed elements from Σ as
lower and upper crisp approximations, respectively, the elements from E (Σ) are
simultaneously upper and lower crisp, and so they have been defined as exact, or
also tout court crisp.

The rough approximation space equivalent to Halmos closure–interior lattice
according to the just proved Theorem 68 is a particular case of rough approximation
space characterized by the condition that the two families of upper C (Σ) and lower
O(Σ) crisp elements collapse in a unique class E (Σ) of crisp elements.

This is an abstraction, as we will see later in Sects. 16 and 16.1, of the Pawlak
approach to rough set theory based on (complete) information systems generating
partitions of a concrete universe X, introduced in the paper [89]. For this reason, in
order to distinguish this class of rough approximation spaces from the more general
ones characterized by C (Σ) 
= O(Σ) we adopt the terminology to call them as
rough approximation space of type P, where “P” stays for “Pawlak type”.

The rough approximation spaces in which the condition C (Σ) 
= O(Σ) holds,
discussed in Sect. 4, are the abstraction of the situation consisting of the covering of
a concrete universeX generated by an incomplete information system, as introduced
in the papers [122] and [116], and which will be discussed later in Sect. 16.1.

The diagram of Fig. 15 summarizes the rough approximation map in the case of
a Halmos closure space.

Fig. 15 The rough approximation map induced from a Halmos closure characterized by the
condition E (Σ) = C (Σ) = O(Σ)
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This leads to the following characterization of rough approximation spaces
isomorphic to Halmos complete lattices.

(RAS-H) Let Σ be a De Morgan complete lattice equipped with a Halmos closure
u(a) = a∗ and induced Halmos interior l(a) = ao = a′∗′.
Then the Halmos rough approximation space is the structure
〈Σ,E (Σ), r〉 where

(1) Σ is the collection of all approximable elements;
(2–3) E (Σ) = O(Σ) = C (Σ) is the pointless topological complete

lattice of all crisp elements (i.e., clopen elements);
(4) r : Σ → E (Σ) × E (Σ) is the rough approximation map

associating with any approximable element a ∈ Σ the clopen–
clopen crisp pair r(a) = (ao, a∗) = (l(a), u(a)), consisting of
the lower crisp approximation l(a) = ao ∈ E (Σ) defined by
Eq. (14) and the upper crisp approximation u(a) = a∗ ∈ E (Σ)

of a defined by (7), satisfying the meta-theoretical principle
(RMTP) of roughness coherence (RC1), crispness (RC2), and
best approximation (RC3).

9.1 Pre BZ Structures from Halmos Closure Operators

In this subsection we explore another unary operation which can be induced from
any Halmos closure operation whose algebraic behavior shares some aspects of an
algebraic version of intuitionistic (Brouwer) negation. First of all we prove some
preliminary results.

Lemma 69 In a De Morgan lattice structure equipped with a unary operation a→
a∗ on which no property is required to hold, once defined the unary operation a→
a∼ by the condition a∼ := a∗′ (equivalently a∗ = a∼′) the following are equivalent:

(sC3) ∀a ∈ Σ, a∗′∗ = a∗′ (closure interconnection)

(IR) ∀a ∈ Σ, a∼ ′ = a∼∼ (Brouwer interconnection)

Proof Let (sC3b), equivalent by Lemma 62 to (sC3), be true. Then a∼ ′ = a∗ ′ ′ =
a∗ = (sC3b) = a∗ ′∗ ′ = a∼∼, i.e., the interconnection rule (IR) is true.

Let the interconnected rule (IR) be true. If we apply the definition a∗ = a∼′ to
the element a′ we have that a′∗ = a′∼′, from which a′∗′ = a′∼ follows. Using this
equality and (IR) we obtain a∗ = a∼′ = (IR) = a∼′′∼ = a∗′∼ = a∗′∗′, from which
(sC3) follows, a∗′ = a∗′∗. ��
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Proposition 70 The following categorical equivalence holds.

(CB) Let A = 〈Σ,∧,∨, ′, ∗, 0, 1
〉

be a Halmos closure lattice, then introduced
the corresponding exterior operation a∼ = a∗ ′ the following are satisfied for
every pair a, b ∈ Σ:

(B1) a ≤ a∼∼ (weak double negation law)
(B2) a ≤ b implies b∼ ≤ a∼ (B-contraposition law)

Moreover, the further property holds:

(IR) ∀a ∈ Σ, a∼ ′ = a∼∼ (interconnection rule)

That is, the structure A � = 〈Σ,∧,∨, ′, ∼, 0, 1
〉

is a pre Brouwer Zadeh
(BZ) lattice.

(BC) Conversely, if B = 〈Σ,∧,∨, ′,∼ , 0, 1
〉

is a De Morgan lattice equipped
with an exterior operation ∼ satisfying conditions (B1), (B2), and the
interconnection rule (IR), i.e., it is a pre Brouwer Zadeh (BZ) lattice, then
a∗ = a∼ ′ defines a Halmos closure operation and so the structure B	 =〈
Σ,∧,∨, ′, ∗, 0, 1

〉
is a Halmos closure lattice.

(CE) The two structures of Halmos closure lattices and pre BZ lattices are
categorically equivalent. Indeed,

(CE1) if A is a Halmos closure lattice with induced pre BZ lattice A �, then
(A �)	 = A .

(CE2) Conversely, if B is a pre BZ lattice with induced Halmos closure
lattice B	, then (B	)� = B.

Proof First of all, by Lemma 69 conditions (sC3) and (IR) are equivalent without
any requirement on the mapping a → a∼.

Let us now consider a Halmos closure operation a → a∗. Then, defined a∼ =
a∗ ′, one proves the following.

(B1) From (C2) we have a ≤ a∗ = (sC3) = a∗′∗′ = a∼∼.
(B2) According to the closure isotonicity condition (C2a) (which according to

Proposition 61 is equivalent to (C2K)) we have that a ≤ b implies a∗ ≤
b∗, applying to this latter inequality the contraposition law for De Morgan
negation b∗′ ≤ a∗′, i.e., b∼ ≤ a∼.
Conversely, let us consider a De Morgan lattice Σ equipped with a unary
operation ∼ : Σ → Σ satisfying conditions (B1), (B2), and (IR). Then,
defined a∗ = a∼′, one obtains

(C1) a ≤ (B1) ≤ a∼∼ = (IR) = a∼′ = a∗, which is condition (C1).
(C2K) Owing to Proposition 61, in order to prove this condition it is sufficient to

prove that condition (B2) implies the isotonicity of the mapping a → a∗ =
a∼′. Indeed, a ≤ b by (B2) implies b∼ ≤ a∼ which by contraposition
implies a∼′ ≤ b∼′, i.e., a∗ ≤ b∗. ��
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Proposition 71 Let Σ be a lattice equipped with a unary mapping ∼ : Σ → Σ .
Then the following two conditions are equivalent:

(B2) a ≤ b implies b∼ ≤ a∼ (B-contraposition law)

(sB-dM1) (a ∨ b)∼ ≤ a∼ ∧ b∼ (sub B-De Morgan law)

Proof Let (B2) be true. From a, b ≤ a ∨ b it follows that (a ∨ b)∼ ≤ a∼, b∼, i.e.,
(a ∨ b)∼ is a lower bound of the pair a∼, b∼; but a∼ ∧ b∼ is the greatest lower
bound of the same pair and so (a ∨ b)∼ ≤ a∼ ∧ b∼.

Conversely, let (sB-dM1) be true. If a ≤ b, i.e., b = a∨b, then b∼ = (a∨b)∼ ≤
a∼ ∧ b∼ ≤ a∼. ��
Proposition 72 In a lattice equipped with a unary operation ∼ satisfying the only
condition (B1) the following are equivalent:

(B2) a ≤ b implies b∼ ≤ a∼ (B-contraposition law)

(B-dM1) (a ∨ b)∼ = a∼ ∧ b∼ (first B-De Morgan law)

Proof Let (B-dM1) be true. Then (B-dM1) implies (a ∨ b)∼ ≤ a∼ ∧ b∼. But in
Proposition 71 we have already shown that (a ∨ b)∼ ≤ a∼ ∧ b∼ is equivalent to the
B-contraposition condition (B2), without any requirement on ∼.

Let now (B2) be true. From a, b ≤ a ∨ b and (B2) we get (a ∨ b)∼ ≤ a∼, b∼,
that is (a ∨ b)∼ is a lower bound of the pair a∼, b∼. Let us suppose that c is a
generic lower bound of the same pair c ≤ a∼, b∼, then from (B1) and (B2) we get
a, b ≤ a∼∼, b∼∼ ≤ c∼, i.e., c∼ is an upper bound of the pair a, b and so, since a∨b
is the least upper bound of the same pair, we get a ∨ b ≤ c∼, from which always by
(B1) and (B2) c ≤ c∼∼ ≤ (a ∨ b)∼ follows. Therefore, we have sown that (a ∨ b)∼
is the greatest lower bound of the pair a∼, b∼, i.e., (a ∨ b)∼ = a∼ ∧ b∼. ��
Lemma 73 Under conditions (B1) and (B2) the following holds:

∀a, a∼ = a∼∼∼ (29)

corresponding to the fact that “in Heyting’s logic we have a law of triple negation”
[44]. From this result it follows the identity

(B4) 1 = 0∼ (coherence condition)

Moreover, the following implication holds for any element a:

(IR) a∼′ = a∼∼ implies (wIR) a∼ ≤ a′

Lastly, from the only condition (B2) we have that

(wB-dM2) a∼ ∨ b∼ ≤ (a ∧ b)∼
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which can be considered a weak form of the second B-De Morgan law, dual of (B-
dM1).

Proof Condition (B1) applied to the element a∼ leads to the inequality a∼ ≤ a∼∼∼.
On the other hand, applying to (B1), a ≤ a∼∼, condition (B2) we get a∼∼∼ ≤ a∼.

From the condition that 0 is the least element we get 0 ≤ 1∼, from which by (B2)
it follows 1∼∼ ≤ 0∼ and using (B2) we obtain 0∼∼ ≤ 1∼∼∼ = (29) = 1∼, and so
by (B1) applied to the least element 0 we obtain 0 ≤ 0∼∼ ≤ 1∼; if to this result we
apply condition (B2) it follows 1∼∼ ≤ 0∼, but (B1) applied to the greatest element
1 leads to 1 ≤ 1∼∼ ≤ 0∼ ≤ 1, i.e., 1 = 0∼.

From (B1), a ≤ a∼∼, by contraposition we get a∼∼′ ≤ a′, but owing to (IR) we
obtain a∼∼∼ ≤ a′ and using (29) this leads to a∼ ≤ a′.

From a∧ b ≤ a, b, by (B2), we get a∼, b∼ ≤ (a∧ b)∼, i.e., (a∧ b)∼ is an upper
bound of the pair a∼, b∼. But a∼ ∨ b∼ is the least upper bond of the same pair and
so a∼ ∨ b∼ ≤ (a ∧ b)∼. ��
Remark 74 The exterior unary operation a∼ = a∗′, according to Proposition 70,
satisfies the properties (B1) and (B2), algebraic version of a pre Brouwer negation.
This is an algebraic realization of a pre Brouwer negation, which is not Brouwer,
since it lacks the important property of noncontradiction, accepted as true by
intuitionistic logic [57] (see also [17]), formalized as

(B3) ∀a ∈ Σ, a ∧ a∼ = 0.

Hence, the structure
〈
Σ,∧,∨,′ ,∼ , 0, 1

〉
induced from a Halmos closure consists

of a De Morgan lattice equipped with the further pre Brouwer complementation
satisfying the interconnection rule (IR). According to the definition introduced in
[25] this structure has been called pre Brouwer Zadeh (BZ) lattice (also called
minimal Brouwer Zadeh (BZ) lattice).

Using this terminology the results of Proposition 70 can be compacted in the
following categorical isomorphism:

Halmos closure lattice ⇐⇒ pre BZ lattice (30)

An interesting behavior regards the set E (Σ) of all exact (or crisp) elements
of the pre BZ lattice induced from a Halmos closure lattice characterized by the
property that C (Σ) = O(Σ). First of all we prove the following.

Lemma 75 Let
〈
Σ,∧,∨, ′, ∗, 0, 1

〉
and
〈
Σ,∧,∨, ′, ∼, 0, 1

〉
be the two isomorphic

structures of Halmos closure lattice and pre BZ lattice linked by the relationships
a∼ = a∗′ and a∗ = a∼′. Then the following are equivalent for a single element
α ∈ Σ:

(Ex1) α = α∗ ⇐⇒ (Ex2) α = αo ⇐⇒ (Ex3) α = α∼∼.
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Proof (Ex1) $⇒ (Ex2). Let α be an element of Σ such that α = α∗. Since a
Halmos closure lattice is a De Morgan lattice, by Lemma 62 it is true the (sC3b),
∀a ∈ Σ , a∗ = a∗o; then for the particular α it is α = α∗ = α∗o. But from α = α∗ it
follows that αo = α∗o. Therefore, we get α = αo.

(Ex2) $⇒ (Ex1). Let α be an element of Σ such that α = αo. Always by
Lemma 62 it is true the (sC3a), ∀a ∈ Σ , ao = ao∗; then for the particular α it is
α = αo = αo∗. But from α = αo it follows that α∗ = αo∗. Therefore, we get
α = α∗. So we have proved the equivalence “(Ex1)⇐⇒ (Ex2)”.

(Ex3) $⇒ (Ex1). Let α = α∼∼ be true for a fixed α ∈ Σ . Then, from (IR)
∀a ∈ Σ a∼∼ = a∼′, we get α = α∼′ = α∗.

(Ex2) $⇒ (Ex3). Let α = αo be true, then by the just proved equivalence we
have that α = α∗ = α∼′ = (IR) = α∼∼. ��

From this lemma and the fact that Halmos closure lattices are characterized by
the property that, according to Lemma 67, the set of crisp elements satisfies the
equalities E (Σ) = C (Σ) ∩ O(Σ) = C (Σ) = O(Σ), it follows the chain of
identities:

E (Σ) = {e ∈ Σ : e = e∗} = {e ∈ Σ : e = eo} = {e ∈ Σ : e = e∼∼} (31)

Theorem 76 Let BZ = 〈Σ,∧,∨, ′, ∼, 0, 1
〉

be the pre BZ lattice isomorphically
induced from a Halmos closure lattice H = 〈Σ,∧,∨, ′, ∗, 0, 1

〉
, and let us consider

its subset E (Σ). Then,

(1) For every e ∈ E (Σ) it is e′ = e∼, from which it follows that e′ ∈ E (Σ). From
this result we have that the mapping ′e : E (Σ) → E (Σ), e → e′e := e′,
restriction to E (Σ) of the mapping ′ : Σ → Σ , is well defined and satisfies the
two conditions (dM1) and (dM2) of a De Morgan complementation.

(2) E (Σ) is closed with respect to the restriction to it of the binary lattice
operations ∧ and ∨ of Σ , denoted by ∧e and ∨e respectively. Moreover for
any pair of elements e, h ∈ E (Σ) it is e ∧e h = e ∧ h and e ∨e h = e ∨ h,
leading to the result that 〈E (Σ),∧,∨, 0, 1〉 is a bounded lattice.

The subset E (Σ) of Σ is the support of the De Morgan lattice system〈
E (Σ),∧,∨, ′, 0, 1

〉
, where owing to the points (1) and (2) we have used the

simplified notations ∧, ∨, and ′.
Furthermore, the restriction to E (Σ) of both the interior and closure operations

from the Halmos closure lattice H coincide with the identity: ∀e ∈ E (Σ), e∗ = eo =
e, that is ∗ � E (Σ) = o � E (Σ) = id. In other words, they are meaningless.

Proof

(1) Let e ∈ E (Σ), that is, by (31), e = e∼∼. Then, from this we get e′ = (e∼)∼′ =
(IR) = e∼∼∼ = (29) = e∼, that is e′ = e∼. But, always from (29) e∼ =
(e∼)∼∼ and from (31) it follows that e∼ ∈ E (Σ), that is e′ = e∼ ∈ E (Σ).
From the fact that ′e =′� E (Σ) i.e., it is the restriction of ′ to E (Σ), and the fact
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that ′ satisfies the De Morgan conditions (dM1) and (dM2), it follows that also
′e satisfies these two conditions.

(2) Let e, h ∈ E (Σ), i.e., by (31) e∼∼ = e and h∼∼ = h. Then, (e ∨ h)∼∼ =
(IR) = (e ∨ h)∼′ = (B-dM1) = (e∼ ∧ h∼)′ = (dM2) = e∼ ′ ∨ h∼ ′ = (IR) =
e∼∼ ∨h∼∼ = e∨h. Therefore, we have proved the identity (e∨h)∼∼ = e∨h,
and so (e ∨ h) ∈ E (Σ) by (31). This means that a fortiori e ∨e h = e ∨ h.

Let us now consider two elements α, β ∈ E (Σ). Then we have just proved
that α ∨e β = α ∨ β, and so (α ∨e β)

′ = (α ∨ β)′, from which, by (dM2), we
get ∀α, β ∈ E (Σ), (α ∨e β)

′ = α′ ∧ β ′, where α′ ∧ β ′ is the g.l.b. of the pair
α′, β ′ as elements of Σ; in other words, ∀c ∈ Σ s.t. c ≤ α′, β ′ it is c ≤ α′ ∧β ′.
This implies that ∀γ ∈ E (Σ) ⊆ Σ , condition γ ≤ α′, β ′ implies a fortiori that
γ ≤ α′ ∧ β ′, i.e., α′ ∧ β ′ is the g.l.b of the pair α′, β ′ in E (Σ), written as
∀α, β ∈ E (Σ), α′ ∧e β

′ = α′ ∧ β ′. Applying this identity to the two elements
e = α′ and h = β ′ we have e ∧e h = e ∧ h.

Trivially, from (31) ∀e ∈ E (Σ) e∗ = eo = e. ��
Some comments on the condition (B3) “∀a ∈ Σ , a ∧ a∼ = 0”, introduced

in Remark 74, which is not satisfied in a pre BZ lattice. First of all, let us note that
condition (B3), as shown from the following example, is independent from the other
two Brouwer conditions (B1) and (B2). On the other hand both conditions (wIR) and
(IR) are independent from the whole structure of De Morgan lattice equipped with
a Brouwer complementation.

Example 77 The Hasse diagrams of Fig. 16 depict a three elements linear lattice
consisting of the distinct elements {0, d, 1} equipped with a Kleene negation with
half element d (at the left side) and a pre Brouwer complementation (at the right
side). This mapping ∼ satisfies the conditions (B1) and (B2) of a pre Brouwer
complementation, but not (B3) since h ∧ h∼ = 1 ∧ 1∼ = h 
= 0. Also condition
(wIR) is not satisfied since h′ < h∼, and so owing to Lemma 73 also condition (IR)
does not hold; but this can be directly proved since h∼′ < h∼∼.

Note that if one try to define as usual a∗ := a∼′, then one obtains the following
Hasse diagram which has nothing to do with any kind of closure operation:

Fig. 16 A Kleene (and so a
fortiori De Morgan) Brouwer
lattice in which (wIR)
condition is not satisfied

1 = 0

h = h

1 = 0∼ = h∼ = 1∼∼

h = 1∼ = h∼∼ = 0∼∼

0 = 1 0
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1

h = 1

0 = 0 = h

In particular h∗ = h∼′ < h and 1∗ = 1∼′ < 1.

The condition (B3) can be formulated in some equivalent statements according
to the following results.

Lemma 78 In any De Morgan lattice equipped with a generic unary operation
a → a∗, defined the unary operations a → a∼ := a∗′ and a → ao := a′∗′, the
following are equivalent for arbitrary element a:

(C4) a∗ ∨ a′ = 1 (weak De Morgan excluded middle by closure)

(B3) a ∧ a∼ = 0 (Brouwer noncontradiction)

(I4) ao ∧ a′ = 0 (weak De Morgan noncontradiction by interior)

Proof Indeed, a′∨a∗ = 1 iff a∧a∗′ = 0. Applying this latter to a′ we get a′∧a′∗′ =
0 from which a′∧ao = 0 follows. Conversely, a′∧ao = 0 implies a′∧a′∗′ = 0, from
which by (dM1) and (dM2a) a ∨ a′∗ = 1, which applied to a′ leads to a′ ∨ a∗ = 1.

��
Let us stress that the notion of Brouwer Zadeh (BZ) lattice introduced in the

papers [22, 25] (with the application to axiomatic unsharp quantum mechanics in
[23]) is based on a Kleene lattice (Kleene complementation satisfying conditions
(dM1), (dM2), and (K)) equipped with a Brouwer complementation (satisfying
conditions (B1), (B2), and (B3)), with these two complementations related by the
interconnection rule (IR). Inside a BZ lattice the interconnection rule (IR) implies
the weak interconnection rule (wIR).

In this chapter we adopt the weaker convention of defining as BZ lattice
any structure

〈
Σ,∧,∨, ′, ∼, 0, 1

〉
of bounded lattice equipped with a De Morgan

negation ′ (without requiring the Kleene condition (K)) and a full Brouwer
complementation ∼, interconnected by the (IR) rule.

Condition (IR) is independent from all the other axioms defining a BZ lattice
structure as the following example shows.

Example 79 Figure 17 shows the Hasse diagram of a Kleene lattice equipped with a
Brouwer complementation. All the axioms (dM1), (dM2), (K), (B1), (B2), and (B3)
are satisfied but c′∼ = 0 
= 1 = c∼∼. On the other hand the (wIR) is satisfied since
for all elements x 
= 0 it is x∼ = 0 ≤ x ′, whereas 0∼ = 0′.
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Fig. 17 Hasse diagram of a
quasi BZ lattice

1 = 0∼ = 0

a = a = a∼

b = c c = b

0 = 1 = a∼ = b∼
= c∼ = 1∼

Part III: Semantics of Modal Logics

In the introduction to this chapter I discussed the possible “dictionary” relationship
between the language of closure lattices of point (TL) and the language of modal
logic of point (ML), with the analysis of this relationship as the unique interest of
this Chapter. In this Part III we enter in some details about this topic.

Let us start from the De Morgan lattice structure
〈
Σ,∧,∨, ′, 0, 1

〉
where

elements of Σ may be thought of as realizing propositions in the algebraic semantic
model for a set of formulas of some logic [100]—including ‘truth’ and ‘falseness’ (1
and 0)—where the algebraic operations of meet (∧) and join (∨) describe the logical
connectives of AND and OR. The conditions (dM1) and (dM2b) characterizing De
Morgan lattices are the almost minimal in order to furnish the role of negation and
so the De Morgan operation (′) describes the logical connective of a generalized
NOT denoted as ¬(a) = a′.

Moreover, the unary operation of interior o : Σ → Σ will be interpreted as the
algebraic realization of a modal necessity connective, translated by the dictionary in
the formal notation of ν(a) = ao. So Eq. (12) defining closure in terms of interior
and complementation corresponds to the modal connective of possibility denoted
as μ(a) = ¬ν¬(a) = a′o′; this according to the interpretation of “possible=NOT-
necessarily-NOT ” (condition Df♦ in [32, p. 7], that is possibility is definable in
terms of necessity and negation).

Ultimately, the structure
〈
Σ,∧,∨, ′, o, ∗, 0, 1

〉
, in the interpretation (TL) of

lattice with respect to the meet ∧ and join ∨ binary operations, unary operations
of complementation ′, interior o and closure ∗, is “translated” into the structure
〈Σ,∧,∨,¬, ν, μ, 0, 1〉 of the interpretation (ML) of algebraic semantic of some
modal logic system with respect to the binary connectives AND and OR, the unary
connectives of negation ¬, necessity ν and possibility μ. The lattice bounds 0 and
1 corresponds to the “truth” and “falsehood” of the logical environment. More
precisely, an interior lattice IL(Σ) = 〈Σ,∧,∨, ′, o, 0, 1

〉
can be considered as

an algebraic model of a modal logic system AM(Σ) = 〈Σ,∧,∨,¬, ν, 0, 1〉 based
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on a De Morgan lattice (instead of a Boolean lattice [32, p. 212]), with the closure-
possibility induced according to Eq. (12).

In order to have a better understanding of the algebraic realization of the
modal system in terms of interior-necessity operation, let us consider a struc-
ture IM(Σ) = 〈Σ,∧,∨,→,¬, ν, 0, 1〉, which is an interior-necessity lattice
AM(Σ) = 〈Σ,∧,∨,¬, ν, 0, 1〉 equipped with a further binary connective of
implication → assigning to any pair of lattice elements a, b ∈ Σ another lattice
element a→ b ∈ Σ satisfying, according to [54, 55], one of the minimal implicative
conditions, called law of entailment, relating this implication connective to the
partial order relation of the lattice according to the assumption:

(E∗) a → b = 1 iff a ≤ b (32)

The partial order relation ≤ algebraically describes a binary implication relation
and the now introduced condition expresses the fact that “if a proposition a implies
a proposition b, then the conditional proposition a → b is universally true, and
conversely. [. . . ] Here 1 is the lattice unit element, which corresponds to the
universally true proposition” [55].

The validity of (E∗), denoting by ν(a) = ao the modal necessity (interior) of a,
leads to the following property whose proof strongly depends from the assumptions
(I0) and (I1):

ν(a→ b) = 1 iff a ≤ b (33)

Indeed let a ≤ b. Then according to (32) a → b = 1, from which we have ν(a →
b) = ν(1) = (I0) = 1. Conversely, let ν(a → b) = 1. Then, 1 = ν(a → b) ≤
(I1) ≤ a → b ≤ 1, i.e., a → b = 1 which, according to (32), assumes the form
a ≤ b.

10 A Brief Discussion About the Syntactical–Semantical
Dichotomy of Formal Languages

Sometimes it happens that the algebraic realization of a logic by a suitable lattice
structure is identified with the logic itself, without any distinction between the
semantical aspect and the syntactical one.

For instance, in the Birkhoff–von Neumann seminal paper “The Logic of
Quantum Mechanics” of 1936 [9] one can find the statement: “Our main conclusion,
based on admittedly heuristic arguments, is that one can reasonably expect to find
a calculus of propositions [of quantum mechanics] which is formally indistinguish-
able from the calculus of linear subspaces with respect to set products, linear sum,
and orthocomplement–and resembles the usual calculus of propositions with respect
to and, or, and not.”
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After a long silence about this argument, Mackey in a 1957 article [71] says:
“All quantum mechanical systems have [. . . ] the same logic. This logic is the
partially ordered set of all closed subspaces of a separable infinite dimensional
Hilbert space” [my bold]. The first passage from the concrete Hilbert space case to
a lattice abstraction can be found in a 1962 Varadarajan paper: “A partially ordered
orthocomplemented set is called a logic” [111], or in his successive book: “This
leads one to introduce axiomatically a class of partially ordered sets and to study
their properties. We call these systems logics. The basic assumption [is that this
logic] is a lattice under a partial ordering” [112, Chapter VI, p. 105]. We also quote
from a Bugajska and Bugajski paper: “we assume the [quantum] logic to be an
orthomodular complete ortholattice [. . . ]. Let L denote the logic of a given physical
system. The fundamental properties of L are [given by the] Postulate 1.– L is an
orthomodular σ -orthoposet [. . . ] whose extended logic L̃ is a complete, atomic
ortholattice” [12].

We conclude this list of citations with a formally correct sentence from Goldblatt:
“Some physicist maintain that from a quantum-theoretical standpoint, the proposi-
tions pertaining to a physical system exhibit a non-standard logical-structure, and
indeed that their associated algebra is an orthomodular lattice, rather than a Boolean
algebra, as in the case of classical systems. Consequently a new area of logical
investigation has grown up under the name of quantum logic, of which one aspect is
the study of propositional logic characterised by the class of orthomodular lattice”
[49].

This quote implies the correct way of understanding a logic as subdivided into a
syntactic and a semantic part.

Let us take a look at these two aspects briefly. First of all we have a formal
language consisting in a set F of well formed formulae (wffs) constructed in the
usual way on the basis of (1) a set of propositional variables, (2) a set of connectives,
(3) parentheses ( and ). Quoting always from [49]:

(Sin) The syntactical approach examines formal relationships between wffs, and
focuses on the notion of consequence or derivability of formulae.

(Sem) The semantical approach [. . . ] has as its goal the assignment of meanings or
interpretations to wffs, and the setting out of conditions under which a wff is
to be true or false.

10.1 The Syntactical Approach to S4 Modal Logic

Let us start this subsection with a statement of Goldblatt from [49]: “Given a formal
language, an axiom system S can be defined as an ordered pair 〈A,R〉 where A is a
set of wffs of the language, called axioms, and R is a set of rules of inference that
govern operations allowing certain formulae to be derived from others. A wff α is
said to be a theorem of S [. . . ] if there exists in S a proof of α i.e. a finite sequence
of wffs whose last member is α, and such that each member of the sequence is either
an axiom, or derivable from earlier members by one of the rules in R.
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A logic [. . . ] can be tough of as a set L of formulae closed under the application
of certain inferential rules to its members. The members of L are called L -
theorems. [. . . ]. For example, if S = 〈A,R〉 is an axiom system, then an S-logic
can be defined as any set of wffs that includes the axiom set A and is closed under
the rules of R. In general the intersection L s of all S-logics will be an S-logic,
whose members are precisely those wffs for which there are proofs in S. This is
often described by saying that S is an axiomatization of L s, or that L s is generated
by S.”

A complete discussion about this argument can be found in [100]. In this book
the formalized language L of modal logic is defined as follows:

the set of binary connectives contains the disjunction sign ∪, the conjunction sign ∩, and the
implication sign ⇒; the set of unary connectives contains the negation sign − and another
sign denoted by I and called the necessity sign.

[. . . ] if α is a formula in L , then Iα is also a formula in L . The formula Iα should
be read it is necessary that α. Formalized languages L of the type just mentioned will be
called modal languages of the zero order. [. . . ] modal languages L constitute the domain
of definition of a non-classical logic called the modal logic [100, p. 469].

Now we schematize the procedure completely treated in [100, section 7, chap-
ter XI] to describe modal logic as a formalized theory. First of all,
(S) We fix a set A of formulas [i.e., A ⊆ L ] (called the logical axioms of a modal
logic) which can be divided in two parts:

(ML1) the set of axioms whose induced Lindenbaum–Tarski algebra will be the
one of complemented lattice (whose list is of no interest in this general
exposition); and

(ML2) the following set of axioms characterizing modal logic, where α, β are
formulas in L :

(M1) ((Iα ∩ Iβ)⇒ I(α ∩ β),
(M2) (Iα ⇒ α),
(M3) (Iα ⇒ IIα),
(M4) I(α ∪−α).

The admitted rules of inference are the following two [100, p. 470]:

(Rmp)
α, α ⇒ β

β
(modus ponens)

(Rμ)
(α ⇒ β)

(Iα ⇒ Iβ)

Then, putting together two sentences from [100, p. 183] and [100, p. 470]: “For
every set S of formulas in L we define C(S) as the set of all formulas (in L ) which
are derivable from S by the rules of inference Rmp,Rμ and [axioms] in A . The
consequence operation C defined by (S) in L is said to be determined by the rules
of inference Rmp,Rμ and the set A of logical axioms. [. . . ] By definition, the modal
logic [. . . ] assigns, to every modal language L of zero order [. . . ] a consequence



74 G. Cattaneo

operation C in L [i.e., C : L → L ] defined as follows: for any set S of formulas
in that language [L ], the set C(S) [of all consequences] is the least set containing
all formulas in S and all the logical axioms in A just mentioned, and closed under
the rules of inference (Rmp) and (Rμ).”

Summarizing,

The deductive system S = 〈L , C〉 will be called [. . . ] the modal propositional calculus
based on L . Besides the modal propositional [. . . calculus] we shall also examine modal
theories of the zero order T = 〈L , C,A 〉. According to the general definition [. . . ]
formulas in the set C(A ) are called theorems of the theory [100, p. 471].

In this way, “the set of all formulas F in L [. . . ] should now be understood as
an algebra

〈F ,∩,∪,⇒,−, I〉 (34)

with three binary operations∪, ∩, ⇒ and two unary operations−, I [100, p. 471].”

Despite the fact that some of the operations on F are denoted by the same symbols ∩, ∪
used, in general, for lattice operations, the algebra F is not a lattice with respect to ∪ and
∩. For instant, if α and β are two distinct formulas, then (α∪β) and (β∪α) are two distinct
formulas in F . This implies that the operation ∪ does not satisfy the commutative law.
Similarly, the operation ∩ does not satisfy the commutative law in F . Also the associative
laws [. . . ] do not hold in F [100, p. 209].

10.2 From Syntactic to Semantic: The Lindenbaum–Tarski
Algebra Induced by S4 Modal Logic

In particular, if T is a modal theory of the zero [. . . ] order, then the relation ≈, defined in
F as follows:

α ≈ β iff (α ⇒ β) and (β ⇒ α) are theorems in T, (35)

is a congruence with respect to the operations ∪,∩,⇒,−. If α ≈ β, i.e., (α ⇒ β) and
(β ⇒ α) are theorems in T, then also formulas (Iα ⇒ Iβ) and (Iβ ⇒ Iα) are theorems in
T by the rule of inference (Rμ), i.e., Iα ≈ Iβ. This proves that the equivalence relation ≈ is
also a congruence with respect to the operation I, i.e., it is a congruence in the algebra (34).
[. . . ] the set U(T) = F/ ≈ can be conceived as an algebra

〈U(T),∧,∨,→,¬, I〉 (36)

called the algebra of the theory T [. . . ], which is a topological Boolean algebra [100,
p. 471–72].

Without going into excessive technical details, for the knowledge of which we
refer to the Rasiowa Sikorski book, we summarize what is of most interest to us.
Mainly that, once denoted by ‖α‖ the equivalence class containing α, the algebra
U(T) is a Boolean algebra (distributive ortholattice) with respect to the relationships
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defined for any formulas α, β

‖α‖ ∧ ‖β‖ = ‖α ∩ β‖ , ‖α‖ ∨ ‖β‖ = ‖α ∪ β‖ (37a)

‖α‖ → ‖β‖ = ‖α ⇒ β‖ , ¬‖α‖ = ‖−α‖ (37b)

1 = ‖α ∪ −α‖ . (37c)

This Boolean algebra is further equipped with a Kuratowski interior operation I

defined by the equality I ‖α‖ := ‖Iα‖, which satisfies all the properties (I0),
(I1), (I2K), and (I3) of a Kuratowski interior operation on a lattice. This algebraic
structure of Kuratowski interior distributive lattice is called the Lindenbaum-Tarski
algebra generated by the S4 modal theory.

The mapping from the generic algebra 〈F ,∩,∪,⇒,−, I〉 to the topological
Boolean algebra

〈U(T),∧,∨,→,¬, I 〉

vc : F → U(T), a→ vc(a) := ‖a‖

taking into account Eq. (37), is an algebraic homomorphism since

vc(α ∩ β) = ‖α ∩ β‖ = ‖α‖ ∧ ‖β‖ = vc(α) ∧ vc(β)

vc(α ∪ β) = ‖α ∪ β‖ = ‖α‖ ∨ ‖β‖ = vc(α) ∨ vc(β)

vc(α⇒ β) = ‖α ⇒ β‖ = ‖α‖ → ‖β‖ = vc(α)→ vc(β)

vc(−α) = ‖−α‖ = ¬‖α‖ = ¬vc(α)
vc(Iα) = ‖Iα‖ = I ‖α‖ = Ivc(α).

For these algebraic properties of homomorphism the map vc is called the canonical
valuation [100, p. 474].

Let 〈A ,∧,∨,→,¬, I 〉 be an abstract topological Boolean algebra, then a
valuation is any homomorphism v : F → A from the algebra of formulas F
in A . “A valuation is said to be a model for a theory T = 〈L , C,A 〉 provided v is
a model for the set A of axioms of T” [100, p. 474]. Note that at the same page of
[100] one can find the following results:

• If v(α ⇒ β) = 1 (i.e., v(α)→ v(β)=1), then v(α) ≤ v(β) (which is the law of
entailment (E∗)). Hence,

• I (v(α)) ≤ I (v(β)), i.e., v(Iα⇒ Iβ) = 1 (i.e., Iv(α)→ Iv(β) = 1)

This is what is needed for the continuation of the chapter, and so we stop here.
Obviously, since everything has been done in the context of modal logic S4, if
we want to take into account other modal logics such as S5 or non-distributive
situations, it will be enough to change some of the axioms appropriately.
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11 Tarski Interior and Closure Operations as Algebraic
Models of Logical Necessity and Possibility Modal
Connectives

After this discussion about the S4 modal logic based on a formalized language of
the zero order, in this section we treat the pure semantical aspect linked to the Tarski
interior-necessity operation, induced from a Tarski closure-possibility operation as
discussed in Sect. 7. Using the law of entailment (E∗), the properties defining the
Tarski interior-necessity operation ν : Σ → Σ (see Theorem 29 plus condition (I0)
of Sect. 7) can be rewritten in the following way:

(I0-L) ν(1) = 1 (N condition)

(I1-L) ν(a)→ a = 1 (decreasing)

(I2-L) ν(a ∧ b)→ (ν(a)∨ ν(b)) = 1 (sub-multiplicative)

(I3-L) ν(a)→ ν(ν(a)) = 1 (idempotent)

This reformulation of the properties characterizing Tarski interior operation as
modal necessity can be interpreted in the following way (see also [21]).

(MT0) Condition (I0-L), ν(1) = 1, describes the N modal principle according to
[32, p. 20]. But in the form “If a = 1, then ν(a) = 1” it is the version of
the modal rule of inference RN which “means - ν(a) whenever - a” [32,
pp. 14, 15], [46, p. 136].

(MT1) ν(a) → a is universally true, algebraic version of the T modal principle
“if necessary a, then a” [32, p. 6], [46, p. 136], and [100, p. 470 as (M2)].

(MT2) Condition (I2-L) is the algebraic version of the modal M principle [32,
p. 20]. Moreover, the necessity isotonicity condition (I2a), equivalent to
(I2), assumes the form “a→ b = 1 implies ν(a)→ ν(b) = 1”, algebraic
version of the modal rule of inference RM [32, p. 17], in [100, p. 470]
written as (a→b)

(ν(a)→ν(b))
.

(MT3) Condition (I3-L) is the algebraic version of modal principle S4 “whatever
is necessary is necessary necessary” [32, p. 18], [46, p. 137], and [100,
p. 470 as (M3)].

Moreover, from the interpretation of Tarski closure as modal possibility, μ(a) = a∗,
the following can be stated:

(MT4) Condition (Up1) of Theorem 26 (or equivalently condition (C1) of
closure) together with condition (Lo1) of Theorem 35 (or equivalently
condition (I1) of interior) lead to the inequality ν(a) ≤ μ(a) expressed by
(E∗) as ν(a)→ μ(a) = 1, i.e., algebraic version of the modal principle D
“whatever is necessary is possible” [32, p. 10].
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(MT5) Equation (12), written in modal notation as μ(a) = ¬(ν(¬(a))), corre-
sponds to the modal schema (Df�) which “embodies the idea that what is
possible is just what is not–necessary–not” [32, p. 7], [46, p. 134].

We can collect all these considerations in the following statements, which
summarize the main properties of the algebraic model of the modal system induced
from the Tarski interior operation.

• We have considered a not necessarily distributive De Morgan lattice as the most
general algebraic environment in which to develop the theory. This obviously
does not exclude the possibility of considering as starting point of the algebraic
semantic of modal logic a Boolean lattice (classical modal logic) [32, p. 212] or
an orthomodular lattice (quantum modal logic).

• The Tarski interior operation, interpreted as modal necessity, satisfies the proper-
ties of a S4-like modal necessity operation, in the sense that the algebraic versions
of modal principles N, T, M, D (with the modal schema Df�), and the peculiar
modal principle 4, hold.

• Furthermore, particular versions of (I0-L) and (I2-L) realize the modal inference
rules RN and RM, respectively.

• The term “S4-like” rises from the fact that the inequality “∀a, b ∈ Σ, ν(a) ∧
ν(b) ≤ ν(a ∧ b)” (dual of the condition (I2), “∀a, b ∈ Σ, ν(a ∧ b) ≤ ν(a) ∧
ν(b)”), expressed according to (E∗) as the tautology (ν(a)∧ν(b))→ ν(a∧b) =
1, algebraic version of the modal C principle [32, p. 20], in [100, p. 470 denoted
as (M1)], in general does not hold, as the counter-Example 80 shows.
This modal C principle characterizes the algebraic approach to modal logic
induced from Kuratowski interior operation interpreted as modal necessity, as
we will see in Sect. 12.

Example 80 Let us consider the following Hasse diagram depicting a Tarski closure
lattice.

1 = 0 = 1∗ = d∗

d = a

b = c = b∗ c = b = c∗

a = d = a∗

0 = 1 = 0∗
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The Hasse diagram depicting the corresponding Tarski interior lattice is the
following one:

1 = 0 = 1o

d = a = do

b = c = bo c = b = co

a = d

0 = 1 = 0o = a0

In this last ∃b, c ∈ Σ s.t. (b ∧ c)o = a0 = 0 < a = bo ∧ co, i.e., ∃b, c ∈ Σ

s.t. ν(b ∧ c) < ν(b) ∧ ν(c), which is a negation of modal C principle.

We have the following result which turns out to be very useful in the sequel.

Proposition 81 The universally true proposition

(K) ν(a → b)→ (ν(a)→ ν(b)) = 1, (38)

is the algebraic formulation of modal principle K expressing, according to [32, p. 7],
[46, p. 136]. The distributivity of necessity with respect to the conditional implies
the isotonicity condition of necessity “a ≤ b implies ν(a) ≤ ν(b)”, equivalent to
the universally true proposition:

(M) ν(a ∧ b)→ (ν(a) ∧ ν(b)) = 1 (39)

that corresponds to the algebraic version of modal principle M (see the above point
(MT2)).

Proof Let a ≤ b, then in particular, according to (33), one has that ν(a → b) = 1.
But according to (32) the hypothesis (K), ν(a → b) → (ν(a) → ν(b)) = 1, can
be formulated as ν(a → b) ≤ (ν(a) → ν(b)) and so from the previous result it
follows that 1 = ν(a → b) ≤ (ν(a)→ ν(b)) ≤ 1, i.e., ν(a)→ ν(b) = 1 and so,
according to (32), ν(a) ≤ ν(b).
On the other hand, we have seen that isotonicity of necessity is equivalent to the
sub-multiplicative (I2), ν(a ∧ b) ≤ ν(a) ∧ ν(b), which according to (32), can be
expressed as the tautology ν(a ∧ b)→ ν(a) ∧ ν(b) = 1. ��

As second result we have.
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Proposition 82 The isotonicity condition of necessity “a ≤ b implies ν(a) ≤ ν(b)”
implies

[ν(a→ b) = 1 and ν(a) = 1] implies ν(b) = 1

Proof From (33), the condition [ν(a → b) = 1 and ν(a) = 1] can be written as
[a ≤ b and ν(a) = 1], which, by the isotonicity of necessity, leads to 1 = ν(a) ≤
ν(b) ≤ 1, i.e., ν(b) = 1. ��

Thus, we can further on add the following comments to the previous summary
about the S4-like modal system.

• According to Proposition 81 in the algebraic model based on a Tarski interior
operation the modal principle M is a necessary condition for the validity of the K
principle, but the unique minimal condition (E∗) about the implication connective
is not sufficient to assure the validity of (K), differently from the standard S4
Lewis modal system which requires that this principle holds (see [32, p. 131]).

• In order to have a satisfaction of this modal K principle it is necessary to consider
the stronger notion of Kuratowski interior with an implication connective which
satisfies two further conditions besides (E∗), as we discuss in Sect. 12, obtaining
in this case a real (also if non Boolean) S4 Lewis modal system.

12 Algebraic Model of Modal Logic Induced by Kuratowski
Closure–Interior Operations

Since Kuratowski interior operation is a fortiori Tarski interior operation, the
considerations made in Sect. 11 on the Tarski lattice structure as algebraic model
of the S4-like modal algebra, characterized by the validity of modal principles N, T,
M, and 4, can be applied also to the Kuratowski case.

In this algebraic approach to modal logic, denoting as usual the necessity operator
as interior, ν(a) = ao, the translate conditions (I0-L), (I1-L), and (I3-L) continue
to be true whereas the characterizing Kuratowski multiplicative condition (I2K) can
be split into the algebraic formulation of two modal principles:

(I2M) ν(a ∧ b) ≤ ν(a) ∧ ν(b) (M modal principle)

(I2C) ν(a) ∧ ν(b) ≤ ν(a ∧ b) (C modal principle)

or, using (E∗), to the two modal formulations which can be found in [32, p. 20]
(whereas the second one is the axiom (M1) of the modal logic described in [100,
p. 470]):

ν(a ∧ b)→ (ν(a) ∧ ν(b)) = 1 (M modal principle)

(ν(a) ∧ ν(b))→ ν(a ∧ b) = 1 (C modal principle)



80 G. Cattaneo

Also in the Kuratowski case, from the general condition ∀a ∈ Σ , ν(a) ≤ a it is
possible to single out the collection of all open elements o ∈ Σ s.t. ν(o) = o,
denoted as O(Σ).

Let us recall that Proposition 81 proves that

K modal principle ⇒ M modal principle

In order to get some other result of this kind one must consider the Kuratowski con-
text with an implication connective satisfying some further conditions, according to
the following result.

Proposition 83 Let us consider a Kuratowski interior operator on the lattice Σ .
If the implication connective →, besides condition (E∗) satisfies the two further
properties:

(1) the modus ponens propositional tautology [100, p. 163] (and see also [54]):

(MP) ∀a, b ∈ Σ, (a ∧ (a→ b))→ b = 1

(2) the strict pseudo-complement condition [54]:

(sPC) ∀a, b ∈ Σ, ∀o ∈ O(Σ), a ∧ o ≤ b implies o ≤ a→ b ,

then the C modal principle implies the K modal principle.

Proof The modus ponens condition (MP), using (E∗), can be formulated as a∧(a→
b) ≤ b, from which by the necessity isotonicity (I2a) we get ν(a∧(a→ b)) ≤ ν(b),
and from the modal C principle (I2C) it follows that ν(a) ∧ ν(a → b) ≤ ν(b).
Since according to the idempotent condition (I3) the element ν(a → b) is open,
applying to the just proved inequality the strict pseudo-complement condition (sPC)
we obtain ν(a → b) ≤ ν(a) → ν(b), i.e., the K modal principle ν(a → b) →
(ν(a)→ ν(b)) = 1. ��

Thus, we have shown that in a structure
〈
Σ,∧,∨,→, ¬(= ′), ν(= o), 0, 1

〉

consisting of a Kuratowski necessity-interior lattice equipped with an implication
binary connective→ satisfying conditions (E∗), (MP), and (sPC), one has that

C modal principle⇒ K modal principle⇒ M modal principle

Note that from modus ponens condition (a∧(a→ b) ≤ b) and the strict pseudo-
complement condition (sPC) in the case of a Kuratowski necessity-interior complete
lattice the following holds (see (S4) from [54]):

a→ b = sup{o ∈ O(Σ) : a ∧ o ≤ b} (40)

The following is an interesting result which will be applied in the sequel.
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Proposition 84 Let Σ be a Kuratowski necessity-interior lattice and let→m be an
implication connective such that ∀a, b ∈ Σ , a→m b ∈ O(Σ). Then, the condition

(sPCL) ∀a, b ∈ Σ, ∀o ∈ O(Σ), a ∧ o ≤ b iff o ≤ a→m b

is equivalent to the fulfillment of the two conditions

(sPC) ∀a, b ∈ Σ, ∀o ∈ O(Σ), a ∧ o ≤ b implies o ≤ a →m b,
(MP) ∀a, b ∈ Σ , a ∧ (a →m b) ≤ b.

Moreover, condition (sPCL) implies the law of entailment (E∗).
In the complete lattice case Eq. (40) assumes the form

a→m b = max{o ∈ O(Σ) : a ∧ o ≤ b} (41)

Proof Let (sPCL) be true, then condition (sPC) is trivially verified. On the other
hand putting o = a →m b ∈ O(Σ), from o = a →m b ≤ a →m b and the
implication⇐ of (sPCL) it follows that a ∧ (a→m b) ≤ b, i.e., condition (MP).

Conversely, let (sPC) and (MP) be true. If o ≤ a →m b is true, then a ∧ o ≤
a ∧ (a →m b) ≤ (MP) ≤ b. That is, we have proved that o ≤ a →m b implies
a ∧ o ≤ b. This result together with (sPC) lead to (sPCL).

The (sPCL) condition under the choice o = 1 ∈ O(Σ) leads to E∗. ��
Corollary 85 Let →m be an implication connective such that ∀a, b ∈ Σ , a →m

b ∈ O(Σ). Then, (sPCL) implies (sPC), (MP), and E∗.
Furthermore, the only condition (sPCL) implies the modal principle C, which in

turn implies the modal principles K and M.

The above notion (sPC) of strict pseudo-complementation takes the term “strict”
from the name assigned by Hardegree to the open element of a Kuratowski lattice:
“a lattice element o is strict (open) just in case o = ν(o)” [54]. For this reason it is
said that condition (sPC) pertains to S4 strict conditional since ν is an S4 necessity
operator (interior operator) and this condition holds for all “strict” elements o =
ν(o).

The reason of this weakening of the usual notion of pseudo-complementation
(see [100, p. 123]), in the present context denoted by→c and formally defined by

(PC) ∀a, b, x ∈ Σ, a ∧ x ≤ b implies x ≤ a →c b,

rises from the fact that under the classical implicative conditions (MP) and (PC)
the (not necessarily Kuratowski) lattice Σ is automatically distributive (see [54]),
against our point of view of describing also some non-distributive situation.

Let us recall that if Σ is a complete lattice, then quoting [54]: “the conditional
operation [i.e.,→c] is uniquely specified by conditions (MP) and (PC) so that

(IC) a→c b = sup{x ∈ Σ : a ∧ x ≤ b}.”
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With some slight changes to the proof of Proposition 84, the following result can
be proved.

Proposition 86 Let Σ be a Kuratowski necessity-interior lattice and let →c be a
generic implication connective. Then, the condition

(PCL) ∀a, b, x ∈ Σ, a ∧ x ≤ b iff x ≤ a→c b

is equivalent to the fulfillment of the two conditions

(PC) ∀a, b, x ∈ Σ , a ∧ c ≤ b implies c ≤ a→c b,
(MP) ∀a, b ∈ Σ , a ∧ (a →c b) ≤ b.

Moreover, condition (PCL) implies the law of entailment (E∗).
In the complete lattice case the (IC) assumes the form

(ICL) a→c b = max{x ∈ Σ : a ∧ x ≤ b}

The following result will be useful in the proof of the next proposition.

Lemma 87 Let ν : Σ → Σ be a Kuratowski necessity operation with correspond-
ing collection of open elements O(Σ). Then

∀a ∈ Σ, ∀o ∈ O(Σ), o ≤ a iff o ≤ ν(a) (42)

Proof Let o ≤ a, then by isotonicity ν(o) ≤ ν(a), but from the hypothesis that o is
open o = ν(o) ≤ ν(a).

Conversely, let o ≤ ν(a), then for decreasing it follows that o ≤ ν(a) ≤ a. ��
Proposition 88 Let us consider a Kuratowski necessity-interior lattice equipped
with an implication connective→ satisfying conditions (E∗), (MP), and (sPCL). If
one introduces the unary operator∼: Σ → Σ associating with any element a ∈ Σ

the open element in O(Σ) defined as

∼ a := ν(a→ 0) (43)

then the following hold for arbitrary a, b ∈ Σ:

(B2) a ≤ b implies ∼ b ≤∼ a (contraposition law),
(B3) a∧ ∼ a = 0 (noncontradiction law).

In the particular case of an implication connective→m such that ∀a, b ∈ Σ it is
a→m b ∈ O(Σ) the unique condition (sPCL) implies (B2) and (B3).

Proof (For the proof we adapt to the present situation, with some light modifica-
tions, the proof of [100, p. 62].)
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(B3) Condition (sPCL) under the particular case of b = 0 assumes the form: ∀a ∈
Σ , ∀o ∈ O(Σ), o ≤ a → 0 iff a ∧ o = 0. From the fact that ν(a → 0) is
open and that ∼ a = ν(a→ 0) ≤ a→ 0 it follows that a∧ ∼ a = 0.

(B2) Let a ≤ b; then from the just proved (B1) b∧ ∼ b = 0 we get that a fortiori
a∧ ∼ b = 0, with ∼ b open, and so from (sPC), ∼ b ≤ a → 0, and from
Lemma 87 we obtain ∼ b ≤ ν(a → 0) =∼ a. ��

Proposition 89 Under the condition of Proposition 88, the restriction of Eq. (43)
to the lattice O(Σ) of open elements generates a mapping ∼: O(Σ) → O(Σ)

satisfying for arbitrary o, h ∈ O(Σ) the following properties:

(B1) o ≤ ∼∼ o (weak double negation law),
(B2) o ≤ h implies ∼ h ≤∼ o (contraposition law),
(B3) o∧ ∼ o = 0 (noncontradiction law).

Proof In Proposition 43 we have stressed that∼ a, as interior of an element from Σ ,
is open and so the restriction to O(Σ) of the mapping∼ produces a correspondence
from O(Σ) into O(Σ).

Since (B2) and (B3) are true for any pair a, b ∈ Σ , then they are also true for
arbitrary pairs o, h ∈ O(Σ) ⊆ Σ . Let us consider (B1); from (B3) we have that
for any o ∈ O(Σ) it is ∼ o ∧ o = 0, with o open, and so by (sPC) this implies
o ≤∼ o → 0, which by isotonicity implies o = ν(o) ≤ ν(∼ o → 0) =∼ (∼ o),
i.e., the (BO1). ��

That is the unary operation ∼: O(Σ) → O(Σ) satisfies the properties of an
intuitionistic (or Brouwer (B)) negation as discussed by Heyting in [58], where,
after claimed that “the main differences between classical and intuitionistic logics
are in the properties of the negation”, the intuitionistic negation is characterized by
the properties whose algebraic versions are just conditions (B1), (B2), and (B3)
(see [17], also for a deep discussion about the algebraic model of this kind of
negation). Furthermore in [58] it is explicitly asserted that “in the theory of negation
the principle of excluded middle o∨ ∼ o = 1 fails”, and that “we have meet many
examples for which [∼∼o ≤ o] fails”, and that “∼ (a ∧ b) =∼ a∨ ∼ b cannot be
asserted”.
Let us note that under condition (B1), the contraposition law (B2) is equivalent to
the so-called intuitionistic De Morgan law “∼ (o ∨ h) =∼ o∧ ∼ h.”

12.1 The Classical Case of Necessity–Interior Kuratowski
Operation on Boolean Algebras

We discuss now the case in which the lattice Σ is distributive and the De Morgan
negation ¬ = ′ on Σ satisfies the complementation conditions ∀a ∈ Σ , a ∧ ¬a =
0 (noncontradiction law) and a ∨ ¬a = 1 (excluded middle law), i.e., ¬ is an
orthocomplementation and thus Σ is a Boolean algebra.
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Proposition 90 If Σ is a Boolean algebra the classical implication connective

a→c b = ¬a ∨ b (44)

satisfies

(a) the pseudo-complement condition (PCL):
∀a, b, x ∈ Σ , a ∧ x ≤ b iff x ≤ a →c b [100, p. 56],

(b) the law of entailment (E∗): a →c b = 1 iff a ≤ b.
(c) the modus ponens condition (MP): ∀a, b ∈ Σ , a ∨ (a →c b) ≤ b.

According to (E∗) condition (MP) can be written as (a ∨ (a →c b))→c b = 1.
This universally valid sentence usually is also written as

a, a→c b

b

Proof Let us prove (PCL), then by Proposition 86 both conditions (MP) and (E∗)
are true.
Let a ∧ x ≤ b for arbitrary a, b, x ∈ Σ . Then x = (excluded middle) = x ∧ (¬a ∨
a) = (distributivity) = (x∧¬a)∨(x∧a) ≤ ¬a∨b, i.e., x ≤ (a →c b). Conversely,
if x ≤ ¬a ∨ b then a ∧ x ≤ a ∧ (¬a ∨ b) = (distributivity) = (a ∧¬a)∨ (a∧ b) =
(noncontradiction)= a ∧ b ≤ b. ��
Proposition 91 Under the condition that 〈Σ,∧,∨, ¬, ν, 0, 1〉 is a Boolean alge-
bra equipped with a Kuratowski necessity-interior operator ν = o one has that the
so-called necessity implication connective

a →m b := ν(¬a ∨ b) = ν(a→c b) (45)

satisfies (sPCL), (MP), and (E∗) conditions.

Proof (sPCL) Let a ∧ o ≤ b for a, b ∈ Σ and o ∈ O(Σ). In Proposition 90
we have shown that for any triple a, b, x ∈ Σ condition (PCL) holds: a ∧ x ≤ b

iff x ≤ (a →c b), which in the case of x = o ∈ O(Σ) leads to a ∧ o ≤ b iff
o ≤ (a →c b), and applying Lemma 87 to this result we obtain a ∧ o ≤ b iff
o ≤ ν(a→c b).

Conditions (MP) and (E∗) are true owing to Corollary 85. ��
Corollary 92 Let

〈
Σ,∧,∨, ′, ν, 0, 1

〉
be a Boolean algebra with Kuratowski inter-

ior-necessity operator ν. According to Proposition 91 if we introduce the implication
binary connective (45), a →m b := ν(¬a ∨ b) = ν(a →c b), satisfying conditions
(E∗), (MP), and (sPC), then we have a “spurious” quasi Brouwer–Zadeh (BZ)
situation in the sense that:

(BZ1) the mapping ¬ : O(Σ) → C (Σ) is the algebraic version of a De Morgan
negation transforming open elements in closed ones,
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(BZ2) the mapping ∼: O(Σ) → O(Σ), defined for any open element o ∈ O(Σ)

according to

∼ o = o→m 0 = ν(¬(o))

is the algebraic version of a Brouwer (intuitionistic) negation transforming
open elements in open elements,

(BZ3) the two negations are linked by the further condition:

(wIC) ∼ o ≤ ¬o (weak interconnection law)

Proof Let us note that ∼ o = ν(¬(o)) = o′ o = o′′∗ ′ = o∗ ′ = ¬(μ(o)) i.e., this
Brouwer (intuitionistic) negation is the impossibility = Not possibility. On the other
hand,∼ o = ν(¬(o)) ≤ (I1) ≤ ¬o. ��
Summarizing the results about the abstract Boolean algebra case,

• if the structure 〈Σ,∧,∨, ¬, 0, 1〉 is a Boolean algebra, interpreting the Kura-
towski interior operator on Σ as algebraic version of the modal necessity
operator, ν(a) = ao, and introducing the necessity implication operator a →m

b = ν(¬a ∨ b), one has that according to Proposition 91 the conditions (E∗),
(MP), and (sPC), are true.

• Then, we have an algebraic model of a modal system which satisfies the
principles N, T, C (from which it follows K and M), and 4, i.e., we have the
Lewis system S4 which in [32, p. 131] is denoted as KT4.

• In relation to this topic, it is interesting to quote the following Monteiro statement
from [78]: “The propositional modal calculus S4 has been considered for the first
time by Lewis and Langford [69]. A first geometric interpretation of this calculus
was indicated by Tang [106]. McKinsey [72], under the influence of the ideas of
Tarski, has highlighted the algebraic characteristics of this calculation [. . . ]. We
will call Lewis algebra a couple formed by a Boolean algebra and a [closure
operation C (in our notation μ)]. This notion has been introduced by Terasaka
[110], and successively by McKinsey and Tarski [73], as a generalization of
the notion of topological space, which can also be called: topological Boolean
algebra or closure algebra.
We can say that from the algebraic point of view the propositional calculus S4
is a free Lewis algebra. If p represents a proposition, then Cp [in our notation
μ(p)] represents the proposition p is possible.
Starting from the C [in our notation μ] operator we can define the operator I

[in our notation ν] through the formula Ia = −C − a [in our notation ν(a) =
¬μ¬(a)], which verifies the conditions [(I0)–(I3)]. If p represents a proposition,
then Ip [in our notation ν(p)] represents the proposition p is necessary.”
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12.2 The Classical Case of Necessity–Interior Kuratowski
Operation on the Power Set of a Universe

In the concrete Boolean algebra 〈P(X),∩,∪,−,∅,X〉 based on the power set of
the universe X, the algebraic version of the implication connective corresponding to
Eq. (44) is

A→c B := −A ∪ B.

which, according to Proposition 90, satisfies the pseudo-complement condition
(PCL), the modus ponens condition (MP), and the law of entailment (E∗).

If, as discussed in Sect. 8.1, the Boolean algebra P(X) is equipped with an
interior operation I : P(X) → P(X) with associated collection of open sets
O(X), then according to Eq. (45) we can introduce on P(X) another binary
operation, interpreted as necessity implication connective, defined for any pair of
subsets A,B ∈P(X) as the open set:

A→m B = I (−A ∪ B) ∈ O(X) (46)

This implication connective, in agreement with the results just proved for the
abstract case and according to the discussion of the example in [100, p. 59]

(IC-1) “For any subsets A,B,C of X, the inclusion A ∩ C ⊆ B holds iff C ⊆
−A ∪ B.”

(IC-2) If O ∈ O(X) is open, the inclusion A ∩O ⊆ B holds iff O ⊆ −A ∪ B.
(IC-3) Since the power set P(X) is a complete lattice, “for any A,B ∈ O(X),

the set A →m B = I (−A ∪ B) is the greatest open set O satisfying the
condition A ∩ (A→m B) ⊆ B” [100, p. 59, equation (3)].

So according to [100, p. 125] A →m B is the pseudo-complement of A relative to
B. The pseudo-complement of A, denoted as ∼ A, is obtained by Eq. (46) setting
B = ∅:

∼ A := A→m ∅ = I (−A) ∈ O(X) (47)

Since the lattice P(X) contains the empty set as zero element, according to [100,
p. 58], one has the pseudo-Boolean algebra

〈P(X),∩,∪,→m,∼〉 .

As shown in [100, p. 61–62], and always according to the general theory now
developed, the pseudo-complementation mapping ∼ O(X) → O(X), A →∼ A,
is also a Brouwer complementation in the sense that the following properties
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algebraically characterizing the intuitionistic (Brouwer) negation are satisfied:

(B1-X) A ⊆∼∼ A (weak double negation)

(B2-X) A ⊆ B implies ∼ B ⊆∼ A (contraposition)

(B3-X) A∩ ∼ A = ∅ (noncontradiction)

In agreement with [78] we can quote the following statement which in the
original version involves the possibility-closure operation but which we “translate”
into a necessity-interior statement: “if (X,O(X)) is a topological space and I :
P(X) → P(X) the correspondent Kuratowski interior operator; then, the system
(P(X), I) is a (complete) Lewis algebra. All the subalgebras of (P(X), I) will
be called topological Lewis algebras. The question then arises of knowing whether
all the abstract Lewis algebras are isomorphic to a topological Lewis algebra. The
answer to this question is positive [73].”

12.2.1 A Remark About Fuzzy Sets

Let us consider the Kleene distributive (complete) lattice
〈
F (X),∧,∨, ′, 0, 1

〉
of

all the fuzzy sets on the universe X, equipped with the Kuratowski interior o and
closure ∗ operations introduced in Sect. 8.2. The corresponding to (46) algebraic
version of the necessity implication connective f →m g is the crisp set defined
for every x ∈ X by (f →m g)(x) := [(f ′ ∨ g)o](x) = χA1(f ′∨g)(x), where
A1(f

′ ∨ g) = A0(f ) ∪A1(g). Extensively,

∀x ∈ X, (f →m g)(x) :=
{

1 if f (x) = 0 or g(x) = 1

0 otherwise
(48)

In this fuzzy set case in general the condition f →m g = 1 is not equivalent to
f ≤ g, that is the law of entailment (E∗) is not true for F (X).

Example 93 Let us consider the universe X = R. The two fuzzy sets f =
(1/2)χ[0,1)+ χ[1,2] + (1/2)χ(2,3] and g = χ[0,2] + (1/2)χ(2,3] are such that f ≤ g,
but f →m g = χ(−∞,2] + χ[3,∞) 
= 1.

12.3 Algebraic Model of Modal Logic Induced by Halmos
Closure-Interior Operations

Let us recall that taking into account the equivalences proved in Lemma 62
between conditions (sC3) and (sC3b), and adopting the (ML) notations μ(a) = a∗,
ν(a) = ao, the statement of Proposition 66 can be restated in the following manner
translating it in the ν notation:
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Proposition 94 An operation ν : Σ → Σ on a De Morgan lattice
〈
Σ,∧,∨, ′, 0, 1

〉

is a Halmos interior operations iff the following two conditions hold:

(H1) the operation ν is a Kuratowski interior operation, i.e., for arbitrary a, b ∈ Σ ,

(I0) ν(1) = 1 (normalization)

(I1) ν(a) ≤ a (decreasing)

(I2) ν(a) ∧ ν(b) = ν(a ∧ b) (multiplicative)

(I3w) ν(a) ≤ ν(ν(a)) (weak idempotent)

(H2) the further condition making a link between closure and interior holds:

(sC3b) ∀a ∈ Σ , μ(a) = ν(μ(a)).

From the algebraic model of modal logic the schema (sC3b) corresponds to the
modal 5 principle. Quoting [32, p. 6]: “The import of 5 is that what is possible [μ(a)]
is necessarily possible: if possibly a, then necessarily possibly a” [μ(a) = ν(μ(a))].

From the point of view of algebraic model of modal logic we have the
following:

• The Halmos interior lattice 〈Σ,∧,∨, −, ν = o, 0, 1〉 is an algebraic model of a
S5-like modal system, based on a De Morgan lattice instead of on a Boolean one,
in the sense that modal principles N, T, M, C, and 5, are satisfied.

• Indeed, as seen in Sect. 12 relatively to Kuratowski necessity-interior operation,
(I0) realizes the modal principle N; (I1) is the algebraic version of modal T
principle; (I2) of modal M and C principles; and (sC3b), in the equivalent
weak formulation (sC3w) of Sect. 9, i.e., a∗ ≤ a∗o, is the algebraic realization
of modal 5 principle, written in modal notation as μ(a) ≤ ν(μ(a)), i.e.,
μ(a) → ν(μ(a)) = 1 “what is possible is necessarily possible: if possibly a,
then necessarily possibly a” [32, p. 6].

Note that modal principle 5 implies the two modal principles B and 4.

• Indeed, from principle 5, μ(a) ≤ ν(μ(a)), making use of closure increasing (C1)
a ≤ μ(a), it follows the modal B principle: a ≤ ν(μ(a)), i.e., a→ ν(μ(a)) = 1
[32, p. 16].

Furthermore, as shown in Proposition 64, modal principle 5 (formalized as (sC3b))
implies modal principle 4:

• ν(a) ≤ ν(ν(a)), i.e., ν(a)→ ν(ν(a)) = 1 [32, p. 18].
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13 Kripke–Style Models of Tarski, Kuratowski, and Halmos
Closure Distributive Lattices

In the present Part III let us consider a particular structure 〈Σ,∧,∨, −, 0, 1〉 of
which I propose two interpretations.

(Syn) The first is a syntactic interpretation as described in Sect. 10.1 in which
Σ is the collection of all well formed formulae (wffs) (also sentences)
constructed in a usual way: (1) a suitable collection of propositional
variables, (2) the connectives∧, ∨, and− of conjunction AND, disjunction
OR, and negation NOT, respectively, as signs used to build these sentences.
The constant signs 0 and 1 describing truth and falseness. In this sense, the
structure under examination, now referred as L(Σ) = 〈Σ,∧,∨, −, 0, 1〉,
is a formalized language of the zero order or a formalized language of a
propositional calculus [100, pp. 166–167].

(Sem) The second is a semantical interpretation in which the structure, now
denoted as
B(Σ) = 〈Σ,∧,∨, −, 0, 1〉, is a Boolean algebra considered as the
algebraic realization of propositions of a hidden formalized language,
which is neglected during the development of semantics. Of course, in
this semantical algebraic context signs ∧, ∨, and −, correspond to the
distributive lattice operations of meet, join, and orthocomplementation,
respectively. 0 and 1 being the least and the greatest elements of the lattice.
In other words, as explained in Sect. 11 for a more general lattice structure,
the Boolean algebra B(Σ) may be thought of as algebraic realization
of logical sentences, with 0 representing falseness and 1 truth, and the
involved operations considered as algebraic realizations of the logical
connectives AND (∧), OR (∨), and NOT (for−).

Each of us can select appropriately among these “syntactic-semantic” alternatives
as per their cultural interests in relation to these topics. To stay on the most general
situation, we will use the symbol U(Σ) to denote the only two possible alternatives
U(Σ) = L(Σ) and U(Σ) =B(Σ).

Let us now considered a nonempty set X with associated its power set P(X)

formed by all its possible subsets. The structure P(X) = 〈P(X),∩,∪, c,∅,X〉,
with ∩ and ∪ the set theoretical union and intersection operations, respectively,
and c the set theoretical complement (∀A ∈ P(X), Ac = X \ A), is a standard
realization of a Boolean algebra, which as lattice is complete and atomic whose
atoms are the singletons {x} of X.

From a pure semantical point of view, and generalizing what seen in Sect. 8.1,
points of X are interpreted as possible worlds or also semantical states, applied to
the particular Kuratowski case, argument which will be treated in Sect. 15.3.

Given the abstract Boolean structure U(Σ), both in syntactic and semantic
interpretation, borrowing a usual terminology, we will define as
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• Boolean frame the pair F(X) = (X,P(X)) formed by a set of X points, or
worlds or states, and the Boolean algebra over P(X).

• A model based on F(X), is an ordered triple M = 〈X,P(X), v〉, where the
mapping v : Σ → P(X) is a world valuation assigning to any propositional
variable a ∈ Σ the subset of possible worlds v(a) ∈ P(X) under the condition
of being a homomorphism.
The subset v(a) ∈ P(X) is interpreted as the collection of all possible world
(states) in which the proposition a is true.

The homomorphism properties of the valuation v from a given model M are
obviously the following:
Let v(a) = A and v(b) = B, then

(Hom-1) v(a∧b) = v(a)∩v(b) = A∩B, the statement a AND b is true in all the
semantical states in which both the statements a and b are simultaneously
true.

(Hom-2) v(a ∨ b) = v(a)∪ v(b) = A∪B, the statement a OR b is true in all the
semantical states in which at least one of two the statements either a or b
is true.

(Hom-3) v(¬a) = v(a)c = (A)c, the statement ¬a is true in all state in which a

is not true.

Let us recall that, as seen in Eq. (44) of Proposition 90, in any abstract Boolean
algebra it is possible to introduce the classical implication connective a →c b :=
¬a ∨ b, whose induced valuation v according to the rules just introduced is the
following:

v(a →c b) = v(¬a ∨ b) = v(a)c ∪ v(b) = Ac ∪ B (49)

Of course, fixed a Boolean frame F(X) = (X,P(X)) based on the universe X of
possible worlds, there are as many modelsMj as there are possible homomorphisms
vj : Σ → P(X). Let us denote by hom(Σ,P(X)) the collection of all such
homomorphisms, the subscript j is an index belonging to the index set J in such a
way that hom(Σ,P(X)) := {vj : j ∈ J

}
.

Following Goldblatt [49], once fixed a model M = 〈X,P(X), v〉, we can
formalized this interpretation introducing the notation

M |$x a iff x ∈ v(a) in the model M . (50)

In this way, “read a is true (holds) at x in M for M |$x a” [49]. With respect to this
notation the above homomorphism conditions (Hom-1)–(Hom-3) assume the form:

(Hom-M1) M |$x (a ∧ b) iff M |$x a and M |$x b,

(Hom-M2) M |$x (a ∨ b) iff M |$x a or M |$x b,

(Hom-M3) M |$x ¬a iff M �x a.
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At this point the problem is to give an extension of the above valuation mappings
when the Boolean algebra Σ is equipped with a further unitary operation of
closure-possibility ∗ : Σ → Σ (with μ = ∗), and related unary operator of interior-
necessity o : Σ → Σ (with ν = o), in the Tarski, Kuratowski, and Halmos three
cases. This means to assign to any proposition a ∈ Σ the corresponding valuations
v(a∗) ∈ P(X) and v(ao) ∈ P(X) as two suitable subsets A∗ and Ao of the
universe X, respectively.

But before entering into this problem let us discuss about three possible
approaches.

(KS) The first approach is the orthodox Kripke semantic assignment of subsets
of possible worlds by suitable binary relations R, usually called of acces-
sibility. Without entering into excessive details, which can be found in the
textbooks of modal logic (such as [32] or [46] for an introductory approach,
and [10]), we only say that the Kripke semantic defines the necessity modal
operator ν, “by the condition that ν(a) is true at x in M only when a is true
in all worlds accessible to x in this model”: M �x ν(a) iff M �x ′ a for
all x ′ s.t. x ′Rx. Analogously, “possibility μ(a) is true at x in M when a is
true in some world accessible to x in this model”: M �x ν(a) iff M �x ′ a
for some x ′ s.t. x ′Rx.
Clearly these semantical assignments depend on the properties of the
relation R, which in the standard model M = 〈X,R, v〉 can be serial,
reflexive, symmetric, transitive, Euclidean, [32, p. 80] and some appropriate
combinations of them for giving for instance similarity, quasi-ordering,
equivalence relations [32, p. 83].
At any rate, the valuation in the semantical approach to modal logics by
binary relations R is a mapping

vR : Σ →P(X). (51)

(OS) The second approach is the semantical analysis based on orthoframes
defined as pairs F = 〈X,⊥〉 consisting of a nonempty set X of pos-
sible worlds, also called the carrier of F, and an orthogonality relation
⊥ on X, i.e., ⊥⊆ X × X is irreflexive and symmetric [49]. In this
approach to any subset A of X it is associated its orthocomplement A⊥ :=
{x ∈ X : ∀a ∈ A, x ⊥ a}. Then, it turns out that in general A ⊆ A⊥⊥ and
so we can single out the ⊥-closed subsets as those subsets C for which
C = C⊥⊥. Note that in [50] ⊥-closed subsets are called ⊥-regular.
Following Goldblatt [49], “M = 〈X,⊥, v〉 is an orthomodel on the
frame F = 〈X,⊥〉 iff v is a function assigning to each proposition a a
⊥-closed subset v(a) of X.” Once introduced the notation of Eq. (50), condi-
tions (Hom-M1)–(Hom-M3) are assumed as characterizing this semantical
approach.
A valuation, as a mapping v : Σ → P(X) assigning to any a ∈ Σ a
subset of possible worlds v(a) ∈ P(X) in which a is true, seems in some
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way to mimic a behavior similar to that of the orthodox Kripke semantics
seen in the previous point. Also if the name of Kripke semantic cannot be
correctly assign to it, we can at least assume that it gives rise to a Kripke-
style semantic. This name is what we have adopted in a paper of ours [26].
The ⊥-semantic is the argument of study of Sect. 14, where a generic
irreflexive and symmetric relation is called a preclusion relation, denoted
by #, in order to distinguish this general case from the real orthogonality
relation ⊥ on vector spaces.
At any rate, the valuation in the semantical approach to modal logics by
orthogonality relation ⊥ is a mapping

v⊥ : Σ →P(X). (52)

(CS) The last approach will be developed in Sect. 15 and will concern the
generation of interior operations by appropriate coverings of the universe,
with consequent induced closure operations. In particular we will consider
generic coverings, topological coverings, and partition coverings as genera-
tors of Tarski, Kuratowski and Halmos interior operations. As usual, interior
operations in the (TL) approach described in the introduction can be also
interpreted as modal necessity connectives of the (ML), approach producing
S4-like, S4, and S5 algebraic models of modal logics.
The valuations in the semantical approach to modal logics by coverings can
be summarized in a mapping, where γ denotes a generic covering of X,

vγ : Σ →P(X). (53)

All these three approaches present the common behavior of having an evaluation
mapping v that assigns to each proposition a a subset v(a) ∈P(X) of the universe
of possible worlds X. This fact could lead to an arbitrary conclusion to say that we
are always in the presence of a Kripke semantical approach. A second, more correct,
possibility consists in attributing the term of Kripke semantics only to the first (KS)
approach and in any case believe that in the other two cases (OS) and (CS) we are
dealing with a Kripke-like, Kripke-style, similar Kripke, semantics.

14 Binary Relation of Preclusion on the Universe X

and Induced Quantum Logic

In the present section we introduce a procedure in order to generate interior–closure
pairs of subsets from the power set P(X) of the universe X based on a preclusion,
also discernibility (i.e., irreflexive and symmetric) binary relation on X, according
to the (OS) approach outlined in Sect. 13.
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Let us recall the formalisation of a similarity relation S ⊆ X × X according to
the two following conditions:

(Sim1) ∀x ∈ X, (x, x) ∈ S (reflexive)

(Sim2) ∀x, y ∈ X, (x, y)S implies (y, x)S (symmetric)

A preclusion relation # can always be obtained as negation of a similarity relation
S according to x#y iff Not(x, y)S. Since the reflexivity condition (Sim1) of S can be
expressed as the condition “x = y implies (x, y)S”, the negation of this condition is
“x#y, implies x 
= y.” Hence, the preclusion (discernibility) relation is formalized
by the two conditions

(Pre1) ∀x, y ∈ X, x#y implies x 
= y (irreflexive)

(Pre2) ∀x, y ∈ X, x#y implies y#x (symmetric)

A preclusion space is any pair (X, #). Then, for any subset A of X we can define
its preclusion complement (or #-complement), as the subset:

A# := {x ∈ X : ∀a ∈ A, x#a} (54)

So an element of the universe belongs to A# iff it is distinguishable from all the
elements of A.

Example 95 In any universe X the equality between elements, a = b, is trivially
an equivalence relation, stronger version of a similarity relation. The induced
preclusion relation is the relation of being different, a 
= b. For any subset
A ∈P(X) the corresponding 
=-complement is just the set theoretical complement
of A: A 
= = X \ A = Ac. Hence, trivially the family of 
=-closed subset
(i.e., those subsets which coincide with their bi 
=-complement), C (X, 
=) :={
M ∈P(X) : M = (M 
=) 
= = (Mc)c

}
coincides with the power set P(X), and so

this family turns out to be a Boolean lattice with respect to the usual set theoretical
operations of intersection, union, and complementation.

The preclusion relation of Example 95 can be applied to any universe X, in
particular to the universe R

2 consisting of all the pairs of real numbers. But in this
last case there is another interesting preclusion relation.

Example 96 The set R2 can be equipped with a structure of real linear space with
respect to the real linear combinations of its elements, in this case called vectors.
Precisely,

(H1) if x = (x1, x2), y = (y1, y2) ∈ R
2 and if α, β ∈ R then αx + βy := (αx1 +

βy1, αx2 + βy2) ∈ R
2. This linear space is two dimensional since the pair of

vectors u1 := (1, 0) ∈ R
2 and u2 := (0, 1) ∈ R

2 are linearly independent
(�α ∈ R, s.t. u1 = αu2) and such that any other vector of (x1, x2) ∈ R

2 can
be expressed as their linear combination: (x1, x2) = x1u1 + x2u2.
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(H2) But the real linear space R
2 can be equipped also with a scalar product

associating with any pair of its vectors x = (x1, x2), y = (y1, y2) ∈ R
2

the real number 〈x|y〉 := x1y1 + x2y2 ∈ R.
(H3) The norm or modulus of a vector x = (x1, x2) is then defined as ‖x‖ :=√〈x|x〉 =

√
(x1)2 + (x2)2.

In this inner product space (also Hilbert space) one can introduce the orthogo-
nality binary relation:

Let x, y ∈ R
2, then x ⊥ y iff 〈x|y〉 = 0. (55)

Then it is a standard result of any inner product space, not only of R2, the so-
called Schwarz inequality | 〈x|y〉 | ≤ ‖x‖ · ‖y‖ (see [56, p. 9]). Since the inner
product furnishes a real number, once denoted R

2
0 := R

2 \ {(0, 0)} we can derive
the inequalities

∀x, y ∈ R
2
0, −1 ≤ 〈x|y〉

‖x‖ · ‖y‖ ≤ 1 (56)

and so there exists an unique angle ϑ ∈ [0, π) between the two vectors s.t. 〈x|y〉 =
‖x‖ · ‖y‖ · cosϑ . Hence, the orthogonality relation expressed by Eq. (55) assumes
the following intuitive form:

∀x, y ∈ R
2
0, x ⊥ y iff ϑ = π (57)

For any subset A from R
2 if we denote by A⊥ := {x ∈ R

2 : ∀a ∈ A, x ⊥ a
}

its
⊥-complement, we can have the two cases:

(R2-a) If A = {a1, a2} consists of two collinear vectors, ∃λ ∈ R s.t. a2 = λa1, then
A⊥ = {x ∈ R

2 : x ⊥ a1
}
, i.e., it is the one dimensional subspace consisting

of all the vectors orthogonal to a1 (or equivalently to a2). For instance if
A = {(1, 1), (3, 3)} then
A⊥ = {(x1, x2) ∈ R

2 : x2 = −x1
}

which is the straight line (one dimen-
sional subspace), forming the diagonal of the II-IV quadrant of R

2. This
result can be extended to any family A consisting of vectors that all lie on
the same straight line.

(R2-b) If A = {a1, a2} is formed by two vectors which are not collinear, �λ ∈ R

s.t. a2 = λa1, then A⊥ = R
2. This result can be extended to any family of

vectors in which at least two of them are not collinear.

Summarizing, for any subset of vectors A from R
2 its ortho-complement A⊥ can

only be of two types, either a one-dimensional subspace or the whole R
2 which in

any case is also a subspace. However, in any case we have a subspace of R2 even if
A is any generic subset.

The Two Dimensional Complex Case All these results can be extended to the two
dimensional complex Hilbert space C2 of vectors (x1, x2) where in this case the two
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components x1, x2 ∈ C are complex numbers. Of course the linear combinations of
point (H1) involve complex numbers α, β ∈ C. The scalar product of point (H2) is
now 〈x|y〉 = x1 y1 + x2 y2 ∈ C, where for a generic complex number z = a + ib it
is z = a − ib.

The Schwarz inequality is always true, but we can only say that the quantity
〈x|y〉
‖x‖·‖y‖ ∈ C is a complex number which belongs to the closed circle of center 0 =
(0, 0) and radius 1. In any case the relation of orthogonality x ⊥ y iff 〈x|y〉 = 0 is
always extended to the present complex case.

Proposition 97 Let (X, #) be a preclusion space and let us consider the structure

P(X, #) =
〈
P(X),∩,∪, c, #,∅,X

〉

on the power set P(X) of the universe X. Then, the following hold.

(1) The sub-structure B(X, #) = 〈P(X),∩,∪,∅,X〉 is a distributive, atomic
complete lattice with respect to the set theoretical intersection ∩ and union
∩, bounded by the least element ∅ and the greatest element X. The partial
order relation induced from this lattice structure is the standard set theoretical
inclusion ⊆ and the atoms are the singletons {x} for any x ∈ X.

(2) The unary operation c : P(X) → P(X) associating with any subset A ∈
P(X) its set theoretical complement Ac = X \ A ∈ P(X) is a standard
orthocomplementation: (C1) A = Acc (involution); (C2) A ⊆ B implies Bc ⊆
Ac (contraposition); (C3) A ∩ AC = ∅ (noncontradiction) and A ∪ Ac = X

(excluded middle).
(3) The unary operation # : P(X) → P(X) associating with any subset A ∈

P(X) the preclusion complement A# ∈ P(X) defined according to Eq. (54)
is a Brouwer orthocomplementation:

(B1) A ⊆ A## (weak involution);
(B2) A ⊆ B implies B# ⊆ A# (#-contraposition);
(B3) A ∩A# = ∅ (noncontradiction).

In general A ∪A# 
= X (the excluded middle is not verified).
(4) The two complementations are linked by the weak interconnection rule:

(wIR) ∀A ∈P(X), A# ⊆ Ac.

The condition (wIR) is equivalent to the following

(wIR-a) ∀A ∈P(X), A## ⊆ A#c.

Proof The first two points (1) and (2) are trivial consequence of standard set theory.
Let us consider the other two points.

(B1) ∀α ∈ A# (by (54)) is such that ∀a ∈ A, α#a, that is ∀a ∈ A

is such that ∀α ∈ A#, α#a, which can be written as ∀a ∈ A is such that
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a ∈ {x ∈ X : ∀α ∈ A#, α#x
} = (A#)#, i.e., A ⊆ A##. (B2) Let A ⊆ B, then

B# = {x ∈ X : ∀b ∈ B, b#x} ⊆ {x ∈ X : ∀a ∈ A, a#x} = A#.
(B3) ⇐⇒ (wIR). Let x ∈ A# then (by Eq. (54)) ∀a ∈ A, a#x; but from (Pre1)
∀a ∈ A, a 
= x, that is x ∈ Ac. So we have proved that A# ⊆ Ac which is trivially
equivalent to A# ∩ A = ∅.

As to the condition (wIR-a), let (wIR) be true. Then applying the element A# to
it we get A## ⊆ A#c. Conversely, let (wIR-a) be true. Then, A# = A### ⊆ A##c. But
from condition (B1) A ⊆ A## we get, using the contraposition law, A##c ⊆ Ac. ��
Remark 98 In the proof of this proposition it is evident that the two conditions (B3)
of Brouwer noncontradiction and (wIR) of weak interconnection rule are equivalent,
and so the condition (B3) turns out to be redundant, and therefore eliminable from
the formulation of point (3) of Proposition 97. However we have kept this condition
explicit in order to underline its importance in characterizing the Brouwer negation.

Take into account that the weak interconnection rule (wIR) cannot be substitute
by the stronger interconnection rule (IR) A∼∼ = A∼′, which in general does not
hold in the preclusion context.

Example 99 For instance in Example 96 of the two dimensional vector space R
2,

we have seen that the subset A = {(1, 1), (3, 3)} has the ⊥-complement A⊥ =
{(x1, x2) = x2 = −x1}. From this result it follows that A⊥⊥ = {(y1, y2) : y1 = y2},
with A ⊆ A⊥⊥, but A⊥c = R

2 \ A⊥ which is trivially different from A⊥⊥, with
A⊥⊥ ⊆ A⊥c.

Let us stress that the above concrete lattice structure
〈
P(X),∩,∪, c, #,∅,X〉

is a model of the abstract lattice structure
〈
Σ,∧,∨, ′, ∼, 0, 1

〉
according to the

realizations depicted by the correspondences of Table 1.
The abstract lattice structure

〈
Σ,∧,∨, ′, ∼, 0, 1

〉
is called quasi Brouwer

Boolean (BB) lattice (also algebra) iff it is a distributive lattice Σ equipped with
an orthocomplementation ′ (i.e., a Boolean algebra according to Sect. 2.2) and a
Brouwer negation ∼, with these two linked by the weak interconnection rule (wIR)
∀a ∈ Σ , a∼ ≤ a′, or the equivalent (wIR-a) ∀a ∈ Σ , a∼∼ ≤ a∼ ′.

Coming back to the concrete quasi BB algebra induced from a preclusion space
one can introduce the following.

Table 1 Concrete realization
on P(X) of the abstract quasi
BB lattice Σ

Abstract Lattice Concrete Universe X

a ∈ Σ $⇒ A ∈P(X)

a ≤ b $⇒ A ⊆ B

a ∧ b $⇒ A ∩ B

a ∨ b $⇒ A ∪ B

a′ $⇒ Ac = X \ A
a∼ $⇒ A#

0 and 1 $⇒ ∅ and X
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Definition 100 Let P(X, #) = 〈P(X),∩,∪, c, #,∅,X〉 be the quasi BB lattice
induced from the preclusion space (X, #). Then making use of the two negations c

and # another unusual negation can be introduced � : P(X) → P(X) associating
with any subset A the subset A� := Ac#c satisfying the properties:

(AB1) A�� ⊆ A (weak anti-involution);
(AB2) A ⊆ B implies B� ⊆ A� (AB contraposition);
(AB3) A ∪ A� = X (excluded middle).

Since this negation is dual with respect to the Brouwer complementation, it is called
anti-Brouwer complementation.

Remark 101 Let us consider the abstract context of quasi BB lattice〈
Σ,∧,∨, ′, ∼, 0, 1

〉
, where we can also use the notations of the algebraic

realization of a logic ¬a = a′ and∼ a = a∼ for denoting the Boolean negation and
the Brouwer negation, respectively. Recalling that in the general BZ context (see
Sect. 9.1) the Brouwer negation, defined as a∼ := a∗′, i.e., ∼ a = ¬μ(A), is the
impossibility connective as negation of the possibility μ(a) = a∗.

In this algebraic context the dual of the Brouwer negation, called in [25] anti-
Brouwer negation, is denoted by �a = a� and formally defined as �a := ¬ ∼
¬a. From the fact that, according to the point (3) of Proposition 97, the Brouwer
negation satisfies the abstract version of conditions (B1)–(B3), it follows that the
anti-Brouwer negation satisfies the abstract versions of conditions (AB1)–(AB3).

Recall that taking into account the above Table 1 we have the following
realizations ¬a ⇒ Ac and ∼ a ⇒ A#, and so �a = ¬ ∼ ¬a ⇒ A� = Ac#c,
the latter according to Definition 100.

Note that McKinsey and Tarski in [74] called with the name of Brouwer
complementation a complementation satisfying the abstract versions of conditions
(AB1)–(AB3), denoting it with the symbol .a, in other words it is .a = �a. This
leads to a terminological confusion of calling in [74] as Brouwer complementation
what in [25] has been called anti-Brouwer complementation.

On the other hand, Monteiro in [81] defines /a = μ(−a) and .a = −/−a. So
in this Monteiro notation /a = μ(−a) = −(−μ) − a = − ∼ −a = �a. In other
words, in the Monteiro approach it was denoted by / what in [74] was denoted by
.a, increasing also in this case the formal confusion.

We can prove the following results.

Proposition 102 In any concrete quasi BB lattice P(X, #) one has the following
relationships relating the three complementations.

∀A ∈P(X), A# ⊆ Ac ⊆ A� (58)

Further the following chain of inclusions holds.

∀A ∈P(X), Ac# ⊆ A�� ⊆ A ⊆ A## ⊆ A#c (59)

where in particular A�� = Ac##c.
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Proof The inclusion ∀A ∈ P(X), A# ⊆ Ac is nothing else than the weak
interconnection rule (wIR); applying this inequality to the element Ac we get
Ac# ⊆ Acc = A from which, by contraposition, Ac ⊆ Ac#c = A�.

The inclusion ∀A ∈P(X), A ⊆ A## is condition (B1) of the Brouwer negation.
Applying A# to the (wIR) ∀A ∈P(X), A# ⊆ Ac we get A## ⊆ A#c.

Applying Ac to (B1) ∀A ∈ P(X), A ⊆ A## we obtain Ac ⊆ Ac##, and by
contraposition Ac##c ⊆ A, but Ac##c = Ac#cc#c = A��. Lastly, we have proved that
∀A ∈ P(X), A## ⊆ A#c; applying Ac to this result we get Ac## ⊆ Ac#c and by
contraposition we have that Ac# ⊆ Ac##c = Ac#cc#c = A��. ��
Proposition 103 Let P(X, #) = 〈P(X), ∩, ∪, c, #, ∅, X〉 be the quasi BB lattice
structure based on the power set of X and generated by the preclusion space (X, #).
Then,

(1) the mapping

I :P(X)→P(X), A→ I (A) := Ac##c

is a Tarski interior operator, i.e.,

(I0) X = I (X) (normalized = Nprinciple)

(I1) I (A) ⊆ A (decreasing = Tprinciple)

(I2) I (A ∩ B) ⊆ I (A) ∩ I (B) (submultiplicative = Mprinciple)

(I3) I (A) = I (I (A)) (idempotent = S4principle)

(2) the mapping

C :P(X)→P(X), A→ C(A) := A##

is a Tarski closure operator, i.e.,

(C0) ∅ = C(∅) (normalized = Pprinciple)

(C1) A ⊆ C(A) (increasing = Tprinciple)

(C2) C(A) ∪ C(B) ⊆ C(A ∪ B) (subadditive = Mprinciple)

(C3) C(A) = C(C(A)) (idempotent = S4principle)

According to the general discussion of Sect. 11, this Tarski interior (resp.,
closure) operation can be interpreted as algebraic realization of an S4-like
modal necessity (resp., possibility), in this case defined on a Boolean algebra,
satisfying the algebraic versions of the modal principles N (resp., P), T, M,
and the peculiar 4, but not the Lewis required modal principle K. Setting
−A = X \A = Ac the two expected relationship hold:

(Df�) I (A) = −C − (A) and (Df♦) C(A) = −I − (A).
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Proof We prove the point (2) regarding the closure operation; the proof of the point
(1) is obtained by duality.

(C0) For every subset A ∈ P(X), ∅ ⊆ A# and by weak involution (B1) and #-
contraposition (B2) one gets A ⊆ A## ⊆ ∅#, which in the particular case of
A = X leads to X ⊆ X## ⊆ ∅# ⊆ X, i.e., ∅# = X. On the other hand,
for every subset A ∈ P(X), Ac ⊆ X and by the (wIR) ∅ ⊆ X# ⊆ Xc ⊆
Acc = A , which in the particular case of A = ∅ leads to X# = ∅. Hence,
∅ = (X)# = (∅#)#, i.e., condition (C0) of closure.

(C1) Condition (B1) in point (3) of Proposition 97, A ⊆ A##, under the definition
C(A) := A## assumes the form A ⊆ C(A) of condition (C1) of closure.

(C2) Applying to the inclusion A ⊆ B the condition (B2) of the #-contraposition
law we obtain B# ⊆ A#, and with another application of the #-contraposition
we get A## ⊆ B##, i.e., the condition (C2) of closure C(A) ⊆ C(B).

(C3) Finally applying Eq. (29) of Lemma 73, C(C(A)) = (A###)# = (A#)# =
C(A), which is the idempotence condition (C3) of closure. ��

From the fact that according to (I1) one has that I (A) ⊆ A, as usual it is possible
to single out the collection of all #-open sets defined as follows:

O(X, #) := {O ⊆ X : O = I (O) = Oc##c}.

According to the general results of Proposition 46 the set O(X, #) is a pre topology
of open sets, in the sense that it contains the empty set and the whole universe and is
closed with respect to arbitrary set theoretical union (but it is not closed with respect
to finite intersection).

Since according to (C1) one has that A ⊆ C(A), it is possible to introduce the
collection of all #-closed sets defined as follows:

C (X, #) := {K ⊆ X : C = C(K) = K##}.

According to the general results of Proposition 45 the set C (X, #) is a pre topology
of closed sets, in the sense that it contains the empty set and the whole universe and
is closed with respect to arbitrary set theoretical intersection (but it is not closed
with respect to finite union).

The collection of all #-clopen sets is then:

CO(X, #) = C (X, #) ∩ O(X, #).

Both the empty set ∅ and the whole universe X are #-clopen. In the sequel, if there
is no confusion, we simply speak of open, closed, and clopen sets instead of #-open,
#-closed, and #-clopen sets.

In Proposition 97 we have seen that the weak interconnection rule (wIR-a), ∀A ∈
P(X), A## ⊆ A#c, characterizes the quasi BB lattice structure P(X, #) based on
the power set P(X). Moreover Example 99 shows that the (strong) interconnection
rule (IR), ∀A ∈P(X), A## = A#c, in general does not hold in this kind of structure.
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This makes it possible to introduce another form of interior-necessity (resp., closure-
possibility) operation different from the one dealt with in Proposition 103 according
to the following results.

Proposition 104 Let B(X, #) = 〈P(X), ∩, ∪, c, #, ∅, X〉 be the quasi BB lattice
structure based on the power set of X and generated by the preclusion space (X, #).
Then, introduced the mappings

ν :P(X)→ O(X), ν(A) := Ac# (B-necessity) (60a)

μ :P(X)→ C (X), μ(A) := A#c (B-possibility) (60b)

with ν(A) = −μ− (A) and μ(A) = −ν − (A), the following hold:

(BIC0) ν(X) = X, μ(∅) = ∅ (N – P principles)

(BIC1) ν(A) ⊆ A ⊆ μ(A) (T and D principles)

(BI2) ν(A ∩ B) = ν(A) ∩ ν(B) (M and C principles for necessity)

(BC2) μ(A ∪ B) = μ(A) ∪ μ(B) (M and C principles for possibility)

(BCI3) A ⊆ ν(μ(A)), μ(ν(A)) ⊆ A (B principles)

The B-operation ν (resp., B-operationμ) can be interpreted as algebraic realization
of a B-like modal necessity (resp., possibility) defined on a Boolean algebra,
satisfying the algebraic versions of the modal principles N (resp., P), T, M and C,
and the peculiar B, but not the principle K.

In general, ν and μ do not satisfy the following principles:

ν(ν(A)) = ν(A), μ(μ(A)) = μA (4 principles)

ν(A) = ν(μ(A)), μ(A) = μ(ν(a)) (5 principles)

Example 105 If # = {(a, b), (b, a)} is a preclusion relation on the universe X =
{a, b, c, h, k}, then

{a}# = {b}, {b}# = {a}, ∅# = X, and A = ∅ in all other cases.

From μ({a}) = {a}#c = {b}c = {a, c, h, k} we get μ(μ({a})) = μ({a, c, h, k}) =
{a, c, h, k}#c = ∅c = X. Therefore, μ(μ({a})) = X 
= {a, c, h, k} = μ({a}).

On the other hand, ν(μ({a})) = ν({a, c, h, k}) = {a, c, h, k}c# = {b}# = {a}.
But ν({a}) = {a}c# = {b, c, h, k}# = ∅. Therefore, ν(μ({a})) = {a} 
= ∅ = ν({a}).

Made these considerations on the algebraic realizations of some modal logics
(S4 and B), looking at the right side of Eq. (59) we have two possible candidates
for defining a closure (upper rough approximation) of the set A, denoting them as
A� := A## and A∗ := A#c, with induced interiors (lower rough approximations) of
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A, denoted as A� := Ac�c = A�� and Ao := Ac∗c = Ac#. With this notations the
above chain of inclusions of (59) assumes now the form:

Ao ⊆ A� ⊆ A ⊆ A� ⊆ A∗ (61)

This allows one to consider as possible candidates for a lower–upper rough
approximation of the subset A the two pairs

r#(A) := (A�, A�) and R#(A) := (Ao,A∗).

These rough approximations are constrained to the inclusions expressed by Eq. (61)
in such a way that the approximation r#(A) of A turns out to be better than the
approximationR#(A) of the same set. But there are some other interesting properties
which differentiate these two rough approximations.

In general the rough approximation map R# is not idempotent and so it does not
satisfy both the conditions (RC2) of crispness and (RC3) of best approximation; in
other words only the weak meta-theoretical principle (w-RMTP) discussed in Sect. 4
is satisfied in the case of this approximation. On the contrary, as consequence of the
Tarski interior (lower)–closure (upper) approximation proved in Proposition 103,
the rough approximation map r# satisfies all the principles of coherence, crispness,
and best approximation required by the meta-theoretical principle (RMTP) of
Sect. 4.

It is worth noting that the Axiomatic Foundations of Quantum Mechanics in its
so-called sharp (also crisp) version disregards the rough approximation approach
and is rather interested in the structure of the pre topological family of #-closed
subsets C (X, #).

To this purpose let us state the following results.

Proposition 106 Let (X, #) be a preclusion space. With respect to the ordering of
set theoretical inclusion the structure based on the collection of all #-closed subsets:

C(X, #) := 〈C(X, #),⊆, #,∅,X〉

is a complete lattice in which for any family {Mi} of #-closed sets from C(X, #)

i) the greatest lower bound (g.l.b.), written ∧Mj , exists and turns out to be the set
theoretical intersection

∧Mj = ∩Mj

ii) the least upper bound (l.u.b.), written ∨Mj , exists and it is

∨Mj = ∩
{
K ∈ C (X, #) : ∪Mj ⊆ K

}
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This lattice is equipped with the mapping

# : C (X, #) �→ C (X, #), M → M#

which is well posed since the application to C (X, #) of Eq. (29) in Lemma 73 can
be written as M# = (M#)##, i.e., M# ∈ C (X, #). This mapping is a standard
orthocomplementation, i.e., we have that for arbitrary M,N ∈ C (X, #)

(oc-1) M = M## (double negation law)

(oc-2) (M ∨N)# = M# ∩ N# (de Morgan law)

(oc-3) M ∩M# = ∅ and M ∨M# = X (noncontradiction and excluded middle laws)

Summarizing, C (X, #) is a pre topology of closed subsets for the universe X and
the pair (X,C (X, #)) is a pre topological space (as usual in order to have a
real topological space C (X, #) should also be closed with respect to the finite set
theoretical union, but this does not generally happen).

In general ∨jMj contains and does not coincide with the set theoretical union:

∀ {Mj ∈ C (X, #) : j ∈ J
}
, ∪Mj ⊆ ∨Mj with

{
∪Mj 
∈ C (X, #)

∨Mj ∈ C (X, #)

Similarly,

∀M ∈ C (X, #), M ∪M⊥ ⊆ M ∨M# = X.

Let us note that ∨Mj = (∪Mj)
##; moreover, as usual, the De Morgan law (oc-2)

is equivalent to its dual De Morgan law (oc-2a) (M ∩ N)# = M# ∨ N# which in
its turn is equivalent to the contraposition law (oc-2b) M ⊆ N implies N# ⊆M#.

The family of all structures C (X, #) can be divided into three subclasses:

(CM) C (X, #) has a structure of Boolean algebra. That is one of the following
equivalent identities is satisfied (see the hierarchy discussed in Sect. 2.1):

(Bl-1) ∀M,N,Q ∈ C (X, #), M ∩ (N ∨Q) = (M ∩N) ∨ (M ∩Q)

(Bl-2) ∀M,N,Q ∈ C (X, #), M ∨ (N ∩Q) = (M ∨ N) ∩ (M ∨Q).

This corresponds to the case of classical mechanics since as stated from
Mackey in [71] “the logic of classical mechanics is a Boolean algebra - the
Boolean algebra of all [. . . ] subsets of phase space” (i.e., a classical logic).
Similarly, quoting [43]: “By a Boolean logic we mean a Boolean algebra
of propositions in which the Boolean lattice operations of join, meet and
orthocomplementation correspond to the logical operations of disjunction,
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conjunction, and negation respectively. As is well known the ordering may
be interpreted as a logical relation of implication between propositions.”

(QM) C (X, #) has a structure of orthomodular lattice, i.e., one of the following
equivalent identities is satisfied (see the hierarchy discussed in Sect. 2.1):

(Ql-1) ∀M,N ∈ C (X, #), M ⊆ N implies M ∨ (M⊥ ∩N) = N

(Ql-2) ∀M,N ∈ C (X, #), M ⊥ N implies M⊥ ∩ (M ∨N) = N

This corresponds to the case of quantum mechanics and C (X, #) is the so-
called logic of quantum mechanics (quantum logic).

(GQ) C (X, #) is not Boolean. The quantum mechanics case is a subcase of this
situation which corresponds to some generalized quantum case.

Example 107 Consider the preclusion relation # = {(a, b), (b, a)} on the universe
X = {a, b, c, h, k} that was discussed in Example 105. From

{a}# = {b}, {b}# = {a}, ∅# = X, and A = ∅ in all other cases.

we get that the corresponding collection of #-closed elements is the Boolean algebra
CB(X, #) = {∅, {a}, {b},X}, with the orthocomplementation expressed by the

identities ∅# = X, {a}# = {b}, {b}# = {a}, and X# = ∅. The corresponding Hasse
diagram is given by Fig. 18.

Note that the quasi Brouwer Boolean (BB) algebra
〈
P(X, #),∩,∪, c, #,∅,X〉,

with for instance {a}c = {b, c, h, k}, induces the Boolean algebra〈
CB(X, #),∧ = ∩,∨, #,∅,X〉, with {a}# = {b}. Moreover, {a}∧ {b} = {a} ∩ {b} =
∅, whereas {a} ∨ {b} = X ⊃ {a, b} = {a} ∪ {b}. Furthermore, for instance,
{a}# = {b} ⊂ {b, c, h, k} = {a}c.

This is an example in which the Boolean behaviour of P(X, #) it is in some
manner inherited from C (X, #). But this is not always the case, as the example
shows.

Example 108 Let us consider the finite universe X = {a, b, c, d, h, k} with the
preclusion relation # = {(a, b), (b, a), (c, d), (d, c)}. The corresponding collection

X = ∅#

{b}# = {a} {b} = {a}#

∅ = X#

Fig. 18 Hasse diagram of the Boolean algebra CB(X, #) of #-closed sets
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X

{b}# = {a} {a}# = {b} {c} = {d}# {d} = {c}#

∅
Fig. 19 Hasse diagram of the Quantum lattice CQ(X, #) of #-closed sets

of #-closed elements is the Quantum lattice CQ(X, #) = {∅, {a}, {b}, {c}, {d},X},
with the orthocomplementation expressed by the identities ∅# = X, {a}# = {b},
{b}# = {a}, {c}# = {d}, {d}# = {c}, and X# = ∅. The corresponding Hasse diagram
is given by Fig. 19.

We have seen that the (GQ) case for definition is not a Boolean structure, but in
any case it turns out to be the set theoretical union of all its Boolean subalgebras
containing the two elements ∅ and X. Indeed, for any M ∈ C (X, #) the subalgebra
B(M) := {∅,M,M⊥,X

}
is trivially Boolean and their collection completely

covers X. Obviously this is only part of the Boolean subalgebras of C (X, #) because
some more complicated structures of this kind may exist. Anyway, borrowing some
terminology from differential topology we say that C (X, #) is a Boolean manifold
whose local charts are all the possible Boolean subalgebras B(X, #) of C (X, #).

As to the point QM relating to the quantum mechanical situation, let us report
the following rather long statement of Hardgree from [54]:

A physical theory may be characterized as consisting of a semi-interpreted language [. . . ].
Every such a language is a triple 〈E,H , v〉, with the following identifications: E is a set of
elementary sentences all having the form ‘magnitude A has a value in Δ’, or ‘A lies in Δ’
for short; synonymous with ‘magnitude’ are ‘variable’, ‘observable’. H is a set of states or
a states spaces which is the analogous of the set of ‘possible worlds’ in modal logic. Finally,
v is a satisfaction function which assigns to each elementary sentence p in E the set v(p)
of states which satisfy (verify) p. I will generally write ‖p‖ in place of v(p), and I refer to
semi-interpreted language simply as language.

In addition to the elementary sentences of a language, which are purely syntactic in
character, the set of elementary propositions of a language 〈E,H , v〉 is the image v[E]
of E under v. In other words, if p is an elementary sentence in E, then the corresponding
elementary proposition is the set v(p)(= |p| of states which satisfy p.

The propositional algebra of a language is then the set v(E) of elementary propositions
together with the logical operations and relations peculiar to that language.

It must be emphasized, however, that the logical operations of language L are not
necessarily displayed in the syntax of L . Indeed, the languages which concern us all have a
uniformly flat and uninteresting syntactic structure: the sentences are all atomic, having the
form ‘A lies in Δ’. [. . . ] In particular, the logical connectives are not syntactical defined as
is customary in logical calculi, but are instead defined semantically.

Then Hardegree enters in the specific Hilbert space description.
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In the case of the language Lqm of QM [. . . ] the set of pure quantum states form a complex
separable Hilbert space H , and the elementary propositions are the subspaces (closed linear
manifolds) of this space. With respect to the relation of set inclusion, the subspaces of H
form a complete atomic orthomodular, but not distributive lattice. Inasmuch as the lattice
of elementary quantum propositions is not distributive, the logical structure of QM is not
Boolean. [. . . ] First of all, since the meet (infimum) operation on the lattice of subspaces of
H is set intersection, the quantum language is closed under conjunction. [. . . ]

On the other hand, the quantum language is closed under neither exclusion negation nor
exclusion disjunction. In place of these classical logical operations, Lqm has analogs we
may call quantum negation and quantum disjunction, which are represented respectively
by the orthocomplement operation and the join (supremum) operation on the lattice of
subspaces of H . The orthocomplement of a subspace M is the orthogonal complement
M⊥ [. . . ]. Since a given vector x may fail to be an element of either M or M⊥, the quantum
negation differs from the classical exclusion negation, being instead a species of choice
negation. A choice negation is characterized by the fact that a sentence p and its choice
negation p⊥ may both fail to be true at the same time.

However, the semantic unusualness of the quantum language is not so much a function
of the quantum negation as it is a function of the quantum disjunction. Being definable,
via De Morgan law, in term of conjunction and quantum (choice) negation, the quantum
disjunction represents what may be called a choice disjunction and has certain remarkable
semantic characteristics. [. . . ] Semantically, this means that the quantum disjunction of p

and q can be true at a state x while at the same time neither p nor q is true in x.
In particular the formal analog of the law of excluded middle is valid in concrete QL:

for any subspace M , M ∨ M⊥ = H . In other words, every state satisfies the quantum
disjunction p∨p⊥ , but has we have already observed there are states which satisfies neither
p nor its negation q [i.e., ∃x s.t. x ∈ M ∨M⊥ \ (M ∪M⊥)].
Thus, the quantum logical version of the ‘law of excluded middle’ has nothing like the
traditional semantic significance of this law: it does not exclude a ‘middle’ possibility.

[Compare this statement with Eqs. (4) and (5).]

15 Tarski, Kuratowski, and Halmos Interior–Closures
Operations Induced from Coverings

15.1 Covering of the Universe as Model of Tarski Interior with
Induced Closure Operations

Let us consider a covering of the universeX, i.e., a family γ = {Ki ∈P(X) : i ∈ I }
of subsets of X (indexed by the index set I ) which satisfies the two conditions:

(Co1) ∅ ∈ γ ,
(Co2) X = ∪{Ki : i ∈ I }.

To any subset A of the universe X it is possible to assign the subset (where we
denote for simplicity by K the generic subset of the covering γ ):

Ao := ∪ {K ∈ γ : K ⊆ A} (62a)
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Then, it is easy to prove that the mapping o :P(X)→P(X), A→ Ao is a Tarski
interior operator on the power set P(X) in such a way that Ao is the interior
of A. The corresponding family Oγ (X) := {O ∈P(X) : O = Oo}, according to
Proposition 32, satisfies conditions (PO1) and (POO2) of being a pre-topological
space of open subsets of the power set P(X). Trivially, γ ⊆ Oγ (X), i.e., any
element of the covering is open.

Hence, by Eq. (12) of Sect. 3, one immediately have that for every A ∈
P(X) the subset A∗ = ((Ac)o)c is the closure of A with the mapping ∗ :
P(X)→ P(X), A→ A∗ which satisfies the condition of being a Tarski closure
operator on P(X). Let us note that A∗ = ((Ac)o)c = [∪ {K ∈ γ : K ⊆ Ac}]c =
∩{Kc : K ∈ γ and A ⊆ Kc} and so, introducing the anti-covering of X as the
collection γ ′ := {H ∈P(X) : ∃K ∈ γ s.t.H = Kc}, we have that

A∗ = ∩ {H ∈ γ ′ : A ⊆ H
}

(62b)

Thus, the family Cγ (X) = {C ∈P(X) : C = C∗}, according to Proposition 22,
turns out to be a pre topological space of closed subsets of the power set P(X).
In this case we have the following formulation corresponding to (RAS-T) of Sect. 7.

(RAS-T)γ The Tarski rough approximation space induced by the covering γ is
given by the structure Rγ =

〈
P(X),Oγ (X),Cγ (X), rγ

〉
with

(1) the power set P(X) as the collection of all approximable subsets
of X, which is an atomic complete lattice whose atoms are the
singletons {x};

(2) Oγ (Σ) as the collection of all lower crisp subsets of X (pre
topological space of open subsets);

(3) Cγ (X) as the collection of all upper crisp subsets of X (pre
topological space of closed subsets);

(4) rγ :P(X)→ Oγ (X) × Cγ (X) as the rough approximation map
assigning to any subset A of X the open-closed pair of subsets
rγ (A) = (Ao,A∗), with A0 ⊆ A ⊆ A∗, i.e., A is approximated
from the bottom by the open set Ao and from the top by the
closed set A∗, according to the meta-theoretical principle (RMTP)
discussed at Sect. 4 consisting in the satisfaction of the conditions
of roughness coherence (RC1), of crispness (RC2), and of best
approximation by crisp sets (RC3).

If one want to stress that the interior Ao and the closure A∗ can be considered
as the lower rough approximation and the upper rough approximation of the subset
A of the universe X, then it is possible to set them as lγ (A) = Ao for denoting
the lower and uγ (A) = A∗ for denoting the upper approximation. Adopting this
notation and making use of the two families of pre-topological open Oγ (X) and
closed subset Cγ (X) the above definitions of interior (lower approximation) and
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closure (upper approximation) of A can be equivalently formulated in the following
way:

lγ (A) = ∪ {O ∈ Oγ (X) : O ⊆ A
} = Ao (63a)

uγ (A) = ∩ {C ∈ Cγ (X) : A ⊆ C
} = A∗ (63b)

Example 109 Let X = {x1, x2, x3} be a (finite) universe of three points. Let us
denote the non trivial subsets of X in the following way: A = {x1}, C = {x2},
B = {x3}, D = {x1, x2}, F = {x1, x3}, and E = {x2, x3}. The Hasse diagram of the
Boolean lattice P({x1, x2, x3}) is depicted in Fig. 20.

Let us consider the covering γ = {∅,D = {x1, x2}, F = {x2, x3}}, then the
interior operator can be depicted by the Hasse diagram of Fig. 21.
The lattices of open and closed sets are depicted in the Hasse diagrams of Fig. 22.

The family of open sets Oγ (X) = {∅,D = {x1, x2} , E = {x2, x3} ,X} satisfies
conditions (PO1) and (POO2), this last condition concerns the closure with respect
to the arbitrary union operation ∪, but does not satisfies condition (PO3), i.e., the
closure with respect to finite intersection operation ∩: indeed, D ∩ E = {x2} /∈
Oγ (X). Thus,

• the family Oγ (X) is a pre-topology for the universe X, which is not a topology.

Fig. 20 The Boolean lattice
P({x1, x2, x3})

X = ∅c

D = Bc F = Cc E = Ac

A = Ec C = F c B = Dc

∅ = Xc

Fig. 21 Interior Boolean
lattice induced from the
covering γ of the Boolean
lattice of Fig. 20

X = Xo

D = Do
F E = Eo

A C B

∅ = ∅o
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X = Xo X = X∗

D = Do E = Eo A = A∗ B = B∗

∅ = ∅o ∅ = ∅∗

Fig. 22 Open (at the left side) and Closed (at the right side) subsets induced from the covering γ

of the Boolean lattice of Fig. 20

X = Xo X = X∗
D∗ = F ∗ = E∗

D = Do F = F o E = Eo D F E

A C B A = A∗ C = C∗ B = B∗

∅ = ∅o

Ao = Co = Bo ∅ = ∅∗

Fig. 23 Interior and closure Boolean lattices induced from the covering γ1

Note that with respect to the lattice of open subsets at the left side of Fig. 22 the
join of any two elements, in this case denoted by ∨o, coincides with the original join
of the corresponding elements of the lattice. This does not happen in the case of the
meet: for instance D ∧o E = ∅ ⊆ C = D ∩ E.

In this example we have the case of a starting Boolean lattice with a covering
which induces the two lattices of open and closed subsets which are both Boolean.
This is not the general case, as the following example based on the same universe,
but equipped with a different covering, shows.

Example 110 Let us consider the same universe X = {x1, x2, x3} of the pre-
vious Example 109, but with associated the different covering γ1 = {∅,D =
{x1, x2}, F = {x2, x3}, E = {x3, x1}}. The interior and closure Boolean complete
lattices induced by this covering are drawn in Fig. 23.

Note that the Hasse diagram at the right side is a concrete case of the abstract
Tarski closure lattice which is not Kuratowski presented in Fig. 9 of Example 49.
Instead of the points a, b, c, . . . of the abstract lattice Σ here one has the concrete
subsets A,B,C, . . . of the power set P({x1, x2, x3}).

The open and closed subsets induced from the covering γ1 are very different and
depicted in the Hasse diagrams of Fig. 24.
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X = Xo X = X∗

D = Do F = F o
E = Eo A = A∗ C = C∗ B = B∗

∅ = ∅o ∅ = ∅∗

Fig. 24 Open (at the left side) and Closed (at the right side) subsets induced from the covering γ1

Both the lattices of Fig. 24 are examples of the five-elements modular non
distributive lattice M5 [8, p. 13]. Also in this example,

• the family Oγ1(X) = {∅, {x1, x2}, {x2, x3}, {x1, x3},X} is a pre topology of open
sets which is not a topology, since for instance {x1, x2} ∩ {x2, x3} = {x2} /∈
Oγ1(X).

• Similarly, the family Cγ1(X) = {∅, {x1}, {x2}, {x3},X} is a pre topology of
closed sets which is not a topology, since for instance {x1} ∪ {x2} = {x1, x2} /∈
Cγ1(X).

In the present covering case of the universe X, the pre-topological valuation
of the necessity and possibility connectives from the Boolean lattice Σ are the
following:

vj (a
o) = vj (a)

o = Aj
o = lγ (Aj) and vj (a

∗) = vj (a)
∗ = Aj

∗ = uγ (Aj )

(64)

that is

vj (l(a)) = lγ (vj (a)) for

⎧
⎨

⎩
l(a) = ao

vj (A) = Aj

vj (u(a)) = uγ (vj (a)) for

⎧
⎨

⎩
u(a) = a∗

vj (A) = Aj

These relations can be summarized by the commutative diagrams:

∗
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15.2 Open (Global) Rough Approximation from Coverings

Borrowing some definitions from the partition case (discussed in Sect. 16), in the
present covering context it is also possible to introduce the two open approximations
of any subset A (in [15] called global approximations) as

l(g)γ (A) := ∪ {K ∈ γ : K ⊆ A} = Ao (65a)

u(g)
γ (A) := ∪ {H ∈ γ : H ∩ A 
= ∅} 
= A∗ (65b)

In general u
(g)
γ (A) 
= A∗ owing to the particular fact that u

(g)
γ (A) is an open

subset, whereas A∗ is a closed subset (in Example 110 one has that u
(g)
γ (C) =

X 
= C = C∗). The global lower approximation map l
(g)
γ : P(X) → Oγ (X)

is a Tarski interior operator since ∀A ∈ P(X), l(g)γ (A) = Ao, and so it satisfies
the interior axioms (I0), (I1), (I2),and (I3) of Sect. 7. Differently, the global upper
approximation map u

(g)
γ (A) : P(X) → Oγ (X), as discussed in [15], satisfies

the conditions of Čech closure (C0), (C1), and (C2K), but not the idempotency
condition (C3). Let us recall that the lack of idempotency corresponds to the
satisfaction of the only weak meta-theoretical situation (w-RMTP) discussed in
Sect. 4 according to which the only condition of roughness coherence (RC1) is
satisfied, but neither the crispness condition (RC2) nor the best approximation
condition (RC3) can be verified.

Example 111 Let us consider the four points universe X = {x1, x2, x3, x4}
equipped with the covering γ = {∅, {x1, x2} , {x2, x3} , {x4}}. Then, if we consider
the subset A = {x1} of X we have that its global upper approximation is u

(g)
γ (A) =

{x1, x2}, from which it follows u
(g)
γ (u

(g)
γ (A)) = u

(g)
γ ({x1, x2}) = {x1, x2, x3} 
=

u
(g)
γ (A). Furthermore, (u(g)

γ (A))∗ = {x1, x2}coc = {x3, x4}oc = {x1, x2, x3} 
=
u
(g)
γ (A), i.e., u(g)

γ (A) /∈ C (X) it is not closed, in other words it is not upper crisp
(condition (Up2) of upper approximation is not satisfied).

Moreover, the following inclusions are always true:

∀A ∈P(X), l(g)γ (A) = Ao ⊆ A ⊆ A∗ ⊆ u(g)
γ (A) (66)

If one defines the global rough approximation of A as the pair depending from
the covering r

(g)
γ (A) := (l

(g)
γ (A), u

(g)
γ (A)) ∈ Oγ (X) × Oγ (X), then the open–

closed standard rough approximation rγ (A) = (Ao,A∗) ∈ Oγ (X)×Cγ (X), always
depending from the covering, furnishes an approximation of A which is better with
respect to the open–open global rough approximation r

(g)
γ (A).
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15.3 Topological Covering of the Universe as Model
of Kuratowski Interior with Induced Closure Operations

In this subsection we consider a topological covering of the universe X, denoted
by β, which is a covering satisfying besides the conditions (Co1) and (Co2) of
Sect. 15.1 the further condition:

(Co3) for any pair Bi and Bj of subsets of the family β a collection {B̂k : k ∈
K} ⊆ β of elements from the family β exists such that Bi ∩ Bj = ∪{B̂k :
k ∈ K}.

In topology a family β satisfying these three axioms (Co1), (Co2), and (Co3), is
defined as an open base [62, pp. 46, 47], [102, p. 99], and any subset Bi ∈ β is
called basic open set, or from another point of view, open granule.

The interior of any subset A ∈ P(X) is defined as usual by the subset of the
universe

Ao := ∪ {Bk ∈ β : Bk ⊆ A}

obtaining in this case that the mapping o : P(X) → P(X), A → Ao is
a Kuratowski interior operator since axioms (C0), (C1), (C2K), and (C3), are
satisfied. The open sets are then the particular subsets O of the universe X such
that O = Oo. According to point (1) of Proposition 51, their collection Oβ(X)

satisfies the conditions (PO1a), (PO2), and the characteristic topological condition
(PO3); in other words, it is a real topology of open sets for X.

Dually, for any subset A ∈P(X) its closure is the subset A∗ = Acoc and in this
case the mapping P(X)→P(X), A→ A∗ is a Kuratowski closure operator, and
the collection Cβ(X) := {C ∈P(X) : C = C∗} is a real topology of closed sets.

Without entering in deep details, let us note that in the case of a topological
covering β it is possible to consider the induced Kuratowski rough approximation
space, (RAS-K)β , as the structure Rβ =

〈
P(X),Oβ (X),Cβ(X), rβ

〉
with Oβ(X)

(resp., Cβ(X)) the real topological space of open (resp., closed) subsets of X

obtained by β, and the rough approximation of the approximable subset A given
by the open–closed pair of subsets rβ(A) = (lβ(A), uβ(A)) where lβ (A) = Ao

(resp., uβ(A)) is the lower (resp., upper) topological approximation of A.

Example 112 Let X = {x1, x2, x3} be a finite three points universe. Let
us consider the topological closure (open base) of this universe β =
{∅, {x1, x2} , {x2} , {x2, x3}}. The interior and closure Boolean complete lattices
induced by this topological covering (open base) are depicted by the following
Fig. 25.
The open and closed subsets induced from the covering β are given by the Hasse
diagrams of Fig. 26.

Different from the case presented by Example 109, whose open and closed
lattices depicted by the Hasse diagrams of Fig. 22 represent the pre-topological
spaces of open and closed subsets, in the present example
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X = Xo X = X∗
C∗ = D∗ = E∗

D = Do F E = Eo D F = F ∗ E

A C = Co B A = A∗
C B = B∗

∅ = ∅o

Ao = Bo = F o ∅ = ∅∗

Fig. 25 Interior and closure Boolean lattices induced from the topological covering (open base) β

X = Xo
X = X∗

D = Do E = Eo F = F ∗

C = Co A = A∗ B = B∗

∅ = ∅o ∅ = ∅∗

Fig. 26 Open (at the left side) and Closed (at the right side) subsets induced from the topological
covering (open base) β

• we have real topological spaces of open and closed subsets. Indeed, D ∧o E =
C = D ∩ E and A ∨c B = F = A ∪ B, with C ∈ Oβ(X) open and F ∈ Cβ(X)

closed.

16 Partition Covering of the Universe as Model of Halmos
Interior with Induced Closure Operations

A partition covering, simply partition, of the universe X is a covering π of X

satisfying the usual conditions (Co1) and (Co2) plus the disjointness condition:

(D) for any pair Gi ∈ π and Gj ∈ π of different elements of the partition, Gi 
=
Gj , it is Gi ∩Gj = ∅.

Trivially, condition (D) implies condition (Co3), i.e., a partition covering is a
particular case of topological covering.
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The usual approach to rough set theory as introduced by Pawlak [89, 90, 94] is
formally (and essentially) based on a concrete partition space, that is a pair (X, π)

consisting of a nonempty set X, the universe of discourse (with corresponding power
set P(X) whose elements are the approximable sets), and a partition π := {Gi ∈
P(X) : i ∈ I } of X whose elements are the elementary sets.

The partition π can be characterized by the induced equivalence relation R ⊆
X ×X, defined as

(x, y) ∈ R iff ∃G ∈ π : x, y ∈ G. (67)

In this case x, y are said to be indistinguishable with respect to R and the
equivalence relation R is called an indistinguishability relation.

There is a close relationship between partitions and equivalence relations in
the sense that any partition generates an equivalence relation and any equivalence
relation generates a partition. In particular,

• if G(x) is the elementary set (granule) from the partition π containing the point
x, and if [x] = {y ∈ X : (x, y) ∈ R} is the equivalence class generated from x

by the equivalence relation R,
• then G(x) = [x].

In this indistinguishability context the partition π is considered as the support
of some knowledge available on the objects of the universe and so any equivalence
class (i.e., elementary set) G is interpreted as a granule (or atom) of knowledge
contained in (or supported by) π .

Of course, a partition space (X, π) generates a topological space whose open
base is just the family π , i.e., β = π . Thus proceeding as in Sect. 15.3, for any subset
A of X, it is possible to construct the Kuratowski interior and closure operators Ao

and A∗, where Ao is the union of elementary sets from π . Hence, also open sets,
defined according to the condition E = Eo, are the union of elementary sets from
the partition π . But the set complement Ec of any open set is also a set theoretical
union of elementary sets from π , i.e., an open set. This means that the open set
E = (Ec)c as set theoretical complement of an open set is, from the topological
point of view, also closed E = E∗, i.e., a clopen (simultaneously closed and open)
set E = Eo = E∗. From this it follows that a partition gives rise to a topology of
clopen, formally Oπ(X) = Cπ (X), and so according to Proposition 66 the closure
(resp., interior) operation A→ A∗ (resp., A→ Ao) is Halmos.

As discussed in Sect. 9, this unique family of clopen, also crisp, subsets will be
denoted by Eπ(X)(= Oπ (X) = Cπ(X)). A crisp set from Eπ(X) is then a clopen
subset obtained as a set theoretical union of elementary subsets from the partition
π . Indeed, according to Eqs. (62a) and (62b) applied to the present partition case,
we have that

E ∈ Eπ(X) iff E = ∪{G ∈ π : G ⊆ E} = ∩ {Gc : G ∈ π and E ⊆ Gc
}

(68)
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From the topological point of view Eπ(X) contains both the empty set and the
whole space, moreover it is closed with respect to any arbitrary set theoretical union
and intersection, i.e., it is an Alexandroff topology [1, 3]. In the rough set context,
this “clopen” behavior of crisp sets, but not the Alexandroff topological relationship,
as realized by Pawlak in his first contributions [90, 91, 93], and successively stressed
for instance by Iwinski [59] and Skowron [103].

From another point of view, the collection of all these clopen sets forms a
Boolean algebra 〈Eπ(X),∩,∪, c,∅,X〉 with respect to set theoretical intersection,
union, and complementation. In particular, this Boolean algebra is atomic whose
atoms are just the elementary sets G from the partition π .

The lower approximation map is defined as the correspondence lπ : P(X) �→
Eπ(X) associating with any subset A of X its lower approximation defined by the
(clopen) crisp set

lπ (A) := ∪{E ∈ Eπ(X) : E ⊆ A} = ∪{G ∈ π : G ⊆ A}. (69a)

Analogously, the upper approximation map is defined by the correspondence
uπ :P(X) �→ Eπ(X) associating with any subset A of X its upper approximation
defined by the (clopen) crisp set

uπ(A) := ∩{E ∈ Eπ(X) : A ⊆ E} = ∪{G ∈ π : G ∩ A 
= ∅}. (69b)

From these results it follows that

(RAS)π The concrete rough approximation space generated by the partition π

of the universe X consists of the structure Rπ := 〈P(X),Eπ (X), rπ 〉
where:

(1) the set of approximable elements, is the Boolean atomic (complete)
lattice P(X) of all subsets A of the universe X, whose atoms are the
singletons {x} for x ∈ X;

(2) the two sets of lower crisp elements and of upper crisp elements
coincide with the Boolean atomic (complete) lattice Eπ(X) of all
clopen subsets of X, whose atoms are the equivalence classes
(granules) G of the partition π ;

(3) the rough approximation map is given by the correspondence rπ :
P(X)→ Eπ(X)×Eπ(X) associating with any subset A of the uni-
verse X the pair of clopen-clopen subsets rπ (A) = (lπ (A), uπ(A)),
with lπ (A) (resp., uπ(A)) given by the above Eq. (69a) (resp.,
Eq. (69b)).

The two relationships (69) related to the partition case, in which crisp (clopen)
sets are involved, can be compared with the analogous two relationships (65) related
to the covering case, in which lower crisp (open) and upper crisp (closed) sets
are respectively involved. The main difference is that in the covering case, as
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generalization of the partition case, in the second equation (65b) there is a difference
( 
=) whereas in (69b) the two approximations are equal.

Note that for any subset A, the universe turns out to be the set theoretical union of
the mutually disjoint sets X = lπ (A) ∪ Bπ(A) ∪Eπ(A), where Bπ(A) := uπ(A) \
lπ (A) is the boundary and Eπ(A) := X \ uπ(A) is the exterior of A. The triplet of
subsets π(A) := {lπ (A), Bπ (A),Eπ(A)} is a new (local, i.e., depending from A)
partition of X induced by A from the original partition π .

16.1 Covering from Incomplete Information System
and Partition from Complete Information Systems

Let us give the notion of Information System (IS) formalized as a structure IS :=
〈X,Att, V al, F 〉 where: (1) X is a nonempty (in general finite) set of objects
(situations, entities, states), called the universe of the discourse; (2) Att is a
nonempty (also in this case in general finite) set of attributes which can be evaluated
on the objects from X; (3) V al is the set of all possible values that can be observed
for an attribute a from Att in the case of an object x from X, and (4) F is a mapping,
called the information mapping, associating with suitable pairs (x, a), consisting of
an object x ∈ X and an attribute a ∈ Att , the value F(x, a) assumed by the object
x ∈ X relatively to the attribute a ∈ Att .

We have to distinguish two cases.

(1) The first case regards the complete IS, in the context of the Pawlak approach to
rough sets introduced in the seminal papers [89, 90, 92], characterized by the
condition that the mapping F is defined on the global collection X ×Att of all
object-attribute pairs (x, a). With V al := {F(x, a) : x ∈ X, a ∈ Att}we mean
the set of all possible values assumed by the mapping F (in other words, F is
surjective). Note that an IS can be equivalently defined as a pair consisting of
the universe X and a family {fa : X �→ V al(a) | a ∈ Att} of surjective attribute
mappings, in which the set Att plays the role of set of indices; each fa (for a
fixed “index” a ∈ Att) is a function from the universe X onto its set of values
V al(a) := {F(x, a) : x ∈ X} defined by the law: ∀x ∈ X, fa(x) := F(x, a).

(2) The second case refers to the so-called incomplete IS, according to the seminal
papers [104, 116, 122], in which the mapping F is partially defined on a subset
(X × Att)p of the set X × Att under the consistency condition:

(con) For any object x there must exist at least one attribute ax such that
(x, ax) ∈ (X×Att)p , i.e., no object is redundant with respect to the IS
in the sense that there must exist at least one information inside the IS
which can be obtained about it (otherwise this object can be suppressed
by the IS without any loss of information).

Similarly to the complete case, an incomplete information systems can also be
formalized by a family of mappings indexed by the index set Att , where for



116 G. Cattaneo

every “index” a the (surjective) mapping fa : X(a) �→ V al(a) is defined on
X(a) := {x ∈ X : (x, a) ∈ (X × Att)p} by the law that associates with any
object x ∈ X(a) the value fa(x) := F(x, a) (where in this incomplete case
V al(a) := {F(x, a) : x ∈ X(a)}).

Sometimes we use the null symbol ∗ to denote the fact that the value possessed by
an object x with respect to the attribute a is unknown: formally we set F(x, a) = ∗
when (x, a) /∈ (X × Att)p, or equivalently fa(x) = ∗ when x /∈ X(a). For a
given attribute a ∈ Att let us denote val(a) := V al(a) ∪ {∗} and so fa can now
be considered as the surjective application fa : X → val(a), defined on the whole
space of objects X.

Furthermore, for any fixed object x ∈ X we can define its attribute domain
of definition Att (x) := {a ∈ Att : (x, a) ∈ (X × Att)p

}
as the collection of all

attributes with respect to which the information function can be applied (furnishes
information) relatively to the object x.

16.2 The Case of Incomplete IS

Let us consider an incomplete IS and a family A of attributes from Att (A ⊆ Att),
then a binary relation of A -indiscernibility IA ⊆ X ×X about objects from X can
be introduced according to:

(ind) let x, y ∈ X, then

(x, y) ∈ IA iff ∀a ∈ A , (fa(x) = fa(y) or fa(x) = ∗ or fa(y) = ∗).

This binary relation IA on the set of objects X is reflexive and symmetric, but
in general non transitive, called similarity relation (after Poincaré [95]) in the
context of Kripke semantics of modal logic (see [32, p. 83]) or tolerance relation
(after Zeeman [123]) in the context of incomplete IS [97]. From the modal logic
viewpoint, making reference to the author of the original semantical approach, i.e.,
S. Kripke [64], “a normal model structure (nms) is an ordered [pair] (X,R), where
X is a non empty set, and R a reflexive relation defined on X. If R is transitive, we
call the nms a S4 model structure; if R is symmetric, we call it a BROUWERsche
model structure; if R is an equivalence relation, we call it a S5 model structure.”

For any fixed object x of the universe, let us construct the (elementary) open (or
indiscernibility) granule generated by this object KA (x) := {y ∈ X : (x, y) ∈ IA },
whose collection γA = {KA (x) : x ∈ X} ∪ {∅} is trivially a covering of X (as a
consequence of the reflexivity condition it is x ∈ KA (x)).

The following result expresses the A -discernibility binary relation DA ⊆ X×X

as negation of indiscernibility:DA = ¬IA . Formally, (x, y) ∈ DA iff (x, y) /∈ IA ,
which is irreflexive and symmetric.
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Proposition 113 Let x, y ∈ X, then

(x, y) ∈ DA iff ∃a0 ∈ A : fa0(x) 
= fa0(y) with fa0(x) 
= ∗ and fa0(y) 
= ∗.

Proof (x, y) /∈ IA iff ¬[∀a ∈ A , (fa(x) = fa(y) or fa(x) = ∗ or fa(y) =
∗)] iff ∃a0 ∈ A : (fa0(x) 
= fa0(y) and fa0(x) 
= ∗ and fa0(y) 
= ∗). ��
Example 114 Let the universe be X = {x, y, z} and let us consider the incomplete
information table based on it and the set of attributes Att = {a, b, c}:

a b c

x yes 0 ∗
y yes ∗ h

z ∗ 1 ∗

Let us now construct the similarity granules with respect to the whole set of
attributes A = Att , omitting for simplicity the subscript Att to each of them.

Case x: Besides the trivial case (x, x) ∈ I , i.e., x ∈ K(x), we have the two cases:
(1) For the object y ∈ X, fa(x) = fa(y), fb(y) = ∗, fc(x) = ∗ and so
any attribute satisfies the above condition (ind) concluding that (x, y) ∈
I , i.e., y ∈ K(x). (2) For the object z ∈ X, fb(x) = 0 
= 1 = fb(z),
and so (x, z) /∈ I , i.e., z /∈ K(x).

Case y: Besides the trivial case (y, y) ∈ I , i.e., y ∈ K(y), we have the two cases:
(1) For the object x ∈ X, fa(y) = fa(x), fb(y) = ∗, fc(x) = ∗
concluding that (y, x) ∈ I , i.e., x ∈ K(y). (2) For the object z ∈ X,
fa(z) = ∗, fb(y) = ∗, fc(z) = ∗ concluding that (y, z) ∈ I , i.e., z ∈
K(y).

Case z: Also in this final case, besides the trivial (z, z) ∈ I , i.e., z ∈ K(z), we
have the two cases: (1) fb(z) = 1 
= 0 = fb(x) and so x /∈ K(z). (2)
For the object y ∈ X, fa(z) = ∗, fb(y) = ∗, fc(z) = ∗ concluding that
(z, y) ∈ I , i.e., y ∈ K(z).

Summarizing, the similarity granules with respect to the whole set of attributes
are K(x) = {x, y}, K(y) = {x, y, z} = X, K(z) = {z, y}, generating the covering
γ = {∅, {x, y}, {y, z}, X} of X, which is the pre topology of open sets discussed in
Example 109 (see also the left side of Fig. 22).

If for any subset A ⊆ Att of attributes, for any fixed object x ∈ X one defines

A (x) := {a ∈ A ⊆ Att : (x, a) ∈ (X ×Att)p
}
,
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Table 2 Flats incomplete
information system

Flat Price Rooms Down-Town Furniture

x1 High 2 Yes *

x2 High * Yes No

x3 * 2 Yes No

x4 Low * No No

x5 Low 1 * No

x6 * 1 Yes *

then the following is an equivalent way to define the A -indiscernibility relation in
incomplete IS:

(ind)

let x, y ∈ X, then (x, y) ∈ IA iff [∀a ∈ A (x) ∩A (y), fa(x) = fa(y)]

or [∀a ∈ A \ (A (x) ∩A (y)), either fa(x) = ∗ or fa(y) = ∗].
Example 115 In Example 114 it is interesting the case of the pair (y, z), where
we have that A (y) = {a, c} and A (x) = {b}. Thus, A (y) ∩ A (z) = ∅ and so
there is no attribute to test the first part of (ind) whereas for all the attributes of
Att \ (A (y) ∩A (z)) = Att it is fa(z) = ∗, fb(y) = ∗, and fc(z) = ∗.
Example 116 Table 2 gives the representation of an incomplete IS based on a set X
of 6 objects describing flats and involving 4 possible attributes about flats.

Let us set P=Price, R=Rooms, DT =Down-Town, and F=Furniture, we have the
following attribute domains of definition associated with any flat:

Att (x1) = {P,R,DT } Att (x4) = {P,DT,F }
Att (x2) = {P,DT,F } Att (x5) = {P,R,F }
Att (x3) = {R,DT,F } Att (x6) = {R,DT }

If one considers the set of all attributes (i.e., A = Att) and the similarity relation
of indiscernibility (ind) just introduced, fixing for instance the flat x1, in order to
have the granule generated by it we must consider the following cases relative to the
other flats

Case x2. Att (x1) ∩Att (x2) = {P,DT }, with respect to which fP (x1) = fP (x2)

and fDT (x1) = fDT (x2); moreover, fF (x1) = ∗ and fR(x2) = ∗.
Concluding that condition (ind) is satisfied, i.e., (x1, x2) ∈ IA .

Case x3. Att (x1) ∩ Att (x3) = {R,DT }, with respect to which fR(x1) = fR(x3)

and fDT (x1) = fDT (x3); moreover, fP (x3) = ∗ and fF (x1) = ∗.
Concluding that also in this case (x1, x3) ∈ IA .

Case x4. Att (x1) ∩ Att (x4) = {P,DT }, with respect to which ∃P such that
fP (x1) 
= fP (x4) and so (x1, x4) /∈ IA .
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Concluding this analysis for all the remaining cases x5 and x6 and considering
all the other flats as fixed, we obtain the following open granules (where we omit
for simplicity the subscript A ):

K(x1) = {x1, x2, x3} K(x2) = {x1, x2, x3, x6} K(x3) = {x1, x2, x3}
K(x4) = {x4, x5} K(x5) = {x4, x5, x6} K(x6) = {x2, x5, x6}

whose collection (plus the empty set) γ constitutes a covering of X.

16.2.1 The Incomplete IS Similarity Approach to Covering RAS

Now, we can apply to the covering γA the results of Sect. 15.1 corresponding to the
construction of a rough approximation space (RAS) based on the power set P(X)

of the universe X equipped with the Tarski interior–closure pair of operators, and
consequent rough approximation map. That is, to any approximable subset A of the
universe X we can assign its interior Ao and closure A∗ = ((Ac)o)c expressed as

Ao := ∪ {KA (x) ∈ γA : KA (x) ⊆ A} (70a)

A∗ := ∩ {(KA (x))c : KA (x) ∈ γA and A ⊆ (KA (x))c
}

(70b)

In this way one obtains a Tarski interior operator lA : P(X) → P(X), A →
lA (A) := Ao and a Tarski closure operator uA : P(X) → P(X), A →
uA (A) := A∗.

The collection OA (X) of all open sets, i.e., subsets O ∈ P(X) such that O =
Oo, and the collection CA (X) of all closed sets, i.e., subsets C ∈ P(X) such
that C = C∗, constitute the pre-topologies of open and closed sets for the universe
X, respectively, as consequence of the facts that OA (X) is closed with respect to
arbitrary union and CA (X) with respect to arbitrary intersection.

Example 117 In the incomplete IS discussed in Example 116 given by Table 2,
whose indiscernibility relation IA is obtained by the class A = Att of all attributes,
the corresponding family of open sets is

OAtt (X) = { ∅, {x4, x5}, {x1, x2, x3}, {x2, x5, x6}, {x4, x5, x6}, {x1, x2, x3, x6},
{x2, x4, x5, x6}, {x1, x2, x3, x4, x5}, {x1, x2, x3, x5, x6}, X}

The corresponding family of closed sets is

CAtt (X) ≡ { ∅, {x4}, {x6}, {x4, x5}, {x1, x3}, {x1, x2, x3}, {x4, x5, x6}
{x1, x3, x4}, {x1, x2, x3, x6}, X}
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Both these two families are pre topologies, of open sets the first ({x4, x5} ∩
{x2, x5, x6} = {x5} which is not open) and of closed sets ({x4} ∪ {x6} = {x4, x6}
which is not closed) the second.

Therefore, the concrete (in the sense that it is based on the “concrete” universeX)
rough approximation space (RAS) is the structure

〈
P(X),O(X),Cγ (X), r

〉
where

P(X) is the collection of all approximable sets, the family O(X) of open sets is
the collection of all lower crisp subsets, the family Cγ (X) of closed sets is the
collection of all upper crisp subsets, and finally for any approximable subset A of X
the open–closed pair rA (A) = (lA (A), uA (A)) = (Ao,A∗) ∈ O(X) × Cγ (X) is
the rough approximation of A relatively to the family A of attributes satisfying the
roughness meta-theoretical principle (RMTP) of roughness coherence, crispness,
and best approximation by crisp elements.

16.2.2 The Incomplete IS Similarity Approach to Global RAS

In Sect. 15.2 we have seen as another rough approximation space (RAS), called
global, can be obtained by a closure of the universe. Precisely, in this global case the
open lower and upper approximations of A induced by the covering γA according
to Eq. (65) are now given by

l
(g)

A (A) := ∪ {KA (x) ∈ γA : KA (x) ⊆ A} (71a)

u
(g)

A (A) := ∪ {KA (x) ∈ γA : KA (x) ∩ A 
= ∅} (71b)

where l
(g)

A (A) = Ao, i.e., it is just the Tarski interior of Eq. (70a) whereas A∗ ⊆
u
(g)

A (A). Therefore l
(g)

A :P(X)→ O(X) is a Tarski lower approximation map and

u
(g)

A : P(X) → O(X) is a Čech upper approximation map, producing the global

rough approximation map r
(g)
γ :P(X)→ O(X)×O(X) associating with any set A

of the universe its open-open global rough approximation r
(g)
γ (A) = (Ao, u(g)(A))

which according to (66) furnishes a worst approximation of A relatively to the Tarski
open-closed one r(A) = (Ao,A∗). Furthermore, the global rough approximation
space (RAS) satisfies the weak roughness meta-theoretical principle (w-RMTP)
consisting in the unique condition of roughness coherence (RC1).

16.2.3 The Incomplete IS Similarity Approach to Local RAS

Let us stress that there is another possibility, called “local” in [15], to define a
pair of lower and upper approximations of the subset A of the universe X from
an incomplete information system (IS), which is typically linked to the structure of
incomplete IS, and not to the more general structure of covering. formally defined
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as the following:

l
(l)

A (A) := {x ∈ X : KA (x) ⊆ A} (72a)

u
(l)

A (A) := {x ∈ X : KA (x) ∩ A 
= ∅} (72b)

The local upper (resp. lower) approximation map u
(l)

A (resp., l(l)A ) is a Čech closure
(resp., interior) operator in the sense that it satisfies conditions (C0) the element 0
is closed, (C1) increasing, and (C2K) additive condition of closure (resp., (I0) the
element 1 is open, (I1) decreasing, and (I2K) multiplicative condition of interior). In
general, idempotency does not hold and so both the lower and upper approximation
maps l

(l)

A and u
(l)

A , respectively, satisfy the weak rough meta-theoretical principle
(w-RMTP).

Trivially, these give rise to a different approximation of the generic approximable
subset A of the universe X according to the inequalities:

l
(l)

A (A) ⊆ lA (A) ⊆ A ⊆ uA (A) ⊆ u
(l)

A (A) (73)

From this it follows that the “global” rough approximation rA (A) :=
(lA (A), uA (A)) is better than the “local” one r

(l)

A (A) := (l
(l)

A (A), u
(l)

A (A)).

Example 118 In the IS described by Table 2 of Example 116 let us consider the
subset of flats A = {x1, x2, x3, x4}. The two corresponding Tarski lower (interior)
and upper (closure) approximations are

l({x1, x2, x3, x4}) = {x1, x2, x3} and u({x1, x2, x3, x4}) = X

The local lower and upper approximations of the same set A are l(l)(A) =
{x1, x3}, with the strict inclusion l(l)(A) ⊂ l(A), and u(l)(A) = X = u(A). In this
way, the open–closed rough approximation r(A) = ({x1, x2, x3}, X) is evidently
better than the local rough approximation r(l)(A) = ({x1, x3}, X).

On the other hand, with respect to the set B = {x1, x4}, the lower approximations
are l(B) = l(l)(B) = ∅, whereas the upper approximations are the closed one
u(B) = {x1, x3, x4}, the local one u(l)(B) = {x1, x2, x3, x4, x5}, and the third global
one u(g)(B) = X, with the strict inclusions u(B) ⊂ u(l)(B) ⊂ u(g)(B). In this way,
also in this case the open–closed rough approximation r(B) = (∅, {x1, x3, x4}) is
better than the local one r(l)(B) = (∅, {x1, x2, x3, x4, x5}), which in its turn is better
than the global one r

(g)
γ (B) = (∅, X).

The following two subsets of the universe show an intriguing relationship
between local and global approximations. Indeed, let us consider the set C =
{x2, x4, x5, x6} then l(l)(C) = {x4, x5, x6}, l(g)(C) = {x2, x4, x5, x6} and u(l)(C) =
u(g)(C) = X. So we have the chain of inclusions

l(l)(C) ⊂ l(g)(C) = C ⊂ u(g)(C) = u(l)(C)
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On the other hand, in the case of the set D = {x1, x2, x3} we have that l(l)(D) =
l(g)(D) = D, whereas u(l)(D) = {x1, x2, x3, x6}, u(g)(D) = {x1, x2, x3, x5, x6}
and so in this case the chain of inclusions is

l(l)(D) = l(g)(D) = D ⊂ u(l)(D) ⊂ u(u)(D)

The last two chains of inclusions verified in the previous example are particular
cases of the following general result.

Proposition 119 The following chain of inclusions is true for any subset H of the
universe X in the case of an incomplete IS for any subfamily A of attributes:

l
(l)

A (H) ⊆ l
(g)

A (H) ⊆ H ⊆ u
(l)

A (H) ⊂ u
(u)

A (H) (74)

Proof As usual, for the sake of simplicity, let us omit the subscript A in the present
proof. Let x ∈ l(l)(H ), then from definition (72) it must be K(x) ⊆ H . This means,
by definition (71), that a fortiori K(x) ⊆ l(g)(H), and since x ∈ K(x), we have that
x ∈ l(g)(H).

Conversely, let x ∈ u(l)(H), then the similarity granule K(x), by (72), is such
that K(x) ∩ H 
= ∅. But from (71) it follows that K(x) ⊆ u(g)(H), and since
x ∈ K(x), we have that x ∈ u(g)(H). ��

16.3 The Case of Complete IS

In the case of complete IS, as particular cases of incomplete IS, the above
indiscernibility relation on objects induced by a family A of attributes reduces to
the following binary relation which we denote with the symbol RA in order to
distinguish this complete IS case from the incomplete one:

(c-ind) let x, y ∈ X, then (x, y) ∈ RA iff for every attribute a ∈ A one has
fa(x) = fa(y).

This is an equivalence (reflexive, symmetric, and transitive) relation on X, in this
case called indistinguishability relation in order to distinguish the complete IS case
from the incomplete one, such that the family OA (X) of open sets and the family
CA (X) of closed sets coincide. Once denoted by EA (X) := OA (X) = CA (X) the
common collection of clopen sets, the following holds:

• In the context of a complete IS, for any family of attributes A ⊆ Att , it is
lA (A) = l

(l)

A (A) and uA (A) = u
(l)

A (A). Moreover, lA (A) defines a Halmos
interior operator and uA (A) defines a Halmos closure operator according to
Sect. 16.
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Summarizing,

• incomplete IS are models of the Tarski interior–closure operators by coverings,
whereas complete IS are models of the Halmos interior–closure operators by
partitions in the context of concrete rough approximation spaces.

Part IV: Algebraic Methods for Many Valued Logics.
Variations of Halmos Closure: Stone and Łukasiewicz
Closures

In the previous Parts I and II we have investigated three standard closure operators,
Tarski, Kuratowski, and Halmos closures, with associated algebraic modal logic
interpretations of the involved axioms as S4-like, S4, and S5 systems, respectively.
Furthermore, the equivalent ways of defining the Halmos lattice structure as pre
Brouwer Zadeh (BZ) lattice has been investigated.

In this final Part IV we introduce two closure operators based on a Halmos clo-
sure lattice, called Stone and Łukasiewicz, respectively, showing their interpretation
as algebraic realizations of many valued logics.

17 The Stone Closure Lattices with Corresponding Full
Brouwer Zadeh (BZ) Lattices

The introduction of the notion of Stone closure operator, argument of the present
section, is consequence of the following result.

Proposition 120 In any De Morgan lattice equipped with a unary operator a →
a∗, if the derived unary operator a → a∼ := a∗′ satisfies the only rule of
interconnection
(IR) ∀a, a∼′ = a∼∼
then, the following statements are mutually equivalent among them for any ele-
ment a:

(S1) a∗ ∨ a∗′ = 1 (modal excluded middle of [25])
(S2) a∗ ∧ a∗′ = 0 (modal noncontradiction of [25])
(S) a∼ ∨ a∼∼ = 1 (Stone condition)

Moreover, under the further condition (C1) of the operator ∗ or equivalently the
condition (wIR) of the operator ∼, they imply the Brouwer noncontradiction law
(B3), or one of the equivalent its formulations (C4) or (I4) stated in Proposition 78.
Formally, for any element a:

under [(wIR)⇔(C1) ], condition (S) implies (B3) ∀a, a ∧ a∼ = 0.
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Proof (S1)⇔ (S2). Indeed, a∗ ∧ a∗′ = 0 iff (a∗ ∧ a∗′)′ = 1 iff a∗′ ∨ a∗ = 1.
(S1)⇔ (S). From (S1), a∗ ∨a∗′ = 1, using the definition a∗ = a∼′, we get a∼′ ∨

a∼′′ = 1, from which, by the interconnection rule (IR), it follows that a∼∼∨a∼ = 1,
i.e., (S). Conversely, from (S), a∼ ∨ a∼∼ = 1, by the (IR) we get a∼ ∨ a∼′ = 1
which, using the definition a∼ = a∗′, leads to a∗′ ∨ a∗′′ = a∗′ ∨ a∗ = 1, i.e., (S1).
Finally, let us consider the condition (S2), equivalent to condition (S). From (C1),
a ≤ a∗, and (S1), a∗ ∧ a∗′ = 0, it follows that 0 ≤ a ∧ a∗′ ≤ a∗ ∧ a∗′ = 0, i.e.,
a ∧ a∗′ = 0, and from a∼ = a∗′ we get a ∧ a∼ = 0. ��
Definition 121 A Stone closure lattice (resp., algebra) is a structure SCL =〈
Σ,∧,∨, ′, ∗, 0, 1

〉
, where

(SC-1) the sub-structure
〈
Σ,∧,∨, ′, 0, 1

〉
is a De Morgan lattice (resp., distributive

lattice);
(SC-2) the mapping ∗ : Σ → Σ is a unary operator satisfying the conditions:

(C1) a ≤ a∗ (increasing = modal T)

(C2K) a∗ ∨ b∗ = (a ∨ b)∗ (additive = modal M and C)

(sC3) a∗ = a∗′∗′ (closure interconnection = modal 5)

(S1) a∗ ∨ a∗′ = 1 (Stone = modal excluded middle)

Therefore, a Stone closure lattice is a Halmos closure lattice which satisfies
besides conditions (C1), (C2K), and (sC3), the condition (S1) equivalent to the
Stone condition (S) a∼ ∨ a∼∼ = 1. In this case the closure operation is called
Stone closure.

Let us recall that, according to Lemma 57, condition (C0) is derived from the
axioms (C1) and (sC3) of a Halmos closure, and so it is true also in the present case
of a Stone closure.

In [27] one can find the following.

Definition 122 A generalized Łukasiewicz (gŁ) algebra is a distributive De Morgan
lattice equipped with a closure operation satisfying the conditions (C0), (C1),
(C2K), and (S1).

Hence, we have that any Stone closure is a gŁ lattice satisfying the further
condition (sC3) of modal 5 principle.

Stone = (C0), (C1), (C2K), (sC3)︸ ︷︷ ︸
Halmos

+(S1) = (C0), (C1), (C2K), (S1)︸ ︷︷ ︸
g-Łukasiewicz

+(sC3)

(75)

Therefore,

generalized Łukasiewicz algebras $⇒ Stone closure algebras (76)
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1 = 0

d = c = d

a = b e = e b = a

c = d = c

1 = 1∗

d = a∗ = b∗ = d∗

a e = e∗ b

c = c∗

0 = 1 0 = 0∗

Fig. 27 Non distributive lattice equipped with a Kleene (non standard) negation at the left side
and a Halmos no Stone closure at the right

In the part involving the Halmos closure we have inserted also the condition (C0),
which we have seen is a consequence of the axioms (C1) and (sC3). This in order
to compare the corresponding behavior of Stone closure with respect to generalized
Łukasiewicz closure in which this condition is independent from the other three
axioms.

In general Halmos closures are not Stone, as Example 123 shows.

Example 123 Let us consider the Hasse diagrams of two non-distributive lattices
described in Fig. 27. On the left side of the figure we have a Kleene lattice and at
the right side a Halmos closure lattice.

The lattice drawn in the left side is not distributive (a ∨ e) ∧ b = b 
= c = (a ∧
b)∨(e∧b), the negation ′ is Kleene but it is not standard (a∧a′ 
= 0 and a∨a′ 
= 1).
The closure ∗ at the right side is Halmos but it is not Stone (a∗ ∧ a∗′ = c 
= 0 and
b∗ ∨ b∗′ = d 
= 1). This Halmos is such that condition (C4), equivalent to (B3), of
Proposition 78 is not satisfied (a′ ∨ a∗ = d 
= 1).

Proposition 124 In a Stone closure lattice, SCL = 〈Σ,∧,∨, ′, ∗, 0, 1
〉
, equipped

with the further impossibility operation a→ a∼ = a∗′, all the following properties
are mutually equivalent among them:

(C4) a∗ ∨ a′ = 1 (B3) a ∧ a∼ = 0 (I4) ao ∧ a′ = 0,

(S1) a∗ ∨ a∗′ = 1 (S2) a∗ ∧ a∗′ = 0 (S) a∼ ∨ a∼∼ = 1.

Proof A Stone closure lattice is in particular a De Morgan lattice and so, owing to
Lemma 78, conditions (C4), (B3), and (I4), are mutually equivalent and also owing
to Proposition 120 conditions (S1), (S2), and (S), are mutually equivalent.
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Let now (C4) be true: a∗ ∨ a′ = 1. From this a ∧ a∗′ = 0 follows; applying this
latter to a∗ we obtain a∗ ∧ a∗∗′ = 0. But we have seen that in a Halmos closure
lattice Proposition 59 assures that condition (C2), a∗∗ = a∗, holds and so we obtain
that a∗ ∧ a∗′ = 0, i.e., (S2). Conversely, let (S2) be true: a∗ ∧ a∗′ = 0. Since in
Halmos closures condition (C1), i.e., a ≤ a∗, holds we have that 0 ≤ a ∧ a∗′ ≤
a∗ ∧ a∗′ = (po1) = 0, i.e., a ∧ a∗′ = 0, which implies that a′ ∨ a∗ = 1. ��
Remark 125 In the notion of generalized Łukasiewicz algebra previously discussed
it is involved the condition (S1) and we have asserted that this is the definition one
can find in [27]. To tell the truth in the definition of [27] it is involved the condition
(C4) instead of the equivalent (S1).

From the logical equivalence between the characterizing Stone lattice axiom (S1)
and condition (B3) proved in Proposition 124, the further important result follows.

Theorem 126 In a Stone closure lattice SCL = 〈Σ,∧,∨, ′, ∗, 0, 1
〉
, the impossi-

bility operation a → a∼ = a∗′ satisfies all the properties defining an intuitionistic
(i.e., Brouwer) negation

(B1) ∀a ∈ Σ , a ≤ a∼∼ (weak double negation law)
(B2) ∀a, b ∈ Σ , a ≤ b implies b∼ ≤ a∼ (B-contraposition law)

equivalent to the condition (B-dM1) (see Proposition 72)
∀a, b ∈ Σ , (a ∨ b)∼ = a∼ ∧ b∼ (first B-De Morgan law)

(B3) ∀a ∈ Σ , a ∧ a∼ = 0 (noncontradiction law)

Hence, the structure BZL = 〈Σ,∧,∨, ′, ∼, 0, 1
〉

is a real Brouwer Zadeh
(BZ) lattice, i.e., a bounded lattice 〈Σ,∧,∨, 0, 1〉 equipped with a De Morgan (or
Zadeh) negation a → a′ and a Brouwer (or intuitionistic) negation a → a∼, with
(according to Lemma 69) these two negations linked by the

(IR) ∀a ∈ Σ , a∼′ = a∼∼ (interconnection rule)

In other words we have stated that any Stone closure lattice SCL induces a
Brouwer Zadeh lattice BZL. But in [25, Appendix] one can find the proof of the
converse of this result: any Brouwer Zadeh lattice BZL induces a Stone closure
lattice SCL. These two results can be schematized by the categorical isomorphism:

Stone closure lattices ⇐⇒ Brouwer Zadeh (BZ) lattices (77)

Since a Stone closure lattice is in particular a Halmos closure lattice, all the
results proved in Theorem 76 are valid also in this case, with some further property
due to the axiom (S1) and its equivalent formulation (B3).

Theorem 127 Let SCL = 〈Σ,∧,∨, ′, ∗, 0, 1
〉

be a Stone closure lattice with the
induced equivalent BZ lattice BZL = 〈Σ,∧,∨, ′, ∼, 0, 1

〉
by the translation rules

a∼ = a∗′ and a∗ = a∼′.
Then, the sub-structure CO = 〈E (Σ),∧,∨, ′, 0, 1

〉
based on the collection of all

exact (crisp, clopen) elements E (Σ) = C (Σ) = O(Σ) is an orthocomplementation
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lattice, i.e., a lattice equipped with a mapping ′ : E (Σ)→ E (Σ) satisfying the three
conditions:

(dM1) ∀e ∈ E (Σ), a = a′′ (involution)
(dM2) ∀e, f ∈ E (Σ), (e ∨ f )′ = e′ ∧ f ′ (first De Morgan law), equivalent to

the

(dM2a) ∀e, f ∈ E (Σ), (e ∧ f )′ = e′ ∨ f ′ (second De Morgan law), in
its turn equivalent to

(dM2b) ∀e, f ∈ E (Σ), e ≤ f implies f ′ ≤ e′ (contraposition law).

(oc-a) ∀e ∈ E (Σ), a ∧ a′ = 0 (noncontradiction), equivalent to the
(oc-b) ∀e ∈ E (Σ), a ∨ a′ = 1 (excluded middle).

Proof A Stone closure lattice, as particular Halmos closure lattice, owing to
Theorem 76, has the sub-structure CO of lattice equipped with a negation mapping
e ∈ E (Σ) → e′ ∈ E (Σ) which satisfies the De Morgan conditions (dM1) and
(dM2). But the validity on BZL of the axioms (B3) ∀a ∈ Σ a ∧ a∼ = 0 and the
identity ∀e ∈ E (Σ) e∼ = e′ lead to the noncontradiction law ∀e ∈ E (Σ) e∧e′ = 0,
from which it follows the excluded middle law ∀e ∈ E (Σ) 1 = (e ∧ e′)′ = e′ ∨ e.

��
Remark 128 In the development of this section we have adopted the notational
convention relative to the (TL) language of topological lattices. In particular if we
consider as primitive the Stone closure a∗ of a, then one obtains ao = a′∗′ for
the Stone interior. Conversely, if the primitive is the Stone interior ao of a, then
the corresponding closure is a∗ = a′o′. Formally, we can consider the one-to-one
correspondence

a∗ = a′o′ ←→ ao = a′∗′ (78)

If we consider the translation of the topological language (TL) into the modal
logic language (ML), we have that μ(a) = a∗ = ¬ν¬(a) represents the possibility
connective and ν(a) = ao = ¬μ¬(a) the necessity connective.

Similarly to the definition introduced in Remark 98, but in the context of a
quasi BZ lattice structure characterized by the weak interconnection rule (wIR),
in the case of a BZ lattice BZL = 〈Σ,∧,∨, ′, ∼, 0, 1

〉
, characterized by the

interconnection rule (IR), we can introduce the anti-Brouwer complement defined
as

∀a ∈ Σ, a� := a′∼′. (79)

It is now easy to show that the anti-Brouwer complementation mapping � : Σ → Σ ,
a→ a� on the BZ lattice Σ satisfies the conditions:

(AB1) ∀a ∈ Σ , a�� ≤ a, (anti-weak double negation law)
(AB2) ∀a, b ∈ Σ , a ≤ b implies b� ≤ a�,
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equivalent to the condition (B-dM2)
∀a, b ∈ Σ , (a ∧ b)� = a� ∨ b� (second B-De Morgan law)

(AB3) ∀a ∈ Σ , a ∨ a� = 1 (excluded middle law)

Remark 129 Before making the considerations of the present remark, let us recall
the identification between modal operators:

μ(a) = ¬ν¬(a)←→ ν(a) = ¬μ¬(a). (80)

Now, applying the definition ∀a, a� = a′∼′, to the element a = α′ we get that
∀α, α′ � = α∼′, from which we obtain that ∀α, α∼ = α′ � ′. On the other hand, the
identities a� = a′∼′ and ao = a′∼ lead to a� = ao′. So, in this case we have the
identification:

a∼ = a∗′ = a′�′ ←→ a� = ao′ = a′∼′ (81a)

In the (MP) language, and corresponding notations, the complement ∼ (a) =
¬μ(a) = a∗′ represents the impossibility as non-possible (or Brouwer negation),
and /(a) = ¬ν(a) = ao′ represents the contingency as non-necessary (or anti-
Brouwer negation). Therefore, the above identification can be rewritten as follows:

∼ (a) = ¬/¬(a)←→ /(a) = ¬ ∼ ¬(a). (81b)

So we can consider the two structures,

SCL = 〈Σ,∧,∨,¬, μ,∼, 0, 1〉 (Stone closure lattice with Brouwer negation)

aSIL = 〈Σ,∧,∨,¬, ν, / , 0, 1〉 (Stone interior lattice with anti-Brouwer negation)

which can be identified according to the identifications (80) and (81b),

SCL←→ aSIL.

18 Łukasiewicz Closure Lattices and BZ Lattices Satisfying
the Brouwer Second De Morgan Law

In this section we consider another version of closure operator whose definition,
introduced in [27] under the condition of lattice distributivity, is the following one.

Definition 130 A Łukasiewicz (Ł) closure lattice is a structure LCL =〈
Σ,∧,∨, ′, ∗, 0, 1

〉
such that

(Ł1) the sub-structure
〈
Σ,∧,∨, ′, 0, 1

〉
is a bounded De Morgan lattice;

(Ł2) the mapping ∗ : Σ → Σ is a unary operation satisfying the conditions:
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(C1) a ≤ a∗ (increasing = modal T)

(C2M) a∗ ∧ b∗ = (a ∧ b)∗ (multiplicative = dual modal M and C)

(sC3) a∗ = a∗′∗′ (closure interconnection = modal 5)

(C4) a′ ∨ a∗ = 1 (Stone = modal excluded middle)

This unary operation is called Łukasiewicz closure operation. Let us recall that
condition (C0), i.e., 0 = 0∗, is deduced from conditions (C1) and (sC3).

From this definition it is possible to consider a Łukasiewicz closure as different
from a Stone closure by the fact that it substitutes the distributivity of the join by
possibility, i.e., condition (C2K), with the distributivity of the meet by possibility,
i.e., condition (C2M). But the following result states a link between these two
closures.

Proposition 131 Under axioms (C1) and (sC3), we can state that:

(C2M) a∗ ∧ b∗ = (a ∧ b)∗ $⇒ (C2K) a∗ ∨ b∗ = (a ∨ b)∗.

Proof Let a ≤ b, then a = a ∧ b from which a∗ = (a ∧ b)∗ follows. Applying to
this latter the condition (C2M) we obtain that a∗ = a∗ ∧ b∗, i.e., a∗ ≤ b∗. In other
words, (C2M) implies (C2a) and so, making use of Proposition 61, we conclude that
(C2M) implies (C2K). ��

Conditions (C1), (C2K), (sC3), and (C4) are the ones which defines a Stone
closure, and so Łukasiewicz closure lattices can be redundantly considered as Stone
closure lattices for which the further condition (C2M) holds:

Łukasiewicz = (C1), (C2K), (sC3), (C4)⇔ (S1)︸ ︷︷ ︸
Stone

+ (C2M) (82)

As a consequence of this result we have the following implication:

Łukasiewicz closure lattices $⇒ Stone closure lattices (83)

The Hasse diagram of the below Example 132 shows a not distributive Stone
closure lattice which is not Łukasiewicz.

Example 132 Let us consider the not distributive ((c ∧ d) ∨ a = a 
= c = (c ∨
a) ∧ (d ∨ a)) orthocomplemented lattice equipped with a Stone closure drawn in
Fig. 28. This lattice is Stone since for any element x one has that x∗ ∧ x∗′ = 0. The
condition (C2M) is not satisfied since a∗ ∧ b∗ = 1 
= 0 = (a ∧ b)∗, i.e., this is a
Stone closure which is not Łukasiewicz.

Remark 133 The Stone closure equipped with this further (C2M) condition has
been introduced and widely discussed in [30] as algebraic semantic of a stronger
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Fig. 28 Six element not
distributive Stone closure,
without condition (C2M)

1 = 0 = 1∗
a∗ = b∗ = c∗ = d∗

c = d d = c

a = b b = a

0 = 1 = 0∗

version of the S5-like modal logic, where condition (C2M) is denoted as (MDμ).
Term “like” as usual denoting the fact that the involved lattice structure is not
necessarily Boolean and “stronger” in the sense that all the algebraic versions of
S5 modal logic principles are verified plus the unusual further modal principle
(MDμ)=(CM2). In [30] this structure has been called MDS5 closure lattice, but
according to the just given discussion MDS5 closure lattices are nothing else than
Łukasiewicz closure lattices.

Lemma 134 In a De Morgan lattice, once introduced two unary operators a→ a∗
and a → a∼ linked by the relationships a∗ = a∼′ and a∼ = a∗′, the following
statements are equivalent for any pair of elements a, b:

(B-dM2) a∼ ∨ b∼ = (a ∧ b)∼ (second B-De Morgan law)

(C2M) a∗ ∧ b∗ = (a ∧ b)∗ (closure multiplicative condition)

Proof a∼ ∨ b∼ = (a ∧ b)∼ ⇔ (a∼ ∨ b∼)′ = (a ∧ b)∼′, where the implication
⇐ is consequence of property (dM1) of the De Morgan negation. Now applying
property (dM2) of the De Morgan negation the following identity holds (a∼∨b∼)′ =
a∼′ ∧ b∼′, and so a∼ ′ ∧ b∼ ′ = (a ∧ b)∼ ′, i.e., a∗ ∧ b∗ = (a ∧ b)∗. ��

So, as consequence of Lemma 134 one obtains that the structures of “Łuka-
siewicz closure lattice” and of “BZ lattices satisfying the (B-dM2) condition (i.e.,
BZ dM lattices)” are equivalent between them:

Łukasiewicz closure lattices ⇐⇒ BZdM lattices (84)
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18.1 The Distributive Case

In [27, definition 4.2] the notion of Łukasiewicz algebra is introduced according to
the following definition.

Definition 135 A structure
〈
Σ,∧,∨, ′, ∗, 0, 1

〉
is a Łukasiewicz algebra iff〈

Σ,∧,∨, ′, 0, 1
〉

is a distributive De Morgan lattice and the following axioms
are satisfied by the closure operation:

(C0) 0 = 0∗ (0 closure = modal P)

(C1) a ≤ a∗ (increasing = modal T)

(C2M) a∗ ∧ b∗ = (a ∧ b)∗ (multiplicative = modal M and C for possibility)

(C4) a′ ∨ a∗ = 1 (Stone = modal excluded middle)

But from the crucial property of the uniqueness of the Boolean complement
in distributive lattices, in the appendix A of [27] the following result has been
proved:

• Lemma A2. Any Łukasiewicz algebra, making use of all the axioms (C0), (C1),
(C2M), and (C4), satisfies the condition (sC3) ∀a ∈ Σ , a∗ = a∗′∗′.

This lemma is obtained with a slight modification of an analogous result proved by
Monteiro in [80] in a system stronger than the Łukasiewicz one. This lemma allows
one to state that any Łukasiewicz algebra is nothing else than a Łukasiewicz closure
lattice of Definition 130 satisfying the further condition of distributivity.

Proposition 136 The following categorical isomorphism holds:

Distributive Łukasiewicz closure lattices ⇐⇒ Łukasiewicz algebras (85)

Proof Let Σ be a distributive Łukasiewicz closure lattice. Then in particular
conditions (C1) and (sC3) hold, and so, applying Lemma 57, condition (C0), 0 = 0∗,
follows.

Conversely, let Σ be a Łukasiewicz algebra. Then, Σ is distributive and
conditions (C1), (C2M), and (C4) hold. Moreover, lemma A2 implies that condition
(sC3) is satisfied. ��

The following example shows not only the independence in a distributive
Boolean lattice of axiom (C0) from all the other axioms (C1), (C2M), and (S1),
but also the importance of axiom (C0) in proving lemma A2.

Example 137 In the Hasse diagram of Fig. 29 we show a distributive Boolean lattice
which satisfies conditions (C1), (C2M), and (S1), but not (C0). That is, it is not a
Łukasiewicz algebra.
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Fig. 29 Classical Boolean
lattice without the condition
0 = 0∗ (indeed, 0 < 0∗)

1 = 0 = 1∗
0∗ = a∗ = b∗

a = b b = a

0 = 1

Fig. 30 Classical Stone
closure lattice which is not a
Łukasiewicz algebra

1 = 0 = 1∗
a∗ = b∗

a = b b = a

0 = 1 = 0∗

This lattice is Boolean because it is distributive with the negation a → a′ which
satisfies besides the conditions (dM1) and (dM2) also the condition that for every
element x it is x ∧ x ′ = 0 and x ∨ x ′ = 1. Trivially, 0 < 0∗, and so condition (C0)
is not satisfied. From the fact that (C0) is not true, the above lemma A2 cannot be
proved since the condition (C0) is essential in its proof. Indeed, we have 1∗′∗ = 1 
=
0 = 1∗′.

The following is an interesting property of Łukasiewicz algebras, whose proof
can be found in [80, theorem 4.3].

Theorem 138 In a Łukasiewicz algebra Σ the De Morgan negation ′ is indeed a
Kleene negation, that is the axiom “(K) ∀a, b ∈ Σ, a ∧ a′ ≤ b ∨ b′” is satisfied.

A modification of Example 137 shows a classical Stone closure lattice which is
not a Łukasiewicz algebra.

Example 139 Figure 30 shows the Hasse diagram of a classical Stone closure lattice
which is not a Łukasiewicz algebra.

This is a classical Stone closure: classical in the sense that the orthocomple-
mented lattice sub-structure is distributive (Boolean lattice). This classical Stone
closure is not Łukasiewicz since condition (C2M), ∀x, y, x∗ ∧ y∗ = (x ∧ y)∗, does
not hold: indeed in the particular case of x = a and y = b it is a∗ ∧ b∗ = 1 
= 0 =
(a ∧ b)∗.

Let us note that a fortiori the lack of condition (C2M) does not allow to prove
lemma A2.

With a merge of two different classical Stone closure lattices of Example 139 we
now give another example of a (non distributive) Stone closure lattice which is not
a (non distributive) Łukasiewicz closure lattice.
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1 = 0 = 1∗
a∗ = b∗ = c∗ = d∗

a = b b = a c = d d = c

0 = 1 = 0∗

Fig. 31 Stone closure on a modular lattice describing two one-half spins

Example 140 The Hasse diagram drawn in Fig. 31 shows a non distributive,
precisely modular, Stone closure lattice which is not a Łukasiewicz closure.

This orthocomplemented lattice is modular (if x ≤ z, then x∨(y∧z) = (x∨y)∧z
holds), condition which implies orthomodularity (if x ≤ z, then x ∨ (x ′ ∧ z) = z

holds), i.e., it is a fd-quantum lattice. As in the case of Example 139 the unary
operator ∗ is a Stone closure which is not Łukasiewicz.

19 Fuzzy Set Theory as Paradigmatic Concrete Model
of Łukasiewicz Algebra

Given a concrete universe of points X, in several sections of the chapter we have
investigated some properties of the collection F (X) of all fuzzy sets based on X.
Formally, we recall that

f ∈ F (X) iff ∀x ∈ X, 0 ≤ f (x) ≤ 1. (86)

We have also considered the crisp or exact sets, whose collection has been
denoted by E (X), defined as the mappings u : X → [0, 1] (i.e., u ∈ F (X)) which
are idempotent with respect to the product of functions. Formally,

u ∈ E (X) iff u ∈ F (X) and u2 = u (87a)

iff ∀x ∈ X, 0 ≤ u(x) ≤ 1 and u2 = u (87b)

From this definition it immediately follows that E (X) = {0, 1}X, i.e., it is the
collection of all {0, 1} (or two) valued functions defined on X. A little explanation
relatively to the adopted formalism. Given two generic fuzzy sets f, g ∈ F (X)

their product is still a fuzzy set, denoted by f · g ∈ F (X) and defined by the law
∀x ∈ X, (f · g)(x) := f (x) · g(x). In the particular case of f = g it is customary
to set f · f = f 2.
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As well known, crisp sets coincide with characteristic functions of some subset
A ∈P(X) of X, defined by the rule χA(x) := 1 if x ∈ A, and= 0 otherwise (which
as mappings belonging to {0, 1}X are crisp sets), in the sense that the following
holds:

u ∈ E (X) iff ∃A ∈P(X) s.t. u = χA. (88)

Two particular examples of crisp sets are the identically zero function 0 and the
identically one function 1, defined for every x ∈ X by the laws 0(x) := 0 and
1(x) := 1, respectively. In other words 0 = χ∅, the characteristic function of the
empty set, and 1 = χX, the characteristic function of the whole universe.

Trivially, the assignment to any characteristic function χA ∈ E (X) of the subset
A ∈P(X) is not only a bijection, which we denote by the notation χA ←→ A, but
also an isomorphism between the two Boolean algebras

〈{0, 1}X,∧,∨, ′, 0, 1
〉

and
〈P(X),∩,∪, c,∅,X〉. Indeed,

χA ∧ χB = χ(A∩B) ←→ A ∩ B

χA ∨ χB = χ(A∪B) ←→ A ∪ B

(χA)
′ = χAc ←→ Ac

0 = χ∅ ←→ ∅
1 = χ

X
←→ X

A genuine, that is not crisp, fuzzy set is the one-half fuzzy set 1/2 : X → [0, 1],
defined for ∀x ∈ X by the law 1/2(x) := 1

2 .
Finally, for any given fuzzy set f ∈ F (X) in the sequel we are interested to the

following subsets of X generated by f :

A1(f ) := {x ∈ X : f (x) = 1} (the certainty domain)

A0(f ) := {x ∈ X : f (x) = 0} (the impossibility domain)

Ap(f ) := A0(f )c = {x ∈ X : f (x) 
= 0} (the possibility domain)

Now we verify that it is possible to give to F (X) a structure of distributive
bounded lattice equipped with a Łukasiewicz closure operator, i.e., F (X) is a
Łukasiewicz algebra.

(Ł-F1) The set F (X) is a poset with to the partial order relation defined as follows:

f ≤ g iff ∀x ∈ X, f (x) ≤ g(x) (89)

Trivially, this poset is bounded by the least fuzzy set 0 and the greatest fuzzy
set 1, since with respect to this partial ordering the above equation (86)
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becomes:

∀f ∈ F (X), 0 ≤ f ≤ 1.

The poset F (X) turns out to be a distributive lattice with respect to the
two lattice operations defined for any pair of fuzzy sets f, g ∈ F (X) and
any point of the universe x ∈ X as follows:

(f ∧ g)(x) = min{f (x), g(x)} (90a)

(f ∨ g)(x) = max{f (x), g(x)} (90b)

This lattice is complete since these two lattice operations can be extended
to any arbitrary family of fuzzy sets

{
fj
} ⊆ F (X).

(Ł-F2) The De Morgan negation on F (X) is given by the correspondence f ∈
F (X)→ f ′ := (1− f ) ∈ F (X), where

∀x ∈ X, f ′(x) := 1− f (x).

This is indeed a Kleene negation since the following conditions are easily
verified:

(dM1) ∀f ∈ F (X), f = f ′′ (involution or double negation law);
(dM2b) ∀f, g ∈ F (X), f ≤ g implies g′ ≤ f ′ (contraposition law);

(K) ∀f, g ∈ F (X), f ∧ f ′ ≤ 1/2 ≤ g ∨ g′ (Kleene condition).

In particular we have that 1/2 ∧ (1/2)′ = 1/2 
= 0 (the noncontradiction
principle does not hold) and 1/2 ∨ (1/2)′ = 1/2 
= 1 (the excluded middle
principle does not hold). In this case we say that the Kleene negation
is genuine since the presence of the genuine fuzzy set 1/2 forbids the
possibility that ′ is an orthocomplementation.

(Ł-F3) The closure operator on F (X) is given by the correspondence f ∈
F (X)→ f ∗ ∈ F (X), where

∀x ∈ X, f ∗(x) := χAp(f )(x). (91)

That is, it is the characteristic function of the possibility domain of the fuzzy
set f .

It is easy to prove that ∗ satisfies all the conditions (C0), (C1), (C2M),
and (C4), of Definition 135 characterizing a Łukasiewicz algebra. Let us
recall that f ∗ is interpreted as possibility of the fuzzy set f , denoted by
μ(f ), in the algebraic model of modal logic.

As to the condition (S1), equivalent to (C4), first of all let us consider
that for a given subset A ∈ P(X) of the universe X it is (1 − χA) = χAc .
From this we get that f ∗ ∨ f ∗′ = f ∗ ∨ (1− f ∗) = χAp(f ) ∨ χAp(f )c = 1.
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Therefore,

• the structure
〈
F (X),∧,∨, ′, ∗, 0, 1, 1/2

〉
is a Łukasiewicz algebra containing

the half element 1/2. Note that (1/2)′ = 1/2 and (1/2)∗ = 1.

The interior operator on F (X) is then defined in the usual way for a generic
fuzzy set f as “necessity= Not-possibility-Not”:

f o = f ′∗′ = χA1(f ). (92)

That is, it is the characteristic function of the certainty domain of the fuzzy set f .
If we adopt the logical notation of interior of a fuzzy set as ν(f ) = f o, then we
have that the collection of all open elements with respect to this interior is O(X) :=
{f ∈ F (X) : f = ν(f )} = {0, 1}X. So this family coincides with the above defined
family E (X) of all crisp sets, i.e., O(X) = E (X). As expected,

ν(f ) = f o = χA1(f ) ≤ f ≤ χAp(f ) = f ∗ = μ(f ).

(BZdM-F) The impossibility operator on F (X), given by the correspondence f ∈
F (X)→ f∼ ∈ F (X), is defined for any fuzzy set f as “impossibility
= Not-possibility”:

∀x ∈ X, f∼(x) = f ∗′(x) = χA0(f )(x). (93)

That is, it is the characteristic function of the impossibility domain of f
(and is the fuzzy set explicitly formulated in Sect. 8.2 by Eq. (86)).

Note that for a fixed subset A of X the impossibility of its charac-
teristic function χA is (χA)

∼ = χAc , and so one has that for any fuzzy
set f it is f∼∼ = χAp(f ), the characteristic function of the possibility
domain, which is just f∼∼ = f ∗ (see Eq. (91)).
Therefore, as consequence of Proposition 131 applied to the present
case which assures that any Łukasiewicz closure lattice, and so any
Łukasiewicz algebra, is a Stone closure lattice, and of Theorem 126
applied to the present case (with the conclusion (77)) we have that

• the Łukasiewicz algebra of all fuzzy sets on X,

〈
F (X),∧,∨, ′, ∗, 0, 1, 1/2

〉
,

induces a BZ De Morgan (BZdM) distributive lattice structure〈
F (X),∧,∨, ′, ∼, 0, 1, 1/2

〉
(as consequence of Lemma 134).
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This means that all the standard Brouwer negation properties are
satisfied:

(B1) ∀f ∈ F (X), f ≤ f∼∼ (weak double negation law);
(B2) ∀f, g ∈ F (X), f ≤ g implies g∼ ≤ f∼ (B-contraposition

law) [equivalent to the first B-De Morgan law (B-dM1)
∀f, g ∈ F (X), (f ∨ g)∼ = f∼ ∧ g∼]; furthermore, it
holds

(B-dM2) ∀f, g ∈ F (X), (f ∧g)∼ = f∼∨g∼ (second B-De Morgan
law);

(B3) ∀f ∈ F (X), f ∧ f∼ = 0.

Finally, the strong interconnection rule trivially holds:

(IR) ∀f ∈ F (X), f∼ c = f∼∼.

Since for any fuzzy set f ∈ F (X) all the above unary operations f ∗ (Eq. (91)), f o

(Eq. (92)), and f∼ (Eq. (93)) define crisp sets, we have the further identifications:

f ∗ = χAp(f ) ←→ Ap(f ) = {x ∈ X : f (x) 
= 0}
f o = χA1(f ) ←→ A1(f ) = {x ∈ X : f (x) = 1}
f∼ = χA0(f ) ←→ A0(f ) = {x ∈ X : f (x) = 0}

Łukasiewicz algebras, as particular case of (distributive) Stone closure lattices and
so also of (distributive) Halmos closure lattices, have the set of all exact elements
characterized by the identities expressed by Eq. (31). From this it follows that the
fuzzy set f is exact in Stone closure theory (f = f∼∼) iff f is crisp in fuzzy set
theory (∃A ∈P(X) s.t. f = χA, i.e., f ∈ E (X)).

19.1 Rough Set Representations of Fuzzy Sets

After this discussion and according to the general theory, in the fuzzy sets case the
rough approximation of f is the interior (necessity)-closure(possibility) pair

r(f ) = (f o, f ∗) = (χA1(f ), χAp(f )), with A1(f ) ⊆ Ap(f ). (94)

The orthogonality relation between fuzzy sets, f ⊥ g iff f ≤ g′, see Sect. 4.1,
has the form f + g ≤ 1, i.e., the sum f + g ∈ F (X) is a fuzzy set. Formally,

∀f, g ∈ F (X), f ⊥ g iff f + g ∈ F (X) (95)

In the particular case of two crisp sets χA, χB ∈ E (X) we have that

χA ⊥ χB iff A ∩ B = ∅ (96)
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In the context of fuzzy set theory we prefer to represent the rough approximation of
f in an equivalent way as the interior(necessity)-exterior (impossibility) orthopair
as follows.

r⊥(f ) := (f o, f∼) = (χA1(f ), χA0(f )

)
, with A1(f ) ∩ A0(f ) = ∅. (97)

This orthopair representation belongs to the general collection of all orthopairs of
crisp sets, denoted as

(E (X)× E (X))⊥ := {(χA, χB) ∈ E (X)× E (X) : χA ⊥ χB} .

Then, since there is a bijective identification between crisp sets and subsets, χA ∈
E (X) ←→ A ∈ P(X), we can summarize all this discussion about the orthopair
rough approximation of a fuzzy set f by the diagram of Fig. 32, where the orthopair
of crisp sets r⊥(f ) = (χA1(f ), χA0(f )) is identified with the orthopair of subsets
ext (f ) = (A1(f ),A0(f )), called the extension of f . This orthopair representation
belongs to the collection of all orthopairs of subsets of the universe X, denoted as

(P(X)×P(X))⊥ := {(A1, A0) ∈P(X)×P(X) : A1 ∩ A0 = ∅} .

Formally, the identification is

r⊥(f ) = (χA1(f ), χA0(f )) ←→ ext (f ) = (A1(f ),A0(f )) (98)

All this can be summarized by the diagram of Fig. 32:

Fig. 32 The extensional representation ext (f ) of the fuzzy set f by orthopairs of fuzzy sets,
χA1(f ) ⊥ χA0(f ), bijectively identified with orthopairs of subsets of the universe
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19.2 From the Algebra of Fuzzy Sets to the Algebra
of Orthopairs

The result of the representation of a fuzzy set f by its extension as the orthopair
ext (f ) = (A1(f ),A0(f )) of subsets of the universe X can be described as the
mapping

ext : F (X)→ (P(X)×P(X))⊥, f → ext (f ) = (A1(f ),A0(f )) (99)

with respect to which we have the following result.

Proposition 141 The extensional mapping ext : F (X) → (P(X) ×P(X))⊥ is
surjective.
The restriction of ext to the family E (X) of all crisp sets is a bijection χA � (A,Ac)

from E (X) onto (P(X),P(X))⊥,c := {(A,Ac) : A ∈P(X)} ⊆ (P(X) ×
P(X))⊥, subset of (P(X)×P(X))⊥ consisting of all crisp orthopairs.

Proof For every orthopair (A1, A0) ∈ (P(X)×P(X))⊥ there exists the fuzzy set

f1,0 = 1
2

(
χA1 + χAc

0

)
= 1

2χ(A1∪A0)
c+χA1 s.t. A1(f1,0) = A1 and A0(f1,0) = A0.

Trivially, for any pair (A,Ac) the crisp set χA is such that ext(χA) = (A,Ac).
Moreover, if (A,Ac) 
= (B,Bc), i.e., if A 
= B, then χA 
= χB . ��

The results of this proposition can be represented by the diagrams of Fig. 33.
We have seen that the family of all fuzzy sets F (X) has a structure of

Łukasiewicz algebra

〈
F (X),∧,∨, ′, ∗, 0, 1, 1/2

〉
,

with half element 1/2 and induced impossibility operator f∼ = f ∗′ which confers
to F (X) an algebraic structure of Brouwer Kleene (BK) distributive (complete)
lattice.

On the contrary, (P(X) ×P(X))⊥ lacks an algebraic structure of any kind. In
this subsection we will proceed according to a constructive procedure to assign a
precise algebraic operation to orthopairs in such a way that it corresponds to the
algebraic operation on fuzzy sets.

Fig. 33 At the left side it is represented the extension of a fuzzy set by an orthopair of subsets. At
the right side we have the corresponding extensional representation of a crisp set, identified with a
subset of the universe, where π(1) is the canonical projection on the first component
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Fig. 34 Commutative diagrams for the construction of ext (f ′), at the left side, and of ext (f ∗), at
the right side

Let us start with the explicit construction in order to obtain in the (P(X)2)⊥ :=
(P(X) × P(X))⊥ context the unary operations corresponding to the opera-
tions ′ and ∗ of the structure F (X). First of all, let us note that A1(f

′) =
{x ∈ X : f (x) = 0} = A0(f ) and A0(f

′) = {x ∈ X : f (x) = 1} = A1(f ), and
so ext (f ′) = (A1(f

′), A0(f
′)) = (A0(f ),A1(f )).

Similarly, from Eq. (91), we have that A1(f
∗) = {x ∈ X : f (x) 
= 0} = Ap(f )

and A0(f
∗) = {x ∈ X : f (x) = 0} = Ap(f )c. From these results we are able to

construct the commutative diagrams of Fig. 34.
In other words, we have obtained:

ext (f ′) = −(A1(f ),A0(f )) = (A0(f ),A1(f )) (100a)

ext (f ∗) = ♦(A1(f ),A0(f )) = (Ap(f ),Ap(f )c) (100b)

Now, without any diagram, we list all the connectives in (P(X)2)⊥ obtained
by the corresponding connectives in F (X), denoting by � the one corresponding
to ∧ and by � the one corresponding to ∨. We prove the only first case. From
(f ∧ g)(X) = min{f (x), g(x)} we have that A1(f ∧ g) = {x ∈ X :
f (x) = 1 and g(x) = 1} = A1(f ) ∩ A1(g), but A0(f ∧ g) =
{x ∈ X : f (x) = 0 or g(x) = 0} = A0(f ) ∪ A0(g). Hence,

ext (f ∧ g) : = (A1(f ),A0(f )) � (A1(g),A0(g)) = (101a)

= (A1(f ) ∩ A1(g),A0(f ) ∪ A0(g)) (101b)

ext (f ∨ g) : = (A1(f ),A0(f )) � (A1(g),A0(g)) = (101c)

= (A1(f ) ∪ A1(g),A0(f ) ∩ A0(g)) (101d)

Moreover,

ext (0) : = (∅,X), ext (1) := (X,∅) and ext (1/2) := (∅,∅) (101e)

On the basis of these results related to the connectives of (P(X)2)⊥, considered
as primitives and expressed by Eqs. (100) and (101), or by a direct computation
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from Eqs. (92) and (93), we can obtain the further realizations:

ext (f o) := �(A1(f ),A0(f )) = (A1(f ),A1(f )c) (102a)

ext (f∼) :=∼ (A1(f ),A0(f )) = (A0(f ),A0(f )c) (102b)

Note that all the extensions expressed by Eqs. (100b) and (102) are particular cases
of the extensions of crisp sets:

∀χA ∈ E (X), ext (χA) = (A,Ac).

This result allows the identification between the collection of all crisp orthopairs
and the power set of X:

(A,Ac) ∈ (P(X)2)⊥,e ←→P(X) 2 A

In this way, once denoted by α0 = ext (0), α1 = ext (1), and α1/2 = ext (1/2),
we have now the correspondence between the two structures

F(X) = 〈F (X),∧,∨, ′, ∗, 0, 1, 1/2
〉 $⇒

P(X)⊥ =
〈
(P(X)2)⊥,�,�,−,♦, α0, α1, α1/2

〉 (103)

where we know that F(X) is a Łukasiewicz algebra.
Let us now associate with any fuzzy set f : X → [0, 1], whose range is the

unit compact interval [0, 1] of the real line R, the three valued fuzzy set f3 : X →
{0, 1/2, 1} defined by the rule

∀x ∈ X, f3(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if f (x) = 0

1/2 if f (x) 
= 0 andf (x) 
= 1

1 if f (x) = 1

Denoting by F3(X) := {0, 1/2, 1}X the collection of all three-valued fuzzy sets on
the universe X, we have that f3 ∈ F3(X). If now we introduce the further subset of
the universe X determined by the fuzzy set f ∈ F (X),

Au(f ) := {x ∈ X : f (x) 
= 0, 1} (uncertainty domain)

then we have that

f3 = χA1(f ) + (1/2)χAu(f ).

Then, it is easy to verify the following equalities: A1(f3) = A1(f ) and
A0(f3) = A0(f ). So, we can define the extension of the three valued fuzzy set f3 as
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Fig. 35 Graphical relationship between the extension ext (f ) of the fuzzy set f and the extension
Ext(f3) of its three valued representation f3

Ext(f3) := (A1(f3), A0(f3)). Once introduced the mapping Ψ :F (X)→ F3(X)

defined by the correspondence f ∈ F (X) → Ψ (f ) := f3 ∈ F3(X), we have the
equality:

∀f ∈ F (X), ext(f ) = (A1(f ),A0(f )) = (A1(f3), A0(f3)) = Ext(f3).

In other words,

∀f ∈ F (X), ext (f ) = Ext(Ψ (f )).

These results can be summarized by the diagram of Fig. 35:
The structure

〈
F3(X),∧,∨, ′, ∗, 0, 1, 1/2

〉
, where the involved operations are

the restriction to F3(X) of the just ones defined on F (X) (F3(X) is closed with
respect to all these operations), turns out to be a Łukasiewicz algebra satisfying the
further condition:

∀f3 ∈ F3(X), f3 ∧ f ′3 = f ∗3 ∧ f ′3 (104a)

or in the modal logic notation:

∀f3 ∈ F3(X), f3 ∧ ¬f3 = μ(f3) ∧ ¬f3. (104b)

19.3 Łukasiewicz Algebra of Orthopairs of Subsets
from the Universe X

The extension mapping ext : F (X) → (P(X),P(X))⊥, which assigns
in a surjective way to any fuzzy set f ∈ F (X) its extension ext (f ) =
(A1(f ),A0(f )), with A1(f ) ∩ A0(f ), is indeed a mapping from the Łukasiewicz
algebra

〈
F (X),∧,∨, ′, ∗, 0, 1

〉
onto the collection of all orthopairs (P(X) ×

P(X))⊥ which at the moment has no lattice structure. Let us now equipped this
set of orthopairs with the following operations.

(A1, A0) � (B1, B0) := (A1 ∩ B1, A0 ∪ B0) (lattice meet)
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(A1, A0) � (B1, B0) := (A1 ∪ B1, A0 ∩ B0) (lattice join)

−(A1, A0) := (A0, A1) (Kleene negation)

♦(A1, A0) := (A1,X \ A1) (modal possibility)

O := (∅,X) (least element)

I = (X,∅) (greatest element)

H := (∅,∅) (half element)

The partial order relation induced by the lattice operations is the following:

(A1, A0) ' (B1, B0) iff A1 ⊆ B1 and B0 ⊆ A0

The obtained structure A(X) = 〈(P(X)×P(X))⊥,�,�, −, ♦,O, I,H〉 turns
out to be a Łukasiewicz algebra with (unique) half element H such that H = −H.
A complete treatment of this argument is developed in the Chapter “Rough Objects
in Monoidal Closed Categories” of this book, where it is shown that A(X) has a
structure of BBdM algebra with respect to the operations −(A1, A0) = (A0, A1)

and

∼ (A1, A0) = −♦(A1, A0) = (X \ A1, A1) (impossibility).

Note that this Łukasiewicz algebra is not three valued, i.e., the condition
analogous to the one expressed by Eq. (104b) does not hold since in general (and as
consequence of the fact that in general A1 ∪ A0 
= X):

(A1, A0) � −(A1, A0) = (∅, A1 ∪ A0) 
= (∅,X) = ♦(A1, A0) � −(A1, A0)

Moreover, the extensional mapping ext : F (X) → (P(X) ×P(X))⊥, f →
ext (f ) = (A1(f ),A0(f )) is a surjective homomorphism of Łukasiewicz algebras,
whose restriction to the collection F3(X) of all three valued fuzzy sets Ext :
F3(X) → (P(X) × P(X))⊥, f3 → Ext(f3) = (A1(f3), A0(f3)) =
(A1(f ),A0(f )) is only one-to-one.

Example 142 Let X = [0, 10] be the closed interval of the real line R. Let us
consider the three valued fuzzy set f3 = (1/2)χ[1,2) + χ[2,5] + (1/2)χ(5,9]. Then,
f ′3 = χ[0,1)+ (1/2)χ[1,2)+ (1/2)χ(5,9] +χ(9,10] and f ∗3 = χ[1,9]. From these we get
f3∧f ′3 = (1/2)χ[1,2)∪(5,9] and f ∗3 ∧f ′3 = (1/2)χ[1,2)∪(5,9], and so f3∧f ′3 = f ∗3 ∧f ′3.

On the other hand, Ext(f3) = ([2, 5], [0, 1) ∪ (9, 10]), Ext(f ′3) = ([0, 1) ∪
(9, 10], [2, 5]), and Ext(f ∗3 ) = ([1, 9], [0, 1) ∪ (9, 10]). Hence, Ext(f3) �
Ext(f ′3) = (∅, [0, 1) ∪ [2, 5] ∪ (9, 10] and Ext(f ∗3 ) � Ext(f ′3) = (∅, [0, 1) ∪
[2, 5] ∪ (9, 10]), i.e., Ext(f3) � Ext(f ′3) = Ext(f ∗3 ) � Ext(f ′3).
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Note that Ext(f ′3) = ([0, 1) ∪ (9, 10], [2, 5]) = −Ext(f3), but

Ext(f ∗3 ) = ([1, 9], [0, 1)∪ (9, 10]) 
= ([2, 5],X) = ♦Ext(f3)

so the closure operation is not preserved.

19.4 Łukasiewicz Algebraic Structure in the Pawlak Partition
Space Case

Always following the complete treatment performed in Chapter “Rough Objects in
Monoidal Closed Categories” of this book, let us consider a partition space (X, π)

essential structure of the Pawlak approach to rough set theory, with the cardinality
of X finite: |X| < ∞. Then the power set P(X, π) is a Brouwer Boolean (BB)
algebra with respect to the operations

¬A := X \A and ≈ A = ∪ {G ∈ π : G ⊆ Hc
}

(105)

We have just seen that the collection of all orthopairs from the universe
A(X) := {(A1, A0) ∈P(X)2 : A1 ∩ A0

}
has a structure of Ł algebra with respect

to the pair of operations −,♦ or, equivalently, of BBdM algebra with respect to the
pair of operations−,∼.

In this finite partition case we can consider also the collection of all rough
representations of subsets of the universe
R(X) := {(ν(A),≈ (A)) ∈ (P(X)2)⊥ : A ∈P(X)

}
, where

ν(A) := ∪ {G ∈ π : G ⊆ A} , (106)

is the interior-necessity of A.
In Chapter “Rough Objects in Monoidal Closed Categories” one can find the

direct proof that R(X) has a structure of BKdM algebra with respect to the pair of
operations −,∼, or, equivalently, of Łukasiewicz closure distributive lattice with
respect to the pair of operations−,♦, based on a Kleene algebra with respect to the
single operation −; for the sake of simplicity this kind of structure will be denoted
by ŁK.

Let us recall the definition of the closure-possibility of A

μ(A) := ∪ {G ∈ π : G ∩ A 
= ∅} (107)

Finally, the collection of all exact, also crisp, subsets of X is defined as follows

E (X) := {E ∈P(X) : ν(E) = E} = {F ∈P(X) : μ(F) = F } . (108)

which has a structure of Alexandroff topology with respect to the usual set
theoretical operations.
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20 Łukasiewicz Algebras and BZdM Algebras

We can summarize the results obtained in Sect. 19.3 by the following statements.

• The structure IA(X) := 〈A(X),�,�, −, ♦,O, I,H〉 is a Ł algebra (with respect
to the operations −,♦), or equivalently a BBdM algebra (with respect to the
operations−,∼= −♦).

• The structure IR(X) := 〈R(X),�,�, −, ♦,O, I,H〉 is a ŁK algebra (with
respect to the operations −,♦), or equivalently a BKdM algebra (with respect
to the operations−,∼= −♦).

• Note that in IR(X) the Kleene negation−(ν(A),≈ A) = (≈ (A), ν(A)) cannot
be a Boolean negation. So IR(X) is not a BBdM algebra.

• Let us recall that in IA(X) in general the three valued identity (whose algebraic
formulation will be denoted by (L3-b) in the sequel) does not hold, since the
general condition A1 ∪ A0 
= X leads to

(A1, A0) � −(A1, A0) 
= ♦(A1, A0) � −(A1, A0)

So, IA(X) cannot be a three valued Łukasiewicz (Ł3) algebra.
• Consequently, also the ŁK algebra IR(X) does not satisfy the three valued

identity (L3-b) (since in general ν(A)∪ ≈ (A) 
= X).

20.1 Three Valued Łukasiewicz Algebras, BZ3 Algebras,
and Nelson Algebras

We have seen that the collection of all three valued fuzzy sets has a structure of
Łukasiewicz algebra written in modal logical notation as

〈F3(X),∧,∨, ¬, μ, 0, 1, 1/2〉 ,

satisfying the further condition (104b)

∀f3 ∈ F3(X), f3 ∧ ¬f3 = μ(f3) ∧ ¬f3.

This condition characterizes a Łukasiewicz algebra as a three valued Łukasiewicz
algebra, introduced and developed by Moisil in [75, 76] in order to study the three-
valued logic of Łukasiewicz [70] on the concrete three valued set Σ = {0, 1/2, 1}.
This algebra has been successively axiomatized in an abstract formulation by
A. Monteiro [80], with a further contribution of L. Monteiro in [79] (and see also
[33–35]). We present here the definition introduced by D. Becchio in [4, 5].
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Definition 143 (Becchio [4]) A three-valued Łukasiewicz algebra (Ł3 algebra) is
a system

〈Σ,∧,∨,¬, μ, 0, 1〉 , where

(L3-1) the sub-structure 〈Σ,∧,∨,¬, 0, 1〉 is a Kleene algebra (distributive
Kleene lattice),

(L3-2) satisfying the characterizing axioms

(L3-a) ¬a ∨ μ(a) = 1

(L3-b) ¬a ∧ μ(a) = ¬a ∧ a.

In [4] it is given the proof that from these two axioms it follows the further condition
(L3-c) μ(a ∧ b) = μ(a) ∧ μ(b), i.e., the above Definition 143 is equivalent to the
Monteiro definition of [80] ([34, 35]).

Definition 144 (Monteiro [79]) A three-valued Łukasiewicz algebra (Ł3 algebra)
is a system

〈Σ,∧,∨,¬, μ, 0, 1〉

which is a Kleene algebra equipped by a unary operation μ : Σ → Σ satisfying the
following conditions:

(L3-a) ¬a ∨ μ(a) = 1

(L3-b) ¬a ∧ μ(a) = ¬a ∧ a

(L3-c) μ(a ∧ b) = μ(a) ∧ μ(b).

The following is an interesting property of three valued Łukasiewicz algebras,
whose proof can be found in [80, Theorem 4.3].

Theorem 145 In a three valued Łukasiewicz algebra Σ the De Morgan comple-
mentation ′ is indeed a Kleene complementation, that is the axiom “(K) ∀a, b ∈
Σ, a ∧ a′ ≤ b ∨ b′” is satisfied.

In [27, Thorem 5.6] it is shown that any Ł3 algebra, according to the just given
Definition 143, is a Ł algebra according to Definition 135:

Three valued Łukasiewicz algebras $⇒ Łukasiewicz algebras (110)

It is interesting to quote from [81]: “Three valued Łukasiewicz algebras play in
the study of the trivalent propositional calculus of Łukasiewicz an important and
analogous role to that of Boolean algebras in the study of classical propositional
calculus.”
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We have seen that Stone closure lattices and Łukasiewicz lattices (resp., alge-
bras), are categorically equivalent to BZ and BZdM lattices (resp., algebras),
respectively. Now we investigate the categorical equivalence of three valued
Łukasiewicz algebras and some kind of BZ structure. At this purpose, and according
to [27, Definition 5.2 and Theorem 5.2], we give the following.

Definition 146 A BZ3 lattice (resp., algebra) is a BZdM lattice (resp., algebra) Σ
that satisfies the further condition:

(BZ3) ∀a ∈ Σ, a∨ ∼ a = a ∨ ¬a.

Example 147 A prototypical BZ3 algebra is based on the three element set BZ3 =
〈0, 1/2, 1〉 equipped with the operations defined for any pair of elements a, b:

a ∧ b := min {a, b} , (111a)

a ∨ b := max {a, b} , (111b)

¬a := 1− a, (111c)

∼ a := 1 if a = 0, and = 0 otherwise. (111d)

In [27, Theorem 5.7] it is stated the following categorical isomorphism.

Theorem 148 Ł3 algebras 〈Σ,∧,∨,¬μ, 0, 1〉 and BZ3 algebras 〈Σ,∧,∨,¬,∼,
0, 1〉 are categorically isomorph between them by the definitions

∼ (a) := ¬μ(a) and μ(a) := ¬ ∼ (a).

That is

Three valued Łukasiewicz algebras ⇐⇒ BZ3algebras (112)

Example 149 A prototypical Ł3 algebra is based on the set of three elements
C0 = {0, 1/2, 1} whose (distributive) lattice operations are defined for any pair
of elements a, b as follows:

a ∧ b := min {a, b} and a ∨ b := max {a, b} .

The following table shows the primitive operations of negation ¬ and possibility
μ in the first two columns, then the remaining columns represent the operations of
necessity ν = negμ¬, impossibility (Brouwer negation)∼= ¬μ, and contingency
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(anti-Brouwer negation) � = μ¬ = ¬ ∼ ¬, respectively.

a ∈ C0 ¬(a) μ(a) ν(a) ∼ (a) �(a)

0 1 0 0 1 1
h h 1 0 0 1
1 0 1 1 0 0

Of course, the structure 〈C0,∧,∨,¬, μ, 0, 1〉 is the three element Ł3 algebra, and
the structure 〈C0,∧,∨,¬,∼, 0, 1〉 is the corresponding three element BZ3 algebra.

Note that the negations¬ and � are those introduced by Rasiowa in [99, p. 82], in
the development of the three element Nelson algebra denoted by her with C0, using
the symbols ∼ (instead of our ¬) and ¬ (instead of our �).
In order to increase the notational confusion A. Monteiro in [81] adopts the symbol
� instead of our μ and put /(a) = �¬(a) which corresponds to our �(a) = μ¬(a).

20.2 Nelson Algebras and Three Valued Łukasiewicz Algebras

In dealing with algebraic methods to describe roughness one can find another line of
thought based on Nelson algebras [87, 88], and that is the topic of another chapter
of this book. Let us start the discussion on the algebras of Nelson following an
interesting article of A. Monteiro [81] where, after the standard Definition 144 of
three valued Łukasiewicz algebra, one can find the following definition of Nelson
algebra.

Definition 150 A Nelson algebra is a system NA = 〈Σ,∧,∨,→,¬, 0, 1〉 where

(Nel-1) the sub-structure 〈Σ,∧,∨,¬, 0, 1〉 is a Kleene algebra (distributive
Kleene lattice),

(Nel-2) satisfying the following conditions

(N1) a→ a = 1

(N2) a ∧ (a→ b) = a ∧ (¬a ∨ b)

(N3) (a→ b) ∧ (¬a ∨ b) = ¬a ∨ b

(N4) a→ (b ∧ c) = (a→ b) ∧ (a → c)

(N5) a→ (b→ c) = (a ∧ b)→ c.

We expose now the results of Lemmas 3.2, 3.3, and Theorem 3.4 of [81] in the
form of a single theorem where we translate the Monteiro notation /a = �¬(a) in
the notation /(a) = μ¬(a) = �(a) (recall the above Example 149).
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Theorem 151

(a) If in a three valued Łukasiewicz algebra
LA = 〈Σ,∧,∨,¬, μ, 1〉 we set

/a := μ¬a and a→ b := /a ∨ b,

then the system NA = 〈Σ,∧,∨,→,¬, 1〉 is a Nelson algebra such that

(N0) a ∨ /a = 1,

moreover one has that

(Pos) μ(a) = ¬(a → 0).

(b) Let NA = 〈Σ,∧,∨,→,¬, 1〉 be a Nelson algebra such that: (N0) a∨/a = 1,
and if we set

μa := ¬a→ 0 = /¬a,

then the system LA = 〈Σ,∧,∨,¬, μ, 1〉 is a three valued Łukasiewicz algebra
and

(Imp) a→ b = /a ∨ b.

(c) Three valued Łukasiewicz algebras can be identified with the Nelson algebras
satisfying the condition (N0) a ∨ / a = 1. That is

Three valued Łukasiewicz algebras ⇐⇒ Nelson algebras + (N0)

(113)

From this it follows that

Three valued Łukasiewicz algebras $⇒ Nelson algebras (114)

Example 152 In the context of the three element Ł3 algebra C0 = {0, 1/2, 1}
treated in Example 149, the implication connective of Theorem 151, a → b = /a∨b
where /a = �a = μ¬a, has the table representation

→ 0 h 1

0 1 1 1
h 1 1 1
1 0 h 1



150 G. Cattaneo

This table coincides with what one can find in the Rasiowa book [99, p. 82]
as the three element example of what is defined with the name of quasi-pseudo-
Boolean algebra (named as Nelson algebra in the A. Monteiro approach). In section
1. Definition and elementary properties (p. 68) of the same book the involved
algebraic structure contains another implication connective, denoted by ⇒, which
seems to be a primitive notion of the structure. This contrasts with the demonstration
of the (qpB4) condition which can be found on the same page and which affirms the
following equality a ⇒ b = (a → b) ∧ (¬b → ¬a). In this way ⇒ is a notion
which can be derived from the real primitive notions → and ¬. In any case the
tabular representation of⇒ in C0 according to this derived notion assumes the form

⇒ 0 h 1

0 1 1 1
h h 1 1
1 0 h 1

Note that this is the three element table of the implication connective of the
Łukasiewicz approach to many-valued logics (see [101, pp. 23 and 36])

a ⇒ b := min {1, 1− a + b} =
{

1 if a ≤ b

1− a + b otherwise

21 Conclusions and an Open Problem

Concluding our investigation about algebraic methods for describing rough approx-
imations, and summarizing, we can state that in the case of the power set P(X, π)

of the universe X equipped with a partition π ,

(AM1) the algebraic system IR(X) based on the collection of all crisp orthopairs
(ν(A),≈ A), is

(IR-1) a Kleene distributive lattice equipped with a Łukasiewicz closure,
called a ŁK algebra, or equivalently

(IR-2) a Kleene distributive lattice equipped with a Brouwer negation
satisfying the second B-De Morgan condition (B-dM2), called a
BKdM algebra.

(AM2) The rough approximation space by orthopairs is the system 〈P(X),E (X),

r⊥,c
〉

where

(RAS-1) P(X) is the collection of all approximable subsets of the uni-
verse,
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(RAS-2) E (X) is the collection of all definable, also crisp or exact, subsets
obtained by the partition π ,

(RAS-3) r⊥,c :P(X)→ E (X)× E (X) is the ortho-rough approximation
mapping associating with any approximable subset A ∈ P(X)

its ortho-rough approximation by crisp sets r⊥,c(A) := (ν(A),≈
A), under the orthogonality condition ν(A)∩ ≈ A = ∅.

I want conclude this chapter with an interesting open problem linked to the
implication expressed by Eq. (114) of Theorem 151 which states that every three
valued Łukasiewicz algebra is a Nelson algebra. On the other hand, Eq. (113) allows
us to identify three valued Łukasiewicz algebras with the Nelson algebras satisfying
the (N0) condition.

The open problem consists in determining a categorical isomorphism between
Nelson’s algebras and some generalized form of Łukasiewicz algebras. In other
words, is there any generalized algebra of Łukasiewicz categorically equivalent to
the algebra of Nelson?

This can be represented by the following reformulation of Eqs. (113) and (114):

BZ 3-lattice ⇐⇒ 3-Łukasiewicz alg. ⇐⇒ Nelson alg. + (N0)

with corresponding open problems underlined by interrogation marks

BZ ???-lattice ⇐⇒ (???)-Łukasiewicz alg. ⇐⇒ Nelson alg.

We can suggest a conjecture, based on some reasonable heuristic argumentations,
(and that in any case it should be proved) that the structure characterized by
the interrogation marks (???) could be Łukasiewicz algebras of Definition 135 of
page 131 and BZdM algebras.

This would make it possible to complete points (IR-1) and (IR-2) of the above
(AM1) with the further result:

(IR-3) the algebraic system IR(X) based on the collection of all crisp orthopairs
(ν(A),≈ A), can be equivalently formulated as a Nelson algebra.
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Algebraic Methods for Granular
Rough Sets

A. Mani

Abstract Granules are the building blocks of concepts of different types in soft
computing and rough sets in particular. These granules can be defined in ways that
are related to computing or reasoning strategies associated. In this broad perspective,
at least three concepts of granular computing have been studied in the literature.
The axiomatic approach in algebraic approaches to general rough sets had been
introduced in an explicit formal way by the present author. Most of the results and
techniques that are granular in this sense are considered critically in some detail in
this research chapter by her. It is hoped that this work will serve as an important
resource for all researchers in rough sets and allied fields.

1 Introduction

In any general reasoning or computational context, the concepts or objects of
primary interest may be definable or be computable in terms of relatively better
defined or optimal concepts or objects called granules (or information granules).
Such contexts are said to be granular and concepts of granular computing and
reasoning are spoken of. The terms granular computing and information granules
have been around for at least forty years in computational intelligence. Adaptations
of these concepts to rough sets have received more attention during the later part of
the nineties of the last century.

Few concepts of granularity are known in the literature on computational intelli-
gence in general and rough sets in particular. In the older precision-based approach
granules are defined in loose terms as sets of attributes sharing similar functionality
or similarity or indistinguishability. In the axiomatic approach due to present author
[91], granules are objects that bear some relationship with approximations and their
construction. More specifically, all approximations are required to be representable
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by granules in a weak sense, granules are required to be lower definite in a sense,
and all pairs of distinct granules are required to be contained in definite objects. This
concept of granule has been justified by the wide spectrum of available use cases.

When appropriate concept of granules cannot be identified in a context then
related semantics is said to be non granular (non granular rough sets to be precise).
Many of the granular and non-granular rough approaches have nice algebraic
semantics associated. The validation of the distinction between granular and non-
granular is well reflected in the differences in semantics. Related material has
however been either dense or distributed across the literature. In this research
exposition semantics of granular rough sets is presented in a coherent way with
substantial enhancements and new results by the present author.

The literature on algebraic approaches to rough sets is huge. Some relevant
papers that touch or cover major trends include

• [4, 82–86, 90–92, 95, 97, 106],
• [5–7, 52, 66, 88–90, 94, 98–100, 103, 105, 159],
• [11, 18–20, 29, 38, 42, 44, 45, 45, 49, 53, 57, 58, 100, 106, 114, 127, 131, 143,

163, 165, 170, 174, 181],
• [22, 41, 47, 60, 63, 70, 76, 78, 111, 112, 115, 117–119, 121, 134, 136, 161],
• [59, 61, 73, 75, 120, 123, 124, 126, 139, 141, 157, 160, 164, 166, 171, 175, 179],
• [1, 10, 31, 40, 46, 48, 50, 61, 64, 103, 105, 113, 116, 133, 140, 154, 167, 173].

Granular computing may be considered from a precision based or axiomatic
point of view. Semantics relating to the two differ substantially and not all rough
set approximations are granular in a functional way. Algebraic methods for granular
rough sets (see for example [91, 98, 99, 105, 106]) differ from those used for other
rough sets. In this detailed research chapter, most of the approaches are reviewed or
rewritten from this perspective. Focus has also been placed on comparing multiple
semantics in specific cases. Cover based approximations and their semantics are also
considered in detail from a axiomatic granular approach. Connections with different
perspectives of granularity [174] are also pointed it.

Most of the perspectives relative rough sets can be formulated in the framework
of granular operator spaces and variants thereof introduced and investigated by the
present author in [98, 102, 104, 106]. The frameworks may be seen as special cases
of Rough Y-Systems RYS investigated by her in [90, 91, 97], but are optimal for the
present purposes.

In general, explicit definitions of rough approximations of a subset A of a
universe S used in the literature have at least one of the following forms (for some
function f : S �→ ℘(S) and formula Φl∗ corresponding to approximation operators
lα, lτ, lμ and derived commonality and aggregation operations⊗, ⊕ respectively
and analogously for u. J being a collection of ideals or filters of subset of ℘(S) with
some order structure):

Alα = {x : x ∈ S &Φlα(f (x),A)} (l-Point-wise)

Alτ = {x : x ∈ S & f (x) ∈ G&Φlτ (f (x),A, J)} (l-Co-Granular)
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Alμ = ⊗{H : H ∈ G&Φlμ(H,A)} (l-Granular)

Auα = {x : x ∈ S &Φuα(f (x),A)} (u-Point-wise)

Auτ = {x : x ∈ S & f (x) ∈ G&Φuτ (f (x),A, J)} (u-Co-Granular)

Auμ = ⊕{H : H ∈ G&Φuμ(H,A)} (u-Granular)

This is because in the point-wise approach, neighborhoods of the form f (x)

associated with points x ∈ S (or subsets thereof) are constrained by set theoretical
conditions (usually) involving the approximated set A in question to decide the
membership of the point in the approximation of the set A. An example of
Φlα(f (x),A) is nbd(x) ⊆ A, where the neighbourhood nbd(x) is the successor
neighborhood in a general approximation space.

The concept of co-granular approximations has been defined by the present
author in [104]. It is essentially a higher order approach that and has been explained
in more detail in the section on granular operator spaces. In general, if rough
approximations of a subset X ⊆ S are defined by expressions of the form

X⊕ = {a : γ (a)�X∗ ∈ J}

with ⊕ ∈ {l, u}, G ⊂ ℘(S), γ : S �−→ G being a map, ∗ ∈ {c, 1} and � ∈ {∩,∪} ,
then the approximations are said to be co-granular.

The granular approximations mentioned are derived from the collection of
granules that satisfy some relationship with the set being approximated.

In the literature, most point-wise definitions of approximations are co-granular
in the sense implied by the form. Often references to any specific granulation are
omitted in the point-wise approach and correctly should be considered without addi-
tional assumptions. From the semantic point of view substantial differences exist
between co-granular, granular and point-wise approximation based approaches.
Some aspects of these differences have been made explicit in [105] and other papers
by the present author.

This long research chapter is organized as follows:

• In the following section, different perspectives of granular computing, granules
and granulations are discussed.

• In Sect. 3, granular operator spaces, variants thereof and more details of the
axiomatic approach are discussed.

• Algebraic semantics of classical rough sets is considered in some detail and
breadth next.

• Partial approximation spaces are studied from an improved semantic perspective
in Sect. 5.

• In Sect. 6, tolerance spaces are considered in much depth.
• Algebraic semantics of prototransitive rough sets are presented in the next

section.
• One approach to approximate algebraic semantics is presented next.
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Fig. 1 Dependence between
sections

• Algebraic connections with non-monotonic logic and related representation is
explained in Sect. 9.

• In the following section, granular connections of cover based rough sets is
explored and possible algebraic approaches are reviewed. Quasi order approx-
imation spaces that relate to covers are also studied in the chapter.

• Subsequently choice inclusive algebraic semantics are explained.
• Antichain based semantics is developed in some detail in the following section.
• A specific application of the antichain based approach to quasi-equivalences is

explained next
• Open problems and directions are mentioned in Sect. 14.

The dependency between the different sections is in Fig. 1.
From a semantic perspective, all of the following have been considered for

granular rough sets:

• TQBA related semantics: This collection of semantics relates to interpretation
of rough reasoning from a modal logic perspective and is among the oldest
proposals for classical rough sets.

• Super rough order semantics: This is a higher order semantics due to the present
author that builds on her results in [83] for classical rough sets. The presented
semantics holds for TQBAS as well.
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• Pseudo-complemented lattice related semantics: Double Stone and Stone alge-
bras and variants used as a semantics of rough sets fall under this class of
semantics.

• Nelson algebra related semantics: Nelson algebras and variants have been used in
the semantics of partially ordered sets as approximation spaces and also in proto-
transitive rough sets. The latter is presented in some detail. The former semantics
is not granular and so has not been included in this chapter.

• Semantics of Esoteric Rough Sets: When partial equivalences (partially reflexive,
symmetric and weakly transitive relations) replace the equivalence relation in an
approximation space, then under some additional non-triviality conditions these
are known as esoteric approximation spaces. Semantics of rough sets over such
spaces is also considered in this chapter.

• Higher order semantics for bitten rough sets
• Double Heyting algebras for tolerance spaces
• Heyting algebras for quasi order approximation spaces
• Antichain based semantics
• Choice inclusive semantics
• Approximate Semantics of Proto transitive rough sets and
• PRAX algebras

A number of duality and representation results that relate to this chapter are in the
chapter [107] by the present author in this volume. Nelson, Heyting, Lukasiewicz,
Post and MV-algebra related semantics of point-wise rough sets, and Grothendieck
topologies have been considered in a separate chapter in this volume [122]. In the
preclusivity based approach, Pre-BZMV and BZMV-algebras have been used as a
semantics of classical rough sets and rough sets over tolerance spaces in particular.
The study of ortho pairs in the context of rough sets is closely related. These have
also been dealt with in a separate chapter in this volume [17, 21]. Connections with
modal logics are stressed in [17].

For some cover based rough sets, associated logics are known but the algebraic
semantics are not known in the literature—some directions for filling related gaps
are indicated. New results on correspondences between semantics are also proved
in this research chapter.

Connections with non-granular rough sets has not been considered and omis-
sions include the modal logic approach [6, 22, 124, 173], point-wise cover based
approaches [38, 144], algebras lying between TQBAs and rough algebras [142] and
ideal based approaches [105] In most of these cases, the connection with general
granular rough sets is not known. Mereological approaches that rely on numeric
degrees of membership or inclusion as in [135–137] do not have algebraic models
associated. The rough counting based approach of [91] is a promising granular
approach that has not been included for reasons of space.

The axiomatic approach [89–91, 97] and simplifications to granular operator
spaces[98, 106] invented by the present author are well suited for algebraic
semantics of all kinds of granular rough sets and related representation, duality and
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inverse problems. A major thrust of the chapter will be to reformulate all algebraic
semantics in the perspective.

2 Perspectives of Granularity

In the contexts of rough sets, granules (or information granules) are basically collec-
tions sharing some properties relating to indiscernibility, similarity or functionality
at some levels of discourse.

2.1 Granules and Granulations

A granule may be vaguely defined as some concrete or abstract realization of
relatively simpler objects through the use of which more complex problems may be
solved. They exist relative to the problem being solved in question. From this broad
viewpoint it can be claimed that the basic ideas of granular computing have been in
use since the dawn of human evolution. In earlier papers [91, 95], the present author
has shown that the methods can be classified into the following three forms:

• Primitive Granular Computing Paradigm: PGCP
• Classical Granular Computing Paradigm: CGCP
• Axiomatic Granular Computing Paradigm: AGCP

These have been referred to as paradigms because of their apparent widespread
use and are described in more detail below.

In all theories or theoretical understandings of granularity, the term granules
refer to parts or building blocks of the computational process and granulations to
collections of such granules in the context.

Granular computing can also be understood relative to numeric precision or
relative to axiomatic frameworks [91] with no reference to numeric precision. The
latter problem of defining or rather extracting concepts that qualify as these require
much work in the specification of semantic domains and process abstraction. All
these are discussed in this section.

2.2 Primitive Granular Computing

Even in the available information on earliest human habitations and dwellings, it
is possible to identify a primitive granular computing process at work. This can
for example be seen from the stone houses, dating to 3500 BCE, used in what is
present-day Scotland (see Fig. 2).
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Fig. 2 Dwelling:3500 BCE

If the problem is to construct a certain type of dwelling. Then it can be seen that
the original number of requirements may be very large, that these are often modified
by available primary building materials like clay, rocks, granite, bricks, unbaked
bricks, and compacted clay. Moreover, the tools available to process these can
substantially modify the original plan. That is the problem is modified by accessible
granules.

This principle is often used for problem solving by people in many contexts.
Seasonal variation in production and consumption of vegetables and marine fish in
coastal regions of countries like India are well known. The diet of people that depend
on these variations may be understood in terms of granularity in the primitive sense.
To see this,

• Consider an information table documenting dietary practices with column names
for identity, age, gender, income-group, profession, dietary-item-1, . . . , dietary
item-n, Favorite foods, Ideal diet,. . . or identity, age, gender, income-group,
profession, diet:January, . . . , diet:December, Favorite foods, . . . with the
valuations in the former for dietary items including information about seasons,
expenditure and quantity consumed.

• In both tables, the goal of any subclass of people may be to attain desired
ideal diets. But available granules modify approximations of this and the very
conception of ideal diet. If the only easily available foods that belong to an ideal
diet are too rich in carbohydrates and lacking in protein, then some rethinking of
the concept of ideal diet is necessary.

• The main computing process involves optimal choice of available granules. Fish
of type-1 may be available in winter, but may be scarce and expensive during
other months.
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The main features of this and other primitive versions of the paradigm may be
seen to be

• Problem requirements are not rigid.
• Concept of granules may be vague.
• Little effort on formalization right up to approximately the middle of the previous

century.
• Scope of abstraction is very limited.
• Concept of granules may be concrete or abstract (relative all materialist view-

points).

2.3 Classical Granular Computing Paradigm

Suppose Alice is painting a toilet sign (of the form indicated in Fig. 3) using brushes
of different sizes and a fixed paint palette. Many parts of the sign would be doable
with the help of brushes of different sizes. So, in effect, Alice would be able to use
many distinct subsets of brushes to paint the sign. Any of these choices is associated
with style, the time required to complete the sign and quality. Alice can handle all of
these aspects of the entire context in an approximate way through granular strategies
without reasoning about every possibility, reasoning about every comparison and
reasoning about integrating the result of comparisons.

An example of a granular strategy in the situation can be the following:

• Draw outline of sign using stencils,
• Identify finest and broadest areas,
• Select 1–2 brushes,
• Paint as appropriate,

Fig. 3 WC-Sign
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• Check quality of final work,
• Stop or repeat steps using more appropriate brush sizes.

The above strategy is an example of classical granular computing in the context.
It is because painting brushes are available in fixed standard sizes. It differs
from PGCP in that the form of the sign was preconceived. Brushes are not key
determinants of the final concept.

In [91], the precision based granular computing paradigm was traced to Moore
and Shannon’s paper [109, 152] and named as the classical granular computing
paradigm CGCP by the present author. This is relative to the information-theoretic
perspective. CGCP is often referred to as the granular computing paradigm. CGCP
has since been used in soft, fuzzy and rough set theories in different ways. A useful
(though dated) overview is in [74].

Granules may be assumed to subsume the concept of information granules—
information at some level of precision. In granular approaches to both rough and
fuzzy sets, information granules in this sense are more commonly used in practice.
Some of the fragments involved in applying CGCP may be:

• Paradigm Fragment-1: Granules can exist at different levels of precision.
• Paradigm Fragment-2: Among the many precision levels, a precision level at

which the problem at hand is solvable should be selected.
• Paradigm Fragment-3: Granulations (granules at specific levels or processes)

form a hierarchy (later development).
• Paradigm Fragment-4: It is possible to easily switch between precision levels.
• Paradigm Fragment-5: The problem under investigation may be represented by

the hierarchy of multiple levels of granulations.

It can be argued that CGCP is of very ancient origin and that it has always been
in use after the development of reasonable concepts of precision in human history.
The Babylonian method of computing square roots that dates to at least 500 BC is
the following:

Babylonian Method

• Problem: To compute
√
x, x ∈ R+.

• Initialization: Select an arbitrary value xo close to
√
x.

• Recursion Step: xn+1 = 0.5(xn + x
xn
) for n ∈ Z+

• Repeat previous step till desired accuracy is attained
• This is a quadratically convergent algorithm.
• Good initialization is necessary for fast convergence

The Babylonian method is a special case of many other methods including the
Newton-Raphson method and the modern Householder’s method. The algorithm for
the latter is similar

Theorem 1 If f : R �−→ R is a real function that is r + 1-times differentiable,
then its roots may be approximated by Householder’s recursive algorithm. The
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algorithm’s performance depends on good initialization and the key recurrence step
is

xn+1 = xn + r
( 1
f
)(r−1)(xn)

( 1
f
)(r)(xn)

(1)

If a is a zero of f , but not of its derivative, then in a suitable neighborhood of a,
the following holds:

(∃ε > 0) |xn+1 − a| ≤ ε|xn − a|r+1 (2)

In mathematical contexts, it is possible to indicate concepts of precision in a
number of ways (as in the above context of approximation of zeros of a nonlinear
real function):

• Fixed values of initialization correspond to bounds on the precision of the
solution at different cycles of computation.

• If the precision of the solution desired is alone fixed, then wide variation in
initialization would be admissible.

• If the time required for computation is alone fixed or specified by an interval,
then again wide variation in precision of initialization would be admissible.

This scenario suggests the following problem: Can CGCP be classified or graded
relative to the ways in which the precision can be categorized?

2.4 Axiomatic Granular Computing Paradigm

The axiomatic approach to granularity essentially consists in investigations relating
to axioms satisfied by granules, the very definitions of granules and associated
frameworks. Emphasis on axiomatic properties of granules can be traced to papers in
the year 2007. That is, if covers used in constructing approximations are overlooked.
Neighborhoods had been investigated by a number of authors (see references in
[38, 91, 144, 174]) with emphasis on point-wise approximations. A systematic
axiomatic approach to granules and granulations has been due to the present author
in [89, 91]. Relatively more specific versions of this approach have rich algebraic
semantics associated. Parts of the axiomatic approach developed by the present
author for general rough sets have been known in some form in implicit terms.
But these were not stressed in a proper way because of the partial dominance of the
point-wise approach.

Though Rough Y-Systems are more general, most of the algebraic semantics
associated with general rough sets can be formulated in general granular operator
spaces. So, in this research chapter, the axiomatic approach will be specialized to
the framework.



Granular Rough Semantics 167

The stages of development of different granular computing paradigms are as
below (this supersedes [91]):

• Classical Primitive Paradigm, CGCP till middle of previous century.
• CGCP in Information Theory: Since Shannon’s information theory
• CGCP in fuzzy set theory. It is natural for most real-valued types of fuzzy sets,

but even in such domains unsatisfactory results are normal. Type-2 fuzzy sets
have an advantage over type-1 fuzzy sets in handling data relating to emotion
words, for example, but still far from satisfactory. For one thing linguistic hedges
have little to do with numbers. A useful reference would be [176].

• For a long period (up to 2008 or so), the adaptation of CGCP for rough sets has
been based solely on precision and related philosophical aspects. The adaptation
is described for example in [163, 166, 169]. In [166] the hierarchical structure of
granulations is also stressed. This and many later papers on CGCP (like [74, 75,
77]) in rough sets speak of structure of granulations.

• Some Papers with explicit reference to multiple types of granules from a semantic
viewpoint include [85, 86, 89, 157, 160].

• The axiomatic approach to granularity initiated in [89] has been developed by the
present author in the direction of contamination reduction in [91, 92, 97, 106].
The concept of admissible granules, mentioned earlier, was arrived in the latter
paper. From the order-theoretic algebraic point of view, the deviation is in a new
direction relative to the precision-based paradigm. The paradigm shift includes a
new approach to measures.

2.5 Comparative Actualization in Rough Sets

In the present author’s approach, a rough approximation operator can fall under the
following categories:

• Granular (in the axiomatic sense)
• Co-Granular (this includes many of the point-wise cover and relation-based

approaches) [105]
• Pointwise
• Abstract
• Empirical

This is explained below.
The axiomatic approach has been explained in much depth in this chapter and

the papers [89–91, 97] by the present author. In cover based rough sets, three
kinds of approximations are mentioned in [174]. Of these the subsystem based
approximations would fall under the axiomatic granular approach and are not
non granular. This is because in the approach, granulations are necessarily set-
theoretically derived from covers (while the approximations remain a simple union
of granules).
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Co-granularity was defined in [105] as below:

Definition 2 By a Co-Granular Operator Space By Ideals GOSI will be meant a
structure of the form S = 〈S, σ,G, l∗, u∗

〉
with S being a set, σ being a binary

relation on S, G a neighborhood granulation over S, γ : S �−→ G being a map and
l∗, u∗ being *-lower and *-upper approximation operators : ℘(S) �−→ ℘(S) (℘(S)

denotes the power set of S) defined as below for a collection of some-sense ideals
I, J of ℘(S) (S is replaced with S if clear from the context. Lower and upper case
alphabets may denote subsets ):

(∀X ∈ ℘(S))Xl∗ = {a : a ∈ X & γ (a) ∩Xc ∈ Iσ (S)} (*-Lower)

(∀X ∈ ℘(S))Xu∗ = {a : a ∈ S & γ (a) ∩X /∈ Iσ (S)} ∪X (*-Upper)

In general, if rough approximations of a subset X ⊆ S are defined by expressions
of the form

X⊕ = {a : γ (a)�X∗ ∈ J}

with ⊕ ∈ {l, u}, G ⊂ ℘(S), γ : S �−→ G being a map, ∗ ∈ {c, 1} and � ∈ {∩,∪} ,
then the approximations will be said to be co-granular.

A general definition of point-wise approximations can be proposed in SOPL (or
alternatively, in a fixed language) based on the following loose SOPL version : If S
is an algebraic system of type τ and ν : S �−→ ℘(S) is a neighborhood map on the
universe S, then a point-wise approximation ∗ of a subset X ⊆ S is a self-map on
℘(S) that is definable in the form:

X∗ = {x : x ∈ H ⊆ S &Φ(ν(x),X)} (3)

for some formula Φ(A,B) with A,B ∈ ℘(S).
By empirical approximations is meant a set of approximations that have been

specified in a concrete empirical context. These may not necessarily be based on
known processes or definite attributes. Examples of such approximations have been
discussed by the present author in rough contexts in [91, 103]. The first part of the
main example from [103] is stated below:

Example 3 This example has the form of a narrative that gets progressively
complex.

Suppose Alice wants to purchase a laptop from an on line store for electronics.
Then she is likely to be confronted by a large number of models and offers from
different manufacturers and sellers. Suppose also that the she is willing to spend less
than ex and is pretty open to considering a number of models. This can happen, for
example, when she is just looking for a laptop with enough computing power for
her programming tasks.

This situation may appear to have originated from information tables with
complex rules in columns for decisions and preferences. Such tables are not
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information systems in the proper sense. Computing power, for one thing is a context
dependent function of CPU cache memories, number of cores, CPU frequency,
RAM, architecture of chipset, and other factors like type of hard disk storage.

Proposition 4 The set of laptops S that are priced less than ex can be totally quasi
ordered.

Proof Suppose ≺ is the relation defined according to a ≺ b if and only if price of
laptop a is less than or equal to that of laptop b. Then it is easy to see that ≺ is a
reflexive and transitive relation. If two different laptops a and b have the same price,
then a ≺ b and b ≺ a would hold. So ≺ may not be antisymmetric. ��

Suppose that under an additional constraint like CPU brand preference, the set of
laptops becomes totally ordered. That is under a revised definition of ≺ of the form:
a ≺ b if and only if price of laptop a is less than that of laptop b and if the prices
are equal then CPU brand of b must be preferred over a’s.

Suppose now that Alice has more knowledge about a subset C of models in
the set of laptops S. Let these be labeled as crisp and let the order on C be ≺|C .
Using additional criteria, rough objects can be indicated. Though lower and upper
approximations can be defined in the scenario, the granulations actually used are
harder to arrive at without all the gory details. Note that idea of a laptop being as
good as another is actually about approximations in the scenario.

This example once again shows that granulation and construction of approxima-
tions from granules may not be related to the construction of approximations from
properties in a cumulative way.

3 Granular Operator Spaces and Variants

Granular operator spaces and related variants are not necessarily basic systems in
the context of application of general rough sets. They are powerful abstractions
for handling semantic questions, formulation of semantics and the inverse problem.
These may be seen as abstract operator based approach to rough sets enhanced
with the axiomatic approach to granularity and without point-wise approximations
and negation operations. It is important to stress all these aspects because some
connections between the abstract operator approach and general approximation
spaces from the perspective of point-wise approximations are well known (see
[163]).

Definition 5 A Granular Operator Space[98] S is a structure of the form S =〈
S,G, l, u

〉
with S being a set, G an admissible granulation(defined below) over

S and l, u being operators : ℘(S) �−→ ℘(S) (℘(S) denotes the power set of S)
satisfying the following (S will be replaced with S if clear from the context. Lower
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and upper case alphabets will both be used for subsets ):

al ⊆ a & all = al & au ⊂ auu

(a ⊆ b −→ al ⊆ bl & au ⊆ bu)

∅l = ∅& ∅u = ∅& Sl ⊆ S & Su ⊆ S.

Here, Admissible granulations are granulations G that satisfy the following three
conditions (t is a term operation formed from the set operations ∪,∩,c , 1,∅):

(∀a∃b1, . . . br ∈ G) t (b1, b2, . . . br ) = al

and (∀a) (∃b1, . . . br ∈ G) t (b1, b2, . . . br) = au, (Weak RA, WRA)

(∀b ∈ G)(∀a ∈ ℘(S)) (b ⊆ a −→ b ⊆ al), (Lower Stability, LS)

(∀a, b ∈ G)(∃z ∈ ℘(S)) a ⊂ z, b ⊂ z& zl = zu = z, (Full Underlap, FU)

Remarks

• The concept of admissible granulation was defined for RYS in [91] using
parthoods instead of set inclusion and relative to RYS, P =⊆, P =⊂.

• The conditions defining admissible granulations mean that every approximation
is somehow representable by granules in a set theoretic way, that granules are
lower definite, and that all pairs of distinct granules are contained in definite
objects.

On ℘(S), the relation � is defined by

A � B if and only if Al ⊆ Bl &Au ⊆ Bu. (4)

The rough equality relation on ℘(S) is defined via A ≈ B if and only if A �
B &B � A.

Regarding the quotient ℘(S)| ≈ as a subset of ℘(S), the order 	 will be defined
as per

α 	 β if and only if αl ⊆ βl & αu ⊆ βu. (5)

Here αl is being interpreted as the lower approximation of α and so on. 	 will be
referred to as the basic rough order.

Definition 6 By a roughly consistent object will be meant a set of subsets of S of the
form H = {A; (∀B ∈ H)Al = Bl,Au = Bu}. The set of all roughly consistent
objects is partially ordered by the inclusion relation. Relative this maximal roughly
consistent objects will be referred to as rough objects. By definite rough objects,
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will be meant rough objects of the form H that satisfy

(∀A ∈ H)All = Al &Auu = Au. (6)

Proposition 7 	 is a bounded partial order on S| ≈.

Proof Reflexivity is obvious. If α 	 β and β 	 α, then it follows that αl = βl and
αu = βu and so antisymmetry holds.

If α 	 β, β 	 γ , then the transitivity of set inclusion induces transitivity of
	. The poset is bounded by 0 = (∅,∅) and 1 = (Sl, Su). Note that 1 need not
coincide with (S, S). ��

The concept of general granular operator spaces had been introduced in
[102, 106] as a proper generalization of that of granular operator spaces. The main
difference is in the replacement of⊂ by arbitrary part of (P) relations in the axioms
of admissible granules and inclusion of P in the signature of the structure.

Definition 8 A general granular operator space (GSP) S shall be a structure of
the form S = 〈S,G, l, u,P

〉
with S being a set, G an admissible granulation(defined

below) over S, l, u being operators : ℘(S) �−→ ℘(S) and P being a definable binary
generalized transitive predicate (for parthood) on ℘(S) satisfying the following
conditions (generalized transitivity can be any proper nontrivial generalization
of parthood (see [99]). P is proper parthood (defined via Pab if and only if
Pab&¬Pba) and t is a term operation formed from set operations):

Pala & all = al &Pauauu

(Pab −→ Palbl & Paubu)

∅l = ∅& ∅u = ∅& PSlS & PSuS.

(∀x∃y1, . . . yr ∈ G) t (y1, y2, . . . yr) = xl

and (∀x) (∃y1, . . . yr ∈ G) t (y1, y2, . . . yr) = xu, (Weak RA, WRA)

(∀y ∈ G)(∀x ∈ ℘(S)) (Pyx −→ Pyxl), (Lower Stability, LS)

(∀x, y ∈ G)(∃z ∈ ℘(S))Pxz, &Pyz& zl = zu = z, (Full Underlap, FU)

It is sometimes more convenient to use only sets and subsets in the formalism as
these are the kinds of objects that may be observed by agents and such a formalism
would be more suited for reformulation in formal languages. This justifies the severe
variation defined in [103]:

Definition 9 A Higher Rough Operator Space S shall be a structure of the form
S = 〈S, l, u,≤,⊥,5〉 with S being a set, and l, u being operators : S �−→ S
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satisfying the following (S is replaced with S if clear from the context. ):

(∀a ∈ S) al ≤ a & all = al & au ≤ auu

(∀a, b ∈ S)(a ≤ b −→ al ≤ bl & au ≤ bu)

⊥l = ⊥&⊥u = ⊥&5l ≤ 5&5u ≤ 5
(∀a ∈ S)⊥ ≤ a ≤ 5
S is a bounded poset.

Definition 10 A Higher Granular Operator Space (SHG) S shall be a structure
of the form S = 〈S,G, l, u,≤,∨,∧,⊥,5〉 with S being a set, G an admissible
granulation(defined below) for S and l, u being operators : S �−→ S satisfying the
following (S is replaced with S if clear from the context. ):

(S,∨,∧,⊥,5) is a bounded lattice

≤ is the lattice order

(∀a ∈ S) al ≤ a & all = al & au ≤ auu

(∀a, b ∈ S)(a ≤ b −→ al ≤ bl & au ≤ bu)

⊥l = ⊥&⊥u = ⊥&5l ≤ 5&5u ≤ 5
(∀a ∈ S)⊥ ≤ a ≤ 5

Pab if and only if a ≤ b in the following three conditions. Further P is proper
parthood (defined via Pab if and only if Pab&¬Pba) and t is a term operation
formed from the lattice operations):

(∀x∃y1, . . . yr ∈ G) t (y1, y2, . . . yr ) = xl

and (∀x) (∃y1, . . . yr ∈ G) t (y1, y2, . . . yr) = xu, (Weak RA, WRA)

(∀y ∈ G)(∀x ∈ S) (Pyx −→ Pyxl), (Lower Stability, LS)

(∀x, y ∈ G)(∃z ∈ S)Pxz, &Pyz& zl = zu = z (Full Underlap, FU)

Definition 11 An element x ∈ S will be said to be lower definite (resp. upper
definite) if and only if xl = x (resp. xu = x) and definite, when it is both lower
and upper definite. x ∈ S will also be said to be weakly upper definite (resp weakly
definite) if and only if xu = xuu (resp xu = xuu & xl = x). Any one of these five
concepts may be chosen as a concept of crispness.
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3.1 Rough Objects

The concept of rough objects must necessarily relate to some of the following:

• object level properties of approximations in a suitable semantic domain,
• object level properties of discernibility in a suitable semantic domain,
• object level properties of indiscernibility in a suitable semantic domain,
• properties of abstractions from approximations,
• properties of abstractions of indiscernibility, or
• some higher level semantic features (possibly constructed on the basis of some

assumptions about approximations).

A rough object cannot be known exactly in the rough semantic domain, but can be
represented through various means. This single statement hides deep philosophical
aspects that are very relevant in practice if realizable in concrete terms. The
following concepts of rough objects have been either considered in the literature
(see [91, 103]) or are reasonable concepts:

RL x ∈ S is a lower rough object if and only if ¬(xl = x).
RU x ∈ S is a upper rough object if and only if ¬(x = xu).
RW x ∈ S is a weakly upper rough object if and only if ¬(xu = xuu).
RB x ∈ S is a rough object if and only if¬(xl = xu). The condition is equivalent

to the boundary being nonempty.
RD Any pair of definite elements of the form (a, b) satisfying a < b

RP Any distinct pair of elements of the form (xl, xu).
RIA Elements in an interval of the form (xl, xu).
RI Elements in an interval of the form (a, b) satisfying a ≤ b with a, b being

definite elements.
ET In esoteric rough sets [85], triples of the form (xl, xlu, xu) can be taken as

rough objects.
RND A non-definite element in a RYS(see [91]), that is an x satisfying ¬Pxuxl .

This can have a far more complex structure when multiple approximations are
available.

ROP If a weak negation or complementation c is available, then orthopairs of the
form (xl, xuc) can also be taken as representations of rough objects.

All of the above concepts of a rough object except for the last two are directly
usable in a higher granular operator space.

The positive region of a x ∈ S is xl , while its negative region is xuc – this region
is independent from x in the sense of attributes being distinct, but not in the sense of
derivability or inference by way of rules. These derived concepts provide additional
approaches to specifying subtypes of rough objects and related decision making
strategies.

• POS(x) = xl and NEG(x) = xuc by definition.
• x is roughly definable if POS(x) 
= ∅ and NEG(x) 
= ∅
• x is externally undefinable if POS(x) 
= ∅ and NEG(x) = ∅
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• x is internally undefinable if POS(x) = ∅ and NEG(x) 
= ∅
• x is totally undefinable if POS(x) = ∅ and NEG(x) = ∅

It makes sense to extend this conception in general rough contexts where there
exist subsets x for which xu ⊂ xuu is possible. In the context of cover based rough
sets, the cover is often adjoined to NEG, POS as a subscript as in NEGS and
POSS respectively.

Definition 12 By the strong negative region associated with a subset x ∈ S will be
meant the element

SNEG(x) = xuuc

The reader is invited to construct diagrammatic examples illustrating the above.

3.2 Granularity Axioms

Even when additional lower and upper approximation operators are added to a
general granular operator space, the resulting framework will still be referred to as
a general granular operator space. In such a framework, granules definitely satisfy
some and may satisfy others in the following list of axioms. It is assumed that a
finite number of lower ({li}ni=1) and upper ({ui}ni=1) approximations are used. These
have been grouped as per common functionality. These conditions play a central
role in defining possible concepts of granules. So they are referred to as axioms.

Representation Related Axioms

The central idea expressed by these axioms is that approximations are formed from
granules through set theoretic or more general operations on granules. In classical
rough sets, every approximation is a union of equivalence classes (the granules).

∀i, (∀x)(∃a1, . . . ar ∈ G) a1 + a2 + . . .+ ar = xli and

(∀x)(∃a1, . . . ap ∈ G) a1 + a2 + . . .+ ap = xui (Representability, RA)

In the weaker versions below, approximations are assumed to be representable
by derived terms instead of through aggregation of granules.

∀i, (∀x∃a1, . . . ar ∈ G) ti(a1, a2, . . . ar) = xli and

(∀x)(∃a1, . . . ar ∈ G) ti(a1, a2, . . . ap) = xui (Weak RA, WRA)
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The prefix sub can be used to indicate situations, where only a subset of approxima-
tions happen to be representable.

∃i, (∀x)(∃a1, . . . ar ∈ G) a1 + a2 + . . .+ ar = xli and

(∀x)(∃a1, . . . ap ∈ G) a1 + a2 + . . .+ ap = xui (Sub RA, SRA)

Further subsetting to lower and upper approximations has been indicated in the
following axioms.

∀i, (∀x)(∃a1, . . . ar ∈ G)a1 + a2 + . . .+ ar = xli (Lower RA, LRA)

∀i, (∀x)(∃a1, . . . ap ∈ G) a1 + a2 + . . .+ ap = xui (Upper RA, URA)

∃i, (∀x)(∃a1, . . . ar ∈ G) a1 + a2 + . . .+ ar = xli (Lower SRA, LSRA)

∃i, (∀x)(∃a1, . . . ap ∈ G) a1 + a2 + . . .+ ap = xui (Upper SRA, USRA)

Crispness Axioms

Something is crisp in a sense if it is its own approximation in that sense. This is
quite different from claiming that something is crisp if it cannot be approximated by
anything else. The following crispness axioms of granules concern granules alone.

For each i, (∀a ∈ G) ali = aui = a (Absolute Crispness,ACG)

∃i, (∀a ∈ G)ali = aui = a (Sub Crispness*, SCG)

Crispness Variants: By analogy, the crispness variants LACG, UACG, LSCG,
USCG can be defined as for representability.

Mereological Axioms

The axioms for mereological properties of granules is presented next. The axiom of
mereological atomicity says that no definite elements (relative to any permitted pair
of lower and upper approximations) can be proper parts of granules.

∀i, (∀a ∈ G)(∀x ∈ S)(Pxa, xli = xui = x −→ x = a)

(Mereological Atomicity, MER)

The axiom of sub-mereological atomicity says that no definite elements (relative
to at least one specific pair of lower and upper approximations) can be proper parts
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of granules.

∃i, (∀a ∈ G)(∀x ∈ S)(Pxa, xli = xui = x −→ x = a) (Sub MER,SMER)

The axiom of inward-mereological atomicity says that no definite elements
(relative to every permitted pair of lower and upper approximations) can be proper
parts of granules.

(∀a ∈ G)(∀x ∈ S)(Pxa,
∧

i

(xli = xui = x) −→ x = a)

(Inward MER, IMER)

∀i, (∀a ∈ G)(∀x ∈ S)(Pxa, xli = x −→ x = a) (Lower MER, LMER)

(∀a ∈ G)(∀x ∈ S)(Pxa,
∧

i

(xli = x) −→ x = a) (Inward LMER, ILMER)

MER Variants: The variants UMER, LSMER, USMER, IUMER can be defined
by analogy.

Stability Axioms

The basic idea behind stability of granules is that granules should preserve
appropriate parthood relations relative to approximations. Lower stability, defined
below, says that if a granule is part of an object, then the granule should still be part
of the lower approximation of the object. In general, the same does not hold for all
objects.

∀i, (∀a ∈ G)(∀x ∈ S)(Pax −→ P(a)(xli )) (Lower Stability, LS)

∀i, (∀a ∈ G)(∀x ∈ S)(Oax −→ Paxui ) (Upper Stability, US)

LS & US (Stability, ST)

∃i, (∀a ∈ G)(∀x ∈ S)(Pax −→ P(a)(xli )) (Sub LS, LSS)

∃i, (∀a ∈ G)(∀x ∈ S)(Oax −→ P(a)(xui )) (Sub US, USS)

LSS & USS (Sub ST, SST)
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Overlap Axioms

The possible implications of overlap and underlap relations between granules is
captured by these axioms.

(∀x, a ∈ G)¬Oxa, (No Overlap, NO)

∀i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = zui = z (Full Underlap, FU)

∀i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = z (LFU)

∃i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = zui = z (SFU)

∃i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = z (Sub LFU)

∃i, (∀x, a ∈ G)(Pxz,Paz, zli = zui = z, Pxb,Pab

bli = bui = b −→ z = b) (Unique Underlap, UU)

Idempotence Axioms

Possible idempotence properties of approximation operators relative to granules are
captured by these axioms.

∀i, (∀x ∈ G)xli = xli li (Lower Idempotence, LI)

∀i, (∀x ∈ G)xui = xuiui (Upper Idempotence, UI)

∀i, (∀x ∈ G)xui = xuiui , xli = xli li . (Idempotence, I)

The pre-similarity axiom concerns the relation of commonalities between gran-
ules and parthood.

(∀x, a ∈ G)(∃z ∈ G)P(x · a)(z) (Pre-similarity, PS)

Apparently the three axioms WRA, LS, LU hold in most of the known theories
and with most choices of granules. This has been the main motivation for the
definition of admissibility of a subset to be regarded as a granule in [91] and in
the definition of granular operator spaces.

Granular operator spaces are also related to property systems [121, 124, 145,
146]. The connections are considered in the chapter on representation and duality in
the present volume [107] by the present author.
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3.3 Specific Cases

A small set of examples, that partially justify the formalism of the axioms are
presented in this subsection. More details can be found in [91] and other specific
semantics considered in this chapter.

Theorem 13 In classical rough sets, if G is the set of partitions, then all of RA,
ACG, MER, AS, FU, NO, PS, I, ST hold. UU does not hold in general.

In esoteric rough sets [85], partial equivalence relations (symmetric, transitive
and partially reflexive relations) are used to generate approximations instead of
equivalence relations. In the simplest case, the upper and lower approximations of
a subset A of a partial approximation space 〈S, R〉 are defined via ([x] = {a; Rxa}
being the pseudo-class generated by x)

Al =
⋃
{[x]; [x] ⊆ A}; Au =

⋃
{[x]; [x] ∩ A 
= ∅}.

For more details, see the section on Esoteric rough sets.

Theorem 14 In case of esoteric rough sets [85], with the collection of all pseudo-
classes being the granules, all of RA, MER, NO, UU, US hold, but ACG may
not.

Proof RA, NO follow from the definition. It is possible that [x] ⊂ [x]u, so ACG
may not hold. US holds as if a granule overlaps another subset, then the upper
approximation of the set would surely include the granule. ��

If R is a reflexive relation on a set S and

Al = ∪{[x] : [x] ⊆ A, x ∈ A} and

Au = ∪{[x] : [x] ∩ A 
= ∅ x ∈ A},

(Al ⊆ A ⊆ Au for a binary relation R is equivalent to its reflexivity [158, 165]) then
{[x] : x ∈ S} is a granulation that satisfies:

Theorem 15 RA, LFU holds, but none of MER, ACG, LI, UI, NO, FU holds in
general.

Proof RA holds by definition, LFU holds as the lower approximation of the union
of two granules is the same as the union. It is easy to define an artificial counter
example to support the rest of the statement. ��

Let 〈S, (Ri)i ∈ K〉 be a multiple approximation space [66], then the strong lower,
weak lower, strong upper and weak upper approximations of a set X ⊆ S are
defined as follows (modified terminology):

1. Xls = ⋂i X
li ,

2. Xus = ⋃i X
ui ,
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3. Xlw = ⋃i X
li ,

4. Xuw = ⋂i X
ui .

Theorem 16 In a multiple approximation of the above form, taking the set of
granules to be the collection of all equivalence classes of the Ris, LSRA, USRA,
LSS, USS holds, but all variants of rest do not hold always.

Proof Xlw, Xus are obviously unions of equivalence classes. The LSS, USS part
for these two approximations respectively can also be checked directly. Counterex-
amples can be found in [66]. But it is possible to check these by building on actual
possibilities. If there are only two distinct equivalences, then at least two classes of
the first must differ from two classes of the second. The ls approximation of these
classes will strictly be a subset of the corresponding classes, so CG will certainly
fail for the (ls, us) pair. Continuing the argument, it will follow that SCG, ACG
cannot hold in general. The argument can be extended to other situations. ��

3.4 Properties of Point-Wise Approximations

The basic properties of common point-wise rough approximations is summarized in
this section for reference.

Let S = 〈S,R〉 be a general approximation space with R being a binary
relation. For any subset A ⊆ S, the lower and upper approximations relative to
the predecessor neighborhood are

Al̄ = {a : [a]i ⊆ A& a ∈ S} (inverse lower)

Aū = {a : [a]i ∩ A 
= ∅& a ∈ S} (inverse upper)

Note that some authors refer to predecessor neighborhoods as successor neigh-
borhoods and vice versa [167].

Theorem 17 The point-wise approximations satisfy all of the following properties
(5 = S, ⊥ = ∅:

(∀A ∈ ℘(S))Al̄ = Acūc (L1.S5-Dual)

5l̄ = 5 (L2. L-Top)

(∀A,B ∈ ℘(S)) (A ∩ B)l̄ = Al̄ ∩ Bl̄ (L3)

(∀A,B ∈ ℘(S))Al̄ ∪ Bl̄ ⊆ (A ∪ B)l̄ (L4)

(∀A,B ∈ ℘(S)) (A ⊆ B −→ Al̄ ⊆ Bl̄) (L5)

(∀A ∈ ℘(S))Aū = Acl̄c (U1.S5-Dual)
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⊥ū = ⊥ (U2)

(∀A,B ∈ ℘(S)) (A ∪ B)ū = Aū ∪ Bū (U3)

(∀A,B ∈ ℘(S)) (A ∩ B)ū ⊆ Aū ∩ Bū (U4)

(∀A,B ∈ ℘(S))A ⊆ B −→ Aū ⊆ Bū (U5)

Proof The proof of L1 and U2 is by direct computation. Rest are proved through
set-theoretic arguments of the form: if x is an element of the left hand side, then
because of a series of reasons x is an element of the right hand side. ��

When additional properties are satisfied by the relation R, then more properties
of l̄, ū happen. Converse associations are false in general:

Theorem 18 The statements below should be read as if R satisfies the tagged
property, then the approximations satisfy the indicated property:

(∀X ∈ ℘(S)) xl̄ ⊆ xū (serial, D)

∅l̄ = ∅& Sū = S (Serial, L5,U5)

(∀X ∈ ℘(S))Xl̄ ⊆ X (Reflexive, T)

(∀X ∈ ℘(S))X ⊆ Xū (Reflexive, T′)

(∀X ∈ ℘(S))X ⊆ Xūl̄ (Symmetric, B)

(∀X ∈ ℘(S))Xl̄ū ⊆ X (Symmetric, B′)

(∀X ∈ ℘(S))Xl̄ ⊆ Xl̄l̄ (Transitive, 4)

(∀X ∈ ℘(S))Xūū ⊆ Xū (Transitive, 4′)

(∀X ∈ ℘(S))Xl̄ ⊆ Xl̄ū (Euclidean, 5)

(∀X ∈ ℘(S))Xl̄ū ⊆ Xl̄ (Euclidean, 5′)

The properties L5 and U5 are equivalent to D when R is a serial relation.

The next result characterizes classical rough sets and here the point-wise and
granular definitions coincide:

Theorem 19 Any two operators l̄, ū that satisfy all of the properties L1-L5, U1, the
six properties of reflexive, transitive and symmetric relations coincide with classical
approximation operators.

An early representation theorem that connects the abstract operator based
approach with general approximation spaces was proved in [75]. The result depends
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crucially on the duality property of the lower and upper approximation property. An
improved proof is in [163].

Theorem 20 If H is a set and l and u are maps : ℘(H) �−→ ℘(H) that satisfy all
of

(∀A ∈ ℘(H))Al = Acuc (l-u duality)

∅u = ∅ (U2)

(∀A,B ∈ ℘(H)) (A ∪ B)u = Au ∪ Bu (u-additivity)

then there exists a binary relation R on H , such that l and u coincide with the
point-wise approximations generated by predecessor neighborhoods of R. If in
addition, the following two conditions of inclusivity and idempotence of u hold,
then a reflexive and transitive relation exists that generates the approximation:

(∀A ∈ ℘(H))A ⊆ Au (Inclusivity)

(∀A ∈ ℘(H))Auu = Au (Idempotence)

(∀A ∈ ℘(H))A ⊆ Aucuc (Preclusion)

If in addition, the last condition also holds, then a equivalence relation R can be
found that generates the approximations.

3.5 Granular Operator Spaces and Property Systems

Data can also be expected to be presented in real life predominantly in terms of
approximations and partly in the object-attribute-value way of representing things.
In this context it is important to note that the idea of property systems or related
basic constructors pursued by different authors [43, 124, 174] was never intended
to capture this specific scenario. The examples in [121], in particular, are abstract
ones and the possible problems with basic constructors (when viewed from the
perspective of approximation properties satisfied) are issues relating to construction
and empirical aspects are missed.

Definition 21 A property system[121, 124, 145, 146] Π is a triple of the form
〈U,P,R〉 with U being a universe of objects, P a set of properties, and R ⊆ U ×P

being a manifestation relation subject to the interpretation object a has property b

if and only if (a, b) ∈ R. When P = U , then Π is said to be a square relational
system and Π then can be read as a Kripke model for a corresponding modal system.

On property systems, basic constructors that may be defined for A ⊆ U and
B ⊆ P are

< i >: ℘(U) �−→ ℘(P); < i > (A) = {h : (∃g ∈ A) (g, h) ∈ R} (7)
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< e >: ℘(P) �−→ ℘(U);< e > (B) = {g : (∃h ∈ B) (g, h) ∈ R} (8)

[i] : ℘(U) �−→ ℘(P); [i](A) = {h : (∀g ∈ U)((g, h) ∈ R −→ g ∈ A)} (9)

[e] : ℘(P) �−→ ℘(U); [e](B) = {g : (∀h ∈ P)((g, h) ∈ R −→ h ∈ B)} (10)

It is known that the basic constructors may correspond to approximations under
some conditions and some unclear conditions. Property system are not suitable for
handling granularity and many of the inverse problem contexts. The latter part of
the statement requires some explanation because suitability depends on the way in
which the problem is posed—this has not been looked into comprehensively in the
literature.

If all of the data is of the form

Object X is definitely approximated by {A1, . . . An},

with the symbols X, Ai being potentially substitutable by objects, then the data
could in principle be written in property system form with the sets of Ais forming
the set of properties P—in the situation the relation R attains a different meaning.
This is consistent with the structure being not committed to tractability of properties
possessed by objects. Granularity would also be obscure in the situation.

If all of the data is of the form

Object X ’s approximations are included in {A1, . . . An},

then the property system approach comes under even more difficulties. Granular
operator spaces and generalized versions thereof [102] in contrast can handle all
this.

3.6 Correspondences Between Granules

Ideas of correspondence between granules are important in a wide variety of rough
contexts for the following:

• Semantic correspondences [99]
• Generalized Measures of Rough Sets [92, 95]
• Defining granules, reducts and related structures

In this section, only those aspects relevant for semantics will be considered and most
of the content is based on the material of [90]. The results are specialized to higher
granular operator spaces (with set-union as aggregation ⊕ and set-intersection
as commonality operation �) and proofs have been updated. The concept of a
subnatural correspondence SNC is a refined version of the concept in [90] and
corresponds to [92]. A map from a higher granular operator space S1 to another
S2 will be referred to as a correspondence. It will be called a morphism if and
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only if it preserves the operations ⊕ and �. ⊕-morphisms and �-morphisms
will be used to refer to correspondences that preserve just one of the partial/total
operations. Sub-Natural Correspondences (SNC) are intended to capture simpler
correspondences that associate granules with elements representable by granules
and do not necessarily commit the context to Galois connections. An issue with
SNCs is that it fails to adequately capture granule centric correspondences that may
violate the injectivity constraint and may not play well with morphisms.

Definition 22 Let If S1 and S2 are two higher granular operator space with
granulations, G1 and G2 respectively, consisting of successor neighborhoods or
neighborhoods. A correspondence ϕ : S1 �−→ S2 will be said to be a Proto Natural
Correspondence (PON) (respectively Pre-Natural Correspondence (PNC)) if and
only if the second (respectively both) of the following conditions hold:

1. ϕ|G1 is injective : G1 �−→ G2.
2. there is a term function t in the signature of ℘(S2) such that

(∀[x] ∈ G1)(∃y1, . . . yn ∈ G2) ϕ([x]) = t (y1, . . . , yn).

3. the yis in the second condition are generated by ϕ({x}) for each i ({x} being a
singleton).

An injective correspondence ϕ : S1 �−→ S2 will be said to be a SNC if and only if
the last two conditions hold.

Note that the base sets of higher granular operator space may be semi-algebras
of sets.

Theorem 23 If ϕ is a SNC and both G1 and G2 are partitions, then the non-trivial
cases should be equivalent to one of the following:

(∀{x} ∈ S1)ϕ([x]) = [ϕ({x})]. (B1)

(∀{x} ∈ S1)ϕ([x]) =∼ [ϕ({x})]. (B2)

(∀{x} ∈ S1)ϕ([x]) =
⋃

y∈[x]
[ϕ({y})]. (B3)

(∀{x} ∈ S1)ϕ([x]) =∼ (
⋃

y∈[x]
[ϕ({y})]). (B4)

Proof Intersection of two distinct classes is always empty. If ∼ is defined, then the
second and fourth case will be possible. So these four exhaust all possibilities. ��

Below a useful unpublished result is proved:

Theorem 24 If S1 is the higher granular operator space corresponding to an
approximation space, S2 is the higher granular operator space corresponding to
a tolerance space and ϕ : S1 �−→ S2 is a map such that
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• G1 is the partition of S1 and
• G2 is a system of blocks of S2,
• ξ(a) is the set of blocks including a ∈ S2
• For each x, there is a term function t in the signature of wp(S2) and for some

yi ∈ ξ(ϕ(x)) such that

(∀[x] ∈ G1) ϕ([x]) = t (y1, . . . , yn).

then if ϕ preserves granules, then ϕ([x]) ∈ ξ(ϕ(x)) or G2 is a partition.

Proof Since ϕ preserves granules, it is necessary that

(∀x) t (y1, . . . , yn) ∈ G2

But as G2 is a collection of blocks, if ϕ(x) ∈ t (y1, . . . , yn), then it must be a
block containing ϕ(x) or it must be of the form Bc for a block B containing ϕ(x).
In the latter case, S2 would be a union of two disjoint blocks and therefore {B,Bc}
would be a partition.

To confirm the former case, consider the following terms generated by elements
of ξ(ϕ(x)):

• y1 ∪ A for any nonempty A is not admissible as then a block would be a subset
of another block.

• y1 ∩ A for any nonempty A is not admissible as then a block would be a subset
of another block.

• The form (y1 ∩ yc
2) ∪ (y3 ∪ y4)

c also fails as then a block would be a subset of
another block.

• The form yc
1 has already been dealt with.

• So the conclusion follows.
��

Theorem 25 If S1 is the higher granular operator space corresponding to an
approximation space and S2 is the higher granular operator space corresponding
to a tolerance space with approximations lB∗ and uB∗ and ϕ is a SNC and a ⊕-
morphism satisfying the first condition above, then all of the following hold:

1. ϕ(xl) ⊆ (ϕ(x))lB
∗
,

2. ϕ(xu) ⊆ (ϕ(x))uB
∗
,

3. If ϕ is a morphism, that preserves ∅ and 1, then equality holds in the above two
statements.

But the converse need not hold in general.

Proof

1. If A ∈ S1, then

ϕ(Al) = ϕ(
⋃

[{x}]⊆A
[{x}]) =

⋃

[{x}]⊆A
ϕ([{x}]) =

⋃

[{x}]⊆A
∩β({ϕ({x})}),
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and that is a subset of
⋃

ϕ([{x}])⊆ϕ(A) ∩β({ϕ({x})}). Some of the B∗ elements

included in ϕ(A) may be lost if ϕ(Al) is the starting point.
2. If A ∈ S1, then

ϕ(Au) = ϕ(
⋃

[{x}]∩A
=∅
[{x}]) =

⋃

[{x}]∩A
=∅
ϕ([{x}])

⋃

[{x}]∩A
=∅
ϕ([{x}]) =

⋃

[{x}]∩A
=∅
∩β({ϕ({x})}),

and that is a subset of
⋃

y∩ϕ(A) 
=∅ ∩β(y). In the last part possible values of y

include all of the values in ϕ(A).
3. Because of the conditions on ϕ, for any A,B ∈ S1 if A ∩ B = ∅, then

ϕ(A) ∩ ϕ(B) = ∅. So a definite element must be mapped into a union of
disjoint granules in S2. Further, for A ∈ S1 and ξ , η, ζ being abbreviations for
(∩β(ϕ(x)))∩ϕ(A) 
= ∅, ϕ([{x}]∩A) 
= ∅ and ϕ([{x}])∩ϕ(A) 
= ∅ respectively,

(ϕ(A))uB
∗ =
⋃

ξ

∩β(ϕ(x)) = ϕ(
⋃

ξ

[{x}]) = ϕ(
⋃

ζ

[{x}]) = ϕ(
⋃

η

[{x}]),

which is ϕ(Au)).

��
Theorem 26 If S1 is the higher granular operator space corresponding to an
approximation space and S2 as the higher granular operator space corresponding
to a tolerance space with approximations lT and uT and ϕ is a SNC and a ⊕—
morphism satisfying for each singleton {x} ∈ S1, ϕ([{x}]) = [ϕ(x)], then all of the
following hold:

1. ϕ(xl) ⊆ (ϕ(x))lT ,
2. ϕ(xu) ⊆ (ϕ(x))uT.

3.7 Relation-Based Rough Sets

Rough objects may be derived from general approximation spaces or covers or
they may be derived from abstract ideas of rough approximation. This division is
very justified because the approaches have limited connections between them and
algebraic methods that can be used also depends on the semantic domains associated
with them in distinct ways.

In [30], a critical review of the terminology relating to information systems
used in rough sets and allied fields has been done. One of the suggestions made
has been to avoid the term as it refers to an integrated heterogeneous system
that has components for collecting, storing and processing data in closely related
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fields like artificial intelligence, database theory and machine learning. Information
systems or more correctly, information storage and retrieval systems (also referred
to as information tables, descriptive systems, knowledge representation system) are
basically representations of structured data tables. When columns for decision are
also included, then they are referred to as decision tables. Often rough sets arise
from information tables and decision tables. But this need not be the case as has
been demonstrated by the present author in [83, 91, 103] and others in abstract
approaches [57].

From a mathematical point of view, information systems and tables can be
described using heterogeneous partial algebraic systems. In rough set contexts, this
generality has not been exploited as of this writing. For more on partial algebraic
systems the reader may refer to [15, 79].

A general approximation space is an algebraic system of the form S = 〈S,R〉
with S being a set and R being a binary relation on it. Typically, these are derived
from information tables by way of definitions of the form: For x, w ∈ O and B ⊆ S,
(x, w) ∈ R if and only if (Qa, b ∈ B)Φ(ν(a, x), ν(b, w), ) for some quantifier Q
and formula Φ. Some common examples of the latter condition are given below:

(∀a ∈ B) ν(a, x) = ν(a, y).
(∀a ∈ B) ν(a, x) ∩ ν(a, y) 
= ∅.
(∀a ∈ B) ν(a, x) ⊆ ν(a, y).
(∀a ∈ B)(∃z ∈ B) ν(a, x) ∪ ν(a, y) = ν(a, z).
(∀a, b ∈ B)(ν(a, x) ∩ ν(b, x) 
= ∅ −→ ν(a, y) ∩ ν(b, y) 
= ∅).
(∀a ∈ B)(∃b ∈ B) ν(a, x) = ν(b, y).
(∀a, b ∈ B)(ν(a, x) = ν(b, y) −→ ν(a, y) = ν(b, x)).
(∀a, b ∈ B)(ν(a, x) ⊂ ν(a, y)& ν(b, x) ⊂ ν(b, y) −→ ν(a, x) ∩ ν(b, x) =

ν(a, y) ∩ ν(b, y)).
(∀a, b ∈ B) (ν(a, x) ∩ ν(b, x) ⊆ ν(a, y)) or (ν(a, x) ∩ ν(b, x) ⊆ ν(b, y)).
(∀a, b ∈ B) (ν(a, x) ∩ ν(b, y) ⊆ ν(a, y)) or (ν(a, y) ∩ ν(b, x) ⊆ ν(b, y)).

When the relation R is an equivalence, then instances of the form Rab can be
read as a is indiscernible from b and conversely. If R is a partial equivalence, then
instances of the form Rab can be read as a is possibly indiscernible from b and
conversely. If R is a tolerance, then instances of the form Rab can be read as a is
similar to b and conversely. If R is a partial order, then instances of the form Rab

can be read as a’s attributes are all present in b. If R is a quasi order, then instances
of the form Rab can be read as a’s attributes are all present in b, but these attributes
are possibly insufficient for identifying objects possessing a or b.

Definition 27 In a general approximation space S, any subset A ⊆ S will be said
to be a R-Block if and only if it is maximal with respect to the property

A2 ⊆ R (11)

The set of all R-blocks of S will be denoted by BR(S).

Proposition 28 If R is reflexive, then BR(S) is a proper cover of S.



Granular Rough Semantics 187

Proof

• For all x ∈ S, it is necessary that Rxx.
• So

⋃
BR(S) must be equal to S

��
Definition 29 A specific mathematical approach to relation-based rough set will be
said to be granular only if it can be rewritten in the form of a general granular
operator space or a higher order granular operator space satisfying additional
conditions.

3.8 Properties of Granules

If R is a reflexive relation on a set S and [x]i = {a : Rxa}—the predecessor set
of points related to x and the lower and upper approximation of a subset A ⊆ S are
defined via

Al = ∪{[x]i : [x]i ⊆ A, x ∈ A} and

Au = ∪{[x]i : [x]i ∩ A 
= ∅ x ∈ A},

(Al ⊆ A ⊆ Au for a binary relation R is equivalent to its reflexivity [158, 165]) then
{[x]i : x ∈ S} is a granulation that satisfies:

Theorem 30 RA, LFU holds, but none of MER, ACG, LI, UI, NO, FU holds in
general.

Proof RA holds by definition, LFU holds as the lower approximation of the union
of two granules is the same as the union. It is easy to define an artificial counter
example to support the rest of the statement. ��

Let 〈S, (Ri)i ∈ K〉 be a multiple approximation space [66], then the strong lower,
weak lower, strong upper and weak upper approximations of a set X ⊆ S, when li

and ui denote the ith lower and upper approximations respectively, are defined as
follows:

1. Xls = ⋂i X
li ,

2. Xus = ⋃i X
ui ,

3. Xlw = ⋃i X
li ,

4. Xuw = ⋂i X
ui .

The terminology used differs substantially from the one used in [66].

Theorem 31 In a multiple approximation of the above form, taking the set of
granules to be the collection of all equivalence classes of the Ris, LSRA, USRA,
LSS, USS holds, but all variants of rest do not hold always.
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Proof Xlw, Xus are obviously unions of equivalence classes. The LSS, USS part
for these two approximations respectively can also be checked directly. Counterex-
amples can be found in [66]. But it is possible to check these by building on actual
possibilities. If there are only two distinct equivalences, then at least two classes of
the first must differ from two classes of the second. The ls approximation of these
classes will strictly be a subset of the corresponding classes, so CG will certainly
fail for the (ls, us) pair. Continuing the argument, it will follow that SCG, ACG
cannot hold in general. The argument can be extended to other situations. ��

Multiple approximations spaces are essentially equivalent to special types of
tolerance spaces equipped with the largest equivalence contained in the tolerance,
the above could as well have been included with tolerances.

4 Classical Rough Sets

A number of algebraic approaches to classical rough sets may be found in the
literature. The algebras seek to capture the semantics at the classical, rough and
refined rough semantic domains. Many distinct concepts of rough objects have also
been used in the associated semantics. Algebras that seek to model rough sets in the
context of the following are known:

RB x ∈ S is a rough object if and only if¬(xl = xu). The condition is equivalent
to the boundary being nonempty [127]. For classical rough sets, RL, RU, RW
coincide with RB.

RD Any pair of definite elements of the form (a, b) satisfying a < b. The set of
all such elements will be denoted by Sδ .

RP RP coincides with RD for classical rough sets under specific conditions that
have not been articulated in a clear way in the literature. So pairs of the form
(xl, xu) alone form a separate category of rough objects in general. The set of all
such elements will be denoted by Sδ0.

RI Elements in an interval of the form (a, b) satisfying a < b with a, b being
definite elements. RIA coincides with RI. In the rough domain these elements
get identified into a single object—the roughly equal objects [125]. The set of all
such elements will be denoted by SI .

ROP Because a weak negation or complementation c is available, orthopairs of
the form (xl, xuc) can also be taken as representations of rough objects. The set
of all such elements will be denoted by SO .

RCL Convex Sublattices formed by rough objects in the sense of RI—this is due
to the present author [83]. The set of all such elements will be denoted by SC

AC In the antichain based approach, due to the present author [98, 104], the
primary objects of interest are antichains of mutually discernible objects. This
approach is useful for all general rough set theoretic contexts.
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4.1 Boolean Algebra with Operators: As Rough Semantics

A natural semantics in the classical semantic domain in which all objects remain
discernible can be constructed from an approximation space S = 〈S,R〉 as follows:

Set ℘(S) = B (12)

Form (∀x ∈ B) xl =
⋃
{g ; g ⊆ x & g ∈ G} (13)

Form (∀x ∈ B) xu =
⋃
{g ; g ∩ x 
= ∅& g ∈ G} (14)

Define B = 〈B, ∪,∩,c , l, u, 0, 1
〉

(15)

0 = ∅,& 1 = B being 0-ary operations (16)

B is an algebra of type (2, 2, 1, 1, 1, 0, 0). (17)

Theorem 32 B is an algebra that satisfies the following properties:

〈
B, ∪,∩,c , 0, 1

〉
is a Boolean algebra.

xll = xl; & xuu = xu

a ⊆ b −→ al ⊆ bl & au ⊆ bu

0 ⊆ xl ⊆ x ⊆ xu ⊆ 1

(a ∪ b)u = au ∪ bu ;& (a ∩ b)u ⊆ au ∩ bu

au = aclc ; al = acuc

(a ∩ b)l = al ∩ bl ;& (a ∪ b)l ⊆ al ∪ bl

0l = 0u = 0 ;& 1l = 1u = 1

Proof Power sets with the set-operations of union, intersection, complementation
and 0-ary operations form a Boolean algebra. The other parts of the theorem can be
verified by checking the membership of elements. For example, if z ∈ (a∪b)u, then
(∃h ∈ S)h ∈ a ∪ b, such that z ∈ [h] ([h] being the equivalence class generated by
h). Because h ∈ a ∪ b, h ∈ a or h ∈ b must hold. This yields z ∈ au or z ∈ bu. So
(a ∪ b)u ⊆ au ∪ bu. ��
Definition 33 Let δl = {x ; xl = x}, δu = {x ; xu = x} and δlu = {x ; xl =
x = xu}. These are the set of lower-definite, upper definite and definite elements
respectively.

Theorem 34

• δl(S) = δu(S) = δlu(S)

• δlu(S) with induced set operations forms a Boolean subalgebra of B.
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Proof It is obvious that

xl = x ⇔ x = ∪{z : z ∈ S|R & z ⊆ x}
⇔ xlu = xl = x = xu by definition

So δl(S) = δu(S) = δlu(S)

• Below, the universal sets are used as superscripts to distinguish between the
universes.

• If a, b ∈ δl(S), then a ∪℘(S) b is a union of R-classes and so must be a union of
R-classes.

• Therefore a ∪℘(S) b = a ∪δl (S) b.
• Two R-classes must be identical if they have non-empty intersection.
• So a ∩℘(S) b = a ∩δl (S) b.
• Complementation, top and bottom are easy to verify.

So δlu(S) with induced set operations forms a Boolean subalgebra of B. ��

4.2 RD: Semantics of Pairs of Definites

A wide variety of operations have been defined on Sδ in the literature [6, 11, 138].
These relate to aggregation, commonality, complementation, negation and many
implications. A key assumption in many papers has been that aggregation and
commonality ought to be total operations. In the present author’s opinion, this is
questionable as these are not always material operations and may also be contam-
inated from a constructive viewpoint[92]. Natural aggregation and commonality
operation on Sδ do exist however:

Definition 35

(∀(a, b) ∈ Sδ)(∃e ∈ S)(a, b) = (el, eu) (definites)

(xl, xu) � (al, au) = (xl ∪ al, xu ∪ au) (rough union)

(xl, xu) � (al, au) = (xl ∪ al, xu ∪ au) (rough union)

¬(xl, xu) = (xuc, xlc) (negation)

0 = (∅,∅) (bottom)

1 = (S, S) (top)

In an approximation space S, an upper sample p of x is a subset of x, that satisfies
pu = xu. It is said to be minimal if and only if there is no upper sample z of a with
z ⊆ p.
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Theorem 36 All of the operations in the above definition are well defined.

Proof

1. To prove that the rough union operation is well defined, it suffices to construct
a b satisfying xl ∪ al = bl & xu ∪ au = bu. This can be done in many ways
including the following:

a. By setting, b = x ∪ al ∪ ((x ∪ a) ∩ ∂(x ∪ a)). [5]
b. By setting, b = xl ∪ al ∪ p: p being a minimal upper sample of xl ∪ bl [11]
c. By setting, h = al ∪ (a ∩ xuc)∪ (au ∩ x \ xl)∪ (a ∩ xl) and taking b = x ∪ h

[53] Of these, the second method is relatively better structured.

2. To prove that the rough intersection operation is well defined, it suffices to
construct a e satisfying xl ∩ al = el & xu ∩ au = eu. This can be done in
many ways including the following:

a. By setting, e = (x ∩ a) ∪ (x ∩ (xu ∩ au) \ (x ∪ a)u). [5]
b. By setting, e = (xl ∩ al)∪ p: p being a minimal upper sample of xl ∪ bl [11]
c. By setting, h = al ∪ (a ∩ xuc)∪ (au ∩ x \ xl)∪ (a ∩ xl) and taking e = x ∩ h

[53]

3. Other parts are easy to prove.
��

Theorem 37

• S = 〈Sδ,�,�,¬, 0, 1〉 is a complete atomic quasi-Boolean algebra (DeMorgan
lattice) and the subcollection of definable elements form a Boolean subalgebra
under the induced operations.

• The set of atoms of S have the form At(S) = {(∅, [x]) : x ∈ S}.
• On Sδ , it is possible define a unary L, via (∀(a, b) ∈ Sδ) = L(a, b) = (a, a).
• Then S = 〈Sδ,�,�, L,¬, 0, 1〉 is a pre-rough algebra and also a topological

quasi Boolean algebra.
• A derived implication operation: a $⇒ b = (¬La � Lb) � (L¬a � ¬L¬b))

is also definable

If singleton equivalence classes exist, then pairs of definite subsets of the form
(A,A ∪ x) can be formed. This does not correctly correspond to any rough object
as no C satisfying Cl = A and Cu = A ∪ x can be found.

The following definition is possible because some of the conditions used to define
a pre-rough algebra are superfluous (see [142]).

Definition 38 An essential pre-rough algebra will be an algebra of the form

E = 〈E,�, L,¬, 0, 1
〉

that satisfies all of the following (with � being a defined by (∀a, b) a � b = ¬(¬a �
¬b) and a ≤ b being an abbreviation for a � b = a.)
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〈
E,�,�,¬, 0, 1

〉
is a quasi Boolean algebra.

E1 L1 = 1
E2 (∀a) La � a = La

E3 (∀a, b) L(a � b) = L(a) � L(b)

E4 (∀a)¬L¬La = La

E5 (∀a)¬La � La = 0
E6 (∀a, b) (¬L¬a ≤ ¬L¬b &La ≤ Lb −→ a ≤ b)

An essential pre-rough algebra is said to be an essential rough algebra if L(E) is
also complete and completely distributive—that is it satisfies (for any subset X and
element a)

a � (
�

X) =
�
{a � x : x ∈ X}& a � (

⊔
X) =

⊔
{a � x : x ∈ X}

Equivalently, on the set of roughly equal elements (or rough objects) ℘(S)| ≈
similar operations can be defined to form an isomorphic semantics. The most
minimalist version of this construction is the following ([A] being the set of subsets
that are roughly equal to A):

• Let E = ℘(S)| ≈
• Define (∀A,B ∈ ℘(S)) [A] � [B] = [(A∩B) ∪ (A∩ ((Au ∩ Bu) \ (A ∩B)u))]
• Define (∀A ∈ ℘(S))¬[A] = [Ac]&L([A]) = [Al]
• Define 0 = [∅] and 1 = [S]
• E = 〈E,�, L,¬, 0, 1

〉
is an essential pre-rough algebra which is both complete

and completely distributive when endowed with the additional definable opera-
tion �.

Theorem 39 Every essential rough algebra is isomorphic to a subalgebra of an
essential rough algebra constructed from an approximation space by the above
procedure.

4.2.1 Decontaminating Operations

It can be argued that the operations of aggregation and commonality used in the
rough algebra semantics of classical rough sets are contaminated because they use
aspects of the classical semantic domain that are not found in the rough semantic
domain. This happens because of the mathematical form of the definition. In [92],
this problem has been remedied to an extent by the introduction of less contaminated
partial algebras by the present author. In the process a new semantic domain that
contains the rough semantic domain is created.

The requirements of a contamination-free semantics in the rough semantic
domain (or Meta-R) for classical rough sets are the following:

• The objects of interest should be roughly equivalent sets (that is rough objects).
• The operations used in the semantics are as contamination-free as is possible.



Granular Rough Semantics 193

• The logical constants in the associated logic should be as real (or actualizable) as
is possible.

The last two criteria are very closely related. Any one of the two may be expected
to determine the other. The first of the three criteria is pretty much compulsory
because they determine the domain. The second and third are however relative to
the meaning that they may acquire in the intended use of the semantics.

A natural way of realizing the contamination of operations relative basic
operations would be through some concept of definability or representability. Taking
orders on rough objects as basic predicates, � can for example be regarded as
a non-contaminated operation in pre-rough/rough algebras (as it is definable).
From the point of view of representation as a term, � would be contaminated as
higher order constructions would be required. It is also possible to regard the pre-
rough/rough algebra or equivalent semantics as being essentially over-determined.
Thus it makes sense to weaken the semantics (relative to the properties satisfied) and
so the problem would be of suitably weakening the semantics. Key properties that
determine the last two requirements relate to level of perception of rough inclusion.

Decontamination can possibly be achieved by using some of the following
strategies:

• Replacing � and � by other aggregation and commonality operations repectively,
• In practice, agents may not be interested in aggregating all pairs of objects or

in determining common parts. So lazy determinations in the form of partial
operations are justified. Modeling of human reasoning is one example of such
a context.

• In many contexts the bounds may be dependent on the relative bigness or
otherwise of the outcome of the specific instance of � or �. The bigness based
cases are not about over-determination of the problem and can be associated with
filters, ideals and intervals (or generalizations thereof) of different types in most
cases and then would be semantically amenable.

The following concepts of filters and ideals capture the concept of closure under
types aggregation and commonality operations and consequence operators.

Definition 40 An arbitrary subset K of ℘(S)| ≈= Q is said to be a L-Filter if and
only if it satisfies F0 and O1. If in addition it satisfies F1, then it is said to be prime.
K is an o-filter if it satisfies F0 alone :

• F0: (∀x ∈ K)(∀y ∈ Q)(x ≤ y ⇒ y ∈ K).
• O1: (∀x ∈ K)Lx ∈ K .
• F1: (∀a, b ∈ Q)(1 
= a � b ∈ K ⇒ a ∈ K or b ∈ K).

The dual notions will be that of U-Ideals, prime U-ideals and o-ideals. If a L-
filter is closed under �,�, then it will be termed a lattice L-filter. Let K =
〈K,≤, L,U,¬, 1〉 be the induced partial algebraic system on K .

Proposition 41 If K is a lattice L-filter, then K is not a pre-rough algebra, but
satisfies:
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1. ≤ is a distributive lattice order.
2. Closure under L,U , but not under ¬.
3. Lx ≤ x ; L(a � b) = La � Lb; LLx = Lx;
4. L1 = 1; ULx = Lx; L(a � b) = La � Lb

Proof If finiteness is assumed, then the lattice is bounded. But there would be
no way (in general) of ensuring closure under ¬, 0. The three element pre-rough
algebra provides the required counterexample. ��
Proposition 42 If K is a L-filter, then K satisfies:

1. ≤ is a join-semilattice lattice order (� is definable).
2. Closure under L,U , but not under the partial lattice operation � and ¬.
3. Lx ≤ x ; L(a � b)

w= La � Lb; LLx = Lx;
4. L1 = 1; ULx = Lx; L(a � b) = La � Lb ; x � (y � x)

w= x.
5. x � (y � z)

w= (x � y) � (x � z) and its dual.

Proof If a � b ∈ K , then L(a � b) ∈ K by definition and so La,Lb, a, b ∈ K . If
La,Lb ∈ K , then it is possible that La �Lb /∈ K , which is the reason for the weak
equality. ��
Theorem 43 There exists a pre-rough algebra S with a nontrivial lattice L-filter K
satisfying

(∃a, b ∈ S \ {1})(∀c ∈ K \ {1})a � b � c.

The proof involves a simple construction, but it should be noted that K \ {1}may
or may not be cofinal in S \ {1}. This is important as such a K may be interpreted
to consist of big elements alone. Such L-filters or lattice L-filters will be said to be
cofine.

Theorem 44 Given a pre-rough algebra with no nontrivial lattice L-filters, an
infinite number of pre-rough algebras with the same property can be constructed.

Proof A completely visual proof is possible for proving this. Simply paste a pair of
three element pre-rough algebras to the original pre-rough algebra (identifying all
the tops and bottoms respectively) and require that the negation of one of the non
boundary element is the other. The infinite number of pre-rough algebras follow by
recursive application of the process.

A second proof can be through the fact that the product of two pre-rough algebras
with the property satisfies the property. ��
Definition 45 Given a L-filter K on Q, for any x, y ∈ Q let

x 
 y =
{
x � y if x � y ∈ K

undefined otherwise.
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x � y =
{
x � y if x � y ∈ K

undefined otherwise.

Further let x � y iff x = y or x � y = x or x 
 y = y.

Proposition 46 The relation � is a partial order that is not necessarily a lattice
order, but is compatible with the operations L,U . Further the restriction of � to K

has already been described above.

Proof Absorption laws can be shown to fail in most pre-rough algebras for an
optimal choice of a L-filter. ��
Definition 47 By a operationally contamination-free prerough algebraic system (or
OCPR system) will be meant a partial algebraic system of the form

Y = 〈Q,�, L,U,
,�, 0, 1
〉
,

with the operations and relations being as defined above (U is the operation induced
by upper approximation operator on Q).

Definition 48 By a OC-system (resp lattice OC-system) will be meant a pair of the
form 〈Q,K〉 consisting of a pre-rough algebra Q and a L-filter (resp. lattice L-filter)
K . If K is cofine, then the system will be said to be cofine.

Theorem 49

1. If K is a lattice L-filter, then K+ = {y :: (∀x ∈ K)x � y = 1} with induced
operations from the pre-rough algebra is a lattice L-filter. Such filters will be
termed supremal.

2. K is a cofine lattice L-filter iff K+ = {1}.
3. The collection of all supremal lattice L-filters can be Boolean ordered with an

order distinct from the order on lattice L-filters.

Thus starting from a standard rough domain (corresponding to pre-rough alge-
bras), a new rough semantic domain has been arrived at. At least two distinct
partial algebras have been defined with one being an extension of a pre-rough
algebra, while OC-pre-rough systems constitute a severe generalization. The natural
correspondences from a pre-rough algebra to a cofine L-filter (or lattice L-filter)
would be forgetful closed morphisms that preserves all operations except for ¬.

4.3 Double Stone Algebras

This is a based on the approach of [31, 32, 42]. A double Stone algebra L is an
algebra of type (2, 2, 1, 1, 0, 0) of the form

L = 〈L, +, ·, ∗, +, 0, 1
〉
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that satisfies

•
〈
L,+, ·, 0, 1

〉
is a bounded distributive lattice.

• x∗ is the pseudo-complement of x, that is y ≤ x∗ ⇔ y · x = 0
• x+ is the dual pseudo-complement of x, i.e. x+ ≤ y ⇔ y + x = 1
• x∗ + x∗∗ = 1, x+ · x++ = 0.

It is possible to replace the second and the third condition by the equations,

• x · (x · y)∗ = x · y∗, x + (x + y)+ = x + y+
• x · 0∗ = x, x + 1+ = x

• 0∗∗ = 0 & 1(++) = 1

.
A double Stone algebra is regular if and only if x · x+ ≤ y + y∗ if and only if

(x+ = y+, x∗ = y∗ −→ x = y).

Let B be a Boolean algebra and F a filter on it, then let

[B,F ] = {(a, b) : a, b ∈ B, a ≤ b, (a ∨ bc) ∈ F }.

On this,the operations+, ·, ∗, + are definable via

• (a, b) + (c, e) = (a ∨ c, b ∨ e)

• (a, b) · (c, e) = (a ∧ c, b ∧ e)

• (a, b)∗ = (bc, bc)

• (a, b)+ = (ac, ac)

An algebra K = 〈[B, F ], +, ·, ∗, +〉 of this form is called a Katrinak algebra
in [42].In such an algebra B can be identified with {(a, a) : a ∈ B} and F with
{(a, 1) : (a, 1) ∈ K}.

Starting from an arbitrary set S it is possible to construct the collection of all
fields of subsets F(S) of it. The Katrinak algebras formed from the elements of F(S)
is also called a concrete Katrinak algebras. The following theorem is an adaptation
of theorem that had been originally proved in [65].

Theorem 50 Each concrete Katrinak algebra is a regular double Stone algebra
and conversely every regular double stone algebra is isomorphic to a concrete
Katrinak algebra.

Proof

• Let K be a concrete Katrinak algebra constructed over a set S, so that its universal
set is [B,F ], B = 〈B,+, ·,−, 0, 1〉 being the Boolean algebra and F being a
filter on B such that

[B,F ] = {(a, b) ∈ B × B : a ≤ band− b + a ∈ F }.
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• Then, L = 〈[B,F ],+, ·,∗ ,+ 〉 is a regular double Stone algebra if it is required
that

(a, b)∗ = (−b,−b), (a, b)+ = (−a,−a)

• Let
〈
L,+, ·, ∗,+ , 0, 1

〉
be a regular double Stone algebra.

• Define the center B(L) and the dense set of L via, B(L) = {x∗ : x ∈ L} and
Δ(L) = {x : x∗ = 0} respectively.

• Then B(L) is a Boolean algebra isomorphic to B in which the operations ∗ and
+ coincide with the complementation operation.

• Let H = (Δ(L))++. If τ : L �→ (B(L),H) is a map such that τ (x) =
(x++, x++), then it is an isomorphism.

��
In the associated algebraization, a language L of rough set logic consisting of a

nonempty set of propositional variables P , two binary connectives ∨,∧, two unary
connectives ∗,+ (representing negations) and a constant T for truth is used. Formulas
are constructible in the usual way, so that the set F(L) of formulas is a free algebra
of type (2, 2, 1, 1, 0) generated over P . A model of L then is a pair of the form
(W, υ), where W is a set and υ : P �→ ℘(W) × ℘(W) is a valuation, such that if
υ(p) = (A,B) then A ⊆ B.

Given a model M = (W, υ), it’s meaning function σ is defined as an extension
of the valuation function σ : F(L) �−→ ℘W × ℘W such that,

• σ(T) = (W,W)

• ∀p ∈ Pσ(p) = υ(p)

• If σ(ϕ) = (A,B) and σ(ψ) = (C,E), then

– σ(ϕ ∧ ψ) = (A ∩ C,B ∩ E)

– σ(ϕ ∨ ψ) = (A ∪ C,B ∪ E)

– σ(ϕ∗) = (−B,−B)

– σ(ϕ+) = (−A,−A),−A being the complement of A in ℘(W).

Now on Ran(σ) = {σ(ϕ) : ϕ ∈ F(L)}, let the operations +, ·,∗ ,+ be defined
by

• σ(ϕ) · σ(ψ) = σ(ϕ ∧ ψ)

• σ(ϕ)+ σ(ψ) = σ(ϕ ∨ ψ)

• (σ (ϕ))∗ = σ(ϕ∗)
• (σ (ϕ))+ = σ(ϕ+).

With these operations Ran(σ) is a Katrinak algebra and σ is a morphism. The
variety generated by it coincides with the variety of regular double stone algebras.
Moreover the associated logic has a finitely complete strongly sound inferential base
and fails the Beth definability property.
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4.4 Super Rough Algebras

This is a higher order semantics of classical rough sets with much potential for
generalization to general rough sets. It was initially developed for classical rough
sets by the present author in [83]. It is among the difficult approaches primarily
because of the algebraic machinery used. The essence of the approach can be
generalized to TQBAs satisfying more conditions (this will appear separately). The
approach is described after a description of some of the required algebra.

4.4.1 Related Background

Let H = 〈H,∧,∨〉 be a lattice and T a binary reflexive and symmetric relation on
it which is ’compatible’ in the sense

((a, b), (c, e) ∈ T −→ (a ∧ c, b ∧ e), (a ∨ c, b ∨ e) ∈ T )

then T is called a compatible tolerance on H . A subset B ⊆ H is called a block
of T if it is a maximal subset satisfying B2 ⊆ T . Successor neighborhoods of the
form [x] will also be referred to as T -associates of x. A sublattice Z of H is called
a convex sublattice if and only if it satisfies

(∀x, y ∈ Z) (x ≤ a ≤ y −→ a ∈ Z) (18)

If C is a subset of H then ↓l C, ↑l C will respectively denote the lattice-ideal
and filter generated by C. Tolerances can be fully characterized by their associated
system of all blocks [23, 34]. For lattices this system can be denoted H |T . For finite
lattices the result improves to the one presented in [34],

Theorem 51 If H is a finite lattice, then a collection S = {Bα : α ∈ I } of subsets
of H is such that S = H |T if and only if

1. Every element of S is a convex sublattice of H .
2. S covers H .
3. (∀C,E ∈ S) (↓l C =↓l E ⇐⇒ ↑l C =↑l E) .

4. For any two elements C,A ∈ S there exist E,F such that (↓l C∨ ↓l A) =↓l E,

(↑l C∨ ↑l A) ≤↑l E, ↓l F ≤ (↓l A∧ ↓l C), and (↑l C∧ ↑l A) =↑l F ).

A lattice is said to be semi-join distributive if it also satisfies (x∨y = x∨z −→
x ∨ y = x ∨ (y ∧ z)). J (L) will denote the set of all join-irreducible elements of
a lattice L. A lattice L is said to be finitely spatial (resp. spatial) if any element of
L is a join-irreducible element (resp. complemented join-irreducible element) of L.
A lattice L is said to be lower continuous if (a ∨ ∧X) = ∧(a ∨ x) holds for all
downward directed subsets for which

∧
X exist.

In a poset P a finite sequence of elements which are comparable with their
predecessors is said to be a path. A path (xn) is said to be oriented if (∀i) xi ≤ xi+1
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or its converse holds. A poset is said to be tree-like if the following conditions
hold,

• If a ≤ b then there exists an integer n < ω and x0, x1, . . . xn ∈ P such that
a = x0 ≺ x1 ≺ . . . ≺ xn = b.

• For any two elements in the poset there exists at most one maximal path from
one to the other.

A lattice L is said to be sectionally complemented if and only if for any b < a there
exists a c such that b ∧ c = 0 and b ∨ c = a.

The set of all convex sublattices of a lattice in particular and a poset in general
can be endowed with a lattice structure (w.r.t inclusion) with meet corresponding to
set-intersection and join corresponding to

A ∨ B = A ∪ B ∪ {x : (∃ (y, z) ∈ A× B ∪ B × A), y ≤ x ≤ z}

The lattice is algebraic, atomistic, bi-atomic and join-semi distributive. The sublat-
tices of such lattices have been characterized in [9, 149–151]. On a lattice L the
following conditions will be abbreviated for convenience,

a ∧ (b∗ ∨ c) = (a ∧ b∗) ∨
∨

i<2

(
a ∧ (bi ∨ c)∧ ((b∗ ∧ (a ∨ bi) ∨ c)

)

where b∗ = b ∧ (b0 ∨ b1) (S)

x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) =
∨

i < 2

((x ∧ ai ∧ (b0 ∨ b1)) ∨ (x ∧ bi ∧ (a0 ∨ a1))∨
∨

i < 2

(x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) ∧ (a0 ∨ bi) ∧ (a1 ∨ bi−1)) (B)

x ∧ (x0 ∨ x1) ∧ (x1 ∨ x2) = (x ∧ x0 ∧ (x1 ∨ x2)) ∨ (x ∧ x1 ∧ (x0 ∨ x2))

∨ (x ∧ x2 ∧ (x0 ∨ x1)) (U)

These conditions necessarily hold in the lattice of convex sublattices of any poset.
In [149–151], the following three results are proved.

Theorem 52 If a lattice L satisfies the condition S then it also satisfies the
condition,

(∀a, b, b0, b1, c ∈ J (L)) if (a ≤ b ∨ c & b ≤ b0 ∨ b1 & a 
= b)

then (∃b) (a ≤ b ∨ c & b < b)

or (b ≤ (a ∨ bi)& a ≤ (bi ∨ c) for some i < 2) (Si )
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Theorem 53 If a lattice L satisfies the conditions B and U then it also satisfies the
conditions Bi and Ui defined below.

Bi : (∀x, a0, a1, b0, b1 ∈ J (L)) if (x ≤ a0 ∨ a1, x ≤ b0 ∨ b1)

then x ≤ ai or x ≤ bi for some i < 2

or x ≤ a0 ∨ b0, a1 ∨ b1 or x ≤ a0 ∨ b1, a1 ∨ b0.

Ui : (∀x, x0, x1, x2 ∈ J (L)) if (x ≤ x0 ∨ x1, x0 ∨ x2, x1 ∨ x2)

then x ≤ x0 or x ≤ x1 or x ≤ x2

If a lattice satisfies the condition

a ∧ (b ∨ c ∨ e) = (a ∧ (b ∨ c)) ∨ (a ∧ (b ∨ e))∨ (a ∧ (c ∨ e)), (P)

then it is said to be dually 2-distributive.

Theorem 54 If L is a complete, lower continuous, finitely spatial and dually 2-
distributive lattice and if it satisfies the conditions Si , Bi and Ui , then it satisfies the
conditions S, B, and U.

For convenience a lattice of the above form which satisfies the three conditions
will be called a long lattice.

For more on the structure of the lattice of convex sublattices and the lattice of
intervals of a lattice the reader is referred to [2, 9, 149–151]. It has been proved
in [71, 72] that two lattices have isomorphic convex sublattices if and only if they
have isomorphic interval lattices. The following result for posets naturally applies
to lattices and is relevant for the main duality result.

Let Fcnv(Λ) be the set of all convex sublattices and Int(Λ) that of convex
intervals of a poset Λ respectively. A poset Φ is said to be convexly isomorphic (resp.
interval isomorphic) to another poset Λ if and only if Fcnv(Φ) 8 Fcnv(Λ) (resp.
Int(Φ) 8 Int(Λ)). It has been proved in [71, 72] that every such Λ is constructible
from Φ. One of the main results therein is stated below.

Theorem 55 Let A = (A,≤) be any poset. Posets convexly isomorphic to A are
(up to isomorphism) just those which can be obtained by applying the following
three constructions successively,

1. Construct A1 = (A,≤1), where x ≤1 y means

x < y and (x, y) /∈ P ⊂ {(x, y); x, y ∈ A, x ≺ y, x ∈ Min(A), y ∈ Max(A)}.

2. Given A1, construct A2 = (A,≤2); where x ≤2 y holds whenever x, y ∈
C, x ≤1 y or x, y ∈ D, x ≤1 y holds for a decomposition A = C ∪ D of A
under (∀c ∈ C, d ∈ D)c ‖1 d. Here ‖1 indicates the non comparability of the
two elements with respect to the order ≤1.
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3. AssumingA2, construct A3 = (A,≤3); where x ≤3 y if and only if x ≤ 2y,
or (x, y) ∈ Q for a Q ⊂ {(x, y); (x, y) ∈ A2, x‖2y, x ∈ Min(A2), y ∈
Max(A2), }, such that (u, v), (v,w) ∈ Q do not hold simultaneously for any
u, v,w ∈ A.

4.4.2 Main Derivations

Definition 56 In a pre-rough algebra or a topological quasi Boolean algebra of the
form S = 〈S,�,�,⇒, L,¬, 0, 1

〉
, let T be a binary relation defined by T ab if

and only if (∃ c ∈ S)L(c) ≤ a ≤ M(c), L(c) ≤ b ≤ M(c). T will be called the
coapproximability relation on S.

Proposition 57 The coapproximability relation on the pre-rough algebra is a
compatible tolerance.

Proposition 58 Every block of the tolerance T is an interval of the form[∧
ai,
∨

ai
]
, whenever the approximation space is finite.

In the next definition, except for �, � andL the same operation symbol is used to
denote the operation itself in the rough algebra and the super rough set-algebra—the
interpretation of the symbol on the set is indicated by superscripts. Thus �9 means
the interpretation of the operation symbol � over 9. Finiteness is not required in the
following definition.

Definition 59 A super rough set-algebra will be a partial algebra of the form

9 =
〈
9,∧,∨,�9,�9,¬, L9, LT ,↓,↑, S,∅

〉

of type (2, 2, 2, 2, 1, 1, 1, 0, 0) that satisfies:

1. The underlying set of the rough algebra S (with the above indicated operations)
is S.

2. The set of all convex sublattices of S is 9.
3. (∀A,B ∈ 9) A �9 B = {x � y : x ∈ A, y ∈ B} if defined in 9.
4. (∀A,B ∈ 9) A �9 B = {x � y : x ∈ A, y ∈ B} if defined in 9.
5. The principal filter and the principal ideal operations with respect to the lattice

order on the set of convex sublattices are respectively ↑ and ↓.
6. The usual lattice operations on the set of all convex sublattices will correspond

to ∧ and ∨.
7. ¬A = {¬x : x ∈ A} .
8. L9(A) = {L(x) : x ∈ A} if defined in 9.
9. 9 |$ Si , Bi , Ui

10.

LT (A) =
{
A if A is a block of T .
undefined else
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A super rough set algebra is correctly a partial algebra with multiple orders and
unary operators.

Theorem 60 In a super rough set-algebra 9 as defined above
〈9,�9,�9〉 is a

partial distributive lattice which satisfies all weak-equalities in the ω∗ sense. That
is it also satisfies:

(∀A,B,C)A � (B � C)
ω∗= (A � B) � C

(∀A,B,C)A � (B � C)
ω∗= (A � B) � (A � C)

(∀A,B,C)A � (B � C)
ω∗= (A � B) � (A � C)

Recall that φ
ω∗= ψ means that if either side is defined, then the other is and the two

are equal.

Theorem 61 In a super rough set-algebra 9, the following properties hold:

¬(A �9 B)
ω∗= (¬A �9 ¬B) (Weak De Morgan)

L9(A)
ω∗= L9(L9(A)) (Weak Idempotence)

L9(A)
ω∗= L9(A) � A (Weak Inclusion)

L9(A � B)
ω∗= L9(A) � L9(B) (Weak-Meet)

L9(A � B)
ω∗= L9(A) � L9(B) (Weak-Join)

Theorem 62 Further in a super rough set-algebra 9, ∧,∨ are total lattice
operations and the following properties hold:

¬¬A = A

(Double Negation)

(LT (A) = A −→ ({x} ∧ A = {x} ←→ {x} � {
∧

A},= {x}, {x} � {
∨

A} = {x}))
(Singleton)

(∀A, B)(LT (A) = A&LT (B) = B, & (↑ A) = (↑ B) −→ (↓ A) = (↓ B))

(Fixed-1)

(∀A, B)(LT (A) = A,LT (B) = B, (↓ A) = (↓ B) −→ (↑ A) = (↑ B))

(Fixed-2)

(LT (A) = A −→ L(A) ∨ A = A&¬L(¬A)∨ A = A)

(Fixed-3)
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(LT (A) = A −→ L(A) �A = A&¬L(¬A) � A = A)

(Fixed-4)

(LT (A) = A −→ (∃B)¬(A) ∧ B = ¬A&LT (B) = B)

(Fixed-5)

(LT (A) = A −→ (∃B)L(A) ∧ B = L(A)&LT (B) = B)

(Fixed-6)

(LT (A) = A, LT (B) = B, A � B = C −→ (∃E)E ∧ C = C, LT (E) = E)

(Fixed-7)

(LT (A) = A, LT (B) = B, A ∨ B = C −→ (∃E)E ∧ C = C &LT (E) = E)

(Fixed-8)

(LT (A) = A, LT (B) = B, A ∧ B = C −→ (∃E)E ∧ C = C &LT (E) = E)

(Fixed-9)

(LT (A) = A, LT (B) = B, A � B = C −→ (∃E)E ∧ C = C &LT (E) = E)

(Fixed-10)

Also for any two fixed points A, B of LT , there exist two other fixed points E, F

such that

((↓ A) ∨ (↓ B)) = (↓ E)

((↑ B) ∨ (↑ A)) ≤ (↑ E)

(↓ F) ≤ ((↓ A) ∧ (↓ B))

and ((↑ B) ∧ (↑ A)) = (↑ F)

The order relation used is the one on the lattice of convex sublattices.

Related abstract representation theorems are also proved in [83] by the present
author.

4.5 Nelson Algebras

Nelson, Lukasiewicz, Heyting and Post algebras have been used in the context of
rough semantics in [117–119, 124]. These are discussed in a separate chapter in this
volume.

The basic construction is

• Let S be an approximation space.
• Form the collection of N = {(xl, xuc) : x ∈ ℘(S)},
• For any a, b ∈ ℘(S), define (al, auc) ∧ (bl, buc) = (al ∩ bl, auc ∪ buc)

• For any a, b ∈ ℘(S), define (al, auc) ∨ (bl, buc) = (al ∪ bl, auc ∩ buc)
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• For any a, b ∈ ℘(S), define (al, auc)⇒ (bl, buc) = (alc ∪ bl, al ∩ buc)

• For any a ∈ ℘(S), define ¬(al, auc) = (auc, al)& ∼ (al, auc) = (alc, al)

• Define 0 = (∅, S) and 1 = (S,∅).
Theorem 63 The algebra N = 〈N,∨,∧,⇒,∼,¬, 0, 1

〉
is a semi-simple Nelson

algebra as it also satisfies

(∀a ∈ N) a∨ ∼ a = 1 (Nelson-SS)

4.6 Properties of Granulations

Theorem 64 In classical rough sets, if G is the set of partitions, then all of RA,
ACG, MER, AS, FU, NO, PS hold. UU does not hold in general.

Proof

• RA, ACG, PS, NO follow from the definitions of the approximations and
properties of the equivalence partition G.

• Mereological atomicity holds because no crisp element can be properly included
in a single class.

• All approximations are unions of disjoint classes and if a class overlaps with
another subset of the universe, then the upper approximation of the subset will
certainly contain the class by the definition of the latter.

��
Definition 65 By the theory of Classical RST-RYS, will be meant a theory Th of
RYS in which ⊕,�,� correspond respectively to set ∪,∩, \ respectively. S is a
power-set of some set A, 1 = A, and the additional granular axioms RA, ACG,
MER, FU, NO, PS, ST, I hold.

Theorem 66 The theory of classical RST-RYS is well defined, is not categorical
or κ-categorical (κ being a cardinal) and is consistent.

Proof For a fixed cardinality of S, multiple non-isomorphic models of classical
RST-RYS can be defined. By Thm 2 of [91], it is known that all of RA, ACG,
MER, ST, FU, NO, PS hold, but UU does not. So the theory of classical RST-RYS
is consistent. ��

5 Esoteric Rough Sets

In esoteric rough sets [85], partial equivalence relations (symmetric, transitive and
partially reflexive relations) have been used to generate approximations instead of
equivalence relations by the present author. A brief description of the main concepts,
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results and techniques are mentioned in this section. Most of the results proved in
the paper concern the so-called well partial approximation algebras.

In the simplest case, the upper and lower approximations of a subset A of a
partial approximation space 〈S, R〉 are defined via ([x] = {b; Rxb} being the
pseudo-class generated by x)

Al =
⋃
{[x]; [x] ⊆ A} (lower)

Au =
⋃
{[x]; [x] ∩ A 
= ∅} (upper)

Note that predecessor and successor neighborhoods coincide because of symmetry.
The result of relaxing reflexivity is severe from an algebraic point of view.

Related semantics do not fall under TQBAs.

Definition 67 A partial approximation S = 〈S, R〉 is said to be a well partial
approximation space (ASW) if and only if it satisfies

(∀x)(∃z) Rxz

Otherwise it is said to be an ill-posed partial approximation space(ASI).

Theorem 68 The following relation between approximations of subsets of a well
partial approximation space hold:

(∀x) xll ⊆ xl ⊆ x (ES1)

(∀x) xl ⊆ xlu ⊆ xul (ES2)

(∀x) x ⊆ xul = xuu (ES3)

Sl ⊆ S (ES4)

∅ ⊆ ∅u (ES5)

Condition ES3 can fail to hold in a ASI.

Proof The main thing to look out for is neighborhoods that do not include their
generator. ��
Proposition 69 A partial approximation space is an ASW if and only if Sl = S

Because of the above properties, the idea of rough object is taken to be an esoteric
tuple:

Definition 70 In a partial approximation space S, esoteric rough tuples are tuples
of the form

〈
Al, Alu Au

〉

for any A ⊆ S.
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Further,

Definition 71 Two subsets A, B of S, will be said to be roughly pseudo equal,
A  B if and only if

Al = Bl &Au = Bu

Alu = Blu

Proposition 72 The rough pseudo-equality relation  defined is an equivalence
relation on ℘(S). The class generated by a subset A is denoted by [A]r .
Proposition 73 Let A, B be two subsets of a partial approximation space S, then
there exists a subset C such that Alu ∪ Blu = Clu.

Definition 74 A subset A of a partial approximation space S is said to be an almost
definite set if and only if it is the case that

Al = Alu = Au

An almost definite set is a definite set if and only if it is the case that

Al = Alu = Au = A.

If E(S) and F(S) are the set of all almost definite and definite subsets of S then

E(S) ⊆ F(S)

Example 75 Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9} be a set and a partial equivalence R

on it be given by

R = {(1, 2), (2, 1), (3, 3), (4, 4), (5, 5), (4, 5), (5, 4), (6, 9), (9, 6), (6, 7),

(7, 6), (7, 9), (9, 7)}.
Consider the subsets

A = {2, 3}, B = {1, 5, 6, 8, 9}&F = {1, 4}
The approximations of the sets are as in Table 1. In the table, sets of the form

{1, 2} have been abbreviated as 12. The neighborhood granules generated by the
elements are as in Table 2.

Table 1 Approximations Set l ll u lu uu

A 23 23 23 23 23

B 1 1 145,679 1 145,679

F 1 1 145 1 145
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Table 2 Neighborhoods S 1 2 3 4 5 6 7 8 9

[x] 2 1 3 45 45 79 69 67

A new rough approach to mark and recapture methods is proposed by the present
author below. A detailed paper will appear separately.

Example 76 A practical example for partial approximation spaces is afforded by
the problem of estimating fishes in a pond or a river. Sampling techniques like the
mark and recapture method [147] and improvements thereof [148] for estimating
the number of fishes in a pond are well known. These methods are widely used in
epidemiology and many similar situations.

The basic steps are:

• Collect an initial set of fishes.
• Mark and release them into the pond.
• Draw one or more samples from the resulting population.
• Estimate various statistics from the samples.
• Make decisions subject to assumptions about the process.

In all these cases, the issue of discernibility can be seen from the perspective
of partial approximation spaces. If modern cameras and identification algorithms
are used without any observable physical marking, then it is possible that marked
objects in some or many of the second or later stage samples are not correctly
identified. This leads to a partial approximation spaces in the context and related
theory can be of much relevance in reasoning in the context for automated decision
making.

5.1 Exceptional Sets

One of the main strategies used in the study is this assumption: if approximations of
a set (or sets) satisfies a property P , but not Q that is a specialization of P , while
Q (and therefore P in a trivial sense) holds for approximations in classical rough
sets that is not satisfied in an approximation space, then this scenario must be due
to the existence of certain kinds of subsets. This leads to a classification of such sets
and a new approach to the main questions.

Definition 77 A set K of a partial approximation space S will be said to R-isolated
if and only if

(∀a, b) (Rab& a ∈ K −→ b ∈ K).
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Table 3 Isolated sets Name ∈ A /∈ A Rxx ¬Rxx Rxw

3 : 1 {a} {b, c} {b} {a, c} {ab, ac}
3 : 2 {a, b} {c} {} {a, b, c} {ab, ac}
3 : 3 {a, b} {c} {b} {a, c} {ab, ac}
3 : 4 {a, b} {c} {c} {a, b} {ab, ac}
3 : 5 {a} {b, c} {a} {b, c} {ab, ac}
3 : 6 {a} {b, c} {b, c} {a} {ab, ac}
2 : 1 {a} {b} {} {a, b} {ab}
2 : 2 {a} {b} {b} {a} {ab}
2 : 3 {a} {b} {a} {b} {ab}

The relationship of the collection F(A) of all isolated sets which are not disjoint
from a given set A can be expected to actually define the approximations of the
set A. In [85], it is shown that it suffices to restrict ourselves to one, two and three
element isolated sets alone. These are classified into different types on the basis of
the relationship of the elements to A, R and S. This is done in coherence with the
different types of possible approximations. Table 3 summarizes the possibilities:

Definition 78 A three element isolated set {a, b, c} not contained in a set A will be
said to be 3

1 -exceptional for A if and only if all of the following are true.

(i) a ∈ A&¬b, c ∈ A

(ii) ¬Raa &Rbb&¬Rcc

(iii) Rab &Rac

Definition 79 A set K will be said to be exceptional for a set A if and only if all of
the following hold:

(i) K is isolated.
(ii) (∃x ∈ K)¬Rxx

(iii) K � A&K ∩ A 
= ∅
Using the above concepts of exceptional sets, a fine grained classification of

subsets of a partial approximation space is obtained. One of the interesting concepts
used in the paper [85] is that of a fully featured subset—that is intended to capture
the idea of a subset with a maximal set of nontrivial properties. There is a typo in
the minor proposition on bijection between two fully featured subsets in the paper
[85]:

Definition 80 A set of the form

K = K0 ∪ {x1, y1, y2, z1, z2, a1, b1, c1, f1, f2, g1, h1}
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satisfying all of

1. K0 is a nonempty subset of S with at least two elements that are not subsets of
any other exceptional subsets of K .

2. Elements of K0 are distinct from the others listed.

In the following (A : ES(τ,K)) should be read as A is a type τ -exceptional set
for K .

(∀x ∈ K0) Rxx (Ref)

(∀x ∈ K0) (∀z)(Rxz −→ Rzz) (Ref+)

(∃x2, x3 ∈ S \K)

(
{x1, x2, x3} : ES(

3

1
,K)

)
(31)

(∃z3 ∈ S \K)

(
{z1, z2, z3} : ES(

3

2
,K)

)
(32)

(∃z3 ∈ S \K)

(
{z1, z2, z3} : ES(

3

3
,K)

)
(33)

(∃f3 ∈ S \K)

(
{f1, f2, f3} : ES(

3

4
,K)

)
(34)

(∃g2, g3 ∈ S \K)

(
{g1, g2, g3} : ES(

3

5
,K)

)
(35)

(∃h2, h3 ∈ S \K)

(
{h1, h2, h3} : ES(

3

6
,K)

)
(36)

(∃a2 ∈ S \K)

(
{a1, a2} : ES(

2

1
,K)

)
(21)

(∃b2 ∈ S \K)

(
{b1, b2} : ES(

2

2
,K)

)
(22)

(∃c2 ∈ S \K)

(
{c1, c2} : ES(

2

3
,K)

)
(23)

will be said to be fully featured in S.

Theorem 81 In case of esoteric rough sets [85], with the collection of all pseudo-
classes being the granules, all of RA, MER, NO, UU, US hold, but ACG may
not.

Proof RA, NO follow from the definition. It is possible that [x] ⊂ [x]u, so ACG
may not hold. US holds as if a granule overlaps another subset, then the upper
approximation of the set would surely include the granule. ��
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5.2 Algebraic Semantics

Many algebraic approaches can be used for studying partial approximation spaces
apart from the three in [85]. In this subsection one of the three is presented below:

Theorem 82 The set F(S) is endowable with a Boolean algebra structure.

Proof For any α, β ∈ F(S) if the operations ∧,∨ and c are defined as below:

α ∧ β =
⋃
{[x] : [x] ⊆ α & [x] ⊆ β} (meet)

α ∨ β =
⋃
{[x] : [x] ⊆ α ∪ β} (join)

αc =
⋃
{[x] : [x] ⊆ S \ α} (negation)

then the structureF(S) = 〈F(S), ∨, ∧, c, 0, 1
〉
is a Boolean algebra, where 0 = ∅

and 1 = 0c. The last operation is not a partial operation as the elements of F(S) are
definite sets. The distributive lattice structure under the defined operations follows
from purely set-theoretic considerations. ��
Theorem 83 The set E(S) is not necessarily a lattice under operations defined in
the same way as in the above proof.

Proof It is possible that elements of E(S) contain isolated elements. For such
subsets ∧ and ∨ as defined above will not be lattice operations (idempotency will
also fail). Counterexamples are easy to construct. ��

Given a partial approximation space
〈
S, R
〉
, form its power set ℘(S).

Let (a, b) /∈ R ↔ (a, b) ∈ F

As R is a partial equivalence, F is a partially reflexive and symmetric relation. For
any set H ⊆ S, let

• H ◦ = {x ; (∀a ∈ H) (x, a) ∈ F }
• L(H) = Hc◦◦c
• U(H) = H ◦◦

Definition 84 The algebra

P =
〈
℘(S),∨,∧,◦ ,c , l, u, L,U,∅, S

〉

of type (2, 2, 1, 1, 1, 1, 1, 1, 0, 0)will be called a Neo BZ-Lattice with the operations
l, u being the lower and upper approximations due to R respectively.
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Theorem 85 P =
〈
℘(S),∨,∧,◦ ,c , l, u, L,U,∅, S

〉
is a Boolean algebra with

extra operations that satisfies all of the following:

〈
℘(S),∨,∧,c ,∅, S

〉
is a Boolean algebra.

H ◦ ⊆ H ◦◦◦

(H ⊆ K −→ (K◦ \K∗) ⊆ H ◦), where K∗ = K ∧K◦

H ◦ ∧K◦ ⊆ (H ∨K)◦

(H ∧K)◦ ⊆ H ◦ ∨K◦

H ◦ \ H ∗ ⊆ Hc

Proof

(i) ∨ and ∧ are the same as the usual set-theoretic operations of union and
intersection.

(ii) If (a, a) ∈ F , a ∈ H and {a} ∪ K is an isolated set for some K ⊆ Hc, then a

is in H ◦ and elements R-related to a cannot be in H ◦. But a subset of K will in
general be included in H ◦. a will then be in H ◦◦. But if no part of K is included
in H ◦◦, then a /∈ H ◦◦. It is easy to construct examples. H ◦ ⊆ H ◦◦◦ can be
verified by considering fully featured sets.

��
Proposition 86 In general for a subset H , H ◦◦ is not comparable with H .

Proof Let x0 ∈ H be such that

• (∀x ∈ H)¬ (x0, x) ∈ R

• (x0, x0) /∈ R

Then it is that x0 ∈ H ◦, but it is possible that the element may or may not be in H ◦◦
(depending on how the elements related to x0 are). The required counterexample is
easy. ��

The theory can be extended to a more abstract level by using an essentially BZ-
lattice abstraction as in [19].

An Abstract Algebraic Approach

The motivations for this approach are similar to those of the double Stone approach
in classical rough sets [31, 42] theory. However, there are many differences in the
basic technique used. The valuation is into a refined form of sets of tuples of the
form (Al,Alu,Au) so that all considerations can be restricted to unions of pseudo-
classes. For this purpose an additional operation τ that removes the pseudo classes
that are not contained within the set under consideration is used.
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Let the language L of esoteric rough set logic consist of a nonempty set of propo-
sitional variables P , two binary connectives ∨, ∧, three unary connectives ∗, +, �
and three constants T, T0, F for truth. Formulas are constructible in the usual way, so
that the set F(L) of formulas is a free algebra of type (2, 2, 1, 1, 1, 0, 0) generated
over P . A model of L then is a pair of the form (W, υ), where W is a set and
υ : P �→ ℘(W) × ℘(W) × ℘(W) is a valuation, such that if υ(p) = (A, B, C)

then A ⊆ B ⊆ C. Further it will be assumed that an operation τ : ℘(W) �→ ℘(W)

satisfying all of the following is given:

Inclusion τ (A) ⊆ A

Idempotence τ (τ (A)) = τ (A)

Monotonicity (A ⊆ B −→ τ (A) ⊆ τ (B))

Empty-set τ (∅) = ∅
⊥ A⊥ = τ (Ac), c being the complementation operation.

Given a model M = (W, υ), its meaning function σ will be an extension of the
valuation function σ : F(L) �−→ ℘(W) × ℘(W) × ℘(W) such that,

1. σ(T) = (τ (W), τ (W), τ (W)) = 1
2. σ(T0) = (W, W, W) = 2
3. σ(F) = (∅), ∅, ∅) = 0
4. ∀p ∈ P σ(p) = υ(p)

5. If σ(ϕ) = (A, B, C) and σ(ψ) = (E, F, G), then

• σ(ϕ ∧ ψ) = (A ∩ E, B ∩ F, C ∩ G)

• σ(ϕ ∨ ψ) = (A ∪ E, B ∪ F, C ∪ G)

• σ(ϕ∗) = (C⊥, C⊥, C⊥)
• σ(ϕ+) = (A⊥, A⊥, A⊥)
• σ(ϕ�) = (B⊥, B⊥, B⊥)

On Ran(σ) = {σ(ϕ) : ϕ ∈ F(L)}, let the operations⊕, ·, ∗, + and � be defined
as below.

1. σ(ϕ) · σ(ψ) = σ(ϕ ∧ ψ)

2. σ(ϕ) ⊕ σ(ψ) = σ(ϕ ∨ ψ)

3. (σ (ϕ))∗ = σ(ϕ∗)
4. (σ (ϕ))+ = σ(ϕ+)
5. (σ (ϕ)� = σ(ϕ�)).

Theorem 87 Ran(σ) with the defined operations is an algebra satisfying all of the
following :

(i) 〈Ran(σ), +, ·, 0, 1〉 is a bounded distributive lattice.
(ii) (a ≤ b∗ −→ (a · b) = 0)

(iii) a∗∗∗ = a∗
(iv) a+++ = a+
(v) a�� · a = a

(vi) x∗ ⊕ x∗∗ = 1
(vii) x+ · x++ = 0
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(viii) (x+ = y+, x∗ = y∗, x� = y� −→ x ⊕ y∗ = 1)
(ix) x+ · x∗ = x∗
(x) 2∗ = 0

(xi) 1∗∗ = 1

Proof The following proof is abstract and is not really set theoretical. Connection
with sets have been retained for its visual value.

(i) ⊕ and · are clearly distributive lattice operations on Ran(σ). It is bounded by
0 and 2 and it is essential that 2 covers 1 (lattice-theoretically).

(ii) If a ≤ b∗, then a is contained in the image of the complement (by τ ) of the
upper approximation of b, so that the meet · of a and b is the image 0 of the
triple of empty sets.

(iii) a∗∗∗ is obtained by three applications of an upper approximation followed by
a complementation and then by the τ operation in order on the components.
But τ essentially forms the union of the largest collection of pseudoclasses
that are contained within the complement (component-wise).

(iv) a+++ = a+ can be proved in the same way as the above.
(v) a� will consist of pseudoclasses included in complement of the lu applications

on the components of a. An application lu on the resulting components will
have no effect. The complements of these will contain a component-wise.
An application of the τ operation on the components will still contain a. So
a�� · a = a.

(vi) x∗ is a subset of the complement of the upper approximation of x. x∗∗ is
essentially the largest union of pseudoclasses contained in the complement
of x∗. Now their disjunction (⊕) will not contain the singleton isolated sets
alone. This is precisely 1.

(vii) x+ · x++ = 0 follows by an argument similar to the one above.
(viii) If (x+ = y+, x∗ = y∗, x� = y�, then obviously it does not mean that

x = y. But given an arbitrary nonempty pseudo class, it must be the case
that it is either in x or y∗. So x ⊕ y∗ = 1.

(ix) x∗ is included in x+
(x) The complement of 2 is 0 and τ of that is still τ .

(xi) τ of the 2 is 1.
��

Definition 88 Ran(σ) along with the defined operations is said to be an esoteric
2SA algebra.

Definition 89 An abstract esoteric 2SA algebra will be an algebra of the form

A = 〈A,∨,∧,� ,∗ ,+ , 0, 1, (2, 2, 1, 1, 1, 0, 0)
〉

that satisfies all of the following:

(i)
〈
A,∨,∧, 0, 1

〉
is a bounded distributive lattice.

(ii) a ≤ b∗ −→ (a · b) = 0
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(iii) a∗∗∗ = a∗

(iv) a+++ = a+

(v) a�� ∧ a = a

(vi) x∗ ∨ x∗∗ = 1

(vii) x+ ∧ x++ = 0

(viii) (x+ = y+& x∗ = y∗& x� = y� −→ x ∨ y∗ = 1)

(ix) x+ ∧ x∗ = x∗

(x) 1∗ = 0

(xi) 1∗∗ = 1

Representation results relating to this abstraction

6 Tolerance Approximation Spaces

There are a few granular approaches to similarity approximation spaces, that is
general approximation spaces of the form S = 〈S, T 〉 with T being a tolerance
relation on S. Possible semantics depend on choice of granulation. Some choices of
granulations in the context are the following:

• The collection B of blocks (maximal subsets B of S that satisfy B2 ⊆ T ),
• The collection of successor N and predecessor Ni neighborhoods generated by

T and
• The collection T = {∩(Γ ) : Γ ⊆ B}. These will be called the collection of

squeezed blocks.

Of these B is the most natural because it is a direct generalization of the concept
of a partition of equivalence classes. Related representation theorems can be found
in the chapter on duality in this volume [107]. For this case multiple semantic
approaches have been developed by the present author [86, 89, 106]. The approach
in [106] can possibly be extended to the point-wise contexts as well. The point-
wise nongranular approach has been considered in [16, 19, 62, 124, 139, 155] and
other papers. The semantics in [86] applies to granulations satisfy a minimal set of
conditions.
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6.1 Choice Inclusive Approach

The choice inclusive approach invented by the present author for tolerance approx-
imation spaces [87, 89] can be directly generalized to granular operator spaces,
general covers on a set and all general approximation spaces. It can also be
generalized to the point-wise approximations constructed by reference to granules.
Because of this reason, the approach is presented separately in Sect. 11.

6.2 Squeezed Blocks

In classical rough set theory, the negative region of a set is the lower approximation
of the complement of the set. This region is disjoint from the upper approximation of
the set in question. An analogous property fails to hold in tolerance spaces (TAS). To
deal with this different semantic approaches (to tolerance space ) involving modified
upper approximations has been considered in [86, 157, 160]. The modified upper
approximations are formed from upper approximations by biting off a part of it to
form bitten upper approximations. The new approximations turn out to be disjoint
from the negative region of the subset and also possess some nice properties.

The squeezed block approach, as a semantics for a specific tolerance space
context, was introduced in [160]. The nomenclature is due to the present author.
In this approach, taking T as the set of granules, the authors define the lower, upper
and bitten upper approximation of a X ⊆ S as follows:

Xls =
⋃
{A : A ⊆ X &A ∈ T} (sq-lower)

Xus =
⋃
{A : A ∩ X 
= ∅&A ∈ T} (sq-upper)

Xusb =
⋃
{A : A ∩ X 
= ∅&A ∈ T} \ (Xc)l (sqb-upper)

Theorem 90 On the complete Boolean algebra with operators

〈
℘(S),∪,∩, ls , usb,

c ,⊥,5
〉

on the powerset ℘(S) (with ⊥ = ∅ and 5 = §), all of the following hold:

ausb = aclsc (S5-Dual)

a ⊆ b −→ als ⊆ bls (Monotone)

⊥ls = ⊥ = ⊥usb (Bottom)

5ls = 5usb = 5 (Top)
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als ⊆ a ⊆ ausb (Reflexive)

xls = xls ls (Idempotence)

(a ∩ b)ls ⊆ als ∩ bls (L3)

als ∪ bls ⊆ (a ∪ b)ls (L4)

Proof The proof of the properties is left to the reader. ��
Theorem 91 If the set of definable objects is defined by Δ(S) = {∪H : H ⊆ T},
then all of the following hold:

∅, S ∈ Δ(S) (Bounds)

(∀A,B ∈ Delta(S))A ∪ B, A ∩ B ∈ Δ(S) (Closure)
〈
Δ(S),∪,∩,∅, S〉 is a complete ring of subsets (Ring)

In fact Δ(S) with the induced operations forms an Alexandrov topology [160].

On the set of definable objects Δ(S), let

• X → Z = ⋃{B ∈ T &X ∩ B ⊆ Z}
• X � Z = ⋂{B ∈ T &X ⊆ Z ∪ B}.
Then the following theorem provides a topological algebraic semantics ([160]):

Theorem 92 〈Δ(S), ∩, ∪, →, �, ∅, S〉 is a complete atomic double Heyting
algebra. It is also atomistic.

Proof

• By the previous theorem, Δ(S) is also infinitely join and infinitely meet
distributive lattice.

• The set P = ⋃{B; B ∈ T&X ∩ B ⊆ Z} is also the greatest element in the set
that satisfies X ∩ P ⊆ Z.

• The set Q = ⋂{B; B ∈ T&X ⊆ Z ∪ B} is also the least element in the set that
satisfies X ⊆ Q ∪ Z.

• The axioms of a complete double Heyting algebra can be verified from this.
• The least granule and definite set containing an element x is Ax = ⋂{A; x ∈

A ∈ T}. It is also the least neighborhood of x in the Alexandrov topology.
• So {Ax : x ∈ S} is the least base for the topology and the set of atoms of the

lattice Δ(S). Therefore, every Z ∈ Δ(S) must contain a set of the form Ax . This
proves that the double Heyting algebra is atomic.

��
Proposition 93 〈Δ(S), ∩, ∪, →, �, ∅, S〉 is not regular and does not satisfy
weak law of excluded middle.
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Proof

• Let S = {a, b, c, e, f, g} and B = {{a, b, c}, {b, c, e}, {f, g}}.
• Then T = {{a, b, c}, {b, c, e}, {f, g}, {b, c}}.
• Δ(S) = T ∪ {{a, b, c, e}, {a, b, c, f, g}, {b, c, e, f, g}, {b, c, f, g},∅, S}
• For any X, define ¬X = X→ ∅ and Xo = S �X

• For {b} 
= {c}, ¬{b} = {c} = {f, g} and {b}o = {c}o = S. So the algebra is
not regular.

• Also ¬{a, g} ∪ ¬¬{a, g} = {b, c, e, f, g} 
= S

��
Definition 94 On the collection of rough objects

O = Os(S) = {(Als , Aubs ) : A ⊆ S},

let (for any (Als , Aubs ), (Bls , Bubs ) ∈ O),

(Als , Aubs ) ∧ (Bls , Bubs ) = (Als ∩ Bls , Aubs ∩ Bubs ) (Meet)

∨
(A

ls
i , A

ubs
i ) = (

⋃
A

ls
i ,
⋃

A
ubs
i ) (Join)

Let μ(A,B) = {Z : Z ⊆ S & (Als , Aubs ) ∧ (Zls , Zubs ) ≤ (Bls , Bubs )} (H)

Let ν(A,B) = {Z : Z ⊆ S & (Als , Aubs ) ≤ (Zls , Zubs ) ∨ (Bls , Bubs )} (B)

(Als , Aubs ) → (Bls , Bubs ) =
⎛

⎝
⋃

Z∈μ(A,B)

Zls ,
⋃

Z∈μ(A,B)

Zubs

⎞

⎠ (H1)

(Als , Aubs ) � (Bls , Bubs ) =
⎛

⎝
⋂

Z∈ν(A,B)

Zls ,
⋂

Z∈ν(A,B)

Zubs

⎞

⎠ (B1)

Theorem 95 The algebra
〈
O,∨,∧,→,�,∅, S〉 is a complete atomic double Heyt-

ing algebra.

Proof

• Note that, for any A ⊆ S, Als ∈ Δ(S) and Aubs ∈ Cl(S)—the set of closed sets
in the Alexandrov topology on (S,Δ(S)),
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• Δ(S) and Cl(S) are complete atomic distributive lattices of sets that are infinite
meet and join distributive. So their product

DC = 〈Δ(S)× Cl(S),∨,∧, (∅,∅), (S, S)〉

is also so.
• 〈O,∨,∧, (∅,∅), (S, S)〉 is a complete sublattice of DC and so is also a infinite

meet and join distributive complete atomic distributive sublattice of sets.
• On O, the operations as in Def. 94 are induced.
• The rest of the proof is in direct verification.

��
The following theorem summarizes the granular properties in the context.

Theorem 96 Taking G to be T and restricting to lower and bitten upper approxi-
mations alone RA, ACG, NO do not hold while LRA, WRA, MER, LACG, ST do
hold.

Proof If H is a granule, then it is an intersection of blocks. It can be deduced
that the lower approximation of H coincides with itself, while the bitten upper
approximation is the union of all blocks including H . LRA is obvious, but URA
need not hold due to the bitten operation. If a definite set is included in a granule,
then it has to be a block that intersects no other block and so the granule should
coincide with it. So MER holds. ��

6.3 Higher Order Bited Approach

In [86], two different approaches for handling rough sets formed by bited granular
approximations generated by granulations including blocks in tolerance spaces had
been invented by the present author. The most interesting aspect of her approach is
in the nature of higher order rough objects used. These are discussed in the present
part of a subsection. The notation is considerably simplified from the one used in
the paper.

The theory apparently lays emphasis on desired mereological properties at the
cost of representation.

Let Gr(S) ⊆ ℘(S) be the collection of granules for a tolerance space defined by
some conditions including

⋃
Gr(S) = S. A subset X is ∪-granular definable if

and only if ∃B ⊆ Gr(S)X = ⋃B. In [86], ∪-granular definable was granularly
definable- the latter terminology is not precise enough in the light of [91]. The
collection of ∪-granular definable sets shall be denoted by DefGr (S). The lower,
upper and bitten approximations of X are defined as below:

Gr∗(X) =
⋃
{A : A ⊆ X, A ∈ Gr(S)} (Lower)

Gr∗(X) =
⋃
{A : A ∩ X 
= ∅, A ∈ Gr(S)} (Upper)
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POSGr (X) = Gr∗(X) (Positive Region)

NEGGr(X) = Gr∗(Xc) (Negative Region)

Gr∗b (X) = Gr∗(X) \ NEGGr(X) (Bitten Upper.)

Clearly, the positive and negative region are ∪-granular definable. But in this
scheme of things Gr∗(X) ∩ NEGGr(X) 
= ∅ is possible. The bitten upper
approximation has been defined to overcome this problem. Relative this the
boundary is given by

BNGr(X) = Gr∗b (X) \ Gr∗(X) = S \ (POSGr(X) ∪ NEGGr(X)).

Gr(S) may be taken to be the set of T -relateds or the set of blocks of T or
something else. For example, if Gr(S) is the set of all sets of the form Tx with
Tx = {y ; (x, y) ∈ T , y ∈ S} then it is a proper cover of S. The upper and lower
approximations of a subset X are then:

Gr∗(X) =
⋃
{Y ∈ Gr(S); Y ⊆ X}taglower

Gr∗(S) =
⋃
{Y ∈ Gr(S); Y ∩,X 
= ∅} (upper)

Gr∗b (X) = Gr∗(X) \ Gr∗(X) (bitten upper)

The tuple
〈
S, Gr(S), T , Gr∗, Gr∗b

〉
is called a bitten approximation system (BAS).

The properties of the approximations are as follows (Table 4):

Table 4 Bited approximations

l1-Property u2-Property

1a.) Gr∗(X) ⊆ X 1b.) X ⊆ Gr∗b (X)

2a.) (X ⊆ Y −→ Gr∗(X) ⊆ Gr∗(Y )) 2b.) (X ⊆ Y −→ Gr∗b (X) ⊆ Gr∗b (Y ))

3a.) Gr∗(∅) = ∅ 3b.) Gr∗b (∅) = ∅
4a.) Gr∗(S) = S 4b.) Gr∗b (S) = S

5a.) Gr∗(Gr∗(X)) = Gr∗(X) 5b.) Gr∗b (Gr∗b (X)) = Gr∗b (X)

6a.) Gr∗(X ∩ Y) ⊆ Gr∗(X) ∩ Gr∗(Y ) 6b.) Gr∗b (X ∩ Y) ⊆ Gr∗b (X) ∩ Gr∗b (Y )

7a.) Gr∗(X) ∪ Gr∗(Y ) ⊆ Gr∗(X ∪ Y) 7b.) Gr∗b (X) ∪ Gr∗b (Y ) ⊆ Gr∗b (X ∪ Y)

8a.) Gr∗(X) ⊆ Gr∗b (Gr∗(X)) 8b.) Gr∗(Gr∗b (X)) ⊆) Gr∗b (X)

9a.) (Gr∗(X))c = Gr∗b (Xc) 9b.) (Gr∗b (X))c = Gr∗(Xc)

10A.) X ∈ DefGr (S) ←→ X = Gr∗(X)

10B.) X ∈ CrGr (S) ←→ Gr∗(X) = Gr∗b (X)

11A.) X, Y ∈ DefGr (S) −→ X ∪ Y ∈
DefGr (S)

(Implies equality in 7a)

11B.) X, Y ∈ CrGr (S) −→ X ∩ Y, X ∪ Y ∈
CrGr (S)

(Implies equality in 6a, 6b, 7a, 7b, 8a, 8b)
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6.3.1 Semantics for Bitten Rough Set Theory

The concept of granules to be used in the theory is essentially kept open. Many types
of granules may not permit nice representation theory. Despite this, the semantics
in [86] over roughly equivalent objects does well. This is due to the higher order
approach used.

Definition 97 If S is a tolerance space , then over ℘(S) let A ∼ B if and only if

Gr∗(A) = Gr∗(B) and Gr∗b (A) = Gr∗b (B)

The following proposition and theorem basically say the quotient structure (or
the set of roughly equivalent objects) has very little structure with respect to
desirable properties of a partial algebra. They are clearly deficient from the rough
perspective as proper conjunction and disjunction operations do not happen. But
biting may actually make the partial operations total in many contexts.

Proposition 98 ∼ is an equivalence on the power set ℘(S). Moreover the following
operations and relations on ℘(S)| ∼ are well-defined:

• L([A]) = [Gr∗(A)]
• ¬[A] = [Ac] if defined
• �([A]) = [Gr∗b (A)]
• [A] ≤ [B] if and only if, for any A ∈ [A] and B ∈ [B] Gr∗(A) ⊆ Gr∗(B) and

Gr∗b (A) ⊆ Gr∗b (B).
• [A] � [B] = [C] if and only if [C] is the infimum of [A] and [B] w.r.t ≤. It shall

be taken to be undefined in other cases.
• [A] 
 [B] = [C] if and only if [C] is the supremum of [A] and [B] w.r.t ≤. It

shall be taken to be undefined in other cases.

Moreover ≤ is a partial order on ℘(S)| ∼ that is partially compatible with L on
the crisp elements.

Proof

• For any A ∈ ℘(S) and any B ∈ [A], Gr∗(Gr∗(A) = Gr∗(A) = Gr∗(B) and
Gr∗b (Gr∗(A)) = Gr∗b (Gr∗(B)). This proves that L is well-defined.

• For any A ∈ ℘(S) and any B, E ∈ [A], (Gr∗(B))c = Gr∗b (Bc) =
(Gr∗(E))c = Gr∗b (Ec) and (Gr∗b (B))c = Gr∗(Bc) = (Gr∗b (E))c =
Gr∗(Ec).

Rest of the statements can be verified along similar lines. ��
Proposition 99 In the above context,

([A] ≤ [B] −→ ¬[B] ≤ ¬[A])
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Theorem 100 All of the following hold in ℘(S)| ∼ (the unary operators are
assumed to bind more strongly than binary ones):

1. (�x 
 �y = a, �(x 
 y) = b −→ �x 
 �y ≤ �(x 
 y))

2. x � �x = x

3. ��x = �x
4. (�x � �y = a, �(x � y) = b −→ �(x � y) ≤ �x � �y)
5. (Lx 
 Ly = a, L(x 
 y) = b −→ Lx 
 Ly ≤ L(x 
 y))

6. Lx � �Lx = Lx

7. �x 
 L�x = �x
8. ¬�x = L¬x
9. ¬Lx = �¬x
Proof

1. If A ∈ x and B ∈ y, then �x = [Gr∗b (A)], �y = [Gr∗b (B)]. Given the
existence of the terms in the premise, it can be assumed that there exists C ∈
[Gr∗b (A)] 
 [Gr∗b (B)] and E ∈ �(x 
 y). Gr∗(C) ⊆ Gr∗(E) and Gr∗b (C) ∈
Gr∗b (E). So, given the existence of the terms in the premise, �x 
 �y ≤ �(x 

y).

2. If A ∈ x, then �x = [Gr∗b (A)]. As A ⊆ Gr∗b (A), so x � �x = x.
3. If A ∈ x, then ��x = �[Gr∗b (A)] = [Gr∗b (Gr∗b (A))] = [Gr∗b (A)] = �x.
4. The proof of (�x � �y = a, �(x � y) −→ �(x � y) ≤ �x � �y) is similar

to that of the first item.
5. Given the existence of the terms in the premise, if A ∈ x and B ∈ y, then

Lx = L[A] = [Gr∗(A)] and Ly = [Gr∗(B)]. If C ∈ Lx 
 Ly and E ∈
L(x 
 y), then Gr∗(C) ⊆ Gr∗(A) ∪ Gr∗(B), Gr∗(A) ∪ GrB ⊆ Gr∗(E) and
Gr∗b (C) ⊆ Gr∗b (E). So, Lx 
 Ly ≤ L(x 
 y).

6. If A ∈ x, then Lx = L[A] = [Gr∗(A)] and �Lx = [Gr∗bGr∗(A)]. But
Gr∗(A) ⊆ Gr∗bGr∗(A). So Lx � �Lx = Lx.

7. • If A ∈ x, then �x = �[A] = [Gr∗b (A)] and L�x = [Gr∗Gr∗b (A)].
• But Gr∗Gr∗b (A) ⊆ Gr∗b (A).
• So, �x 
 L�x = �x.

8. If A ∈ x, then ¬�x = ¬�[A] = ¬[Gr∗b (A)]. ¬[Gr∗b (A)] = [(Gr∗b (A))c],=
[Gr∗(Ac)] = Lneg[A]. So, ¬�x = L¬x.

9. If A ∈ x, then ¬Lx = ¬[Gr∗(A)] = [(Gr∗(A))c].

But [(Gr∗(A))c] = [Gr∗b (Ac)].

This yields ¬Lx = �¬x.
��

A semantics using the partial algebra over the associated quotient may be
difficult because of axiomatisability issues. So a higher order approach that avoids
introduction of extraneous properties is used. Eventually the constructed algebra
ends up with three partial orders. In the following construction the use of a modified
concept of filters simplifies the eventual representation theorem.
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If ℘(S)| ∼= K , then let K∗ = {f : f : K �→ I is isotone }, I being the
totally ordered two element set {0, 1} under 0 < 1. For any A ⊂ K∗, a subset F
is an A-ideal if and only if

F =
⋂

x∈A
x−1{0}.

Dually F is an A-filter if and only if

F =
⋂

x∈A
x−1{1}.

All A-ideals are order ideals (w.r.t the induced order on K∗), but the converse
need not hold. A ⊂ K∗ is said to be full if ∀p � q ∃ x ∈ Ax(p) = 1, x(q) = 0.
A is said to be separating if for any disjoint ideal I and filter F , there exists a x ∈ A

such that x|I = 0 and x|F = 1

Lemma 101 If A is a separating subset of K∗ and (∀p, q ∈ K)(q � p −→
p ↓A ∩ q ↑A= ∅), then A is full.

If p ∈ K , then let UP(p) = {x : x(p) = 1} and LO(p) = {x : x(p) = 0},
then the two closure operators C1, C2 can be defined via

C1 = clos{UP(p)}p∈K
(a C1-closed set is an intersection of elements of {UP(p)}p∈K ) and

C2 = clos{LO(p)}p∈K
Note that elements of UP(p)}p∈K are in fact C1O2-sets (that is sets that are open

with respect to the second closure system and closed with respect to the first). The
set of such sets on a system (S, C1, C2), will be denoted by C1O2(S, C1, C2). The
associated closure operators will be denoted by cl1 and cl2 respectively.

On any subset A ⊆ K∗, closure operators can be defined via CiA(X) = Ci ∩ A,
with associated closure systems UPA(p) = UP(p) ∩ A and LOA(p) = LO(p) ∩
A respectively. It can be seen that, in the situation, C1A = clos{UP(p)}p ∈ P and
C2A = clos{LO(p)}p ∈ P .

Theorem 102 If A ⊆ K∗ and σ : K �→ C1O2(A, C1A, C2A) is a map defined
by σ(p) = UP(p) then

1. σ is isotone
2. If A is full, then σ is injective
3. If A is separating, then σ is surjective.

Proof This theorem and the following theorem are proved for an arbitrary partially
ordered set K in [14]. ��
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Theorem 103 If A is a full and separating subset of K∗, then

K ∼= C1O2(A, C1A, C2A)

Since K∗ is a full and separating set, K ∼= C1O2(K
∗, C1, C2) .

K∗ \ {0, 1} is also a full and separating set.

The following clarifies the connection with the more common way of using
closure operators.

Proposition 104 A ∈ C1O2(K
∗, C1, C2) if and only if A ⊆ K∗ and (∃B, E ⊆

K∗) A = cl1B, A = K∗ \ cl2(E).

K∗ can be interpreted as the set of partitions of the set of roughly equivalent
elements into an upper and lower region subject to the new order being a coarsening
of the original order. The important thing is that this restricted global object is
compatible with the natural global versions of the other operations and leads to
a proper semantics. This is shown in what follows.

Definition 105 On K∗, the following global operations (relative those on K) can
be defined:

• If A ∈ C1O2(K
∗, C1, C2), thenL(A) = L(i(A)), i being the canonical identity

map from C1O2(K
∗, C1, C2) onto ℘K .

• A ∨ B = cl1(A ∪ B) (if the right hand side is also open with respect to the
second closure system), ∪ being the union operation over K∗

• A ∧ B = cl1(A ∩ B) (if the right hand side is also open with respect to the
second closure system), ∩ being the intersection operation over K∗

• If A ∈ C1O2(K
∗, C1, C2) then ♦A = �i(A)

• If A ∈ C1O2(K
∗, C1, C2) then ∼ A = ¬i(A)

• cl1, cl2 can be taken as unary operators on K∗
• 1, ⊥, 5, shall be 0-ary operations with interpreted values corresponding to K, ∅

and K∗ respectively
• If A, B ∈ C1O2(K

∗, C1, C2) then A � B,= i(A) � i(B)

• If A, B ∈ C1O2(K
∗, C1, C2) then A � B,= i(A) 
 i(B)

Proposition 106 A partial operation is well defined if it is either uniquely defined
or not ambiguously defined. In this sense all of the operations and partial operations
are well-defined.

Definition 107 An algebra of the form

W =
〈
℘(K∗), ∨, ∧, �, �, ∪, ∩, c, , cl1, cl2, ∼, L, ♦, ⊥, 1, 5

〉

of type (2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0) in which the operations are as in the
above definition will be called a concrete bitten algebra. ∪, ∩, c are the union,
intersection and complementation operations respectively on ℘(K∗). ξ(x) will be
used as an abbreviation for cl1x = x, cl2x

c = xc. Further ξ(x, y, . . .) shall mean
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ξ(x), ξ(y) and so on. If S is the original tolerance space , then its associated concrete
bitten algebra is denoted by Bite(S).

Theorem 108 A concrete bitten algebra W satisfies all of the following:

1.
〈
℘(K∗), ∪, ∩, c, ⊥, 5

〉
is a Boolean algebra. Note that after forming asso-

ciated categories with the usual concept of morphisms, this can be realized
through forgetful functors.

2. x ∨ y
ω∗= y ∨ x

3. x ∨ (y ∨ z)
ω= (x ∨ y) ∨ z

4. (ξ(x) −→ x ∨ x = cl1(x))

5. (x ∨ y = z −→ cl1z = z, cl2z
c = zc)

6. (x ∨ x = y −→ cl2(x
c) = xc, y = cl1(x) = x ∧ x)

7. cli(x) ∩ x = x; clicli(x) = cli(x); i = 1, 2
8. (x ∩ y = x −→ cli(x) ∩ cli(y) = cli(x)); i = 1, 2

9. x ∧ y
ω∗= y ∧ x

10. x ∧ (y ∧ z)
ω= (x ∧ y) ∨ z

11. (x ∧ x = y −→ cl2(x
c) = xc, y = cl1(x))

12. (cl2((cl1x)
c) = (cl1x)

c −→ x ∧ x = cl1(x))

13. (x ∧ y = z −→ cl1z = z, cl2z
c = zc)

14. ((x ∧ y) ∨ x = z −→ z = cl1(x))

15. (x ∧ y) ∨ x
ω∗= x ∧ (y ∨ x)

16. L⊥ = ⊥; L1 = 1
17. (cl1x = x, cl2(x

c) = xc −→ x ∨ Lx = x, LLx = Lx)
18. (x � y = z −→ ξ(x, y, z))

19. (x � y = z −→ ξ(x, y, z))

20. x � y
ω∗= y � x

21. x � (y � z)
ω= (x � y) � z

22. x � y
ω∗= y � x

23. x � (y � z)
ω= (x � y) � z

24. (ξ(x, y) −→ ♦(x � y) ∩ (♦x � ♦y) = ♦x � ♦y)
25. (ξ(x) −→ x � ♦x = x, ♦♦x = ♦x)
26. (ξ(x, y) −→ ♦(x � y) ∩ (♦x � ♦y) = ♦(x � y))

27. (ξ(x, y) −→ L(x � y) ∩ (Lx � Ly) = Lx � Ly)
28. (ξ(x) −→ Lx � ♦Lx = Lx)
29. (ξ(x) −→ ♦x � L♦x = ♦x)
30. (ξx −→∼ ♦x = L ∼ x)

31. (ξx −→∼ Lx = ♦ ∼ x)

32. (x � y = x −→ x � y = y)

Proof

1. That
〈
℘(K∗), ∪, ∩, c, ⊥, 5

〉
is a Boolean algebra can be proved by part of

Stone’s representation theorem.
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2. For proving x ∨ y
ω∗= y ∨ x, if x ∨ y is defined, then cl1(x ∪ y) is open with

respect to cl2. So cl1(y ∪ x is also open with respect to cl2 and the two sides
of the equality must be equal. Similarly for the reversed argument.

3. If x∨ (y ∨ z) and (x ∨y)∨ z are defined, then they must equal cl1(x ∪ cl1(y ∪
z)) and cl1(cl1(x ∪ y)) ∪ z) respectively. Further these and cl1(x ∪ y), and
cl1(y ∪ z) must be open with respect to cl2. But cli are topological closures.
So x ∨ (y ∨ z)

ω= (x ∨ y) ∨ z

4. (ξ(x) −→ x ∨ x = cl1(x)) can be derived directly.
5. If (x ∨ y = z then z = cl1(x ∪ y) and it must be open with respect to the

second closure system. So, (x ∨ y = z −→ cl1z = z, cl2z
c = zc)

6. If x∨x = y, then x∧x will also be equal to cl1(x). The rest of (x∨x = y −→
cl2(x

c) = xc, y = cl1(x) = x ∧ x) follows from the previous observation.
7. cli(x) ∩ x = x; clicli(x) = cli(x); i = 1, 2 follows from definition
8. (x ∩ y = x −→ cli(x) ∩ cli(y) = cli(x)); i = 1, 2 expresses monotonicity

9. The proof of x ∧ y
ω∗= y ∧ x is similar to that of its dual.

10. The proof of x ∧ (y ∧ z)
ω= (x ∧ y)∨ z is similar but easier than that of its dual.

11. (x∧x = y −→ cl2(x
c) = xc, y = cl1(x)) follows directly from definition.

12. (cl2(cl1x)
c) = (cl1x)

c −→ x ∧ x = cl1(x)) is also direct.
13. If x ∧ y = z, then z must necessarily be closed with respect to cl1 and open

with respect to cl2. So (x ∧ y = z −→ cl1z = z, cl2z
c = zc)

14. (x∧y) = a (say) is certainly lesser than cl1(x), so (x∧y)∨x = cl1(a ∪ x) =
cl1(x). This proves ((x ∧ y) ∨ x = z −→ z = cl1(x))

15. The argument of the previous conditional implication can be extended to prove

(x ∧ y) ∨ x
ω∗= x ∧ (y ∨ x).

16. L⊥ = ⊥, and L1 = 1 follow from definition.
17. If (cl1x = x, cl2(x

c) = xc, then x is essentially in the main quotient structure
of interest. SoLx will be defined and the rest of (cl1x = x, cl2(x

c) = xc −→
x ∨ Lx = x, LLx = Lx) follows.

18. If (x � y = z, then x, y are essentially in C1O2(K
∗, C1, C2, but then x �

y must be the infimum of x and y with respect to ≤. So z must also be in
C1O2(K

∗, C1, C2 and (x � y = z −→ ξ(x, y, z)).
19. The proof of (x � y = z −→ ξ(x, y, z)) is similar to that of the above

statement.
20. If either x � y or y � x is defined, then the other is and the two must be equal

to their identification with i(x) � i(y). So x � y
ω∗= y � x.

21. x � (y � z)
ω= (x � y) � z

22. x � y
ω∗= y � x can be proved in the same way as its dual statement (with �).

23. The rest of the proof follows from the first theorem of this section.
��

The above definition of a concrete bitten algebra is well suited for easy
abstraction.
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Definition 109 An abstract bitten algebra, shall be a partial algebra of the form

A = 〈A, ∨, ∧, �, �, ∪, ∩, c, , cl1, cl2, ∼, L, ♦, ⊥, 1, 5〉

that satisfies all of the following:

1.
〈
A, ∪, ∩, c, ⊥, 5〉 is a Boolean algebra.

2. x ∨ y
ω= y ∨ x

3. x ∨ (y ∨ z)
ω= (x ∨ y) ∨ z

4. (cl2(cl1x)
c) = (cl1x)

c −→ x ∨ x = cl1(x))

5. (x ∨ y = z −→ cl1z = z, cl2z
c = zc)

6. (x ∨ x = y −→ cl2(x
c) = xc, y = cl1(x) = x ∧ x)

7. cli(x) ∩ x = x; clicli(x) = cli(x); i = 1, 2
8. (x ∩ y = x −→ cli(x) ∩ cli(y) = cli(x)); i = 1, 2
9. x ∧ y

ω= y ∧ x

10. x ∧ (y ∧ z)
ω= (x ∧ y) ∨ z

11. (x ∧ x = y −→ cl2(x
c) = xc, y = cl1(x))

12. (cl2((cl1x)
c) = (cl1x)

c −→ x ∧ x = cl1(x))

13. (x ∧ y = z −→ cl1z = z, cl2z
c = zc)

14. ((x ∧ y) ∨ x = z −→ z = cl1(x))

15. (x ∧ y) ∨ x
ω= x ∧ (y ∨ x)

16. L⊥ = ⊥; L1 = 1
17. (cl1x = x, cl2(x

c) = xc −→ x ∨ Lx = x, LLx = Lx)
18. (x � y = z −→ ξ(x, y, z))

19. (x � y = z −→ ξ(x, y, z))

20. x � y
ω= y � x

21. x � (y � z)
ω= (x � y) � z

22. x � y
ω= y � x

23. x � (y � z)
ω= (x � y) � z

24. (ξ(x, y) −→ ♦(x � y) ∩ (♦x � ♦y) = ♦x � ♦y)
25. (ξ(x, y) −→ ♦(x � y) ∩ (♦x � ♦y) = ♦(x � y))

26. (ξ(x, y) −→ L(x � y) ∩ (Lx � Ly) = Lx � Ly)
27. (ξ(x) −→ Lx � ♦Lx = Lx)
28. (ξ(x) −→ ♦x � L♦x = ♦x)
29. (ξx −→∼ ♦x = L ∼ x)

30. (ξx −→∼ Lx = ♦ ∼ x)

Definition 110 Let τ be a collection of subsets of K indexed by K , that satisfies

1. (∀x ∈ K)(∃y ∈ τ ) x ∈ y

2.
⋃

τ = K

3. τ is an antichain with respect to inclusion
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4. For a not necessarily disjoint partition P of K , {∪x∈A{Hx : Hx ∈ τ }}A∈P} = B

satisfies:

• B is an antichain with respect to the usual inclusion order.
• If A is a subset of K not included in any element of B, then there exists a two

element subset of A with the same property.

Then τ will be called an ortho-normal cover of K

Definition 111 Let τ be a collection of subsets of an algebra

K = 〈K, f1, f2, . . . fl
〉

indexed by K , that satisfies

1. (∀x ∈ K)(∃y ∈ τ ) x ∈ y

2.
⋃

τ = K

3. τ is an antichain with respect to inclusion
4. For a not necessarily disjoint partition P of K , {∪x∈A{Hx : Hx ∈ τ }}A∈P} = B

satisfies:

• B is an antichain with respect to the usual inclusion order.
• If A is a subset of K not included in any element of B, then there exists a two

element subset of A with the same property.
• For any fi of arity n and elements B1, . . . , Bn ∈ B there exists an element

B ∈ B such that f (B1, . . . , Bn) ⊆ B

Then τ will be called an ortho-normal cover of the algebra K for the tolerance
determined by B.

Note that B is a normal system of subsets of the algebra K and therefore
determines a unique compatible tolerance on K (see [27]) and conversely. The same
thing happens in case of the first definition for the set K .

Definition 112 Let the set of minimal elements in {♦x : ξx : Lx 
= 0} of an
abstract bitten algebra S be H0, then let H = {x : ♦x ∈ H0}. If H determines an
ortho-normal cover on a tolerance space P = 〈P , T

〉
with Card(P ) = Card(H)

then S will be said to be a refined abstract bitten algebra.

Theorem 113 For each refined abstract bitten algebra S there exists a tolerance
approximation space K , such that Bite(K) ∼= S.

Proof The proof has already been done above. The essential steps are:

1. The definition of a refined abstract bitten algebra S, ensures the existence of a
related tolerance space P (say).

2. It can be checked that the tolerance space P and the tolerance space K

(mentioned in the statement of the theorem) are isomorphic because of the
representation theorem for tolerances.

3. Rest of the aspects have already been taken care of.
��
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Theorem 113 is hardly constructive in any sense of the term and may prove to be
difficult to apply in particular situations.

6.3.2 Discussion

In the above, a semantics for the logic of roughly similar objects is developed and it
has a certain relationship with the original tolerance space . However the actual level
of relationship that is desired between such a semantics, and an original generalized
approximation space along with the associated process is still the subject to some
judgment. This is definitely independent of logic-forming strategies like the Gentzen
style algebraic [35, 36] or abstract algebraic approach that can be applied.

Any bitten semantics with no restrictions on the type of granules can be expected
to fall short of a unique representation theorem (in the sense that given the
semantics, a specification for obtaining the original tolerance space in a unique way
is possible). In general, the process of forming approximations actually obscures the
distribution of blocks and the latter is essential for a unique representation theorem
because of [27].

When the set of granules used is the set of T -related elements, the required con-
ditions for a unique representation theorem will necessarily include a constructive
instance of the following process of formation of blocks from sets of T -related
elements.

• Let B denote the set of all blocks of the tolerance space S = 〈S, T 〉 and let
τ = {[x]T : x ∈, S}.

• Form the power set ℘(τ)

• Let μ(τ) = {∪(K) : K ∈ ℘(τ), T|∪(K) is an equivalence}. T|∪(K) being the
restriction of the tolerance to the set ∪(K).

• μ(τ) is partially ordered by the inclusion relation.
• μmax(τ ), the set of maximal elements of μ(τ), is the set of blocks of S. That is,

μmax(τ ) = B.

6.3.3 Illustrative Example

Let S = {x1, x2, x3, x4} and let T be a tolerance T on it generated by

{(x1, x2), (x2, x3)}.

Denoting the statement that the granule generated by x1 is (x1, x2) by (x1 : x2),
let the granules be the set of predecessor neighborhoods:

Gr(S) = {(x1 : x2), (x2 : x1, x3), (x3 : x2), (x4 :)}

The different approximations are then as in Table 5.
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Table 5 Example: bited approximation

℘(S)| ∼ Subset X Gr∗(X) Gr∗(X) Gr∗(Xc) Gr∗b(X)

B1 A1 x1 ∅ x2, x1 x2, x3, x4 x1

B2 A2 x2 ∅ x1, x2, x3 x4 x1, x2, x3

B3 A3 x3 ∅ x1, x2, x3 x1, x2, x4 x3

B4 A4 x4 x4 x4 x1, x2, x3 x4

B5 A5 x1, x2 x1, x2 x1, x2, x3 x4 x1, x2, x3

B2 A6 x1, x3 ∅ x1, x2, x3 x4 x1, x2, x3

B6 A7 x1, x4 x4 S x2, x3 x1, x4

B7 A8 x2, x3 x2, x3 x1, x2, x3 x4 x1, x2, x3

B8 A9 x2, x4 x4 S ∅ S

B9 A10 x3, x4 x4 S x1, x2 x3, x4

B10 A11 x1, x2, x3 x1, x2, x3 x1, x2, x3 x4 x1, x2, x3

B11 A12 x1, x2, x4 x1, x2, x4 S ∅ S

B12 A13 x2, x3, x4 x2, x3, x4 S ∅ S

B8 A14 x1, x3, x4 x4 S ∅ S

B14 A15 S S S ∅ S

B13 A16 ∅ ∅ ∅ S ∅

B14

B10

B5

B1

B2

B7

B12

B11

B8

B6
B9

B4

B3

B13

Fig. 4 Partial order on the quotient partial algebra

The first column in the table is for keeping track of the elements in the quotient
℘(S)| ∼ and can be used for checking the operations of Proposition 98. The order
structure is given by the Hasse diagram (Fig. 4) following the table. More details of
the construction are omitted because the next step will take some space. The braces
on sets have been omitted.
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6.4 Connections with AUAI Approximation Systems

In a AUAI approximation system 〈S, K〉 considered in Sect. 10, the collection
K need not be the most appropriate concept of granule for the four different
approximations of the theory. The implicit conditions on the possible concepts of
a granule in the bitten approach are the following:

• The set of granules S is a cover of S, that is
⋃

S = S.
• The form of the lower and bitten upper approximation are given as in the

subsection on Bitten Approach.

Theorem 114 Given a tolerance approximation space 〈S, T 〉 with granulation
B and approximations Gr∗, Gr∗b , the AUAI approximation system 〈S, B〉 satis-
fies

1. (∀X ∈ ℘(S))Xl1 = Xl

2. (∀X ∈ ℘(S))Xu1 ⊆ Xu

3. (∀X ∈ ℘(S))Xub = Xu ∩ Xu2.

Proof

1. Xl1 = ⋃{A : A ⊆ X ; A ∈ B} = Xl

2. Xu1 is the intersection of all unions of elements of B, while Xu is the union of
all elements of B that have non empty intersection with X. In general if B is a
collection of pairwise disjoint sets then Xu1 = Xu, else Xu1 ⊆ Xu.

3. Xub = Xu \Gr∗(Xc) = Xu ∩ (Gr∗(Xc))c. But
⋂{Ac

i : X ⊆ Ac
i ; Ai ∈ B} =⋂{Ac

i : Xc ⊆ Ai ∈ B} = (
⋃{Ai : Xc ⊆ Ai})c = (Gr∗(Xc))c = Xu2. So

Xub = Xu ∩ Xu2 holds.
��

In the above theorem, the collection K of the AUAI approximation system
〈S, K〉 has been taken to coincide with B. This need not be the case in general
and many variations are possible on the point. In particular, the collection K can be
selected subject to Xub coinciding with Xu2.

Problems

Some important problems that originate from the previous sections are:

1. Under what general conditions will the operation of biting make the partial
operation in Proposition 98 total?

2. Find simpler conditions under which an abstract bitten algebra becomes a refined
abstract bitten algebra.

3. Describe the quasi equational classes (and variants) of refined abstract bitten
algebras

4. Does a complete, atomic double Heyting algebra determine a unique BAS?
5. Which type of can reducts be computed with the help of these algebras?
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6.5 Properties of Granules

In tolerance space of the form 〈S, T 〉, all of the following types of granules with
corresponding approximations have been used in the literature:

1. The collection of all subsets of the form [x] = {y : (x, y) ∈ T } will be denoted
by T.

2. The collection of all blocks, the maximal subsets of S contained in T , will be
denoted by B. Blocks have been used as granules in [16, 83, 87, 160] and others.

3. The collection of all finite intersections of blocks will be denoted by A.
4. The collection of all intersections of blocks will be denoted by Aσ [160].
5. Arbitrary collections of granules with choice functions operating on them [89].
6. The collection of all sets formed by intersection of sets in T will be denoted by

TI.

For convenience H0 = ∅, Hn+1 = S will be assumed whenever the collection of
granules G is finite and G = {H1, . . . Hn}.

In a tolerance space 〈S, T 〉, for a given collection of granules G definable
approximations of a set A ⊆ S include:

(i) AlG = ⋃{H : H ⊆ A, H ∈ G},
(ii) AuG = ⋃{H : H ∩ A 
= ∅, H ∈ G},

(iii) Al2G = ⋃{∩i∈I H c
i : ∩i∈IH c

i ⊆ A, H ∈ G I ⊆ N(n+ 1)},
(iv) Au1G = ⋂{∪i∈IHi : A ⊆ ∪i∈IHi, I ⊆ N(n+ 1)},
(v) Au2G = ⋂{Hi

c : A ⊆ Hc
i , I ∈ {0, 1, . . . , n}}.

But not all approximations fit it into these schemas in an obvious way. These
include:

(i) Al+ = {y : ∃x(x, y) ∈ T , [x] ⊆ A} [16],
(ii) Au+ = {x ; (∀y) ((x, y) ∈ T −→ [y]T ∩ A 
= ∅)},

(iii) Generalized bitten upper approximation : Aubg = Aug \ Aclg—this is a direct
generalization of the bitten approximation in [86, 157].

Theorem 115 In the tolerance space context, with T being the set of granules
and restricting to the approximations lT, uT, all of RA, MER, ST and weakenings
thereof hold, but others do not hold in general.

Proof RA follows from definition. For MER, if A ⊆ [x] and AlT = AuT = A,
then as [x] ∩ A 
= ∅, so [x] ⊆ AuT = A. So A = [x]. Crispness fails because it is
possible that [x] ∩ [y] 
= ∅ for distinct x, y. ��
Theorem 116 If

〈
S, T
〉

is a tolerance approximation space with granules T and
the approximations lT, l+, uT, u+, then RA, NO, ACG do not hold, but SRA,
SMER, SST, IMER, MER, US holds

Proof RA does not hold due to l+, u+, ACG fails by the previous theorem. ‘Sub’
properties have been verified in the previous theorem, while the rest can be checked
directly. ��
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Theorem 117 In Bitten rough sets, (taking G to be the set of T-relateds and
restricting to the lower, upper and bitten upper approximations alone), SRA does
not hold for the bitten upper approximation if ’+, ·’ are interpreted as set union
and intersection respectively. MER, NO do not hold in general, but IMER, SCG,
LS, LU, SRA hold.

7 Proto-Transitive Rough Sets

One of the reasons for including this long section is in the novel techniques used
in getting to semantics and the abortive strategies invented for understanding rough
objects in the context.

In forming semantics and logics of relation based rough sets, the absence of
transitivity is known to be particularly problematic. Semantics of generalizations
of transitivity are motivated by these and many other practical considerations. In
[93, 95, 99], research into rough sets over generalized transitive relations like proto-
transitive ones was initiated by the present author. In [95], approximation of proto-
transitive relations by other relations was investigated and the relation with rough
approximations was developed towards constructing semantics that can handle
fragments of structure. It was also proved that difference of approximations induced
by some approximate relations need not induce rough structures. Subsequently the
characterization of rough objects has been improved and a theory of dependence for
general rough sets developed in [97] by the present author. In [99] these have been
used to internalize Nelson-algebra based approximate semantics of [95] and many
other results have been proven by her. Most of the results have also been included
in the present author’s monograph [96] on proto transitive rough sets. This section
includes an outline of these developments also because many new techniques are
introduced in the study.

Proto-transitivity is one of the infinite number of possible generalizations
of transitivity. These types of generalized relations happen often in application
contexts. Failure to recognize them causes mathematical models to be inadequate
or underspecified and tends to unduly complicate algorithms and approximate
methods. From among the many possible alternatives that fall under generalized
transitivity, proto-transitivity has been chosen because of application contexts, its
simple set theoretic definition, connections with factor relations and consequent
generative value among such relations. It has a special role in modeling knowledge
as well.

Rough objects in a PRAX need not correspond to intervals of the form ]a, b[
with the definite object b covering (in the ordered set of definite objects) the definite
object a.

If R is a relation on a set S, then R can be approximated by a wide variety of
partial/quasi-order relations in both classical and rough set perspective [59]. Though
the methods are essentially equivalent for binary relations, the latter method is more
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general. When the relation R satisfies proto-transitivity, then many new properties
emerge. This aspect is developed further in [95] and most of it is included.

When R is a quasi-order relation, then a semantics for the set of ordered pairs
of lower and upper approximations {(Al,Au); A ⊆ S} has recently been developed
in [61, 63]. Though such a set of ordered pairs of lower and upper approximations
are not rough objects in the PRAX context, the approximations can be used for an
additional semantic approach to it. It is also shown that differences of consequent
lower and upper approximations suggest partial structures for measuring structured
deviation. It can be argued that the correspondence between point-wise and granular
approximations of an entirely different kind is not justified. This is correct and in fact
partial justifications are alone possible. The developed method should also be useful
for studying correspondences between the different semantics [90, 92]. Because
of this some space is devoted to the nature of transformation of granules by the
relational approximation process.

A part of the investigations of the present author on the nature of possible con-
cepts of rough dependence is also presented. Though the concept of independence
is well studied in probability theory, the concept of dependence is rarely explored in
any useful way. It has been shown to be very powerful in classical probability theory
[39]—the formalism is valid over probability spaces, but its axiomatic potential is
left unexplored. Connections between rough sets and probability theory have been
explored from rough measure and information entropy viewpoint in a number of
papers [8, 55, 128, 156, 168]. The nature of rough independence is also explored
in [97] by the present author. Apart from problems relating to contamination, it is
shown that the comparison by way of corresponding concepts of dependence fails
in a very essential way.

Further, using the introduced concepts of rough dependence the approximate
semantics is internalized instead of maintaining explicit dependences on correspon-
dences. This allows for richer variants of the earlier semantics of rough objects.

This section is organized as follows: in the rest of this section the basics of proto-
transitivity are introduced. In the following subsection, relevant approximations in
PRAX are defined and their basic properties and those of definite elements are
investigated. In the third subsection, abstract examples and three other extended
examples are provided for justifying the study. In the following subsection, the
algebraic structures that can be associated with the semantic properties of definite
objects in a PRAX are characterized. The representation of rough objects is done
from an interesting perspective in the following subsection. In the fifth subsection,
atoms in the partially ordered set of rough object are described. This is followed by
an algebraic semantics that relies on multiple types of aggregation and commonality
operations.
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7.1 Basic Concepts, Terminology

Definition 118 A binary relation R on a set S is said to be weakly-transitive,
transitive or proto-transitive respectively on S if and only if S satisfies

• If whenever Rxy, Ryz and x 
= y 
= z holds, then Rxz. (i.e. (R ◦R)\ΔS ⊆ R

(where ◦ is relation composition) , or
• whenever Rxy &Ryz holds then Rxz (i.e. (R ◦ R) ⊆ R), or
• Whenever Rxy, Ryz, Ryx, Rzy and x 
= y 
= z holds, then Rxz follows,

respectively. Proto-transitivity of R is equivalent to R ∩ R−1 = τ (R) being
weakly transitive.

The following simpler example will be used to illustrate many of the concepts and
situations associated with in this section. For detailed motivations see Subsec.7.3
on motivation and examples.

Example 119 A simple real-life example of a proto-transitive, non transitive rela-
tion would be the relation P, defined by Pxy if and only if x thinks that y thinks that
color of object O is a maroon.

The following simple example from databases will also be used as a persistent
one (especially in the sections on approximation of relations) for illustrating a
number of concepts. It has other attributes apart from the main one for illustrating
more involved aspects.

Let I be survey data in table form with column names being for Personal Data,
Gender, Sexual Orientation, Other Personal Data, Responses to Statements and
Opinions on sexist contexts expressed on a scale from −10 to +10 respectively
with each row corresponding to a person. Let the assertions be

• Most men are blind towards patriarchal dynamics
• All religions are anti women
• The percentage of women in STEM research is low because of systemic

discrimination
• Objectification of women leads to crimes against women
• ‘Not All Men’ arguments miss the point

Then an abridged version of the data can be represented as in Table 6
Let Rab if and only if person a agrees with b’s opinions.
The predicate agrees with can be constructed empirically or from the data by a

suitable heuristic like

• Form the intervals {[−10,−5], (−5, 0), [0, 1), [1, 8), [8, 10]}
• Let a agree with b in the following scenarios:

– b′s scores are greater than a’s for question-1 when score of a is in [1, 8)
– b′s scores are greater than or equal a’s for question-1 when score of a is in
[8, 10] ∪ [0, 1]
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Table 6 Survey data Id Gender Cis? PD Response-1 Response-2

1 Woman Y Data-1 10 10

2 Woman Y Data-2 5 −2

3 Woman N Data-3 10 10

4 Man Y Data-4 −7 −5

5 Man Y Data-5 0 0

6 Bigender N Data-6 7 8

7 Woman Y Data-7 5 4

8 Woman Y Data-8 4 6

9 Woman Y Data-9 10 9

– b′s scores are less than or equal to a’s for question-1 when score of a is in
[−10,−5] ∪ (−5, 0).

• Response-2 can also be taken account to generate a more complex predicate.

R is proto-transitive. In general R is a proto-transitive, reflexive relation and this
condition can be imposed to complete partial data as well (as a rationality condition).
If a agrees with the opinions of b, then it will be said that a is an ally of b—if b is
also an ally of a, then they are comrades. Finding optimal subsets of allies can be an
interesting problem in many contexts especially given the fact that responses may
have some vagueness in them.

Let α ⊆ ρ be two binary relations on S, then ρ|α will be the relation on S|ρ
defined via (x, y) ∈ ρ|α if and only if (∃b ∈ x, c ∈ y)(b, c) ∈ ρ. The relation
Q|τ (Q) for a relation Q will be denoted by σ(Q).

The following are known:

Proposition 120

• If Q is a quasi-order on S, then Q|τ (Q) is a partial order on S|τ (Q).
• If R ∈ Ref (S), then R ∈ pτ(S) if and only if τ (R) ∈ EQ(S).
• In general,

wτ(S) ⊆ sτ (S) ⊆ pτ(S).

Proposition 121 If R ∈ pτ(S) ∩ Ref (S), then the following are equivalent:

A1 ([a], [b]) ∈ R|τ (R) if and only if (a, b) ∈ R.
A2 R is semi-transitive.

In [26], it is proved that

Theorem 122 If R ∈ Ref (S), then the following are equivalent:

A3 R|τ (R) is a pseudo order on S|τ (R) and A1 holds.
A2 R is semi-transitive.
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Note that Weak transitivity of [26] is proto-transitivity here. Successor, prede-
cessor and related granules generated by elements alone will be considered and the
precision based paradigm will be avoided.

7.2 The Approximate and Definite in PRAX

Definition 123 By a Proto Approximation Space S (PRAS for short), will be
meant a pair of the form

〈
S, R
〉

with S being a set and R being a proto-transitive
relation on it. If R is also reflexive, then it will be called a Reflexive Proto
Approximation Space (PRAX) for short). S may be infinite.

If S is a PRAX or a PRAS, then the successor neighborhoods, inverted successor
or predecessor neighborhoods and symmetrized successor neighborhoods generated
by an element x ∈ S will respectively be denoted as in the following:

[x] = {y; Ryx}.

[x]i = {y; Rxy}.

[x]o = {y; Ryx &Rxy}.

Taking these as granules, the associated granulations will be denoted by G = {[x] :
x ∈ S}, Gi and Go respectively. In all that follows in this chapter S will be a PRAX
unless indicated otherwise.

Definition 124 Definable approximations on S include (A ⊆ S):

Au =
⋃

[x]∩A
=∅
[x]. (Upper Proto)

Al =
⋃

[x]⊆A
[x]. (Lower Proto)

Auo =
⋃

[x]o∩A
=∅
[x]o. (Symmetrized Upper Proto)

Alo =
⋃

[x]o⊆A
[x]o. (Symmetrized Lower Proto)

Au+ = {x : [x] ∩ A 
= ∅}. (Point-wise Upper)

Al+ = {x : [x] ⊆ A} . (Point-wise Lower)

Example 125 In the context of the example 119, [x] is the set of allies x, while [x]o
is the set of comrades of x. Al is the union of the set of all allies of at least one of the
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members of A if they are all in A. Au is the union of the set of all allies of persons
having at least one ally in A. Al+ is the set of all those persons in A all of whose
allies are within A. Au+ is the set of all those persons having allies in A.

Definition 126 If A ⊆ S is an arbitrary subset of a PRAX or a PRAS S, then

Aux =
⋃

[x]o∩A
=∅
[x].

Alx =
⋃

[x]o⊆A
[x].

Au∗ =
⋃
{[x] : [x] ∩ A 
= ∅&(∃y 
= x)([x], [y]) ∈ σ(R), (x, y) ∈ R, [y] ⊆ A}.

Al∗ =
⋃
{[x] : [x] ⊆ A&(∃y 
= x)(([x], [y]) ∈ σ(R),& [y] ⊆ A)}.

Proposition 127 In a PRAX S and for a subset A ⊆ S, all of the following hold:

• (∀x) [x]o ⊆ [x]
• It is possible that Al 
= Al+ and in general, Al ‖ Alo (that is they are not

comparable set-theoretically).

Proof The proof of the first two parts are easy. For the third part, the argument is
chased up to a trivial counter example (see the following section).

⋃

[x]⊆A
[x] ⊆

⋃

[x]o⊆A
[x] ⊇

⋃

[x]o⊆A
[x]o

⋃

[x]o⊆A
[x]o ⊇

⋃

[x]⊆A
[x]o ⊆

⋃

[x]⊆A
[x].

��
Proposition 128 For any subset A of S,

Auo ⊆ Au.

Proof Since [x]o ∩A 
= ∅, therefore

Auo =
⋃

[x]o∩A
=∅
[x]o ⊆

⋃

[x]∩A
=∅
[x]o ⊆ Auo =

⋃

[x]∩A
=∅
[x] = Au.

��
Definition 129 If X is an approximation operator, then by a X-definite element,
will be meant a subset A satisfying AX = A. The set of all X-definite elements will
be denoted by δX(S), while the set of X and Y -definite elements (Y being another
approximation operator) will be denoted by δXY (S). In particular, we will speak of
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lower proto-definite, upper proto definite and proto-definite elements (those that are
both lower and upper proto-definite).

Theorem 130 In a PRAX S, the following hold:

• δu(S) ⊆ δuo(S), but δlo(S) = δuo(S) and δu(S) is a complete sublattice of ℘(S)

with respect to inclusion.
• δl(S) ‖ δlo(S) in general. (‖ means is not comparable.)
• It is possible that δu � δuo .

Proof

• As R is reflexive, if A, B are upper proto definite, then A∪B and A∩B are both
upper proto definite. So δu(S) is a complete sublattice of ℘(S).

• If A ∈ δu, then (∀x ∈ A)[x] ⊆ A and (∀x ∈ Ac)[x] ∩ A = ∅.
• So (∀x ∈ Ac) [x]o∩A = ∅. But as A ⊆ Auo is necessary, it follows that A ∈ δuo .

��
Au+, Al+ have relatively been more commonly used in the literature and have

also been the only kind of approximation studied in [60] for example (the inverse
relation is also considered from the same perspective).

Definition 131 A subset B ⊆ Al+ will be said to be skeleton of A if and only if

⋃

x∈B
[x] = Al,

and the set skeletons of A will be denoted by sk(A).

The skeleton of a set A is important because it relates all three classes of
approximations.

Theorem 132 In the context of the above definition, all of the following hold:

• sk(A) is partially ordered by inclusion with greatest element Al+.
• sk(A) has a set of minimal elements skm(S).
• sk(A) = sk(Al)

• sk(A) = sk(B) ↔ Al = Bl &Al+ = Bl+.
• If B ∈ sk(A), then Al ⊆ Bu.
• If ∩sk(A) = B, then Alo ∩ ⋃x∈B[x] = ∅.

Proof Much of the proof is implicit in other results proved earlier in this section.

• If x ∈ Al \ Al+, then [x] � Al and many subsets B of Al+ are in sk(A). If
B ⊂ K ⊂ Al+ and B ∈ sk(A), then K ∈ sk(A). Further minimal elements in
the inclusion order (even if A is infinite) are induced by the inclusion of ℘(S).

• has been proved above.
• More generally, if Al ⊆ B ⊆ A, then Bl = Al . So sk(A) = sk(Al).
• Follows from definition.
• If B ∈ sk(A), then Al = Bl ⊆ Bu.

��
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Theorem 133 All of the following hold in PRAX or a PRAS S (∂ being the
boundary operator):

(∀A ⊆ S)Acl+ = Au+c, Acu+ = Al+c (Mutual Duality)

u+ is a monotone ∨ −morphism. (∨-Morphism)

l + is a monotone ∧ −morphism. (∧-Morphism)

∂(A) = ∂(Ac) (Boundary operator)

?(u+)&?(l+) are dually isomorphic lattices. (Lattices)

Further, ?(u+) is an interior system while ?(l+) is a closure system.

Proof This proof is known in the context of point-wise approximations

• For proving the mutual duality of the point-wise approximation operators, note
that

x ∈ Acl+ ⇒ x ∈ Ac & [x] ⊆ Ac

So A ⊆ [x]c

and A ⊆ [x]c ⇒ Au+

Therefore [x]cu+c ⊆ Au+c.

Again z ∈ Au+c ⇒ [z] ⊆ Ac

This yields z ∈ Acl+

and Au+c ⊆ Acl+

• ∨-Morphism:

– Suppose x ∈ (A ∪ B)u+, if and only if [x] ∩ (A ∪ B) 
= ∅
– if and only if [x] ∩ A 
= ∅ or [x] ∩ B 
= ∅
– if and only if x ∈ Au+ or x ∈ Bu+,
– So (A ∪ B)u+ = Au+ ∪ Bu+.
– u+ is therefore a ∨-morphism.
– The proof extends to arbitrary intersections and so the ∨-morphism is

complete.

• ∧-Morphism: The proof is similar to the above.
• Boundary: ∂(A) = Au+ \ Al+ = Accu+ \ Accl+ = ∂(Ac), by the first part of

this theorem.
• ?(u+) is an interior system and ?(l+) is a closure system because the operators

are monotone increasing and u+ and l+ are ∨ and ∧-morphisms respectively. If
ϕ is a map defined by ϕ(Au+) = Acl+, then it is an isomorphism.

��
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Theorem 134 In a PRAX, (∀A ∈ ℘(S))Al+ ⊆ Al, Au+ ⊆ Au and all of the
following hold.

(∀A ∈ ℘(S))All = Al &Au ⊆ Auu. (Bi)

(∀A,B ∈ ℘(S))Al ∪ Bl ⊆ (A ∪ B)l. (l-Cup)

(∀A,B ∈ ℘(S)) (A ∩ B)l ⊆ Al ∩ Bl. (l-Cap)

(∀A,B ∈ ℘(S)) (A ∪ B)u = Au ∪ Bu. (u-Cup)

(∀A,B ∈ ℘(S)) (A ∩ B)u ⊆ Au ∩ Bu. (u-Cap)

(∀A ∈ ℘(S))Alc ⊆ Acu. (Dual)

Proof

l-Cup For any A,B ∈ ℘S, x ∈ (A ∪ B)l

⇔ (∃y ∈ (A ∪ B)) x ∈ [y] ⊆ A ∪ B.

⇔ (∃y ∈ A) x ∈ [y] ⊆ A ∪ B or (∃y ∈ B) x ∈ [y] ⊆ A ∪ B.

⇔ (∃y ∈ A) x ∈ [y] ⊆ A or (∃y ∈ A) x ∈ [y] ⊆ B

or (∃y ∈ B) x ∈ [y] ⊆ A

or(∃y ∈ B) x ∈ [y] ⊆ B

−this is implied by x ∈ Al ∪ Bl.

l-Cap For any A,B ∈ ℘S, x ∈ (A ∩ B)l

⇔ x ∈ A ∩ B

⇔ (∃y ∈ A ∩ B) x ∈ [y] ⊆ A ∩ B & x ∈ A, x ∈ B

⇔ (∃y ∈ A) x ∈ [y] ⊆ A& (∃y ∈ B) x ∈ [y] ⊆ B.

– Clearly the last statement implies x ∈ Al&x ∈ Bl , but the converse is not true
in general.

u-Cup x ∈ (A ∪ B)u

⇔ x ∈
⋃

[y]∩(A∪B) 
=∅
[y]

⇔ x ∈
⋃

([y]∩A)∪([y]∩B) 
=∅
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⇔ x ∈
⋃

[y]∩A
=∅
[y] or x ∈

⋃

[y]∩B 
=∅
[y]

⇔ x ∈ Au ∪ Bu.

u-Cap By monotonicity, (A∩B) ⊆ Au and (A∩B) ⊆ Bu, so (A∩B)u ⊆ Au∩Bu.
Dual If z ∈ Alc, then z ∈ [x]c for all [x] ⊆ A and either, z ∈ A \ Al or z ∈ Ac. If

z ∈ Ac then z ∈ Acu. If z ∈ A \ Al and z 
= Acu\Ac
then [z] ∩ Ac = ∅. But this

contradicts z /∈ Acu \ Ac. So (∀A ∈ ℘(S))Alc ⊆ Acu.

��
Theorem 135 In a PRAX S, all of the following hold:

(∀A,B ∈ ℘(S)) (A ∩ B)l+ = Al+ ∩ Bl+. (19)

(∀A,B ∈ ℘(S))Al+ ∪ Bl+ ⊆ (A ∪ B)l+. (20)

(∀A ∈ ℘(S)) (Al+)c = (Ac)u+&Al+ ⊆ Alo. (21)

Proof

1. x ∈ (A ∩ B)l+

⇔ [x] ⊆ A ∩ B

⇔ [x] ⊆ A& [x] ⊆ B

⇔ x ∈ Al+& x ∈ Bl+.

2. x ∈ Al+ ∪ Bl+

⇔ [x] ⊆ Al+ or [x] ⊆ Bl+

⇔ [x] ⊆ A or [x] ⊆ B

⇒ [x] ⊆ A ∪ B ⇔ x ∈ (A ∪ B)l+.
3. z ∈ Al+c

⇔ z /∈ Al+

⇔ [z] � A

⇔ z ∩ Ac 
= ∅.

Theorem 136

In a PRAX S, (∀A ⊆ S)Al+ ⊆ Al, Au+ ⊆ Au.
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Proof

• If x ∈ Al+, then [x] ⊆ A and so [x] ⊆ Al, x ∈ Al .
• If x ∈ Al , then (∃y ∈ A)[y] ⊆ A, Rxy. But it is possible that [x] � A, therefore

it is possible that x /∈ Al+ and Al
� Al+.

• If x ∈ Au+, then [x] ∩A 
= ∅, so x ∈ Au.
• So Au+ ⊆ Au.
• Note that x ∈ Au, if and only if (∃z ∈ S) x ∈ [z], [z] ∩ A 
= ∅, but this does not

imply x ∈ Au+.
��

Theorem 137 In a PRAX S, all of the following hold:

(∀A ∈ ℘(S))Al+ ⊆ Alo. (22)

(∀A ∈ ℘(S))Auo ⊆ Au+. (23)

(∀A ∈ ℘(S))Alc ⊆ Acu. (24)

Proof

1. • If x ∈ Al+, then [x] ⊆ A.
• But as [x]o ⊆ [x], Al+ ⊆ Alo .

2. This follows easily from definitions.
3. • If z ∈ Alc, then z ∈ [x]c for all [x] ⊆ A and either, z ∈ A \Al or z ∈ Ac.

• If z ∈ Ac then z ∈ Acu.
• If z ∈ A \ Al and z 
= Acu\Ac

then [z] ∩ Ac = ∅.
• But this contradicts z /∈ Acu \ Ac.
• So (∀A ∈ ℘(S))Alc ⊆ Acu.

��
From the above, the following relation (Fig. 5) between approximations in

general can be deduced (Au+ −→ Au should be read as Au+ is included in Au):

Fig. 5 Relationship between approximations



Granular Rough Semantics 243

If a relation R is purely reflexive and not proto-transitive on a set S, then the
relation τ (R) = R ∩R−1 will not be an equivalence and for a A ⊂ S, it is possible
that Auol ⊆ A or Auol ‖ A or A ⊆ Auol .

7.3 Motivation and Examples

Generalized transitive relations occur frequently in general information systems,
but are often not recognized as such and there is hope for improved semantics
and KI relative the situation for purely reflexive relation based rough sets. Not
all of the definable approximations have been investigated in even closely related
structures of general rough sets. Contamination-free semantics for the contexts are
also not known. Finally these relate to RYS and variants. A proper characterization
of roughly equal (requal) objects is also motivated by [91].

Abstract Example
Let § = {a, b, c, e, f, g, h, l, n} and let R be a binary relation on it defined via

R ={(a, a), (l, l), (n, n), (n, h), (h, n), (l, n), (g, c), (c, g)
(g, l), (b, g), (g, b), (h, g), (a, b), (b, c), (h, a), (a, c)}.

Then 〈S, R〉 is a PRAS.
If P is the reflexive closure of R (that is P = R ∪ΔS), then 〈S, P 〉 is a PRAX.

The successor neighborhoods associated with different elements of S are as follows
(E is a variable taking values in S) (Table 7):

If A = {a, h, f },
then Al = {a, h, f },

Alo = {a, f } and Alo ⊂ Al.

If F = {l},
then F l = ∅, F lo = F

and F l ⊂ F lo .

Table 7 Successor neighborhoods

E a b c g e f h l n

[E] {a, h} {b, c, g} {b, c, g} {b, c, g, h} {e} {f } {h, n} {l, g} {n, l, g, h}
[E]o {a} {b, c, g} {b, c, g} {b, c, g} {e} {f } {h, n} {l} {n, h}
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Now let Z = N ∪ S ∪X, where N is the set of naturals, X is the set of elements
of the infinite sequences {xi}, {yj }. Let Q be a relation on Z such that

Q ∩ S2 = P, (25)

Q ∩N2 is some equivalence, (26)

(∀i ∈ N)(i, x3i+1), (x2i , i), (xi, xi+1), (yi, yi+1) ∈ Q. (27)

Q is then a proto-transitive relation. For any i ∈ N , let Pi = {yk : k 
= 2j&k <

i} ∪ {x2j : 2j < i}—this will be used in later sections. The extension of the
example to involve nets and densely ordered subsets is standard.

Caste Hierarchies and Interaction
The caste system and religion are among the deep-seated evils of Indian society that
often cut across socio-economic classes and level of education. For the formulation
of strategies aimed at large groups of people towards the elimination of such evils
it would be fruitful to study interaction of people belonging to different castes and
religions on different social fronts.

Most of these castes would have multiple subcaste hierarchies in addition. Social
interactions are necessarily constrained by their type and untouchability perception.
If x, y are two castes, then with respect to a possible social interaction α, people
belonging to x will either regard people belonging to y as untouchable or otherwise.
As the universality is so total, it is possible to write Uαxy to mean that y is
untouchable for x for the interaction α. Usually this is a asymmetric relation and
y would be perceived as a lower caste by members of x and many others.

Other predicates will of course be involved in deciding on the possibility of
the social interaction, but if Uαxy then the interaction is forbidden relative x. If
α is “context of possible marriage”, then the complementary relation (Cα say) is
a reflexive proto-transitive relation. For various other modes of interaction similar
relations may be found.

In devising remedial educational programmes targeted at mixed groups, it would
be important to understand approximate perceptions of the group and the semantics
of PRAX would be very relevant.

Compatibility Prediction Models
For predicting compatibility among individuals or objects the following model can
be used. Specific examples include situations involving data from dating sites like
OK-Cupid.

Let one woman be defined by a sequence of sets of features a1, . . . , an at
different temporal instants and another woman by b1, . . . , bn. Let ω(ai, bi) be the
set of features that are desired by ai , but missing in bi . Let ρ be an equivalence
relation on a subset K of S – the set of all features, that determines the classical
rough approximations lρ, uρ on ℘(K).

Let (a, b) ∈ R if and only if (ω(an, bn)
lρ is small (for example, that can

mean being an atom of ℘(K)). The predicate R is intended to convey may like
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to be related. In dating sites, this is understood in terms of profile matches: if
a woman’s profile matches another woman’s and conversely and similarly with
another woman’s, then the other two woman are assumed to be mutually compatible.

Proposition 138 R is a proto-transitive relation and
〈
S, R
〉

is a PRAS.

Proof Obviously R need not be reflexive or symmetric in general.
If (a, b), (b, c), (b, a), (c, b) ∈ R, then (a, c), (c, a) ∈ R is a reasonable rule.

��
The above is a concrete example of a PRAS that is suggestive of many more

practical contexts.

Indeterminate Information Table Perspective
It is easy to derive PRAX from population census, medical, gender studies and
other databases and these correspond to information systems. The connections are
clarified through this example.

If the problem is to classify a specific population O , for a purpose based on
scientific data on sex, gender continuum, sexual orientation and other factors, then
our data base would be an indeterminate information system of the form

I = 〈O, At, {Va : a ∈ At}, {ϕa : a ∈ At}〉 ,

where At is a set of attributes, Va a set of possible values corresponding to the
attribute a and ϕa : O �−→ ℘(Va) the valuation function. Sex is determined
by many attributes corresponding to hormones, brain structure, karyotypes, brain
configuration, anatomy, clinical sex etc. These six hormones have their associated
free/bound values in the blood stream and the values vary widely over populations.
The focus can be on a subset of attributes for which the inclusion/ordering of values
(corresponding to any one of the attributes in the subset) of an object in another is
relevant. For example, interest in patterns in sexual compatibility/relationships may
be corresponded to such subsets. This relation is proto-transitive. Formally for a
B ⊆ At , if we let (x, y) ∈ ρB if and only if (∃a ∈ B)ϕax ⊆ ϕay, then ρB is often
proto-transitive via another predicate on B.

7.4 Representation of Roughly Equal Elements

The representation of roughly equal elements in terms of definite elements are
well known in case of classical rough set theory. In case of more general spaces
including tolerance spaces [91], most authors have been concerned with describing
the interaction of rough approximations of different types and not of the interaction
of roughly equal objects. Higher order approaches, developed by the present author
as in [89] for bitten approximation spaces, permit constructs over sets of roughly
equal objects. In the light of the contamination problem [89, 91], it would be an
improvement to describe without higher order constructs. In this subsection the new
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method of representing roughly equal elements based on expanding concepts of
definite elements in [93, 95, 99] is presented.

In the following theorem the fine structure of definite elements is described.

Theorem 139 On the set of proto definite elements δlu(S) of a PRAX S, the
following operations can be defined:

x ∧ y
Δ= x ∩ y. (28)

x ∨ y
Δ= x ∪ y. (29)

0
Δ= ∅. (30)

1
Δ= S. (31)

xc Δ= S \ x. (32)

The resulting algebra δproto(S) = 〈δlu(S),∨,∧, c, 0, 1〉 is a Boolean lattice.

Proof It is required to show that the operations are well defined. Suppose x, y are
proto-definite elements, then

1.

(x ∩ y)u ⊆ xu ∩ yu = x ∩ y.

(x ∩ y)l = (xu ∩ yu)l = (x ∩ y)ul = (x ∩ y)u = x ∩ y.

Since aul = au for any a.
2.

(x ∪ y)u = x ∪ y = xl ∪ yl ⊆ (x ∪ y)l .

3. 0
Δ= ∅ is obviously well defined.

4. Obvious.
5. Suppose A ∈ δlu(S), then (∀z ∈ Ac) [z] ∩ A = ∅ is essential, else [z] would be

in Au. This means [z] ⊆ Ac and so Ac = Acl . If there exists a a ∈ A such that
[a] ∩ Ac 
= ∅, then [a] ⊆ Au = A. So Ac ∈ δlu(S).

��
Definition 140 On ℘(S), the following relations can be defined:

A @ B if and only ifAl ⊆ Bl &Au ⊆ Bu. (Rough Inclusion)

A ≈ B if and only ifA @ B &B @ A. (Rough Equality)
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Proposition 141 The relation @ defined on ℘(S) is a bounded partial order and
≈ is an equivalence. The quotient ℘(S)| ≈ will be said to be the set of roughly
equivalent objects.

Definition 142 A subset A of ℘(S) will be said to a set of roughly equal elements
if and only if

(∀x, y ∈ A) xl = yl & xu = yu.

It will be said to be full if no other subset properly including A has the property.

Relative the situation for a general RYS, the following result has already been
proved.

Theorem 143 (Meta-Theorem) In a PRAX S, full set of roughly equal elements
is necessarily a union of intervals in ℘(S).

Definition 144 A non-empty set of non singleton subsets α = {x : x ⊆ ℘(S)}
will be said to be a upper broom if and only if all of the following hold:

(∀x, y ∈ α) xu = yu.

(∀x, y ∈ α) x ‖ y.

If α ⊂ β, then β fails to satisfy at least one of the above two conditions.

The set of upper brooms of S will be denoted by � (S).

Definition 145 A non-empty set of non singleton subsets α = {x : x ⊆ ℘(S)}
will be said to be a lower broom if and only if all of the following hold:

(∀x, y ∈ α) xl = yl 
= x. (33)

(∀x, y ∈ α) x ‖ y. (34)

If β ⊂ α&Card(β) ≥ 2, then β fails to satisfy condition (1) or (2). (35)

The set of lower brooms of S will be denoted by ψ(S).

Proposition 146 If x ∈ δlu(S) then {x} /∈� (S) and {x} /∈ ψ(S).

In the next definition, the concept of union of intervals in a partially ordered set
is modified in a way for use with specific types of objects.

Definition 147 By a bruinval, will be meant a subset of ℘(S) of one of the
following forms:

• Bruinval-0: Intervals of the form (x, y), [x, y), [x, x], (x, y] for x, y ∈ ℘(S).
• Open Bruinvals: Sets of the form [x, α) = {z : x ≤ z < b & b ∈ α}, (x, α] =
{z : x < z ≤ b & b ∈ α} and (x, α) = {z : x < z < b , b ∈ α} for
α ∈ ℘(℘ (S)).
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• Closed Bruinvals: Sets of the form [x, α] = {z : x ≤ z ≤ b & b ∈ α} for
α ∈ ℘(℘ (S)).

• Closed Set Bruinvals: Sets of the form [α, β] = {z : x ≤ z ≤ y & x ∈ α&y ∈
β} for α, β ∈ ℘(℘ (S))

• Open Set Bruinvals: Sets of the form (α, β) = {z : x < z < y , x ∈ α&y ∈ β}
for α, β ∈ ℘(℘ (S)).

• Semi-Closed Set Bruinvals: Sets of the form [[α, β]] defined as follows: α =
α1 ∪ α2, β = β1 ∪ β2 and [[α, β]] = (α1, β1) ∪ [α2, β2] ∪ (α1, β2] ∪ [α2, β1)

for α, β ∈ ℘(℘ (S)).

In the example of Sect. 2, the representation of the rough object (P l
i , P

u
i ) requires

set bruinvals.

Proposition 148 If S is a PRAX, then a set of the form [x, y] with x, y ∈ δlu(S)

will be a set of roughly equal subsets of S if and only if x = y.

Proposition 149 A bruinval-0 of the form (x, y) is a full set of roughly equal
elements if

• x, y ∈ δlu(S),
• x is covered by y in the order on δlu(S).

Proposition 150 If x, y ∈ δlu(S) then sets of the form [x, y), (x, y] cannot be a
non-empty set of roughly equal elements, while those of the form [x, y] can be if and
only if x = y.

Proposition 151 A bruinval-0 of the form [x, y) is a full set of roughly equal
elements if

• xl, yu ∈ δlu(S), xl = yl and xu = yu,
• xl is covered by yu in δlu(S) and
• x \ (xl) and yu \ y are singletons

Remark 152 In the above proposition the condition xl, yu ∈ δlu(S), is not
necessary.

Theorem 153 If a bruinval-0 of the form [x, y] satisfies

xl = yl = x & xu = yu.

Card(yu \ y) = 1.

then [x, y] is a full set of roughly equal objects.

Proof Under the conditions, if [x, y] is not a full set of roughly equal objects, then
there must exist at least one set h such that hl = x and hu = yu and h /∈ [x, y].
But this contradicts the order constraint xl ≤ h yu. Note that yu /∈ [x, y] under the
conditions. ��
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Theorem 154 If a bruinval-0 of the form (x, y] satisfies

xl = yl = x & (∀z ∈ (x, y]) zu = yu,

Card(yu \ y) = 1.

then (x, y] is a full set of roughly equal objects, that does not intersect the full set
[x, xu].
Proof By monotonicity it follows that (x, y] is a full set of roughly equal objects.
then there must exist at least one set h such that hl = x and hu = yu and h /∈
[x, y]. But this contradicts the order constraint xl ≤ h yu. Note that yu /∈ [x, y]
under the conditions. ��
Theorem 155 A bruinval-0 of the form (xl, xu) is not always a set of roughly equal
elements, but will be so when xuu = xu. In the latter situation it will be full if [xl, xu)

is not full.

The above theorems essentially show that the description of rough objects
depends on too many types of sets and the order as well. Most of the considerations
extend to other types of bruinvals as is shown below and remain amenable.

Theorem 156 An open bruinval of the form (x, α) is a full set of roughly equal
elements if and only if

α ∈� (S).

(∀y ∈ α) xl = yl, xu = yu

(∀z)(xl ⊆ z ⊂ x −→ zu ⊂ xu).

Proof It is clear that for any y ∈ α, (x, y) is a convex interval and all elements in it
have same upper and lower approximations. The third condition ensures that [z, α)
is not a full set for any z ∈ [xl, x). ��
Definition 157 An element x ∈ ℘(S) will be said to be a weak upper critical
element relative z ⊂ x if and only if (∀y ∈ ℘(S)) (z = yl & x ⊂ y −→ xu ⊂ yu).

An element x ∈ ℘(S) will be said to be an upper critical element relative z ⊂ x

if and only if (∀v, y ∈ ℘(S)) (z = yl = vl & v ⊂ x ⊂ y −→ vu = xu ⊂ yu).
Note that the inclusion is strict.

An element a will be said to be bi-critical relative b if and only if (∀x, y ∈
℘(S))(a ⊂ x ⊆ y ⊂ b −→ xu = yu & xl = yl & xu ⊂ bu & al ⊂ xl).

If x is an upper critical point relative z, then [z, x) or (z, x) is a set of roughly
equivalent elements.

Definition 158 An element x ∈ ℘(S) will be said to be an weak lower critical
element relative z ⊃ x if and only if (∀y ∈ ℘(S)) (z = yu & y ⊂ x −→ yl ⊂ xl).
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An element x ∈ ℘(S) will be said to be an lower critical element relative z ⊃ x

if and only if (∀y, v ∈ ℘(S)) (z = yu = vu& y ⊂ x ⊂ v −→ yl ⊂ xl = vl).
An element x ∈ ℘(S) will be said to be an lower critical element if and only

if (∀y ∈ ℘(S)) (y ⊂ x −→ yl ⊂ xl) An element that is both lower and upper
critical will be said to be critical. The set of upper critical, lower critical and critical
elements respectively will be denoted by UC(S), LC(S) and CR(S).

Proposition 159 In a PRAX, every upper definite subset is also upper critical, but
the converse need not hold.

The most important thing about the different lower and upper critical points is
that they help in determining full sets of roughly equal elements by determining the
boundaries of intervals in bruinvals of different types.

Types of Associated Sets
Because of reflexivity, it might appear that lower approximations in PRAX and
classical rough sets are too similar at least in the perspective of lower definite
objects. It is necessary to classify subsets of a PRAX S, to see the differences
relative the behavior of lower approximations in classical rough sets. All this will
be used in some of the semantics as well.

Definition 160 For each element x ∈ ℘(S) the following sets can be associated:

F0(x) = {y : (∃a ∈ xc) Rya &y ∈ x} (Forward Looking)

F1(x) = {y : (∃a ∈ xc) Rya &Rzy &z ∈ x} (1-Forward Looking)

π0(x) = {y : y ∈ x & (∃a ∈ xc) Ray} (Progressive)

St (x) = {y : [y] ⊆ x &¬(y ∈ F0(x))} (Stable)

Sym(x) = {y : y ∈ x & (∀z ∈ x)(Ryz ↔ Rzy)} (Relsym)

Forward looking set associated with a set x includes those elements not in x

whose successor neighborhoods intersect x. Elements of the set may be said to
be relatively forward looking. Progressive set of x includes those elements of x

whose successor neighborhoods are not included in x. It is obvious that progressive
elements are all elements of x \xl . Stable elements are those that are strongly within
x and are not directly reachable in any sense from outside. Sym(x) includes those
elements in x which are symmetrically related to all other elements within x.

Even though all these are important these cannot be easily represented in the
rough domain. Their approximations have the following properties:

Proposition 161 In the above context, all of the following hold:

(π0(x))
l = ∅& (π0(x))

u ⊆ xu \ xl

(F0(x))
u ⊆ xu



Granular Rough Semantics 251

St (x)l ⊆ xl &F0(x) = ∅ −→ St (x) = xl+

Sym(x)u ⊆ xu & (Sym(x))l ⊆ xl.

Proof Proof is fairly direct. ��

7.5 Atoms in the Poset of Roughly Equivalent Sets

Definition 162 For any two elements x, y ∈ ℘(S)| ≈, let

x ≤ y if and only if (∀a ∈ x)(∀b ∈ y)al ⊆ bl & au ⊆ bu.

℘ (S)| ≈ will be denoted by H in what follows.

Proposition 163 The relation ≤ defined on H is a bounded and directed partial
order. The least element will be denoted by 0 (0 = {∅}) and the greatest by 1
(1 = {S}).
Definition 164 For any a, b ∈ H , let UB(a, b) = {x : a ≤ x & b ≤ x} and
LB(a, b) = {x : x ≤ a & x ≤ b}. By a s-ideal (strong ideal) of H , will be meant
a subset K that satisfies all of

(∀x ∈ H)(∀a ∈ K)(x ≤ a −→ x ∈ K),

(∀a, b ∈ K)UB(a, b) ∩K 
= ∅.

An atom of H is any element that covers 0. The set of atoms of H will be denoted
by At(H).

Theorem 165 Atoms of H will be of one of the following types:

Type-0 Elements of the form (∅, [x]), that intersect no other set of roughly
equivalent sets.

Type-1 Bruinvals of the form (∅, α), that do not contain full sets of roughly
equivalent sets.

Type-2 Bruinvals of the form (α, β), that do not contain full sets of roughly
equivalent sets and are such that (∀x)xl = ∅.

Proof It is obvious that a bruinval of the form (α, β) can be an atom only if α is
the ∅. If not, then each element x of the bruinval (∅, α) will satisfy xl = ∅ ⊂ xu,
thereby contradicting the assumption that (α, β) is an atom.

If [x] intersects no other successor neighborhood, then

(∀y ∈ (∅, [x]))yl = ∅& xu = [x]

and it will be a minimal set of roughly equal elements containing 0.



252 A. Mani

The other part can be verified based on the representation of possible sets of
roughly equivalent elements. ��
Theorem 166 The partially ordered set H is atomic.

Proof It is required to prove that any element x greater than 0 is either an atom or
there exists an atom a such that a ≤ x, that is

(∀x)(∃a ∈ At(H))(0 < x −→ a ≤ x).

Suppose the bruinval (α, β) represents a non-atom, then it is necessary that

(∀x ∈ α) xl 
= ∅& xu ⊆ S.

Suppose the neighborhoods included in xu are {[y] : y ∈ B ⊆ S}. If all
combinations of bruinvals of the form (∅, γ ) formed from these neighborhoods
are not atoms, then it is necessary that the upper approximation of every singleton
subset of a set in γ properly contains another non-trivial upper approximation. This
is impossible.

So H is atomic. ��

7.6 Algebraic Semantics-1

If A, B ∈ ℘(S) and A ≈ B then Au ≈ Bu and Al ≈ Bl , but¬(A ≈ Au) in general.
It has already been seen that ≤ is a partial order relation on ℘(S)| ≈. In this section
elements of ℘(S)| ≈ would still be denoted by lower case Greek alphabets.

Theorem 167 The following operations can be defined on ℘(S)| ≈ (A, B ∈ ℘(S)

and [A], [B] are corresponding classes):

L[A] Δ= [Al] (36)

[A] � [B] Δ= [
⋃

X∈[A], Y∈[B]
(X ∩ Y )] (37)

[A] ⊕ [B] Δ= [
⋃

X∈[A], Y∈[B]
(X ∪ Y )] (38)

U [A] Δ= [Au] (39)

[A] · [B] Δ= λ(LB([A], [B])) (40)

[A]� [B] Δ= λ(UB([A], [B])) (41)

[A] + [B] Δ= {X : Xl = (Al ∩ Bl)l &Xu = Au ∪ Bu} (42)
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[A] × [B] Δ= {X : Xl = Al ∪ Bl &Xu = Al ∪ Bl ∪ (Au ∩ Bu) (43)

[A] ⊗ [B] Δ= {X : Xl = Al ∪ Bl &Xu = Au ∪ Bu}. (44)

Proof If A ≈ B then Au ≈ Bu and Al ≈ Bl , but ¬(A ≈ Au) in general.

1. If B ∈ [A], then Bl = Al , Bu = Au and L[A] = L[B] = [Al].
2. [A] � [B] Δ= [⋃X∈[A], Y∈[B](X ∩ Y )] is obviously well defined as sets of the

form [A] are elements of partitions
3. Similar to the above.
4. If B ∈ [A], then Bu = Au and so [Bu] = [Au].
5. [A] · [B] Δ= λ(LB([A], [B])).
6. [A]� [B] Δ= λ(UB([A], [B])).
7. [A] + [B] Δ= {X : Xl = Al ∩ Bl &Xu = Au ∪ Bu}. As the definitions is in

terms of Al, Bl, Au, Bu, so there is no issue.
8. Similar to above.
9. Similar to above.

��
+, × and ⊗ will be referred to as pragmatic aggregation, commonality and

commonality operations as they are less ontologically committed to the classical
domain and more dependent on the main rough domain of interest. + and the other
pragmatic operations cannot be compared by the ≤ relation and so do not confirm
to intuitive understanding of the concepts of aggregation and commonality.

The following theorems summarize the essential properties of the defined
operations:

Theorem 168

LL(α) = L(α). (L1)

(α ≤ β −→ L(α) ≤ L(β)). (L2)

(L(α) = [α] −→ α = {αl}). (L3)

(U(α) ∩ UU(α) 
= ∅ −→ U(α) = UU(α)). (U1)

(UU(α) = ∅ � U(α) = ∅). (U2)

(α ≤ β −→ U(α) ≤ U(β). (U3)

(U(α) = α −→ α = αl = αu). (U4)

UL(α) ≤ U(α). (U5)

LU(α) = U(α). (U6)

Proof Let α ∈ ℘(S)| ≈, then the pair of lower and upper approximations associated
with it will be denoted by αl and αu respectively. By αu and αl is meant the result
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of global operations respectively on the set α (seen as an element of ℘(S)). These
take singleton values and so there is no real need of the approximations αl and αu

and the former will be used.
Proof of L1:

α ∈ ℘(S)| ≈, so α = {X ; αl = Xl & αu = Xu,&X ∈ ℘(S)}.
αl = {Xl; X ∈ α} = {αl}

So [αl] = {Y ; Y l = αl & Yu = αlu}.
(L(α))l = {Y l ; Y l = αl & Yu = αlu} = {αl}.

This yields LL(α) = L(α). (L1)

Proof of U1:

αu = {Xu ; αl = Xl & αu = Xu} = {αu}.
U(α) = [αu] = {Y ; Y l = αu & Yu = αuu}.

So U(α)u = {αuu}.
UU(α) = [U(α)u] = [αuu] = {Y ; Y l = αuu & Yu = αuuu}.

Since α ⊆ αu ⊆ αuu ⊆ αuuu,

therefore (U(α) ∩ UU(α) 
= ∅ −→ U(α) = UU(α). (U1)

The other parts can be proved from the above considerations. ��
Theorem 169 In the context of the above theorem, the following hold:

α � β = β � α) (CO1)

α ≤ α � α (CO2)

α ≤ α �5 (CO3)

α � α = α � (α � α) = α �5 (CO4)

α ⊕ β = β ⊕ α) (AO1)

α ≤ α ⊕ β (AO2)

α ≤ α ⊕⊥ (AO3)

(α ⊕ α)⊕ α = α ⊕ α (AO4)

In general, α ⊕ (α � β) 
= α. (AC)
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Proof

CO1 The definition of � does not depend on the order in which the arguments
occur as set theoretic intersection and union are commutative. To be precise⋃

X∈[A], Y∈[B](X ∩ Y ) = ⋃X∈[A], Y∈[B](Y ∩X).
CO2

⋃
X∈[A], Y∈[A](X ∩ Y ) = ⋃X∈[A]X. But because Xl ∪ Y l ⊆ (X ∪ Y )l in

general, so equality fails.
CO3 Follows from the last inequality.
CO4 In [α�(α�α)], any new elements that are not in [α�α] cannot be introduced

as the inequality in [CO2] is due to the lower approximation and all possible
subsets have already been included.

AO1 The definition of ⊕ does not depend on the order in which the arguments
occur as set theoretic union is commutative.

AO2 Even when β = α, inequality can happen for reasons mentioned earlier.

Proof of [AO3, AO4, AC] are analogous or direct. ��
The above result means that� is an imperfect commonality relation. It is a proper

commonality among a certain subset of elements of H .

Theorem 170 In the context of the above theorem, the following properties of
+, ×,⊗ are provable:

α + α = α, (+I)

α + β = β + α, (+C)

α × α = α, (cI)

α × β = β × α, (cC)

α ≤ β −→ α + γ ≤ β + γ , (+Is)

α ≤ β −→ α × γ ≤ β × γ , (cIs)

α ≤ β −→ α ≤ α × β ≤ β, (+In)

α + β ≤ α ⊕ β, (R1)

α × β ≤ (α × β)⊕ α. (Mix1)

Proof Most of the proof is in Sect. 8, so they are not repeated. ��
Definition 171 By a Concrete Pre-PRAX Algebraic System (CPPRAXA), will be
meant a system of the form

H = 〈H, ≤, L,U,⊕,�,+,×,⊗,⊥,5〉 ,

with all of the operations being as defined in this section.

Apparently the algebraic properties of the rough objects of lo, uo need to be
involved for a representation theorem. The operations can be improved by related
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operations of the following section. Results concerning this will appear separately.
Definable filters in general have reasonable properties.

Definition 172 Let K be an arbitrary subset of a CPPRAXA H. Consider the
following statements:

(∀x ∈ K)(∀y ∈ H)(x ≤ y ⇒ y ∈ K). (F1)

(∀x, y ∈ K) x ⊕ y,Lx ∈ K. (F2)

(∀a, b ∈ H)(1 
= a ⊕ b ∈ K ⇒ a ∈ K or b ∈ K). (F3)

(∀a, b ∈ H)(1 
= UB(a, b) ∈ K ⇒ a ∈ K or b ∈ K). (F4)

(∀a, b ∈ K)LB(a, b) ∩K 
= ∅. (F5)

• If K satisfies F1 then it will be said to be an order filter. The set of such filters
on H will be denoted by OF (H).

• If K satisfies F1, F2 then it will be said to be a filter. The set of such filters on H
will be denoted by F(H).

• If K satisfies F1, F2, F3 then it will be said to be a prime filter. The set of such
filters on H will be denoted by FP (H).

• If K satisfies F1, F4 then it will be said to be a prime order filter. The set of such
filters on H will be denoted by OPF (H).

• If K satisfies F1, F5 then it will be said to be an strong order filter. The set of
such filters on H will be denoted by OSF (H).

Dual concepts of ideals of different kinds can be defined.

Proposition 173 Filters of different kinds have the following properties:

• Every set of filters of a kind is ordered by inclusion.
• Every filter of a kind is contained in a maximal filter of the same kind.
• OSF (H) is an algebraic lattice, with its compact elements being the finitely

generated strong order filters in it.

Definition 174 For F,P ∈ F(H), the following operations can be defined:

F ∧ P
Δ= F ∩ P

F ∨ P
Δ= 〈F ∪ P 〉 ,

where 〈F ∪ P 〉 denotes the smallest filter containing F ∪ P .

Theorem 175 〈F(H), ∨, ∧,⊥,5〉 is an atomistic bounded lattice.
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8 Approximate Algebraic Semantics

In this section the approximate semantics of PRAX invented in [95, 99] is presented.
Initially, the shortcomings of a direct approach are highlighted. Next ideas of
approximation of relations by other relations are developed. Rough dependence
is explained next and applied to form multiple approximate semantics. All of the
details of the semantics have been omitted.

Definition 176 In a PRAX S, let

R(S) = {(Al, Au) ; A ∈ ℘(S)}.

Then all of the following operations on R(S) can be defined:

(Al, Au) ∨ (Bl, Bu)
Δ= (Al ∪ Bl, Au ∪ Bu). (Aggregation)

If (Al ∩ Bl, (Au ∩ Bu)) ∈ R(S) then

(Al, Au) ∧ (Bl, Bu)
Δ= (Al ∩ Bl, (Au ∩ Bu)). (Commonality)

If (Auc, Alc) ∈ R(S) then

∼ (Al, Au)
Δ= (Auc, Alc). (Weak Complementation)

⊥ Δ= (∅, ∅). 5 Δ= (S, S). (Bottom, Top)

(Al, Au) � (Bl, Bu)
Δ= ((Al ∩ Bl)l, (Au ∩ Bu)l). (Proper Commonality)

Definition 177 In the context of the above definition, a partial algebra of the
form R(S) = 〈R(S), ∨, ∧, c, ⊥, 5〉 will be termed a proto-vague algebra and
Rf (S) = 〈R(S), ∨, ∧, �. c, ⊥, 5〉 will be termed a full proto-vague algebra.

More generally, if L, U are arbitrary rough lower and upper approximation
operators over the PRAX, and if each occurrence of l is replaced by L and of u

by U in the above definition then the resulting algebra of the above form will be
called a LU -proto-vague partial algebra. Analogously, louo-proto-vague algebras
and similar algebras can be defined.

Theorem 178 A full proto-vague partial algebra Rf (S) satisfies all of the follow-
ing:

1. ∨,� are total operations.
2. ∨ is a semi-lattice operation satisfying idempotency, commutativity and associa-

tivity.
3. ∧ is a weak semi-lattice operation satisfying idempotency, weak strong commu-

tativity and weak associativity. With ∨ it forms a weak distributive lattice.

4. ∼ is a weak strong idempotent partial operation;∼∼∼ α
ω∗= ∼ α.



258 A. Mani

5. ∼ (α ∨ β)
ω=∼ α∧ ∼ β (Weak De Morgan condition) holds.

6. � is an idempotent, commutative and associative operation that forms a lattice
with ∨.

7. α �⊥ = α ∧ ⊥ = ⊥. α ∨⊥ = α; α �5 = α ∧ 5 = α. α ∨5 = 5.
8. ∼ (α ∧ β) = (∼ α∨ ∼ β) −→∼ (α � β) = (∼ α∨ ∼ β).

9. α ∨ (β � γ ) ⊆ (α ∨ β) � (α ∨ γ ), but distributivity fails.

Proof Let α = (Xl,Xu), β = (Y l, Y u) and γ = (Zl, Zu) for some X, Y, Z ∈
℘(S), then

1. α∨β = (Xl∪Y l,Xu∪Yu) belongs to R(S) because the components are unions
of successor neighborhoods and Xl ∪ Y l ⊆ Xu ∪Yu. The proof for ∧ is similar.

2. α ∨ (β ∨ γ ) = (Xl,Xu)∨ ((Y l, Y u)∨ (Zl, Zu)) = (Xl,Xu)∨ (Y l ∪Zl, Y u ∪
Zu) = (Xl ∪ Y l ∪ Zl,Xu ∪ Yu ∪ Zu) = (α ∨ β) ∨ γ.

3. Weak absorptivity and weak distributivity are proved next.
(Xl ∩ (Xl ∪ Y l)) = Xl and (Xu ∩ (Xu ∪ Yu)) = Xl hold in all situations.

If (Xl ∪ (Xl ∩ Y l)) is defined then it is equal to Xl and if (Xu ∪ (Xu ∪ Yu)) is
defined, then it is equal to Xu. So

α ∨ (α ∧ β)
ω= α= α ∧ (α ∨ β).

For distributivity (α ∨ (β ∧ γ )
ω= (α ∨ β) ∧ (α ∨ γ ) and α ∧ (β ∨ γ )

ω=
(α ∧ β)∨ (α ∧ γ )) again it is a matter of definability working in coherence with
set-theoretic distributivity.

4. If ∼ α is defined then ∼ α = (Xuc,Xlc) and

∼∼ α =∼ (Xuc,Xlc) = (Xlcc,Xucc) = (Xl,Xu), by definition.

If ∼∼ α is defined, then ∼ α is necessarily defined. So

∼∼∼ α
ω∗= ∼ α.

5. If ∼ (α ∨ β) and ∼ α∧ ∼ β are defined then ∼ (α ∨ β) =∼ ((Xl ∪ Y l), (Xu ∪
Yu)) = ((Xuc ∩ Yuc), (Xlc ∩ Y lc))

ω∗= (Xuc,Xlc) ∧ (Y uc, Y lc) =∼ α∧ ∼ β.

So ∼ (α ∨ β)
ω∗= ∼ α∧ ∼ β.

6. α � β = β � α & α � α = α are obvious.
α � (β � γ ) = ((Xl ∩ (Y l ∩ Zl)l)l, (Xu ∩ (Y u ∩ Zu)u)u) The components

are basically the unions of common granules among the three. No granule in the
final evaluation is eliminated by choice of order of operations. So α � (β � γ ) =
(α � β) � γ .

α � (α ∨ β) = ((Xl ∩ (Xl ∪ Y l))l, (Xu ∩ (Xu ∪ Yu))l) = α.
Further, α ∨ (α � β) = ((Xl ∪ (Xl ∩ Y l)l), (Xu ∪ (Xu ∩ Yu)l)) = α. So

∨,� are lattice operations.
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7. • Since ⊥ = (∅,∅), α �⊥ = α ∧ ⊥ = ⊥ and α ∨⊥ = α follow directly.
• Since 5 = (S, S), α �5 = α ∧ 5 = α and α ∨ 5 = 5 follow directly.

8. Follows from the previous proofs.
9. • α ∨ (β � γ ) = ((Xl ∪ (Y l ∩ Zl)l), (Xu ∪ (Y u ∩ Zu)l)). If a ∈ S and

[a] ⊆ Xl ∪ (Y l ∩ Zl)l , and [a] ⊆ (Y l ∩ Zl)l , then [a] ⊆ Y l and [a] ⊆ Zl . So
[a] ⊆ Xl ∪ Y l and [a] ⊆ Xl ∪ Zl .

• If [a] ⊆ Xl∪(Y l∩Zl)l and if [a] = P∪Q, with P ⊆ Xl , Q ⊆ (Y l∩Zl)l then
[a] ⊆ Xl ∪Y l and [a] ⊆ Xl∪Zl . This proves α∨(β�γ ) ⊆ (α∨β)�(α∨γ ).

• If [a] ⊆ ((Xl ∪ Y l)∩ (Xl ∪ Y l))l then [a] ⊆ Xl ∪ Y l and [a] ⊆ Xl ∪Zl . This
means [a] = P ∪Q, with P ⊆ Xl , Q ⊆ Y l and Q ⊆ Zl and Q is contained
in union of some other granules. So Q ⊆ Y l∩Zl , but it cannot be ensured that
Q ⊆ (Y l ∩ Zl)l (required counterexamples are easy to construct). It follows
that ((Xl ∪ Y l) ∩ (Xl ∪ Y l))l � Xl ∪ (Y l ∩ Zl)l .

��
The following theorem provides a condition for ensuring that ∼ α is defined.

Theorem 179 If Xuu = Xu, then ∼ (Xl,Xu) = (Xuc,Xlc) but the converse is
not necessarily true.

Proof

• ∼ (Xl,Xu) is defined if and only if Xuc is a union of granules.
• If Xuu = Xu then Xuc is a union of granules generated by some of the elements

in Xuc , but the converse need not hold.
• So the result follows.

��
Let W be any quasi-order relation that approximates R, and let the granules

[x]w, [x]wi and lw, uw be lower and upper approximations defined by analogy with
the definitions of l, u. If R ⊂ W , then (∀x ∈ S) [x] ⊆ [x]w and (A, B ∈ ℘(S).
A ‖ B in all that follows shall mean A � B &B � A):

• If A ⊂ B and Au = Bu, then it is possible that Auw ⊂ Buw .
• If A ⊂ B and Al = Bl , then it is possible that Alw ⊂ Blw .
• If A ⊂ B and Auw = Buw , then it is possible that Au ⊂ Bu.
• If A ⊂ B and Alw = Blw , then it is possible that Al ⊂ Bl .
• If A ‖ B and Al = Bl , then it is possible that Alw ‖ Blw .
• If A ‖ B and Alw = Blw , then it is possible that Al ‖ Bl .
• If A ‖ B and Au = Bu, then it is possible that Auw ‖ Buw .
• If A ‖ B and Auw = Buw , then it is possible that Au ‖ Bu.
• If A ⊂ B, Al = Bl and Au = Bu , then it is possible that Auw ⊂ Buw &Alw ⊂

Blw .

The above properties mean that meaningful correspondences between vague
partial algebras and Nelson algebras may be quite complex. Focusing on granular
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evolution alone, the following can be defined

(∀x ∈ S) ϕo([x]) =
⋃

z∈[x]
[z]w.

(∀A ∈ ℘(S)) ϕ(Al) =
⋃

[x] ⊆Al

ϕo([x]).

(∀A ∈ ℘(S)) ϕ(Au) =
⋃

[x] ⊆Au

ϕo([x]).

ϕ(Al ∪ Bl) = ⋃[x]⊆Al∪Bl .
If [x] ⊆ Al ∪ Bl

ϕ can be naturally extended by components to a map τ as per

τ (Al,Au) = (ϕ(Al), ϕ(Au)).

Proposition 180 If R ⊆ Rw and Rw is transitive, then

• If z ∈ [x] and x ∈ [z], then ϕ([z]) = ϕ([x]).
• If z ∈ [x], then ϕ([z]) ⊆ ϕ([x]).
•

(∀A ∈ ℘(S)) ϕ(Al) =
⋃

[x]⊆Al

ϕ([x]) =
⋃

[x]⊆Al

[x]w

Proof

• z ∈ [x] yields Rzx. So if Raz, then Rax and it is clear that ϕ([z]) ⊆ ϕ([x]).
Rbx&Rzx&Rxz implies Rwbz .

• This is the first part of the above.
• Follows from the above.

��
Definition 181 The following abbreviations will be used for handling different
types of subsets of S:

Γu(S) = {Au;A ∈ ℘(S)}. (Uppers)

Γuw(S) = {Auw ;A ∈ ℘(S)}. (w-Uppers)

Γ (S) = {B; (∃A ∈ ℘(S)) B = Al or B = Au}. (lower definites)

Note that δl(S) is the same as Γ (S) and similarly for δlw(S).
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τ has the following properties:

Proposition 182 If R ⊆ Rw and Rw is transitive, then

τ (⊥) = ⊥w.

τ (5) = 5w.

(∀α, β ∈ R(S)) τ (α ∨ β)= τ (α) ∨ τ (β).

(∀α, β ∈ R(S)) τ (α ∧ β)
ω= τ (α) ∧ τ (β).

Definition 183 For each α ∈ Rw(S), the set of ordered pairs τA(α) will be termed
as a co-rough object of S, where

τA(α) = {β ; β ∈ R(S)& τ (β) = α}.

The collection of all co-rough objects will be denoted by CR(S).

This permits us to define a variety of closely related semantics of PRAX when
R ⊆ Rw and Rw is transitive. These include:

• The map τ : Rf (S) �−→ Rw(S). Rw(S) being a Nelson algebra over an
algebraic lattice.

• Rf (S) ∪ CR(S) along with induced operations yields another semantics of
PRAX.

• R(S) ∪ Rw(S) enriched with algebraic and dependency operations described
in 8.4.

8.1 Approximate Relations

If R is a binary relation on a set X, then let Ro ∂= R ∪ ΔX. The weak transitive

closure of R will be denoted by R#. If R(i) is the i-times composition

R ◦ R . . . ◦ R︸ ︷︷ ︸
i-times ,

then R# = ⋃R(i). R is acyclic if and only if (∀x)¬R#xx. The relation R· is
defined by R·ab if and only if Rab &¬(R#ab &R#ba).

Definition 184 If R is a relation on a set S, then the relations R
, Rcyc and Rh

will be defined via

R
ab if and only if [b]Ro ⊂ [a]Ro & [a]iRo ⊂ [b]iRo (45)

Rcycab if and only if R#ab &R#ba (46)

Rhab if and only if R
ab&R·ab. (47)
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In case of PRAX, Ro = R, so the definition of R
 would involve neighborhoods
of the form [a] and [a]i alone. R
 ⊂ R and R
 is a partial order.

Example 185 In our example 119, R#ab happens when a is an ally of an ally of b.
R
ab happens if and only if every ally of b is an ally of a and if a is ally of c, then
b is an ally of c—this can happen, for example, when b is a Marxist feminist and a

is a socialist feminist. Rcycab happens when a is an ally of an ally of b and b is an
ally of an ally of a. R·ab happens whenever a is an ally of b, but b is not an ally of
anybody who is an ally of a.

Theorem 186 Rh = ∅.
Proof

Rhab⇔ R
ab &R·ab

⇔ τ (R)ab & (R \ τ (R))ab

But ¬(∃a)(R \ τ (R))aa.

So Rh = ∅. ��
Proposition 187 All of the following hold in a PRAX S:

R·ab ↔ (R \ τ (R))ab (48)

(∀a, b)¬(R·ab &R·ba) (49)

(∀a, b, c)(R·ab &R·bc −→ ¬R·ac). (50)

Proof

• R·ab ↔ Rab &¬(R#abR#ba).
• But ¬(R#abR#ba) is possible only when both Rab and Rba hold.
• So R·ab ↔ Rab &¬(τ (R)ab) ↔ (R \ τ (R))ab.

��
Theorem 188

R#· = R# \ τ (R) (51)

R·# = (R \ τ (R))# (52)

(R \ τ (R))# ⊆ R# \ τ (R). (53)

Proof

1.

R#·ab↔R#ab&¬(R##ab &R##ba)

↔R#ab&¬(R#ab&R#ba)
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↔R#ab&¬τ (R)ab

↔(R# \ τ (R))ab.

2.

R·#ab↔(R·)#ab

↔(R \ τ (R))#ab.

3. Can be checked by a contradiction or a direct argument.
��

Possible properties that approximations of prototransitive relations may or should
possess are considered next. If < is a strict partial order on S and R is a relation,
then consider the conditions :

(∀a, b)(a < b −→ R#ab). (PO1)

(∀a, b)(a < b −→ ¬R#ba). (PO2)

(∀a, b)(R
ab&R·ab −→ a < b. (PO3)

If a ≡R b, then a ≡< b. (PO4)

(∀a, b)(a < b −→ Rab). (PO5)

As per [59], < is said to be a partial order approximation POA (resp. weak
partial order approximation WPOA) of R if and only if PO1, PO2, PO3, PO4
(resp. PO1, PO3, PO4) hold. A POA < is inner approximation IPOA of R if and
only if PO5 holds. PO4 has a role beyond that of approximation and depends on
both successor and predecessor neighborhoods. Rh, R·
 are IPOA, while R·#, R#·
are POAs.

By a lean quasi order approximation < of R, will be meant a quasi order
satisfying PO1 and PO2. The corresponding sets of such approximations of R will
be denoted by POA(R), WPOA(R), IPOA(R), IWPOA(R) and LQO(R)

Theorem 189 For any A, B ∈ LQO(R), the operations &,∨,5 can be defined
via:

(∀x, y)(A&B)xy if and only if (∀x, y)Axy &Bxy.

(A ∨ B) = (A ∪ B)#,

5 = R#.
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Proof

• If Aab then R+ab and if Bab then R+ab.
• But if (A&B)ab, then both Aab and Bab.
• So R+ab.

Similarly it can be shown that A ∨ B ∈ LQO(R). It is always defined and
contained within R# as it is the transitive completion of A∪B.5 = R# as transitive
closure is a closure operator. ��
Theorem 190 In a PRAX, R·#&R#·xy ↔ (R \ τ (R))#xy.

8.2 Granules of Derived Relations

The behavior of approximations and rough objects corresponding to derived
relations is investigated in this subsection.

Definition 191 The relation R#· will be termed the trans ortho-completion of R.
The following granules will be associated with each x ∈ S :

[x]ot = {y ; R#·yx } (54)

[x]iot = {y ; R#·xy } (55)

[x]oot = {y ; R#·yx &R#·xy}. (56)

Let the corresponding approximations be lot , uot and so on.

Theorem 192 In a PRAX S, (∀x ∈ S) [x]oot = {x}.
Proof R#·xy &R#·yx means that the pair (x, y) is in the transitive completion of R
and not in τ (R). So y ∈ [x]oot if and only if

(∃a, b) Rxa &Ray & (¬Rax ∨ ¬Rya)& (Ryb&Rbx)& (¬Rby ∨ ¬Rxb).

If it is assumed that x 
= y, then each of the possibilities leads to a contradiction
as is shown below. In the context of the above statement:
Case-1

• Rxa &Ray &¬Rax &Rya &Ryb&Rbx &¬Rby &Rxb.
• This yields R#xa &R#bb&R#ba &R#ab.

• So, R#xb&R#ya &R#ax and this contradicts the original assumption.

Case-2

• Rxa &Ray &Rax &¬Rya &Ryb&Rbx &Rby &¬Rxb.
• This yields the contradiction R#ab.
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Case-3

• Rxa &Ray &¬Rax &Rya &Ryb&Rbx &Rby &¬Rxb.

• This yields R#ba &R#ab&R#aa &R#bb and R#yy&R#xy&R#yx&Rya&
R#xa.

• But such a R# is not possible.

Somewhat similarly the other cases can be seen to lead to contradictions. ��
By the symmetric center of a relation R, will be meant the set KR = ⋃ ei(τ (R)\

ΔS)—basically the union of elements in either component of τ (R) minus the
diagonal relation on S.

Proposition 193 (∀x) [x]B[x]ot 
= ∅ as

x /∈ KR −→ [x] ⊂ [x]ot
x ∈ KR −→ [x] � [x]ot & {x} ⊂ [x] ∩ [x]ot .

Proof

z ∈ [x]ot ↔ R#·zx

↔ R#zx &¬τ (R)zx

↔ (Rzx &¬Rxz) or (¬Rzx &¬Rxz& (R# \ R)zx).

��
KR can be used to partially categorize subsets of S based on intersection.

Proposition 194 (R \ τ (R))# ∪ τ (R) is not necessarily a quasi order.

Proof (x, y) ∈ (R \ τ (R))# ∪ τ (R) and (x, y) /∈ τ (R) and x ∈ KR & y /∈ KR

and ∃z ∈ KR & z 
= x &Rzx do not disallow Rzy. So (R \ τ (R))# ∪ τ (R) is not
necessarily a quasi-order. The missing part is left for the reader to complete. ��
Proposition 195 ((R \ τ (R))# ∪ τ (R))# = R#.

Proof Clearly R ⊆ ((R \ τ (R))# ∪ τ (R))# and it can be directly checked that if
a ∈ ((R \ τ (R))# ∪ τ (R))# \ R then a ∈ R# \ R and conversely. ��

8.3 Transitive Completion and Approximate Semantics

The interaction of the rough approximations in a PRAX and the rough approxima-
tions in the transitive completion can be expected to follow some order. The definite
or rough objects most closely related to the difference of lower approximations and
those related to the difference of upper approximations can be expected to be related
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in a nice way. It is shown that this nice way is not really a rough way. But the results
proved remain relevant for the formulation of semantics that involves that of the
transitive completion as in [61, 63]. A rough theoretical alternative is possible by
simply starting from sets of the form A∗ = (Al \Al#)∪ (Au# \Au) and taking their
lower (l#) and upper (u#) approximations—the resulting structure would be a partial
algebra derived from a Nelson algebra over an algebraic lattice ([95]).

Proposition 196 For an arbitrary proto-transitive reflexive relation R on a set S,
( # subscripts will be used for neighborhoods, approximation operators and rough
equalities of the weak transitive completion) all of the following hold:

(∀x ∈ S) [x]R ⊆ [x]R# (Nbd)

(∀A ⊆ S)Al ⊆ Al# &Au ⊆ Au# (App)

(∀A ⊆ S)(∀B ∈ [A]≈)(∀C ∈ [A]≈#) B
l ⊆ Cl# &Bu ⊆ Cu# (REq)

The reverse inclusions are false in general in the second assertion in a specific way.
Note that the last condition induces a more general partial order @ over ℘(℘ (S))

via A @ B if and only if (∀C ∈ A)(∀E ∈ B)Cl ⊆ El# &Cu ⊆ Eu# .

Proof The first of these is direct. For simplicity, the successor neighborhoods of
x will be denoted by [x] and [x]# respectively. The possibility of tracking of the
second assertion in the first part is also considered.

• If z ∈ Al# then z ∈ Al as [x]# ⊆ A implies [x] ⊆ A.
• If z ∈ Al then (∃x) z ∈ [x] ⊆ Al .
• For this x, z ∈ [x]#, but it is possible that [x]# ⊆ A or [x]# � A.
• If [x]# � A, and (∃b /∈ A)R#ax &Rab&Rbx then a contradiction happens as

Rbx means b ∈ [x].
• If [x]# � A, and (∃b ∈ A)R#ax &Rab&Rbx all that is required is a c /∈

A&Rcb that is compatible with R#cx and Al
� Al# .

��
Definition 197 By the l-scedastic approximation l̂ and the u-scedastic approxima-
tion û of a subset A ⊆ S will be meant the following approximations:

Al̂ = (Al \ Al#)l, Aû = (Au# \ Au)u# .

The above cross difference approximation is the best possible from closeness to
properties of rough approximations.

Theorem 198 For an arbitrary subset A ⊆ S of a PRAX S,the following
statements and diagram of inclusion (→) hold (Fig. 6):

• Al#l = Al# = All# = Al#l#

• If Au ⊂ Au# then Auu# ⊆ Au#u# .
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Fig. 6 Relation between
approximate approximations

Proof It is clear that Al ⊆ Au ⊆ Au# . So Al
� Au# \ Au.

x ∈ (Al \ Al#)l ⇒ (∃y) [y]# � A& x ∈ [y] ⊂ A& x ∈ [y]#
⇒ x ∈ Au# & x ∈ Au

⇒ x /∈ Au# \ Au.

But [y]# ⊂ Au# (∃z) z ∈ Au# & z /∈ Au & z ∈ [y]#.
So [y]# ⊂ (Au# \Au)u# and it is possible that [y]# � (Au# \ Au)u.

��
Theorem 199 For an arbitrary subset A ⊆ S of a PRAX S,

(Al \ Al#)l � (Au# \Au)u# −→ Au# = Au.

Au# 
= Au −→ Al \ Al#)l ⊆ (Au# \Au)u# .

Proof

• Let S = {a, b, c, e, f } and
• R be the transitive completion satisfying Rab, Rbc, Ref .

• If B = {a, b}, Bl̂ = B, but Bu# = {a, b, c} = Bu.
• So Bû = ∅.
• The second part follows from the proof of the above proposition under the

restriction in the premise.
��

Theorem 200 Key properties of the scedastic approximations follow:

1. (∀B ∈ ℘(S))(Bl̂ = B � Bû = B).

2. (∀B ∈ ℘(S))(Bû = B → Bl̂ = B).

3. (∀B ∈ ℘(S)) Bl̂l̂ = Bl̂ .
4. (∀B ∈ ℘(S)) Bûû 
= Bû.
5. It is possible that (∃B ∈ ℘(S)Bûû ⊂ Bû).
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Proof

1. The counter example in the proof of the above theorem works for this
statement.

2. x ∈ B ↔ x ∈ (Bu# \ Bu)u# ↔ (∃y ∈ Bu#)(∃z ∈ Bu# \ Bu) x, z ∈
[y]# & z ∈ Bu# & z /∈ Bu. But this situation requires that elements of the form
z be related to x and so it is essential that Bu# = Bu.

3. Bl̂l̂ = (Bl̂l \Bl̂l#)l = ((Bl \Bl#)l \∅)l = Bl̂ . The missing step is of proving
(Bl \ Bl#)ll# = ∅.

4–5. The last two assertions shall be proven together by way of a counterexample
and an essential pattern of deviation.

Let S = {a, b, c, e, f } and R be a reflexive relation s.t. Rab, Rbc, Ref .
If A = {a, e}, then Au# = {a, b, c, e} and Au = {a, b, e}.
Therefore Aû = {c}&Aûû = ∅ & Aûû ⊂ Aû.
In general if B is some subset, then x ∈ Bû = (Au# \ Au)u# ⇒ (∃y ∈
Au#)(∃z) y ∈ [z]# & y /∈ Au & y /∈ A& z ∈ A& y /∈ [z]& y ∈ [x]#.

��
An interesting problem can be given A for which Au# 
= Au, when does there

exist a B such that

Bl = (Al \ Al#)l = Al̂ & Bu = (Au# \ Au)u# = Aû?

8.4 Rough Dependence

The concept of rough dependence was introduced in general rough set theory
by the present author in [97]. By the term rough dependence, the present author
seeks to capture the relation between two objects (crisp or rough) that have some
representable rough objects in common. There is no process for similarity with the
concept mutual exclusivity of probability theory and in rough evolution there tem-
porality is not usually assumed. The present author would like to eventually analyze
the extent to which ontology of not-necessarily-rough origin could be integrated in a
seamless way. But in this chapter, basic concepts will be introduced, compared with
probabilistic concepts and the semantic value of introduced functions and predicates
will be considered.

Overall the following problems are basic and relevant for use in semantics:

• Which concepts of rough dependence provide for an adequate semantics of rough
objects in the PRAX context?

• More generally how does this relation vary over other rough sets?
• Characterize the connection between granularity and rough dependence?

As mentioned earlier, relation based RST refers to rough theories originating
from generalized approximation spaces of the form U = 〈U, R

〉
, with U being a

set and R being any binary relation on U .
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Definition 201 The τν-infimal degree of dependenceβiτν of A on B will be defined
as

βiτν(A, B) = inf
ν(S)

⊕{C : C ∈ τ (S)& PCA& PCB}.

Here the infimum means the largest ν(S) element contained in the aggregation.
The τν-supremal degree of dependence βsτν of A on B will be defined as

βsτν(A, B) = sup
ν(S)

⊕{C : C ∈ τ (S)& PCA& PCB}.

Here the supremum means the least ν(S) element containing the sets.
The definition extends to RYS [91] in a natural way.

Note that all of the definitions do not use real-valued rough measures and the
cardinality of sets in accord with one of the principles of avoiding contamination.
The ideas of dependence are more closely related to certain semantic operations
in classical rough sets. But these were never seen to be of much interest. The
connections with probability theories has been part of a number of papers including
[127–129, 156, 170], however neither dependence nor independence have received
sufficient attention. This is the case with other papers on entropy. It should be
noted that the idea of independence in statistics is seen in relation to probabilistic
approaches, but dependence has largely not been given much importance in
applications.

The positive region of a set X is Xl , while the negative region is Xuc – this
region is independent from x in the sense of attributes being distinct, but not in the
sense of derivability or inference by way of rules. In considerations of dependence or
independence of a set relative another, a basic question would also be about possible
balance between the two meta principles of independence in the rough theory and
relation to the granular concepts of independence.

Definition 202 Two elements x, y in a RBRST or CBRST S will be said to be
PN-independent IPN(xy) if and only if

xl ⊆ yuc & yl ⊆ xuc.

Two elements x, y in a RBRST or CBRST S will be said to be PN-dependent
ςPN(xy) if and only if

xl
� yuc & yl

� xuc.

Theorem 203 Over the RYS corresponding to classical rough sets, the following
properties of dependence degrees hold when τ (S) = G(S)—the granulation of S
and ν(S) = δl(S)—the set of lower definite elements. The subscripts τν and braces
in βiτν(x, y) are omitted in the following:
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1. βixy = xl ∩ yl = βsxy (subscripts i, s on β can therefore be omitted).
2. βxx = xl .
3. βxy = βyx.
4. β(βxy)x = βxy.
5. P(βxy)(βx(y ⊕ z)).
6. (Pylz −→ P(βxy)(βxz)).
7. βxy = βxlyl = βxyl.
8. β0x = 0 ; βx1 = xl .
9. (Pxy −→ βxy = xl).

This is proved in the next section.

Theorem 204 For classical rough sets, a semantics over the classical semantic
domain can be formulated with no reference to lower and upper approximation
operators using the operations ∩, c, β on the power-set of S, S being an approxi-
mation space.

Proof It has already been shown that l is representable in terms of β. So the result
follows. ��
Dependence in PRAX
When ν(S) = δl(S) and τ (S) = G(S)—the successor neighborhood granulation,
then the situation in PRAX contexts is similar, but it would not be possible to define
u from l and complementation. However when ν(S) = δu(S), then the situation is
very different.

Theorem 205 Over the RYS corresponding to PRAX with P =⊆, ⊕ = ∪ and
� = ∩, the following properties of dependence degrees hold when τ (S) = S—
the granulation of S and ν(S) = δl(S)—the set of lower definite elements. In fact
this holds in any reflexive RBRST. The subscripts τν and braces in βiτν(x, y) are
omitted in the following:

1. βixy = xl ∩ yl = βsxy (subscripts i, s on β can therefore be omitted).
2. βxx = xl; βxy = βyx.
3. (x � y = 0 −→ βixy = 0), but the converse is false.
4. β(βxy)x = βxy.
5. P(βxy)(βx(y ⊕ z)).
6. (Pylz −→ P(βxy)(βxz)).
7. βxy = βxlyl = βxyl.
8. β0x = 0 ; βx1 = xl .
9. (Pxy −→ βxy = xl).

Proof

1. βixy is the union of the collection of successor neighborhoods generated by
elements x and y that are included in both of them. So βixy = xl ∩ yl = βsxy.

2. βxx = xl; βxy = βyx. is obvious
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3. If (x � y = 0, then x and y have no elements in common and cannot have
common successor neighborhoods. If βixy = 0, then x, y have no common
successor neighborhoods, but can still have common elements. So the statement
follows.

4. βxy ⊆ xl ⊆ x by the first statement. So β(βxy)x = βxy.
5. P(βxy)(βx(y ⊕ z)) follows by monotonicity.
6. If Pylz is the same thing as yl ⊆ z. βxy = xl ∩ yl and βxz = xl ∩ zl by the

first statement. So (Pylz −→ P(βxy)(βxz)) holds.
7. βxy = βxlyl = βxyl holds because l is an idempotent operation in a PRAX.
8. Rest of the statements are obvious.

��
Even though the properties are similar for reflexive RBRST when ν(S) = δl(S)

and τ (S) = G(S), there are key differences that can be characterized in terms of
special sets.

• βxy = z if and only if (∀a ∈ z)(∃b ∈ z) a ∈ [z] ⊆ x ∩ y.
• So a minimal Kz ⊆ z satisfying (∀a ∈ z)(∃b ∈ Kz) a ∈ [b] ⊆ x and (∀e ∈

Kz) [e] ⊆ x ∩ y can be selected. Minimality being with respect to the inclusion
order.

• Let Pz be the collection of all such Kz and let Bz be the subcollection of Pz

satisfying the condition: if K ∈ Bz then (∀a ∈ K)(∀b ∈ [a])(∃J ∈ Bz) b ∈ J .
Pz will be called the local basis and Bz, the local super basis of z.

Proposition 206 For classical rough sets (∀z)Bz = Pz and conversely.

Theorem 207 In the context of 205, if ν(S) = δu(S) and τ (S) is as before, then all
of the following hold ( βxy is an abbreviation for βixy)

1. P(βxy)(βiδl(S)xy),
2. P(βxx)(xl); βxy = βyx.
3. (x � y = 0 −→ βixy = 0), but the converse is false.
4. β(βxy)x = βxy.
5. P(βxy)(βx(y ⊕ z)).
6. (Pylz −→ P(βxy)(βxz)).
7. βxy = βxlyl ; P(βxyl)(βxuyu).
8. β0x = 0 ; P(βx1)(xl).
9. (Pxy −→ P(βzx)(βzy))

10. (βxy)l = βxy.

Proof

1. By definition βiτν(A, B) = infν(S) ⊕{C : C ∈ τ (S)& PCA& PCB},
so βxy is the greatest upper definite set contained in the union of common
successor neighborhoods included in x and y. So it is necessarily a subset
of xl ∩ yl . In a PRAX, u is not idempotent and in general xu ⊆ xuu. So
P(βxy)(βiδl(S)xy).

2. The statements P(βxx)(xl) and βxy = βyx follow from the above.
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3. The proof is similar to that of third statement of 205.
4. In constructing β(βxy)x from βxy, no effort is made to look for upper definite

subsets strictly contained in the latter. So the property follows.
5. P(βxy)(βx(y ⊕ z)) follows by monotonicity.
6. Obvious from previous statements.
7. Note that βxuyu is a subset of xu ∩ yu and in general contains βxy.
8. Is a special case of the first statement. 0 is the empty set and 1 is the top.
9. Follows by monotonicity.

10. Upper definite subsets are necessarily lower definite, so (βxy)l = βxy.
��

The main properties of PN-dependence is as below:

Theorem 208 In the context of 205, all of the following hold (the subscript ’PN’ in
ςPN in the following):

1. ςxx.
2. (ςxy ↔ ςyx).
3. In general, ςxy & ςzy does not imply ςxz. But ¬ςxz is more likely if a bit of

frequentism is assumed.
4. In general, ςxy � ςxuyu and ςxuyu

� ςxy.
5. (x · y = 0 −→ ¬ςxy).
6. (Pxy −→ ςxy).

Theorem 209 In the context of 205, if βxy 
= 0 then ςxy, but the converse need
not hold. In classical rough sets, the converse holds as well.

Proof If βxy 
= 0, then it follows that xl ∩ yl 
= ∅ under the assumptions. If it is
assumed that xl ⊆ yuc ∨ yl ⊆ xuc, then in each of the three cases a contradiction
happens. So the first part of the result follows.

In the classical case, if xl ⊆ yuc is not empty, then it should be a union
of successor neighborhoods and similarly for yl ⊆ xuc. These two parts should
necessarily be common to xl and yl . So the converse holds for classical rough sets.
The proof does not work for PRAX and the reasons for failure have been made
clear. ��

For a comparison of these concepts of dependence with those in probability
theories, the reader is referred to the research papers [99, 101] by the present author.

8.5 Dependency Semantics of PRAX

Dependency based semantics are developed in at least two ways in this section.
The internalization based semantics is essentially about adjoining predicates to
the Nelson algebra corresponding to Rw(S). The cumulation based semantics is
essentially about cumulating both the semantics of R(S), adjusting operations and
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adjoining predicates. Broader dependency based predicates are used in this case, but
the value of the method is in fusion of the methodologies.

The central blocks of development of the cumulation based dependency seman-
tics are the following:

• Take R(S) ∪ Rw(S) as the universal set of the intended partial/total algebraic
system.

• Use a one point completion of τ to distinguish between elements of Rw(S) \
R(S) and those in R(S).

• Extend the idea of operational dependency to pairs of sets.
• Extend operations of aggregation, commonality and dual suitably.
• Interpret semantic dependence?

The first step is obvious, but involves elimination of other potential sets arising
from the properties of the map τ .

One Point Completion

Since R ⊆ Rw and Rw is transitive, so

Proposition 210

α ∈ R(S) ∩Rw(S) if and only if τ (α) = α.

Adjoin an element 0 to R(S) ∪ Rw(S) to form R∗(S) and extend τ (interpreted
as a partial operation) to τ as follows:

τ (α) =
{
τ (α) if α ∈ R(S),

0 if α /∈ R(S).

Note that this operation suffices to distinguish between elements common to R(S)

and Rw(S), and those exclusively in R(S) and not in Rw(S).

Dependency on Pairs

It is possible to consider all dependencies relative to the Nelson algebra or R(S). In
the proposed approach the former is considered first towards avoiding references to
the latter.

Definition 211 By the paired infimal degree of dependence β+iτ1τ2ν1ν2
of α on β will

be defined as

(βiτ1ν1(e1α, e1β), βiτ2ν2(e2α, e2β)).
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Here the infimums involved are the largest ν1(S) and ν2(S) elements contained in
the aggregation and the ejα is the j -th component of α.

The following well defined specialization with τ1(S) = τ2(S) = Gw(S), ν1 =
δlw(S) and ν2 = Γuw(S) will also be of interest. For specializing the dependencies
between a element in R(S) and its image in Rw(S), it suffices to define:

Definition 212 Under the above assumptions, by the relative semantic dependence
*(α) of α ∈ R(S), will be meant

*(α) = β+i (α, τ (α)).

The idea of relative semantic dependence refers to elements in R(S) and it can
be reinterpreted as a relation on Rw(S).

Internalization Based Semantics

Definition 213 By the */σ -semantic dependences *(α), σ(α) of α ∈ R(S), will
be meant *(α) = β+i (α, τ (α)) and

σ(α) = β+i (α, ((ϕ(e1α) \ e1α)
l, (ϕ(e2α) \ e1α)

u))

respectively. Such relations are optional in the internalization process.
A relation Υ on Rw(S) will be said to be a relsem-relation if and only if

Υ τ(α)γ ↔ (∃β ∈ τAτ (α)) γ = *(β).

Note that, τ (α) = τ (β) by definition of τA.

Through the above definitions the following internalized approximate definition
has been arrived at:

Definition 214 By an Approximate Proto Vague Semantics of a PRAX S will be
meant an algebraic system of the form

P(S) = 〈Rw(S), Υ∨,∧, c,⊥,5〉 ,

with 〈Rw(S), ∨w,∧w, c,⊥,5〉 being a Nelson algebra over an algebraic lattice
and Υ being as above.

Theorem 215 Υ has the following properties:

α = τ (α) −→ Υαα.

Υ αγ −→ γ ∧w α = γ.
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Υαγ &Υ γα −→ α = γ.

Υ⊥⊥&Υ55.
Υ αγ &Υβγ −→ Υ (α ∨w β)γ.

Proof

• If α = τ (α), then α = *(α) = β+i (α, τ (α)). So Υ αα.
• If Υ αγ , then it follows from the definition of β+i , that the components of gamma

are respectively included in those of α. So γ ∧ α = γ .
• Follows from the previous.
• Proof is easy.
• From the premise we have (∃μ ∈ τAτ (α)) γ = *(μ) and (∃ν ∈ τAτ (β)) γ =

*(ν). This yields (∃λ ∈ τAτ (α ∨w β)) γ = *(λ) as can be checked from the
components.

��
Υτ(α) = {γ ; Υ τ(α)γ } is the approximate reflection of the set of τ -equivalent

elements in R(S) identified by their dependence degree. In the approximate seman-
tics aggregation and commonality are not lost track of as the above theorem shows.
For a falls-down semantics, the natural candidates include the ones corresponding
to largest equivalence or the largest semi-transitive contained in R. The latter will
appear in a separate paper. For the former, the general technique (using σ(α))
extends to PRAX as follows:

Definition 216

• Define a map from set of neighborhoods to l-definite elements
∫
([x]o) =

∪y∈[x]o[y] and extend it to images of lo, uo via,

∮
(Alo) = ∪[y]o⊆Alo

∫
([y]o).

• Extend this to a map � : Ro(S) �→ R(S) via �(α) = (
∮
(e1α),

∮
(e2α)).

• Define Παν on Ro(S) if and only if (∃γ ∈ �
A
� (α)) β+i (α, γ ) = ν. Let

Πα = {ν ;Παν}.
• By a Direct Falls Down semantics of PRAX, will be meant an algebraic system

of the form

I(S) = 〈Ro(S), Π,∨,∧, c,⊥,5〉 ,

with 〈Ro(S), ∨o,∧o,→, c,⊥,5〉 being a semi-simple Nelson algebra [124].
• The falls down semantics determines a cover I∗(S) = {Πα ; α ∈ Ro(S)}
Theorem 217 In the above context, all of the following hold:

• Παα.
• (Παμ&Πμα −→ α = μ).
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• (Παγ −→ γ ⊆ α). The converse is false.
• α 
= ⊥&Παγ &Παμ −→ β+i (γ , μ) 
= ⊥.
• μ ∈ Πα &μ ⊆ ν ⊆ α −→ ν ∈ Πα.

The theorems mean that a purely order theoretic representation theorem is not
possible for the falls down semantics, but other possibilities remain open.

Cumulation Based Semantics

The idea of cumulation is correctly a way of enhancing the original semantics
based on proto-vagueness algebras with the Nelson algebraic semantics and the
operational dependence. This is defined for a central problem relating to the
underlying semantic domains.

Definition 218 By a cumulative proto-vague algebra will be meant a partial algebra
of the form

C(S) = 〈R∗(S), tau, ⊕,�,⊗, †,⊥,5〉 .

Problem:
When can the cumulation based semantics be deduced from (that is the extra

operations can be defined from the original ones) within a full proto-vagueness
algebra?

9 Connections with Non-monotonic Logic

The representation of rough objects in a PRAX has important connections with non-
monotonic operators. This is considered in the present section

It has already been shown in the previous section that the representation of
rough objects by definite objects is not possible in a relatively standard way in a
PRAX. So it is important to look at possibilities based on other types of derived
approximations. This problem was solved to an extent and connections with key
properties of non-monotonic reasoning have been established in [99] by the present
author.

Definition 219 If x ∈ ℘(S), then

• Let Πo
♥(x) = {y ; x ⊆ y & xl = yl& yu ⊆ xuu}.

• Form the set of maximal elements Π♥(x) of Πo
♥(x) with respect to the inclusion

order.
• Select a unique element χ(Π♥(x)) through a fixed choice function χ .
• Form (χ(Π♥(x)))u.
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• x♥χ = (χ(Π♥(x)))u will be said to be the almost upper approximation of x

relative χ .
• x♥χ will be abbreviated by x♥ for fixed χ .

The choice function is be said to be regular if and only if (∀x, y) (x ⊆ y & xl =
yl −→ χ(Π♥(x)) = χ(Π♥(y))). Regularity will be assumed unless specified
otherwise in what follows.

Definition 220 If x ∈ ℘(S), then

• Let Πo♦(x) = {y ; x ⊆ y & xl = yl}.
• Form the set of maximal elements Π♦(x) of Πo♦(x) with respect to the inclusion

order.
• Select a unique element χ(Π♦(x)) through a fixed choice function χ .
• x♦χ = χ(Π♦(x)) will be said to be the lower limiter of x relative χ .
• x♦χ will be abbreviated by x♦ for fixed χ .

Definition 221 If x ∈ ℘(S), then

• Let Πo
� (x) = {y ; y ⊆ x & xu = yu}.

• Form the set of maximal elements Π�(x) of Πo
� (x) with respect to the inclusion

order.
• Select a unique element ξ(Π�(x)) through a fixed choice function ξ .
• x�ξ = ξ(Π�(x)) will be said to be the upper limiter of x relative χ .
• x�ξ will be abbreviated by x� for fixed ξ .

Proposition 222 In the context of the above definition, the almost upper approxi-
mation satisfies all of the following:

(∀x) x ⊆ x♥ (Inclusion)

(∀x) x♥ ⊆ x♥♥ (Non-Idempotence)

(∀x y) (x ⊆ y ⊆ x♥ −→ x♥ ⊆ y♥) (Cautious Monotony)

(∀x) xu ⊆ x♥ (Supra Pseudo Classicality)

S♥ = S (Top.)

Proof

• Inclusion: Follows from the construction. If one element granules or successor
neighborhoods are included in x, then these must be in the lower approximation.
If a granule y is not included in x, but intersects it in f , then it is possible to
include f in each of Π♥(x). So inclusion follows.

• Non-Idempotence: The reverse inclusion does not happen as xu ⊆ xuu.
• Cautious monotony: It is clear that monotony can fail in general because of the

choice aspect, but if x ⊆ y ⊆ x♥ holds, then xl ⊆ yl and y♥ has to be equal to
x♥ or include more granules because of regularity of the choice function.
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• Supra Pseudo Classicality: The adjective pseudo is used because u is not
a classical consequence operator. In the construction of x♥, the selection is
from super-sets of xl that can generate maximal upper approximations. Upper
approximation of the selected sets are done next. So that includes xu in general.

��
The conditions have been named in relation to the standard terminology used

in non-monotonic reasoning. The upper approximation operator u is similar to
classical consequence operator, but lacks idempotence. So the fourth property has
been termed as supra pseudo classicality as opposed to supra classicality. This
means the present domain of reasoning is more general than that of [80].

Theorem 223 In the context of 222, the following additional properties hold:

(∀x) x♥ ⊆ xu♥ (Sub Left Absorption)

(∀x) x♥ ⊆ x♥u (Sub Right Absorption)

�(∀x, y) (xu = yu
� x♥ = y♥) (No Left Logical Equivalence)

�(∀x, y) (x♥ = y♥ � xl = yl) (No Jump Equivalence)

�(∀x, y, z) (x ⊆ y♥& z ⊆ xu
� z ⊆ y♥) (No Weakening)

�(∀x, y) (x ⊆ y ⊆ xu
� x♥ = y♥) (No subclassical cumulativity)

(∀x, y) x♥ ∩ y♥ ⊆ (xu ∩ yu)♥ (Distributivity)

(∀x, y, z) (x ∪ z)♥ ∩ (y ∪ z)♥ ⊆ (z ∪ (xu ∩ yu))♥ (Weak Distributivity)

(∀x, y, z) (x ∪ y)♥ ∩ (x ∪ z)♥ ⊆ (x ∪ (y ⊕ z))♥
(Disjunction in Antecedent)

(∀x, y) (x ∪ y)♥ ∩ (x ∪ yc)♥ ⊆ x♥ (Proof by Cases)

If y ⊆ (x ∪ z)♥, then x $⇒ y ⊆ z♥ (Conditionalization.)

Proof

Sub Left Absorption For any x, x♥ is the upper approximation of a maximal
subset y containing x such that xl = yl and xu♥ is the upper approximation
of a maximal subset z containing xu such that xul = xu = zl . Since, xl ⊆ xul

and x ⊆ xu, so x♥ ⊆ xu♥ follows.
Sub Right Absorption Follows from the properties of u.
No Left Logical Equivalence Two subsets x, y can have unequal lower approxi-

mations and equal upper approximations and so the implication does not hold in
general. � should be treated as an abbreviation for in general.

No Jump Equivalence The reason is similar to that of the previous negative result.
No weakening In general if x ⊆ y♥& z ⊆ xu, then it is possible that xu ⊆ y♥ or

y♥ ⊆ xu. So one cannot be sure about z ⊆ y♥.
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No Subclassical Cumulativity If x ⊆ y ⊆ xu, then xl ⊆ yl in general and so
elements of Π♥(x) may be included in Π♥(y), the two may be unequal and it
may not be possible to use a uniform choice function on them. So it need not
happen that x♥ = y♥.

Distributivity If z ∈ x♥ ∩ y♥, then z ∈ (χ(Π♥(x)))u and z ∈ (χ(Π♥(y)))u. So
if z ∈ xl and z ∈ yl , then z ∈ (xu ∩ yu)♥. Since in general, (a ∩ b)u ⊆ au ∩ bu

and (au ∩ bu)l = (au ∩ bu), the required inclusion follows.

(∀x, y, z) (x ∪ z)♥ ∩ (y ∪ z)♥ ⊆ (z ∪ (xu ∩ yu))♥ (Weak Distributivity)

(∀x, y, z) (x ∪ y)♥ ∩ (x ∪ z)♥ ⊆ (x ∪ (y ⊕ z))♥
(Disjunction in Antecedent)

(∀x, y) (x ∪ y)♥ ∩ (x ∪ yc)♥ ⊆ x♥ (Proof by Cases)

If y ⊆ (x ∪ z)♥, then x $⇒ y ⊆ z♥ (Conditionalization.)
��

Proposition 224

(∀x, y)(x♦ = y♦ −→ xl = yl;)

(∀x, y)(x� = y� −→ xu = yu.)

Discussion:
In non monotonic reasoning, if C is any consequence operator : ℘(S) �−→ ℘(S),
then the following named properties of crucial importance in semantics (in whatever
sense, [80, 81]):

A ⊆ B ⊆ C(A) −→ C(B) ⊆ C(A) (Cut)

A ⊆ B ⊆ C(A) −→ C(B) = C(A) (Cumulativity)

x ⊆ y ⊆ xu −→ x♥ = y♥ (subclassical subcumulativity)

Proposition 225 In the context of the above definition, the lower limiter satisfies
all of the following:

(∀x) x ⊆ x♦ (Inclusion)

(∀x) x♦♦ = x♦ (Idempotence)

(∀x y) (x ⊆ y ⊆ x♦ −→ x♦ = y♦) (Cumulativity)

(∀x) xu ⊆ x♦ (Upper Inclusion)

S♦ = S (Top)

(∀x y) (x ⊆ y ⊆ x♦ −→ x♦ = y♦) (Cumulativity)
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The above proposition means that the upper limiter corresponds to ways of
reasoning in a stable way in the sense that the aggregation of conclusions does
not affect inferential power or cut-like amplification.

A limited concrete representation theorem for operators like ♥ in special cases
and ♦ is proved next . The representation theorem is valid for similar operators
in non-monotonic reasoning. It permits us to identify cover based formulations of
PRAX.

Definition 226 A collection of sets S will be said to be a closure system of a type
as per the following conditions:

(∀H ⊆ S) ∩H ∈ S. (Closure System)

(∀H ⊆ S) (∩H)u ∈ S. (U-Closure System)

(∀H ⊆ S) (∩H)l ∈ S. (L-Closure System)

(∀H ⊆ S) (∩H)l , (∩H)u ∈ S. (LU-Closure System)

(∃0,5 ∈ S)(∀X ∈ S) 0 ⊆ X ⊆ 5 . (Bounded)

Proposition 227 In a PRAX S, the set U(S) = {xu; x ∈ ℘(S)} is not a bounded
U-closure system.

Proposition 228

(∀x) x♥u ⊆ xu♥.

Proof Because xl ⊆ xu, an evaluation of possible granules involved in the
construction of x♥u and xu♥ proves the result. ��
Theorem 229 In a PRAX S, the set ♥(S) = {x♥; x ∈ ℘(S)} is a bounded LU-
closure system if the choice operation is regular.

Proof

• x♥ is the upper approximation of a specific y containing x that is maximal subject
to xl = yl .

• x♥u is the upper approximation of the upper approximation of a specific y

containing x that is maximal subject to xl = yl and its upper approximation.
• Clearly,

(χ(Π♥(x)) ∩ χ(Π♥(y)))u ⊆ (χ(Π♥(x)))u ∩ (χ(Π♥(y)))u.

• The expression on the right of the inclusion is obviously a union of granules in
the PRAX.
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• From a constructive bottom-up perspective, let p1, p2, . . . ps be a collection of
subsets of x \ xl such that

∪pi ⊆ x \ xl

(∃z) pu
i = [z]

∪i 
=j (pi ∩ pj ) is minimal on all such collections.

• Now add subsets k(pi) of xuu \ xc to x to form the required maximal subset.
• For the lower approximation part, it suffices to use the preservation of l by ∩.

��
Proposition 230 For each x ∈ ℘(S) let x� = (x♥)u, then the following
properties hold:

(∀x) x ⊆ x�.

(∀x) x�� = x�.

Proof x♥u♥u = x♥u. Because if a part of a class that retains the equality of lower
approximations could be added, then that should be adjoinable in the construction
of x♥ as well. ��

The following limited representation theorem can be useful for connections with
covers.

Definition 231 Let X be a set and C : ℘(X) �−→ ℘(X) a map satisfying all the
following conditions:

(∀A ∈ ℘(S))A ⊆ C(A) (Inclusion)

(∀A ∈ ℘(S)) C(C(A)) = C(A) (Idempotence)

(∀A,B ∈ ℘(S)) (A ⊆ B ⊆ C(A) −→ C(A) ⊆ C(B)) (Cautious Monotony,)

then C will said to be a cautious closure operator (CCO) on X.

Definition 232 Let H = 〈H, @〉, be a partially ordered set over a set H . A subset
K of the set of order ideals F(H) of H will be said to be relevant for a subset
B ⊆ H (in symbols ρ(K, H)) if and only if the following hold:

(∃G ∈ K)(∀P ∈ K) P ⊆ G.

(∀P ∈ K) P ⊆ B.

For any L ⊆ F(H), if K ⊆ L, then

(∃5 ∈ L)(∀Y ∈ L) Y ⊆ 5 
= H & ∩ L = ∩K.
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Definition 233 In the context of Def.232, a map j : ℘(L) �−→ ℘(L) defined as
below will be said to be safe

j (Z) =
{∩K, if all relevant collections for Z have same intersection.
∩{α : Z ⊆ α ∈ F(H)}, else.

Proposition 234 A safe map j is a cautious closure operator.

Proof The verification of idempotence and inclusion is direct.

• For A,B ∈ ℘(L), if it is the case that A ⊆ B ⊆ j (A),
• then either A ⊆ B ⊆ j (B) ⊆ j (A) or A ⊆ B ⊆ j (A) ⊆ j (B) must be true.
• If the former inclusions hold, then it is necessary that j (A) = j (B).
• If j (B) is defined as the intersection of order ideals and j (A) as that of relevant

subcollections, then it is necessary that j (A) ⊆ j (B). So cautious monotony
holds. It can also be checked that monotonicity fails in this kind of situation.

��
Theorem 235 On every Boolean ordered unary algebra of the form

H = 〈℘(H),⊆, C〉 ,

there exists a partial order ≤ on K such that 〈℘(K),⊆, j 〉 is isomorphic to H.

10 Cover-Based Rough Set Theory

Cover based rough sets can be traced to [127, 138, 139, 141]. Many approximations
in the frameworks have been improved considerably in recent years in multiple
directions [38, 91, 144, 174, 177, 180]. The neighborhood approach is also a cover
based one with some connections to relations [165]. Associated dualities may also
be found in the chapter on duality in this volume [107]. The concept of granules
used in [174] is very restricted. This and the subsystem based approach considered
in the same paper and earlier ones fall under the concept of granules used by present
author [91].

A number of studies on point-wise cover based rough sets are known in a classi-
cal semantic domain. These have been surveyed to some extent in [38, 144, 174] and
for different reasons. In [162], some of the non dual approximations are considered.
All of these considerations have been relative to the classical semantic domain for
assessment of abstract properties and connections with relation and neighborhood
based rough sets. In [91], granular properties have been explored for six types
of cover based approaches. Granular approximations have also been explored in
[38, 174].

As far as algebraic semantics is concerned, the restriction to the classical
semantic domain remains a problem. In other words, the semantics is not exclusively
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concerned with rough objects. Only in some cases, does cover based rough sets
reduce to relation based rough sets in perfectly equivalent terms. Some connections
happen through the algebraic models of modal logics associated. But these are in
the classical semantic domain.

Much variation in the notation and terminology used in cover based rough sets
can be found. This is also rectified for easy comprehension below and builds on
earlier efforts of the present author. Superscript style of notation is strictly preferred
for denoting approximations. ’l, u’ stand for lower and upper approximations and
anything else following those signify a type.

If S is a cover of the set S, then the neighborhood of x ∈ S is defined via,

nbd(x) =
⋂
{K : x ∈ K ∈ S} (Cover:Nbd)

The minimal description of an element x ∈ S is defined to be the collection

md(x) = {A : x ∈ A ∈ S, ∀B(x ∈ B ⊆ A→ A = B)} (Cover:md)

This is clearly the set of minimal subsets of S that contain the element x in question.
The maximal description of an element x ∈ S is defined to be the collection:

MD(x) = {A : x ∈ A ∈ S, (∀B ∈ S)(x ∈ B →∼ (A ⊂ B))} (Cover:MD)

The indiscernibility (or friends) of an element x ∈ S is defined to be

Fr(x) =
⋃
{K : x ∈ K ∈ S} (Cover:FR)

An element K ∈ S is said to be reducible if and only if

(∀x ∈ K)K 
= md(x) (Cover:Red)

The collection {nbd(x) : x ∈ S} will be denoted by N. The cover obtained by the
removal of all reducible elements is called a covering reduct.

If every element K of a cover S contains an element x ∈ S that satisfies

(∀Z ∈ S) (x ∈ Z −→ K ⊆ Z)

then S and x are said to be a representative cover and element respectively.
A covering S is said to be unary if and only if (∀x ∈ S) #(md(x)) = 1. This

condition is equivalent to (∀K1,K2 ∈ S)(∃C1, . . . Cn ∈ S)K1 ∩K2 = ∪n
1Ci . For a

proof, see [181] and the chapter on duality in this volume [107].

Definition 236 The intersection closure of S, is denoted by Cl∩(S), is the least
subset of ℘(S) that contains S, S,∅, and is closed under set intersection. The
union closure of S, is denoted by Cl∪(S), is the least subset of ℘(S) that contains
S, S,∅, and is closed under set union. More generally if H and H are dual closure
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and closure systems contained in ℘(S), then subsystem based approximations of a
subset X ⊆ S are defined as below:

Xls+ =
⋃
{K : K ∈ H&K ⊆ X} (s+-lower)

Xus+ =
⋂
{K : K ∈ H&X ⊆ K} (s+-upper)

Theorem 237 ([172]) The approximations satisfy

• (∀X)Xls+ = ((Xc)us+)c
• (∀X)Xls+ ⊆ X ⊆ Xus+
• The subsystem based approximations are proper generalizations of classical

rough sets.

Proof If H = H, then the approximations coincide with those of classical rough
sets. ��

If S is any cover of S, then the relation RS induced by S is defined by

RSab↔ b ∈ nbda↔ b ∈ ∩md(a) (57)

Conversely, if R is a binary relation on S, then the covering C(R) induced by R

is taken to be {[x] : x ∈ S}.
The following result is proved in [181]

Theorem 238 In the context of the above definition

• RS is reflexive and transitive
• RS is not uniquely determined by S.
• C(RS) = S

The proof may be found in the chapter on duality in this volume [107].

Example 239 This abstract example is intended to illustrate the computation of
basic objects associated with covers on a set. Let S = {a, b, c, e, f, g, h, i, j },

K = {K1, K2, K3, K4, K5, K6,K7, K8, K9},

K1 = {a, b}, K2 = {a, c, e}, K3 = {b, f }, K4 = {j }, K5 = {f, g, h},

K6 = {i}, K7 = {f, g, j, a}, K8 = {f, g}, K9 = {a, j }.

The following table lists some of the popular granules or objects (Table 8):

Duality results relating to this section have been proved in the chapter on duality
in this volume [107].
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Table 8 Popular granules Element: x F r(x) Md(x) nbd(x)

a S \ {h, i} {K1,K2,K3} {a}
b {a, b, f } {K3} {b}
c {a, c, e} {K2} {a, c, e}
e {a, c, e} {K2} {a, c, e}
f S \ {c, e, i} {K3,K8} {f }
g {a, f, g, h, j} {K8} {f, g}
h {f, g, h} {K5} {f, g, h}
i {i} {K6} {i}
j {a, f, g, j} {K4} {j}

10.1 Suitable Granulations

In [91], it had been suggested by the present author that the best approach to
granulation in cover based rough sets is to is to associate an initial set of granules and
then refine them subsequently after suitable exploration. This approach can be useful
in some practical contexts. Usually a refinement can be expected to be generable
from the initial set through relatively simple set theoretic operations. In more
abstract situations, the main problem would be of representation and the results
in these situations would be the basis of possible abstract representation theorems.
The theorems proved below throw light on the fine structure of granularity in the
cover-based situations. The basic question that has been explored in this subsection
is the suitability of the current choice of granulation for the approximations that
have happened.

If X ⊆ S, then the covering lower approximation of type-1 ([12]) is defined by

Xl1 =
⋃
{K : K ∈ S&K ⊆ X} ()

Other key approximations of the cover based approach are [91]:

(i) Xu1+ = Xl1 ∪⋃{md(x) : x ∈ X} [12],
(ii) Xu2+ = ⋃{K : K ∈ S,K ∩X 
= ∅},

(iii) Xu3+ = ⋃{md(x) : x ∈ X},
(iv) Xu4+ = Xl1 ∪ {K : K ∩ (X \Xl1) 
= ∅},
(v) Xu5+ = Xl1 ∪⋃{nbd(x) : x ∈ X \Xl1},

(vi) Xu6+ = {x : nbd(x) ∩X 
= ∅},
(vii) Xl6+ = {x : nbd(x) ⊆ X}.

Further, the approximation Xu1∗ = Xl1 ∪ ⋃{md(x) : x ∈ X \ Xl1} is also
of interest. The sixth type of lower and upper approximations [165, 181] of a set
X are also written as X$ and X$. These are point-wise approximations that are not
granular. It can be shown that:
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Proposition 240 In the above context,

• md(x) is invariant under removal of reducible elements,
• (nbd(x))l6+ = nbd(x),
• nbd(x) ⊆ (nbd(x))6+.

The approximation operators u1+, . . . , u5+ (corresponding to first, ..., fifth
approximation operators used in [181] and references therein) are considered
with the lower approximation operator l1 in general. Some references for cover-
based rough sets include [56, 73, 88, 139, 143, 165, 177, 179, 181]. The relation
between cover-based rough sets and relation-based rough sets are considered in
[88, 181] and in some detail in the chapter on duality in this volume [107]. For
a cover to correspond to a tolerance, it is necessary and sufficient that the cover
be normal—a more general version of this result can be found in [27]. When such
reductions are possible, then good semantics in Meta-R perspective are possible.
The main results of [88], due to the present author, provide a more complicated
correspondence between covers and sets equipped with multiple relations or a
relation with additional operations. The full scope of the results are still under
investigation. So, in general, cover-based rough sets is more general than relation-
based rough sets. From the point of view of expression, equivalent statements
formulated in the former would be simpler than in the latter.

The following pairs of approximation operators have also been considered in
the literature (the notation of [143] has been streamlined; lp1, lm1 corresponds to
P 1, C1 respectively and so on).

Xlp1 = {x : Fr(x) ⊆ X},
Xup1 =

⋃
{K : K ∈ K, K ∩X 
= ∅},

Xlp2 =
⋃
{Fr(x); Fr(x) ⊆ X},

Xup2 = {z : (∀y)(z ∈ Fr(y)→ Fr(y) ∩X 
= ∅)},
Xlp3 = Xl1,

Xup3 = {y : ∀K ∈ K(y ∈ K → K ∩X 
= ∅)},
Xlp4,Xup4,

Xlm1 = Xl1 = Xlp3,

Xum1 = Xu2,

Xlm2 = Xl6+,

Xum2 = Xu6+,

Xlm3 = {x; (∃u)u ∈ nbd(x), nbd(u) ⊆ X},
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Xum3 = {x; (∀u)(u ∈ nbd(x)→ nbd(u) ∩X 
= ∅)},
Xlm4 = {x; (∀x)(x ∈ nbd(u)→ nbd(u) ⊆ X)},

Xum4 = Xu6+ = Xum2,

Xlm5 = {x; (∀u)(x ∈ nbd(u)→ u ∈ X)},
Xum5 =

⋃
{nbd(x); x ∈ X}.

Note that Xlp4,Xup4 are the same as the classical approximations with respect
to π(K)—the partition generated by the cover K.

Theorem 241 When the approximations are (lp1, up1) and with the collection of
granules being {Fr(x)}, all of MER, URA, UMER hold, but ACG, NO, LS do not
hold necessarily

Proof For an arbitrary subset X, X ⊆ Fr(x) for some x ∈ S and Xlp1 = Xup1 =
X would mean that Fr(x) = X as Fr(x) ⊆ Xup1 would be essential. So UMER
and the weaker condition MER holds. URA is obvious from the definitions. ��
Theorem 242 When the approximations are (lp2, up2) and with the collection of
granules being {Fr(x)}, all of MER, LMER, RA, LCG hold, but ACG, NO, LS do
not hold necessarily

Proof From the definition, it is clear that RA, LCG hold. If for an arbitrary subset
X, X ⊆ Fr(x) for some x ∈ S and Xlp2 = X = Xup2, then X is a union of some
granules of the form Fr(y). If x ∈ X, then it is obvious that X = Fr(x).

If x ∈ Fr(x) \ X and F(x) is an element of the underlying cover S, then again
it would follow that X = Fr(x). Finally x ∈ Fr(x) \ X and Fr(x) is a union of
elements of the cover intersecting X, results in a contradiction. So MER follows.

If for an arbitrary subset X, X ⊆ Fr(x) for some x ∈ S and Xlp2 = X and
x ∈ Fr(x) \X, then a contradiction happens. So LMER holds. ��
Theorem 243 When the approximations are (lp3, up3) and with the collection of
granules being K, all of MER, RA, ST, LCG, LU hold, but ACG, NO do not hold
necessarily.

Proof Both the lower and upper approximations of any subset of S is eventually
a union of elements K, so RA holds. Other properties follow from the definitions.
Counter examples are easy. ��
Theorem 244 When the approximations are (lp4, up4) and with the collection of
granules being π(K), all of RA, ACG, MER, AS, FU, NO, PS hold.

Proof With the given choice of granules, this is like the classical case. ��
Theorem 245 When the approximations are (lp4, up4) and with the collection of
granules being K, all of WRA, ACG, AS hold, while the rest may not.
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Proof WRA holds because elements of π(K) can be represented set theoretically
in terms of elements of K. Lower and upper approximations of elements of K are
simply unions of partitions of the elements induced by π(K). ��
Theorem 246 When the approximations are (lm1, um1) and with the collection of
granules being K, all of WRA, LS, LCG hold, but RA, ST, LMER do not hold
necessarily. For WRA, complementation is necessary.

Proof If K has an element properly included in another, then LMER will fail. If
complementation is also permitted, then WRA will hold. Obviously RA does not
hold. Note the contrast with the pair (lp3, up3) with the same granulation. ��
Theorem 247 When the approximations are (lm2, um2) and with the collection of
granules being N, all of LCG, LRA, ST, MER holds, but RA, ACG, LMER, NO
do not hold necessarily.

Proof If y ∈ nbd(x) for any two x, y ∈ S, then nbd(y) ⊆ nbd(x) and it is possible
that x /∈ nbd(y), but it is necessary that x ∈ nbd(x). So (nbd(x))lm2 = nbd(x), but
(nbd(x))um2 need not equal nbd(x). LRA will hold as the lower approximation
will be a union of neighborhoods, but this need happen in case of the upper
approximation. NO is obviously false. The upper approximation of a neighborhood
can be a larger neighborhood of a different point. So ACG will not hold in general.
MER can be easily checked. ��
Theorem 248 When the approximations are (l6+, u6+) and with the collection of
granules being N, all of LCG, LRA, ST, MER holds, but RA, ACG, LMER, NO
do not hold necessarily.

Proof Same as above. ��
Theorem 249 When the approximations are (l1, u1+) and with the collection of
granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily.

Proof RA holds as all approximations are unions of granules. For any granule K ,
Kl1 = K and so Ku1+ = Kl = K . So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au1+ = A, but A 
= B. So MER, LMER cannot hold in
general. ��
Theorem 250 When the approximations are (l1, u2+) and with the collection of
granules being K, all of ACG, RA, FU, ST holds, but MER, LMER, NO do not
hold necessarily.

Proof RA holds as all approximations are unions of granules. For any granule K ,
Kl1 = K and so Ku1+ = Kl = K . So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au1+ = A, but A 
= B. So MER, LMER cannot hold in
general. If a granule K is included in a subset X of S, then it will be included
in the latter’s lower approximation. If K intersects another subset, then the upper
approximation of the set will include K . So ST holds. ��
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Theorem 251 When the approximations are (l1, u3+) and with the collection of
granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily.

Proof RA holds as all approximations are unions of granules. For any granule K ,
Kl1 = K and so Ku1+ = Kl = K . So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au3+ = A, but A 
= B. So MER, LMER cannot hold in
general. The union of any two granules is a definite element, so FU holds. ��
Theorem 252 When the approximations are (l1, u4+) and with the collection of
granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily

Proof RA holds as all approximations are unions of granules. For any granule K ,
Kl1 = K and so Ku1+ = Kl = K . So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au3+ = A, but A 
= B. So MER, LMER cannot hold in
general. The union of any two granules is a definite element, so FU holds. ��
Theorem 253 When the approximations are (l1, u5+) and with the collection of
granules being K, all of ACG, RA, FU, LS holds, but MER, LMER, NO do not
hold necessarily.

Proof RA holds as all approximations are unions of granules. For any granule K ,
Kl1 = K and so Ku1+ = Kl = K . So ACG holds. If for two granules A,B,
A ⊂ B, then Al1 = Au3+ = A, but A 
= B. So MER, LMER cannot hold in
general. The union of any two granules is a definite element, so FU holds. ��

In cover-based rough sets, different approximations are defined with the help of
a determinate collection of subsets. These subsets satisfy the properties WRA, LS
and FU and are therefore admissible granules. But they do not in general have many
of the nicer properties of granules in relation to the approximations. However, at a
later stage it may be possible to refine these and construct a better set of granules
(see [88], for example) for the same approximations. Similar process of refinement
can be used in other types of rough sets as well. For these reasons, the former are
referred to as initial granules and the latter as relatively refined granules. It may
happen that more closely related approximations may as well be formed by such
process.

10.1.1 AUAI Approach

In [56], a theory of generalized rough sets based on covers of subsets of a given set
S is considered. Let S be a set and K = {Ki}n1 be a collection of subsets of it. If
X ⊆ S, then consider the sets (with K0 = ∅, Kn+1 = S)

(i) Xl1 = ⋃{Ki : Ki ⊆ X, i ∈ {0, 1, ..., n}}

(ii) Xl2 = ⋃{∩(S \Ki) : ∩I (S \ Ki) ⊆ X, I ⊆ {1, ..., n+ 1}}
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(iii) Xu1 = ⋂{∪i∈IKi : X,⊆ ∪Ki, I ⊆ {1, ..., n + 1}}

(iv) Xu2 = ⋂{S \ Ki : X,⊆ S \ Ki, i ∈ {0, ..., n}}
The pair (Xl1, Xu1) is called a AU -rough set by union, while (Xl2, Xu2) a AI -

rough set by intersection (in the notation of [56] these are

(
F∪∗ (X), F∗∪(X)

)
and
(
F∩∗ (X), F∗∩(X)

)

respectively).

Theorem 254 The following are true :

(i) Xl1 ⊆ X ⊆ Xu1

(ii) Xl2 ⊆ X ⊆ Xu2

(iii) ∅l1 = ∅l2 = ∅
(iv) (∪K = S −→ Su1 = Su2 = S)

(v) (∪K = S −→ ∅u2 = ∅, Sl1 = S)

(vi) (∩K = ∅ −→ ∅u1 = ∅, Sl2 = S)

(vii) (X ∩ Y )l1 ⊆ Xl1 ∩ Y l1, (X ∩ Y )l2 = Xl2 ∩ Y l2

(viii) (X ∪ Y )u1 = Xu1 ∪ Yu1, Xu2 ∪ Yu2 ⊆ (X ∪ Y )u2

(ix) (X ⊆ Y −→ Xl1 ⊆ Y l1, Xl2 ⊆ Y l2)

(x) If K is pairwise disjoint then (X ∩ Y )l1 = Xl1 ∩ Y l1, (X ∪ Y )u2 =
Xu2 ∪ Yu2

(xi) (X ⊆ Y −→ Xu1 ⊆ Yu1, Xu2 ⊆ Yu2)

(xii) Xl1 ∪ Y l1 ⊆ (X ∪ Y )l1

(xiii) Xl2 ∪ Y l2 ⊆ (X ∪ Y )l2

(xiv) (X ∩ Y )u1 ⊆ Xu1 ∩ Yu1

(xv) (X ∩ Y )u2 ⊆ Xu2 ∩ Yu2

(xvi) (S \ X)l1 = S \ Xu2

(xvii) (S \ X)l2 = S \ Xu1

(xviii) (S \ X)u1 = S \ Xl2

(xix) (S \ X)u2 = S \ Xl1

(xx) (Xl1)l1 = Xl1, (Xl2)l2 = Xl2

(xxi) (Xu1)u1 = Xu1, (Xu2)u2 = Xu2

(xxii) (Xl1)u1 = Xl1, (Xu2)l2 = Xu2

(xxiii) Xl2 ⊆ (Xl2)u2, (Xu1)l1 ⊆ Xu1

(xxiv) (K∩j (X))u2 = K∩j (X), j = 1, 2, ..., t1
(xxv) (K∪j (X))l1 = K∪j (X), j = 1, 2, ..., t2

In this, (K∪j (X)) is the minimal union for j being in the indicated range and

(K∩j (X)) is the maximal intersection.
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Proof The properties are essentially set-theoretical as shown in the following
proofs:

(i) Xl1 ⊆ X ⊆ Xu1. Suppose X is non-empty. If x ∈ Xl1, then x is in some of
those Ki) for which Ki) ⊆ X holds. So x ∈ X as well.

If x ∈ X, x is in all those unions of the form ∪i∈I Ki that include X for
some I ⊆ {0, 1, . . . , n}. So x ∈ Xu1.

(ii) If X is nonempty and x ∈ Xl2, then x is in some of the intersections of
complements of Kis that are contained in X. So Xl2 ⊆ X.

If x ∈ X, then if x is in a Ki that is contained in X, then there must exist
a Ki for some i ∈ {0, 1 . . . n} such that its complement contains X. So also
if x is in a Ki that is not contained in X. When x is in no Ki , then x is in
every complement of Kis. So we have X ⊆ Xu2.

(iii) This follows from the definition.
(iv) If ∪K = S then Su1 = ⋂{∪Ki : S = ∪Ki} = S. Su2 = ⋂{S \ Ki :

S = S \ Ki, i ∈ {0, 1, . . . n}} = S in the situation too.
(v) If ∪K = S, then ∅u2 = ⋂{S \ Ki : i ∈ {0, . . . , n} = ∅, while Sl1 =⋃{Ki : Ki ⊆ S} = ∪K = S.

(vi) If ∩K = ∅, then ∅u1 = ⋂{Ki : i ∈ {1, 2, . . . , n}} = ∅ and Sl2 =⋃{∩I (S \ Ki) : I ⊆ {1, 2, . . . , n+ 1}} = S.
(vii) If x ∈ (X ∩ Y )l1 then x is in some of the Ki ⊆ (X ∩ Y ), but these will be

subsets of both X and Y respectively. So x will be in Xl1 ∩ Y l1.
For the second part it is clear that Xl2 ∩ Y l2 ⊆ (X ∩ Y )l2. Suppose that

the reverse inclusion is false. Then there must exist x ∈ (X ∩ Y )l2 such that
x /∈ Xl2 and x /∈ Y l2. The latter means that there exist no intersection of
complements of Kis that are included in X and Y , but are included in X ∩ Y .
This obvious contradiction proves that (X ∩ Y )l2 = Xl2 ∩ Y l2.

(viii) From the definitions it is clear that Xu1 ∪ Yu1 will be a subset of (X ∪ Y )u1

as the latter is the intersections of the unions of Kis that contain (X ∪ Y ).
If x ∈ (X ∪ Y )u1 then x is in all of the unions of Kis that contain (X ∪ Y ).
Now each of these unions will contain X and Y respectively. If x is in X or
Y , then there is nothing to prove. So suppose that x is in neither. Now if x is
neither in Xu1 and Y 2, then we will be able to form a collection of Ki that
contains X ∪ Y , contradicting our original assumption that x ∈ (X ∪ Y )u1.

(ix) Let X ⊂ Y and let Ki ⊆ X, then Ki is also included in Y . The union of all
such Ki ’s is the corresponding lower approximation. So Xl1 ⊆ Y l1.

Again if X ⊂ Y and if ∩i∈I S \ Ki ⊆ X, then it is a subset of Y as well,
in fact some subsets of I may also have the property for Y and not for X.
And as the unions of these intersections is the second lower approximation,
so Xl2 ⊆ Y l2.

(x) (X ∩ Y )l1 ⊆ Xl1 ∩ Y l1 has already been proved. Let x ∈ Xl1 ∩ Y l1. As the
constituent Ki ’s in Xl1 and Y l1 are respectively disjoint, suppose x ∈ Kj

for a fixed j . If x is not in X ∩ Y , then an obvious contradiction to the
existence of such a Kj becomes evident. Therefore Xl1 ∩ Y l1 ⊆ (X ∩ Y )l1

follows.
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(xi) Let X ⊂ Y and let Y ⊆ ∪i∈IKi for some I ⊆ {1, 2, . . . n + 1} then
X ⊆ ∪i∈IKi . Xu1 and Yu1 are formed by the intersection of such unions of
Ki ’s. So Xu1 ⊆ Yu1.

Again if X ⊂ Y , and Y ⊆ S \ Ki for some i, then X will also be a
subset of the same. But there may exist some Kj for which, X is a subset of
it’s complement and Y is not so. So Xu2 ⊆ Yu2.

(xii) If x ∈ Xl1 ∪ Y l1, then x is in at least one of the Ki’s contained in Xl1 or
Y l1. But that Ki must be contained in X ∪ Y and therefore in (X ∪ Y )l1 as
well. So Xl1 ∪ Y l1 ⊆ (X ∪ Y )l1.

(xiii) If x ∈ Xl2 ∪ Y l2, then x is in at least one of the intersections of the form
∩i∈I (S \ Ki) that is included in X or Y . Therefore x is in X ∪ Y . But
∩i∈I (S \ Ki) ⊆ X ∪ Y . So Xl2 ∪ Y l2 ⊆ (X ∪ Y )l2.

(xiv) The intersection of the unions of Kis that contain X and Y respectively will
intersect in a set containing (X ∩ Y )u1 (as a larger number of unions of Kis
will contain (X ∩ Y )u1 and as their intersection is precisely (X ∩ Y )u1).

(xv) If x ∈ (X ∩ Y )u2, then x is present in all those S \ Ki that contain X ∩ Y .
It is not present in any of those Kis that are included in S \ (X ∩ Y ) =
(S \ X) ∪ (S \ Y ). Suppose x is not in (Xu2 ∩ Yu2, then in each of the three
cases we have a contradiction to our original assumption. So (X ∩ Y )u2 ⊆
Xu2 ∩ Yu2.

(xvi) (S \ X)l1 = ⋃{Ki : Ki ⊆ S \ X}. Now this is the same as
⋃{Ki : X ⊆

S \ Ki} = S \ Xu2

(xvii) (S \ X)l2 = S \ Xu1 is proved in the same way as the above.
(xviii) (S \ X)u1 = S \ Xl2 is proved in the same way as the above.

(xix) (S \ X)u2 = S \ Xl1 is proved in the same way as the above.

The other statements are easy to prove through standard set-theoretic arguments.
��

Theorem 255 In AUAI rough sets [56, 85], with the collection of granules being K

and the approximation operators being (l1, l2, u1 and u2), WRA, LS, SCG, LU,
IMER holds, but ACG, RA, SRA, MER do not hold in general.

Proof WRA holds if the complement, union and intersection operations are used in
the construction of terms in the WRA condition. ACG does not hold as the elements
of K need not be crisp with respect to l2. Crispness holds with respect to l1, u1, so
SCG holds. MER need not hold as it is violated when a granule is properly included
in another. IMER holds as the pathology negates the premise. It can also be checked
by a direct argument. ��

From the definition of the approximations in AUAI and context, it should be clear
that all pairings of lower and upper approximations are sensible generalizations of
the classical context. In the following two of the four are considered. These pairs
do not behave well with respect to duality, but are more similar with respect to
representation in terms of granularity.
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Theorem 256 In AUAI rough sets, with the collection of granules being K and the
approximation operators being (l1, u1), WRA, ACG, ST, LU holds, but MER, NO,
FU, RA do not hold in general.

Theorem 257 In AUAI rough sets, with the collection of granules being K and the
two approximation operators being (l2, u2), WRA, ST holds, but ACG, MER, RA,
NO do not hold in general.

Proof If K ∈ K, K ⊆ X (X being any subset of S) and y ∈ Kl2, then y must be
in at least one intersection of the sets of the form S \ Ki (for i ∈ I0, say) and so it
should be in each of these S \ Ki ⊆ K ⊆ X. This will ensure y ∈ Xl2. So lower
stability holds. Upper stability can be checked in a similar way. ��

10.1.2 Subsystem Based Approximations

Below a method of interpretation is proposed to ensure that the subsystem based
approach falls under some level of granularity.

In the context of Def.236, the granulation G can be taken to be H ∪H or simply
H. In the latter case complementation operations will be required for representation
of approximations, but are not needed in the former.

Theorem 258 Under the assumptions, the granulation G = H satisfies all of
WRA, LRA, LACG, LS, FU.

10.2 The Algebras of CBRST

Very few explicit results that describe rough objects in the context of cover based
rough sets are known. Results in the classical domain can be viewed as a semantics
in the following ways:

• If a duality between general approximation spaces of the form
〈
S,R
〉

and the
covering approximation space

〈
S, S
〉

is known and the cover based approxima-
tions l, u are defined as point-wise approximations then the Boolean algebra

with operators B =
〈
℘(S), l, u,∪,∩,c , 0, 1

〉
(satisfying a number of properties)

can be interpreted as a semantics of the modal logic associated. This works
because the relation R can be read as an accessibility relation between worlds
and the general approximation space as a Kripke frame. This approach can be
found in [143, 144]. It is necessary that the upper approximation be definable
in terms of the lower approximation and complementation in the context for the
interpretation to work.

• In general, a distributive set lattice with operators of the form

L =
〈
℘(S), l, u,∪,∩, 0, 1

〉
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(satisfying a number of properties) is likely to be the semantic structure associ-
ated with a covering approximation space. A proper understanding of the context
is required for claiming that L is not a Boolean algebra with operators. This
semantic approach is not a satisfactory one for a number of reasons.

The last point refers to unexplored territories. The main question is: Given a
cover based rough set situation derived from an information system or otherwise,
what properties and operations may be allowed for studying/constructing approxi-
mations?

• The ideal based approach due to [1, 3, 64] has been generalized by the present
author in [105] for point-wise relation based rough sets and should be generaliz-
able to covering approximation provided the very definitions of approximations
are changed. This is likely to work well for those granular approximations
defined through subsystems and is an open research area.

• The antichain based approach due to the present author [98, 106] is bound to
work for granular cover based rough sets. It applies to a distinct higher order
semantic domain that consciously evaluates some implications of discernibility.
The approach is described in a Sect. 12.

• Some cases of cover based rough sets that relate to tolerances have also been
considered in [62] and have also been described in more detail in the chapter on
irredundant coverings in this volume.

• Semantics through duality with general approximation spaces are possible in
some cases. These are considered in the chapter on duality in this volume [107].

• Semantics by way of reduction to multiple nicer approximations—for example
a similarity based approximations may be reduced to a number of classical
approximations. This area is yet to see systematic development.

10.3 Quasi-Order Based Covers

In [68], a granular approach to a general approximation space Q = 〈Q,<
〉

with <

being a quasi-order is investigated. The granulation used is Q = {[x]i : x ∈ Q}—
in the paper it is also referred to as a quasi-order generated cover and

〈
Q,Q
〉

as a
quasi-order generated covering approximation space QOCAS. The reason for this
terminology is in the well known fact that

Proposition 259

• Any cover C on a set S generates a quasi-order on it and induces a QOCAS
S = 〈S, {nbd(x) : x ∈ S}〉.

• The granulation is the set of order filters of R.
• a ∈ [x]i if and only if [a]i ⊆ [x]i if and only if nbd(a) ⊆ nbd(x)
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Definition 260 On a QOAS S, the approximations of a subset A ⊆ S are defined
as below:

Al =
⋃
{[x]i : [x]i ⊆ A} (qlower)

Au∗ =
⋃
{[x]i : x ∈ A} (qupper)

Theorem 261 In a QOAS Q, the approximations satisfy top, bottom, idempotence
and the following:

(∀x ∈ ℘(Q)) xu∗l = xu∗& xlu∗ = xl (Mix)

(∀x ∈ ℘(Q)) xl ⊆ x ⊆ xu∗ (Inclusion+)

(∀x, a ∈ ℘(Q)) (x ∩ a)l = xl ∩ al & (x ∪ a)l ⊆ xl ∪ al (l-M.SA)

(∀x, a ∈ ℘(Q)) (x ∩ a)u∗ ⊆ xu∗ ∩ au∗& (x ∪ a)u∗ = xu∗ ∪ au∗ (u*-SM.A)

(∀x ∈ ℘(Q)) xl = x ↔ xu∗ = x (Definite+)

(∀x, a ∈ ℘(Q)) xu∗ ⊆ a ↔ x ⊆ al (Galois)

Moreover l, u∗ are topological interior and closure operators in the Alexandrov
topologies τ and τ ′ associated with the quasi-order and dual quasi order respec-
tively with neighborhood basis {[x]i : x ∈ Q}. This permits the equivalent
definition:

• (∀X ∈ ℘(Q))Xl =⋃{H : H ∈ τ &H ⊆ X}
• (∀X ∈ ℘(Q))Xu∗ =⋂{H : H ∈ τ &X ⊆ H }
• The above result is a proper generalization of classical rough sets.

Proof The proof is through standard set theoretic inclusion and membership
arguments. The Galois connection on the ordered set ℘(S) is proved by direct
implications:

• xu∗ ⊆ a→ xu∗l ⊆ al → xu∗ ⊆ al → x ⊆ xu∗ ⊆ al

• x ⊆ al → xu∗ ⊆ alu∗ → xu∗ ⊆ al → xu∗ ⊆ al ⊆ a

��
Proposition 262 For a QOAS, ΔR = 〈δlu∗(Q),∩,∪,+ , 0, 1

〉
forms a Heyting

algebra as it is the collection of open sets in the Alexandrov topology. c being the
pseudo complementation operation.

Theorem 263 For a QOAS, ΔR =
〈
δlu∗(Q),∩,∪,+ , 0, 1

〉
is a Boolean algebra if

and only if {[x]i : x ∈ Q} is a partition of Q.

Proof If {[x]i : x ∈ Q} is a partition of Q, then under the strong representation
assumptions, it follows that ΔR is a Boolean algebra.

For the converse, suppose {[x]i : x ∈ Q} is not partition of Q and ΔR is a
Boolean algebra
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• So (∃z, a, b)[a]i 
= [b]i & z ∈ [a]i ∩ [b]i 
= ∅
• So [z]i ⊂ [a]i or [z]i ⊂ [b]i . Suppose the former
• Form the pseudo-complement (+) and dual pseudo-complement (◦) of [z]i
• [z]+i =

⋃{H H ∈ ΔR &H ∩[z]i = ∅} and [z]◦i =
⋂{H H ∈ ΔR &H ∪[z]i =

Q}.
• It can be checked that a /∈ [z]+i and a ∈ [z]◦i by a contradiction argument.
• But in a Boolean algebra, complementation coincides with both pseudo comple-

mentations.
��

The following representation theorem(s) is proved in [68]. This is considered in
the chapter on duality and representation by the present author in [107].

Theorem 264

• If L is a Heyting algebra, then there exists a QOAS Q such that L is embeddable
in its Heyting algebra of definable sets.

• If L is a completely distributive lattice in which set of join irreducibles is also
join dense, then there exists a QOAS Q such that L is embeddable in its lattice of
definable sets.

Not surprisingly, the relation between the sets R = {(a, b) : a ⊆ b & a, b ∈ ΔR}
and RS = {(al, au∗) : a ∈ ℘(Q)} mimics that in classical rough sets due to the
strong influence of transitivity and reflexivity of R.

Theorem 265 R = RS if and only if (∀(a, b) ∈ R) #(b \ a) 
= 1.

Proof The proof, through set theoretic contradiction arguments and argument by
cases, is a bit long and not very hard. ��

The following weeding theorem is also proved in [68]. The converse construction
has been added by the present author.

Theorem 266 Let Q = 〈Q,R
〉

be a QOAS with at least one pair of definable sets
a, b ∈ Δ such that a ⊂ b and #(b \a) = 1. Then there exists a QOAS Q′ = 〈Q′, R′〉
with its lattice of definable sets Δ′ being isomorphic to Δ and satisfying (∀a, b ∈
Δ′) (a ⊂ b −→ #(b \ a) > 1) and conversely.

Proof The basic idea of adding elements to remove the pathology works. Let

P = {(a, b) : a ⊂ b & a, b ∈ Δ& #(b \ a) = 1}

• Form P ′ = {c : {c} = b \ a & a, b ∈ P }, a disjoint copy P ′′ = {x ′ : x ∈ P ′} and
let Q′ = Q ∪ P ′′

• Define

[a′]≺i =
{
[a′]i ∪ {x ′ : x ′ ∈ P ′′, x ∈ [a′] ∩ P ′} if a′ ∈ Q

[a]≺i = [a]i ∪ {x ′ : x ′ ∈ P ′′, x ∈ [a]i ∩ P ′} if a′ ∈ P ′′ for a ∈ P ′
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• It can be checked that ≺ is a quasi order and
〈
Q,≺〉 is a QOAS with granulation

{[a′]≺i : a′ ∈ Q′}.
• If Δ′ is the set of definable elements of

〈
Q′,≺〉 and let its set of join irreducible

elements be J ′ = {[a′]≺i : a′ ∈ Q′}
• Let J = {[a]i : a ∈ Q} be the set of join irreducibles of Δ, and let (∀x ∈

Q) ξ([x]i ) = [x]≺i
• ξ is an order isomorphism that can be extended to ξ∗ : Δ→ Δ′ as below:

ξ∗(H) = ∪{ξ([x]i ) : [x]i ⊆ H }
��

The reader is invited to fill in the gaps in the above proof.

Significance and Extensions
The significance of the result has not been discussed in [68]. The result basically
says that it is possible to patch pathologies by adding elements instead of removing
them—the intended meaning of the pathology being that a pathology is any instance
of a crisp granule failing to upper approximate at least one non crisp object. In
practice, this is a strange requirement to have. In fact no practical example may be
found in the literature on the point. From the viewpoint of semantics, RS may not
even form a lattice when such pathologies are present. In the present author’s view
the failure of ontology is more important than that of method.

10.3.1 QO-Algebraic Semantics

The algebraic structure on Δ extends to the collections R:

Theorem 267 R = 〈R,∪,∩,⇒,⊥,5〉 is a Heyting algebra in which the opera-
tions are defined as below for any (a, b), (c, e) ∈ R

(a, b) ∪ (c, e) = (a ∪ c, b ∪ e) (join)

(a, b) ∩ (c, e) = (a ∩ c, b ∩ e) (meet)

(a, b)⇒ (c, e) =
⋃
{(f, g); (f, g) ∈ R& (a, b)∩ (f, g) ⊆ (c, e)} (join)

(∅,∅) = ⊥ (bottom)

(Q,Q) = 5 (top)

Further, the pseudo-complement on the algebra can be represented by ∼ (a, b) =
(b+, b+).

Proposition 268 If a QOAS Q satisfies

(∀a, b ∈ ℘(Q)) (al = bl & au = bu −→ a = b) (58)
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then
〈
RS,∨,∧,⊥,5〉 is a distributive lattice with the operations being defined as

below:

(al, au∗) ∨ (bl, bu∗) = ((a ∪ b)l, (a ∪ b)u∗) (join)

(al, au∗) ∧ (bl, bu∗) = ((a ∩ b)l, (a ∩ b)u∗) (meet)

Example 269 Let Q = {a, b, c, e, f } and its table of predecessor neighborhoods
be as in Table 9

It can be checked that (ce, ce) ∨ (∅, ef ) is not defined. So RS is not a lattice in
general (Table 10).

Abstract representation theorems[68] relating to these algebras have been consid-
ered in chapter on representation and duality in [107] of this volume by the present
author.

11 General Choice Inclusive Approach

In this section a new choice inclusive approach towards the construction of
approximations and semantics is invented by the present author. This is based on
her earlier work in [87, 89]. Only an outline of the proposed theory is presented as
the semantic part can be approached in many ways.

The main motivation for the approach has been the requirement that approx-
imations should be representable in terms of pairwise independent (or disjoint)
granules (this is referred to as the local clarity principle for approximations)

Table 9 Neighborhoods

S a b c e f

[x]i {a, e, f } {b, e, f } {c, e} {e} {e, f }

Table 10 Approximations

A (Al,Au∗) A (Al, Au∗) A (Al, Au∗)
∅ (∅,∅) a (∅, aef ) b (∅, bef )

c (∅, ce) e (e, e) ab (∅, abef )

bc (∅, bcef ) ce (ce, ce) ef (ef, ef )

ac (∅, acef ) ae (e, aef ) af (∅, aef )

cf (∅, cef ) abc (∅,Q) bce (ce, bcef )

cef (cef, cef ) abe (e, abef ) abf (∅, abef )

ace (ce, acef ) aef (aef, aef ) bcf (∅, bcef )

bef (bef, bef ) acf (∅, acef ) abce (ce,Q)

bcef (bcef, bcef ) abcf (∅,Q) abef (abef, abef )

acef (acef, acef ) Q (Q,Q) − −
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and in case existing approximations do not satisfy the requirement then some
methods of attaining such approximations is provided for. An example where such
approximations matter is in the following:

Example 270 Six-year-old Jessica drew a shape on a deflated balloon and blew it
up. . . .

Teacher: What makes it disappear?
Jessica: Because It’s stretching. Because It’s growing bigger, cause we’re blowing

air into it. Air.
Teacher: Does air make things grow bigger?
Jessica: Yes. Because It’s stretching it inside and if you stretch it inside it grows

bigger on the outside as well.

The above example is adapted from [130], where this is used to argue that
children have access to powerful mathematical ideas from an early age. A reading of
the paper would actually suggest that the authors are ascribing much stronger ideas
to the children than is the case. But that is immaterial for the present application.
Some of the many concepts that may be associated with Jessica’s conception can be
(semicolons and line breaks separate different concepts):

• Curved surfaces split space into an interior and exterior
• Curved surfaces partition 3-dimensional Euclidean space into an exterior and an

interior space
• Surfaces are curved or flat; Surfaces are flat or non-flat
• Balloons have an inner layer and an outer layer
• Balloons can stretch on the inside and expand outside.
• Balloons can expand on the inside and the outside of the balloon surface
• Objects having area separate regions of space into inside regions and outside.
• Some objects can stretch; Objects that stretch may break
• If air stretches the inside of an enclosed space then it stretches the outside as

well; Air can be blown

The third concept is part of the first, while the second is not usable as a granule
as many concepts are part of it. The concept of some objects can stretch depends
on an understanding of the concept of objects that stretch may break. Using such
a parthood relation and subcollections of concepts on which the unclear concept
being approximated depends, questions about integrations of concepts that are
closest to the unclear concept may be asked. In doing so, it may be of interest to
avoid repetition of subconcepts or conflicting information. In the above example
concepts relating to curved surfaces seem to conflict reasoning of the form balloons
can stretch on the inside and expand outside in the sense that the reasoner would
not have thought about both at same time. Such a dialectics leads to choosing an
appropriate subcollection of concepts and the leads to the concept of primitive lower
approximation as a subcollection in [89].

Definition of aggregation can be very varied in the context, the most natural
interpretation being the logical conjunction of the chosen granules. But in contexts
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involving meaning evolution, it would be more natural to interpret from the
point of view of possible meanings. In [89], approximations that avoid conflicting
information, overlap and are unions of non intersecting blocks have been proposed
and studied by the present author.

Let S = 〈S,G, l, u,≤,∨,∧,⊥,5〉 be a higher granular operator space.

Definition 271 A choice function on S is a map ξ : ℘(G) �→ ℘(G) that
satisfies:

1. (∀x)ξ(x) ⊆ x

2. (∀x)ξ(ξ(x)) = ξ(x)

3. ξ(∅) = ∅
4. (∀x, y)(x ⊂ y −→ ξ(x) ⊆ ξ(y))

Definition 272 The above function can alternatively be replaced by a higher choice
function ξ∗ : ℘(℘ (G)) �−→ ℘(G) (the intent being to suggest a choice among
possible sets of granules in clearer terms) satisfying all of the following:

1. (∀x)ξ∗(x) ∈ x

2. (∀x)ξ∗({ξ∗(x)}) = ξ∗(x)
3. ξ∗({∅}) = ∅
4. (∀x, y)(x ⊂ y −→ ξ∗(x) ⊆ ξ∗(y))

Definition 273 For a set of granular axioms μ, a μ-choice function will be a choice
function ξ for which ξ(G) satisfies μ.

Definition 274 A choice function ξ will be said to satisfy the local clarity principle
LCP if and only if

(∀x ∈ ℘(G)) (a, b ∈ ξ(x)& a 
= b −→ (∀h ∈ ℘(S)\{∅})¬Pha &¬Phb) (59)

In case P is the ⊆ relation, then the condition can be simplified to

(∀x ∈ ℘(G)) (a, b ∈ ξ(x)& a 
= b −→ a ∩ b 
= ∅) (60)

In the contexts of [89], a unique set of granules for lower approximation of a
set is determined by additional conditions on possible choices. One of the strategies
used for defining a granular lower approximation of a subset A in a tolerance space
S is the following:

• Form the set of blocks {B1, . . . , Bn} contained in A

• Let the collection of set of mutually pairwise disjoint blocks be W. This is
ordered by inclusion.

• Form the collection Wm of maximal elements of the collection.
• Compute ξ∗(Wm) or ξ(∪Wm)

• Define Al = ∪ξ∗(Wm), for example.
• It is possible to define other lower approximations that satisfy LCP.
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For defining upper approximations, a similar strategy can be used as follows:

• Form the set of blocks {B1, . . . , Bn} intersecting A

• Let the collection of set of mutually pairwise disjoint blocks whose union
includes A be W+. This is ordered by inclusion.

• Form the collection W+
m of maximal elements of the collection.

• Compute ξ∗(W+
m) or ξ(∪W+

m)

• Define Au = ∪ξ∗(W+
m), for example.

• It is possible to define other upper approximations that satisfy LCP. To approx-
imate more accurately, it makes sense to use the collection W+

o of minimal
elements of the collection W+.

Given the definitions of the lower and upper approximations, the semantics
of different rough objects of interest can be approached in multiple ways. The
semantics in [89] is a direct algebraic approach for tolerance spaces. Examples of
the choice based approach [89] have been developed recently by others in [110].
Related software has also been developed by the authors.

11.1 Lambda Lattices

The appropriate semantic domain for the semantics of bitten rough sets in Sect. 6
may be considered by some to be less natural on subjective grounds. These include
difficulty with reasoning within the power set of the set of possible order-compatible
partitions of the set of rough objects. A simpler semantics that includes choice in
aggregation and commonality operations is outlined in this sub section. Connections
of this approach to that in [89] by the present author have not been investigated.

Choice functions are used in defining the rough operations of combining sets and
extracting the common part of two sets.

Definition 275 For any a, b ∈ ℘(S)| ∼, let UB(a, b) and LB(a, b) be the set of
minimal upper bounds and the set of maximal lower bounds of a and b (these are
assumed to be nonempty for all pairs a, b). If λ : ℘(℘ (S)| ∼) �−→ ℘(S)| ∼ is
a choice function, (by definition, it is such that (a ≤ b −→ λ(UB({a, b})) =
b, λ(LB({a, b})) = a)), then let

a + b = λ(UB({a, b}))
a · b = λ(LB({a, b}))

S = 〈℘(S)| ∼, + ·, L, �, ¬〉 is called the simplified algebra of the bitten
granular semantics (SGBA)

Theorem 276 A SGBA, B = 〈B, + ·, L, �, ¬〉 satisfies all of the following:

1.
〈
B, + ·〉 is a λ-lattice

2. a + b = b + a; a · b = b · a
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3. a + a = a; a · a = a

4. a + (a · b) = a; a · (a + b) = a

5. a + (a + (b + c)) = a + (b + c); a · (a · (b · c)) = a · (b · c)
6. a + La = a; a · La = La

7. a + �a = �a; a · �a = a

8. L(La) = La; �(�a) = �a
9. (a + b = a −→ La + Lb = La); (a · b = a −→ La · Lb = La)

10. (a + b = a −→ �a + �b = �a); (a · b = a −→ �a · �b = �a)
11. ¬(La) = �(¬a); ¬(�a) = L(¬a)
12. L0 = 0, L1 = 1; �0 = 0, �1 = 1
13. L�a + �a = �a; L�a · �a = L�a
14. La + �La = �La; La · �La = La

Proof The proof consists in verification ��

11.2 Representation Problem for SGBAs

Given a tolerance space S in a bitten rough semantic perspective, associating a single
SGBA as its corresponding semantics amounts to modifying the original meaning
by the introduction of artificial choice functions for the purpose of forming rough
union and intersection-like operations. Either a justification of such preference is
required or the option would be to accept all of the possible preferences. So the
default semantics must be given by a set of SGBAs indexed by the set of all possible
choice functions in the lambda lattice formation context. In this perspective the
semantics can be explained directly and a sequent calculus associated (and with
little additional representation theory).

Let x ∈ S, then ([x]T )l = [x]T , while ([x]T )ub = ([x]T )u \ (S \ [x]T )l).
It is obvious that elements with nonempty lower approximation that are minimal
with respect to the rough order will be equivalent to elements of this type. Once the
order relation on the set of roughly equivalent elements has been deduced, elements
of this type can be found. This permits the reconstruction of the equivalence based
partition of the power set of S.

If all possible choice functions involved are not known, then it is not possible
in general to determine or construct the blocks of the tolerance T . But when will a
knowledge of given subsets of choice functions permit us to determine the blocks of
T ? This is the problem of representation of SGBAs. It is also significant in a more
general algebraic setting.

12 Anti Chains for Semantics

Any set of rough objects is quasi or partially orderable. The set of rough objects of
various types and crisp objects of various types is also quasi- or partially ordered.
Specifically in classical or Pawlak rough sets [124], the set of roughly equivalent
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sets has a quasi Boolean order on it while the set of rough and crisp objects is
Boolean ordered. In the classical semantic domain or classical meta level, associated
with general rough sets, the set of crisp and rough objects is quasi or partially
orderable. Under minimal assumptions on the nature of these objects, many orders
with rough ontology can be associated—these necessarily have to do with concepts
of discernibility and variations thereof. Concepts of rough objects, in these contexts,
depend additionally on approximation operators and granulations used. These were
part of the motivations of the development of the concept of granular operator spaces
by the present author in [98].

In quasi or partially ordered sets, sets of mutually incomparable elements are
called antichains (for basics see[37, 54, 67]). The possibility of using antichains of
rough objects for a possible semantics was mentioned in [95, 96, 99] by the present
author and developed in [98, 106]. At one level, any rough set theory presented
with approximations in operator form and well defined concepts of crisp and rough
objects should suffice for formalization in the antic chain perspective—but then
the semantics can be expected to miss key aspects of the relation between rough
and crisp objects. In particular, the semantic approach is applicable to a large class
of operator based rough sets including specific cases of RYS [91], other general
approaches like [29, 58, 60] and all specific cases of relation based and cover based
rough set approaches. In [29], negation like operators are assumed in general and
these are not definable operations relative the order related operations/relation. A
key problem in many of the latter types of approaches is of closure of possible
aggregation and commonality operations [63, 99, 174, 178].

In the present section, the semantics of [98, 106] is presented in a compact
way with additional examples. Connections with the concept of knowledge in the
settings is also explored in some depth and related interpretations are offered.
The basic framework of granular operator spaces used in [98] is generalized in
this section as most of the mathematical parts carry over. The semantics of [98],
as improved in the [106] by way of ternary terms, is very general, open ended,
extendable and optimal for lateral studies. Most of it applies to general granular
operator spaces, introduced in a separate paper by the present author. In the same
framework, the machinery for isolation of deductive systems is developed by her and
studied from a purely algebraic logic point of view. New results on representation
of roughness related objects are also developed. Last but not least, the concept
of knowledge as considered in [91, 94, 99, 127] is recast in very different terms
for describing the knowledge associated with representation of data by maximal
antichains. These representations are also examined for compatibility with triadic
semiotics (that is not necessarily faithful to Peirce’s ideas) for integration with
ontology. Philosophical questions relating to perdurantism and endurantism are also
solved in some directions. Illustrative examples that demonstrate applicability to
human reasoning contexts involving approximations but no reasonable data tables
have also been constructed in [106]. Parts of this are also presented.

In the next subsection, relevant background is presented. In the following
subsection, the essential algebraic logic approach used is outlined. In the third
subsection, possible operations on sets of maximal antichains derived from granular
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operator spaces are considered, AC-algebras are defined and their generation is
studied. Representation of antichains derived from the context are also improved
and earlier examples are refined. Ternary deduction terms in the context of the
AC-algebra are explored next and various results are proved. The algebras of quasi-
equivalential rough sets formed by related procedures is presented to illustrate key
aspects of the semantics in the fifth and sixth subsections. The connections with
epistemology and knowledge forms the following section. Further directions are
provided in Sect. 9.

Background

Set framework with operators will be used as all considerations will require quasi
orders in an essential way. The evolution of the operators need not be induced by a
cover or a relation (corresponding to cover or relation based systems respectively),
but these would be special cases. The generalization to some rough Y-systems RYS
(see [91] for definitions), will of course be possible as a result.

Theorem 277 Some known results relating to antichains and lattices are the
following:

1. Let X be a partially ordered set with longest chains of length r , then X can be
partitioned into k number of antichains implies r ≤ k.

2. If X is a finite poset with k elements in its largest antichain, then a chain
decomposition of X must contain at least k chains.

3. The poset ACm(X) of all maximum sized antichains of a poset X is a distributive
lattice.

4. For every finite distributive lattice L and every chain decomposition C of JL
(the set of join irreducible elements of L), there is a poset XC such that L ∼=
ACm(XC).

Proof The proof of the duality results can be found in the chapter on duality [107] in
this volume. Proofs of the first three of the assertions can also be found in in [37, 69]
for example. Many proofs of results related to Dilworth’s theorems are known in the
literature and some discussion can be found in [69] (pages 126–135).

1. To prove the first, start from a chain decomposition and recursively extract the
minimal elements from it to form r number of antichains.

2. This is proved by induction on the size of X across many possibilities.
3. See [37, 69] for details.
4. In [67], the last connection between chain decompositions and representation

by antichains reveals important gaps—there are other posets X that satisfy L ∼=
ACm(X). Further the restriction to posets is too strong and can be relaxed in
many ways [153].

��
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12.1 Parthood and Frameworks

Many of the philosophical issues relating to mereology take more specific forms
in the context of rough sets in general and in the GSP framework. The axioms of
parthood that can be seen to be not universally satisfied in all rough contexts include
the following:

Pab&Pbc −→ Pac (Transitivity)

(Pab↔ Pba) −→ a = b (Extensionality)

(Pab&Pba −→ a = b) (Antisymmetry)

This affords many distinct concepts of proper parthoods P:

Pab if and only if Pab& a 
= b (PP1)

Pab if and only if Pab&¬Pba (PP2)

Pab −→ (∃z)Pzb & (∀w)¬(Pwa & Pwz) (WS)

PP1 does not follow from PP2 without antisymmetry and WS (weak supple-
mentation) is a kind of proper parthood. All this affords a mereological approach
with much variation to abstract rough sets.

12.2 Deductive Systems

In this section, key aspects of the approach to ternary deductive systems in [24, 25]
are presented. These are intended as natural generalizations of the concepts of ideals
and filters and classes of congruences that can serve as subsets or subalgebras closed
under consequence operations or relations (also see [51]).

Definition 278 Let S = 〈S,Σ〉 be an algebra, then the set of term functions over
it will be denoted by TΣ(S) and the set of r-ary term functions by TΣ

r (S). Further
let

g ∈ TΣ
1 (S), z ∈ S, τ ⊂ TΣ

3 (S), (0)

g(z) ∈ Δ ⊂ S, (1)

(∀t ∈ τ )(a ∈ Δ& t (a, b, z) ∈ Δ −→ b ∈ Δ), (2)

(∀t ∈ τ )(b ∈ Δ −→ t (g(z), b, z) ∈ Δ), (3)
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then Δ is a (g, z) − τ -deductive system of S. If further for each k-ary operation
f ∈ Σ and ternary p ∈ τ

(∀ai, bi ∈ S)(&k
i=1p(ai , bi , z) ∈ Δ −→ p(f (a1, . . . , ak), f (b1, . . . , bk), x) ∈ Δ),

(61)

then Δ is said to be compatible.
τ is said to be a g-difference system for S if τ is finite and the condition

(∀t ∈ τ)t (a, b, c) = g(c) if and only if a = b holds. (62)

A variety V of algebras is regular with respect to a unary term g if and only if for
each S ∈ V,

(∀b ∈ S)(∀σ, ρ ∈ con(S))([g(b)]σ = [g(b)]ρ −→ σ = ρ). (63)

It should be noted that in the above τ is usually taken to be a finite subset and a
variety has a g-difference system if and only if it is regular with respect to g.

Proposition 279 In the above definition, it is provable that

(∀t ∈ τ )(t (g(z), b, z) ∈ Δ −→ b ∈ Δ). (64)

Definition 280 In the context of Def. 278, ΘDelta,z shall be a relation induced on S

by τ as per the following

(a, b) ∈ ΘΔ,z if and only if (∀t ∈ τ) t (a, b, z) ∈ Δ. (65)

Proposition 281 In the context of Def.280, Δ = [g(z)]ΘΔ,z .

Proposition 282 Let τ ⊂ T Σ
3 (S) with the algebra S = 〈S,Σ〉, v ∈ T Σ

1 (S), e ∈ S,
K ⊆ S and let ΘK,e be induced by τ . If ΘK,e is a reflexive and transitive relation
such that K = [v(e)]T hetaK,e , then K is a (v, e)- τ -deductive system of S.

Theorem 283 Let h is a unary term of a variety V and τ a h-difference system for
V. If S ∈ Vm Θ ∈ Con(S), z ∈ S and Δ = [h(z)]Θ , then ΘΔ,z = Θ and Δ is a
compatible (h, z)-τ -deductive system of S.

The converse holds in the following sense:

Theorem 284 If h is a unary term of a variety V, τ is a h-difference system in
it, S ∈ V, z ∈ S and if Δ is a compatible (h, z)-τ -deductive system of S, then
ΘΔ,z ∈ Con(S) and Δ = [g(z)]ΘΔ,z .

When V is regular relative h, then V has a h-difference system relative τ and for
each S ∈ V, z ∈ S and Δ ⊂ S, Δ = [h(z)] if and only if Δ is a (h, z)- τ -deductive
system of S.
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In each case below, {t} is a h-difference system (x⊕y = ((x∧y∗)∗∧(x∗∧y)∗)∗):

h(z) = z & t (a, b, c) = a − b + c (Variety of Groups)

h(z) = z & t (a, b, c) = a ⊕ b ⊕ c (Variety of Boolean Algebras)

h(z) = z∗∗ & t (a, b, c) = (a + b)+ c (Variety of p-Semilattices)

12.3 Anti Chains for Representation

In this section, the main algebraic semantics of [98] is summarized, extended to
AC-algebras and relative properties are studied. It is also proved that the number of
maximal antichains required to generate the AC-algebra is rather small.

Definition 285 A,B ∈ S| ≈, will be said to be simply independent (in symbols
Ξ(A,B))if and only if

¬(A 	 B) and ¬(B 	 A). (66)

A subset α ⊆ S| ≈ will be said to be simply independent if and only if

(∀A,B ∈ α)Ξ(A,B) ∨ (A = B). (67)

The set of all simply independent subsets shall be denoted by SY(S).
A maximal simply independent subset, shall be a simply independent subset

that is not properly contained in any other simply independent subset. The set of
maximal simply independent subsets will be denoted by SYm(S). On the set SYm(S),
C will be the relation defined by

α C β if and only if (∀A ∈ α)(∃B ∈ β)A 	 B. (68)

Theorem 286 〈SYm(S),C〉 is a distributive lattice.

Analogous to the above, it is possible to define essentially the same order on the
set of maximal antichains of S| ≈ denoted by S with the 	 order. This order will
be denoted by 	—this may also be seen to be induced by maximal ideals.

Theorem 287 If α = {A1,A2, . . . ,An, . . . } ∈ S, and if L is defined by

L(α) = {B1,B2, . . . ,Bn, . . .} (69)

with X ∈ Bi if and only if Xl = A
ll
i = B

l
i and Xu = A

lu
i = B

u
i , then L is a

partial operation in general.

Proof The operation is partial because L(α) may not always be a maximal
antichain. This can happen in general in which the properties All ⊂ Al and/or



308 A. Mani

Aul ⊂ A hold for some elements. The former possibility is not possible by our
assumptions, but the latter is scenario is permitted.

Specifically this can happen in bitten rough sets when the bitten upper approxi-
mation [86] operator is used in conjunction with the lower approximation. But many
more examples are known in the literature (see [91]). ��
Definition 288 Let χ(α∩β) = {ξ; ξ is a maximal antichain & α∩β ⊆ ξ} be the
set of all possible extensions of α ∩ β. The function δ : S2 �−→ S corresponding
to extension under cognitive dissonance will be defined as per δ(α, β) ∈ χ(α ∩ β)

and (LST means maximal subject to)

δ(α, β) =

⎧
⎪⎪⎨

⎪⎪⎩

ξ, if ξ ∩ β is a maximum subject to ξ 
= β and ξ is unique ,

ξ, if ξ ∩ β & ξ ∩ α are LST ξ 
= β, α and ξ is unique ,

β, if ξ ∩ β & ξ ∩ α are LST & ξ 
= β, α but ξ is not unique ,

β, if χ(α ∩ β) = {α, β}.
(70)

Definition 289 In the context of the above definition, the function * : S2 �−→ S
corresponding to radical extension will be defined as per *(α, β) ∈ χ(α ∩ β) and
(MST means minimal subject to)

*(α, β) =

⎧
⎪⎪⎨

⎪⎪⎩

ξ, if ξ ∩ β is a minimum under ξ 
= β and ξ is unique ,

ξ, if ξ ∩ β & ξ ∩ α are MST ξ 
= β, α and ξ is unique ,

α, if (∃ξ) ξ ∩ β & ξ ∩ α are MST ξ 
= β, α & ξ is not unique ,

α, if χ(α ∩ β) = {α, β}.
(71)

Theorem 290 The operations *, δ satisfy all of the following:

*, δ are groupoidal operations, (1)

*(α, α) = α (2)

δ(α, α) = α (3)

δ(α, β) ∩ β ⊆ δ(δ(α, β), β) ∩ β (4)

δ(δ(α, β), β) = δ(α, β) (5)

*(*(α, β), β) ∩ β ⊆ *(α, β) ∩ β. (6)

Proof

1. Obviously *, δ are closed as the cases in their definition cover all possibilities. So
they are groupoid operations. Associativity can be easily shown to fail through
counterexamples.

2. Idempotence follows from definition.
3. Idempotence follows from definition.
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For the rest, note that by definition, α ∩ β ⊆ δ(α, β) holds. The intersection with β

of δ(α, β) is a subset of δ(δ(α, β), β) ∩ β by recursion. ��
In general, a number of possibilities (potential non-implications) like the following
are satisfied by the algebra: α	 β & α	 γ � α	 δ(β, γ ). Given better properties
of l and u, interesting operators can be induced on maximal antichains towards
improving the properties of * and δ. The key constraint hindering the definition of
total l, u induced operations can be avoided in the following way:

Definition 291 In the context of Thm 287, operations �,♦ can be defined as
follows:

• Given α = {A1,A2, . . . ,An, . . . } ∈ S, form the set
γ (α) = {Al

1,A
l
2, . . . ,A

l
n, . . . }. If this is an antichain, then α would be said to

be lower pure.
• Form the set of all relatively maximal antichains γ+(α) from γ (α).
• Form all maximal antichains γ∗(α) containing elements of γ+(α) and set �(α) =
∧γ∗(α)

• For ♦, set π(α) = {Au
1,A

u
2 , . . . ,A

u
n, . . . }. If this is an antichain, then α would

be said to be upper pure.
• Form the set of all relatively maximal antichains π+(α) from π(α)

• Form all maximal antichains π∗(α) containing elements of π+(α) and set
♦(α) = ∨π∗(α)

Theorem 292 In the context of the above definition, the following hold:

α 	 β −→ �(α)	�(β)&♦(α)	 ♦(β)
�(α)	 α 	 ♦(α), �(0) = 0 &♦(1) = 1

Based on the above properties, the following algebra can be defined.

Definition 293 By a Concrete AC algebra (AC -algebra) will be meant an algebra
of the form 〈S, *, δ,∨,∧,�,♦, 0, 1〉 associated with a granular operator space S

satisfying all of the following:

• 〈S,∨,∧〉 is a bounded distributive lattice derived from a granular operator space
as in the above.

• *, δ,�,♦ are as defined above

The following concepts of ideals and filters are of interest as deductive systems
in a natural sense and relate to ideas of rough consequence (detailed investigation
will appear separately).

Definition 294 By a LD-ideal (resp. LD-filter)) K of an AC-algebra S will be
meant a lattice ideal (resp. filter) that satisfies:

(∀α ∈ K)�(α),♦(α) ∈ K (72)
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By a VE-ideal (resp. VE-filter)) K of an AC-algebra S will be meant a lattice ideal
(resp. filter) that satisfies:

(∀ξ ∈ S)(∀α ∈ K) *(ξ, α), δ(ξ, α) ∈ K (73)

Proposition 295 Every VE filter is closed under ♦

12.4 Generating AC-Algebras

Now it will be shown below that specific subsets of AC-algebras suffice to generate
the algebra itself and that the axioms satisfied by the granulation affect the
generation process and properties of AC-algebras and forgetful variants thereof.

An element x ∈ S will be said to be meet irreducible (resp. join irreducible) if
and only if ∧{xi} = x −→ (∃i) xi = x (resp. ∨{xi} = x −→ (∃i) xi = x). Let
W(S), J (S) be the set of meet and join irreducible elements of S and let l(S) be
the length of the distributive lattice.

Theorem 296 All of the following hold:

• (S,∨,∧, 0, 1) is a isomorphic to the lattice of principal ideals of the poset of
join irreducibles.

• l(S) = #(J (S)) = #(W(S))

• J (S) is not necessarily the set of sets of maximal antichains of granules in
general.

• When G satisfies mereological atomicity that is (∀a ∈ G)(∀b ∈ S)(Pba, al =
au = a −→ a = b), and all approximations are unions of granules, then
elements of J (S) are proper subsets of G.

• In the previous context, W(S) must necessarily consist of two subsets of S that
are definite and are not parts of each other.

Proof

• The first assertion is a well known.
• Since the lattice is distributive and finite, its length must be equal to the number

of elements in J (S) and W(S). For a proof see [108].
• Under the minimal assumptions on G, it is possible for definite elements to be

properly included in granules as in esoteric or prototransitive rough sets [85, 95].
These provide the required counterexamples.

• The rest of the assertions follows from the nature of maximal antichains and the
constructive nature of approximations.

��
Theorem 297 In the context of the previous theorem if R(♦), R(�) are the ranges
of the operations ♦,� respectively, then these have a induced lattice order on them.
Denoting the associated lattice operations by �,� on R(♦), it can be shown that
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• R(♦) can be reconstructed from J (R(♦)) ∪W(R(♦)).
• R(�) can be reconstructed from J (R(�)) ∪W(R(�)).
• When G satisfies mereological atomicity and absolute crispness (i.e. (∀x ∈

G) xl = xu = x), then R(♦) are lattices which are constructible from two
sets A, C (with A = {G∪ {g1 ∪ g2}u \ {g1, g2}; g1, g2 ∈ G} and C being the set
of two element maximal antichains formed by sets that are upper approximations
of other sets).

Proof It is clear that R(♦) is a lattice in the induced order with J (R(♦)) and
W(R(♦)) being the partially ordered sets of join and meet irreducible elements
respectively. This holds because the lattice is finite.

The reconstruction of the lattice can be done through the following steps:

• Let Z = J (R(♦))∪W(R(♦)). This is a partially ordered set in the order induced
from R(♦).

• For b ∈ J (R(♦)) and a ∈ W(R(♦)), let b ≺ a if and only if a 
= b in R(♦).
• On the new poset Z with≺, form sets including elements of W(R(♦)) connected

to it.
• The set of union of all such sets including empty set ordered by inclusion would

be isomorphic to the original lattice. [108]
• Under additional assumptions on G, the structure of Z can be described further.

When the granulation satisfies the properties of crispness and mereological
atomicity, then A = J (R(♦)) and C = W(R(♦)). So the third part holds as well.

��
The results motivate this concept of purity: A maximal antichain will be said to

pure if and only if it is both lower and upper pure.

12.5 Enhancing the Anti Chain Based Representation

An integration of the orders on sets of maximal antichains or antichains and the
representation of rough objects and possible orders among them leads to interesting
multiple orders on the resulting structure. A major problem is that of defining the
orders or partials thereof in the first place among the various possibilities.

Definition 298 By the rough interpretation of an antichain will be meant the
sequence of pairs obtained by substituting objects in the rough domain in place
of objects in the classical perspective. Thus if α = {a1, a2. . . . , ap} is a antichain,
then its rough interpretation would be (π(ai) = (al

i , a
u
i ) for each i)

α = {π(a1), π(a2), . . . , π(ap)}. (74)

Proposition 299 It is possible that some rough objects are not representable by
maximal antichains.
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Proof Suppose the objects represented by the pairs (a, b) and (e, f ) are such that
a = e and b ⊂ f , then it is clear that any maximal antichain containing (e, f )

cannot contain any element from {x : xl = a & xu = b}. This situation can happen,
for example, in the models of proto transitive rough sets. ��
Definition 300 A set of maximal antichains V will be said to be fluent if and only
if (∀x)(∃α ∈ V )(∃(a, b) ∈ α) xl = a & xu = b.

It will be said to be well fluent if and only if it is fluent and no proper subset of it
is fluent.

A related problem is of finding conditions on G, that ensure that V is fluent.

12.6 Ternary Deduction Terms

Since AC-algebras are distributive lattices with additional operations, a natural
strategy should be to consider terms similar to Boolean algebras and p-Semilattices.
For isolating deductive systems in the sense of Sect. 12.2, a strategy can be through
complementation-like operations. This motivates the following definition:

Definition 301 In a AC-algebra S, if an antichain α = (X1,X2, . . . , Xn), then
some possible general complements on the schema

αc = H(Xc
1,X

c
2, . . . , X

c
n)

are as follows:

X∗i = {w; (∀a ∈ Xi)¬Paw &¬Pwa} (Class A)

X#
i = {w; (∀a ∈ Xi)¬al = wl or ¬au = wu} (Light)

X
�
i = {w; (∀a ∈ Xi)¬al = wl or ¬auu = wuu} (UU)

H is intended to signify the maximal antichain containing the set if that is
definable.

Note that under additional assumptions (similarity spaces), the light comple-
mentation is similar to the preclusivity operation in [19] for Quasi BZ-lattice or
Heyting-Wajsburg semantics and variants.

The above operations on α are partial in general, but can be made total with the
help of an additional order on α and the following procedure:

1. Let α = {X1,X2, . . . , Xn} be a finite sequence,
2. Form αc and split into longest ACs in sequence,
3. Form maximal ACs containing each AC in sequence
4. Join resulting maximal ACs.
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Proposition 302 Every general complement defined by the above procedure is well
defined.

Proof

• Suppose {Xc
1,X

c
2}, {Xc

3, . . . X
c
n} form antichains, but {Xc

1,X
c
2,X

c
3} is not an

antichain.
• Then form the maximal antichains η1, . . . , ηp containing either of the two

antichains.
• The join of this finite set of maximal antichains is uniquely defined. By induction,

it follows that the operations are well defined.
��

12.6.1 Translations

As per the approach of Sect. 12.2, possible definitions of translations are as follows:

Definition 303 A translation in a AC-algebra S is a σ : S �−→ S that is defined
in one of the following ways (for a fixed a ∈ S):

σθ (x) = θ(a, x) ; θ ∈ {∨,∧, *, δ}
σμ(x) = μ(x) ;μ ∈ {�,♦}

σt (x) = (x ⊕ a)⊕ b for fixed a, b

σt+(x) = (a ⊕ b)⊕ x for fixed a, b

Theorem 304

σ∨(0) = a = σ∨(a ; σ∨(1) = 1

Ran(σ∨) is the principal filter generated by a

Ran(σ∧) is the principal ideal generated by a

x 	 w −→ σ∨(x)	 σ∨(w)& σ∧(x)	 σ∧(w)

Proof

• Let F(a) be the principal lattice filter generated by a.
• If a 	 w, then a ∨w = w = σ∨(w). So w ∈ Ran(σ∨).
• σ∨(x) ∧ σ∨(w) = (a ∨ x) ∧ (a ∨ w) = a ∨ (x ∧ w) = σ∨(x ∧w).
• So if x,w ∈ Ran(σ∨), then x ∧w, x ∨ w ∈ Ran(σ∨)
• Similarly it is provable that Ran(σ∧) is the principal ideal generated by a.

��
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12.6.2 Ternary Terms and Deductive Systems

Possible ternary terms that can cohere with the assumptions of the semantics include
the following t (a, b, z) = a ∧ b ∧ z, t (a, b, z) = a ⊕ b⊕ z (⊕ being as indicated
earlier) and t (a, b, z) = �(a ∧ b) ∧ z. These have admissible deductive systems
associated. Further under some conditions on granularity, the distributive lattice
structure associated with S becomes pseudo complemented.

Theorem 305 If t (a, b, z) = a ∧ b ∧ z, τ = {t}, z ∈ H , h(x) = x σ(x) = x ∧ z

and if H is a ternary τ -deduction system at z, then it suffices that H be an filter.

Proof All of the following must hold:

• If a ∈ H , t (z, a, z) = a ∧ z ∈ H

• If t (a, b, z) ∈ H , then t (σ (a), σ (b), z) = t (a, b, z) ∈ H

• If a, t (a, b, z) ∈ H then t (a, b, z) = (a ∧ z) ∧ b ∈ H . But H is a filter, so
b ∈ H .

��
Theorem 306 If t (a, b, z) = (a ∨ (�b)) ∧ z, τ = {t}, z ∈ H , h(x) = x σ(x) =
x ∧ z and if H is a ternary τ -deduction system at z, then it suffices that H be a
principal LD-filter generated by z.

Proof All of the following must hold:

• If a ∈ H , t (z, a, z) = (z ∨ (�a)) ∧ z ∈ H because (z ∨ (�a)) ∈ H .
• If t (a, b, z) ∈ H , then t (σ (a), σ (b), z) = t ((a ∧ z), (b ∧ z), z) = ((a ∧ z) ∨

�(b ∧ z)) ∧ z ∈ H

• If a, t (a, b, z) ∈ H then t (a, b, z) = (a∨�(b))∧z = (a∧z)∨(�(b)∧z) ∈ H .
But H is a LD-filter, so a ∨ �(b) ∈ H . This implies �(b) ∈ H , which in turn
yields b ∈ H .

��
In the above two theorems, the conditions on H can be weakened considerably.

The converse questions are also of interest.
The existence of pseudo complements can also help in defining ternary terms

that determine deductive systems (or subsets closed under consequence). In general,
pseudo complementation � is a partial unary operation on S that is defined by
x� = max{a ; a ∧ x = 0} (if the greatest element exists).

There is no one answer to the question of existence as it depends on the
granularity assumptions of representation and stability of granules. The following
result guarantees pseudo complementation (in the literature, there is no universal
approach—it has always been the case that in some case they exist):

Theorem 307 In the context of AC-algebras, if the granulation satisfies mereolog-
ical atomicity and absolute crispness, then a pseudo complementation is definable.

Proof Under the conditions on the granulation, it is possible to form the rough
interpretation of each antichain. Moreover the granules can be moved in every case
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to construct the pseudo complement. The inductive steps in this proof have been
omitted. ��

12.7 Extended Abstract Example-1

The following example is intended to illustrate some aspects of the intricacies of the
inverse problem situation where anti chains may be described. It is done within the
relation based paradigm and the assumption that objects are completely determined
by their properties.

Let § = {a, b, c, e, f } and let R be a binary relation on it defined via

R ={(a, a), (b, b), (c, c), (a, b),
(c, e), (e, f ), (e, c), (f, e), (e, b)}

If the formula for successor neighborhoods is

[x] = {z ; Rzx},

then the table for successor neighborhoods would be as given in Table 11.
Using the definitions

xl =
⋃

[z]⊆x
[z] & xu =

⋃

[z]∩x 
=∅
[z],

the approximations and rough objects of Table 12 follow (strings of letters of the
form abe are intended as abbreviation for the subset {a, b, e} and � is for , among
subsets).

Under the rough inclusion order, the bounded lattice of rough objects in Fig. 7
(arrows point towards smaller elements) is the result.

From this ordered structure, maximal antichains can be evaluated by standard
algorithms or by a differential process of looking at elements, their order ideals
(and order filters) and maximal antichains that they can possibly form. In the figure,
for example, elements in the order ideals of 69 cannot form antichains with it. This
computation is targeted at representation in terms of relatively exact objects. The
direct computation that is likely to come first before representation in practice is
presented after Table 13 in which some of the maximal antichains are computed.

Table 11 Successor
neighborhoods

Objects E a b c e f

Neighborhoods [E] {a} {a, b, e} {c, e} {c, f } {e}



316 A. Mani

Table 12 Approximations and rough objects

Rough object x zl zu RO identifier

{a�b�ab} {a} {abe} {3}
{ae�abe} {a} {abce} {6}
{e�be} {e} {abec} {9}
{c} {∅} {cef } {15}
{f } {∅} {cf } {24}
{cf } {cf } {cef } {27}
{bc�bf } {∅} {S} {30}
{ac�af �abc�abf } {a} {S} {33}
{aef } {ae} {S} {36}
{ef �bef } {e} {S} {42}
{ec�bce} {ec} {S} {45}
{bcf } {f c} {S} {51}
{abef } {abe} {S} {54}
{ace} {ace} {S} {60}
{acf } {acf } {S} {63}
{ecf �bcef } {cef } {S} {69}
{abcf } {abcf } {S} {72}
{abce} {abcf } {S} {78}

{60, 54, 69, 72} is a maximal antichain because no more elements can be added
to the set without violating the incomparability assumption. Note that the singletons
{0} and {1} are also maximal antichains by definition. A diagram of the associated
distributive lattice will not be attempted because of the number of elements.

12.7.1 Comparative Computations

In practice, the above table corresponds to only one aspect of information obtained
from information systems. The scope of the anti chain based is intended to be
beyond that including the inverse problem [91]. The empirical aspect is explained
in this part.

Antichains are formed from ℘(S) or subsets of it with some implicit temporal
order (because of the order in which elements are accessed). If the elements of
℘(S) are accessed in lexicographic order, and the sequence is decomposed by rough
object discernibility alone, then it would have the following form (/, . being group
boundaries):

{/{a}., /{b} {c}, {e}, {f}., /{a, b}, {a, c}, {a, e}.,
/{a, f }, {b, c}, {b, e}.,

/{b, f }, {c, e}, {c, f }, {e, f }, {a, b, c}, {a, b, e}}., . . .}
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Fig. 7 Lattice of rough
objects

If these are refined by rough inclusion, then a decomposition into antichains would
have the following form (/, . now serve as determiners of antichain boundaries)

{/{a}., /{b} {c}, {e}., /{f}, {a, b}., /{a, c}., /{a, e}.,
/{a, f }., /{b, c}, {b, e}.,

/{b, f }., /{c, e}, {c, f }., /{e, f }, {a, b, c}., /{a, b, e}}., . . .}
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Table 13 Maximal antichains

Rough object Z Antichains including Z (differential)

78 {78, 69, 72}
60 {60, 54, 69, 72}, {60, 54, 69, 63}, {60, 54, 51}, {60, 54, 27}
54 {54, 45, 72}
72 {72, 45, 36}, {36, 69, 72}, {42, 72}, {9, 72}
69 {36, 69, 63}, {69, 33, 42}, {69, 6}, {69, 3}
42 {42, 33, 51}, {42, 33, 27}, {42, 6, 27}, {42, 6, 51}, {42, 63}
36 {36, 45, 63}, {36, 51, 45}, {36, 27, 45}
33 {45, 33, 51}, {45, 33, 27}
6 {9, 6, 15}, {9, 6, 27}, {9, 6, 51}, {9, 6, 24}
9 {9, 3, 15}, {9, 3, 24}, {9, 3, 27}, {9, 3, 51}, {9, 63}

Implicit in all this is that the agent can perceive

• rough approximations,
• rough inclusion,
• rough equality and

have good intuitive algorithms for arriving at maximal antichains. In the brute

force approach, the agent would need as much as
2#(℘ (S))!

2
orders for obtaining

all maximal antichains. The number of computations can be sharply reduced by the
table of rough objects and known algorithms in the absence of intuitive algorithms.

A reading of the above sequence of antichains in terms of approximations (the
compact notation introduced earlier is used) is

{/(a, abe)., /(a, abe), (∅, cef ), (e, abec)., /(∅, cf ), (a, abe).,
/(a, S)., /(a, abec)., /(a, S)., /(∅, S), (e, abec).,

/(∅, S)., /(ec, S), (cf, cef )., /(e, S), (a, S)., /(a, abec)., . . .}

Relative the order structure this reads as

{/3., /3, 15, 9., /24, 3.,
/33., /6., /33., /30, 9.,

/30., /45, 27., /42, 33., /6., . . .}

12.8 Example: Micro-Fossils and Descriptively Remote Sets

This is a somewhat extended version of the example mentioned by the present author
in [98]. In the case study on numeric visual data including micro-fossils with the
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help of nearness and remoteness granules in [132], the difference between granules
and approximations is very fluid as the precision level of the former can be varied.
The data set consists of values of probe functions that extract pixel data from images
of micro-fossils trapped inside other media like amethyst crystals.

The idea of remoteness granules is relative a fixed set of nearness granules
formed from upper approximations—so the approach is about reasoning with sets of
objects which in turn arise from tolerance relations on a set. In [132], antichains of
rough objects are not used, but the computations can be extended to form maximal
antichains at different levels of precision towards working out the best antichains
from the point of view of classification.

Let X be an object space consisting of representation of some patterns and Φ :
X �−→ R

n be a probe function, defined by

Φ(x) = (φ1(x), φ2(x), . . . , φn(x)), (75)

where φi(x) is intended as a measurement of the ith component in the feature
space ?(Φ). The concept of descriptive intersection of sets permits migration from
classical ideas of proximity to ones based on descriptions. A subset A ⊆ X’s
descriptive intersection with subset B ⊆ X is defined by

A ∩Φ B = {x ∈ A ∪ B : Φ(x) ∈ Φ(A)&Φ(x) ∈ Φ(B)} (76)

A is then descriptively near B if and only if their descriptive intersection is
nonempty. Peter’s version of proximity πΦ is defined by

AπΦB ↔ Φ(A) ∩Φ(B) 
= ∅ (77)

In [33], weaker implications for defining descriptive nearness are considered :

A ∩Φ B 
= ∅ → AδΦB. (78)

Specifically, if δ is a proximity on Rn, then a descriptive proximity δΦ is definable
via

AδΦB ↔ Φ(A)δΦ(B). (79)

All these are again approachable from an anti-chain perspective.

12.9 Example: Beyond Data Tables

In this example subjective data is cast in terms of rough language for the purpose of
understanding appropriate frameworks and solving context related problems.

Suppose agent X wants to complete a task and this task is likely to involve the
use of a number of tools. X thinks tool-1 suffices for the task that a tool-2 is not
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suited for the purpose and that tool-3 is better suited than tool-1 for the same
task. X also believes that tool-4 is as suitable as tool-1 for the task and that tool-
5 provides more than what is necessary for the task. X thinks similarly about
other tools but not much is known about the consistency of the information. X has a
large repository of tools and limited knowledge about tools and their suitability for
different purposes, and at the same time X might be knowing more about difficulty
of tasks that in turn require better tools of different kinds.

Suppose also that similar heuristics are available about other similar tasks.
The reasoning of the agent in the situation can be recast in terms of lower, upper

approximations and generalized equality and questions of interest include those
relating to the agent’s understanding of the features of tools, their appropriate usage
contexts and whether the person thinks rationally.

To see this it should be noted that the key predicates in the context are as below:

• suffices for can be read as includes potential lower approximation of a right tool
for the task.

• is not suited for can be read as is neither a lower or upper approximation of any
of the right tools for the task.

• better suited than can be read as potential rough inclusion ,
• is as suitable as can be read as potential rough equality and
• provides more than what is necessary for is for upper approximation of a

right tool for the task.

If table rationality is the process of reasoning by information tables and
approximations, then when does X’s reasoning become table rational?

This problem fits in easily with the antichain perspective, but not the information
table approach because the latter requires extra information about properties.

12.10 Relation to Knowledge Interpretation

In Pawlak’s concept of knowledge in classical RST [114, 127], if S is a set of
attributes and P an indiscernibility relation on it, then sets of the form Al and
Au represent clear and definite concepts (the semantic domain associated is the
rough semantic domain). Extension of this to other kinds of rough sets have also
been considered in [89, 94, 96, 99] by the present author. In [89], the concept of
knowledge advanced by her is that of union of pairwise independent granules (in
set context corresponding to empty intersection) correspond to clear concepts. This
granular condition is desirable in other situations too, but may not correspond to
the approximations of interest. In real life, clear concepts whose parts may not have
clear relation between themselves are too common. If all of the granules are not
definite objects, then analogous concepts of knowledge may be graded or typed
based on the properties satisfied by them [96, 99]. Then again the semantic domains
in which these are being considered can be varied and so knowledge is relative.
Some examples of granular knowledge axioms are as follows:
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1. Individual granules are atomic units of knowledge.
2. If collections of granules combine subject to a concept of mutual independence,

then the result would be a concept of knowledge. The ’result’ may be a single
entity or a collection of granules depending on how one understands the concept
of fusion in the underlying mereology. In set theoretic (ZF) setting the fusion
operation reduces to set-theoretic union and so would result in a single entity.

3. Maximal collections of granules subject to a concept of mutual independence are
admissible concepts of knowledge.

4. Parts common to subcollections of maximal collections are also knowledge.
5. All stable concepts of knowledge consistency should reduce to correspondences

between granular components of knowledges. Two knowledges are consistent if
and only if the granules generating the two have ’reasonable’ correspondence.

6. Knowledge A is consistent with knowledge B if and only if the granules
generating knowledge B are part of some of the granules generating A.

An antichain of rough objects is essentially a set of some-sense mutually distinct
rough concepts relative that interpretation. Maximal antichains naturally correspond
to represented knowledge that can be handled in a clear way in a context involving
vagueness. The stress here should be on possible operations both within and over
them. It is fairly clear that better the axioms satisfied by a concept of granular
knowledge, better will be the nature of possible operations over sets of some-sense
mutually distinct rough concepts.

From decision making perspectives, antichains of rough objects correspond to
forming representative partitions of the whole and semantics relate to relation
between different sets of representatives.

12.11 Knowledge Representation

In Subsection 12.5, the developed representation has the following features:

• Every object in a antichain is representable by a pair of objects (a, b) that are
respectively of the form xl and zu.

• Some of these objects might be of the form (a, a) under the restriction a = al =
au

• The above means that antichains can be written in terms of objects that are
approximations of other objects or themselves.

• At another level, the concepts of rough objects mentioned in the background
section suggest classification of the possible concepts of knowledge.

• The representation is perceivable in a rough semantic domain and this will be
referred to as the AC-representable rough domain ACR.

• If definable rough objects are those rough objects representable in the form (a, b)

with a, b being definite objects, then these together with definite objects may
not correspond to maximal antichains in the classical semantic domain—the
point is that some of the non crisp objects may fail to get represented under
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the constraints. The semantic domain associated with the definable rough objects
with the representation and crisp objects will be referred to as the strict rough
domain (SRD).

The above motivates the following definition sequence

Definition 308 All of the following constitute the basic knowledge structure in the
context of AC-semantics:

• A Proper Knowledge Sequence in ACR corresponds to the representation of any
of the maximal antichains.

• An Abstract Proper Knowledge Sequence in ACR corresponds to the representa-
tion of possible maximal antichains. These may be realized in particular models.

• A Knowledge Sequence in SRD corresponds to the relatively maximal antichains
formed by sequences of definable rough objects and definite objects.

• Definable rough objects
• Representation of rough and crisp objects

More complex objects formed by antichains are also of interest. The important
thing about the idea of knowledge sequences is the explicit admission of temporality
and the relation to all of the information available in the context. This is considered
in [106] by the present author.

12.12 Problems

This research also motivates the following:

• Further study of specific rough sets from the perspective of antichains.
• Research into connections with the rough membership function based semantics

of [28] and extensions by the present author in a forthcoming paper. This is
justified by advances in concepts of so-called cut-sets in antichains.

• Research into computational aspects as the theory is well developed for
antichains. The abstract example illustrates parts of this aspect in particular.

• Study of consequence and special ideals afforded by the semantics and
• Research into ontologies indicated by the triadic approach.

13 PQE Rough Sets

Entire semantics of various general rough set approaches can be recast in the
antichain based perspective. For example, prototransitive rough sets [99] can be
dealt with the same way. A finer characterization of the same will appear separately.
Quasi equivalential rough sets were considered also as an example of the approach
in [98]. Correctly, these should have been termed pre-quasi equivalential rough sets
and this is done here and moreover the quasi-equivalences of [13] are considered.
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One of the most interesting type of granulation G in relational rough sets is one
that satisfies

(∀x, y) (φ(x) = φ(y)↔ Rxy &Ryx), (80)

where φ(x) is the granule generated by x ∈ S. This granular axiom says that if
x is left-similar to y and y is left-similar to x, then the elements left similar to
either of x and y must be the same. R is being read as left-similarity because it
is directional and has effect similar to tolerances on neighborhood granules.

A binary relation R on a set S will be said to be a pre-quasi-equivalence if and
only if it satisfies:

(∀a, b) (Rab&Rba←− [a] = [b]).

It is said to be a quasi-equivalence if and only if it satisfies:

(∀a, b) ([a] = [b] ↔ Rab &Rba).

It is useful in algebras when it behaves as a good factor relation [13]. But the
condition is of interest in rough sets by itself. In [98, 106], pre-quasi equivalences
had been termed quasi equivalences. Here the notation, terminology and results have
been updated.

Example 309 Every reflexive and transitive relation is a quasi-equivalence, but the
converse need not hold.

In fact, the following is provable:

Proposition 310 R is a quasi-equivalence on the set S if and only if all of the
following hold:

(∀a)Raa (Reflexive)

(∀a, b, c) Rab&Rba &Rca −→ Rcb (sy-transitive)

For example, it is possible to find quasi equivalences that do not satisfy other
properties from contexts relating to numeric measures. Let S be a set such that Rxy

if and only if x ≈ κy & y ≈ κ ′x & κ, κ ′ ∈ (0.9, 1.1) for some interpretation of ≈
and x, y ∈ S.

Definition 311 By a pre quasi equivalential approximation space PQEAS will be
meant a pair of the form S = 〈S,R〉 with R being a pre quasi equivalence. For an
arbitrary subset A ∈ ℘(S), the following can be defined:

(∀x ∈ S) [x] = {y ; y ∈ S &Ryx}.
Al =

⋃
{[x] ; [x] ⊆ A& x ∈ S}&Au =

⋃
{[x] ; [x] ∩ A 
= ∅& x ∈ S}
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Alo =
⋃
{[x] ; [x] ⊆ A&x ∈ A}&Auo =

⋃
{[x] ; [x] ∩ A 
= ∅&x ∈ A}

AL = {x ; ∅ 
= [x] ⊆ A& x ∈ S}&AU = {x ; [x] ∩ A 
= ∅& x ∈ S}
ALo = {x ; [x] ⊆ A& x ∈ A}&AUo = {x ; [x] ∩ A 
= ∅ ∨ x ∈ A}.
AL1 = {x ; [x] ⊆ A& x ∈ S}&AU = {x ; [x] ∩ A 
= ∅& x ∈ S}.

Note the requirement of non-emptiness of [x] in the definition of AL, but it is not
necessary in that of ALo

Theorem 312 The following properties hold when R is a PQE:

1. All of the approximations are distinct in general.
2. (∀A ∈ ℘(S))ALo ⊆ Alo ⊆ Al ⊆ A and ALo ⊆ AL.

3. (∀A ∈ ℘(S))Alol = Alo &Allo ⊆ Alo &Alolo ⊆ Alo

4. (∀A ∈ ℘(S))Au = Aul ⊆ Auu, but it is possible that A � Au

5. It is possible that AL
� A and A � AU , but (∀A ∈ ℘(S))AL ⊆ AU holds. In

general AL would not be comparable with Al and similarly for AU and Au.
6. (∀A ∈ ℘(S))ALoLo ⊆ ALo ⊆ A ⊆ AUo ⊆ AUoUo . Further AU ⊆ AUo .

Theorem 313 The following additional properties properties hold when R is a
QE

1. (∀A ∈ ℘(S))ALo = AL = AL1 ⊆ Alo = Al ⊆ A

2. (∀A ∈ ℘(S))All = Al &Allo ⊆ Alo &Alolo ⊆ Alo

3. (∀A ∈ ℘(S))Au = Aul ⊆ Auu, but it is possible that A � Au

4. In general AL would not be comparable with Al and similarly for AU and Au.
5. (∀A ∈ ℘(S))ALoLo ⊆ ALo ⊆ A ⊆ AUo ⊆ AUoUo . Further AU ⊆ AUo .

Clearly the operators l, u are granular approximations, but the latter is controver-
sial as an upper approximation operator. The point-wise approximations L,U are
problematic.

Example 314 (General)

Let S = {a, b, c, e, f, k, h, q} (81)

and let R be a binary relation on it defined via

R = {(a, a), (b, a), (c, a), (f, a),
(k, k), (e, h), (f, c), (k, h)

(b, b), (c, b), (f, b), (a, b), (c, e), (e, q)}.
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The neighborhood granules G are then

[a] = {a, b, c, f } = [b], [c] = {f }, [e] = {c},
[k] = {k}, [h] = {k, e}, [f ] = ∅& [q] = {e}.

So R is a pre quasi-equivalence relation.
If P = R ∪ ΔS , then P would be a quasi equivalence relation (ΔS being the

diagonal of S.)
If A = {a, k, q, f }, then

Al = {k, f }, Au = {a, b, c, f, k, e}, Auu = {a, b, c, f, k, e, h}
Alo = {k}, Auo = {a, b, c, k, f }.

AL = {k, f }, AU = {a, b, c, k, h, q}.
ALo = {q, k, f }, AUo = {a, k, q, f, b, c, h}.

AL1 = {k, c, f }, AU = {a, b, c, k, h, q}.

Note that AL1 � A&AL1 � AU &A � AU. (82)

13.1 Semantics of PQE-Rough Sets

In this section a semantics of pre quasi equivalential rough sets (PQE-rough sets),
using antichains generated from rough objects, is developed. Interestingly the
properties of the approximation operators of PQE-rough sets fall short of those
required of granular operator space. Denoting the set of maximal antichains of rough
objects by S and carrying over the operationsC, *, δ, the following algebra can be
defined.

Definition 315 A maximal simply independent algebraQ of pre quasi equivalential
rough sets shall be an algebra of the form

Q = 〈S,C, *, δ〉 (83)

defined as in section 12.3 with the approximation operators being l, u uniformly in
all constructions and definitions.

Theorem 316 Maximal simply independent algebras are well defined.

Proof None of the steps in the definition of the maximal antichains, or the
operations * or δ are problematic because of the properties of the operators l, u. ��
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The above theorem suggests that it would be better to try and define more
specific operations to improve the uniqueness aspect of the semantics or at least
the properties of *, δ. It is clearly easier to work with antichains as opposed to
maximal antichains as more number of suitable operations are closed over the set of
antichains as opposed to those over the set of maximal antichains.

Definition 317 Let K be the set of antichains of rough objects of S then the
following operations L, U and extensions of others can be defined:

• Let α = {A1,A2, . . . ,An, . . .} ∈ K with Ai being rough objects; the lower
and upper approximation of any subset in Ai will be denoted by A

l
i and A

u
i

respectively.
• Define L(α) = {Al

1,A
l
2, . . . ,A

l
r , . . .} with duplicates being dropped

• Define U(α) = {Au
1,A

u
2, . . . ,A

u
r , . . .} with duplicates being dropped

• Define

μ(α) =
{
α if α ∈ S

undefined, else.
(84)

• Partial operations *∗, δ∗ corresponding to *, δ can also be defined as follows:
Define

*∗(α, β) =
{
*(α, β) if α, β ∈ S

undefined, else.
(85)

δ∗(α, β) =
{
δ(α, β) if α, β ∈ S

undefined, else.
(86)

The resulting partial algebra K = 〈K, μ,∨,∧, *∗, δ∗,L,U, 0〉 is said to be a simply
independent QE algebra

Theorem 318 Simply independent QE algebras are well defined and satisfy the
following:

• L(α) ∨ α = α.
• U(α) ∨ α = U(α).

14 Concluding Remarks and Problems

In this research chapter, most if not all algebraic approaches to granular rough sets
have been explained in some detail. This task required clarifications on the very
nature of and formulation of usable concepts of granularity. The things that an
algebraic approach must address are not fixed. The purpose of an algebraic approach
may be to
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• model reasoning with rough objects in a way that avoids contamination and a
limited number of semantic operations,

• try and reduce models of reasoning to those of specific non classical logics,
• model reasoning and knowledge with rough objects, classical objects and hybrid

ones
• aid in the computation of reducts
• explore the limits of definable models in a comparative way and
• model reasoning and decision making from an approximate perspective.

In this chapter, all of the above types of models have been considered except
for those that explicitly seek to aid in the computation of reducts. In the present
authors perspective, a large number of problems can be formulated within a model
or semantics and without. Problems of the former class have been mentioned in the
context of the sections and in related papers. Apart from problems that arise from
algebraic or universal algebraic considerations, many problems require a choice
of perspective for easier comprehensibility. It is important also to identify good
perspectives. Some of the problems of interest are

• Development of rough sets with more complicated representation of approxima-
tions from granules. This may also help in reducing point-wise and other non
granular approximations to granular ones satisfying weak representability.

• Admissible operations: Apart from definable operations, additional operations
may be adjoinable to particular models to enhance and improve the semantics.
Not many papers are known on this (see [92]).

• Rough methods of counting had been introduced and investigated in [91] by
the present author. These can be used on all kinds of rough sets including ones
that arise from granular considerations. Obviously the related algebras of [91]
are apparently related to antichains. What are the connections between the two
collections of algebras? How are they related to cylindric algebras and Boolean
algebras with operators?

It is hoped that this research chapter would prove to be a useful reference for all
granular approaches in rough sets.

Acknowledgements I would like to thank Professor Yiyu Yao for being the second reader of this
research chapter and for the many useful remarks that helped in improving the presentation of the
chapter.
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Three Lessons on the Topological
and Algebraic Hidden Core of Rough
Set Theory

Piero Pagliani

Abstract In what follows the reader will find an exposition of the basic, albeit not
elementary, connections between Rough Set Theory and relation algebra, topology
and algebraic logic.

Many algebraic aspects of Rough Set Theory, are known nowadays. Other are
less known, although they are important, for instance because they unveil the
“epistemological meaning” of some “unexplained” mathematical features of well-
known algebraic structures.

We shall wrap everything in a simple exposition, illustrated by many examples,
where just a few basic notions are required. Some new results will help the
connection of the topics taken into account.

Important features in Rough Set Theory will be explained by means of notions
connecting relation algebra, pre-topological and topological spaces, formal (pre)
topological systems, algebraic logic and logic.

Relation algebra provides basic tools for the definition of approximations in
general (that is, not confined to particular kind of relations). Indeed, these tools
lead to pairs of operators fulfilling Galois adjointness, whose combinations, in turn,
provide pre-topological and topological operators, which, in some cases, turn into
approximation operators.

Once one has approximation operators, rough sets can be defined. In turn, rough
set systems can be made into different logico-algebraic systems, such as Nelson
algebras, three-valued Łukasiewicz algebras, Post algebras of order three, Heyting
and co-Heyting algebras.

In addition, in the process of approximation, one has to deal with both exact
and inexact pieces of information (definable and non-definable sets). Therefore, the
concept of local validity comes into picture. It will be extensively discussed because
it links the construction of Nelson algebras from Heyting ones with the notions of a
Grothendieck topology and a Lawvere-Tierney operator.

As a side effect, we obtain an information-oriented explanation of the above
logico-algebraic constructions which usually are given on the basis of pure formal
motivations.
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The exposition will move from abstract levels (pointless) to concrete levels of
analysis.

1 Introduction: Relations, Nearness and Granulation

From a general point of view, the approximation of a set A included in a universe U

amounts to answering to the following questions:

(a) What elements of U are surely, or necessarily, in A?
(b) What elements of U are not in A but sufficiently near, or possibly, in A?
(c) What elements of U are surely outside A, that is neither necessarily nor possibly

in A, that is, are necessarily outside A?

The difference with a sharp classification is crystal clear, since a sharp classifica-
tion just provides a binary answer: either an element is inside A or it is outside of it.
Otherwise stated, there is no notion of “possible in although not surely in”. There is
no indecision, no nuances: either “Yes” or “No”.

However, classification on the basis of properties or attributes demands some
more subtle answers. Suppose an item u ∈ U is in A while another item u′ ∈ U is
not in A from a classical set-theoretical point of view although it fulfils properties
or attributes very close to those of u. It could be not correct to definitely exclude
that u′ belongs to the set A. Think of some dynamic situation, where all the patients
in a hospital showing at least all the symptoms as u developed a particular disease
α and a patient u′ who shows almost all the symptoms as u but has not developed
that disease. Probably it is not safe to rule out the possibility that u′ will develop the
disease, too. Therefore, we would say that u′ belongs to a reasonable approximation
of the set A of patients suffering from α. Such an approximation is from above,
because it enlarges the actual set A: it is possible for u′ to develop α, hence it can
belong to A in the future.

The sentence “fulfilling almost all the properties as” defines a notion of nearness.
From a mathematical point of view, “almost all” defines a preorder, that is, a
binary relation R on U which is reflexive (uRu) and transitive (uRu′ and u′Ru′′
implies uRu′′): the set A of symptoms showed by patient u′ is included in the set
of symptoms B of patient u. However, this preorder should be refined, because
mathematically also the empty set ∅ is included in B, which is meaningless from a
clinical point of view. Actually, the metric underlying the adverb “almost” depends
on some particular knowledge and heuristic of the experts.

But in general R could be a binary relation denoting any sort of connection
between items (or objects) which groups objects in granules of any kind. Indeed,
there are cases in which it is difficult to recognise a “rule” behind the formation
of the given granules of objects. In this case some relation R is in action, but this
relation does not have any known “nice property”.

If the set G (U) of the granules (subsets) of U is a covering, in many cases behind
the granulation there is a tolerance relations (that is, reflexive and also symmetric:
uRu′ implies u′Ru)—see for instance [5, 18] and [36].
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If G (U) forms a family of open subsets of a topological space, then we can
restore from it a preorder, or a partial order (a preorder which is antisymmetric:
uRu′ and u′Ru implies u = u′). In particular cases one obtains an equivalence
relation (reflexive, transitive and symmetric) which is the original situation studied
by Zdzisław Pawlak (see [40]).

As we shall see, also the reverse constructions hold, that is, from preorders,
partial orders or equivalence relations to topological spaces with different features.

Algebraic structures induced by rough set systems, that is, the set of all rough
sets, have been widely studied since inception. Considering only some early results,
in [41] it was shown that classical rough sets form Stone algebras. In [25] rough
sets were linked to Heyting algebras. Also [8] worked on this topic. In [28] rough
set systems were proved to form semi-simple Nelson algebras, hence three-valued
Łukasiewicz algebras. This result was improved in [3], in [4] and by other authors.
Later, rough sets have been connected to other algebras of logic, such as Post
algebras of order three, Chain-based Lattices, Heyting and bi-Heyting algebras
(see [2, 32]). In [6] and [7] rough sets were embedded in the framework of
Brouwer-Zadeh lattices and Heyting Wajsberg Algebras. More recently, interesting
investigations about more general algebras linked to rough sets have been presented
(see [46]).

Situations in which instead of topologies one has to deal with pre-topologies
have been studied (see for instance [33] and [34]). Nonetheless, in a number of
cases, preorders and partial orders occur (see for instance [16]). In these lessons we
shall deal with this specific case.

From an abstract point of view topologies are Heyting algebras, which are
particular structures which model Intuitionistic Logic in the same way Boolean
Algebras model Classical Logic. Eventually, in this case rough set systems can be
made into Nelson algebras which are built from Heyting algebras defined on the
granulation.

A natural approach to rough sets is through relation algebra. We can cite as early
works: [9, 10, 29] and [11].

It follows that we have to develop our exposition in three different framework,
which will be connected each other:

Relation algebras− Topology− Algebraic logics.

From now on, the sets we shall deal with are intended to be finite. This choice does
no harm real-word application. Moreover, it avoids some complications which could
disturb a beginner’s comprehension. Many of the results are, nonetheless, applicable
to the infinite case and, if required to avoid misinterpretation, we shall point out
when this does not happen.

Since these are lessons a few results and proofs are really new, although much
of the exposition is novel. We underline with references when a result is standard
or well-known. Otherwise the theses or the proofs are new or already given in
other publications by the author. Moreover, a number of elementary examples will
be provided. These examples are connected each other to show how the topics
intertwine.
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Usually, in the meta-language, which is classical, we write, “∃”, “∀”, “⇒”, “∧”,
“∨” and “¬” for “exists”, “for all”, “implies”, “and”, “or” and “non”, respectively.
However, in some cases to avoid confusion we use “&” instead of “∧”.

2 Lesson 1: The Relational Framework

2.1 Binary Relations and Their Algebra

Let us formally define what we can do with binary relations.

Definition 1 Let U,U ′, U ′′ be three sets. In what follows, u∗ is a dummy element
of U and u′∗ a dummy element of U ′ (that is, they represent any element of their
domain):

1. A binary relation is a subset R ⊆ U ×U ′ of ordered pairs 〈u, u′〉 of elements of
U and U ′.

2. −R := {〈u, u′〉 : 〈u, u′〉 /∈ R} is the complement of R. If R′ ⊆ U × U ′, then
R ∩ R′ and R ∪ R′ are the usual set-theoretic operations.

3. R3 denotes the converse of R: R3 := {〈y, x〉 : 〈x, y〉 ∈ R}. Hence, for all
u ∈ U, u′ ∈ U ′, 〈u, u′〉 ∈ R iff 〈u′, u〉 ∈ R3.

4. If Q ⊆ U ′ × U ′′, then R ⊗Q := {〈u, u′′〉 : ∃u′ ∈ U ′(〈u, u′〉 ∈ R ∧ 〈u′, u′′〉 ∈
Q)}—the right composition of R with Q. Converse is an involution with respect
to composition: R33 = R and (R ⊗Q)3 = Q3 ⊗ R3.

5. If A ⊆ U , then A→R := {〈a, u′〉 : a ∈ A∧ u′ ∈ U ′} is called the right cylinder of
A with respect to R. It is the relational embedding of a subset A of U in U ×U ′.
If B ⊆ U ′, then B←R := {〈u, b〉 : b ∈ B ∧ u ∈ U} is the left cylinder of B with
respect to R. It is the relational embedding of a subset B of U ′ in U × U ′.

We set A←R3 := (A→R )3, the left cylinder of A with respect to R3 to have the
relational embedding of A in U ′ × U and B→R3 := (R←R )3, the right cylinder of
B with respect to R3, which is the relational embedding of B in U ′ × U .

A cylinder represents a set in the language of relations. In any ordered pair
〈x, y〉 of a cylinder, the element y is any element of the codomain of the
relation. This is the result and meaning of a cylindrification, that now we formally
motivate.

6. The operation R3 ⊗ A→R = {〈u′, u′∗〉 : ∃u(〈u, u′〉 ∈ R ∧ 〈u, u′∗〉 ∈ A→R )} is a
right cylinder of type U ′ ×U ′. Since u′∗ is a dummy element of U the operation
can be rephrased in terms of relations and sets, as it will be formally proved in
Lemma 5:

R(A) := {u′ : ∃u(〈u, u′〉 ∈ R ∧ u ∈ A)}. (1)

R(A) is called the left Peirce product of R and A, R-neighbourhood of A, or
the filter of A, if R is an order relation, in which case we denote it by ↑ A or
↑R A if necessary.
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Similarly, the operationR⊗B→R3 = {〈u, u∗〉 : ∃u′(〈u, u′〉 ∈ R∧〈u′, u∗〉 ∈ B→R3)}
can be rephrased in terms of relations and sets as:

R3(B) := {u : ∃u′(〈u, u′〉 ∈ R ∧ u′ ∈ B)} (2)

R3(B) is called the left Peirce product of R3 and B (the right Peirce product of
R and B), the R3-neighbourhood of B, or the R-ideal of B, denoted also by
↓ B or ↓R B if we need to specify the relation. For any u′ ∈ U ′, u ∈ U :

(A→R )3(u′) = (A←R3)(u′) = A, (B→R3)3(u) = B←R (u) = B. (3)

7. Given two relations R ⊆ U × U ′ and Z ⊆ U × U ′′ the relation

R −→ Z = {〈u′, u′′〉 : ∀u(〈u, u′〉 ∈ R ⇒ 〈u, u′′〉 ∈ Z)} (4)

is called the right residual of R and Z. R −→ Z is the largest relation K such
that R ⊗K ⊆ Z:

R ⊗K ⊆ Z iff K ⊆ R −→ Z. (5)

If R ⊆ U × U ′ and W ⊆ U ′′ × U ′ the relation

W ←− R = {〈u′′, u〉 : ∀u′(〈u, u′〉 ∈ R⇒ 〈u′′, u′〉 ∈ W)} (6)

is called the left residual of R and W . W ←− R is the largest relation K such
that K ⊗ R ⊆ W :

K ⊗ R ⊆ W iff K ⊆ W ←− R. (7)

The above operations can be depicted as follows:

∀
U U

U

Z

R

R

Z

∀
U U

U

W

W

R
R

For any set A ⊆ U and B ⊆ U ′, one has: R −→ A→R = {〈u′, u′∗〉 :
∀u(〈u, u′〉 ∈ R ⇒ 〈u, u′∗〉 ∈ A→R )} and R3 −→ B→R3 = {〈u, u∗〉 :
∀u′(〈u′, u〉 ∈ R3 ⇒ 〈u′, u∗〉 ∈ B→R3)}. Since the elements decorated with ∗
are generic, one can get rid of the cylindrification and rephrase the operations in
terms of relations and sets as follows:

R −→ A = {u′ : ∀u(〈u, u′〉 ∈ R ⇒ u ∈ A)} (8)

R3 −→ B = {u : ∀u′(〈u, u′〉 ∈ R⇒ u′ ∈ B)} (9)
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The above operations are fundamental to study approximations by means of
relations.

Lemma 2 Given R ⊆ U × U ′, Z ⊆ U × U ′′ and W ⊆ U ′′ × U ′:

R −→ Z = −(R3 ⊗−Z); (10)

W ←− R = −(−W ⊗ R3). (11)

Proof

−(R3 ⊗−Z) = −{〈u′, u′′〉 : ∃u(〈u′, u〉 ∈ R3 ∧ 〈u, u′′〉 /∈ Z)}
= −{〈u′, u′′〉 : ∃u¬(〈u′, u〉 /∈ R3 ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ¬∃u¬(〈u′, u〉 /∈ R3 ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ∀u(〈u′, u〉 /∈ R3 ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ∀u(〈u, u′〉 /∈ R ∨ 〈u, u′′〉 ∈ Z)}
= {〈u′, u′′〉 : ∀u(〈u, u′〉 ∈ R ⇒ 〈u, u′′〉 ∈ Z)}
= R −→ Z

The other proof comes from symmetry. ��
The above equations parallel the logical equivalence α $⇒ β ≡ ¬(α ∧ ¬β)).

Definition 3 The structure 〈U,U ′, R〉, with R ⊆ U ×U ′ will be called a relational
system. If a is in relation R with b we write 〈a, b〉 ∈ R. Especially if R is an order
relation we also use the notation aRb. If R ⊆ U × U we shall write 〈U,R〉 instead
of 〈U,U,R〉.
Example 4 A relation R ⊆ U × U ′ will be usually represented by means of
a Boolean matrix with rows labelled by the elements of U and columns by the
elements of U ′. If 〈x, y〉 ∈ R then the entry of row x, column y is 1. It is 0
otherwise. The operation −→ has a higher precedence than the others. Thus, for
instance, R ⊗Q −→ Z means R ⊗ (Q −→ Z).
U = {a, b, c, d}, U ′ = {α, β, γ }, U ′′ = {4, λ,μ}, R ⊆ U × U ′, Q ⊆ U ′ × U ′′.

R α β γ

a 1 0 1
b 1 1 0
c 0 1 1
d 1 0 0

−R α β γ

a 0 1 0
b 0 0 1
c 1 0 0
d 0 1 1

R3 a b c d

α 1 1 0 1
β 0 1 1 0
γ 1 0 1 0

Q 4 λ μ

α 1 1 0
β 0 1 0
γ 1 0 1

R ⊗Q 4 λ μ

a 1 1 1
b 1 1 0
c 1 1 1
d 1 1 0

Indeed, for instance, 〈a, α〉 ∈ R and 〈α, λ〉 ∈ Q, thus 〈a, λ〉 ∈ R⊗
Q. Analogously, 〈c, γ 〉 ∈ R and 〈γ,μ〉 ∈ Q, thus 〈c, μ〉 ∈ R⊗Q.
On the contrary, there is no intermediate element of U ′ linking d

and μ. And so on.
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Z η δ ε ζ ι

a 1 0 0 1 1
b 1 1 1 1 0
c 0 1 1 1 0
d 1 0 1 1 0

R −→ Z η δ ε ζ ι

α 1 0 0 1 0
β 0 1 1 1 0
γ 0 0 0 1 0

R ⊗ R −→ Z η δ ε ζ ι

a 1 0 0 1 0
b 1 1 1 1 0
c 0 1 1 1 0
d 1 0 0 1 0

Therefore,R⊗R −→ Z 
 Z. For instance, 〈a, ι〉 /∈ R⊗R −→ Z, while 〈a, ι〉 ∈ Z.
Since 〈a, α〉, 〈a, γ 〉 ∈ R, in order to have 〈α, ι〉 ∈ R ⊗ R −→ Z we should have
either 〈α, ι〉 or 〈γ, ι〉 in R −→ Z. In the former case also 〈b, ι〉 ∈ R ⊗ R −→ Z,
because 〈b, α〉 ∈ R, too. But 〈b, ι〉 /∈ Z. In the latter case also 〈c, ι〉 ∈ R⊗R −→ Z

because 〈c, γ 〉 ∈ R, but 〈c, ι〉 /∈ Z.

Let A = {a, b, c}. Then the right cylindrification of A is

A→R α β γ

a 1 1 1
b 1 1 1
c 1 1 1
d 0 0 0

Notice that for any u′ ∈ U ′, (A→R )3(u′) = A. Moreover,

R −→ A→R α β γ

α 0 0 0
β 1 1 1
γ 1 1 1

Thus, R −→ A = {β, γ }.

Let B = {α, γ }. The right cylindrification of B is

B→R3 a b c d

α 1 1 1 1
β 0 0 0 0
γ 1 1 1 1

Then one obtains

R3 −→ B→R3 a b c d

a 1 1 1 1
b 0 0 0 0
c 0 0 0 0
d 1 1 1 1

. Thus, R3 −→ B = {a, d}.

Lemma 5 Given R ⊆ U ×U ′, Z ⊆ U ×U ′′, W ⊆ U ′ ×U ′′, A ⊆ U and B ⊆ U ′:

R −→ Z = {〈u′, u′′〉 : R3(u′) ⊆ Z3(u′′)} (12)

R −→ A = {u′ : R3(u′) ⊆ A} (13)

R3 −→ W = {〈u, u′′〉 : R(u) ⊆ W3(u′′)} (14)

R3 −→ B = {u : R(u) ⊆ B} (15)

R ⊗W = {〈u, u′′〉 : R(u) ∩W3(u′′) 
= ∅} (16)

R3(B) = {u : R(u) ∩ B 
= ∅} (17)

R3 ⊗ Z = {〈u′, u′′〉 : R3(u′) ∩ Z3(u′′) 
= ∅} (18)

R(A) = {u′ : R3(u′) ∩ A 
= ∅} (19)
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Proof (12), (14), (16) and (18) come straightforwardly from the definitions. We just
prove a couple of other points.
(14)⇒(15): Let B ⊆ U ′ and B→R3 its right cylinder. Then from (14) R3 −→
B→R3 = {〈u, u∗〉 : R(U) ⊆ (B→R3)3(u∗)}. But from (3) (B→R3)3(u∗) = B. Since
u∗ is a dummy element, we can dispense with it and the cylindrification of B and
obtain (15).
(18)⇒(19): Let A→R be the right cylinder of a set A ⊆ U . Then from (18) R3 ⊗
A→R = {〈u′, u′∗〉 : R3(u′) ∩ (A→R )3(u′∗) 
= ∅}. But from (3) (A→R )3(u′∗) = A.
Thus R3 ⊗ A→R = {〈u′, u′∗〉 : R3(u′) ∩ A 
= ∅}. Since u′∗ is a dummy element,
we can dispense with it and the cylindrification of A and obtain (19). ��

3 Lesson 2: The Topological Framework

3.1 Galois Adjunctions and Their Operators

Pre-topologies and topologies are definable from a particular mathematical notion
called a Galois adjunction. It is not the usual way to introduce topologies but it is
an effective one.

Definition 6 Let O = 〈U,R〉 be an ordered set and L = 〈U,∨,∧, 0, 1〉 a bounded
lattice such that for any a, b ∈ U , aRb iff a ∧ b = b (a ∨ b = b). Let ϕ : O �−→ O
and θ : L �−→ L be two operators. Then, given any a, b ∈ U :

• ϕ is a projection if it is (a) monotonic: aRb implies 〈ϕ(a), ϕ(b)〉 ∈ R and (b)
idempotent: ϕ(ϕ(a)) = ϕ(a).

• a projection operator ϕ is a closure if it is increasing: 〈a, ϕ(a)〉 ∈ R.
• A projection operator ϕ is an interior if it is decreasing: 〈ϕ(a), a〉 ∈ R.
• θ is a modal or possibility operator if it is (a) normal: θ(0) = 0 and (b) additive:

θ(a ∨ b) = θ(a) ∨ θ(b).
• θ is a co-modal or necessity operator if it is (a) co-normal: θ(1) = 1 and (b)

multiplicative: θ(a ∧ b) = θ(a) ∧ θ(b).
• A closure operator θ on a lattice is topological if it is modal.
• An interior operator θ on a lattice is topological if it is co-modal.

Now we investigate two pairs of operators which are defined by means of a binary
relation R. In the definitions of these operators (as well as of many mathematical
operators) some logic combinations recur, namely the pairs 〈⇒,∧〉, 〈∃,∧〉, 〈∀,⇒〉,
〈∃,∀〉 and 〈∀, ∃〉. These combinations enjoy particular mathematical properties
which are inherited by the operators they define and which are introduced in the
next definition.

Definition 7 (Galois Adjunctions) Let O and O′ be two pre-ordered sets (possibly
lattices) with order ≤, resp. ≤′ and σ : O �−→ O′ and ι : O′ �−→ O be two maps
such that for all p ∈ O and p′ ∈ O′

ι(p′) ≤ p iff p′ ≤′ σ(p) (20)
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then σ is called the upper adjoint of ι and ι is called the lower adjoint of σ . This fact
is denoted by O′ Aι,σ O and we say that the pair 〈ι, σ 〉 forms a Galois adjunction
or an axiality.

Remarks 3.1 The contravariant version of (20), i.e. ι(p′) ≤ p iff p′ ≥′ σ(p)
is called a Galois connection and 〈ι, σ 〉 a polarity. Galois connections from binary
relations were basically introduced in [26] and applied in Formal Concept Analysis
(FCA) in [49]. FCA and polarities are not in the scope of the chapter. Galois
adjunctions, that is, the covariant form we are dealing with, have been introduced
in classical Rough Set Theory in [17] with the name “dual Galois connections”.
Independently and in the present general setting, which is derived from Intuitionistic
Formal Spaces (see [44] and [45]), they were applied to approximation theory
in [37].

Adjoint operators enjoy interesting properties:

Facts 3.1

1. σ preserves all existing infs (i.e. it is multiplicative), thus it is monotonic.
2. ι preserves all existing sups (i.e. it is additive), thus it is monotonic.
3. σ(a) ∨′ σ(b) ≤′ σ(a ∨ b); ι(a′) ∧ ι(b′) ≤ ι(a′ ∧′ b′).
4. σ ι is a closure operator on O′, ισ is an interior operator on O;
5. σ ι(a′ ∧′ b′) ≤ σ ι(a′) ∧′ σ ι(b′), σ ι(a′ ∨′ b′) ≥ σ ι(a′) ∨′ σ ι(b′);
6. ισ (a ∨ b) ≥ ισ (a)∨ ισ (b), ισ (a ∧ b) ≤ ισ (a)∧ ισ (b);
7. ισ ι = ι; σ ισ = σ .

For the proofs of the above Facts, see for instance [37, 38] or [39].

3.2 Galois Adjunction from Relations

Definition 8 Let R ⊆ U × U ′ be a binary relation, A ⊆ U , B ⊆ U ′. Then we
define the following operators:

1. 〈i〉 : ℘(U) �−→ ℘(U ′); 〈i〉(A) = R(A)

– the intensional possibility of A. It is also denoted by 〈R3〉(A).

2. 〈e〉 : ℘(U ′) �−→ ℘(U); 〈e〉(B) = R3(B)

– the extensional possibility of B. It is also denoted by 〈R〉(B).

3. [i] : ℘(U) �−→ ℘(U ′); [i](A) = R −→ A

– the intensional necessity of A. It is also denoted by [R3](A).

4. [e] : ℘(U ′) �−→ ℘(U); [e](B) = R3 −→ B

– the extensional necessity of B. It is also denoted by [R](B).

5. int : ℘(U) �−→ ℘(U); int (A) = 〈e〉[i](A)—the interior of A.
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6. cl : ℘(U) �−→ ℘(U); cl(A) = [e]〈i〉(A)—the closure of A.
7. C : ℘(U ′) �−→ ℘(U ′);C (B) = 〈i〉[e](B)—the co-interior of B.
8. A : ℘(U ′) �−→ ℘(U ′);A (B) = [i]〈e〉(B)—the co-closure of B.

The above notation and terms have the following motivations. In a relational system
〈U,U ′, R〉, U can be interpreted as a set of items or objects and U ′ as a set of
properties, so that 〈u, u′〉 ∈ R means that object u enjoys property u′. According
to this interpretation, if u′ ∈ 〈i〉(A), then any element of A has the possibility to
enjoy u′. On the other hand, if u′ ∈ [i](A) then in order to enjoy u′ it is necessary
to be a member of A, although this is not a sufficient condition, since there can
be elements of A which does not enjoy u′ (to put it another way, at most all the
elements of A enjoy u′). A symmetric interpretation holds for 〈e〉(B) and [e](B).
The terms “necessity” and “possibility” are also associated with some models for
modal logic. A Kripke model is a relational system 〈U,R〉 equipped with a forcing
relation � between members of U and formulas, such that:

u � �α iff ∀u′(〈u, u′〉 ∈ R ⇒ u′ � α)

u � ♦α iff ∃u′(〈u, u′〉 ∈ R ∧ u′ � α)

where � is the necessity modality and ♦ the possibility. If �α� = {x : x � α}
is the domain of validity of α, then u � �α iff u ∈ [e](�α�), while u � ♦α iff
u ∈ 〈e〉(�α�). Therefore, from (15) one has [e](�α�) = (��α�) and from (17),
〈e〉(�α�) = (�♦α�). In turn, [i] and 〈i〉 model the modality operators with respect
to the reverse relation R3. For this reason we equate the symbols in the following
pairs: ([e], [R]), (〈e〉, 〈R〉), ([i], [R3]) and (〈i〉, 〈R3〉).
Notation We call the operators 〈•〉 and [•] constructors. If X = {x}, for any
operator op of the above definition, we shall usually write op(x) instead of op({x}).
If needed we write opR to specify the relation from which an operator op is defined.
A relation R ⊆ U × U ′ is called serial if R(u) 
= ∅, for any u ∈ U .
From now on, if not otherwise stated given a relation R ⊆ U × U ′, A will denote a
subset of the domain U and B a subset of the codomain U ′.

Through the notion of a Peirce product one arrives at the notion of a granule:

Definition 9 Let R ⊆ U × U be a binary relation, u ∈ U,A ⊆ U . The set R(u)

(i.e. 〈i〉({u})) is called the R-granule of u and R(A) = ⋃{R(a) : a ∈ A} is called
the R-granule of A.

Remarks 3.2 The above definition of R(A) is consistent with (1) of Definition 1
because the operation R(−) is additive. This can be easily proved from the very
definition of R-neighbourhoods based on the quantifier ∃. However, we shall see
below that there is another more general proof.

A set of granules of U is called a granulation. More in general, granules are
subsets of U , so that they are not necessarily generated by some binary relation.
For instance, any covering is a granulation although only particular covering are
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induced by binary relations (more precisely, particular tolerance relations—see
the Introduction). Anyway, in what follows we shall deal with preorders and
equivalence relations. These kinds of binary relations induce particular features in
the above operators, which will be essential in the algebraic analysis of rough set
systems.

We list some straightforward consequences of the above definitions and
Lemma 5:

[i](A) = {u′ : R3(u′) ⊆ A} (21)

[e](B) = {u : R(u) ⊆ B} (22)

〈i〉(A) = R(A) = {u′ : R3(u′) ∩ A 
= ∅} (23)

〈e〉(B) = R3(B) = {u : R(u) ∩ B 
= ∅} (24)

int (A) =
⋃
{R3(u′) : u′ ∈ [i](A)} =

⋃
{R3(u′) : R3(u′) ⊆ A} (25)

cl(A) = {u : R(u) ⊆ R(A)} = {u : ∀u′(u ∈ R3(u′)⇒ R3(u′) ∩A 
= ∅)}
(26)

C (B) =
⋃
{R(u) : u ∈ [e](B)} =

⋃
{R(u) : R(u) ⊆ B} (27)

A (B) = {u′ : R3(u′) ⊆ R3(B)} = {u′ : ∀u(u′ ∈ R(u)⇒ R(u) ∩ B 
= ∅)}
(28)

The following duality properties are easily obtained by means of the logical
equivalences¬∃ ≡ ∀¬ and ¬(α ∧ ¬β) ≡ α $⇒ β:

Lemma 10 〈e〉(B) = −[e](−B); 〈i〉(A) = −[i](−A)

Moreover, the operators acting on opposite directions fulfil the following adjointness
properties (see [37] and [39]):

Theorem 11 Let P = 〈U,U ′, R〉 be a relational system. Then for U′ = 〈℘(U ′),⊆〉
and U = 〈℘(U),⊆〉:

1. U′ A〈e〉,[i] U, 2. U A〈i〉,[e] U′ (29)

Proof Let A ⊆ U , B ⊆ U ′. Then (1): 〈e〉(B) ⊆ A iff for all y ∈ B, 〈e〉(y) ⊆ A, iff
for all y ∈ B if xRy then x ∈ A iff for all y ∈ B, y ∈ [i](A), iff B ⊆ [i](A). (2):
By symmetry. ��
Remarks 3.3 One can verify that all the above operators are isotonic. Moreover, ∃
and ∀ are, from the position of the sub-formula “y ∈ B” and “x ∈ A” in their
definitions, respectively lower and upper adjoints to the pre-image f−1 : ℘(Y ) �−→
℘(X) of a function f : X �−→ Y . That is, for all A ⊆ X,B ⊆ Y one has ∃f (A) ⊆ B

iff A ⊆ f−1(B) and B ⊆ ∀f (A) iff f−1(B) ⊆ A, where ∃f (A) = {b ∈ B :
∃a(f (a) = b ∧ a ∈ A)} and ∀f (A) = {b ∈ B : ∀a(f (a) = b ⇒ a ∈ A)}.
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Finally, the operators 〈•〉 has the logical structure ∃∧, while the operators [•] has
the structure ∀ ⇒ and we shall see that ∧ is lower adjoint to ⇒. Therefore, since
“e” (i.e. R-based) and “i” (i.e. R3-based) operators act in opposite directions, the
preceding result comes as no surprise.1

Remarks 3.4 From (5) it follows that ⊗ is lower adjoint to −→ with respect to the
ordered set 〈R(U,U ′),⊆〉, where R(U,U ′) = {R : R ⊆ U ×U ′}. Therefore,⊗ is
additive and from point 6 of Definition 1, R( ) is additive, too. From this observation
and Definition 8 one obtains another proof of Theorem 11.

Corollary 12 Let 〈U,U ′, R〉 be a relational system. Then for any X, Y belonging
to the due domain:

1. [i](U) = U ′; [e](U ′) = U ; [•](∅) = ∅ if the relation is serial.
2. 〈•〉(∅) = ∅; 〈e〉(U ′) = U if R is serial; 〈i〉(U) = U ′ if R3 is serial.
3. 〈•〉(X ∪ Y ) = 〈•〉(X) ∪ 〈•〉(Y ).
4. [•](X ∩ Y ) = [•](X) ∩ [•](Y ).
5. 〈•〉(X ∩ Y ) ⊆ 〈•〉(X) ∩ 〈•〉(Y ).
6. [•](X ∪ Y ) ⊇ [•](X) ∪ [•](Y ).
7. int (X) ⊆ X ⊆ cl(X).
8. C (Y ) ⊆ Y ⊆ A (Y ).

Proof (1) and (2) are trivial. (3) Because 〈•〉 constructors are lower adjoints. (4)
Because [•] constructors are upper adjoints. (5) and (6) can be proved in many a
way which are worth mentioning: (a) Straightforwardly from point 3 of Facts 3.1.
(b) Using the distributive properties of quantifiers. For instance one has ∀xA(x) ∨
∀xB(x) ⇒ ∀x(A(x) ∨ B(x)), but not the opposite. Incidentally, this proves that
∀ cannot have an upper adjoint, otherwise it should be additive. (c) A ⊆ X or
A ⊆ Y implies A ⊆ X ∪ Y but not the other way around. Also (7) can be proved
in many a way: (a) straightforwardly from 5 of Facts 3.1; (b) from (25) and (26)
one trivially obtains int (X) ⊆ X and, respectively, X ⊆ cl(X); (c) by adjointness
〈e〉([i](X)) ⊆ X iff [i](X) ⊆ [i](X) and X ⊆ [e](〈i〉(X)) iff 〈i〉(X) ⊆ 〈i〉(X); but
the rightmost inequalities are tautologies. (8) is obtained by symmetry. ��

Thus, if U = U ′ and R and R3 are serial, [•] and 〈•〉 are co-modal, respectively
modal, operators on 〈℘(U),⊆〉, but in general 〈•〉 are not increasing and [•] are not
decreasing. Therefore they are not interiors, respectively, closures.

Vice-versa,A and cl are closure operators, while C and int are interior operators
on 〈℘(U ′),⊆〉, respectively 〈℘(U),⊆〉. However, they are not modal, respectively
co-modal. Indeed, as like as topological interior operators, int and C are not
additive, because the internal constructors [•] are not, but they are not multiplicative
either, because the external constructors 〈•〉 are not. Symmetrically, cl and A are
neither additive nor multiplicative. We call them pretopological.

1Often, a lower adjoint is called “left adjoint” and an upper adjoint is called “right adjoint”. We
avoid the terms “right” and “left” because they could make confusion with the position of the
arguments of the operations on binary relations.
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However, it is worth noticing that u ∈ [e](B) iff R(u) ⊆ B, that is, if there exists
an R-neighbourhood of u included in B, so that [e](B) is similar to the topological
definition of an open set. In turn, u ∈ 〈e〉(B) iff R(u) ∩ B 
= ∅, that is, if all
the R-neighbourhoods of u have non void intersection with B, since R(u) is the
least R-neighbourhood of u. Therefore, we are close to the definition of topological
operators. We achieve the goal if the properties of [•] and 〈•〉 join those of C and
int, respectively A and cl.

We sum up the previous results in the following table:

Modal constructors Pre-topological operators

[e](B) = {u : R(u) ⊆ B} C (B) = ⋃{R(u) : R(u) ⊆ B}
[i](A) = {u′ : R3(u′) ⊆ A} int (A) = ⋃{R3(u′) : R3(u′) ⊆ A}
〈e〉(B) = {u : u ∈ R3(B)} A (B) = {u′ : R3(u′) ⊆ R3(B)}
〈i〉(A) = {u′ : u′ ∈ R(A)} cl(A) = {u : R(u) ⊆ R(A)}

Example 13 U = {a, b, c, d}, U ′ = {α, β, γ }

R α β γ

a 1 0 1
b 1 1 0
c 0 1 1
d 1 0 0

[i]({a}) = ∅, [i]({a, b, c}) = {β, γ }, 〈i〉({a}) = {α, γ },
[e] ({α}) = {d}, [e] ({α, β}) = {b, d}, 〈e〉(α) = {a, b, d},
int ({c, d}) = ∅, int ({a, c, d}) = {a, c},
cl({a}) = {a, d}, cl({d}) = {d},
A ({α}) = {α},A ({α, β}) = {α, β, γ },
C ({α}) = {α},C ({α, β}) = {α, β}.

Given R ⊆ U × U ′, for any operator op ∈ {[e], [i], 〈e〉, 〈i〉, cl, int,C ,A } we set
Sop(D) = {(op(X) : X ∈ dom(op)}, where D is U or U ′ according to the operator.
Then we can define the following lattices:

Definition 14 Let 〈U,U ′, R〉 be a relational system. Then:

1. L〈i〉(U) = 〈S〈i〉(U),∧,∪,∅, U ′〉, where
∧

i∈I Xi = C (
⋂

i∈I Xi)

2. L[i](U) = 〈S[i](U),∩,∨,∅, U ′〉, where
∨

i∈I Xi = A (
⋃

i∈I Xi)

3. L〈e〉(U ′) = 〈S〈e〉(U ′),∧,∪,∅, U〉, where
∧

i∈I Xi = int (
⋂

i∈I Xi)

4. L[e](U ′) = 〈S[e](U ′),∩,∨,∅, U〉, where
∨

i∈I Xi = cl(
⋃

i∈I Xi)

5. Lint (U) = 〈Sint (U),∧,∪,∅, U〉, where
∧

i∈I Xi = int (
⋂

i∈I Xi)

6. Lcl (U) = 〈Scl (U),∩,∨,∅, U〉, where
∨

i∈I Xi = cl(
⋃

i∈I Xi)

7. LA (U ′) = 〈SA (U ′),∩,∨,∅, U ′〉, where
∨

i∈I Xi = A (
⋃

i∈I Xi)

8. LC (U ′) = 〈SC (U ′),∧,∪,∅, U ′〉, where
∧

i∈I Xi = C (
⋂

i∈I Xi)

Proposition 15 The structures Lop(D) of Definition 14 are complete lattices.

Proof The proof for Lint (U), Lcl (U), LA (U) and LC (U) can be found in section
1.4 of [39]. As for L〈i〉(U) we have to prove that given 〈i〉(X) and 〈i〉(Y ),
C (〈i〉(X)∩〈i〉(Y )) = inf {〈i〉(X), 〈i〉(Y )}. That is: (a) C (〈i〉(X)∩〈i〉(Y )) ⊆ 〈i〉(X)

and C (〈i〉(X) ∩ 〈i〉(Y )) ⊆ 〈i〉(Y ), and (b) if 〈i〉(Z) ⊆ 〈i〉(X) and 〈i〉(Z) ⊆ 〈i〉(Y ),
then 〈i〉(Z) ⊆ C (〈i〉(X)∩〈i〉(Y )). But (a) is obvious because C(〈i〉(X)∩〈i〉(Y )) ⊆
〈i〉(X) ∩ 〈i〉(Y ) and 〈i〉(X) ∩ 〈i〉(Y ) is included both in 〈i〉(X) and 〈i〉(Y ). As to
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(b) C(〈i〉(X) ∩ 〈i〉(Y )) = 〈i〉[e](〈i〉(X) ∩ 〈i〉(Y )) = 〈i〉([e]〈i〉(X) ∩ [e]〈i〉(Y )).
Suppose 〈i〉(Z) ⊆ 〈i〉(X) and 〈i〉(Z) ⊆ 〈i〉(Y ). Then for adjunction, Z ⊆ [e]〈i〉(X)

and Z ⊆ [e]〈i〉(Y ), so that Z ⊆ ([e]〈i〉(X) ∩ [e]〈i〉(Y ). Therefore, by isotonicity
〈i〉(Z) ⊆ 〈i〉([e]〈i〉(X) ∩ [e]〈i〉(Y )). The proof for L[i] comes from duality and by
symmetry we obtain the proof for L[e] and L〈e〉. ��

From the definitions above it follows that the lattice order of Lop(D) is inherited
from 〈Sop(D),⊆〉.
Lemma 16 Let P = 〈U,U ′, R〉 be a relational system. Then for all A ⊆ U,B ⊆
U ′:
A ∈ Sint (U) iff A = 〈e〉(B ′), A ∈ Scl(U) iff A = [e](B ′), for some B ′ ⊆ U ′
B ∈ SA (U ′) iff B = [i](A′), B ∈ SC (U ′) iff B = 〈i〉(A′), for some A′ ⊆ U

Proof If A = 〈e〉(B ′) then A = 〈e〉[i]〈e〉(B ′), from point 7 of Facts 3.1. Therefore,
by definition of int , A = int (〈e〉(B ′)) = int (A). Vice-versa, if A = int (A), then
A = 〈e〉[i](A). Hence, A = 〈e〉(B ′) for B ′ = [i](A). The other cases are proved in
the same way, by exploiting the appropriate equations of point 7 of Facts 3.1. ��
Corollary 17 (See [39]) Let P = 〈U,U ′, R〉 be a relational system. Then,

1. 〈e〉 is an isomorphism between LA (U ′) and Lint (U);
2. [i] is an isomorphism between Lint (U) and LA (U ′);
3. [e] is an isomorphism between LC (U ′) and Lcl(U);
4. 〈i〉 is an isomorphism between Lcl (U) and LC (U ′).
5. the set-theoretic complementation is an anti-isomorphism between Lcl (U) and

Lint (U) and between LC (U ′) and LA (U ′).

Proof Let us notice that the proof for an operator requires the proof for its adjoint
operator. Then, let us prove points (1) and (2) together. First, let us prove bijection
for 〈e〉 and [i]. From Lemma 16 the codomain of 〈e〉 is Sint (U) and the codomain
of [i] is SA (U ′). Moreover, for all A ∈ Sint (U),A = 〈e〉[i](A) and for all B ∈
SA (U ′), B = [i]〈e〉(B). From the adjunction properties we have:
(i) 〈e〉 is surjective onto Sint (U) and (ii) [i] is injective from Sint (U).
(iii) 〈e〉 is injective from SA (U ′) and (iv) [i] is surjective onto SA (U ′).
Moreover, if [i] is restricted to Sint (U), then its codomain is the set H = {B :
B = [i](A) ∧ A ∈ Sint (U)}. Clearly, H ⊆ SA (U ′). In turn, if 〈e〉 is restricted
to SA (U ′), then its codomain is the set K = {A : A = 〈e〉(B) ∧ B ∈ SA (U ′)}.
Clearly K ⊆ Sint (U). Therefore, (i) and (iii) give that 〈e〉 is bijective if restricted to
SA (U ′), while (ii) and (iv) give that [i] is a bijection whenever restricted to Sint (U).
Now it is to show that 〈e〉 and [i] preserve joins and meets. For 〈e〉 we proceed
as follows: (v) 〈e〉(∨

i∈I
(A (Yi))) := 〈e〉(A (

⋃

i∈I
(A (Yi)))). But 〈e〉A = 〈e〉, from

point 7 of Facts 3.1. Moreover, 〈e〉 distributes over unions. Hence the right side of
(v) equals to

⋃

i∈I
〈e〉(A (Yi)). But in view of Theorem 15, the union of extensional

open subsets is open and from Lemma 16 〈e〉(A (Yi)) belongs to Sint (U) indeed,
so that the right side of (v) turns into int (

⋃

i∈I
〈e〉(A (Yi))) = ⋃

i∈I
〈e〉(A (Yi)). (vi)
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〈e〉(⋂
i∈I

A (Yi)) = 〈e〉(⋂
i∈I
[i]〈e〉(Yi)). Since [i] distributes over intersections, the

right side of (vi) turns into 〈e〉[i](⋂
i∈I
〈e〉(Yi)) = int (

⋂

i∈I
〈e〉(Yi)). But 〈e〉 = 〈e〉A ,

so that the last term is exactly
∧

i∈I
〈e〉(A (Yi)). Since [i] is the inverse of 〈e〉, qua

isomorphism, we have that [i] preserves meets and joins, too.
As to (3) and (4) the results come by symmetry. Finally, (5) is trivial. ��
Corollary 18 For any binary relation R, L[e](U) = Lcl(U), L〈e〉(U) = Lint (U),
L〈i〉(U) = LC (U ′), L[i](U) = LA (U ′).

Example 19 Example 13 continued.

L i (U) = L (U )
L[e](U) = Lcl(U) L[i](U) = L (U ) L e (U) = Lint (U)

U
U U U

∅

{α}

{β, γ }{α, β} {α, γ }

∅

{d}

{c}{b, d} {a, d}

∅

{α}

{β, γ }

{β} {γ }

∅

{a, b, d}

{a, b, c}

{b, c} {a, c}

Thus, so far we have seen how binary relations induce modal and pretopological
operators. However, if U = U ′ and R is a preorder the operators and constructors
gain the topological properties. To prove that, first we show that if R is a preorder
then int and [i] coincide. At this point, since int is an interior operator and [i] is
comodal, we immediately obtain that int (aka [i]) is topological (see Definition 6).
By duality the same can be proved of cl (aka 〈i〉) and by symmetry for C (i.e. [e])
and A (i.e. 〈e〉).

However, we shall complete the proof in a more specific manner, this time with
a focus on the opposite direction: it will be proved that if R is a preorder, then C
(thus [e]) is the interior operator of a particular topology induced by R. Therefore,
now we enter the topological framework.

3.3 Topologies and Relations

Definition 20 Let U be a set. Then:

• Let 6(U) be a distributive lattice of subsets of U which is bounded by U and ∅
and is closed under infinite unions and finite intersections. Then 6(U) is called
a topology on U , its elements open sets and τ (U) = 〈U,6(U)〉 a topological
space.

• I(X) = ⋃{A ∈ 6(U) : A ⊆ X} is called the interior of X and I the interior
operator of τ (U).
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• C(X) = {x : ∀A ∈ 6(U)(x ∈ A⇒ A ∩X 
= ∅)} is called the closure of X and
C the closure operator of τ (U). We put Γ (U) = {C(X) : X ⊆ U}—the set of
closed sets of τ (U).

Facts 3.2 From the above definitions it follows that:

• 6(U) = {X : X ⊆ U ∧ I(X) = X} = {I(X) : X ⊆ U}.
• I(X) = −C(−X) and C(X) = −I(−X), any X ⊆ U .
• Γ (U) = {−A : A ∈ 6(U)} and 6(U) = {−A : A ∈ Γ (U)}.
• The inner logical structure of the operator I is (∀ ⇒). Indeed x ∈ I(X) iff there

exists A ∈ 6(U) containing x such that ∀y(y ∈ A⇒ y ∈ B).
• The inner logical structure of the operator C is (∃∧). Indeed, x ∈ C(X) iff for

all A ∈ 6(U) containing x, ∃z(x ∈ A ∧ z ∈ X).

Let now R be a binary relation on a set U , which is assumed to be at most countable.
From now on we set P := 〈U,R〉. If R is a preorder, then the family of granules
BR(U) = {R(u) : u ∈ U} is a basis of a topology on U (that is, any open set
of the topology is given by the union of a family, possibly empty, of elements of
BR(U)). This topology is called an Alexandrov topology. In this kind of topologies,
R(A) is an open set, for any A ⊆ U because the operator R(−) is additive, i.e.
R(A) ∪ R(B) = R(A ∪ B). We denote with 6R(U) the family {R(A) : A ⊆ U} of
open subsets of the topology and by IR and CR its interior and, respectively, closure
operators.

In Alexandrov spaces the intersection of any family of open sets is open and
each point has a least open neighbourhood (indeed the basis BR(U) provides these
least open neighbourhoods). Moreover, in any topological space, a specialisation
preorder @ can be defined as follows: x @ y iff for all open set O if x ∈ O then
y ∈ O . An Alexandrov topology 6R(U) is such that its specialisation preorder and
R coincide.

Remarks 3.5 The definition of a specialisation preorder can be rephrased using the
interior operator I: x @ y iff for all A ⊆ U, x ∈ I(A) implies y ∈ I(A). Indeed,
given a set X it can be proved that a preorder can be defined by means of any
monadic operator� on ℘(X) as follows:

x @� y iff ∀A ⊆ X, x ∈ �(A) $⇒ y ∈ �(A).

The relation @� is a preorder: clearly it is reflexive because by substituting x

for y we obtain a tautology, and it is transitive, because implication is transitive
and the universal quantifier distributes over implications. Thus we can call @� the
specialisation preorder induced by �.
If we denote by IR the interior operator of an Alexandrov topology 6R induced by
a preorder R, we have R =@IR

and 6R = 6@IR
. However, there can be Alexandrov

topologies 6R(U) induced by bases BR(U) such that R is not a preorder, so that
R 
=@IR

but 6R = 6@IR
, all the same. We shall illustrate this delicate issue in order

to avoid some traps. Moreover, to our knowledge this topic has not been treated
before.

Lemma 21 Let 〈U,R〉 be a relational space. Then ∀u ∈ U, u ∈ [i](R3(u)).
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Proof Trivially, u ∈ [i](R3(u)) iff R3(u) ⊆ R3(u). ��
Theorem 22 Let 〈U,R〉 be a relational space. Then for all A ⊆ U, int (A) =
[i](A) if and only if R is a preorder.

Proof

A) If ∃A ⊆ U such that int (A) 
= [i](A) then R is not a preorder (either
reflexivity or transitivity fail). Proof. The antecedent holds in two cases: (i)
∃x ∈ [i](A), x /∈ int (A); (ii) ∃x ∈ int (A), x /∈ [i](A). In case (i) from (25) one
has that ∀y ∈ [i](A), x /∈ R3(y). In particular, x /∈ R3(x), so that reflexivity
fails. In case (ii) ∃y ∈ [i](A) such that x ∈ R3(y). Therefore, since y ∈ [i](A),
from (21) x must belong to A. Moreover, it must exists z /∈ A, 〈z, x〉 ∈ R,
otherwise x ∈ [i](A). Since 〈x, y〉 ∈ R, if R were transitive, 〈z, y〉 ∈ R, so that
y /∈ [i](A). Contradiction.

B) If R is not a preorder, then ∃A ⊆ U, int (A) 
= [i](A). Proof. (i) Take A =
R3(x). From Lemma 21, x ∈ [i](R3(x)). Suppose R is not reflexive with
〈x, x〉 /∈ R. Thus x /∈ R3(x). Hence, it cannot exists an y such that x ∈ R3(y)

and R3(y) ⊆ R3(x). So, x /∈ int (R3(x)). (ii) Suppose transitivity fails, with
〈x, y〉, 〈y, z〉 ∈ R, 〈x, z〉 /∈ R. From Lemma 21, z ∈ [i](R3(z)), but y /∈
[i](R3(z)), because x ∈ R3(y) while x /∈ R3(z) so that R3(y) � R3(z). On
the contrary, y ∈ R3(z) and R3(z) ⊆ R3(z). Therefore, y ∈ int (R3(z)). We
conclude that int (R3(z)) 
= [i](R3(z)).

��
We write op = op′ if for all elements X of their domain op(X) = op′(X).

Corollary 23 In a relational space 〈U,R〉, the following are equivalent: (i) R is a
preorder, (ii) C = [e], (iii) int = [i], (iv) cl = 〈i〉, (v) A = 〈e〉.
Proof (i)⇔ (iii) is Theorem 22, (ii)⇔ (iv) by duality and the other equivalences by
symmetry. ��
Corollary 24 Given a relational space 〈U,R〉, if R is a preorder, then int, [i],C
and [e] are topological interior operators; cl, 〈i〉,A , 〈e〉 are topological closure
operators.

The converse of Corollary 24 holds just partially:

Corollary 25 Let 〈U,R〉 be a SRS. If [•] and 〈•〉 are topological interior, respec-
tively closure, operators, then R is a preorder.

The proof follows from Corollary 23. However, the converse of Corollary 24 does
not hold for int, cl, A and C as the following example illustrates and Theorem 30
will prove:

Example 26

U = {v, a, b, b′, c}, and BR(U) = {{a}, {b, b′}, {a, c}, U}
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R v a b b′ c
v 0 0 1 1 0
a 0 1 0 0 0
b 0 1 0 0 1
b′ 0 1 0 0 1
c 1 1 1 1 1

R is neither reflexive (e.g. 〈v, v〉 /∈ R) nor transitive (e.g. 〈b, c〉 ∈
R and 〈c, v〉 ∈ R, but 〈b, v〉 /∈ R). Therefore, it is not a preorder.
Indeed, from the lattices below one verifies that the equalities of
Corollary 23 do not hold. However, in these lattices inf = ∩
and sup = ∪. Therefore, they are bounded distributive, hence
topologies.

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U
L i (U) LC (U)

∅

{a} {v}

{a, v}{a, b, b }

{v, a, b, b }

U

L[e](U) Lcl (U)

∅

{c}

{b, b , c} {v, c}

{v, b, b , c}{a, b, b , c}

U

L e (U) Lint (U)

∅

{v}

{v, c} {v, b, b }

{v, b, b , c}{v, a, c}

U

LA (U) L[i](U)

Albeit obvious, it is worth pointing out that if Lop =
Lop′ the equality is related to the entire lattice
which the operators output, not to the operators.
For instance 〈i〉({v}) = {b, b′} 
= ∅ = C ({v}),
〈e〉({v}) = {c} 
= ∅ = int ({v}), [e]({v, a}) = {a} 
=
{v, a} = cl({v}) and [i]({v, b′, c}) = {v, b, b′} 
=
{v, b, b′, c} = A ({v, b, b′}).

Remarks 3.6 Corollary 24 amends point (iv) of Corollary 1 of [35] and point (ii)
of Facts 3 of [36], which state also the converse implication, erroneously. However,
one can state that if {R(A) : A ⊆ U} is a topology, then 〈U,R〉 is a renaming of the
elements of a preorder 〈U ′, R〉. To see this, we need some results about the duality
between topologies 6R(U) from preorders R and the specialisation preorder@IR

.

Lemma 27 If R ⊆ X×X is transitive, then ∀x, y ∈ X, 〈x, y〉 ∈ R implies R(y) ⊆
R(x). If R is reflexive, then R(y) ⊆ R(x) implies 〈x, y〉 ∈ R.

Proof Suppose 〈x, y〉 ∈ R and z ∈ R(y). Then 〈y, z〉 ∈ R and by transitivity
〈x, z〉 ∈ R so that z ∈ R(x). Thus, R(y) ⊆ R(x). Vice-versa, if R(y) ⊆ R(x) then
for all a, 〈y, a〉 ∈ R implies 〈x, a〉 ∈ R. In particular 〈y, y〉 ∈ R by reflexivity.
Hence 〈x, y〉 ∈ R. ��
Theorem 28 Let 〈U,R〉 be a relational system such that R is preorder. Then the
specialization preorder induced by [i] coincides with R3 and that induced by [e]
coincides with R.
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Proof If x @[i] y then for all A ⊆ X, x ∈ [i](A) implies y ∈ [i](A). Therefore,
R3(x) ⊆ A implies R3(y) ⊆ A, all A. In particular, R3(x) ⊆ R3(x) implies
R3(y) ⊆ R3(x). But the antecedent is true, so the consequence must be true,
too, so that R3(y) ⊆ R3(x). Since R is reflexive, so is R3 and from Lemma 27,
〈x, y〉 ∈ R3. The opposite implication is proved analogously by transitivity. The
thesis for [e] and R is a trivial consequence. ��
Corollary 29 Let CR be the operator induced by a preorder 〈U,R〉. Then CR is the
interior operator IR of the Alexandrov topology induced by R.

Proof If R is a preorder then from Corollary 23, CR = [e]. Therefore, from
Theorem 28, the specialisation preorder induced by CR coincides with R which, in
turn, coincides with the specialisation preorder of the Alexandrov topology induced
by R. ��

Obviously, if R is symmetric (as in equivalence relations), then R = R3, with all
the simplifications due to this fact which operates for standard Rough Set Theory.
Now we prove that CR of Example 26 is a topological interior operator, that is,
multiplicative. The proof is based on the following fact:

Theorem 30 Let L = 〈L,∧,∨〉 be a lattice and � an interior operator on L such
that�(a) ∧ �(b) ≥ �(a ∧ b) and L� = {�(x) : x ∈ L} is a sublattice of L. Then
� is multiplicative.

Proof Since L� is a sublattice of L, for all x, y ∈ L, �(x) ∧ �(y) = �(z) for
some z ∈ L. Since �(x) ≤ x and �(y) ≤ y, �(x) ∧ �(y) ≤ x ∧ y. Therefore,
�(z) ≤ x∧y so that from isotonicity and idempotency of� we obtain�(z) = ��
(z) ≤ �(x ∧ y). To prove multiplicativity of� we then just need�(z) ≥ �(x ∧ y),
which is given by hypothesis. ��

LCR
(U) is a sublattice of ℘(U), therefore, in LCR

(U), inf = ∩ and CR fulfils
the hypotheses of the theorem. So we obtain that for any X,Y ⊆ U , CR(X) ∩
CR(Y ) = CR(X ∩ Y ).2

Let R ⊆ U × U be such that CR is a topological interior operator. Then LCR

is a distributive lattice, hence a topology 6CR
(U). Let @CR

be the specialisation
preorder induced by CR . It is possible to prove that the interior operator IC@R
and CR coincide and that there is a transformation from R to @CR

. Moreover,
this transformation is given by the operation −→. However, this topic and its
mathematical connections are still under investigation.

Example 31 The specialisation preorder @C induced by the lattice LC (U) of
Example 26 is the one given in Example 34 below.

2A direct proof of point 6 of Facts 3.1 runs as follows. Let x ∈ CR(X∩Y). Therefore, ∃y, x ∈ R(y)

and R(y) ⊆ X ∩ Y . It follows that R(y) ⊆ X and R(y) ⊆ Y , so that x ∈ CR(X) and x ∈ CR(Y )

which amounts to x ∈ CR(X) ∩ CR(Y ). Therefore, CR(X ∩ Y) ⊆ CR(X) ∩ CR(Y ).
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3.4 Approximation and Topology

In view of the notions introduced so far, the above three questions can be given
precise mathematical answers. Let A ⊆ U , R ⊆ U ×U a “nearness relation” of any
kind, and x ∈ U :

1. x is in necessarily in A if all the elements R-near x are in A. Since u is R-near x
if u ∈ R(x), we obtain that x is necessarily in A if R(x) ⊆ A. Let us set:

(lR)(A) = {x : R(x) ⊆ A} (30)

It is easy to see that for any x ∈ U , {R(X) : x ∈ R(X)} is a neighbourhood
system, so that if R is a preorder x ∈ (lR)(A) if there is an open set of 6R(U)

containing x and included in A.
2. x is possibly in A if there is some element R-near x which is in A. Thus, x is

possibly in A if R(x) ∩A 
= ∅. Let us set:

(uR)(A) = {x : R(x) ∩ A 
= ∅} (31)

If R is a preorder, R(x) is the least open set containing x, so that the previous
condition implies that all open sets containing x has non void intersections
with A.

3. Finally, x is necessarily outside A if x ∈ −(uR)(A), that is, if R(x) ⊆ −A, i.e.
x ∈ (lR)(−A).

Theorem 32 Given a relational space 〈U,R〉,

(i) (lR)(A) = [e]R(A). (ii) (uR)(A) = 〈e〉R(A). (32)

Proof (i) From (22) and (30). (ii) From (24) and (31). ��
Therefore all the previous results about the extensional constructors apply to the

approximation operators.

Definition 33 Given a relational space (U,R) and A ⊆ U :

1. (lR)(A) is called the lower approximation of A.
2. (uR)(A) is called the upper approximation of A.
3. 〈U, (lR)〉 is called an approximation space and is denoted with AS(U/R).

In view of Lemma 10, 〈U, (lR)〉 is enough to define an approximation space.
If R is a preorder we identify AS(U/R) with the Alexandrov topological space
〈U,6R(U)〉, and we have the following correspondences:

• (lR)(A) is the interior IR(A) of A,
• (uR)(A) is the closure CR(A) of A,
• (bR)(A) = (uR)(A) ∩ −(lR)(A) is the boundary BR(A) of A,
• (eR)(A) = −(uR)(A) = (lR)(−A) is the exterior of A, denoted by ER(A).
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The usual topological transformations via the complement hold trivially:
−(lR)(A) = (uR)(−A), hence−(uR)(A) = (lR)(−A).

The reader is invited to pay attention that, for instance, (bR)(A) is a notion which
applies to any R, while BR(A) works just if R is a preorder, and so on.

Example 34 U = {v, a, b, b′, c}

c b b
A

c b b
A

R v a b b c

v 1 1 1 1 1

a 0 1 0 0 0

b 0 0 1 1 0

b 0 0 1 1 0

c 0 1 0 0 1

a

v

P U,R
R(a) = {a}
R(c) = {a, c}
R(v) = {v, a, b, b , c}
R(b) = R(b ) = {b, b }
A = {b, b , c}
(lR)(A) = {b, b }
(uR)(A) = {v, b, b , c}

Remarks 3.7 It is worth noticing that, provided R is a preorder:

(lR)(A) = {x : R(x) ⊆ A} (33)

=
⋃
{R(x) : R(x) ⊆ A} =

⋃
{R(X) : R(X) ⊆ A} (34)

=
⋃
{O ∈ 6R(U) : O ⊆ A}. (35)

Formula (33) can be used to define lower approximations on the basis of any binary
relation R. However, this formula does not guarantee a proper lower approximation,
that is, less than or equal to the set to be approximated and, dually, R does not
guarantee a proper upper approximation. For instance, if R is not reflexive and x /∈
R(x), then x ∈ (lR)(R(x)), trivially, so that (lR)(R(x)) 
⊆ R(x). Even worst, if
R(x) = ∅, then for any set A, x belongs to (lR)(A), according to (33), while it
does not belong to (uR)(A). An odd situation: x necessarily belongs to A but not
possibly.

Formula (34) serves the same purpose and by definition the resulting lower
approximation is proper. But (33) coincides with (34) only if R is at least a preorder.
Indeed, if a ∈ (lR)(A) then R(a) ⊆ A. But by reflexivity of R, a ∈ R(A). It follows
that a ∈ ⋃{R(x) : R(x) ⊆ A} and we can conclude (lR)(A) ⊆ ⋃{R(x) : R(x) ⊆
A}. Conversely, assume a ∈⋃{R(x) : R(x) ⊆ A}. Then for some b ∈ U , a ∈ R(b)

and R(b) ⊆ A. By transitivity, R(a) ⊆ R(b) ⊆ A, so that a ∈ (lR)(A) and we
conclude

⋃{R(x) : R(x) ⊆ A} ⊆ (lR)(A).
If R is an equivalence relation then 〈U,6R(U)〉 is a Pawlak approximation space,

R(x) is an equivalence class, BR(U) is a partition and any element of 6R(U) is
the union of equivalence classes so that its complement is a union of equivalence
classes, too. As a consequence, 〈U,6R(U)〉 is a 0-dimensional topological space,
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i.e. any open set is closed and vice-versa: they are clopen. In this case the upper
approximation can be defined in this way: (uR)(A) =⋂{O ∈ 6R(U) : A ⊆ O}.
If R is a preorder, then by setting ��α� = (lR)(�α�) and �♦α� = (uR)(�α�) the
approximation space 〈U, (lR), (uR)〉 is a model of the modal logic S4 (or, more
precisely, if U is finite, S4.1). If R is an equivalence relation, the modelled logic is
S5.

Geometrically we can depict this fact by embedding 6R(U) into the powerset
℘(U) which with the intersection, union and complement operators provides the
ambient Boolean algebra. Notice that one can generalise this approach by defining
a modal space as a pair 〈L,L′〉 such that L′ is embeddable in L and setting for any
a ∈ L, �(a) =⊔{x : x ∈ L′ & a∧x = x} and ♦(a) = �{x : x ∈ L′ & a∨x = a},
where �,� give the lattice order of L′, while ∧,∨ give the order of L, provided the
two orders are linked by some coherence property (see [12, 14]).

4 Lesson 3: The Algebraic Framework

If (U,R) is a preorder then the lattice 〈6R(U),∩,∪,∅, U〉 can be made into a
Heyting algebra. If R is an equivalence relation, it is a Boolean algebra. Therefore,
we have to explore these notions, from a general point of view.

4.1 Heyting Algebras

Definition 35

• A structure H = 〈X,∧,∨,¬,$⇒, 1, 0〉 is a Heyting algebra if 〈X,∧,∨, 1, 0〉 is
a bounded lattice, ¬a = a $⇒ 0, and the following holds, for any x, a, b ∈ X:

x ∧ a ≤ b iff x ≤ a $⇒ b (36)

The operation x $⇒ y is called the relative pseudo-complementation of x with
respect to y and ¬x is called the pseudo-complementation of x.

• A Heyting algebra such that for any element x, ¬¬x = x (or equivalently x ∨
¬x = 1), is called a Boolean algebra.

The relative pseudo-complement x $⇒ y is the largest element of H (more
precisely, of the carrier X) whose meet with the antecedent x is less than or equal
to y. In other terms, x $⇒ y is what x needs to reach y. The relation (36) which
defines the relative pseudo-complementation may be re-written by parametrizing
the operation with the shared argument a, as follows:

∧a(x) ≤ b iff x ≤$⇒a (b)
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From (20) it immediately appears that in a Heyting algebra ∧ is lower adjoint to
$⇒ and $⇒ is upper adjoint to ∧. Therefore, ∧ is additive, so that due to the very
properties of adjointness Heyting algebras are distributive lattices: for all a, b and
c, a ∧ (b ∨ c) = (a ∧ b)∨ (a ∧ c).

Notice that in Heyting algebras ¬(a ∨ b) = ¬a ∧ ¬b but ¬(a ∧ b) ≥ ¬a ∨ ¬b,
witness the killing case ¬(a∧¬a). In Boolean algebras also the second De Morgan
law holds, because ¬¬a = a.

The following standard results will be useful in Sect. 6.5:

Lemma 36 (Cf.[1] and [42]) In any Heyting algebra H, (1) b ≤ a $⇒ b. (2)
$⇒ is monotonic (i.e. order preserving) in the second argument, and antitonic (i.e.
order reversing) in the first, that is a ≤ b implies c $⇒ a ≤ c $⇒ b, and b $⇒
c ≤ a $⇒ c, any c. (3). a ≤ ¬¬a. (4) a $⇒ b ≤ ¬b $⇒ ¬a. (5) ¬ is antitonic.
(6) ¬¬ is monotonic.

Also the following results are standard, but a glance to their proofs is worthwhile,
to see how adjunction work.

Theorem 37 In any Heyting algebra

1. ¬¬ preserves $⇒ and finite meets.
2. ¬(a $⇒ b) = ¬¬a ∧ ¬b.

Proof (1) The proof for $⇒ will be given in a footnote of Theorem 87. As for
meet, since ¬¬ is monotonic,¬¬(x∧ y) ≤ ¬¬x and ¬¬(x ∧ y) ≤ ¬¬y, therefore
¬¬(x ∧ y) ≤ ¬¬x ∧¬¬y. On the other hand, ¬¬x ∧¬¬y ∧¬(x ∧ y) ≤ 0. From
adjunction one obtains¬¬x∧¬¬y ≤ ¬(x∧y) $⇒ 0 = ¬¬(x∧y). (2) Since$⇒
is monotonic in the second argument, ¬a = a $⇒ 0 ≤ a $⇒ b. But ¬ is antitonic
so that ¬(a $⇒ b) ≤ ¬¬a. Moreover,$⇒ is antitonic in the first argument so that
b = 1 $⇒ b ≤ a $⇒ b and, hence, ¬(a $⇒ b) ≤ ¬b and we conclude that
¬(a $⇒ b) ≤ ¬¬a ∧ ¬b. On the other hand, since a $⇒ b ≤ ¬b $⇒ ¬a and
¬b∧(¬b $⇒ ¬a) ≤ ¬a, one obtains that ¬¬a∧¬b∧(a $⇒ b) ≤ ¬¬a∧¬a ≤ 0
so that by adjunction ¬¬a ∧ ¬b ≤ (a $⇒ b) $⇒ 0 = ¬(a $⇒ b). ��

4.2 Heyting Algebras from Topological Spaces

We now define Heyting algebras using the family of open subsets of a topological
space. Indeed, abstract Heyting algebras can be considered the pointless companion
of the properties of “concrete” topologies, that is open sets populated by points.
In this respect, Heyting algebra are part of Algebraic Geometry. In a sense,
Heyting algebras are obtained by “zooming-out” topological spaces, while, in turn,
topological spaces are obtained by “zooming-in” Heyting algebras. The duality
theorem provides such a zooming-in, which will be discussed in the next section.
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Definition 38 Let 〈U,6(U)〉 be a topological space, A,B ∈ 6(U):

1 := U (37)

0 := ∅ (38)

A ∧ B := A ∩ B (39)

A ∨ B := A ∪ B (40)

A $⇒ B := I(−A ∪ B) (41)

¬A := A $⇒ ∅ = I(−A) = −C(A) (42)

Theorem 39 6(U) equipped with the above operations, is a Heyting algebra.

The proof is folklore in mathematical logic (indeed, it is key to the very duality
theorem for Heyting algebras). It is easy to verify that X $⇒ Y =⋃{Z : Z ∩X ⊆
Y }, so that ¬X =⋃{Z : Z ∩X = ∅}.

If 〈U,R〉 is a pre-ordered space, by 6R(U) we denote three objects: (i) the
set of all order filters (or up-sets) of 〈U,R〉, (ii) the Alexandrov topology of the
topological space τ (U) = 〈U,6R(U)〉, (iii) the Heyting algebra with the operations
of Definition 38.

Example 40 Example 34 continued. The relational space (U,R) induces the fol-
lowing topological space 〈U,6R(U)〉, a.k.a. Heyting algebra:

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

Verify: {a, c} $⇒ {a} = {a, b, b′}.
¬{a} = {b, b′}, ¬{b, b′} = {a, c}, {a} ∪ ¬{a} =
{a} ∪ {b, b′} = {a, b, b′} 
 U .
The operators ¬ and (lR)(−) are different though
formally both correspond to I−. Indeed, ¬ applies to
elements of the algebra and not to generic subsets of
U , as (lR) does.
¬I({b, b′, c}) = I − I({b, b′, c}) = I − {b, b′} =
{a, c} I(−{b, b′, c}) = I({a, v}) = {a}. There-
fore, ¬(lR)(A) 
= (lR)(−A). Indeed, ¬(lR)(A) =
IC(−A) 
= I(−A) = (lR)(−A). It is immediate to
verify that the specialisation preorder @ is R itself.
For instance c @ a because a is in all the open sets
containing c, but not the converse.
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4.3 Duality

The relationship between finite Heyting algebras H and preorders is expressed in
terms of duality. We say that an element x of a (at most countable) Heyting algebra
H is co-prime, if x = ∨X implies x ∈ X. In other words, x is not the union
of elements different from it. Let J (H) be the set of co-prime elements of H and
J(H) = (J (H),') where ' is the reverse of the order ≤ of H. Let 6'(J(H)) =
{↑' X : X ⊆ J (H)} be the set of all the order filters of J(H) and H(J(H)) =
〈6'(J(H)),⊆〉. Then H and H(J(H)) are lattice isomorphic. The isomorphism ϕ

is given by: ϕ(a) = {p ∈ J (H) : p ≤ a} (pay attention that ≤ is the order in H).
Moreover, J(H(J(H))) and J(H) are order isomorphic.

Notice that H is used both as an algebraic structure and a constructor of algebraic
structures.

The elements of J (H) may be thought of as “abstract points”. If the elements
of H are thought of as “properties”, then abstract points are bundles of properties
(which means that points have their properties as proxies). This interpretation is
supported mathematically. In fact, let 2 = 〈{0, 1}, 0 ≤ 1〉 be the so called Sierpiński
frame. Let ψ : H �−→ 2 be a lattice homomorphism. If the elements of H are
seen as a properties, then the true kernel ψ−1(2), which is {x : ψ(x) = 1}, is a
principal filter ↑≤ p = {x : p ≤ x} in H and, intuitively, gathers together the
“virtual points” which fulfil the property p, for some p. If a point a fulfils a property
p, we write p |$ a. The element p of H which generates the filter is the least
“virtual point” fulfilling that property. Otherwise stated, p is both a property and
the representative of the “virtual points” which fulfil p itself. Therefore we can
denote this homomorphism ψ with−→p . Under this respect, the isomorphism ϕ gains
a straightforward interpretation:

ϕ(a) = {p ∈ J (H) : a ∈↑≤ p} = {p ∈ J (H) : a ∈ −→p −1(1)} = {p ∈ J (H) : p |$ a}

The set ℋℴ𝓂(H, 2) of all the homomorphism from H to 2 is, thus, the set of
properties representing the virtual points which fulfil them. There is a bijection
between J (H) and ℋℴ𝓂(H, 2). Therefore we consider J (H) to be the set of
abstract points defined by H. Now the reverse order' is understood: x ' y in J(H)

if and only if ↑≤ x ⊆↑≤ y and from Lemma 27, if y ≤ x in H, then ↑≤ x ⊆↑≤ y.
Actually, this is the order on ℋℴ𝓂(H, 2).

Example 41 In order to appreciate the construction of abstract points through
duality, let us start with an abstract version H of the Heyting algebra of Example 40.
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1

1

0

α β

δγ

1

0

1

2H

0

α β

δγ

0

1

2H

(H, 2)
α

γ β

1

J(H)

∅

{α} {β}

{α, β}{α, γ }

{α, β, γ }

{α, β, γ, 1}
H(J(H))

Notice, for instance, that there is no homomorphism
−→
δ because if all the elements

of ↑ δ were mapped on 1 and the others to 0, then
−→
δ (α) = 0,

−→
δ (β) = 0 so that−→

δ (α ∨ β) = −→δ (δ) = 1 
= −→δ (α) ∨ −→δ (β) = 0. And the same happens to all the
non co-prime elements of H. The properties fulfilled by δ are: ϕ(δ) = {p ∈ J (H) :
p ≤ δ)} = {α, β} =↑' {α, β}.
If H is a lattice of set (that is, a topological space), it might be the case that the
abstract points are fewer than the original points. Indeed, if two points p,p′ cannot
be separated by means of an open set (i.e. by means of a “personal” property),
the homomorphism makes them collapse onto the same abstract point. In other
words, from a topological point of view H and H(J(H)) are isomorphic but not
homeomorphic. We shall see later that the collapse of such “redundant” points is
called T0-ification (or soberification) of the space.3

This is what can be seen in our example, indeed.

3In the infinite case there can occur a dual situation: there are not enough points to separate
properties. In this case the dual operation of T0-ification is called spatialisation.
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Example 42 Example 13 continued.

{a}

{a, c} {b, b }
J R(U))

{{a}} {{b, b }}

{{a}, {b, b }}{{a}, {a, c}}

{{a}, {a, c}, {b, b }}

{{a}, {a, c}, {b, b }, {a, b, b , c, v}}

H(J R(U)) ∅{a, b, b , c, v}

It is evident that H(J(6R(U)) and 6R(U) are isomorphic but the isomorphism ϕ

makes the two “twin” points b and b′ collapse onto the single abstract point {b, b′}.
In fact, it maps the two-points element {b, b′} onto the singleton {{b, b′}}. In turn,
J(6R(U)) is order isomorphic to (U/≡,≤), where≡ is defined as p ≡ p′ iff pRp′
and p′Rp and ≤ is the order inherited by the equivalence classes from R: [x]≡ ≤
[y]≡ if and only if xRy (equivalently, one can set p ≡ p′ iff p � p′ and p′ � p,
where � is the specialisation preorder of the topological space 〈U,6R(U)〉).

5 Rough Sets and the Algebras of Rough Set Systems

A rough set is an equivalence class on the powerset ℘(U) modulo the equivalence
of the two approximations (lR)( ) and (uR)( ):

Definition 43 Let AS(U/R) be an approximation space, with R any binary relation
on U . Two sets A,B ∈ ℘(U) are said to be rough equal, denoted A ≈ B, if
(lR)(A) = (lR)(B) and (uR)(A) = (uR)(B). A rough set is an equivalence class
modulo≈. The rough set of a set A is denoted as [A]≈.

Since the two approximations uniquely define a rough set, given any subset A of U ,
[A]≈ can be represented in the following ways (see Definition 33):

Definition 44 Let AS(U/R) be an approximation space and A ⊆ U .

1. 〈(lR)(A), (uR)(A)〉—increasing representation—Icr(A)

2. 〈(uR)(A), (lR)(A)〉—decreasing representation—Dcr(A)

3. 〈(lR)(A), (eR)(A)〉—disjoint representation—Dsj (A)

4. 〈(lR)(A), (bR)(A)〉—boundary representation—Bdr(A)

Let us focus our attention on the decreasing and disjoint representations:
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Definition 45 Let AS(U/R) be an approximation space. Then we set:

Dsj (AS(U/R)) = {〈(lR)(A), (eR)(A)〉 : A ⊆ U} (43)

Dcr(AS(U/R)) = {〈(uR)(A), (lR)(A)〉 : A ⊆ U} (44)

The above representations are interchangeable. For instance, the following functions
link decreasing represented and disjoint represented rough sets:

ρ : Dsj (A) �−→ Dcr(A); ρ(〈a1, a2〉) = 〈−a2, a1〉 (45)

ρ−1 : Dcr(A) �−→ Dsj (A); ρ−1(〈a1, a2〉) = 〈a2,−a1〉 (46)

The justification of these functions are straightforward. For instance, ρ oper-
ates as follows given a1 = IR(X) and a2 = −CR(X) for some X ⊆ U :
ρ(〈IR(X),−CR(X)〉 = 〈−CR(X), IR(X)〉 = 〈CR(X), IR(X)〉, which is the
decreasing representation of the rough set of X.

Notation In view of the above discussion, if R is a preorder from now on the
approximation space AS(U/R) will be considered a topological space and identified
with its topology 6R(U). The system of rough sets from this space in disjoint
representation will be denote by Dsj (6R(U)) and in decreasing representation by
Dcr(6R(U)).

Example 46 Continued from Example 34 where A = {b, b′, c}:
• Icr(A) = 〈{b, b′}, {b, b′, c, v}〉 • Dcr(A) = 〈{b, b′, c, v}, {b, b′}〉
• Dsj (A) = 〈{b, b′}, {a}〉 • Bdr(A) = 〈{b, b′}, {c, v}〉
Below we depict the entire rough set system, in disjoint and in decreasing
representation induced by the approximation space AS(U/R) which is depicted in
Example 40 and we identify with the topology 6R(U).

, U

, {a, c, b, b

, {a, b, b , {a, c

a}, {b, b , {a b, b }, {a, c

a}, b, b }, {aa, c}, {b, b
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U, R(U))

,

v},

v, c}, v, b, b },

v, a, c}, {a v, b, b , c}, v, b, b }, {b, b

U, {a v, b, b , c}, {b, bv, a, c}, {a, c
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The following table shows the Dsj image of ℘(U). If only b is in a set X then the
corresponding set with b′ is omitted (for instance, 〈{c, v, b} stays also for {c, v, b′}).
First Dsj (∅) = 〈∅, U〉, Dsj (U) = 〈U,∅〉. Then:

X {v} {c}, {c, v} {a}, {a, v} {a, c}, {a, c, v}
Dsj(X) 〈∅, {a, b, b′, c}〉 〈∅, {a, b, b′}〉 〈{a}, {b, b′}〉 〈{a, c}, {b, b′}〉

X {b}, {b, v} {c, v, b}, {c, b} {a, b}, {a, v, b} {a, c, v, b}, {a, c, b}
Dsj(X) 〈∅, {a, c}〉 〈∅, {a}〉 〈{a}, ∅〉 〈{a, c}, ∅〉

X {b, b′}, {b, b′, v} {b, b′, c}, {b, b′, v, c} {a, b, b′}, {a, b, b′, v} {a, b, b′, c}
Dsj(X) 〈{b, b′}, {a, c}〉 〈{b, b′}, {a}〉 〈{a, b, b′},∅〉 〈{a, b, b′, c},∅〉

The reader can verify that Dcr(6R(U)) = ρ(Dsj (6R(U)).
For instance, ρ(〈{a}, {b, b′}〉 = 〈−{b, b′}, {a}〉 = 〈{v, a, c}, {a}〉.

Any ordered pair of Dcr(6R(U)) has a closed set of 〈U,6R(U)〉 as first element
and an open set as second, which is included in the closed set. Closed sets are
order-ideals in (U,R), while open sets are order-filters. Notice that any open set
of 〈U,6R(U)〉 is a closed set in 〈U,6R3(U)〉, and vice-versa.

Now we have to pay attention to a basic fact. The ordered pair 〈{v, a, c},∅〉 is
made of the above ingredient, namely, decreasing elements of 6R(U). Still it is
not the representation of any rough set. Indeed, assume {v, a, c} = (uR)(X) and
∅ = (lR)(X), for some subset X of U . Since a ∈ (uR)(X), R(a) ∩ X 
= ∅. But
R(a) = {a}, so that a ∈ X. Therefore, R(a) ⊆ X and we conclude that a ∈
(lR)(X), which contradicts the assumption (lR)(X) = ∅.

In turn, the ordered pairs of Dsj (6R(U)) are made of disjoint open sets.
However, the disjoint ordered pair 〈{b, b′},∅}〉 is made of these ingredients, but it
is not a rough set. Indeed, if the second element, ∅, is the complement of the upper
approximation (i.e. closure) of a set X, then this upper approximation is U , so that
a belongs to it. Hence, from the previous reasoning one obtains that a should be in
the lower approximation of X, too, which is not the case.

Pay attention that this problem does not occur because the lower approximation,
in the first case, or the complement of the upper approximation, in the second case,
are empty sets. Consider the following example:

Example 47 U = {v, a, b, c} and R is the partial order below:

v

a cb
〈{a}, {c}〉 is a pair of disjoint open sets, but if {a} =
IR(X) then R(b) 
⊆ X and since R(b) = {b}, b /∈
X. So, b ∈ −X. In consequence R(b) ⊆ −X and
b ∈ IR(−X) = −CR(X), which, therefore, cannot
be {c}.

Actually, the next sections are focused on obtainingDsj (6R(U)) from the lattice
of all the ordered pairs of disjoint elements of a topological approximation space
6R(U), which now we formally define:
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Definition 48 Let 6R(U) be an approximation space with R a preorder.
Dsj (U/R) = {〈a1, a2〉 : a1, a2 ∈ 6R(U) & a1 ∩ a2 = ∅}
If we want, instead, a lattice of decreasing elements, we have to decide “elements
of what?”. Since the first element, in decreasing representation, is the closure of a
set X, it cannot belong to 6R(U). For instance 〈{a, c}{a}〉 is a pair of decreasing
elements of 6R(U) but it does not represent any rough set. Actually, the first
element of a decreasing representation of rough sets is the complement of some
open set of 6R(U) which is an open set in 6R3(U). If R is an equivalence relation
then R = R3, so we do not notice the difference. But if R is a preorder or a partial
order then we must take care with it.

In particular we have to take care of the definition of the operations which
manipulate ordered pairs of decreasing elements, because in some cases they
transform elements of the topology 6R(U) into elements of the opposite topology
6R3(U). We shall see this interesting point at due time. By now, our analysis
will focus on the disjoint representation which make it possible to operate just on
elements of a single structure.

Now we have to face another problem.
As we have seen, if we take the set of all ordered pairs of disjoint elements

of 6R(U), which we denote by Dsj (U/R), respectively of all the ordered pairs of
decreasing elements in 6R3(U)×6R(U), denoted Dcrj (U/R)), we have elements
which do not represent any rough set.

From the above discussion, we need a way to exclude from Dsj (U/R) the
ordered pairs which do not fulfil the following condition:

X1 ∪X2 ⊇ S (47)

where S is the set of all isolated points: S
⋃{x : R(x) = {x}}.

In Example 94 below one can see an illustration of what we have to do, with
some mathematical means.

From Dcr(U/R) we have to exclude the ordered pairs which do not fulfil the
condition X1 ∩ S = X2 ∩ S.

To end this section, we sum up the issue. If R(X) = {x} then topologically x is
an isolated point. Isolated points cannot belong to the boundary of any set, for the
reason illustrated in Example 47, which formally runs as follows: if x ∈ X, then
R(x) ⊆ X so that x ∈ IR(X). If x /∈ X, then x ∈ −X so that R(x) ⊆ −X and,
in consequence, x ∈ IR(−X). In the first case x ∈ CR(U) but x /∈ −IR(X). In the
second case x ∈ −IR(X) but x /∈ CR(X). In both cases x /∈ CR(X) ∩ −IR(X) =
BR(X).
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6 Rough Set Systems, Grothendieck Topologies
and Lawvere-Tierney Operators

The fact that any isolated point must belong either to the positive part (lR)(X), or
to the negative part−(uR)(X) of a rough set, is a sort of Excluded Middle localized
on S. Indeed, in general given x ∈ U and X ⊆ U , the assignment of x to X is given
by a three-valued characteristic function:

χx(X) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈ (lR)(X)

1/2 if x ∈ (uR)(X) ∩ −(lR)(X)

0 if x ∈ −(uR)(X)

(48)

But if x ∈ S, then χ takes just value 0 or 1.
Intuitively, Classical Logic is locally valid on S.
Local validity is a notion wide studied in Algebraic Geometry which provides a

powerful tool, Grothendieck topology, which we shall apply in this Section.

6.1 Grothendieck Topologies and Local Validity

Definition 49 (Grothendieck Topology) Let P = 〈U,R〉 be a preorder. We recall
that 6R(U) = {R(X) : X ⊆ U} is the set of all order filters over P. A Grothendieck
topology on the preorder P is a map J : U �−→ ℘(6R(U)); J[x] ⊆ 6R(R(x)) such
that:

GT1. R(x) ∈ J[x],∀x ∈ U ,

GT2. R(x ′) ∩ S ∈ J[x ′],∀x ′ ≥ x,∀S ∈ J[x].
GT3. ∀x ∈ U,∀S ∈ J[x],∀S′ ⊆ R(x) such that S′ ∈ 6R(U), if ∀x ′ ∈ S,R(x ′) ∩

S′ ∈ J[x ′], then S′ ∈ J[x].

If a filter S belongs to J[x], we say that S covers x. J[x] is called the open-cover
system of x. G = {J[x] : x ∈ U} and 〈P,G〉 is called an ordered site.

From a “granular” point of view, Grothendieck topologies formalize the notion “To
be locally true” in the following sense: a property P is locally true at point x in a
granulated space S if every granule G such that x ∈ G contains a granule G′ such
that x ∈ G′ and G has property P , that is, the validity set �P � is included in G′.

If S is a topological space, as in the case we are dealing with, then one substitutes
“open neighbourhood” for “granule” and obtains that a topological space S has
property P locally valid at a point x, if the set of P -neighbourhoods of x (i.e. the set
of neighbourhoods of x included in �P �) is cofinal in the neighbourhood filter of x.
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By definition, a Grothendieck open-cover of x is a set of open neighbourhoods of x
in the given topology.

Example 50 In our standard example 6R(U), suppose �P � = {a}, then c 
|$ P . But
the granules (i.e. open neighbourhoods) containing c are {a, c}, {a, c, b, b′}, and U

an all of them contain {a}. So P is locally valid at c. On the contrary, for instance, b
has three granules containing {a} (they are {a, b, b′}, {a, c, b,′ } and U ), but there is
an open neighbourhood of b not containing {a} and it is {b, b′}. So P is not locally
valid at b (or at b′, of course).

As much as the family of open (closed) sets of a topology induces an interior
(closure) operator, an ordered site induces a particular operator. This operator is
partially an interior and partially a closure operator of a usual topology (and we
shall see the reason why).

6.2 Lawvere-Tierney Operators

Any Grothendieck topology induces on 6R(U) a closure operator J : J (A) = {x :
A∩R(x) ∈ J[x]}. In other terms, if A = �P � then J (A) is the set of points in which
P is locally valid. J is a Lawvere-Tierney operator which we define at pointless
level:

Definition 51 (Lawvere-Tierney Operators) Given a Heyting algebra H, J :
H �$⇒ H is a Lawvere-Tierney operator if the following hold:

• x ≤ J (x)—inflation,
• J (J (x)) = J (x)—idempotence,
• J (x ∧ y) = J (x)∧ J (y)—multiplicativity.

From multiplicativity we obtain monotonicity: if x ≤ y then J (x) ≤ J (y).
The above properties has the following intuitive motivations:
In the first place, since x is more specialised than y if it enjoys more properties

than y, that is, it belongs to open sets from which y is excluded, but not the other
way around, conversely we say that a property P is stronger than Q if its domain
of validity is “more specialised” than that of Q. So we have: (i) If the property P

is stronger than property Q, then P is locally stronger than Q. (ii) The domain of
validity of P is stronger than the domain of local validity of P . (iii) The domain of
local validity of the domain of local validity of a property P equals the domain of
local validity of P itself. (iv) The domain of local validity of (P ∧Q) is the inf of
the domains of local validity of P and Q.

We have seen that given a Grothendieck topology we can produce a Lawvere-
Tierney operator connected to it. Now, symmetrically, we restore a Grothendieck
topology from a Lawvere-Tierney operator on 6R(U). The following result can be
found in [15] or [23].
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Lemma 52 Given a preorder P = 〈U,R〉 and a Lawvere-Tierney operator J on
6R(U), the family

{J[x] : J[x] = {R(x) ∩X : x ∈ J (X) & x ∈ U} (49)

is a Grothendieck topology.

Definition 53 (Local Validity in an Ordered Site) A forcing relation |$ between
elements of P and the set I of formulas of propositional Intuitionistic logic is a
relation |$⊆ U ×I , such that for any formula α ∈ I , p ∈ U :

If p |$ α then ∀p′(p′ ∈ R(p)⇒ p′ |$ α). (50)

which means that if p ∈ �α� then p ∈ [e]|$(�α�). Clearly, for any α, �α� belongs to
6R(U).

Given an ordered site 〈P,G〉, we say that a formula α is locally valid at point
p ∈ P, in symbols p |$ 〈l〉(α), if R(p) ∩ �α� covers p in the topology G, that is, if
{p′ ≥ p : p′ |$ α} belongs to the open-cover system of p in G.

Example 54 The following is a Grothendieck topology which we name Gδ for
reasons that will be clear soon:

x a b b′ c v

J δ[x] {{a}} {{b, b′}} {{b, b′}} {{a}, {a, c}} {{a, b, b′}, {a, b, b′c}, U}

Let us compute J δ({a}), where J δ is the Lawvere-Tierney operator induced by
Gδ: R(a)∩ {a} = {a} ∈ J δ[a], R(c)∩ {a} = {a} ∈ J δ[c]. For no other x, R(x)∩ {a} ∈
J δ[x]. So J δ({a}) = {a, c}. The other cases follow suit. Therefore, if �P � = {a} then
P is locally valid at c even if c /∈ �P �, as anticipated in Example 50.

X ∅ {a} {b, b′} {a, b, b′} {a, c} {a, b, b′, c} U
J δ(X) ∅ {a, c} {b, b′} U {a, c} U U

Vice-versa, given J δ we can compute Gδ. For instance J δ[c] is obtained as c ∈
J δ({a}), J δ({a, c}), J δ({a, b, b′}), J δ({a, b, b′, c}) and J δ(U). Therefore:

J δ[c] = {R(c) ∩ {a}, R(c) ∩ {a, c}, R(c) ∩ {a, b, b′}, R(c) ∩ {a, b, b′, c}, R(c) ∩ U }
= {{a, c} ∩ {a}, {a, c} ∩ {a, c}, {a, c} ∩ {a, b, b′}, {a, c} ∩ {a, b, b′, c}, {a, c} ∩ U }
= {{a}}, {a, c}}.

Notice that for any x, J δ[x] = {Y : J δ(Y ) = J δ(X) & Y ⊆ X}.
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6.3 Congruence

For the comfort of the reader we recall some definitions and results.

Definition 55 (Congruence) Let L = 〈U, ϕ〉 be a set equipped with an n-ary
operation ϕ and ≡ an equivalence relation on U . Then ≡ is called a congruence if
for all a1 . . . an, b1 . . . bn ∈ U, a1 ∈ [b1]≡, . . . , an ∈ [bn]≡ implies ϕ(a1, . . . , an) ∈
[ϕ(b1, . . . , bn)]≡. If this is the case, we say that ≡ is compatible with ϕ.

Therefore, given a Heyting algebra H and an equivalence relation≡ on H we say
that≡ is a∧-congruence if it is compatible with ∧, that is if a1 ∈ [b1]≡, a2 ∈ [b2]≡
implies a1 ∧ a2 ∈ [b1 ∧ b2]≡. Similarly we define the notion of ∨-congruence and
$⇒-congruence. If all the three compatibilities are satisfied, we say that ≡ is a
Heyting algebra-congruence. Remember that 0 =∨ ∅ and 1 =∧ ∅.

Lemma 56 Let L = 〈U, ϕ〉 and L′ = 〈U ′, ϕ〉 be two sets equipped with the same n-
ary operation ϕ. Let f be an homomorphism between L and L′. Set for all a, b ∈ L,
a ≡f b ⇐⇒ f (a) = f (b). Then ≡f is a congruence on L.

Proof The standard and straightforward proof is the following: Since ≡f is
defined by means of an equality, then it is an equivalence. Now assume a1 ∈
[b1]≡f , . . . , an ∈ [bn]≡f . Hence, since f preserves ϕ, f (ϕ(a1, . . . , an)) =
ϕ(f (a1), . . . , f (an)). But by assumption f (ai) = f (bi). Therefore, f (ϕ(a1, . . . ,

an)) = ϕ(f (b1), . . . , f (bn)) = f (ϕ(b1, . . . , bn)), so that ϕ(a1, . . . , an) ∈
[ϕ(b1, . . . , bn)]≡f . ��

The congruence≡f is called the kernel of f .

Definition 57 (Quotient Structure) Let L = 〈U, ϕ〉 be a set with an n-ary
operation ϕ and ≡ an equivalence relation on L. Then:

1. U/≡ := {[a]≡ : a ∈ U} is called the quotient set of U .
2. For all a, b ∈ U , define ϕ≡([a]≡, [b]≡) := [ϕ(a, b)]≡. Then L/≡ := 〈U/≡, ϕ≡〉

is called the quotient structure of L.

If there is no risk of confusion, we write ϕ also for ϕ≡, thus, for instance, ∧ instead
of ∧≡.

Lemma 58 If L is a lattice and ≡ a congruence on L, then L/≡ is a lattice and
the map q : L �−→ L/≡; q(a) = [a]≡ is a homomorphism. The map q is called the
natural quotient map.

Theorem 59 (Fundamental Homomorphism Theorem for Lattices) Let L and
L′ be lattices and f an homomorphism of L onto L′. Then the map g : L/≡f �−→ L′
given by g([a]≡f ) = f (a) is independent of the representative a, that is, for all
a, b ∈ L, [a]≡f = [b]≡f implies g([a]≡f ) = g([b]≡f ).
Moreover g is an isomorphism between L/≡f and L′.
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Finally, if q is the natural quotient map, then≡q and≡f coincide and the following
diagram commutes, that is, g(q) = f :

L/≡f

L L

g

f

Example 60 Consider the abstract Heyting algebra of Example 41.

0

α β

δγ

1

0

1

2

HH

[0, β]≡f

[α, δ]≡f

[ 1]≡f

H/ ≡f

0

α β

δγ

1f

g

6.4 Lawvere-Tierney Operators and Heyting Algebra
Congruences

Lemma 61 Let H be a Heyting algebra and a∈H. Let us set the following operator
on H:

J a(x) = a $⇒ x (51)

Then J a is a Lawvere-Tierney operator.

Proof This is a standard result in Algebraic Geometry (see [23]). However we
provide a simple proof which exhibits how adjointness properties may be used.
Indeed, in any Heyting algebra H, from the adjointness property, y ∧ a ≤ x iff
y ≤ a $⇒ x, for any y. But x ∧ a ≤ x and one obtains x ≤ a $⇒ x, hence J a is
increasing. Idempotence follows from the following equations: a $⇒ (a $⇒ x) =
(a∧a) $⇒ x = a $⇒ x. This is an application of the Curry property of ∧ and$⇒
which can be obtained from adjointness: x ≤ y $⇒ (w $⇒ z) iff x∧y ≤ w $⇒ z

iff x ∧ (y ∧ w) ≤ z, that is, x ≤ (y ∧ w) $⇒ z. Finally, multiplicativity derives
again from the multiplicativity of upper adjoints and $⇒ is upper adjoint. ��
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Lemma 62 Let H be a Heyting algebra and F a filter on H. Let us define for all
a, b ∈ H, a ≡F b iff ∃f ∈ F such that a ∧ f = b ∧ f . Then ≡F is a Heyting
algebra congruence.

Proof Suppose x ∈ [y]≡F and z ∈ [w]≡F . Then for some f ∈ F , x ∧ f = y ∧ f

and z∧ f = w∧ f . Now, (x ∨ z)∧ f = (x ∧ f )∨ (z∧ f ) = (y ∧ f )∨ (w∧ f ) =
(y ∨ w) ∧ f . Hence, x ∨ z ∈ [y ∨ w]≡F . Dually one obtains ∧-compatibility.
We have to prove the case of $⇒, that is, (x $⇒ z) ∧ f = (y $⇒ w) ∧ f .
Now, let q ∧ x ≤ z Then q ∧ f ∧ x ≤ z ∧ f . From the congruence assumptions
we obtain q ∧ f ∧ y ≤ w ∧ f and, a fortiori, q ∧ f ∧ y ≤ w, which means that
q∧f ≤ y $⇒ w∧f . Since q is arbitrary among the elements a such that a∧x ≤ z,
in particular we can set q = x $⇒ z, obtaining x $⇒ z ∧ f ≤ y $⇒ w ∧ f .
With a symmetric reasoning we obtain y $⇒ w ∧ f ≤ x $⇒ z ∧ f and conclude
x $⇒ z ∧ f = y $⇒ w ∧ f . ��

In particular, if F is a principal filter generated by the element p, one has that
a ∧ f = b ∧ f for some f ∈ F if and only if a ∧ p = b ∧ p. However, if we set
F̂ (a) = a ∧ p, we indeed have that a ≡p b ⇐⇒ F̂ (a) = F̂ (b) is a congruence,

but F̂ is not a Lawvere-Tierney operator, because F̂ (a) ≤ a.
Anyway, there is a Lawvere-Tierney operator J such that≡J coincides with≡F̂ ,

and it is Jp:

Theorem 63 Given a Heyting algebra H and p ∈ H, set a ≡p b if and only if
a ∧ p = b ∧ p and let a ≡Jp b iff Jp(a) = Jp(b). Then ≡p coincides with ≡Jp .

Proof A proof is given in Proposition 7.4.2 of [39]. A straightforward proof is the
following, anyway. The lower adjoint of Jp is ∧p. From this the result is just an
application of the adjointness relation (cf. (4.1)). ��

Therefore, given an Heyting algebra H and an element a ∈ H, ≡J a is a
congruence on H. Here we report a more general result about the relation between
congruence and Lawvere-Tierney operators on a Heyting algebra (see [15]):

Theorem 64 Let ≡ be a congruence on a Heyting algebra H. Define:

J≡ : H �−→ H; J≡(p) =
∨
{x : x ≡ p} (52)

Then J≡ is a Lawvere-Tierney operator and x ≡ b iff J≡(x) = J≡(y), that is, ≡
and ≡J≡ coincide.

Proof We just prove the first part. From (52) p ≤ J≡(p) and J≡(J≡(p)) = J≡(p)
since J≡(p) is a maximal element. From p ≡ J≡(p) and q ≡ J≡(q) one sees that
(p ∨ q) ≡ J≡(p)∨ J≡(q). Therefore, again for (52), J≡(p)∨ J≡(q) ≤ J≡(p ∨ q).
Suppose now p ≤ q . Then p∨q = q so that J≡(p)∨J≡(q) ≤ J≡(p∨q) = J≡(q).
Thus, J≡ is monotone. Similarly, J≡(p)∧J≡(q) ≤ J≡(p∧q). But from p∧q ≤ p

and p ∧ q ≤ q monotonicity gives J≡(p ∧ q) ≤ J≡(p) and J≡(p ∧ q) ≤ J≡(q) so
that J≡(p ∧ q) ≤ J≡(p) ∧ J≡(q), from which multiplicativity follows. ��
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Actually, there is a one-one correspondence between Heyting algebra congru-
ences ≡ and Lawvere-Tierney operators which can be found in [15].

In particular we obtain:

Theorem 65 Let H be a Heyting algebra and J a Lawvere-Tierney operator on H.
Let us set for all a, b ∈ H,

a ≡J b ⇐⇒ J (a) = J (b) (53)

Then ≡J is congruence on H.

Later in this chapter we provide a proof for a particular important case of the above
theorem that we are going to introduce.

6.5 Dense Elements of a Heyting Algebra

If not otherwise stated, in this section H will denote a Heyting algebra and a, b,

a1, b1, x, y, . . . will denote elements of H.

Definition 66 An element x ∈ H is said to be dense if ¬x = 0. It is called regular
if ¬¬x = x.

The following is immediate:

Theorem 67 An element δ is dense iff ¬¬δ = 1 iff for all x ∈ H, x ∧ δ 
= 0.

Theorem 68 If D is the filter of all dense elements of H, then for all a, b ∈ H,
a ≡D b iff ¬a = ¬b iff ¬¬a = ¬¬b.

The relation ≡D is called Glivenko congruence. The proof is a standard result in
Geometric Logic (see [23]). However, we give an algebraic proof in the case D is a
principal filter generated by an element δ which, therefore, is the least dense element
of H.4

Lemma 69 Let δ be the least dense element of H. Then for all a, δ∧ a = δ∧¬¬a.

Proof a ∨ ¬a ≤ ¬¬a ∨ ¬a and both terms are dense elements in H. Therefore,
δ ≤ a ∨ ¬a ≤ ¬¬a ∨ ¬a. Hence, δ ∧ (a ∨ ¬a) = δ = δ ∧ (¬¬a ∨ ¬a), which
means (δ ∧ a) ∨ (δ ∧ ¬a) = δ = (δ ∧ ¬¬a) ∨ (δ ∧ ¬a). Since δ ∧ ¬a is disjoint
from the other terms of the disjunctions, one obtains δ ∧ a = δ ∧ ¬¬a. ��
Corollary 70 Let δ be the least dense element of H, then for all a, b, δ ∧ a = δ ∧ b

if and only if ¬a = ¬b.

4If H is finite then it has the least dense element. An infinite Heyting algebra, instead, may lack
this element.
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Proof ¬a = ¬b if and only if ¬¬a = ¬¬b. Therefore, from Lemma 69 one
obtains: δ∧a = δ∧b iff δ∧b = δ∧¬¬a iff δ∧a = δ∧¬¬b iff δ∧¬¬b = δ∧¬¬a
iff δ ∧ ¬b = δ ∧ ¬a. From these equations ¬a = ¬b. ��
Corollary 71 If δ is the least dense element of H, then a ≡J δ b if and only if
¬¬a = ¬¬b.

Lemma 72 Let a ≤ x ≤ ¬¬a. Then ¬a = ¬x and, thus, ¬¬a = ¬¬x.

Proof From the hypothesis one has ¬¬¬a ≤ ¬x ≤ ¬a, that is, ¬a ≤ ¬x ≤ ¬a.
Therefore, ¬a = ¬x. ��
Lemma 73 Let a ≤ b and for some y, b ∧ y ≤ a. Then a ∧ y = b ∧ y.

Proof From a ≤ b and b ∧ y ≤ a one obtains, respectively, a ∧ y ≤ b ∧ y and
b∧ y ∧ y ≤ a ∧ y, that is, b∧ y ≤ a ∧ y. Therefore, a ∧ y ≤ b∧ y ≤ a ∧ y, so that
a ∧ y = b ∧ y. ��
Lemma 74 Let a ≤ x ≤ ¬¬a. Then x $⇒ a is dense.

Proof From Lemma 72 ¬¬a = ¬¬x. Moreover, from Theorem 37, ¬(x $⇒ a) =
¬¬x ∧ ¬a = ¬¬a ∧ ¬a = 0. We conclude that x $⇒ a is dense. ��
Lemma 75 Let δ be dense. Then ¬(δ $⇒ a) = ¬a.

Proof ¬(δ $⇒ a) = ¬¬δ ∧ ¬a = 1 ∧ ¬a = ¬a ��
Corollary 76 Let δ be dense. Then δ $⇒ a ≤ ¬¬a.

Proof δ $⇒ a ≤ ¬¬(δ $⇒ a) = ¬(¬(δ $⇒ a)) = ¬¬a. ��
Theorem 77 Let H be a Heyting algebra with least dense element.

1. Let δ be a dense element. Then δ $⇒ a = a or δ $⇒ a = ¬¬a.
2. Let δ be the least dense element of H. Then δ $⇒ a = ¬¬a.
3. Let δ be the least dense element of H. Then δ $⇒ a = ¬a $⇒ ¬δ.

Proof (1) We have two cases: C1: ¬¬a ∧ δ ≤ a and C2: ¬¬a ∧ δ � a. Case
C1. By adjointness, from ¬¬a ∧ δ ≤ a one obtains ¬¬a ≤ δ $⇒ a and from
δ $⇒ a ≤ ¬¬a, provided by Lemma 76, δ $⇒ a = ¬¬a. This result encompasses
also the case a = 0, because ¬¬0 = 0. Case C2. Let x = δ $⇒ a. Therefore, from
adjunction x∧δ ≤ a. From Lemma 6.18, x ≤ ¬¬a. It cannot be x = ¬¬a, because
from assumption ¬¬a ∧ δ � a, so that both x ∧ δ ≤ a and x ∧ δ � a ought to be
true. Since δ � a, this contradiction occurs for every x such that a � x ≤ ¬¬a. It
follows that x must be a itself.
(2) If in the proof of (1) one uses the fact that δ ∧ a = δ ∧ ¬¬a because δ is
the least dense element, one obtains the result. Alternatively, from Theorem 63 and
Lemma 69, δ $⇒ a = δ $⇒ ¬¬a ≥ ¬¬a. So, from Lemma 76 we obtain the
proof. Another proof exploits adjunction: from Lemma 69 ¬¬a ∧ δ = a ∧ δ ≤ a so
that by adjunction¬¬a ≤ δ $⇒ a. But from (1) δ $⇒ a ≤ ¬¬a. (3) is a corollary
of (2) because ¬a $⇒ ¬δ = ¬a $⇒ 0 = ¬¬a. ��
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Therefore, the Lawvere-Tierney operator J δ, with δ least dense element of a
Heyting algebra H can be re-written as ¬¬. Now we prove the specialisation to J δ

of Theorem 65.

Theorem 78 The relation a ≡¬¬ b iff ¬¬a = ¬¬b is a congruence on H.

Proof a ∈ [x]¬¬ and b ∈ [y]¬¬ iff ¬¬a = ¬¬x and ¬¬b = ¬¬y which implies
¬¬a∧¬¬b = ¬¬x∧¬¬y. But in view of Theorem 37.(1), ¬¬ preserves meets so
that one obtains ¬¬(a ∧ b) = ¬¬(x ∧ y) and can conclude that a ∧ b ∈ [x ∧ y]¬¬.
Regarding disjunction, ¬¬(a ∨ b) = ¬¬(x ∨ y) iff ¬(¬a ∧ ¬b) = ¬(¬x ∧ ¬y).
But from the hypothesis of congruence, ¬a = ¬x and ¬b = ¬y, therefore, the
latter equation is true. A similar proof holds for$⇒: from the hypothesis¬¬a $⇒
¬¬b = ¬¬x $⇒ ¬¬y. Since ¬¬ preserves $⇒ we obtain ¬¬(a $⇒ b) =
¬¬(x $⇒ y) and we conclude that a $⇒ b ∈ [x $⇒ y]¬¬. From this and the fact
that ¬¬0 = 0 (or because ¬¬¬a = ¬a) one obtains the congruence for ¬. ��

Clearly the same result can be obtained from Theorem 63 plus Lemma 62.
So far we have seen the properties of Lawvere-Tierney operators on an abstract

Heyting algebra, and in particular the operator J δ. Now we discuss the same
properties in terms of Heyting algebras of an Alexandrov topology 6R(U). In this
way we zoom-in the abstract structures, populate them with points and see how the
above manipulations act on them.

In this kind of spaces there is a fundamental example of Grothendieck topology
and conjugate Lawvere-Tierney operator, which will be key to our construction: the
so-called dense topology and its corresponding local operator.

Definition 79 Let τ (U) = 〈U,6(U)〉 be a topological space on a set U and X ∈
6(U). Then:

X is called dense in τ (U) if C(X) = U. (54)

X is called regular in τ (U) if IC(X) = X. (55)

Facts 6.1 The abstract (pointless) notions of Definition 66 and the concrete (with
points) ones coincide. Indeed, for any open set X of a topology 6(U), C(X) = U

iff −C(X) = ∅ iff I(−X) = ∅ iff ¬X = 0. Moreover, IC(X) = IC(− − X) =
I(−I(−X)) = ¬¬X.

Definition 80 (Dense Topology) Given a finite topological space τ (U) on a set U
the dense topology is obtained by tacking the least dense element δ and using the
Lawvere-Tierney operator J δ on the Heyting algebra 6(U).
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From the very definition (41) of $⇒ the following is straightforward:

Theorem 81 Given a topological space τ (U), for any X ∈ 6(U), J δ(X)

= I(−δ ∪X).

Theorem 82 For any X ∈ 6(U), J δ(X) = IC(X).

Proof From Theorem 77.(2). ��
As before, we call Gδ the Grothendieck topology induced by the operator J δ .

Therefore, given any open set O ∈ 6R(U), in the ordered site 〈Gδ,P〉 a point p is
covered by O iff p ∈ ¬¬O (i.e. p ∈ IC(O)). Clearly, if p ∈ O then p ∈ IC(O),
but the interesting fact is when p /∈ O .

The following result is well-known and it is the translation at the point-level of
the above theorems:

Lemma 83 Let 〈Gδ,P〉 be the ordered site induced by the Lawvere-Tierney oper-
ator J δ. Let α be any Intuitionistic formula. Let us set for any p ∈ U , p |$ 〈l〉(α)
iff �α� covers p in the ordered site. Then p |$ 〈l〉(α) iff ∀p′(p @ p′ ⇒ ∃p′′(p′ @
p′′ ∧ p′′ |$ α)).

So this is the origin of the Grothendieck topology of Example 54, which the reader
can use an example of what we have just said.

In general, an upper adjoint is just multiplicative. When it is also additive we
are in a particular situation that will be analysed later during the discussion about
standard rough set systems. By now we have an operator J δ which does not preserve
disjunctions. However, the image of J δ, actually of any Lawvere-Tierney operator,
can be made into a Heyting algebra. This structure is very important to Rough Set
Systems.

6.6 The Boolean Algebra of the Regular Elements of a Heyting
Algebra

Given an operator ϕ on a lattice L, let us denote with Fϕ(L) the set of its fixed
points: Fϕ(L) := {x : x ∈ L ∧ ϕ(x) = x}. If ϕ is idempotent, then Fϕ(L), is just
the image of ϕ.

So, we have seen that given an Heyting algebra H the image FJ δ (H) of the
operator J δ inherits from H the operations ∧ and $⇒, but not ∨.

However on FJ δ (H) one can set a disjunction � and obtain a Boolean algebra.
We prove it in a general manner. The starting point is a classical result:

Lemma 84 [Tarski] Let L be a complete lattice and ϕ a multiplicative and
monotone operator on L. Then the set of fixed points of ϕ, Fϕ(L), is a complete
lattice.



Lessons on the Topology and Algebra of Rough Sets 377

Proof (See [15]) Let a, b ∈ Fϕ(L). Let F a,b
ϕ := {x : ϕ(x) ≤ x & a, b ≤ x}

and set a � b := ∧F a,b
ϕ . Since L is complete, such inf exists in L. We have to

show that it belongs to Fϕ(L). Since a, b ≤ a � b by monotonicity ϕ(a), ϕ(b) ≤
ϕ(a � b) which means a, b ≤ ϕ(a � b). Similarly it is proved that if x ∈ F a,b

ϕ ,
then ϕ(x) ∈ F a,b

ϕ , too. But by definition, if x ∈ F a,b
ϕ then a � b ≤ x. It follows

that for all such x, a � b ≤ x, hence ϕ(a � b) ≤ ϕ(x) ≤ x, so that by definition
ϕ(a � b) ≤ a � b and one concludes that a � b ∈ F a,b

ϕ . Hence ϕ(a � b) ∈ F a,b
ϕ and

from this, a � b ≤ ϕ(a � b). Therefore, ϕ(a � b) = a � b, so a � b ∈ Fϕ(L) and,
moreover, for all x, y ∈ Fϕ(L), a, b ≤ x implies a � b ≤ x. ��

Now we show that in the case of the operator J δ, alias ¬¬, the above operation
� is the double negation of the disjunction ∨ of H:

Lemma 85 Let the lattice L of Theorem 84 be a Heyting algebra H and ϕ be ¬¬.
Then for all a, b ∈ F¬¬(H), a � b = ¬¬(a ∨ b).

Proof Since p ≤ ¬¬p the requirement ϕ(p) ≤ p turns into ¬¬p = p. Therefore,
F a,b
¬¬ = {x : ¬¬(x) = x & a, b ≤ x}. Since ¬¬(a ∨ b) is a fixed point, it

belongs to F¬¬ and we have just to show that for all y such that ¬¬y = y and
a, b ≤ y, ¬¬(a ∨ b) ≤ y. Now, if a, b ≤ y, then a ∨ b ≤ y. By monotonicity,
¬¬(a ∨ b) ≤ ¬¬y = y. ��

As a corollary of Theorem 84, it is easy to show that ⇑ ϕ = {x : x ≤ ϕ(x)} and
⇓ϕ= {x : ϕ(x) ≤ x} are complete lattices. In the case of operator ¬¬, x ≤ ¬¬x,
all x ∈ H. Therefore ⇑ϕ= H and ⇓ϕ= F¬¬(H), because x ∈⇓¬¬ iff ¬¬x ≤ x ≤
¬¬x.

From Theorem 84, it can be proved that if H is a Heyting algebra, then for any
Lawvere-Tierney operator J on H, FJ (H) is a Heyting algebra, too (remember that
J is idempotent, so that for all x, J (x) is a fixed point):

Theorem 86 (See [15]) Given a Heyting algebra H, for any Lawvere-Tierney
operator J on H, the set FJ (H) = {J (x) : x ∈ H} forms a Heyting algebra.

Proof Since J is multiplicative, FJ (H) is closed under ∧ because if a = J (a) and
b = J (b), a ∧ b = J (a) ∧ J (b) = J (a ∧ b). Define on FJ (H) a disjunction � as
above. We have to show the distributive property for elements of FJ (H): p ∧ (a �
b) = (p ∧ a) � (p ∧ b). Actually, since in one sense it works, we have to show that
p∧ (a � b) ≤ (p∧ b)� (p∧ b). Trivially, p∧ a ≤ ((p∧ a)� (p∧ b)) and p∧ b ≤
((p∧a)�(p∧b)). Hence, by the adjunction relation, a ≤ p $⇒ ((p∧a)�(p∧b))

and b ≤ p $⇒ ((p ∧ a) � (p ∧ b)). Again by applying adjunction, p ∧ (p $⇒
((p ∧ a) � (p ∧ b))) ≤ (p ∧ a) � (p ∧ b). By monotonicity and multiplicativity of
J , J (p)∧ J ((p $⇒ ((p ∧ a) � (p ∧ b)))) ≤ J ((p ∧ a)� (p ∧ b)). One more time
by adjunction J ((p $⇒ ((p∧ a)� (p∧ b)))) ≤ J (p) $⇒ J ((p∧ a)� (p∧ b)) =
p $⇒ ((p∧a)�(p∧b)). The equation holds because p, a and b are fixed points of
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J which is multiplicative. Therefore, from the proof of Tarski’s theorem one obtains
a � b ≤ p $⇒ ((p ∧ a) � (p ∧ b)) and finally, again adjunction gives the thesis:
p ∧ (a � b) ≤ (p ∧ b) � (p ∧ b). ��

But FJ δ (H) is not only a Heyting algebra. In fact, one has a ≡J δ b iff ¬a = ¬b
and, therefore, from Definition 35, FJ δ (H) is a Boolean algebra5:

Theorem 87 FJ δ (H) with the operation ∧,�,¬ forms a Boolean algebra.6

If X is an element of the Heyting algebra 6R(U) one has that the families JX[x] are

congruence classes of ≡JX and if A ∈ JX[x] then JX(A) = ⋃ JX[x]. In other terms,

JX(A) is the top element of the ≡JX congruence class of A.

Example 88 Consider the preorder of Example 13 and the corresponding Heyt-
ing algebra (aka Alexandrov topology) of Example 40. The elements {a, b, b′},
{a, b, b′, c} and U are dense and {a, b, b′} is the least dense element δ of the algebra.

a α, l (α)

v

P

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U)

∅

{a, c} {b, b }

U

FJ δ R(U))

c l (α) ←→ b

δ

b

5One obtains a Boolean algebra from a Heyting one by applying another Lawvere-Tierney operator,
namely Bx(p) = (p $⇒ x) $⇒ x. The congruence relation is a ≡ b iff a $⇒ x = b $⇒ x. If
x = 0, a ≡ b iff ¬a = ¬b. By definition a is a fixed point of Bx if (a $⇒ x) $⇒ x ≤ a, so that
if x = 0, a is a fixed point if ¬¬a ≤ a, hence if ¬¬a = a.
6Moreover, by means of � we have a proof that ¬¬ preserves $⇒:

¬¬(a $⇒ b) = ¬(¬¬a ∧ ¬b) = ¬(¬¬a ∧ ¬¬¬b)
= ¬¬(¬a ∨ ¬¬b) = ¬a � (¬¬b)
= ¬(¬¬a) � ¬¬b = ¬¬a $⇒ ¬¬b

The last equation is legal because it is calculated in the Boolean algebra FJ δ (H) of the regular
elements of H.
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The arrows represent the action of the operator J δ. The elements connected by
arrows form a congruence class of ≡J δ .

J δ({a}) � J δ({b, b′})=J δ(J δ({a}) ∪ J δ({b, b′}))
=J δ({a, c} ∪ {b, b′}) = J δ({a, b, b′, c})
=U=J δ({a, b, b′})=J δ({a} ∪ {b, b′}).

Let us see some instance of operations of the Heyting algebra 6R(U): {a, b, b′} $⇒
{a} = {a, c} and¬{a} = {b, b′}, so that¬¬{a} = {a, c}. FJ δ (6R(U)) is a Boolean
algebra in which {a, c} � {b, b′} = J δ({a, c} ∪ {b, b′}) = ¬¬{a, b, b′, c} = U .

Notice, also, that {a, c} and {b, b′} are regular elements. However they are not
complemented in 6R(U) because their union is {a, b, b′, c}, not the top element U .
On the contrary, U and ∅ are both regular and complemented. If we drop v from
P, in 6R(U) the aforementioned elements are complemented. Furthermore, in this
case all the regular elements are complemented. Also this is a particular situation
which will be discussed during the analysis of standard rough set systems.

We have seen that if �α� = {a}, then c |$ 〈l〉(α), although c 
|$ α. Obviously,
a |$ 〈l〉(α). On the contrary, v 
|$ 〈l〉(α) because R(v) ∩ {a} = {a} /∈ J δ[v]. In fact,
for instance, b ∈ R(v) but �α� 
⊆ R(b). Notice that v |$ 〈l〉(β) iff δ ⊆ �β�.

Finally, from the very definition of J δ[c] one can trivially verify that �α� is locally
valid at c in the intuitive sense discussed at the beginning of the section: R(c) ∩
�α� = {a, c} ∩ {a} = {a} and {a} ∈ J δ[c]. In Example 54 we have proved it by

computing J δ({a}).
Definition 89 Let H be a Heyting algebra and ≡ a congruence on it. If H/≡ is a
Boolean algebra, then ≡ is called a Boolean congruence.

If A ⊆ δ, then ≡JA is a Boolean congruence. However if A 
 δ, then a paradoxical
situation is obtained. In fact, if �α� = A, then it is not dense so that there exists an
x such that x |$ ¬α. Hence x ∈ ¬�α� = �α� $⇒ ∅ = JA(∅). In consequence,
∅ ∈ JA[x]. But since x |$ ¬α, then R(x) ⊆ �¬α� so that R(x) ∩ �α� = ∅, which is

a member of JA[x], and one concludes that x |$ 〈l〉(α). That is, ¬α is valid at x and
nonetheless α is locally valid at x itself, as well.

Example 90 Consider the operator J {b,b′}.
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∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U)

X J {b,b }(X)

∅ {a, c}
{a} {a, c}

{a, c} {a, c}
{b, b } U

{a, b, b } U

{a, b, b , c} U

U U

G{b,b }

x J
{b,b }
[x]

a {∅, {a}}
b {{b, b }}
b {{b, b }}
c {∅, {a}, {a, c}}
v {{b, b }, {a, b, b }, {a, b, b , c}}

Therefore, if �α� = {b, b′} then a |$ 〈l〉(α) and c |$ 〈l〉(α) because R(a)∩�α� =
∅ and ∅ ∈ J

{b,b′}
[a] , and the same holds for c. Thus, we have the paradoxical situation

that a |$ ¬α, c |$ ¬α and both a and c force 〈l〉(α).
In view of the above discussion, if a is a non-dense element of a Heyting algebra,
that is, ¬a 
= 0, then we call J a and its related Grothendieck topology paradoxical
Lawvere-Tierney operator and, respectively, paradoxical Grothendieck topology.

6.7 Grothendieck Topologies and Rough Set Systems

Now we see how all the above machinery applies to Rough Set Systems.
Let us start with standard rough sets. Therefore, we are given a set U and an

equivalence relation E ⊆ U × U . We know that we have to use the set of all
singletons S as the parameter for the Lawvere-Tierney operator JX. What does it
happen to the conjugate Grothendieck topology GS?

The approximation space 6E(U) is a Heyting algebra which, in particular, is
a Boolean algebra. In this algebra the only dense element is the top element U .
If the set of singletons in 6R(U) coincides with U , then for any O ∈ 6R(U)),
JU(O) = O , so that GU = {{O} : O ∈ 6E(U)}. Since U is the least (actually only)
dense element of the algebra, we know that FJU (6E(U)) is a Boolean algebra, but
in this case the disjunction is ∪ itself. In fact, FJ S (6E(U)) equals 6E(U) for the
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very reason that for any O , JU(O) = O and from the previous results we know
that JU(O) = ¬¬O because U is the least dense element of 6E(U). In turn,
6E(U) equals the Boolean algebra B(U) = 〈℘(U),∩,∪,−,∅, U〉 because for any
x ∈ U , E(x) = {x}. This is consistent with the fact that in the Boolean algebra
B(U), ¬¬O = O , any O because in this algebra the negation ¬ is the set-theoretic
complement.

Example 91 Let U = {a, b, b′, c} and E = {〈x, x〉 : x ∈ U}. Then:

∅

{b} {b }

{b, b }

{a}

{a, b} {a, b }

{a, b, b }

{c}

{b, c} {b , c}

{b, b , c}

{a, c}

{a, b, c} {a, b , c}

U

E(U) FJ U E(U))

Since for all X ∈ R(U) (i.e.
X ∈ ℘(U)) J U(X) = X,
one has for instance: J U

[b] =
{{b} ∩ {b}, {b} ∩ {a, b} . . . {b} ∩
{a, b, b }, . . .} = {{b}}. Therefore,
GU = {{{a}}, {{b}}, {{b }}, {{c}}} and
FJ U E(U)) = E(U). Thus, for
any α interpreted on E U,E ,
for any X ∈ U , one has x l (α)

iff x α. That is, local and global
validity coincide.

Things drastically change if the set S of singletons in 6R(U) is strictly less than U .
Usually, in the rough set community it is assumed that there are no singleton classes
in U/E. If in many real-work applications this assumption may be acceptable, in
a broader framework it is questionable because, actually, also the real word is not
made of just incomplete information but of a melange of complete and incomplete
information. In the complete part Classical Logic is locally valid while it can be
assumed that the global logic is three-valued.

Now we frame this issue in the case of Rough Set Systems induced by preorders
because it has a particular logic importance, it is a broader point of view and because
the issue of singleton granules cannot be avoided if the items we are dealing with
are connected by means of a preorder or, even worst, a partial order P. In fact, if in
P there is at least a non infinite chain, the greatest point x of this chain is an isolated
point because R(x) = {x}.

In preorders we can have both maximal and pre-maximal points, that is, points x
such that if x ≤ y then y ≤ x. If x is a pre-maximal point, then the cardinality of
R(x) may be greater than 1. For instance, in our Example b and b′ are pre-maximal
and R(b) = R(b′) = {b, b′} and both b and b′ can be in the boundary of some set.
For instance, b, b′ ∈ B({a, b}).
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From the point of view of an information order, however, the larger an infor-
mation the smaller the set of items it filters. This is the so-called “Loi de Port
Royal” (Low of Port Royal: “L’extension, ou étendue varie in proportion inverse
de l’intension comprehénsion”). Thus, extension and intention are contravariant. If
we intend “strictly contravariant”, that is, if we are interested not in items but in
information increases, items which are not separable by means of granules play
exactly the same role with respect of our knowledge. If this is the case, one would
instead use topological spaces where points are not redundant with respect to the
available properties, a.k.a. open sets. These spaces, as we have already mentioned,
are called sober, or, which is the same in the finite case, T0 topological spaces:

Definition 92 (T0-Spaces) A topological space τ (U) is said to be T0 if for each
two points x, y ∈ U , if x 
= y there exists an open set O such that x ∈ O and
y /∈ O .

Therefore, a space is T0 if any two different points are separable by means of an
open set. In our interpretation: any two different items are separable by means of
some property. That is, there is at least a property which is enjoyed by one item but
not by the other.

T0 spaces are obtained from any space τ (U) with specialisation preorder @, by
taking the quotient set U/ ≡@, where x ≡@ y if and only if x @ y and y @ x, and
setting for all O ∈ 6(U), ϕ(O) = {[x]≡@ : x ∈ O}. The topology 6(U/ ≡@) =
{ϕ(O) : O ∈ 6(U)} is called the T0-ification of 6(U) and ϕ is an isomorphism
between it and 6(U). Notice that ϕ is the extension to ℘(U) of the natural map q
of Lemma 58: ϕ(O) = {q(x) : x ∈ O}.

If P = 〈U,@〉 is a preorder (in particular the specialisation preorder of a
topological space τ (U)), then on U/ ≡@ we can define the relation [x]≡@ '
[y]≡@ ⇐⇒ x @ y. It is immediate to verify that ' is a partial order. Indeed,
reflexivity and transitivity are inherited from @ and if [x]≡@ ' [y]≡@ and [y]≡@ '
[x]≡@ then x @ y and y @ x so that x ≡@ y and, in conclusion, [x]≡@ = [y]≡@ .

Let τ (U) be an Alexandrov space with specialisation preorder @. Let P/ ≡@:=
〈U/ ≡@,'〉. Then 6'(P/ ≡@) = 6(U/ ≡@) and it is isomorphic to 6(U).
The isomorphism from 6(U) to 6(U/ ≡@) is ϕ. However, the two isomorphic
topologies are not homeomorphic, because if x 
= y but x ≡ y, then q(x) = q(y),
so that an open set ϕ(O) of 6(U/ ≡@) can have less points than O .

As it is clear, one can chose a representative of [x] and obtain a partial order
P′ on the new set U ′ ⊆ U . It is not difficult to verify through q that 6(P′) and
6'(P/ ≡@) are homeomorphic.
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Example 93 Consider again our standard point-level example on U =
{v, a, b, b′, c}. The specialisation preorder @ is R (in fact 6R(U) is an Alexandrov
topology). Therefore, the T0-ification of 6(U) is:

{[∅]≡ }

{[{a}]≡ } {[{b, b }]≡ }

{[{a}]≡ , [{b, b }]≡ }{[{c}]≡ , [{a}]≡ }

{[{c}]≡ , [{a}]≡ , [{b, b }]≡ }

{[{c}]≡ , [{a}]≡ , [{b, b }]≡ , [{v}]≡ }

R(U/≡ )

ϕ({a, b, b }) = {[a] , [{b, b }]≡ }

It is clear that duality produces a T0-ification. Anyway, if we are interested in the
granules, then T0-ification is not an appropriate move. In what follows we show
what happens algebraically in case the space is not T0-ficated and when it is. We
shall see that the algebraic structure of Rough Set Systems induced by the first case
will be sensibly transformed, as well as the logical properties of the systems (that
is, the logic they model).

Moreover, we also show the algebraic and logic difference between the case H
is a generic Heyting algebra and the case H is a Boolean algebra. The latter case in
the classical one.

First, we present the topic from the point-level perspective of Rough Set Theory.
Then we develop it at the abstract level. After that, we zoom-in again to achieve the
intermediate, or hybrid, level of algebras of concrete open sets.

7 Algebras of Rough Set Systems

Given a granulation 6R(U) induced by a preorder P = 〈U,R〉, the issue concerning
singletons is how to filter the set Dsj (U/R) of all the ordered pairs of disjoint
elements of 6R(U) in order to have just elements actually representing the pairs
〈(lR)(X),−(uR)(X)〉 for some X ⊆ U .

As it is already clear, the solution is obtained by applying the Lawvere-Tierney
operator J S , where S is the union of all isolated points of 6R(U) intended as a
topology. That is, S = {x : R(x) = {x}}.
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7.1 Defining the Set of Rough Sets

Remember that 6R(U) is a Heyting algebra and S is an element of this algebra.
So for any element O of the algebra (any open set) we can define the operator
J S(O) = S $⇒ O .

What is the mechanism that makes J S act as a filter which is able to discern true
from apparent rough sets? The answer, as we are going to see, is that J S forces
any element of S to be in the first or in the second element of a rough set when it is
represented by an ordered pair of disjoint elements 〈(lR)(X),−(uR)(X)〉. But what
is the mathematical and logical significance of J S?

Let us consider again our example:

Example 94 Consider the preorder P of Example 34 and the Heyting algebra or
topology or approximation space 6R(U). The set of all singletons is S = {a}. The
action of the operator J S on 6R(U) is the following:

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U) The Grothendieck topologyGS

J S[a] = {{a}}
J S[b] = J S

[b ] = {∅, {b, b }}
J S[c] = {{a}, {a, c}}
J S[v] = {{a}, {a, c}, {a, b, b }, {a, c, b, b }, U}

This topology gives us some information. For instance, in no ordered pair the
open set {b, b′} can have ∅ as partner even if ¬S = {b, b′}. In fact the presence of
∅ in J S

[b] and J S
[b′] tells us that a partner must be found between S and ¬¬S, in our

case {a} and {a, c}. Actually, the only elements which can have ∅ as a partner in a
disjoint pair, are the members of ↑ S. Therefore, the following filtration is applied
by J S on Dsj (U/R):
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The framed elements are
discharged by the filtration
J S . Indeed, ∅ ∪ {b, b S.
Therefore, the ordered
pairs , {b, b and

b, b }, are filtered
out. A fortiori , is
discharged. The rough set
system R(U)) is
then the lattice without the
framed elements depicted in
Example 34., U

, {a, c, b, b

, {a, b, b , {a, c

, {b, b , {a b, b }, {a, c

, b, b }, {aa}, {b, b

a},a, c}, {b, b b, b },

a, c}, a, b, b },

a, c, b, b },

U, Dsj (U/R)

Remarks 7.1 The Grothendieck topology above is paradoxical, like the one of
Example 90. In a sense, the very filtration rules out the paradoxical situations.

Now we transform Dsj (U/R) into Dsj (6R(U)) step by step, explaining the
inner mathematical and logical mechanisms of the transformation. At the end of
the process we will find that Dsj (6R(U)) is a particular structure called Nelson
algebra that we define at the pointless level:

Definition 95 (Nelson Algebras) A lattice N = 〈A,∧,∨,∼,−→, 0, 1〉 is a
Nelson algebra if:

1. 〈A,∧,∨,∼, 0, 1〉 is a de Morgan lattice, that is, a distributive lattice such that for
all a, b,∼∼ a = a and∼ (a∨b) =∼ a∧ ∼ b. Therefore,∼ (a∧b) =∼ a∨ ∼ b

and a ≤ b iff ∼ b ≤∼ a.
2. a∧ ∼ a ≤ b∨ ∼ b, so that it is also a Kleene algebra.
3. The operation−→ fulfils the following adjunction property:

a ∧ c ≤∼ a ∨ b ⇐⇒ c ≤ a −→ b (56)

Nelson algebras are a bit tricky to one who is just familiar with Classical or
Intuitionistic logic, that is, Boolean or Heyting algebras. Indeed we have that
∼∼ a = a but nonetheless, ∼ a ∨ a ≤ 1. This suggests that ∼ is not a pseudo-
complementation, otherwise the lattice would be a Boolean algebra. In turn, −→ is
not a relative pseudo-complementation. Indeed the adjunction property fulfilled by
−→ is (56) and we have that ∼ a ≤ a −→ 0. So we can define two other negations
and an additional implication. This operations will play a key role in the connection
of Nelson algebras and rough set systems.
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�a := a −→ 0 (57)

a ⊃ b :=∼� ∼ a ∨ b ∨ (�a∧� ∼ b) (58)

¬a := a ⊃ 0 =∼� ∼ a (59)

The negation ∼ is called strong negation because one has ∼ a ≤�a, and � is
intended to be an intuitionistic negation (it is the implication of the 0-element). We
shall see, that � is far from replicating a pseudo-complementation, because a∧�a
is not 0 and �� is not able to grasp classical tautologies. In a particular case, that
we shall discuss below, � is a dual pseudo-complementation, this is the reason of
the symbol, while ¬ turns into a real pseudo-complementation. Anyway, all finite
Nelson lattices are, also, Heyting algebras (but there are infinite Nelson lattices
which are not Heyting algebras). What we will show is that if a Nelson algebra
is semi-simple, then the relative pseudo-complementation is definable by means of
the very operations of the Nelson algebra itself.

Definition 96 A Nelson algebra is called semi-simple if a∨�a = 1, any a.

The link between this abstract structure and the concrete structure Dsj (6R(U))

is given by the duality theory of Nelson algebras. Therefore the first step is the
construction of the dual space of a Nelson algebra from an abstract point of view.

So, let N be a Nelson algebra. We recall that we assume that N is finite and that
our meta-theory is Classical Logic. Define on J (N) the following endomorphism:

f (x) = min≤N (J (N) ∩ −{∼ b : b ∈↑≤N x}) (60)

where min≤N and ↑≤N refer to the lattice order ≤N of N, which is a partial order.
The restriction to J (N) of this order will be denoted by ≤.

It can be proved that f is a linear involutive anti-order isomorphism in J(N) =
〈J (N),≤〉, that is, x ≤ y implies f (y) ≤ f (x), x ≤ f (x) or f (x) ≤ x and
f (f (x)) = x. Moreover, the following interpolation property holds:

if a ≥ f (a), b ≥ f (a), a ≥ f (b), b ≥ f (b)

then ∃c ∈ J (N) such that c ≤ a, c ≤ b, f (a) ≤ c, f (b) ≤ c.

That is, there is an intermediate element which prevents f and the order of J (N)

from crossing. If N were a Kleene algebra, then the interpolation property could fail.
The space N (J(N)) := 〈J (N),≤, f 〉 is called a Nelson space.

Actually, a Nelson space is any preorder N (U) = 〈U,≤, f 〉 where f is an
endomorphism with the properties above. A Nelson algebra is restored from a
Nelson space N (U) by defining the following operations on 6≤(U):

• 1 := U , 0 := ∅
• A ∨ B := A ∪ B, A ∧ B := A ∩ B

• A −→ B = −C≤(A ∩ f (A) ∩ −B)

• ∼ A := U ∩ −f (A)
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One has that N(N (U)) := 〈6≤(U),∨,∧,−→,∼, 0, 1〉 is a Nelson algebra. In
particular N(N (J(N))) is isomorphic to N.

In the process, we see also that �A := −C≤(A ∩ f (A))—i.e. A −→ 0.
All this is very useful, but if we start from an approximation space 6R(U), how to

define the involution f ? What is the relation between f and the granulation provided
by 6R(U)?

In order to answer, let us observe, in the first place, that a Nelson space can be
split into two parts linked by the involution f .

Notation In order to avoid confusions later, the universe of a Nelson space will
be denoted by U∗.

Definition 97 Given a Nelson space N (U∗) = 〈U∗,≤, f 〉, define

U+ := {x ∈ U∗ : x ≤ f (x)}, with an order ≤+ inherited from N (U∗)

U− := {x ∈ U∗ : f (x) ≤ x}, with an order ≤− inherited from N (U∗)

Let kf : 6≤(U∗) �−→ 6≤+(U+)×6≤+(U+) := 〈U+ ∩X,U+ ∩ −f (X)〉.
Define the following operations where inside the ordered pairs the operations are
those of the Heyting algebra 6≤+(U+) (i.e. ∧ = ∩, ∨ = ∪ and so on):

• 1 := 〈U+,∅〉, 0 = 〈∅, U+〉
• 〈X1,X2〉 ∨ 〈Y1, Y2〉 := 〈X1 ∨ Y1,X2 ∧ Y2〉
• 〈X1,X2〉 ∧ 〈Y1,X2〉 := 〈X1 ∧ Y1,X2 ∨ Y2〉
• ∼ 〈X1,X2〉 := 〈X2,X1〉
• 〈X1,X2〉 −→ 〈Y1, Y2〉 := 〈X1 $⇒ Y1,X1 ∧ Y2〉
• �〈X1,X2〉 := 〈¬X1,X1〉
• ¬〈X1,X2〉 := 〈X2,¬X2〉
It is possible to show that Nkf (N (U∗)) := 〈kf (6≤(U∗)),∧,∨,∼,−→, �, 0, 1〉 is
a Nelson algebra. Just notice, that any X ∈ 6≤(U∗) is an up-set (i.e. a ≤ filter).
Therefore, if x ∈ X ∩ U+ then for each y ∈ U+, if x ≤ y then y ∈ X and, thus,
y ∈ X ∩ U+. That is, X ∩ U+ is an up-set in U+ (a ≤+ filter), hence belongs to
6≤+(U+). Similarly, since X is an up-set in U∗, f (X) is a down-set in U∗ (a ≤
ideal) because f is order reversing. In consequence,−f (X) is an up-set in U∗ and,
again,−f (X) ∩ U+ is an ≤+ filter.

Example 98 Although we shall prove only later that Dsj (U/R) is a Nelson algebra,
in order to follow the construction of the dual space let us assume it is a Nelson
algebra and consider a pointless version of it.
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0

a

b c

d e r

h ig

ml n

o p

q

1

N

a

b

d

c

g

l r

1

J(N)

0 a b c d e r g h i l m n o p q 1
∼ 1 q p o n m l i h g r e d c b a 0

Notice that the strong negation of x is symmetric to x. J (N) = {a, b, c, d, g, l, r, 1}.
Let us calculate the involution f :
f (a) = min≤N − {∼ x : x ∈↑≤N a} = min≤N− ↓≤N (∼ a) = min≤N− ↓≤N

q = min≤N {1} = 1; f (b) = min≤N− ↓≤N (∼ b) = min≤N− ↓≤N p =
min≤N {l, o, q, 1} = l. The reader now has the mechanism. Then:
f (d) = min≤N− ↓≤N (∼ d) = min≤N− ↓≤N n = min≤N ↑≤N g = g.
f (g) = min≤N− ↓≤N i = min≤N ↑≤N d = d; f (l) = min≤N ↑≤N b = b.
f (c) = r and f (r) = c.
The circled elements form the subset U+ while the boxed ones form U−.
It is easy to verify, for instance, that given the up-set {c, r, 1, l}, f ({c, r, 1, l}) =
{c, r, a, b} which is a down-set. Therefore, −f ({c, r, 1, l}) = −{c, r, a, b} =
{d, g, l, 1} is an up-set.

Now we know what our goal is. So the first step is to transform our approximation
space (Heyting algebra, Alexandrov topology) 6R(U) into the space previously
denoted as 6≤+(U+). Then we have to define from it the duplicate space 6≤−(U−),
an order≤ glueing the two spaces into a preorder on U∗ = U+∪U− and, finally, an
involution f on U∗ fulfilling the properties discussed above, with respect to ≤. The
resulting space N (U∗) is a Nelson space. After that, we are eventually in position
to transform6R(U) into the Nelson algebra Nkf (N (U∗)) and prove that its domain
(or carrier) is Dsj (6R(U)). Since from now to the end of the section the universe U

of our approximation space 6R(U) plays the role of U+, let us use the last symbol
(with our usual R which turns into≤+). Thus, now the approximation space 6R(U)

is called 6≤+(U+).
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A particular attention is due to the involution f , because it is strictly connected
with the singleton issue. Indeed, look at the role of f in the definition of
Nkf (6≤(U∗)). It actually decides which elements not belonging to the open set
X1 = U+ ∩X are allowed to belong to X2. In fact, suppose that X ∈ 6≤(U∗) and
U+ ∩ X = I≤+(A) for some subset A of U+ (aka U ). We know that I≤+(A) is
an up-set in U+ and C≤+(A) a down set in U+ therefore a down-set in U∗. Vice-
versa, if X is a down-set in U∗, it is a down set also in U+. But we have seen that
actually f (X) is a down-set in U∗. Indeed, f (X)∩U+ “is” the closure C≤+(A). In
consequence,−f (X)∩U+ is the complement of the closure of A, that is,−C≤+(A)

(to see that, we need only to prove−(f (X) ∩ U+) = −f (X) ∩U+).
Now, how can f rule out from −f (X) the elements c of A which are isolated

in 6≤+(U+) and are not already in X? Or, which is the same, how can it put c in
f (X)? How does f work?

We need a formal definition of a notion we have already seen:

Definition 99 Let P = 〈P,≤〉 be a preorder. An element x ∈ P is said to be pre-
maximal if ∀y ∈ P(x ≤ y ⇒ y ≤ x). It is called maximal if ∀y ∈ P(x ≤ y ⇒
y = x).

Clearly, if ≤ is a partial order then the two notions coincide. Notice that in the case
P is the dual space J(A) of a Nelson algebra or a Heyting algebra A, then the order
of J(A), x ≤ y ⇐⇒ ↑ (y) ⊆↑ (x), is a partial order because it is induced by the
subset relation⊆ which is an extensional relation, so that if X ⊆ Y and Y ⊆ X then
X = Y .

Now, c is isolated in 〈U+,≤+〉 if ↑≤+ c = {c}. And this happens if and only if c
is a maximal element in ≤+.

We have to pay attention to a fact that maybe evaded the reader: U+ and U− must
have the same cardinality (otherwise f is not an anti-isomorphism), however it is not
required they are disjoint. In Example 98 they are disjoint, but their definitions do
not imply disjunction. So, let us investigate their, possibly not empty, intersection.

Theorem 100 Let N (U∗) = 〈U∗,≤, f 〉 be a Nelson space. Let B = U+ ∩ U−.
Then:

1. c ∈ B if and only if f (c) ∈ B.
2. If ≤ is a partial order, then c ∈ B if and only if f (c) = c.
3. If c ∈ B then c is maximal or pre-maximal in 〈U+,≤+〉 (maximal if ≤+ is a

partial order).

Proof (1) If c ∈ B then c ∈ U+ and c ∈ U−, so that f (c) ≤ c ≤ f (c). From this
it is immediate to see that f (c) ∈ B, too: c ≤ f (c) gives f (f (c)) ≤ f (c) and
f (c) ≤ c gives f (c) ≤ f (f (c)). The reverse is obvious. (2) comes trivially from
(1). (3) Suppose now that for x ∈ U+, c ≤ x, so that f (x) ≤ f (c). Since x ∈ U+,
x ≤ f (x) and we immediately obtain the following relation: x ≤ f (x) ≤ f (c) ≤
c ≤ x ≤ f (x). Therefore, f (c) ≤ f (x), so that x ≤ c. Hence c is pre-maximal or
maximal (therefore, maximal if ≤ is a partial order). ��
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Remarks 7.2 The reverse implication of Theorem 100.(3) does not hold: if c is pre-
maximal (maximal), then not necessarily c ∈ U+ ∩ U−. This is important, because
it means that it depends on the application to decide if a maximal element c is to be
set to f (c) = c, which, indeed, is the case of rough set systems, as we are going to
see.

We have enough material to proceed with our construction. Given an approximation
space 6≤+(U+) take a copy 6≤−(U−), where ≤− is the reversed order of ≤+ (i.e.
≤+3 =≤−). If≤+ is a preorder (partial order), then≤− is a preorder (partial order),
too. The elements of U− will be decorated by an apex “−”, while the corresponding
elements in U+ will be decorated by “+”. As we have just seen, it is possible for
some element to have both decorations (if it belongs to U+ ∩U−).

Define now a relation ϕ ⊆ U+ × U− as follows: ϕ(x+) = {x−}. Therefore,
ϕ3(x−) = {x+} and for x+−, ϕ(x+−) = ϕ3(x+−) = {x+−}. Clearly, ϕ is an order
anti-isomorphism between U+ and U−. The new relation ϕ enables the definition
of the final order ≤ on U∗ = U+ ∪ U−. The intermediate step is the definition of
an order connecting U+ and U−. It is defined passing through ϕ in the composition
≤+ ⊗ϕ⊗ ≤−. It is then possible to prove that ≤:=≤+ ∪ ≤− ∪(≤+ ⊗ϕ⊗ ≤−) is
the required order on U∗ = U+ ∪U−: it preserves both≤+ and≤− and glues them
together in a minimal way. Finally, we define the involution f on U :

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x− if x = x+

x if x = x+−

x+ if x = x−
(61)

It is a little bit long but not difficult to prove that f satisfies the required properties
so that the space N (U∗) = 〈U∗,≤, f 〉 is a Nelson space. In consequence
Nkf (N (6≤(U∗))) is a Nelson algebra of ordered pairs of disjoint elements of
6R+(U

+).
In synthesis, we have transformed a Heyting algebra into a Nelson one applying

a particular filtration which operates as follows. In the first place, let us focus our
attention to the involution f . From the above discussion, it is evident that if x ∈ U+
then f (↑≤+ x) ∩ U+ = C≤+({x}). Therefore, if x is an isolated point in 6+≤(U+)
(i.e. ↑≤+ x = {x}) and x /∈ X but x ∈ f (X), for some X ∈ 6≤(U), then we do
have x neither in U+ ∩ X nor in U+ ∩ −f (X). Suppose that for some A ⊆ U+,
X ∩ U+ = I≤+(A) so that U+ ∩ −f (X) = −C≤+(A). Therefore x would belong
to the boundary of A, which is impossible for isolated points.

But suppose f (x) = x. Then x /∈ X ∩ U+ if and only if f (x) /∈ X. In
consequence, x ∈ −f (X) and, finally x is in U+ ∩ −f (X), that is, x ∈ −C≤+(A).
It follows that if S is the set of isolated points of 6≤+ and we put f (c) = c for
all c ∈ S, then there is a one-one correspondence between the set {−C≤+(A) :
A ∈ ℘(U+)} and the set {X+ ∩ −f (X) : X ∈ 6≤(U∗)}, that is, the set
{X2 : 〈X1,X2〉 ∈ kf (6≤(U∗))}. This is the tricky part, because 6≤+(U+) is by
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definition {I≤+(A) : A ∈ ℘(U+)}. Otherwise stated, in 〈X1,X2〉 the element X1 is
not affected by the choice of the subset of maximal elements.

Example 101 In this example we use our familiar preorder P = 〈U,R〉. But to
follow the construction comfortably, we rename its elements by setting U+ instead
of U and ≤+ instead of R. Therefore, now our approximation space is called
6≤+(U+).

b−b

v−

c−

a−

a+

c+ b+b

v+

U+

U−
We are not obliged to force any point
into the intersection of U+ and U−,
but since we want to represent rough
sets, we must put in U+ ∩ U− all the
isolated points, that is, all the maximal
points ofU+. In our case a+. Therefore
we obtain the following lattice, where
the elements are linked by the preorder
≤+ ∪ ≤− ∪(≤+ ⊗ϕ⊗ ≤−) which is
shown below.

b−b

v−

c−

a+−

c+ b+b

v+

U∗

≤+ v+ c+ b+ b a+
v+ v+
c+
b+
b

a+

1 1 1 1 1
0 1 0 0 1
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

≤− v− c− b− b a−
v−
c−
b−
b

a−

1 0 0 0 0
1 1 0 0 0
1 0 1 1 0
1 0 1 1 0
1 1 0 0 1

ϕ v c− b− b a−

c+
b+
b

a+

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

≤+ ⊗ϕ⊗ ≤− v− c− b− b a−
v+
c+
b+
b

a+

and finally

≤ v+ c+ b+ b a+− v− c− b b−
v+
c+
b+
b

a+−
v−
c−
b−
b

1 1 1 1 1
0 1 1 0 1
1 0 1 1 0
1 0 1 1 0
1 1 0 0 1

1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 0 0
0 0 1 1 0 1 0 1 1
0 0 1 1 0 1 0 1 1
0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 1

It is clear that the codomain of ≤+ ⊗ϕ is just a renaming of the codomain of ≤+,
from U+ to U−, so that ≤+ ⊗ϕ⊗ ≤− amounts to ≤+ ⊗≤+3. So we obtain:
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The above pre-ordered space together with the involution f of (61) is our Nelson
space N (U∗) = 〈U∗,≤, f 〉. Now let us apply to N (U∗) the transformation kf .
We compute some instances.

kf ({b+, b′+, b−, b′−, v−}) = 〈U+ ∩ {b+, b′+, b−, b′−, v−}, U+ ∩−f ({b+, b′+, b−, b′−, v−})〉
= 〈{b+, b′+}, U+ ∩ −({b+, b′+, b−, b′−, v+})〉
= 〈{b+, b′+}, U+ ∩ {v−, c+, a+−, c−}〉 = 〈{b+, b′+}, {c+, a+−}〉.

kf ({b+, b′+, b−, b′−, v−, c−}) = 〈{b+, b′+}, {a+−}〉.
Since f (a+−) = a+−, for any X ∈ 6≤(U+) it is not possible to exclude a+− from
both X1 and X2 in kf (X) = 〈X1,X2〉.
Notice, indeed, that in the construction of the present space we have applied the
Grothendieck topology of Example 94. On the contrary, consider the Nelson space
N (U∗) of Example 98 and set X = {c, r, 1, g, l}. Then kf (X) = 〈{c},∅〉 which
corresponds in the present space to 〈{b+, b′+},∅〉. So, a (i.e. a+) is excluded both
from the interior and the complement of the closure of X.

Observe now that from Theorem 100 we can put f (c) = c for all c ∈ S for the
very reason that S is the set of isolated, hence maximal, points of 6≤+(U+). Since
↑ S contains all the dense elements of 6≤+(U+), it induces a Boolean congruence.

Indeed, the above construction is an instance of the following general result at the
pointless level which shows how to transform Heyting algebras into Nelson ones.

Theorem 102 (Sendlewski) Let H be a Heyting algebra and ≡ a Boolean
congruence on H. Then:

N≡(H) = {〈a1, a2〉 : a1 ∧ a2 = 0 and a1 ∨ a2 ≡ 1} (62)

equipped with the abstract version of the operations of Definition 97 is a Nelson
algebra N≡(H). If a ∼= b ⇐⇒ a −→ b ∧ b −→ a, then ∼= is a congruence with
respect to all the operations of N≡(H) but the strong negation∼ and N≡(H)/ ∼= is
isomorphic to H. Moreover, Nkf (N (J(N≡(H)))) = N≡(H). Finally, all the Nelson
algebras N such that N/ ∼= is isomorphic to H are isomorphic to N≡(H) for some
Boolean congruence≡.

Remarks 7.3 With “abstract version” of the operations we mean, for instance, ∼
〈a1, a2〉 = 〈a2, a1〉 or 〈a1, a2〉 −→ 〈b1, b2〉 = 〈a1 $⇒ b1, a1 ∧ b2〉.
The congruence∼= takes into account just the first elements of the ordered pairs. But
these are the elements of H. Therefore it is immediate that N≡(H)/ ∼= is isomorphic
to H, provided≡ is a Boolean congruence. If we look at this result from the point of
view of Nelson spaces, we see that there is a one-one correspondence between the
subsets of the set M of the maximal elements of the dual space of H and the Boolean
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congruences of H. The least Boolean congruence corresponds to M itself and to
our operator J δ discussed above because M is the least dense element of H. This
congruence will play a key role that we see after showing how Boolean congruences,
that is, subsets of maximal elements, are connected to rough set systems from the
point of view of the transformation N≡.

The dual space of a Heyting algebra is a partial order. So, any pre-maximal
element is maximal. But if we start with a preordered system we have to take into
account the subsets of pre-maximal and maximal elements. We have adapted the
dual construction of Theorem 102, due to [47], to the finite case and preorders. In
the process, we have found Theorem 100. Moreover, we have linked the Boolean
congruence ≡ to Lawvere-Tierney operators and Grothendieck topologies. This
link enables us to understand the importance of ≡ in the construction of rough set
systems.

In fact, the rough set companion of Theorem 102, expressed in terms of Lawvere-
Tierney operators, is:

Theorem 103 Let 6R(U) be an approximation space and S the set of its isolated
elements. Let us set:

N≡
JS
(6R(U)) = {〈X1,X2〉 ∈ 6R(U) : X1 ∩X2 = ∅ and X1 ∪X2 ≡J S U}

Then Dsj (6R(U)) = N≡
JS
(6R(U)).

Proof The proof is immediate: In the first place, S is a subset of maximal elements
of 〈U,R〉. So ≡J S is a Boolean congruence.

Moreover, if X1∪X2 ≡J S U then S $⇒ (X1∪X2) = S $⇒ U = U . It follows
that S ⊆ (X1 ∪X2).

Let X1 = IR(A) and X2 = −CR(A) for some A ⊆ U . Then for each c ∈ S

either c ∈ IR(A) or c ∈ −CR(A). ��
Consider Example 101. It is easy to verify that kf (6≤(U∗)) = N≡

J {a} (6R(U))

and that they coincide with the lattice Dsj (6R(U)) of Example 46 once we get rid
of the decoration +.

We can see the above construction from a different point of view: it provides an
information-like interpretation of the filtration clause “≡ 1” which appears not only
in the definition of Nelson algebras, but also of Stone algebras and Łukasiewicz
algebras. Three-valued Łukasiewicz algebras will be linked to rough set systems in
the next Section. Now we have to conclude the story about rough set systems from
preorders and partial orders, with a particular and interesting case.
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7.2 Rough Set Systems Based on Partial Orders and Effective
Lattices

7.2.1 Constructive Logic with Strong Negation: CLSN

The Hilbert-style axioms of Nelson Logic, called Constructive Logic with Strong
Negation—CLSN—are essentially the axioms for Nelson algebras. There is also
an equational definition which can be found in [42]. A Natural Deduction-style
set of rules can be found in [39]. Kripke models for CLSN were introduced by
Thomason (see [48]). They are partial orders, that for a familiar reason we denote
with 〈U+,≤+〉, equipped with a standard forcing relation |$ for positive formulas,
that is, if p |$ α then for all p′ ≥ p, p′ |$ α. In Kripke models for Intuitionistic
logic, the forcing clause for the intuitionistic negation ¬ is defined as p |$ ¬α if
for all p′ ≥ p, p′ 
|$ α. In Thomason’s models the strong negation ∼ of CLSN is
defined as like as a positive formula: p |$∼ α implies that for all p′ ≥ p, p′ |$∼ α.
It is only required that if p |$ α then p 
|$∼ α.

Therefore, in the Intuitionistic case, �¬α� can be calculated from �α�. In
particular, given an Heyting algebra 6R(U), �¬α� = −CR(�α�). On the contrary,
there is not a function sending �α� to �∼ α�. Actually, there can be α and β such that
�α� = �β� but �∼ α� 
= �∼ β�, a situation which does not occur for ¬. In a sense,
∼ α is an “explicit negation” not an “implicit” one as ¬α; one has to positively state
where α is false.

Therefore, it is natural to represent the evaluation of a CLSN formula α by means
of an ordered pair of disjoint elements κ(α) = 〈�α�, �∼ α�〉.

Clearly, there are states p such that p 
|$ α and p 
|$∼ α because it is not
required the existence of maximal states m such that either m |$ α or m |$∼ α. This
behaviour is different from the one of intuitionistic negation, because by its very
definition if α is not forced by some state above p, then p |$ ¬α. Otherwise stated,
in models for CLSN it is not required that eventually all formulas are decidable.

This behaviour is mirrored by the dual construction of Nelson algebras. In fact,
if there is a maximal p which is required to decide every formula α, than p must be
either in �α� or in �∼ α�. Therefore, in the dual construction one must put f (p) = p

so that p must be maximal. But from the Remarks 7.2 this is not mandatory for
maximal elements, as Example 98 shows.

Pay attention that both in the case of pre-orders and partial orders if p is
not maximal or pre-maximal and still we put f (p) = p, then in view of
Theorem 100.(3), f cannot be an involutive anti order isomorphism and for X =
{p : f (p) = p}, the filter ↑ X does not contain all the dense elements of
6≤+(U+) so that N≡

JX
(6≤+(U+))/ ∼= is isomorphic to another Heyting algebra

H′ 
= 6≤+(U+).
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Example 104 If we set X = {a, c}, then JX gives:

∅

{a} {b, b }

{a, b, b }{a, c}

{a, b, b , c}

U

R(U)

J {c,a}

, U

, {a, b, b , c

, {a, c a, c}, {b, b

a, c},b, b }, {a, c

a, b, c},

U,

N≡
J {a,c} R(U))

∅

{a, c} {b, b }

{a, b, c}

U

N≡
J {a,c} R(U))/ ∼=

The relations between H and H′ are not in the scope of our chapter. Therefore,
we focus our attention on maximal and pre-maximal states.

From a logical point of view, since formula are evaluated on order filters, the
distinction between partial and pre orders, hence between maximal and pre-maximal
states, is not very important. On the contrary, it is relevant from the point of view
of rough sets. In fact, in order to be approximated through a relation R on U , a
subset A of U is “evaluated” on the points of 6R(U), so that, as we are going to
see, there is a difference if R is a partial order or a preorder. More precisely, the
difference concerns the existence of maximal states. From now on, therefore, we
consider partial orders or preorders bounded by maximal states.

We have two extreme cases and an intermediate one: (1) No maximal states
decide every formula. (2) All the maximal states decide every formula. (3) Some
maximal states but not all decide all formulas.

In the first case, the filtering congruence relation is ≡J ∅ , so it is required that
∅ ⊆ X1 ∪ X2 which is a relation always fulfilled. In particular in the resulting
Nelson lattice the pair 〈∅,∅〉 appears, which represents a state of “complete absence
of information”.

Notice that∼ 〈∅,∅〉 = 〈∅,∅〉. An element a such that∼ a = a is called central.
Central elements are fixed elements of the negation, thus. In Nelson algebras there
can be only one central element.

The intermediate case is the generic one discussed so far. The lattice of Exam-
ple 98 (a.k.a. Dsj (U/R)) illustrates the first extreme case. The other intermediate
case will be discussed in the next section.

Example 105 Let us drop from our standard preorder P the element b′. Then R

turns into a partial order Q on a set W = {a, b, c, v}. Suppose we are given just
one CLSN formula α to be evaluated on 〈W,Q〉. Then the situations at the maximal
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state a, are the following (below any diagram the corresponding κ(α) is displayed):

a α

c b ∼ α

v

a ∼ α

c b α

v

a α

c b α

v

a}, {b b}, {a

a ∼ α

c b ∼ α

v

a α

c b

v

a ∼ α

c b

v

a

c b ∼ α

v

a

c b α

v

a, b}, , {a, b

a}, , {a , {b b},

In the last case, κ(α) is the central element , .

a

c b

v

,

But if the parameter of the operator JX is the set of maximal elements M , then
only the first four cases are admitted. Notice again that ordered pairs are not admitted
not because they have an empty component. In fact 〈M,∅〉 and 〈∅,M〉 are admitted
(for another counterexample see the next section).

Before analysing the second and fundamental extreme case, we display some
interesting relations between the three negations. We need an easy but useful lemma:

Lemma 106 Let 〈a1, a2〉 be a pair of disjoint elements of a Heyting algebra. Then
a1 ≤ ¬a2 and a2 ≤ ¬a1.

Proof Immediate from adjointness: a1∧a2 ≤ 0 if and only if a1 ≤ a2 $⇒ 0 = ¬a2
if and only if a2 ≤ a1 $⇒ 0 = ¬a1. ��

Moreover, it is not difficult to verify that for any two elements a = 〈a1, a2〉 and
b = 〈b1, b2〉 of any Nelson algebra N≡Jx (H) of ordered pairs of disjoint elements
of a Heyting algebra H (hence with ≡J x not necessarily a Boolean congruence) the
following hold:

a ≤ b if and only if a1 ≤H b1 and b2 ≤H a2. (63)

(i) ¬a ≤∼ a ≤�a, (ii) if a ≤ b then ∼ a ≤∼ b, ¬a ≤ ¬b, �a ≤�b (64)

(i) ¬¬¬a ≥ ¬a, (ii) ∼∼∼ a =∼ a, (iii) ��� ≤�a (65)
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(i)��a ≥∼�a = ¬ ∼ a = ¬�a ≤ a, (ii) ¬¬a ≤∼ ¬a =� ∼ a =�¬a ≥ a

(66)

(i) ��a ≥ a only if a2 = ¬a1, (ii) ¬¬a ≥ a only if ¬¬a2 = a2 (67)

By easy inspection using Lemma 106. For instance, (66).(ii) is immediate from (i):
∼ ¬a =∼ ¬ ∼∼ a =∼∼� ∼ a =� ∼ a. As to (67) a = 〈a1, a2〉 and from
Lemma 106 ��a = 〈¬¬a1,¬a1〉. Clearly ¬¬a1 ≥H a1 and ¬a1 ≥H a2, so that
the first pair is above the second only if a2 = ¬a1. In turn, ¬¬a = 〈¬a2,¬¬a2〉
and ¬a2 ≥H a1, ¬¬a2 ≥H a2, so that now we need ¬¬a2 = a2 (we recall that
〈a1, a2〉 ≤ 〈b1, b2〉 iff a1 ≤H b1 and b2 ≤H a2).

Example 107 Consider the following examples from the lattice Dsj (6(U)) of
Example 46: ��〈{a},∅〉 = 〈{a, c}, {b, b′}〉 which is incomparable with 〈{a},∅〉
because {a} ⊆ {a, c} but also ∅ ⊆ {b, b′}.

Similarly, ¬¬〈∅, {a}〉 = 〈{b, b′}, {a, c}〉 which is incomparable with 〈∅, {a}〉.
��〈∅, {a}〉 = 〈∅, U〉 ≤ 〈∅, {a}〉 and ¬¬〈{b, b′}, {a}〉 = 〈{b, b′}, {a, c}〉 ≤
〈{b, b′}, {a}〉. On the contrary, ��〈{a}, {b, b′}〉 = 〈{a, c}, {b, b′}〉 ≥ 〈{a}, {b, b′}〉
and ¬¬〈∅, {a, c}〉 = 〈{b, b′}, {a, c}〉 ≥ 〈∅, {a, c}〉.

7.3 Effective Lattices, the Logic E0 and Rough Set Systems

Now we have to focus on the particular case in which the preorder, or the partial
order, is bounded by a set M of maximal states. From a rough set perspective, this
means that the set S of isolated elements coincides with M . What are the logical
consequences of this situation? Otherwise stated, what does it happen if in a model
every state has a state above it which decides every formula?

In view of Theorem 83, in such model for any formula α, �α∨ ∼ α� is locally
valid everywhere. This is the main feature which makes CLSN transform into a
new logic called E0. This logic (also called Effective Logic 0) was introduced for
studying program synthesis and program specification (see [24]) and its algebraic
models were studied in [27]. This logic was presented by means of rules of Natural
Deduction by adding to the rules for CLSN the following schemas:

(T 1)

[α] [α]

[β] [∼ β] [∼ β]
(α)

(T 2)

[∼ α] [∼ α]

[β]
(α)
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Now, let us translate the two rules in the operation of a Nelson algebra N≡(H)

of ordered pairs of disjoint elements of a Heyting algebra H. In what follows we
put a = κ(α), b = κ(β), a = 〈a1, a2〉, b = 〈b1, b2〉, and so on. Remember that
a −→ b = 1 iff a1 ≤H b1. Then, since the first element of κ(b∧ ∼ b) is b1∧b2 = 0,
we have:

(i) (a −→ 0) −→ T(∼ a); (ii) (∼ a −→ 0) −→ T(a) (68)

Moreover, from the two rules it is possible to derive

T(∼ α) ≡∼ T(α). (69)

Let us set T(a) = 〈T1, T2〉 and from the above ingredients discover what T1 and T2
must be.

From (68).(i) and T(∼ α) ≡∼ T(α) one has �a −→∼ T(a). From (68).(ii) one
obtains � ∼ a −→ T(a). Since �a = 〈¬a2, a2〉 and �a = 〈¬a1, a1〉 it must be:

(i) ¬a2 ≤H T1, (ii) ¬a1 ≤H T2, so (iii) ¬T1 ≤H ¬¬a2, (iv) ¬T2 ≤H ¬¬a1
(70)

From Lemma 106 we have:

(i)¬¬a1 ≤H ¬a2, (ii) T1 ≤H ¬T2, (iii) T2 ≤H ¬T1 (71)

From (70).(ii) and (71).(i) ¬¬a1 ≤H ¬a2 ≤H T1. From this, (70).(iv) and (71).(ii)
¬¬a1 ≤H T1 ≤H ¬T2 ≤H ¬¬a1. In consequence: ¬¬a1 = T1 = ¬T2. Therefore,
¬T1 = ¬a1. From this and (71).(iii) T2 ≤H ¬a1 and from (70).(ii) T2 ≤H ¬a1 ≤H
T2, so that T2 = ¬a1. We conclude that:

T(a) = 〈¬¬a1,¬a1〉 for any a of a Nelson algebra modelling E0. (72)

Now, in a generic Nelson algebra we do have ��a = 〈¬¬a1,¬a1〉, but we cannot set
T(a) =��a because of (69). In fact, ∼��a = ¬¬ ∼ a = 〈¬a1,¬¬a1〉. Therefore
it should be ¬a1 = ¬¬a2 and ¬a2 = ¬¬a1, all a. However, usually in Nelson
algebras these equations do not hold. Look at the following model:

v

a α c αb κ(α) a}, {c , ∼ (κ(α)) a},¬¬{a
b, c}, {a , while ∼ κ(α) c},¬{c
c}, {a, b .

The reader has immediately recognised the problem: b does not decide α or ∼ α.
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At this point we must find the conditions for a Nelson algebra to make ¬a1 =
¬¬a2, which, obviously, is the same as ¬¬a1 = ¬a2.

Lemma 108 Let L be a distributive lattice, a, b, c ∈ L, a ∧ b = 0 = a ∧ c. Then
a ∨ b = a ∨ c if and only if b = c.

Proof If a ∨ b = a ∨ c then (a ∨ c) ∧ b = (a ∨ b) ∧ b = b. Therefore, b =
(a ∧ b)∨ (c ∧ b) = 0 ∨ (c ∧ b) so that b ≤ c. Similarly one proves that c ≤ b. The
converse implication is more than trivial. ��
Theorem 109 Let N≡(H) be a Nelson algebra of ordered pairs of disjoint elements
of a Heyting algebra H. Then for any 〈a1, a2〉 ∈ N≡(H), ¬a1 = ¬¬a2 if and only
if ≡ is ≡J δ , where δ is the least dense element of H.

Proof If 〈a1, a2〉 ∈ N≡
J δ
(H) then [〈a1 ∨ a2〉]¬¬ = [1]¬¬. It follows that

[〈a1 ∨ a2〉]¬¬ = [〈a1 ∨ ¬a1〉]¬¬. Since a1 ∧ a2 = 0 and a1 ∧ ¬a1 = 0,
then [a1]¬¬ ∧ [a2]¬¬ = [0]¬¬ and [a1]¬¬ ∧ ¬[a1]¬¬ = [0]¬¬. Moreover,
[a1 ∨ a2]¬¬ = [a1]¬¬ � [a2]¬¬ = [a1 ∨ ¬a1]¬¬ = [a1]¬¬ � [¬a1]¬¬. Therefore,
from Lemma 108 [a2]¬¬ = [¬a1]¬¬ and we conclude ¬¬a2 = ¬¬¬a1 = ¬a1.
The example above proves the converse (more precisely, it proves the contrapositive
of the converse implication, that is, if ≡ is not the minimal Boolean congruence,
then—see Lemma 106—¬a1 ≥H ¬¬a2). ��

In [30] the above result is provided by a parallel algebraic and proof-theoretic
derivation.

If an approximation space 6R(U) is induced by an order R upper bounded by
maximal elements (i.e. with no infinite ascending chains), like any finite partial
order, then the set of maximal elements of R is the set of isolated points, which for
the philosophy of Rough Set Theory, are completely describable items, that is, items
which are describable with no ambiguity by the given properties. In consequence
Dsj (6R)(U) = N≡

J δ
(6R)(U). In this case the intrinsic logic (in the sense of [21])

of the rough set system is E0, not CLSN (see [19]):

Theorem 110 Let 6R(U) be an approximation space such that R is an order
with no infinite ascending chains, and S the set of its maximal elements. Then
N≡

JS
(6R(U)) = Dsj (6R(U)).

Example 111 Consider the partial order of Example 105. The set of maximal
elements is S = {a, b}. Below we show the Nelson space built on 〈W,Q〉 with
the usual decorations “+” and “−” and the resulting Nelson lattice of ordered pair
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of elements of 6Q(W) without the decoration “+”.

v−

c−

a+−

c+ b+−

v+

W ∗

N (W ∗) W ∗,≤, f

,W

, {a, b, c

, {a, b b}, {a, c

b}, {aa}, {b

a, b},a, c}, {b

a, c, b},

W,

N≡
JS Q(W))

Pay attention that if we apply the above construction to our preorder 〈U,R〉
enlarging S to a set S′ containing also the pre-maximal states, then N≡

JS
′ (6R(U))

is, indeed, an effective lattice, but it is a sublattice of Dsj (6R(U). For instance,
Dsj ({a, b}) = 〈{a},∅〉 which is not an element of N≡

JS
′ (6R(U)). In fact in this

lattice R(b) and R(b′), that is, {b, b′}, must be included either in the first or in the
second element of any ordered pair. Practically, N≡

JS
′ (6R(U)) is the above lattice

with b′ added in any element containing b. Hence it is a lattice quite different from
Dsj (6R(U)) which is shown in Example 46.

7.4 Algebraic Logic from Equivalence Relations

Originally, Rough Set Theory was based on equivalence relations (see [40]). Also
in this case the intrinsic logic of the resulting rough set system changes drastically
according to the filter JX.

Lemma 112 An approximation space 6R(U) with R an equivalence relation and
equipped with the Heyting algebra operations of Definition 38 is a Boolean algebra.

Proof A Heyting algebra such that ¬¬a = a is a Boolean algebra. The topological
space 6R(U) is made of clopen (closed and open subsets). Hence, if A ∈ 6R(U)

then−A ∈ 6R(U). In consequence for any A,B ∈ 6R(U), I(−A∪B) = −A∪B,
so that ¬A = −A. Therefore ¬¬A = −− A = A. ��
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Lemma 113 If B is a Boolean algebra, then for any a ∈ B, ≡J a is a Boolean
congruence.

Proof Trivial: the only dense element of a Boolean algebra is 1 and since a ≤ 1,
any a, ↑ a contains all dense elements (actually the only one). ��
Lemma 114 Let B be a Boolean algebra, then for any congruence ≡J a , N≡Ja

(B)

is a semi-simple Nelson algebra.

Proof For any a ∈ N≡Ja
(B), a∨�a = 〈a1, a2〉∨〈¬a1, a1〉 = 〈a1∨¬a1, a2∧a1〉 =

〈1, 0〉 = 1. ��
Semi-simple Nelson algebras are the same mathematical objects as three-valued

Łukasiewicz algebras. We explain this correspondence by showing interesting facts
connected to rough sets.

In semi-simple Nelson algebras the operation ¬ is a pseudo-complementation:
¬a, that is, 〈a2,¬a2〉, is the maximal element 〈x1, x2〉 such that x1 ∧ a1 = 0 and
x2∨a2 = 1. This may be surprising, because the complement of a1 in the underlying
Boolean algebra is its pseudo-complement¬a1, not a2. But we have to consider that
in any Nelson algebra of ordered pairs of a Heyting algebra H, a ≤ b if and only if
a1 ≤H b1 and b2 ≤H a2. Therefore, the orders of the first and the second elements
are contravariant. It follows that 〈x1, x2〉 is the pseudo-complement of 〈a1, a2〉 if x2
is the minimal element z such that z∨a2 = 1 and x1 is the maximal element w such
that w ∧ a1 = 0 and w ∧ x2 = 0. But, ¬a2 is the minimal complement of a2 to 1
(it is its supplement, indeed—see Definition 123). And a2 is the maximal element
disjoint from ¬a2.

However, we give a proof, by introducing another kind of implication, which is
fundamental to understand the intrinsic logic of rough set systems from equivalence
relations.

Theorem 115 In a Nelson algebra N≡(B) with B a Boolean algebra, the operation
⊃ defined in (58) is a relative-pseudocomplementation

The proof can be found in [32] or in [39].7 As a corollary, since ¬a = a ⊃ 0, one
obtains that ¬a is the pseudo-complement of a.

Excursus
Now we have enough material to discuss a point we have left open: how to

define the Nelson operations on a decreasing representation Dcr(6R(U))? If R

is an equivalence relation the answer is straightforward, as we shall see. But if R

is a preorder some difficulties arise. We recall that any element 〈A1, A2〉 of the
decreasing representation belongs to 6R3(U) × 6R(U) and that 6R3(U) is a co-
Heyting algebra with respect to 6R(U).

It is a tricky point. For meet and join there is no problem: a ∧ b = 〈A1 ∩
B1, A2∩B2〉 and analogously for∨. For the strong negation just a little effort gives:

7The first proof was presented in [28]. In that paper there is a misprint: ¬(¬B2 ∪ A2) instead of
(¬B2 ∪ A2).



402 P. Pagliani

∼ 〈A1, A2〉 = 〈−A2,−A1〉. Now we apply the map ρ of (45) which transforms a
disjoint representation into a decreasing one. Thus pay attention that before applying
ρ, ∼ 〈A1, A2〉 = 〈A2, A1〉 while after applying ρ, ∼ 〈A1, A2〉 = 〈−A2,−A1〉. Let
us then verify that ρ(∼ a) =∼ ρ(a): ρ(∼ a) = ρ(〈A2, A1〉) = 〈−A1, A2〉 =
〈−A1,− − A2〉 =∼ 〈−A2, A1〉 =∼ ρ(a). It is more difficult to define the impli-
cation. In disjoint representation a −→ b = 〈A1 $⇒ B1, A1 ∩ B2〉 so ρ(〈A1 $⇒
B1, A1 ∩ B2〉) = 〈−(A1 ∩ B2), A1 $⇒ B1〉 = 〈−A1 ∪ −B2, A1 $⇒ B1〉. Now,
ρ(a) = 〈−A2, A1〉, ρ(b) = 〈−B2, B1〉. It follows that given a = 〈A1, A2〉 and b =
〈B1, B2〉 in decreasing representation a −→ b = 〈−A2 ∪ B1, A2 $⇒ B2〉. Notice
that A2 $⇒ B2 = IR(−A2 ∪ B2). Therefore, �a = a −→ 〈0, 0〉 = 〈−A2,¬A2〉.
One more time, notice that the first element is a set-theoretic complementation while
the second is the interior of a set theoretic complementation. Finally, the definition
of ¬ is interesting, and tricky: in disjoint representation ¬a = 〈a2,¬a2〉. Hence
ρ(¬a) = 〈−¬A2, A2〉 = 〈−IR(−A2), A2〉. In consequence, for a in decreasing
representation ¬a = 〈−IR(A1), A1〉 = 〈�A1,−A1〉, where � is the pseudo-
complementation of the opposite Heyting algebra 6R3(U). In fact, −IR(X) =
−CR3(X) = IR3(−X) =�X. Rephrased with the constructors introduced in the
first lesson, if a is in decreasing representation, then ¬a = 〈[i]R(−A1), A1〉 =
〈−〈i〉R(−A1), A1〉, while �a = 〈−A2, [e]R(A2)〉.

At an abstract level, in view of Theorem 11, these operations require a Boolean
algebra equipped with a topological modal operator M and a topological co-modal
operator L such that 〈M,L〉 is an axiality (an adjoint pair). Alternatively, we need a
bi-Heyting algebra providing ¬ and �.

But in the case R is an equivalence relation, R = R3 and 6R(U) is a topology
of clopen sets. Then things are much easier and the operations are smoother: in the
first place, there are no chains of alternate topological operators, that is, CRIR = IR

and IRCR = CR . This fact simplifies a lot, since any Xi has the form IR(Y ) for
some Y ⊆ U . Furthermore, �a = 〈¬A2,¬A2〉, ¬a = 〈¬A1,¬A1〉 and a −→ b =
〈A2 $⇒ B1, A2 $⇒ B2〉, where ¬Xi is the set-theoretic complement of Xi and
Xi $⇒ Yj = −Xi ∪ Yj .

7.5 Rough Set Interpretation of Tautologies
and Contradictions

The following hold in any Nelson algebra N≡Jx
(H):

1 ≥ a∨�a ≥ a ∨ ¬a = a∨ ∼ a ≥ 〈x, 0〉 (73)

0 ≤ a ∧ ¬a ≤ a∧�a = a∧ ∼ a ≤ 〈0, x〉 (74)
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(73) and (74) are easily proved: a∨�a = 〈a1 ∨ ¬a1, 0〉 ≥ 〈a1 ∨ a2〉 = a ∨ ¬a.
Symmetrically, a ∧ ¬a = 〈0, a2 ∨ ¬a2〉 ≤ 〈0, a1 ∨ a2〉 = a∧�a. But a1 ∨ a2 ≥ x,
by definition of the domain of the algebra. Therefore, a ∨¬a ≥ 〈x, 0〉 and a∧�a ≤
〈0, x〉.

If N≡Jx
(H) is semi-simple:

(i) ¬¬¬a = ¬a, (ii) ���a =�a (75)

(i) ��a =∼�a = ¬ ∼ a ≤ a, (ii)¬¬a =∼ ¬a =� ∼ a ≥ a (76)

(i) a∨�a = 〈1, 0〉; (ii) a ∧ ¬a = 〈0, 1〉 (77)

(75), (76) and (77) come from (65), (66) and (67) because ¬¬a1 = a1 and ¬¬a2 =
a2. (77) comes trivially from the fact that a1 ∨ ¬a1 = a2 ∨ ¬a2 = 1, so that
a∨�a = 〈a1 ∨ ¬a1, 0〉 = 〈1, 0〉 and a ∧ ¬a = 〈0, a2 ∨ ¬a2〉 = 〈0, 1〉.

Suppose 6R(U) is a topology and a = Dsj (X) = 〈IR(X),−CR(X)〉 for X ⊆
U . Then:

a∨ ∼ a = a ∨ ¬a = 〈IR(X) ∪ −CR(X),∅〉 = 〈−BR(X),∅〉 (78)

a∨�a = 〈IR(X) ∪ IR − IR(X),∅〉 = 〈IR(X) ∪ IRCR(−X),∅〉 (79)

Opposite relations hold for the contradictions:

a∧ ∼ a = a∧�a = 〈∅,−BR(X)〉 (80)

a ∧ ¬a = 〈∅,−CR(X) ∪ IR −−CR(X)〉 = 〈∅,−CR(X) ∪ IRCR(X)〉 (81)

Therefore, we note that contradictions are not equivalent to 0 and tautologies are not
equivalent to 1 because of the presence of an “indecision area”, that is, the boundary
of a set.

In the case 6R(U) is a Boolean algebra, so that Dsj (X) is an element of a semi-
simple Nelson algebras, since the open sets of 6R(U) are clopen, IRCR(−X) =
CR(−X) = −IR(X), so that a∨�a = 〈U,∅〉 and a ∧ ¬a = 〈∅, U〉, as anticipated
by (77).

What about, then, Dsj (BR(X)) itself? It is 〈IR(BR(X)),−CR(BR(X))〉. But
since BR(X) is the intersection of two closed sets, that is, CR(X) and −IR(X),
it is itself a closed set. In consequence,

Dsj (BR(X)) = 〈IRBR(X),−BR(X)〉 =∼�(a∧ ∼ a) =∼�(a∧�a) (82)

In the semi-simple case, since IRBR(X) = BR(X), Dsj (BR(X)) =
〈BR(X),−BR(X)〉. Therefore, BR(X) is an exact set.
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7.6 Double Negations, Modalities and Approximations

The following are immediate in any Nelson algebra:

(i) ¬¬a = 〈¬a2,¬¬a2〉, (ii) ��a = 〈¬¬a1,¬a1〉 (iii) ��a ≤ ¬¬a (83)

In what follows, I and C stand for IR and, respectively, CR .

Theorem 116 Let 6R(X) be a topology. Then for all X ⊆ U :

Dsj ((lR)(X)) = 〈I(X),−CI(X)〉, Dsj ((uR)(X)) = 〈IC(X),−C(X)〉 (84)

¬¬Dsj (X) = 〈IC(X), ICI(−X)〉, ��Dsj (X) = 〈ICI(X), IC(−X)〉 (85)

��Dsj ((lR)(X)) =��Dsj (X), ��Dsj ((uR)(X)) = ¬¬Dsj (X) (86)

¬¬Dsj ((lR)(X)) =��Dsj (X), ¬¬Dsj ((uR)(X)) = ¬¬Dsj (X) (87)

Dsj ((lR)(X)) ≤��Dsj ((lR)(X)) =��Dsj (X) ≤ (88)

≤ ¬¬Dsj (X) = ¬¬Dsj ((uR)(X)) ≤ Dsj ((uR)(X)) (89)

Proof First, ¬ − X = −C(−X) = I(X), ¬¬ − X = I − I(− − X) = I − I(X),
and so on. Second, ICI(X) ⊆ IC(X). In view of these equations and dis-equations
the proofs are just easy calculations. For instance, (85) is proved as follows:

¬¬Dsj (X) = ¬¬〈I(X),−C(X)〉 = 〈¬ − C(X),¬¬ − C(X)〉 =
= 〈I−−C(X), I− I−−C(X)〉 = 〈IC(X), I − IC(X)〉 =
= 〈IC(X), ICI(−X)〉 ��

Theorem 117 Let 6R(U) be a Boolean algebra, then for all X ⊆ U ,

Dsj ((lR)(X)) =��Dsj (X), Dsj ((uR)(X)) = ¬¬Dsj (X) (90)

In other terms, the following diagrams commute:

X ·

· ·
(lR)

Dsj

Dsj

X ·

· ·
(uR)

Dsj

Dsj

¬¬

Proof (90) is based on the fact that 6R(U) is made of clopen sets, so that for all
X ⊆ U , IC(X) = C(X) and CI(X) = I(X). It follows from (85) and (84) that
��Dsj (X) = 〈ICI(X), IC(−X)〉 = 〈I(X), IC(−X)〉 = Dsj ((lR)(X)). The other
equation comes from duality. ��



Lessons on the Topology and Algebra of Rough Sets 405

Actually, ��Dsj (X) = Dsj ((lR)(X)) = 〈I(X),−I(X)〉 follows from
IC(−X) = C(−X) = −I(X). Similarly, ¬¬Dsj (X) = Dsj ((uR)(X)) =
〈C(X),−C(X)〉. Indeed, if B is a Boolean algebra, then in the semi-simple Nelson
algebra N≡(B), ¬¬a = 〈¬a2, a2〉 and ��a = 〈a1,¬a1〉, any a.

We know that ¬¬(Dsj (6R(U)) is a Boolean algebra if equipped with ∩,�
and ¬, where ¬ is the set-theoretic complementation. In case R is an equivalence
relation, we prove something special:

Theorem 118 Let N be a semi-simple Nelson algebra and ¬¬(N) the lattice of
regular elements of N. Then � coincides with ∨.

In Theorem 117 it was actually proved that in semi-simple Nelson algebras ¬¬ is a
topological closure operator, hence it is additive. Another proof is the following: if
N is semi-simple, then ¬ is a pseudo-complementation. It follows that ¬¬(¬¬a ∨
¬¬b) = ¬(¬¬¬a ∧ ¬¬¬b) = ¬(¬a ∧ ¬b). In Sect. 7.8 we shall prove that
¬(x ∧ y) = ¬x ∨ ¬y. Hence, ¬(¬a ∧ ¬b) = ¬¬a ∨ ¬¬b.

In a rough set perspective, one can prove by easy calculation that

¬¬Dsj (X ∪ Y ) = ¬¬Dsj (X) ∪ ¬¬Dsj (Y ).

Therefore, ¬¬(¬¬Dsj (X) ∪ ¬¬Dsj (Y )) = ¬¬¬¬Dsj (X ∪ Y ) =
¬¬Dsj (X ∪ Y ) = ¬¬Dsj (X) ∪ ¬¬Dsj (Y ).

Notice, on the contrary, that Dsj (X ∪ Y ) ≥ Dsj (X) ∪Dsj (Y ), because IR(X ∪
Y ) ⊇ IR(X) ∪ IR(Y ).

It is natural to ask what is the element x of this algebra such that ¬¬a = J x(a)

for any element a.

Theorem 119 Let B be a Boolean algebra. Then for any a ∈ B, the least dense
element of N≡Ja

(B) is 〈a, 0〉.
Proof An element 〈x1, x2〉 is dense if ¬〈x1, x2〉 = 〈x2,¬x2〉 = 0. Hence x2 = 0.
But because of the filtration clause, x1 ∨ 0 ≥B a. In consequence x1 ≥B a. ��
Corollary 120 In any semi-simple Nelson algebra N≡Ja

(B), J 〈a,0〉(x) = ¬¬x,
any x.

Proof From Theorem 77.(1). ��
So we have seen that the set J 〈a,0〉(N≡Ja

(B)) forms a subalgebra of N≡Ja
(B).

All the elements of this subalgebra are regular and complemented. The set of
complemented elements of an algebra is called center of the algebra.

Theorem 121 Given a semi-simple Nelson algebra, for any element a, if a = ¬¬a
then all the three negations are complementations of a.

Proof From (66) and (76) ¬¬¬a =�¬¬a =∼ ¬¬a. Therefore, from (77) all the
three negations are complementations of ¬¬a. ��

In view of (76).(i), the above result does not hold for generic elements.
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From the above discussion and Definition 6, ∼� =�� = ¬� is a necessity
operator L and ∼ ¬ = ¬¬ =�¬ is a possibility operator M.

Example 122 Consider the usual preorder P without the elements v and c. Then
we obtain an equivalence relation E = {〈a, a〉, 〈b, b〉, 〈b′, b′〉, 〈b, b′〉, 〈b′, b〉} on a
set Z = {a, b, b′}. The only isolated element is a. Below we depict the Boolean
algebra 6E(Z), the resulting Nelson space and the rough set system Rsj (6E(Z))

as the lattice N≡
J {a} (6E(Z)) without decorations “+”:

∅

{a} {b, b }

Z

E(Z)

a+− b+ b

b− b

Z∗,≤, f

, Z

, {a a}, {b, b

a},b, b }, {a

Z,

N≡
J {a} E(Z))

Notice that 〈Z∗,≤, f 〉 is not obtained from the dual space of 6E(Z) but from
〈Z,E〉. In fact, as we have seen, the dual space of 6E(Z) is a T0-ification in which
b and b′ collapse into a single point {b, b′}.

Dsj ({a}) = 〈{a}, {b, b′}〉. Dsj ({a, b}) = 〈{a},∅〉. Notice that if X is an exact
set, that is, X = (lR)(X) = (uR)(X), then Dsj (X) is a regular element of the
algebra. The exact sets are {a}, {b, b′}, Z and ∅. Their Dsj -images lay in the center
of N≡

J {a} (6E(Z)). Let us verify some cases: ¬〈{a},∅〉 = 〈∅, Z〉. 〈{a},∅〉 it the
least dense element. ¬〈∅, {a}〉 = 〈{a}, {b, b′}〉. ¬〈∅, {a}〉 ∧ 〈∅, {a}〉 = 〈∅, Z〉.
¬〈∅, {a}〉 ∨ 〈∅, {a}〉 = 〈{a},∅〉. �〈∅, {a}〉 = 〈Z,∅〉. �〈∅, {a}〉 ∧ ¬〈∅, {a}〉∧ =
〈∅, {a}〉. ¬¬〈{a},∅〉 = 〈Z,∅〉. ��〈{a},∅〉 = 〈{a}, {b, b′}〉.

7.7 Negations and Dual Pseudo-Complementation

Given a semi-simple Nelson algebra N≡(B), from a Boolean algebra B, we know
that a ⊃ b is the pseudo-complement of a relative to b and ¬a the
pseudo-complement of a. If we reverse the order of ⊃ we obtain another operation:

Definition 123 (Pseudo-Supplementation) Let L be a bounded lattice, if for all
a, b, x ∈ L the following holds:

a ∨ x ≥ b if and only if x ≥ a ⊂ b (91)

then a ⊂ b is called the psudosupplement of a relative to b. The element a ⊂ 1 is
called pseudo-supplement of a.
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Therefore, a ⊂ b is the least element x such that a ∨ x ≥ b. In other terms, ⊂ is
lower adjoint to ∨. In consequence ∨ is multiplicative, so that L is distributive.

Theorem 124 Let N be a semi-simple Nelson algebra, then

a ⊂ b =∼ (∼ a ⊃∼ b) (92)

Let us verify that for any a in N, a ⊂ 1 =�a: ∼ (∼ a ⊃∼ b) =∼ (∼� ∼∼
a∨ ∼ b ∨ (� ∼ a∧� ∼∼ b)) =∼ (∼�a∨ ∼ b ∨ (� ∼ a∧�b)). Therefore,
a ⊂ 1 =∼ (∼�a ∨ 0 ∨ (� ∼ a ∧ 0)) =∼ (∼�a) =�a.

This justifies why � and ¬ have dual properties, for instance with respect to the
De Morgan laws, as we shall see in the next section.

Definition 125 (Co-Heyting Algebras) A bounded distributive lattice L such that
a ⊂ b is defined for all a, b ∈ L, is called a co-Heyting algebra.

Definition 126 (Bi-Heyting Algebras) A bounded distributive lattice L such that
it is both a Heyting and a co-Heyting algebra is called a bi-Heyting algebra.

Notice that the system of all closed subsets of a topological space is a co-Heyting
algebra in which given two closed sets X and Y , X ⊂ Y = C(Y ∩ −X) and �X =
C(−X) = −I(X). This justifies the definition of the operations for the decreasing
representation Dcr(6R(U)) that were provided in the excursus before Sect. 7.5.

Given a co-Heyting algebra, in [22] William Lawvere defined a boundary
operation δ(a) := a∧�a and pointed out that this operation fulfils the following
rule δ(a ∧ b) = (δ(a) ∧ b) ∨ (a ∧ δ(b)). This rule is consistent with our spatial
intuition, if we think of two overlapping sets. Moreover, it is consistent with the
Leibniz rule for differentiation of a product: d

dx
(a · b) = da

dx
· b + a · db

dx
.

But in Sect. 7.5 we have seen, indeed, that given a semi-simple Nelson algebra
N≡

JS
(6R(U)), with R an equivalence relation, Dsj (X)∧�Dsj (X) “represents” the

boundary of X (see [31]).
We now prove that in a semi-simple Nelson algebra N≡(B) the Leibniz rule holds

for δ(x) = x∧�x:

(a ∧ b)∧�(a ∧ b) = 〈a1 ∧ b1, a2 ∨ b2〉 ∧ 〈¬(a1 ∧ b1), a1 ∧ b1〉
= 〈0, a2 ∨ b2 ∨ (a1 ∧ b1)〉 = 〈0, (a2 ∨ b2 ∨ a1) ∧ (a2 ∨ b2 ∨ b1)〉
= 〈0, a2 ∨ b2 ∨ a1〉 ∨ 〈0, a2 ∨ b2 ∨ b1〉
= 〈a1 ∧ ¬a1 ∧ b1, a2 ∨ b2 ∨ a1〉 ∨ 〈a1 ∧ b1 ∧ ¬b1, a2 ∨ b2 ∨ b1〉
= (〈a1, a2〉 ∧ 〈¬a1, a1〉 ∧ 〈b1, b2〉) ∨ (〈a1, a2〉 ∧ 〈b1, b2〉 ∧ 〈¬b1, b1〉)
= ((a∧�a) ∧ b) ∨ (a ∧ (b∧�b))
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We conclude the section with these straightforward results on rough set systems:

Theorem 127 Let B be a Boolean algebra and≡ a congruence on B. Then:

H(B) := 〈N≡(B),∨,∧,¬,⊃, 0, 1〉 is a Heyting algebra.

CH(B) := 〈N≡(B),∨,∧, �,⊂, 0, 1〉 is a co-Heyting algebra.

BH(B) := 〈N≡(B),∨,∧,¬, �,⊃,⊂, 0, 1〉 is a bi-Heyting algebra.

Corollary 128 Let 6R(U) be an approximation space with R an equivalence
relation. then H(6R(U)) is a Heyting algebra, CH(6R(U)) is a co-Heyting
algebra, and BH(6R(U)) is a bi-Heyting algebra.

7.8 Negations and De Morgan Laws

By definition, both De Morgan laws hold for the strong negation∼. On the contrary,
by means of some calculation we obtain:

¬(a ∧ b) = ¬a ∨ ¬b, (93)

¬(a ∨ b) = 〈a2 ∧ b2,¬(a2 ∧ b2)〉 ≤ 〈a2 ∧ b2,¬a2 ∨ ¬b2〉 = ¬a ∧ ¬b (94)

�(a ∨ b) =�a∧�b (95)

�(a ∧ b) = 〈¬(a1 ∧ b1), a1 ∧ b1〉 ≥ 〈¬a1 ∨ ¬b1, a1 ∧ b1〉 ≥�a∨�b. (96)

The same equalities and disequalities hold for double negated elements, too. For
instance, ¬(¬¬a ∧ ¬¬b) = ¬¬¬a ∨ ¬¬¬b.

Also, ¬(��a∨��b) ≤ ¬��a ∧ ¬��b and so on, while ¬(��a∧��b) = ¬��a ∨
¬��b.

Pay attention that the above relations hold for the operations¬ and � in a generic
Nelson algebra N. On the contrary, if ¬ is the pseudo-complementation of N qua
Heyting algebra (for instance if N is a finite Nelson lattice), then¬(a∧b) ≥ ¬a∨¬b,
while ¬(a∨b) = ¬a∧¬b. Symmetrically, if � is the dual-pseudocomplementation
in the co-Heyting algebra Nop then �(a ∨ b) ≤�a∧�b and �(a ∧ b) =�a∨�b.

If the Nelson algebra is semi-simple, things change sensibly. In fact, in this
case the Nelson operator ¬ is really a pseudo complementation and � a co-
pseudocomplementation. Clearly, we expect that the De Morgan law for Heyting
algebras and co-Heyting algebras hold:

¬(a ∨ b) = ¬a ∧ ¬b and �(a ∧ b) =�a∨�b.

It holds because the same is valid in the underlying Boolean algebra.
The law (93) suggests that semi-simple Nelson algebras can be made into

Heyting algebras with very peculiar properties, because that law does not hold in
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general for pseudo-complementation. Symmetrically for their co-Heyting algebras.
Indeed, in [43] it was proved that if (93) and (95) hold then �¬ and ¬� are
idempotent operators and �¬a is the least complemented element above a, while
¬�a is the largest complemented element below a.

In fact we have seen in Theorem 117 that in semi-simple Nelson algebras,
�¬ = ¬¬ =∼ ¬ and ¬� =�� =∼� correspond to topological modal (possibility)
and, respectively, topological co-modal (necessity) operators which project an
element a onto the sublattice of regular elements which is, also, the sublattice of
complemented elements of the algebra.

Actually, another reason why the above De Morgan laws hold in semi-simple
Nelson algebras is a general result by Johnstone (see [20]): in a Heyting algebra
H, the De Morgan law (93) is equivalent to the fact that the set of regular elements
form a sublattice of H. And in Theorem 118 it was proved that this is the case for
semi-simple Nelson algebras, indeed.

7.9 Changing Information and Changing Logic

We have mentioned that semi-simple Nelson algebras are equivalent to three-valued
Łukasiewicz algebras. Now we enter some details.

Definition 129 (Łukasiewicz Algebra) A three-valued Łukasiewicz algebra is a
distributive lattice 〈A,∨,∧,∼, 0, 1〉 with two additive and multiplicative unary
operations ϕ1, ϕ2 satisfying:

ϕ1(x) ≥ ϕ2(x), ϕi(x)∨ ∼ ϕi(x) = 1, ϕi(x)∧ ∼ ϕi(x) = 0, ϕi(∼ x) =∼ ϕi(x)

ϕi(ϕj (x)) = ϕj (x), x ∨ ϕ1 = ϕ1(x), x ∧ ϕ2 = ϕ2(x), ϕi(0) = 0, ϕi(1) = 1

∼ x ∧ ϕ2(x) = 0, ∼ x ∨ ϕ1(x) = 1, y ∧ (x∨ ∼ ϕ1(x) ∨ ϕ2(y)) = y.

It is possible to prove (see [39] or [32]):

Theorem 130 Let B be a Boolean algebra and ≡ a congruence on B. Then:
L(B) := 〈N≡(B),∨,∧,∼, ϕ1, ϕ2, 0, 1〉 is a three-valued Łukasiewicz algebra,
where ϕ1 =�¬ =∼ ¬ = ¬¬ and ϕ2 = ¬� =∼� =��.

Corollary 131 Let 6R(U) be an approximation space with R an equivalence
relation. Then, L(6R(U)) is a three-valued Łukasiewicz algebra.

See Example 122.
It is interesting to note that our relative pseudo-complementation ⊃ of Theo-

rem 115 coincides with the so-called Moisil residuation � which is definable in
three-valued Łukasiewicz algebras: a � b := b∨ ∼ ϕ1(a)∨ (∼ ϕ2(a)∧ ϕ1(b)).
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Semi-simple Nelson algebras or three-valued Łukasiewicz algebras represent the
case in which the filtration congruence≡ is generic, that is,≡ is≡J a for 0 ≤ a ≤ 1.
What happens in the extreme cases, that is, when a = 1 and a = 0?

We have seen that N≡
J1 (6R(U)) is a Boolean algebra isomorphic to 6R(U). If,

instead, a = 0, then we obtain a Post algebra of order three.

Definition 132 (Post Algebra) A Post algebra of order three is a Heyting algebra
〈A,∨,∧,$⇒,¬, 0, 1〉 equipped with a three chain element 0 = e0 ≤ e1 ≤
e2 = 1 and two unary multiplicative and additive operators D1,D2 such that, for
1 ≤ i, j ≤ 2:

D1(x) ∨ ¬D1(x) = 1, Di(¬x) = ¬Di(x), Di(Dj (x)) = Dj (x)

x = (D1(x) ∧ e1) ∨ (D2(x) ∧ e2) - monotonic representation of x

Di(x $⇒ y) = (D1(x) $⇒ D1(y)) ∧ (D2(x) $⇒ D2(y))

Di(ej ) =
{

1 for 1 ≤ i ≤ j ≤ 2

0 for 2 ≥ i � j ≥ 0

Let then P = 〈A,∨,∧,$⇒,¬, e0, e1, e2,D1,D2, 0, 1〉. Since Di(x) ∨ ¬Di(x) =
(D1(Di(x)) ∨ ¬D1(Di(x)) = 1, it is evident that for any x, Di(x) belongs to the
centre of P.

Post algebras of order three are special cases of three-valued Łukasiewicz
algebras. In fact, if a Łukasiewicz algebra L = 〈A,∨,∧,∼, ϕ1, ϕ2, 0, 1〉 has a
chain 0 ≤ δ ≤ 1, by setting D1 = ϕ1, D2 = ϕ2, ¬x =∼ D1(x), one obtains a
Post algebra of order three (see [32]).

Notice that, indeed,∼ D1(x) =∼ ϕ1(x) =∼∼ ¬x = ¬x.
Now we exhibit a Post algebra of ordered pairs of disjoint elements (see [32]).

We have just noticed that Di(x) is complemented. Moreover, D1(x) =∼ ¬(x). In
view of (65) and Theorem 121, this suggests that the underlying algebra is Boolean.
Therefore, let B be a Boolean algebra and ≡ be the largest congruence on B. Let
N≡(B) be a set of ordered pairs of disjoint elements of B. We have already seen
that since ≡ is the largest congruence on B, 1 ≡ 0 so that any pair of disjoint
elements of B is admitted by the filtration rule a1 ∨ a2 ≡ 1, hence also 〈0, 0〉 is.
We know that N≡(B) can be made into a three-valued Łukasiewicz algebra and
how to transform it into a Post algebra of order three. We only need a chain of
values. Obviously, e0 = 〈0, 1〉 and e2 = 〈1, 0〉. We claim that e1 is 〈0, 0〉. Clearly,
〈0, 1〉 ≤ 〈0, 0〉 ≤ 〈1, 0〉. Moreover D1(〈0, 0〉) =∼ ¬〈0, 0〉 =∼ 〈0, 1〉 = 1 and
D2(〈0, 0〉) =∼�〈0, 0〉 =∼ 〈1, 0〉 = 0.
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Now, the largest congruence on B is ≡J 0 . So, we obtain:

Theorem 133 Let B be a Boolean algebra, then

P(B) := 〈N≡
J0 (B),∨,∧,¬,⊃,∼ ¬,D1,D2, e0, e1, e2〉

is a Post algebra of order three, if D1 =∼ ¬, D2 =∼�, e0 = 〈∅, U〉, e1 = 〈∅,∅〉
and e2 = 〈U,∅〉.
From the rough set perspective, given an approximation space 6R(U) with R an
equivalence relation, we obtain a Post algebra of order three if and only if there are
no isolated elements:

Theorem 134 Let R be an equivalence relation on a set U such that there are no
isolated elements, then N?≡

J0 (6R(U)) = Dsj (6R(U)) and

P(6R(U)) := 〈N≡
J∅ (6R(U)),∨,∧,¬,⊃,∼ ¬,D1,D2, e0, e1, e2〉

is a Post algebra of order three.

We have noticed that the intermediate value of the above Post algebra is 〈0, 0〉which
is the least dense element of the algebra. And we have also noticed that given
a Boolean algebra B and a ∈ B, 〈a, 0〉 is the least dense element in the lattice
〈N≡Ja

(B),∨,∧,¬, 0, 1〉, therefore also in L(B) we can set a chain 0 = 〈0, 1〉 =
e0 ≤ e1 = 〈a, 0〉 ≤ e2 = 〈1, 0〉 = 1.

However, D1(e1) = ϕ1(e1) =∼ ¬〈a, 0〉 =∼ 〈0, 1〉 = 1, which is consistent
with Post algebras, but D2(e1) =∼�e1 =∼ 〈¬a, a〉 = 〈a,¬a〉 ≥ 〈0, 1〉 = 0, while
in Post algebras D2(e1) = D2(e0) = 0.

Actually, if one assumes 〈a, 0〉 as intermediate value, one obtains another kind of
lattices, called chain-based lattices, namely P2-lattices which are generalisations
of Post algebras (see [13]).

Example 135 Let P = {a, a′, b, b′} and E be the equivalence relation depicted
below together with the Boolean algebra 6E(P), the resulting Nelson space and
Dsj (6E(P )) as the Post algebra of order three N≡

J∅ (6E(P )) without decora-
tions ’+’. For instance, Dsj ({a, b} = 〈∅,∅〉, Dsj ({a, a′, b}) = 〈{a, a′},∅〉,
Dsj ({a, a′}) = 〈{a, a′}, {b, b′}〉.
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E a a b b

a

a

b

b

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

∅

{a, a } {b, b }

U

E(P )

a+ a b+ b

b− ba− a

U∗,≤, f

, U

, {a, a , {b, b

,a, a }, {b, b

a, a },

b, b }, {a, a

b, b },

U,

N≡
J∅ E(P ))

8 Conclusions

In many respects, the logic of rough sets is still to be defined. In the case of classic
rough sets based on equivalence relations, we have seen that their logic depends
on the geometry of isolated points. In other terms, it depends on the set of items
completely describable by the given properties, that is, items which are singled out
by the properties, or information, we have. If all the items can be isolated by the
properties, then we obtain a Boolean algebra. This is no surprise if we think of
Classic Logic as the logic of perfect information: either α or ¬α. If some pieces of
information are complete and other are incomplete, and we gather the completely
describable items into a set S, then we obtain a semi-simple Nelson algebra, i.e. a
three-valued Łukasiewicz algebra, in which the pair 〈S,∅〉 is the least dense element
and a local top element, in the sense that classical tautologies takes values between
〈S,∅〉 and the absolute top element 〈U,∅〉. Vice-versa, all classical contradictions
are between ∼ 〈S,∅〉 = 〈∅, S〉 and the absolute bottom element 〈∅, U〉, so that
〈∅, S〉 is a local bottom element. If no items are completely described, then S =
∅ and rough set systems turns into Post algebras of order three, where the local
top and bottom elements fuse into a state 〈∅,∅〉 of complete indecision or totally
uninformed situation. Since it is often assumed that there are no isolated points, or
completely described items, then the logic of rough sets should be the one modelled
by Post algebras of order three, not three-valued Łukasiewicz logic or connected
mathematical objects (regular Stone algebras and the like).
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However, in our opinion, the real world is a melange of perfect and imperfect
information. Then three-valued Łukasiewicz logic, or Constructive Logic with
Strong Negation plus an axiom for a∨�a = 1 approximate the intrinsic logic of
rough sets. But they are not able to account for the double nature of perfect and
imperfect information which is implicit in these algebraic models as it is shown
by the fact that any such algebra is the product of a Post algebra of order three,
modelling the imperfect part, and a Boolean algebra modelling the perfect part.
Look at the Łukasiewicz algebra of Example 122. It is the product of the Boolean
algebra B whose (in this case only) atom is {a} and a Post algebra P with elements
built on the indiscernible elements b and b′:

, {a

a}, ×
B

, {b, b

,

b, b },

=
P

, {a , , {b, b

, {a , , a}, , , {b, b

a}, , ,, {a , b, b },

a}, , b, b },

Notice that the product of the least (only) dense element of B, that is, the top element
〈{a},∅〉 and the least dense element of P, which is the intermediate value 〈∅,∅〉,
gives the least dense element of the resulting three-valued Łukasiewicz algebra.

Finally, if an approximation space is induced by a partial or pre-order bounded
by maximal states, then the intrinsic logic of the rough set system is E0. In particular
all the usual approximation spaces induced by a finite partial order are of this kind.
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Irredundant Coverings, Tolerances,
and Related Algebras

Jouni Järvinen and Sándor Radeleczki

Abstract This chapter deals with rough approximations defined by tolerance
relations that represent similarities between the elements of a given universe of
discourse. We consider especially tolerances induced by irredundant coverings of
the universe U . This is natural in view of Pawlak’s original theory of rough sets
defined by equivalence relations: any equivalenceE on U is induced by the partition
U/E of U into equivalence classes, and U/E is a special irredundant covering of U
in which the blocks are disjoint. Here equivalence classes are replaced by tolerance
blocks which are maximal sets in which all elements are similar to each other. The
blocks of a tolerance R on U always form a covering of U which induces R, but this
covering is not necessarily irredundant and its blocks may intersect. In this chapter
we consider the semantics of tolerances in rough sets, and in particular the algebraic
structures formed by the rough approximations and rough sets defined by different
types of tolerances.

1 Tolerances, Information Systems, and Rough
Approximations

In this section, we show that tolerances can be used for representing information
about objects. We also consider incomplete information systems and tolerances
determined by them. We define rough approximations and study their properties.
In particular, we concentrate on the structures of the ordered sets of lower and upper
approximations and show that they form ortholattices.
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1.1 Knowledge Representation and Tolerances

Knowledge about objects may be represented as binary relations. For instance, if we
classify all human beings into disjoint sets based on their place of birth, then this
classification determines a binary relation R by setting x R y whenever x and y are
born in the same place. This relation is reflexive, that is, x R x for all human beings
x. It is also symmetric: if x R y, then x and y were born in the same place and y R x

holds. The relation is transitive, because if x R y and y R z, then x, y, and z are all
born in the same place and also x R z is true.

Originally Z. Pawlak defined rough approximations in terms of equivalence
relations [16], which are reflexive, symmetric, and transitive relations. Pawlak
considered equivalences as indistinguishability relations: two objects are equivalent
if we cannot distinguish them by using the given information. Reflexivity is a
natural property of indistinguishability, because each object is indistinguishable
from itself. We may also assume that indistinguishability is symmetric: if x is
indistinguishable from y, then y is indistinguishable from x. Transitivity is the
most controversial property of indistinguishability: we may have a finite sequence
of objects x1, x2, . . . , xn such that each two consecutive objects xi and xi+1 are
indistinguishable, but x1 and xn are very different from each other. The reason
for this is that the difference between xi and xi+1 is so small that it cannot be
perceived, but if we go far enough in the chain of indistinguishable objects, we
have a clear difference. For instance, if we compare photographs of a person’s face,
then the photographs taken on consecutive days should not differ much from each
other. However, the pictures that are taken with separation of 10 years certainly look
different.

In this chapter, we concentrate on cases in which the information about objects is
given by a relation which is reflexive and symmetric, but not necessarily transitive.
Such a relation is called a tolerance relation. The term tolerance relation was
introduced in the context of visual perception theory by Zeeman [22], motivated
by the fact that indistinguishability of “points” in the visual world is limited by the
discreteness of retinal receptors. We view tolerances as similarity relations.

Tolerances correspond to simple graphs. A simple graph is an undirected graph
that has no loops (edges connected at both ends to the same vertex) and no
multiple edges. Any tolerance R on U determines a graph G = (U,R), where
U is interpreted as the set of vertices and R as the set of edges. There is a line
connecting x and y if and only if x R y. Because each point is R-related to itself,
loops connecting a point to itself are not drawn.

Example 1 Assume that U = {1, 2, 3, 4, 5, 6}. Let R be a tolerance depicted by the
graph G = (U,R) of Fig. 1.

Now, for example, (1, 4), (4, 1) ∈ R and (2, 5), (5, 2) ∈ R, because there is an
edge connecting the points 1 and 4, and the points 2 and 5. The elements 1 and 2 are
not R-related, because there is no edge connecting them.
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Fig. 1 A graph G = (U,R)
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4

3

2

5
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Information systems were introduced by Pawlak in [15]. An information system
is a triple S = (U,A, {Va}a∈A), where U is a nonempty set of objects, A is a
nonempty set of attributes, and {Va}a∈A is an A-indexed family of sets of attribute
values. Each attribute a ∈ A is a function a : U → Va . Usually the sets U , A,
and Va are assumed to be finite, which is often a natural assumption. However, in
general we do not assume anything about the cardinalities of these sets.

Let S = (U,A, {Va}a∈A) be an information system. An indistinguishability
relation can be defined for any B ⊆ A by setting

INDB = {(x, y) ∈ U × U | a(x) = a(y) for all a ∈ B}.

This means that two objects are B-indistinguishable if and only if their values for
all the attributes in B are equal. It is obvious that INDB is an equivalence for any
B ⊆ A.

In real-world situations, some attribute values for some objects may be undefined
or unknown. Data may be missing for several reasons, but they do not concern us. In
[12] these null values are marked by ∗. This kind of information systems are called
incomplete information systems. For each B ⊆ A, the following relation is defined:

SIMB = {(x, y) ∈ U × U | (∀a ∈ B) a(x) = a(y) or a(x) = ∗ or a(y) = ∗}.

For any B ⊆ A, SIMB is a tolerance on U such that INDB ⊆ SIMB . For each
attribute a ∈ A, let us denote SIM{a} simply by SIMa . It is clear that

SIMB =
⋂

a∈B
SIMa.

Example 2 An information system S in which the sets U and A are finite can be
represented by a table. The rows of the table are labelled by the objects and the
columns by the attributes of the system S . In the intersection of the row labelled
by an object x and the column labelled by an attribute a we find the value a(x).

Let us consider an information system S = (U,A, {Va}a∈A), where the object
set U = {1, 2, 3, 4, 5} consists of five persons called 1, 2, 3, 4 and 5, respectively.
The attribute set A has the attributes Age, Eyes, and Height. Let the values of
attributes be defined as in Table 1.

The tolerance SIMA defined in the information system S is depicted in Fig. 2.
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Table 1 A simple
incomplete information
system

Age Eyes Height

1 Young * *

2 Middle-aged Brown Tall

3 Young Blue Short

4 * Brown Tall

5 Young Brown Tall

Fig. 2 The tolerance SIMA

on {1, 2, 3, 4, 5}
4 1

2 5 3

1.2 Rough Approximations Defined by Tolerances

We begin by defining the rough set approximations based on an arbitrary tolerance
R on a universe U . For any x ∈ U , we denote

R(x) = {y ∈ U | x R y}.

The set R(x) is called the R-neighbourhood of x. It consists of the elements that are
similar to x in view of the knowledge R. Consider any X ⊆ U and let Xc denote
the complement U \ X = {x ∈ U | x /∈ X} in U . For any x ∈ U , we have three
possibilities:

(N1) R(x) ⊆ X: These elements x are certainly in X in view of the knowledge
R, because all elements that are similar to x are in X.

(N2) R(x)∩X = ∅, that is, R(x) ⊆ Xc: These are the elements x which certainly
are not in X, because their R-neighbourhood is totally outside X.

(N3) R(x) ∩ X 
= ∅ and R(x) ∩ Xc 
= ∅: These elements x are such that their
belonging to X cannot be decided by the means of the knowledge R; both
in X and outside X there are elements which are similar to x.

Example 3 The three kinds of elements with respect to set X ⊆ U are depicted in
Fig. 3. Element x belongs certainly to X, element y is certainly not in X, and z is
such that its belonging to X cannot be decided in view of the knowledge R.

Next we define the rough approximation operators. Let R be a tolerance on a set
U . The upper approximation of a set X ⊆ U is

X� = {x ∈ U | R(x) ∩X 
= ∅}

and the lower approximation of X is

X� = {x ∈ U | R(x) ⊆ X}.



Irredundant Coverings, Tolerances and Algebras 421

R(x)

R(z)

X

U

R(y)

Fig. 3 Three kinds of elements with respect to set X ⊆ U

a b c

Fig. 4 The graph of a tolerance R is a 3-element chain

Thus the lower approximation X� consists of the elements of type (N1) and
the upper approximation X� of contains the objects of type (N1) and (N3). The
boundary B(X) := X� \ X� is the actual area of uncertainty; it consists of the
elements of type (N3). Note that if x ∈ B(X), then |R(x)| ≥ 2. The set X�c

contains the objects of type (N2).

Example 4 Let U = {a, b, c} and let R be the tolerance on U defined in Fig. 4. The
lower and upper approximations of subsets of U are given in Table 2.

In the following are listed the basic properties of rough approximations defined
by tolerances. Notice that X�� denotes (X�)� and a similar convention is used in
this chapter for combinations of different mappings. The proofs of these claims are
easy to verify, and they can also be found in [6, 7].

Table 2 All lower and
upper approximations

X X� X�

∅ ∅ ∅
{a} ∅ {a, b}
{b} ∅ U

{c} ∅ {b, c}
{a, b} {a} U

{a, c} ∅ U

{b, c} {c} U

U U U
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Proposition 5 Let R is a tolerance on U and X,Y ⊆ U .

(a) ∅� = ∅� = ∅ and U� = U� = U ;
(b) X� ⊆ X ⊆ X�;
(c) X�� ⊆ X ⊆ X��;
(d) X ⊆ Y implies X� ⊆ Y� and X� ⊆ Y�;
(e) (X ∪ Y )� = X� ∪ Y� and (X ∩ Y )� = X� ∩ Y�;
(f) X�c = Xc� and X�c = Xc�;
(g) B(X) = B(Xc);
(h) X��� = X� and X��� = X�.

Remark 6 Let us make some observations concerning Proposition 5. Item (a) says
that an element belongs neither certainly nor possibly to the empty set and that every
element belongs possibly and certainly to the whole universe.

Statement (b) says that if an element belongs certainly to X in view of the
knowledge R, it must be in X. Further, if an element belongs to X, it belongs also
possibly to X in the view of knowledge R. This property follows from the relation
R being reflexive.

In (c), X ⊆ X�� says that if x ∈ X, then R(x) ⊆ X�. This means that if
x belongs to X, then the elements R-related to x are possibly in X. Similarly, if
x ∈ X��, then x is R-related to some element in X�. But X� consists of such
elements that all element R-related to them are in X. Therefore, also x must be in
X. Note that this condition holds since R is symmetric.

Assertion (d) says simply that if all elements of X are in Y , then all elements
which are certainly (resp. possibly) in X are also certainly (resp. possibly) in Y .

By (e), the set of elements which are possibly in the union of X and Y equals the
set of elements which are possibly in X or possibly in Y . Similarly, the elements
which certainly are in the intersection of X and Y are those elements which are
certainly in X and certainly in Y . Note that X� ∪ Y� 
= (X ∪ Y )� may hold. For
instance, consider the tolerance of Example 4. If X = {a} and Y = {b}, then X� =
∅ and Y� = ∅, but (X∪Y )� = {a, b}� = {a}. Additionally, X� ∩Y� 
= (X∩Y )�

for these particular sets X and Y .
Claim (f) says that the operators � and � are mutually dual. Statement (g) says

that if we cannot decide whether an element is in X, we cannot decide whether it is
in the set-complement Xc of X either. This natural property follows from (f).

The equalities in (h) are consequences of (c) and (d). Indeed, since X ⊆ X��,
we have X� ⊆ X��� by (d). For X�, (c) gives X� ⊇ (X�)��. The other part
behaves in a similar manner.

Let us denote by ℘(U)� the set of all lower approximations and by ℘(U)� the
set of all upper approximations, that is,

℘(U)� = {X� | X ⊆ U} and ℘(U)� = {X� | X ⊆ U}.

Next we present some lattice-theoretical properties of ℘(U)� and ℘(U)�. For that
we need to recall some definitions from the literature [2, 4].
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Fig. 5 The ordered sets ℘(U)� and ℘(U)�

An order (or a partial order) on a set P is a binary relation ≤ such that, for all
a, b, c ∈ P , (1) a ≤ a, (2) a ≤ b and b ≤ a imply a = b, (3) a ≤ b and b ≤ c

imply a ≤ c, that is, the relation ≤ is reflexive, antisymmetric, and transitive. A set
P equipped with an order relation ≤ is called an ordered set (or a partially ordered
set). We usually denote an ordered set (P,≤) simply by P .

Let a and b be elements of an ordered set P . We say that a is covered by b (or that
b covers a), and write a ≺ b, if a < b and a ≤ c < b implies a = c. Every finite
ordered set can be drawn by using its covering relation≺. The Hasse diagram of an
ordered set P represents the elements of P with circles, and the circles representing
two elements a and b are connected by a line if a ≺ b or b ≺ a. If a is covered by
b, the circle representing a is below the circle representing b.

It is clear that for any tolerance R on U , the lower approximations and upper
approximations form ordered sets with respect to the set-inclusion order, that is,
(℘ (U)�,⊆) and (℘ (U)�,⊆) are ordered sets. We usually denote these ordered
sets simply by ℘(U)� and ℘(U)�.

Example 7 Let R be the tolerance on Example 4. The Hasse diagrams of ℘(U)�
and ℘(U)� are presented in Fig. 5.

If P and Q are ordered sets, then a mapping ϕ : P → Q is an order-embedding,
if a ≤ b in P if and only if ϕ(a) ≤ ϕ(b) in Q. Note that an order-embedding is
always an injection, because if ϕ(a) = ϕ(b), then ϕ(a) ≤ ϕ(b) and ϕ(a) ≥ ϕ(b),
which imply a ≤ b and a ≥ b, that is, a = b. An order-isomorphism is a surjective
order-embedding. When there exists an order-isomorphism from P to Q, we say
that P and Q are order-isomorphic and write P ∼= Q. Since any order-isomorphism
ϕ : P → Q is a bijection, ϕ has an inverse mapping ϕ−1 which also is an order-
isomorphism ϕ−1 : Q→ P .

Proposition 8 If R is a tolerance on U , then ϕ : X� �→ X�� defines an order-
isomorphism between ℘(U)� and ℘(U)�.

Proof Let X,Y ⊆ U . If X� ⊆ Y�, then ϕ(X�) = X�� ⊆ Y�� = ϕ(Y�).
Conversely, if ϕ(X�) = X�� ⊆ Y�� = ϕ(Y�), then X� = X��� ⊆ Y��� =
Y�. Thus, ϕ is an order-embedding.
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If Z� ∈ ℘(U)�, then Z�� ∈ ℘(U)� and ϕ(Z��) = Z��� = Z�. This means
that ϕ is also surjective. ��

Let us note that if R is an equivalence on U , then X�� = X� and X�� = X�

for all X ⊆ U . This implies that ℘(U)� = ℘(U)�.
A family L of subsets of U is a closure system on U if L is closed under

arbitrary intersections. In particular, L always contains U = ⋂ ∅. A map
C : ℘(U)→ ℘(U) is a closure operator on U if for any X,Y ⊆ U :

(1) X ⊆ C (X) (extensive)
(2) C (C (X)) = C (X) (idempotent)
(3) X ⊆ Y implies C (X) ⊆ C (Y ) (order-preserving)

A subset X of U is closed (with respect to C ) if C (X) = X.
A closure system L on U defines a closure operator CL on U by the rule

CL (B) =
⋂
{L ∈ L | B ⊆ L}.

Conversely, if C is a closure operator on U , then the family

LC = {B ⊆ U | C (B) = B}

of C -closed subsets of U is a closure system. The relationship between closure
systems and closure operators is bijective.

Lemma 9 Let R be a tolerance on U . The family of sets ℘(U)� is a closure system
on U .

Proof Consider {X� | X ∈H } ⊆ ℘(U)� for some H ⊆ ℘(U). We show that

⋂

X∈H
X� = (

⋂
H
)�

,

which means that
⋂{X� | X ∈ H } belongs to ℘(U)�. For every X ∈ H ,(⋂

H
)� ⊆ X� because

⋂
H ⊆ X. Therefore,

(⋂
H
)� ⊆

⋂

X∈H
X�.

On the other hand, if x ∈ ⋂{X� | X ∈H }, then x ∈ X� and R(x) ⊆ X for all
X ∈H . Thus, R(x) ⊆⋂H and x ∈ (⋂H

)�. This completes the proof. ��
Let R be a tolerance on U . We define a map ♦ (“diamond”) on ℘(U) by setting

♦X := X�� (1)

for all X ⊆ U .
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Lemma 10 The mapping ♦ is the closure operator corresponding to the closure
system ℘(U)�.

Proof This follows from Proposition 5. Indeed, for all X ⊆ U , X ⊆ X�� = ♦X
and ♦♦X = X���� = X�� = ♦X. If X ⊆ Y , then X� ⊆ Y� and ♦X = X�� ⊆
Y�� = ♦Y . Thus, ♦ is a closure operator on U . It is clear that ♦X ∈ ℘(U)�, and
that if X� ∈ ℘(U)�, then ♦X� = X��� = X�. ��

Note that since the closure system corresponding ♦ is ℘(U)�, we have

♦X =
⋂
{A ∈ ℘(U)� | X ⊆ A},

for any X ⊆ U . Therefore, ♦X is the least set in ℘(U)� which contains X. Note
also that X� = (♦X)� for all X ⊆ U and ℘(U)� = {♦X | X ⊆ U}.

A map I : ℘(U)→ ℘(U) is called an interior operator on U if for any X,Y ⊆
U :

(1) I (X) ⊆ X (contractive)
(2) I (I (X)) = I (X) (idempotent)
(3) X ⊆ Y implies I (X) ⊆ I (Y ) (order-preserving)

It is known (see e.g. [13]) that each closure operator C : ℘(U) → ℘(U) defines
an interior operator IC : ℘(U)→ ℘(U) by the rule IC (X) = C (Xc)c. A family
N of subsets of A is said to be an interior system if N is closed under arbitrary
unions. Note that interior systems always contain ∅ = ⋃ ∅. Also the relationship
between interior systems and interior operators is bijective.

Because for any tolerance R on U the mapping ♦ is a closure operator on U , it
defines an interior operator � (“box”) by the rule

�X := (♦(Xc))c = Xc��c = X��. (2)

This gives that �(Xc) = (♦X)c and ♦(Xc) = (�X)c, that is, the operators � and
♦ are mutually dual.

The interior system corresponding to the interior operator � is ℘(U)�, and

�X =
⋃
{A ∈ ℘(U)� | A ⊆ X}.

Now �X is the greatest set in ℘(U)� contained in X. Note also that X� = (�X)�
for all X ⊆ U and ℘(U)� = {�X | X ⊆ U}. In addition,

(♦X)� = �(X�) and (�X)� = ♦(X�).

An ordered set (P,≤) is a complete lattice if each subset S ⊆ P has a greatest
lower bound

∧
S and a least upper bound

∨
S.
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It is known that if L is a closure system on U , then the ordered set (L ,⊆) is a
complete lattice in which for a subset H of L ,

∧
H =

⋂
H and

∨
H = CL

(⋃
H
)
.

Because for a tolerance R on U , ℘(U)� is a closure system, the ordered set
(℘ (U)�,⊆) is a complete lattice in which

∧
H =

⋂
H and

∨
H = ♦

(⋃
H
)

(3)

for all H ⊆ ℘(U)�. Similarly, the ordered set (℘ (U)�,⊆) is a complete lattice in
which

∧
H = �

(⋂
H
)

and
∨

H =
⋃

H (4)

for all H ⊆ ℘(U)�.
We say that an ordered set (P,≤) is bounded if it has a least element, denoted

usually by 0, and a greatest element, denoted by 1. It is obvious and well-known
that any complete lattice is bounded. The complete lattices ℘(U)� and ℘(U)� are
bounded in such a way that ∅ is their smallest element and U is the greatest element.

A mapping x �→ x⊥ on a bounded lattice L is called an orthocomplementation,
and x⊥ an orthocomplement of x, if the following conditions hold for all x, y ∈ L:

(O1) x ≤ y implies y⊥ ≤ x⊥ (order-reversing)
(O2) x⊥⊥ = x (involution)
(O3) x ∨ x⊥ = 1 and x ∧ x⊥ = 0 (complement)

An ortholattice is a bounded lattice equipped with an orthocomplementation. Note
that orthocomplementations are not always unique.

Remark 11 For an ordered set (P,≤), a mapping ϕ : P → P satisfying (O1) and
(O2) is called a polarity. Such a polarity ϕ is an order-isomorphism from (P,≤)
to its dual (P,≥). This means that P is anti-isomorphic to itself. Hence, the Hasse
diagram of P looks the same when it is turned upside-down.

Proposition 12 Let R be a tolerance on U .

(a) The map X �→ Xc� is an orthocomplementation in ℘(U)�.
(b) The map X �→ Xc� is an orthocomplementation in ℘(U)�.

Proof We show that X⊥ = Xc� is an orthocomplement of X ∈ ℘(U)� which
proves (a). Claim (b) may be proved similarly. Suppose X,Y ∈ ℘(U)�. It is clear
that X⊥ belongs to ℘(U)�, so the mapping is well defined.

(O1) If X ⊆ Y , then Y c ⊆ Xc and Y⊥ = Y c� ⊆ Xc� = X⊥.
(O2) X⊥⊥ = Xc�c� = Xcc�� = X��. Because X ∈ ℘(U)�, we have X = A�

for some A ⊆ U . Thus, X⊥⊥ = X�� = A��� = A� = X.
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(O3) By straightforward computation,

X ∧X⊥ = X ∩Xc� ⊆ X ∩Xc = ∅

and

X ∨X⊥ = (X ∪Xc�)�� = (X� ∪X�c�)� ⊇ (X� ∪X�c)� = U� = U.

��

2 Tolerances Induced by an Irredundant Covering

In this section, we first consider blocks of a tolerance. A block of a tolerance can
be seen as a counterpart of an equivalence class of an equivalence relation. First
we recall the notion of a covering [18]. Each covering induces a tolerance, and in
this section tolerances induced by irredundant coverings assume a special role. We
characterize the tolerances induced by an irredundant covering and we also give an
algorithm which checks whether a tolerance is induced by an irredundant covering.
Moreover, in case R is such a tolerance, the algorithm also returns that unique
irredundant covering. Section 2.3 is devoted to rough approximation operators
defined by irredundant coverings. There are many ways to define approximations
operators in terms of a covering. We show that if H is an irredundant covering,
many of these operators can be expressed by using rough approximation operators
defined by the tolerance induced by H . The last subsection deals with tolerances
and formal concept analysis. Many results presented in this section appear already
in our previous works [8–10].

2.1 Blocks of Tolerances and Set Coverings

We begin by considering blocks of tolerances. Blocks of tolerances can be seen as
generalizations of equivalence classes, because each block of a tolerance R on U

is a maximal set within which all elements are R-related. On the other hand, the
R-neighbourhood R(x) of x ∈ U is not necessarily a block of R. In fact, we shall
see that those R(x)-neighbourhoods that are blocks play a special role.

Let R be a tolerance on U . A nonempty subset X of U is an R-preblock if X ×
X ⊆ R. Note that if B is an R-preblock, then B ⊆ R(x) for all x ∈ B. An R-block is
an R-preblock that is maximal with respect to the inclusion relation. Each tolerance
R is completely determined by its blocks, that is, a R b if and only if there exists a
block B such that a, b ∈ B. Blocks are “clusters” of similar objects, because each
object in a block B is R-related with all other elements in B, and no element outside
B is R-related to all elements of B.
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Fig. 6 Tolerance R on
{1, 2, 3, 4}

1

4

2

3

Example 13 Let R be a tolerance on U = {1, 2, 3, 4} depicted by the graph G =
(U,R) in Fig. 6. A nonempty set X ⊆ U is a preblock if and only if all points in X

are connected by an edge of G . Blocks are the maximal preblocks, and the blocks
of R are {1, 2}, {2, 3}, {3, 4}, {1, 4}.

Next we present two lemmas related to R-neighbourhoods of objects.

Lemma 14 Let R be a tolerance on U and x ∈ U . The following are equivalent:

(a) R(x) is a preblock;
(b) R(x) is a block.

Proof It is clear that (b) implies (a). Let R(x) be a preblock. Suppose that R(x) ⊆ X

for some preblock X. If y ∈ X, then x R y because x ∈ R(x) ⊆ X and X is a
preblock. Therefore, y ∈ R(x). Hence, R(x) = X and R(x) is a block. ��

By the above lemma, we can also write that for all x ∈ U ,

R(x) is a block ⇐⇒ R(x) ⊆ R(y) for all y ∈ R(x). (5)

As we have noted, if B is a block, then B ⊆ R(y) for all y ∈ B, so “$⇒” follows
from this. On the other hand, if R(x) ⊆ R(y) for all y ∈ R(x), then a, b ∈ R(x)

implies that a ∈ R(b) and b ∈ R(a). Therefore, all elements in R(x) are related and
by Lemma 14 R(x) is a block.

Lemma 15 A tolerance R on U is an equivalence if and only if R(x) is a block for
each x ∈ U .

Proof If R is an equivalence, then each equivalence class R(x) is a block.
On the other hand, suppose that there is x ∈ U such that R(x) is not a block.

By Lemma 14 this means that there are a, b ∈ R(x) which are not related. Now we
have that a R x and x R b, but (a, b) /∈ R. Thus, the relation R is not transitive. ��
Example 16 Let us consider the tolerance R on U = {a, b, c, d, e} depicted in
Fig. 7. By Lemma 14, R(a) = R(b) = {a, b, e} and R(c) = R(d) = {c, d, e}
are blocks, because all their elements are R-related. The neighbourhood R(e) = U

is not a block, because, for instance, a and c are not related. By Lemma 15, the
tolerance R is not an equivalence, because R(e) is not a block.

A partition π on U is a collection of nonempty subsets of U such that every
element x of U belongs to exactly one member of π . For any equivalence E on U ,
the set of all equivalence classes U/E = {[x]E | x ∈ U} forms a partition of U .
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Fig. 7 Tolerance R on
{a, b, c, d, e}
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On the other hand, each partition π on U defines an equivalence E on U by setting
x E y if there is a set X ∈ π such that x, y ∈ X.

Tolerances do not in general determine partitions, but for tolerances the counter-
parts of partitions are set coverings. A collection H of nonempty subsets of U is
called a covering of U if

⋃
H = U . A covering H is irredundant if H \ {X} is

not a covering for any X ∈H .

Example 17 The family H = {{a}, {a, b}, {b, c, d}, {c, d}} forms a covering of
U = {a, b, c, d}, but this covering is not irredundant, because an irredundant cover-
ing cannot contain sets B and C such that B ⊆ C. The subfamilies {{a}, {b, c, d}},
{{a, b}, {b, c, d}}, and {{a, b}, {c, d}} of H are irredundant coverings.

The family K = {{a, b}, {b, c}, {c, d}, {a, d}} also forms a covering of U . It is
not irredundant even B � C for all B,C ∈ K . The subfamilies {{a, b}, {c, d}} and
{{a, d}, {b, c}} of K are irredundant coverings.

It is clear that the blocks of a tolerance R on U form a covering of U , because
for each x ∈ U , (x, x) ∈ R means that there must be a block containing x. On the
other hand, each covering H of U defines a tolerance

⋃{X ×X | X ∈H }, called
the tolerance induced by H . If R is a tolerance induced by a covering H , then

R(x) =
⋃
{B ∈H | x ∈ B}.

A natural problem is, how to recognize the tolerances that are induced by an
irredundant covering. We consider this problem next.

Proposition 18 Let R be a tolerance induced by an irredundant covering H of U .
Then H = {R(x) | R(x) is a block}.
Proof Let B ∈ H . Because H is an irredundant covering, there is an element
x ∈ B such that x /∈ ⋃ (H \ {B}). Since R is induced by H , x R y for all y in B.
Therefore, B ⊆ R(x). On the other hand, if a ∈ R(x), then there is a set C ∈ H
such that x, a ∈ C. But because x belongs only to B, we have C = B and a ∈ B.
Thus, also R(x) ⊆ B and hence R(x) = B. Additionally, because H induces R,
we have that a R b for all a, b ∈ R(x) = B. By Lemma 14, this means that R(x) is
a block. We have now proved that H ⊆ {R(x) | R(x) is a block}.

We need to show that also {R(x) | R(x) is a block} ⊆ H . Assume that R(x)

is a block. Because H is a covering, there is B ∈ H such that x ∈ B. If a ∈ B,
then because H induces R, a ∈ R(x) and thus B ⊆ R(x). Since H is irredundant
covering inducing R, we have by the beginning of the proof that H ⊆ {R(x) |
R(x) is a block}. This means that there is an element y ∈ U such that B = R(y)
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and R(y) is a block. Because R(x) and R(y) are blocks, R(y) = B ⊆ R(x) gives
B = R(x) and R(x) ∈H . ��

Proposition 18 says that if R is a tolerance induced by an irredundant covering,
then this covering is unique and contains exactly the R(x)-neighbourhoods that
are blocks. This means that we may simply speak about tolerances induced by an
irredundant covering without specifying the covering in question.

Lemma 19 Let R be a tolerance on U . If R(x) and R(y) are distinct blocks, then
x /∈ R(y).

Proof If x ∈ R(y), then R(y) ⊆ R(x) by (5) since R(y) is a block. But x ∈ R(y)

means that also y ∈ R(x). Since R(x) is a block, we have R(x) ⊆ R(y). Hence
R(x) = R(y). ��

Note that Lemma 19 means that if {R(x) | R(x) is a block} is a covering, then it
is irredundant. In fact, we can write the following characterization.

Theorem 20 Let R be a tolerance on U . The following are equivalent:

(a) R is a tolerance induced by an irredundant covering;
(b) {R(x) | R(x) is a block} induces R.

Proof That (a) implies (b) is clear by Proposition 18. On the other hand, if H =
{R(x) | R(x) is a block} induces R, then H is a covering, because for all y ∈ U ,
y R y requires that there is an R(x) ∈ H such that y ∈ R(x). By Lemma 19, the
covering H is irredundant, because if R(x) is a block, then x cannot belong to any
other R(y) that is a block. Thus, (b) implies (a). ��
Example 21 It is possible that the family H = {R(x) | R(x) is a block} is an irre-
dundant covering, but does not induce R. In this case, R is not a tolerance induced
by an irredundant covering. For instance, consider the tolerance of Example 1. Now

H = {R(x) | R(x) is a block} = {R(1), R(2), R(3)} = {{1, 4}, {2, 5}, {3, 6}}.

The family H is an irredundant covering of U = {1, 2, 3, 4, 5, 6}, but H does not
induce R. For example, (4, 5) ∈ R, but there is no block in H containing 4 and 5.

Example 22 Let us consider the tolerance on U = {a, b, c, d, e, f, g} given in
Fig. 8. This tolerance appears in [18, Figure 3.5]. The neighbourhoods that are
blocks are R(a) = {a, b, d, e}, R(c) = {b, c, d, f }, and R(g) = {d, e, f, g}. All
edges of the graph are inside these blocks, which means that {R(a),R(c), R(g)}
induces R. By Theorem 20, R is a tolerance induced by an irredundant covering.

Notice that there may exist blocks which are notR-neighbourhoods of any object.
For instance, {b, d, e, f } is such a block.

Remark 23 A nonempty set X ⊆ U is an R-preblock if and only if it is a clique of
the graph G = (U,R), that is, all pairs of vertices in X are connected by an edge of
G . A block of R is thus a maximal clique.
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Fig. 8 Tolerance R induced
by an irredundant covering
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In computer science, the clique problem is the decision problem whether a clique
of a given size k exists in a graph. A brute-force method for solving this problem is
to list all sets of k vertices and to check each one to see whether it forms a clique. For
a graph with n vertices, the running time of this algorithm is Ω(k2

(
n
k

)
). In fact, it is

known that the clique problem is NP-complete and therefore an efficient algorithm
for the clique problem is unlikely to exist [1].

Fortunately, our problem is simpler. We do not need to find all maximal cliques
of a graph. We are only interested in the question whether R(x) is a clique for some
x ∈ U , because such an R(x) is necessarily a maximal clique by Lemma 14. Our
Algorithm 31 solves this in O(|R|) steps, where |R| denotes the cardinality of R.

We end this subsection by considering how tolerances induced by an irredundant
covering may arise from incomplete information systems.

Let S = (U,A, {Va}a∈A) be an incomplete information system, where the null
values are marked by ∗. For each B ⊆ A, the tolerance SIMB is defined as earlier,
that is,

SIMB = {(x, y) ∈ U × U | (∀a ∈ B) a(x) = a(y) or a(x) = ∗ or a(y) = ∗}.

We define the set complB of B-complete elements by

complB = {x ∈ U | a(x) 
= ∗ for all a ∈ B}.

Our next lemma shows that the neighbourhoods of complete elements are blocks.

Lemma 24 Let S = (U,A, {Va}a∈A) be an incomplete information system and
B ⊆ A. For any c ∈ complB , the neighbourhood SIMB(c) is a block.

Proof Assume that x, y ∈ SIMB(c). Then a(x) = a(c) for all a ∈ B such that
a(x) 
= ∗. Similarly, a(y) = a(c) for all a ∈ B such that a(y) 
= ∗. This means that
a(x) = a(y) and (x, y) ∈ SIMa for all a ∈ B such that a(x) 
= ∗ and a(y) 
= ∗.
On the other hand, if a(x) = ∗ or a(y) = ∗, then (x, y) ∈ SIMa . Thus, (x, y) ∈
SIMa for all a ∈ B, which means that (x, y) ∈ SIMB . Hence SIMB(c) is a block,
according to Lemma 14. ��
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Table 3 The information
system S

a b

1 * w1

2 v1 w1

3 v2 w2

4 v2 *

In what follows, we present a condition under which for each B ⊆ A, the
tolerance SIMB is induced by an irredundant covering. Let us begin with an
example.

Example 25 Let S = (U,A, {Va}a∈A) be the incomplete information system
defined in Table 3.

The elements 2 and 3 are A-complete and their SIMA-neighbourhoods are {1, 2}
and {3, 4}. The tolerance induced by this covering is an equivalence which differs
from the tolerance SIMA, because the objects 1 and 4 are SIMA-related. This means
that the covering {{1, 2}, {3, 4}} does not induce SIMA.

Let S = (U,A, {Va}a∈A) be an incomplete information system and B ⊆ A. We
introduce the following condition:

(x, y) ∈ SIMB ⇐⇒ (∃c ∈ complB) x, y ∈ SIMB(c) (�)

Proposition 26 Let S = (U,A, {Va}a∈A) be an incomplete information system
and let B ⊆ A be such that (�) is satisfied. Then HB = {SIMB(c) | c ∈ complB} is
an irredundant covering and it induces SIMB .

Proof Let B ⊆ A. Because (x, x) ∈ SIMB for all x ∈ U , by (�) there must be an
element c ∈ complB such that x ∈ SIMB(c). Therefore, HB is a covering.

The covering HB is clearly irredundant, because each B-complete element c can
belong only to SIMB(c). By condition (�), HB induces SIMB ��
Example 27 Let us consider the incomplete information system of Example 2. The
A-complete elements are 2, 3, 5. Now SIMA(2) = {2, 4}, SIMA(3) = {1, 3}, and
SIMA(5) = {1, 4, 5}. Because every edge of the graph belongs to these blocks, the
irredundant covering

{SIMA(2), SIMA(3), SIMA(5)}

induces SIMA.

Remark 28 For any B-complete element c, R(c) is a cluster in which all elements
are similar to each other with respect to the B-attributes. The element c can be
seen as a “prototype element” for this cluster because an object x ∈ U belongs to
this cluster if and only if x is B-similar to c. Such prototype elements c are called
“medoids” in cluster analysis. If condition (�) holds for some B ⊆ A, then this
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means that two objects x and y are SIMB-related if and only if there is a B-complete
prototype object c such that x and y are SIMB-related to this c.

2.2 Algorithms

Next we present an algorithm which decides whether a given tolerance is induced
by an irredundant covering. If that is the case, then the method also produces the
unique irredundant covering.

Since inputs to the algorithms have to be finite, we assume here that U is finite.
We suppose that the relation R is given as the collection {R(x) | x ∈ U} of all R-
neighbourhoods. More precisely, we use an adjacency list representation of (U,R)

consisting of an array Adj of |U | lists, one for each element in U . For each x ∈ U ,
the adjacency list Adj[x] contains the members of R(x) (see [1], for example). We
also assume that the elements in each adjacency list are ordered according to some
given linear order of U . Each adjacency list is implemented as a linked list, where
each list element a has a reference a.next to the next element in the list. The end
of the list is marked by NULL. The “value” identifying the element stored in the list
element a is in a.key. For each pair (x, y) ∈ R, the adjacency list Adj[x] contains a
list element a such that a.key = y. Thus the sum of the lengths of all adjacency lists
is |R|. Because the relation R is reflexive, |U | ≤ |R|, and so the amount of memory
the adjacency-list representation requires is O(|R|).
Example 29 The adjacency-list representation of the relation R of Example 2 is
depicted in Fig. 9. The next-references are marked by an arrow and the NULL-value
is indicated by a diagonal slash.

Our first algorithm checks whether R(x) ⊆ R(y) for some x, y ∈ U .

1 3

22

3

5

1

4

3

2

41 5

4

4 5

1

5

1

4

Adj

Fig. 9 An adjacency list representation
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Algorithm 30 (Inclusion)

Input: The adjacency list representation Adj of (U,R) and two elements
x, y ∈ U .

Output: “yes” if R(x) ⊆ R(y); “no” otherwise.

(1) Let a be the first element in the list Adj[x] and let b be the first element in
Adj[y].

(2) While a 
= NULL and b 
= NULL, repeat the following:

(a) if a.key < b.key, then output “no” and halt.
(b) if a.key = b.key, then a ← a.next and b← b.next.
(c) if a.key > b.key, then b← b.next.

(3) If a = NULL, then output “yes”; otherwise output “no”.

The time-complexity of Algorithm 30 is O(|Adj[y]|). This is because in the worst
case b← b.next is executed for each element b in Adj[y].

Next we present an algorithm which decides whether R(x) is a block for a given
x ∈ U . Using Algorithm 30 it checks whether R(x) ⊆ R(y) holds for each y ∈
R(x). If this is true, then R(x) is a block by (5).

Algorithm 31 (Block)

Input: The adjacency list representation Adj of (U,R) and an element x ∈ U .
Output: “yes” if R(x) is a block; “no” otherwise.

1. For each y ∈ R(x) \ {x}, test using Algorithm 30 whether R(x) ⊆ R(y). If no,
output “no” and halt.

2. If all elements y ∈ R(x)\ {x} are checked without halting, output “yes” and halt.

The running time of Algorithm 31 is O(|R|), because when R(x) is a block, we
need to check R(x) ⊆ R(y) for all y ∈ R(x)\ {x}. Each such test takes O(|Adj[y])|
time. The sum of the lengths of all adjacency lists is |R|, from which we get the
upper bound.

Our next algorithm decides whether the tolerance R is induced by an irredundant
covering. As far as we know, this is the first algorithm solving this problem.

Algorithm 32 (Irredundant Covering)

Input: The adjacency list representation Adj of (U,R) and the set U .
Output: “yes” if R is induced by an irredundant covering and a set C such that
{R(x) | x ∈ C} is the irredundant covering inducing R; “no” otherwise.

1. Divide U into C = {x ∈ U | R(x) is a block} and D = U \ C.
2. For all d ∈ D and all e ∈ R(d), find out whether {d, e} ⊆ R(c) for some c ∈ C.

If such an element c cannot be found for some (d, e)-pair, output “no” and halt.
3. If all (d, e)-pairs are tested without halting, output “yes” and the set C.

The correctness of the algorithm follows from Theorem 20: if R is induced by an
irredundant covering H , then H must be {R(x) | R(x) is a block}. Therefore,
the algorithm needs to check whether {R(x) | R(x) is a block} induces R. The
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algorithm first produces the set C, which can be done in O(|U | · |R|) time (step
1). This is because there are O(|U |) elements in C, and checking whether R(c) is a
block for some c ∈ C takes O(|R|) steps by using Algorithm 31.

Next the algorithm decides whether {R(c) | c ∈ C} induces R. This is done by
considering the remaining R-neighbourhoods {R(d) | d ∈ D}. It suffices to check
that for any e ∈ R(d) (meaning that d R e), there is an element c ∈ C such that
d, e ∈ R(c). Since there are at most |R| this kind of (d, e)-pairs, and the sum of the
lengths of the adjacency lists of the elements in C at most |R|, the time complexity
of step 2 is O(|R|2). The total running time of Algorithm 32 is therefore O(|U |·|R|)
+ O(|R|2) = O(|R|2).

2.3 Rough Approximations Defined by Tolerances Induced by
Irredundant Coverings

In Sect. 1, we showed that ℘(U)� and ℘(U)� are complete order-isomorphic
ortholattices. In this section our aim is to study the properties of these complete
lattices defined by tolerances induced by irredundant coverings.

A distributive lattice is a lattice L satisfying the distributive laws:

(D1) (∀x, y, z ∈ L) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ y);
(D2) (∀x, y, z ∈ L) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

It is known that a lattice satisfies (D1) if and only if it satisfies (D2). Therefore,
checking that a lattice is distributive requires only checking the validity of either
(D1) or (D2).

Example 33 In general, ℘(U)� and ℘(U)� are not distributive. For instance, con-
sider a tolerance R of Example 13. The lattices of lower and upper approximations
are given in Fig. 10. Note that for the sake of simplicity, we sometimes denote sets
by sequences of their elements. For example, {1, 2, 3} is denoted by 123. The lattice

Fig. 10 ℘(U)� and ℘(U)� are not distributive
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℘(U)� is not distributive, because

({1} ∨ {2})∧ {3} = U ∧ {3} = {3}

and

({1} ∧ {3}) ∨ ({2} ∧ {3}) = ∅ ∨ ∅ = ∅.

Because ℘(U)� ∼= ℘(U)�, ℘(U)� is not distributive neither.

Let L be a bounded lattice with least element 0 and greatest element 1. An
element b ∈ L is a complement of an element a ∈ L if

a ∨ b = 1 and a ∧ b = 0.

A complemented lattice is a bounded lattice in which every element has a com-
plement. Notice that the orthocomplement of an element is a complement in the
sense of the above definition. Complements need not be unique and if a lattice is
not distributive, then an element may have several complements. For instance, in
℘(U)� of Example 33, the element {1} has the complements {2}, {3}, and {4}.

A Boolean lattice is a complemented distributive lattice. It is known that in a
distributive lattice any element can have at most one complement, so in Boolean
lattices the complement of any element is unique. The complement of x is denoted
by x ′. The complement operation in a Boolean lattice has the following properties:

(B1) 0′ = 1 and 1′ = 0;
(B2) a′′ = a;
(B3) (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′;
(B4) a ∧ b = 0 if and only if a ≤ b′;
(B5) a ≤ b implies b′ ≤ a′.

Let L be a lattice with a least element 0. Then a ∈ L is called an atom of L, if
0 ≺ a. The set of atoms of L is denoted by A (L). A lattice L with zero is atomistic
if every element x ∈ L is a join of atoms.

Let L be an atomistic lattice. For any x ∈ L, let us denote

A(x) = {a ∈ A (L) | a ≤ x}.

Then clearly x = ∨A(x), and for any y ∈ L, x ≤ y if and only if A(x) ⊆ A(y).
Hence A(x) = A(y) if and only if x = y. The facts

A(x ∧ y) = A(x) ∩ A(y) and A(x ∨ y) ⊇ A(x) ∪ A(y) (6)

follow directly from the definitions of joins and meets.
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Next we prove that ℘(U)� and ℘(U)� are Boolean lattices when R is a tolerance
induced by an irredundant covering. For that we will need the following two
lemmas.

Lemma 34 Let R be a tolerance on U .

(a) Any atom of ℘(U)� has the form R(x) for some x ∈ U .
(b) If R(x) is a block of R, then R(x) is an atom of ℘(U)�.
(c) If R is induced by an irredundant covering of U , then {R(x) | R(x) is a block}

is the set of the atoms of the lattice ℘(U)�.

Proof

(a) Atoms of ℘(U)� have to be of the form R(x), because the map � is order-
preserving and R(x) = {x}�.

(b) Suppose that R(x) is a block and R(y) ⊆ R(x). Because y ∈ R(x) and R(x)

is a block, we have R(x) ⊆ R(y) by (5). Thus, R(y) = R(x) and R(x) is an
atom.

(c) Suppose that R(y) is an atom of ℘(U)�. Because {R(x) | R(x) is a block}
is a covering, there exists a block R(x) such that y ∈ R(x). Since R(x) is a
block, ∅ ⊂ R(x) ⊆ R(y) by (5). Because R(y) is an atom of ℘(U)�, we get
R(y) = R(x), and this means that R(y) is a block. ��

In a lattice L with a least element 0, an element x∗ is a pseudocomplement
of an element x ∈ L if, for any z ∈ L, x ∧ z = 0 if and only if z ≤ x∗.
Obviously, an element can have at most one pseudocomplement. The lattice L itself
is called pseudocomplemented, if every element of L has a pseudocomplement.
Every pseudocomplemented lattice is necessarily bounded, having 0∗ as the greatest
element.

Lemma 35 Any complete atomistic pseudocomplemented lattice L is a Boolean
lattice.

Proof First, we show that A(x ∨ y) = A(x) ∪ A(y) for any x, y ∈ L. By (6), it
suffices to prove that A(x∨y) ⊆ A(x)∪A(y). Take any a ∈ A (L) with a ≤ x∨y.
We show that a /∈ A(x) ∪ A(y) is not possible. Indeed, if a /∈ A(x) and a /∈ A(y),
then a ∧ x = 0 and a ∧ y = 0. This gives x, y ≤ a∗ and x ∨ y ≤ a∗. We get
a = a ∧ (x ∨ y) ≤ a ∧ a∗ = 0, a contradiction. Hence a ∈ A(x) ∪ A(y), which
proves A(x ∨ y) = A(x) ∪ A(y).

Next, we show that L satisfies identity (D1). Take any x, y, z ∈ L and observe
that

A(x ∧ (y ∨ z)) = A(x) ∩ A(y ∨ z) = A(x) ∩ (A(y) ∪ A(z))

= (A(x) ∩ A(y)) ∪ (A(x) ∩ A(z)) = A(x ∧ y) ∪ A(x ∧ z)

= A((x ∧ y) ∨ (x ∧ z)).

Thus x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z), proving that (D1) holds and L is distributive.
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To prove that L is complemented, take any x ∈ L. Then, for any a ∈ A (L),

a /∈ A(x) ⇐⇒ a � x ⇐⇒ a ∧ x = 0 ⇐⇒ a ≤ x∗ ⇐⇒ a ∈ A(x∗).

This yields A(x∗) = A (L) \A(x), whence we get

A(x ∨ x∗) = A(x) ∪ A(x∗) = A (L) = A(1).

This implies x ∨ x∗ = 1. Since x ∧ x∗ = 0, we obtain that x∗ is the complement of
x in L. Therefore, L is a Boolean lattice. ��
Proposition 36 If R is a tolerance induced by an irredundant covering, then
℘(U)� is atomistic and pseudocomplemented.

Proof Since in the lattice ℘(U)� the joins coincide with unions, in view of
Lemma 34(c), ℘(U)� is atomistic if for any A ∈ ℘(U)�,

⋃
{R(x) ⊆ A | R(x) is a block} = A. (7)

As the left side of (7) is included in A, we have to show only the converse inclusion.
Because A ∈ ℘(U)�, A = X� for some X ⊆ U . Let a ∈ A. Then a R b for some
b ∈ X. Because R is induced by an irredundant covering, by Proposition 18, there is
x ∈ U such that a, b ∈ R(x) and R(x) is a block. Because R(x) is a block, we have
R(x) ⊆ R(c) for all c ∈ R(x). In particular, b ∈ R(c)∩X, R(c)∩X 
= ∅ and c ∈ X�
for all c ∈ R(x). Thus, R(x) ⊆ X� = A and a ∈ ⋃{R(x) ⊆ A | R(x) is a block}.
This proves (7) and hence ℘(U)� is atomistic.

Now let B,C ∈ ℘(U)� be such that B ∧ C = ∅. In order to prove that ℘(U)�
is pseudocomplemented, we show that C ⊆ B⊥. Note that we have already proved
that B ∧B⊥ = ∅ in Proposition 12. Since ℘(U)� is atomistic, to prove C ⊆ B⊥, it
is enough to show that each atom R(x) ⊆ C satisfies R(x) ⊆ B⊥ = Bc�.

Assume by contradiction that there exists an element x ∈ U such that R(x)

is a block and R(x) ⊆ C, but R(x) � Bc� = B�c. This means that R(x) ∩
B� 
= ∅. Hence there is an element y ∈ B� with y ∈ R(x). Then y R x and
R(y) ⊆ B. Since R(x) is a block, we get R(x) ⊆ R(y) ⊆ B by (5). Because
R(x) ∈ ℘(U)�, R(x) ⊆ B,C yields B ∧ C 
= ∅, a contradiction. This proves that
B⊥ is the pseudocomplement of any B ∈ ℘(U)�. ��

We can now write the following conclusion of Lemmas 34 and 35, and
Proposition 36. Notice that since � is an isomorphism from ℘(U)� to ℘(U)�,
the atoms of ℘(U)� are the �-images of the atoms of ℘(U)�.

Corollary 37 Let R be a tolerance induced by an irredundant covering of U .

(a) ℘(U)� is an atomistic Boolean lattice such that for all X ∈ ℘(U)�, X′ = Xc�.
The set of atoms is {R(x) | R(x) is a block }.

(b) ℘(U)� is an atomistic Boolean lattice such that for all X ∈ ℘(U)�, X′ = Xc�.
The set of atoms is {R(x)� | R(x) is a block }.
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Fig. 11 The Boolean lattice
℘(U)�

1234

24 14513

12451345

U

/0

Example 38 Let us consider the tolerance R of Fig. 2 on U = {1, 2, 3, 4, 5, 6}. The
Boolean lattice ℘(U)� is given in Fig. 11. The elements R(2) = {2, 4}, R(3) =
{1, 3}, R(5) = {1, 4, 5} are its atoms.

Note that for tolerances induced by an irredundant covering, the sets in ℘(U)�
are in a sense “definable”. Let us recall that each R(x) being a block is completely
determined by the element x. As we noted, these “prototype elements” are called
medoids in cluster analysis. Because A (℘ (U)�) = {R(x) | R(x) is a block}, each
X� is a union of some R(x)-neighbourhoods that are blocks. This means that X�
can be defined just by listing the appropriate “prototype elements”. For instance, in
Example 38, the set {1, 2, 4, 5} is “defined” by the elements 2 and 5: an element of
U belongs to {1, 2, 4, 5} if and only if it is R-related to 2 or 5.

Next we show how approximations defined by tolerances and approximations
defined by coverings are related when we consider irredundant coverings and
tolerances induced by them. For an equivalence relation E, lower and upper
approximations for X ⊆ U can be also written in the form

X� =
⋃
{[x]E | [x]E ⊆ X}

and

X� =
⋃
{[x]E | [x]E ∩X 
= ∅},

respectively. Because there is a one-to-one correspondence between equivalences
and partitions, we could as well define the rough approximations of X ⊆ U in terms
of a partition π on U by

X� =
⋃
{B ∈ π | B ⊆ X}

and

X� =
⋃
{B ∈ π | B ∩X 
= ∅}.
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In [21], W. Żakowski presented generalizations of these definitions by replacing
the partition π of U by a covering H of U . His operators do not form a dual
pair, but Pomykała [17] associated with coverings several pairs of mutually dual
approximation operators. We recall here a couple of them.

Let H be a covering of U . For each x ∈ U , the set

N(x) =
⋃
{B ∈H | x ∈ B}

is called the H -neighbourhood x. For any X ⊆ U , we define

X� = {x ∈ U | N(x) ⊆ X},
X� =⋃{B ∈H | B ∩X 
= ∅},
X� =

⋃
{B ∈H | B ⊆ X}, and

X = {x ∈ U | B ∩X 
= ∅ for all B ∈H with x ∈ B}.

As noted by Pomykała [17], these operators form dual pairs, that is, X�c = Xc�
and Xc = Xc� for all X ⊆ U . The operators � and � are the ones defined by
Żakowski.

Let us see how these operators relate to the rough set operators � and � when H
is a covering of U and R is induced by it. Note that now the H -neighbourhoods and
the R-neighbourhoods are equal for all x ∈ U , that is, for any x ∈ U , N(x) = R(x).
This means that X� = X� for every X ⊆ U . Because also the operators � and �

are dual, we can write the following proposition.

Proposition 39 If H is a covering of U and R is induced by H , then

X� = X� and X� = X�
for any X ⊆ U .

In particular, by Proposition 39 we can write for every X ⊆ U ,

X� =
⋃
{B ∈H | X ∩ B 
= ∅}.

In (2), the interior operation � on U is defined by �X = X��. The
corresponding interior system is ℘(U)� and we noted that

�X =
⋃
{A ∈ ℘(U)� | A ⊆ X}.

Assume now that the covering H is irredundant. If R is induced by H , then we
have H = {R(x) | R(x) is a block}.
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Lemma 40 If H is an irredundant covering of U and R is induced by H , then

⋃
{A ∈ ℘(U)� | A ⊆ X} =

⋃
{B ∈H | B ⊆ X}

for every X ⊆ U .

Proof Since for any B ∈ H , B = R(x) for some x ∈ U , we have B = {x}� ∈
℘(U)�. Hence,

⋃{B ∈H | B ⊆ X} is included in
⋃{A ∈ ℘(U)� | A ⊆ X}.

Conversely, if x ∈ ⋃{A ∈ ℘(U)� | A ⊆ X}, then x ∈ A for some A ∈ ℘(U)�,
that is, there is a set Y ⊆ U such that x ∈ Y� = A. Since Y� = ⋃{B ∈ H |
Y ∩ B 
= ∅}, this means that x ∈ B for some B ∈ H with Y ∩ B 
= ∅. Then
B ⊆ Y� = A ⊆ X, which implies x ∈ ⋃{B ∈ H | B ⊆ X}. Therefore also⋃{A ∈ ℘(U)� | A ⊆ X} is included in

⋃{B ∈ H | B ⊆ X}. This completes our
proof. ��
Lemma 40 means that for every X ⊆ U ,

�X =
⋃
{B ∈H | B ⊆ X}.

Hence, we can write the following proposition (for the definition of ♦ see (1)).

Proposition 41 If H is an irredundant covering of U and R is induced by H ,
then

X� = �X and X = ♦X

for any X ⊆ U .

2.4 Complement Formal Contexts Based on Tolerances

A formal context is a triple K = (G,M, I), where G is a set of objects, M is a
set of attributes, and I ⊆ G×M is a binary relation called incidence relation. The
notations (g,m) ∈ I and g I m both express that an object g is in relation I with an
attribute m, and we read it as “the object g has the attribute m”. The basic definitions
and results concerning formal concept analysis can be found in [2, 3], for example.
By defining for all subsets A ⊆ G and B ⊆ M ,

AI = {m ∈ M | g I m for all g ∈ A}

and

BI = {g ∈ G | g I m for all m ∈ B},
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Table 4 A simple formal context

Angular Right angles Equilateral Central symmetry

Triangle ×
Square × × × ×
Circle ×
Rectangle × × ×
Rhombus × × ×

we establish a connection between the powerset lattices ℘(G) and ℘(M). In fact,
for any subsets A, A1, A2 ⊆ G and B, B1, B2 ⊆ M the following hold:

(1) A1 ⊆ A2 implies AI
2 ⊆ AI

1, and B1 ⊆ B2 implies BI
2 ⊆ BI

1 ;
(2) A ⊆ AII and B ⊆ BII ;
(3) AI = AIII and BI = BIII .

By these properties, the map A �→ AII is a closure operator on G and B �→ BII is
a closure operator on M .

A small context usually is represented by a table, similar to an information
system. The table rows are labelled by objects and the columns are labelled by
attributes. A cross (×) in row g and column m means g I m, that is, the object g has
the attribute m. In a sense, contexts are like 2-valued information systems, where
the values are “cross” and “no cross”.

Example 42 A formal context describing some geometrical shapes is given in
Table 4.

A formal concept of the context (G,M, I) is a pair (A,B) ∈ ℘(G) × ℘(M)

with AI = B and BI = A. The set A is called the extent and B the intent of the
concept (A,B). Hence any concept has the form (AII , AI ) for some A ⊆ G, and A

is a concept extent if and only if AII = A. Similarly, for any B ⊆ M , (BI , BII ) is
a concept and B is a concept intent if and only if BII = B. The set of all concepts
of the context (G,M, I) is denoted by B(G,M, I).

Let (G,M, I) be a formal context. For any concepts (A1, B1) and (A2, B2) in
B(G,M, I), we set (A1, B1) ≤ (A2, B2) if A1 ⊆ A2. Note that A1 ⊆ A2 implies
that B1 = AI

1 ⊇ AI
2 = B2 and AI

1 ⊇ AI
2 implies A1 = AII

1 ⊆ AII
2 = A2.

Therefore,

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2 ⇐⇒ B1 ⊇ B2.

It is known [3, Theorem 3] that B(G,M, I) forms a complete lattice such that for
{(Aj , Bj ) | j ∈ J } ⊆ B(G,M, I),

∧

j∈J
(Aj , Bj ) =

(⋂

j∈J
Aj ,
(⋃

j∈J
Bj

)II)
, and

∨

j∈J
(Aj , Bj ) =

((⋃

j∈J
Aj

)II
,
⋂

j∈J
Bj

)
.

This lattice is called concept lattice.
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Fig. 12 The concept lattice B(G,M, I)

Example 43 The concept lattice of the context of Example 42 is given in Fig. 12.
We use shorthand for the geometric shapes: “tr” (triangle), “sq” (square), “cir”
(circle), “rec” (rectangle), and “rh” (rhombus). The attributes are denoted simply
by capital letters, that is, A denotes “angular”, R denotes “right angles”, E denotes
“equilateral” and C denotes “central symmetry”.

If (P,≤) is a partially ordered set, then it is known that the concept lattice
B(P, P,≤) is the smallest complete lattice into which (P,≤) can be order-
embedded [3, Theorem 4]. If R is a symmetric binary relation on U , then (U,U,R)

forms a formal context in which the concepts are the maximal pairs (A,B) ∈
℘(U) × ℘(U) such that every element of A is R-related to every element of B.
Thus, if (A,B) ∈ B(U,U,R), then also (B,A) ∈ B(U,U,R). The map

∼: B(U,U,R)→ B(U,U,R), (A,B) �→ (B,A)

is a polarity on B(U,U,R). It is easy to see that if the relation R is irreflexive, then
the extent and the intent of each concept must be disjoint and we have

(A,B) ∧ (B,A) = (∅,M) and (A,B) ∨ (B,A) = (G,∅).

This means that the map ∼ is an orthocomplementation and the concept lattice
B(U,U,R) is an orthocomplemented lattice.

Now for a tolerance R on U , we consider the context (U,U,Rc), where
Rc = {(a, b) ∈ U2 | (a, b) /∈ R}. Following the terminology by Yao [20],
(U,U,Rc) is called a complement formal context. Then Rc is an irreflexive and
symmetric relation and in view of the previous observations, B(U,U,Rc) is an
orthocomplemented complete lattice, where the orthocomplement of an element
(A,B) ∈ B(U,U,Rc) is just (B,A).
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Let us now consider the complement formal context (U,U,Rc) in more detail.
For any X ⊆ U , we obtain

XI = {x ∈ U | y Rc x for all y ∈ X}
= {x ∈ U | (y, x) /∈ R for all y ∈ X}
= {x ∈ U | (x, y) /∈ R for all y ∈ X}
= {x ∈ U | R(x) ∩X = ∅}
= X�c = Xc�.

Thus, X� = XIc and X� = XcI . From here we get that

XII = X�c�c = X�� = ♦X.

Since the orthocomplement of ♦X in ℘(U)� equals (♦X)⊥ = X��c� = X�c =
XI , the concept lattice of the complement context K = (U,U,Rc) has the form

B(K ) = {(X��,Xc�) | X ⊆ U} = {(♦X, (♦X)⊥) | X ⊆ U}.

On the other hand, for each A ∈ ℘(U)�, we have A = ♦A = A��, and so (A,A⊥)
belongs to B(K ). Hence,

B(K ) = {(A,A⊥) | A ∈ ℘(U)�}.

We can write the following proposition.

Proposition 44 Let R be a tolerance on a set U and let K be the complement
formal context (U,U,Rc).

(a) B(K ) is isomorphic to (℘ (U)�,⊆) and (℘ (U)�,⊆).
(b) B(K ) is a complete sublattice of the direct product of (℘ (U)�,⊆) and

(℘ (U)�,⊇).
Proof

(a) It is obvious that the map A �→ (A,A⊥) is an isomorphism between ℘(U)� and
B(K ). In Proposition 8 we proved that ℘(U)� and ℘(U)� are isomorphic.

(b) Clearly, B(K ) ⊆ ℘(U)� × ℘(U)�. Let {(Aj , Bj )}j∈J ⊆ B(K )}. The join∨
j∈J (Aj , Bj ) in B(K )} equals ((

⋃
j∈J Aj )

II ,
⋂

j∈J Bj ). Because
⋂

j∈J Bj

is the meet operation in (℘ (U)�,⊆), it is the join operation in (℘ (U)�,⊇).
Moreover, (

⋃
j∈J Aj)

II = ♦(
⋃

j∈J Aj) is the join in (℘ (U)�,⊆). Therefore,
the join of any {(Aj , Bj )}j∈J in B(K ) coincides with join in the direct product
of (℘ (U)�,⊆) and (℘ (U)�,⊇). An analogous argument is valid for meets.
These facts mean that B(K ) is a complete sublattice of the direct product of
the complete lattices (℘ (U)�,⊆) and (℘ (U)�,⊇). ��
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Fig. 13 The concept lattice B(U,U,Rc)

Example 45 Let us consider the tolerance R defined in Example 13 on the universe
U = {1, 2, 3, 4}. Then, Rc = {(1, 3), (3, 1), (2, 4), (4, 2)} and the concept lattice
of the complement formal context (U,U,Rc) is depicted in Fig. 13. Obviously, the
concept lattice B(U,U,Rc) is isomorphic to the ortholattices ℘(U)� and ℘(U)�
depicted on Fig. 10.

By Corollary 37 we obtain the following result concerning tolerances induced by
irredundant coverings.

Corollary 46 Let R be a tolerance induced by an irredundant covering of U .
Then ℘(U)�, ℘(U)� andB(U,U,Rc) are isomorphic complete atomistic Boolean
lattices.

It is worth to mention that if L is a complete ortholattice, then there exists a
context K = (U,U, I), where I is an irreflexive and symmetric binary relation on
U , such that L ∼= B(K ) [3, p. 54]. If we set R = I c, then R is a tolerance on U , and
by Proposition 44, the rough approximations lattices (℘ (U)�,⊆) and (℘ (U)�,⊆)
are isomorphic to B(K ). Therefore, we get the following representation theorem
for complete ortholattices in terms of rough approximations.

Proposition 47 A complete lattice L is an ortholattice if and only if there exist a
set U and a tolerance R on U such that L ∼= ℘(U)� ∼= ℘(U)�.

3 Rough Set Systems Determined by Tolerances

In this section we consider the rough sets defined by a tolerance R and the order-
theoretical properties of the collection RS of them. Section 3.1 is devoted to
rough sets defined by tolerances in general. We show that even these structures
do not necessarily form lattices, they have a polarity operation, which is an
order-isomorphism between (RS,≤) and its dual (RS,≥). In Sect. 3.2 we study
rough sets defined by tolerances induced by irredundant coverings. We show
that RS forms a Kleene algebra and a double pseudocomplemented lattice. As
a double pseudocomplemented lattice, RS is determination trivial. Viewed as a
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pseudocomplemented Kleene algebra, RS is normal. This chapter ends by Sect. 3.3,
where we show that in case the tolerance is induced by an irredundant covering, the
relation-based and covering-based rough sets systems are isomorphic.

3.1 The General Case

Originally Pawlak [16, p. 351] defined a rough set as an equivalence class of
sets which look the same in view of the knowledge restricted by the given
indistinguishability relation, that is, as a class of sets having the same lower
approximation and the same upper approximation. This concept generalizes in a
natural way to similarity relations.

Let R be a tolerance on U . A relation ≡ is defined on ℘(U) by

X ≡ Y ⇐⇒ X� = Y� and X� = Y�.

The equivalence classes of ≡ are called rough sets. Each element in a given rough
set looks the same, when observed through the knowledge given by the tolerance R.
Namely, if X ≡ Y , then exactly the same elements belong certainly or possibly to
X and Y .

The order-theoretical study of rough sets was initiated by T.B. Iwiński in [5]. In
his approach rough sets on U are the pairs (X�,X�), where X ⊆ U . This is justified
because if C ⊆ ℘(U) is a rough set as defined before, that is, C is an equivalence
class of ≡, then C is uniquely determined by the pair (X�,X�), where X is any
member of C : a set Y ⊆ U belongs to C if and only if (Y�, Y�) = (X�,X�).
Therefore, we call

RS = {(X�,X�) | X ⊆ U}

the set of rough sets. The set RS is ordered by the componentwise inclusion:

(X�,X�) ≤ (Y�, Y�) ⇐⇒ X� ⊆ Y� and X� ⊆ Y�.

Example 48 Let U = {1, 2, 3, 4, 5} and let R be the tolerance on U depicted in
Fig. 14. The lower and upper approximations defined by R are presented in Table 5.

The Hasse diagram of RS is given in Fig. 15. In the figure, sets are denoted
simply by sequences of letters, that is, 124 denotes the set {1, 2, 4}. Now RS is
not a lattice because, for instance, the elements (1, 123) and (∅, 1234) do not have a

Fig. 14 The graph of a tolerance R
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Table 5 Approximations
based on the tolerance R

X (X�, X�) X (X�, X�)
∅ (∅,∅) {1, 2, 3} (12, 1234)

{1} (∅, 12) {1, 2, 4} (1, U)

{2} (∅, 123) {1, 2, 5} (1, U)

{3} (∅, 234) {1, 3, 4} (∅, U)

{4} (∅, 345) {1, 3, 5} (∅, U)

{5} (∅, 45) {1, 4, 5} (5, U)

{1, 2} (1, 123) {2, 3, 4} (3, U)

{1, 3} (∅, 1234) {2, 3, 5} (∅, U)

{1, 4} (∅, U) {2, 4, 5} (5, U)

{1, 5} (∅, 1245) {3, 4, 5} (45, 2345)

{2, 3} (∅, 1234) {1, 2, 3, 4} (123, U)

{2, 4} (∅, U) {1, 2, 3, 5} (12, U)

{2, 5} (∅, U) {1, 2, 4, 5} (15, U)

{3, 4} (∅, 2345) {1, 3, 4, 5} (45, U)

{3, 5} (∅, 2345) {2, 3, 4, 5} (345, U)

{4, 5} (5, 345) U (U,U)

Fig. 15 The ordered set RS not forming a lattice

join, because (12, 1234) and (1, U) are the minimal upper bounds for (1, 123) and
(∅, 1234), but there is no smallest upper bound. Similarly, we may observe that the
elements (12, 1234) and (1, U), do not have a meet.

We end this subsection by some basic observations on the structure of RS.
Because (∅�,∅�) = (∅,∅) and (U�, U�) = (U,U), the ordered set RS is always
bounded. The pair (∅,∅) is the least element and (U,U) is the greatest element.
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Let us consider the mapping

∼: RS→ RS, (X�,X�) �→ (X�c,X�c).

It is easy to see that ∼(X�,X�) = (Xc�,Xc�), which means that ∼(X�,X�)
belongs to RS, and that the map ∼ is well defined. Clearly, ∼∼(X�,X�) =
(X�,X�). Furthermore, (X�,X�) ≤ (Y�, Y�) implies ∼(Y�, Y�) =
(Y�c, Y�c) ≤ (X�c,X�c) = ∼(X�,X�). This means that ∼ is a polarity and
hence RS is anti-isomorphic to itself, that is, RS looks the same when turned
upside-down (see e.g. Fig. 15).

Because (℘ (U)�,⊆) and (℘ (U)�,⊆) are complete lattices, their direct product

℘(U)� × ℘(U)� = {(A,B) | A ∈ ℘(U)� and B ∈ ℘(U)�}

ordered coordinatewise by ⊆ is a complete lattice in which

∧

i∈I
(Ai, Bi) =

(⋂

i∈I
Ai,�
(⋂

i∈I
Bi

))
(8)

and

∨

i∈I
(Ai, Bi ) =

(
♦
(⋃

i∈I
Ai,
)
,
⋃

i∈I
Bi

)
(9)

for all (Ai, Bi)i∈I ⊆ ℘(U)� × ℘(U)�.
We have proved in [8] that for any tolerance R on U , RS is a complete lattice if

and only if it is a complete sublattice of the direct product ℘(U)� × ℘(U)�. This
means that whenever RS is a complete lattice, we know how the joins and meets are
defined. Namely, if H ⊆ ℘(U), then in RS,

∧

X∈H
(X�,X�) =

( ⋂

X∈H
X�,�

( ⋂

X∈H
X�)
)

(10)

and

∨

X∈H
(X�,X�) =

(
♦
( ⋃

X∈H
X�),

⋃

X∈H
X�
)
. (11)

Let us emphasize that showing that RS is a complete lattice is not a simple task,
because it needs to show that for any H ⊆ ℘(U), there are sets A,B ⊆ U such
that

A� =
⋂

X∈H
X� and A� = ♦

( ⋂

X∈H
X�) (12)
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and

B� = ♦
( ⋃

X∈H
X�) and B� =

⋃

X∈H
X�. (13)

3.2 Rough Sets Defined by Tolerances Induced by an
Irredundant Covering

In this section we recall some results which can be found in [8, 10]. We omit the
proof of Proposition 49 because it is rather long and technical, and the interested
reader may find it in [8].

Proposition 49 Let R be a tolerance on U induced by an irredundant covering.
Then RS is a complete lattice such that for all H ⊆ ℘(U),

∧

X∈H
(X�,X�) =

( ⋂

X∈H
X�,�

( ⋂

X∈H
X�)
)

and

∨

X∈H
(X�,X�) =

(
♦
( ⋃

X∈H
X�),

⋃

X∈H
X�
)
.

��
Notice that if R is a tolerance induced by an irredundant covering, then ℘(U)� and
℘(U)� are distributive lattices, and hence their direct product

℘(U)� × ℘(U)� = {(A,B) | A ∈ ℘(U)� and B ∈ ℘(U)�}

is a distributive lattice in which the operations are defined coordinatewise. As a
sublattice of the distributive lattice ℘(U)� × ℘(U)�, also RS is distributive.

Example 50 Let R be the tolerance of Fig. 2 on U = {1, 2, 3, 4, 5}. As we have
noted, R is a tolerance induced by an irredundant covering, so RS forms a lattice by
Proposition 49. The rough approximations of subsets of U are given in Table 6, and
the rough set lattice RS is given in Fig. 16.

For a detailed study of the structure of RS, we will need some further notions.
A De Morgan algebra is a structure (L,∨,∧,∼, 0, 1) such that (L,∨,∧, 0, 1) is a
bounded distributive lattice and the operation∼ satisfies the following equations:

(DM1) ∼(x ∧ y) = ∼x ∨ ∼y;
(DM2) ∼(x ∨ y) = ∼x ∧ ∼y;
(DM3) ∼∼x = x.
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Table 6 Approximations
based on the tolerance R of
Example 50

X (X�, X�) X (X�, X�)
∅ (∅,∅) {1, 2, 3} (3, U)

{1} (∅, 1345) {1, 2, 4} (2, U)

{2} (∅, 24) {1, 2, 5} (∅, U)

{3} (∅, 13) {1, 3, 4} (3, U)

{4} (∅, 1245) {1, 3, 5} (3, 1345)

{5} (∅, 145) {1, 4, 5} (5, U)

{1, 2} (∅, U) {2, 3, 4} (2, U)

{1, 3} (3, 1345) {2, 3, 5} (∅, U)

{1, 4} (∅, U) {2, 4, 5} (2, 1245)

{1, 5} (∅, 1345) {3, 4, 5} (∅, U)

{2, 3} (∅, 1234) {1, 2, 3, 4} (23, U)

{2, 4} (2, 1245) {1, 2, 3, 5} (3, U)

{2, 5} (∅, 1245) {1, 2, 4, 5} (245, U)

{3, 4} (∅, U) {1, 3, 4, 5} (135, U)

{3, 5} (∅, 1345) {2, 3, 4, 5} (2, U)

{4, 5} (∅, 1245) U (U,U)

Fig. 16 The lattice RS

Remark 51 Notice that under (DM3), (DM1) and (DM2) are equivalent. For
example, if (DM1) holds, then

∼(x ∨ y) = ∼(∼∼x ∨ ∼∼y) = ∼∼(∼x ∧∼y) = ∼x ∧∼y,

that is, (DM2) holds. Similarly, (DM2) implies (DM1).
It should be also noted that in a De Morgan algebra (L,∨,∧,∼, 0, 1), the map∼

is a polarity on L, because (DM3) is part of the definition of an polarity, and x ≤ y

implies ∼x = ∼(x ∧ y) = ∼x ∨ ∼y, which is equivalent to ∼y ≤ ∼x.
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On the other hand, if ∼ is a polarity on a distributive lattice (L,≤), then x, y ≤
x ∨ y implies that ∼(x ∨ y) is a lower bound of ∼x and ∼y. Assume that z is a
lower bound of ∼x and ∼y. Because ∼ is an involution,∼z ≥ x and ∼ z ≥ y, and
therefore x ∨ y ≤ ∼ z and z ≤ ∼(x ∨ y). Hence, ∼(x ∨ y) is the greatest lower
bound of ∼x and ∼y, that is, ∼(x ∨ y) = ∼x ∧ ∼y. If L is also bounded by 0 and
1, then (L,∨,∧,∼, 0, 1) is a De Morgan algebra.

Proposition 52 If R is a tolerance induced by an irredundant covering, then

(RS,∨,∧,∼, (∅,∅), (U,U))

is a De Morgan algebra.

Proof If R is a tolerance induced by an irredundant covering, then RS is a
distributive lattice by Proposition 49. We have already noted that RS is bounded
by (∅,∅) and (U,U). In Sect. 3.1 we showed that ∼: (X�,X�) �→ (X�c,X�c) is
a polarity. ��

It is quite obvious that even when RS is defined by a tolerance induced by
an irredundant covering, it is not in general a Boolean lattice. For instance, in
Example 50, the only elements that have complements are (∅,∅) and (U,U).
Therefore, the equalities x ∧ ∼x = 0 or y ∨ ∼y = 1 do not hold, in general. If
a De Morgan algebra satisfies the inequality

x ∧∼x ≤ y ∨ ∼y, (K)

it is called a Kleene algebra.

Proposition 53 If R is a tolerance induced by an irredundant covering, then

(RS,∨,∧,∼, (∅,∅), (U,U))

is a Kleene algebra.

Proof Let X,Y ⊆ U . Then,

(X�,X�) ∧∼(X�,X�) = (X� ∩Xc�,�(X� ∩Xc�)) = (∅,�(X� ∩Xc�))

and

(Y�, Y�) ∨∼(Y�, Y�) = (♦(Y� ∪ Y c�), Y� ∪ Y c�) = (♦(Y� ∪ Y c�), U).

From these equations we see directly that

(X�,X�) ∧∼(X�,X�) ≤ (Y�, Y�) ∨ ∼(Y�, Y�).

��
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In Sect. 2.3 we already considered pseudocomplements. Let us recall that in a
lattice L with a least element 0, an element denoted by x∗ is the pseudocomplement
of an element x ∈ L, if for any z ∈ L, x ∧ z = 0 if and only if z ≤ x∗, and
that L is said to be pseudocomplemented if every element has a pseudocomplement.
Analogously, a dual pseudocomplement of x ∈ L is an element x+ such that x∨z =
1 if and only if z ≥ x+. If L is such that each element has a pseudocomplement and
a dual pseudocomplement, then L is called a double pseudocomplemented lattice.

In the following we list some properties of pseudocomplements. Let L be a
double pseudocomplemented lattice and a, b ∈ L. Then

(1) a ≤ b implies b∗ ≤ a∗ and b+ ≤ a+,
(2) a++ ≤ a ≤ a∗∗,
(3) a∗ = a∗∗∗ and a+ = a+++.

The next proposition shows that if R is induced by an irredundant covering, then
RS is a double pseudocomplemented lattice.

Proposition 54 Let R be a tolerance induced by an irredundant covering. Then RS
is a double pseudocomplemented lattice in which

(A,B)∗ = (Bc�, Bc�) and (A,B)+ = (Ac�, Ac�)

for any (A,B) ∈ RS.

Proof This proof uses many of the properties listed in Proposition 5. Let (A,B) ∈
RS. First, we show that (A,B) ∧ (Bc�, Bc�) = (A ∩ Bc�, (B ∩ Bc�)��) equals
(∅,∅). It suffices to show that the right component (B ∩ Bc�)�� is ∅, because then
necessarily the left component A ∩ Bc� is also empty. Indeed,

(B ∩Bc�)�� = (B� ∩Bc��)� = (B� ∩B��c)� ⊆ (B�� ∩B��c)� = ∅� = ∅.

On the other hand, if (A,B)∧(X, Y ) = ∅ for some (X, Y ) ∈ RS, then B∧Y = ∅
in the corresponding Boolean lattice ℘(U)�. This gives Y ⊆ Bc�, since Bc� is
the complement of B in the Boolean lattice ℘(U)� by Corollary 37. To show that
X ⊆ Bc� requires more work. Because (X, Y ) ∈ RS, X = Z� and Y = Z� for
some Z ⊆ U . We have X� = Z�� ⊆ Z ⊆ Z�� = Y�. This implies X�� ⊆
Y�� ⊆ Y ⊆ Bc� and further X� ⊆ (X�)�� ⊆ Bc��. Now B ∈ ℘(U)� means
that B = C� for some C ⊆ U . We have

Bc�� = B��c = C���c = C�c = Bc.

We get by the above that

X ⊆ X�� ⊆ Bc��� = Bc�.

We have now shown that (X, Y ) ≤ (Bc�, Bc�) which completes the proof.
The claim concerning (A,B)+ can be proved similarly. ��
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Let L be a double pseudocomplemented lattice. We say that L is determination-
trivial if for all x, y ∈ L,

x∗ = y∗ and x+ = y+ imply x = y. (M)

Proposition 55 If R is a tolerance induced by an irredundant covering, then the
double pseudocomplemented lattice RS is determination trivial.

Proof If (A,B)∗ = (C,D)∗, then B�c = Bc� = Dc� = D�c. So B� = D�
and B�� = D��. Because B,D ∈ ℘(U)�, B = B�� = D�� = D. Similarly,
(A,B)+ = (C,D)+ implies A = C. We have proved that (A,B) = (C,D). ��

A pseudocomplemented De Morgan algebra is an algebra (L,∨,∧,∼, ∗, 0, 1)
such that (L,∨,∧,∼, 0, 1) is a De Morgan algebra and ∗ : L → L is a pseudo-
complement operation of L. Every pseudocomplemented De Morgan algebra forms
a double pseudocomplemented lattice in which the pseudocomplements determine
each other by:

x∗ = ∼(∼x)+ and x+ = ∼(∼x)∗. (14)

A pseudocomplemented De Morgan algebra (L,∨,∧,∼, ∗, 0, 1) is normal (see
[14]), if for all x ∈ L,

x∗ ≤ ∼x. (N)

Note that if (L,∨,∧,∼, ∗, 0, 1) is a normal pseudocomplemented De Morgan
algebra, then for every x ∈ L and y = ∼x, we have ∼(∼y)+ = y∗ ≤ ∼y. Hence
(∼ y)+ ≥ y and so x+ ≥ ∼x. Thus,

x∗ ≤ ∼x ≤ x+.

It is known [11, 19] that in any distributive double pseudocomplemented lattice,
condition (M) is equivalent to condition

x ∧ x+ ≤ y ∨ y∗. (D)

We say that a pseudocomplemented Kleene algebra is normal if the underlying
pseudocomplemented De Morgan algebra is normal.

Proposition 56 If R is a tolerance induced by an irredundant covering, then
the pseudocomplemented De Morgan algebra (RS,∨,∧,∼, ∗, (∅,∅), (U,U)) is
normal.

Proof Let (A,B) ∈ RS. Then by Proposition 54,

(A,B)∗ = (Bc�, Bc�).
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We also have that

∼ (A,B) = (Bc,Ac).

Trivially, Bc� ⊆ Bc. Since (A,B) ∈ RS, A = X� and B = X� for some X ⊆ U .
We have

A� = X�� ⊆ X ⊆ X�� = B�.

This, implies

Bc� = B�c ⊆ A�c = Ac� ⊆ Ac.

We have now proved that (A,B)∗ ≤ ∼(A,B). ��

3.3 Covering-Based Rough Set Systems

We end this chapter by showing that certain rough set lattices based on irredundant
coverings are isomorphic to relation-based rough sets lattices. Therefore, they have
all the properties listed in Sect. 3.2.

In Sect. 2.3, we defined the operators �, �, , and � in terms of a coveringH of
U . Let us first consider the operators � and � introduced by Żakowski. We denote
by RS0 the set of all rough sets defined by these operators, that is:

RS0 = {(X�,X�) | X ⊆ U}.

We order RS0, similarly as RS, by coordinatewise inclusion, that is to say,

(X�,X�) ≤ (Y�, Y�) ⇐⇒ X� ⊆ Y� and X� ⊆ Y�.

Proposition 57 If R is a tolerance induced by an irredundant covering H , then

RS ∼= RS0.

Proof We prove that the map ϕ : (X�,X�) �→ (X�,X�) is the required order-
isomorphism. Suppose (X�,X�) ≤ (Y�, Y�). By Proposition 39, X� = X� ⊆
Y� = Y�. Proposition 41 gives that

X� = �X = X�� ⊆ Y�� = �Y = Y�.

Thus, (X�,X�) ≤ (Y�, Y�).
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On the other hand, assume that (X�,X�) ≤ (Y�, Y�). Then again trivially,
X� = X� ⊆ Y� = Y�. Because

X�� = �X = X� ⊆ Y� = �Y = Y��,

we have X� = X��� ⊆ Y��� = Y�. Therefore, also (X�,X�) ≤ (Y�, Y�) and
the map ϕ is an order-embedding.

It is obvious that ϕ is onto RS0. So, the map ϕ is an order-isomorphism. ��
By definition, � and � form a pair of dual operators. We denote the rough set

system defined by them by RS1, that is,

RS1 = {(X�,X�) | X ⊆ U}.

In Proposition 39 we showed that if R is a tolerance induced by a covering H
of U , then X� = X� and X� = X� for every X ⊆ U . Therefore, we can write the
following proposition.

Proposition 58 If R is a tolerance induced by a covering H , then

RS = RS1.

We denote the rough set system defined by the dual operators  and � by RS2,
that is,

RS2 = {(X�,X) | X ⊆ U}.

Again, we may write an isomorphism theorem for RS2.

Proposition 59 If R is a tolerance induced by an irredundant covering H , then

RS ∼= RS2.

Proof We noted in Proposition 41 that if H is an irredundant covering of U and
R is induced by H , then for any X ⊆ U , X� = �X and X = ♦X. Because
♦X = X�� and �X = X��, it suffices to show that the map

ϕ : (X�,X�) �→ (X��,X��)

is an order-isomorphism.
If (X�,X�) ≤ (Y�, Y�), then (X��,X��) ≤ (Y��, Y��). Similarly,

(X��,X��) ≤ (Y��, Y��) gives X� = X��� ⊆ Y��� = Y� and X� =
X��� = Y��� = X�. This means that the map ϕ is an order-embedding. The map
ϕ is clearly onto. ��

The next theorem summarizes the results presented in this section.
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Table 7 Different
approximation operators

X X� X� X� X� �X ♦X
∅ ∅ ∅ ∅ ∅ ∅ ∅
{a} ∅ {a, b} ∅ {a, b} ∅ {a}
{b} ∅ U ∅ U ∅ U

{c} ∅ {b, c} ∅ {b, c} ∅ {c}
{a, b} {a} U {a, b} U {a, b} U

{a, c} ∅ U ∅ U ∅ U

{b, c} {c} U {b, c} U {b, c} U

U U U U U U U

Fig. 17 The lattices RS = RS1, RS0, and RS2

Theorem 60 If R is tolerance induced by an irredundant covering H , then

RS = RS1 ∼= RS0 ∼= RS2.

The following example demonstrates that, although the lattices RS = RS1, RS0,
and RS2 always are isomorphic, their elements may be different, and that different
definitions may assign different rough approximations to a given set.

Example 61 Let us consider the tolerance R on {a, b, c} of Example 4. The relation
R was defined by R(a) = {a, b}, R(b) = U , and R(c) = {b, c}. The family of sets
{R(a),R(c)} = {{a, b}, {b, c}} is an irredundant covering inducing R. The different
approximation operators are presented in Table 7.

The isomorphic rough sets lattices RS = RS1, RS0, and RS2 are depicted in
Fig. 17.
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Algebraic Representation, Dualities
and Beyond

A. Mani

Abstract In this research chapter, dualities and representations of various kinds
associated with the semantics of rough sets are explained, critically reviewed, new
proofs have been proposed, open problems are specified and new directions are
suggested. Some recent duality results in the literature are also adapted for use
in rough contexts. New results are also proved on granular connections between
generalized rough and L-fuzzy sets by the present author. Philosophical aspects of
the concepts have also been considered by her in this research chapter.

1 Introduction

If one wants to restrict oneself to Mathematical problems within Mathematics
alone from a reductionist perspective (first order or otherwise), then representation
problems are the problems of constructing isomorphisms from a given class of
algebraic systems into a subclass of the same class. Duality problems, in the
same perspective are those of constructing adjoint equivalences between classes of
algebraic or topological algebraic systems of possibly different types. Relative to
this perspective, the problems considered in this chapter are representation, duality
and somewhat-related problems. In the present author’s perspective, this chapter
is also about duality, representation and problems beyond these—her concept of
representation differs from the one mentioned.

Many results of the mentioned kind are known in the study of rough sets. But
a comprehensive or representative overview is not known. This research chapter is
intended to fulfill this need from a critical perspective.

The problem of handling concepts of representation and duality in the contexts of
rough sets is not a straightforward one. Even if one restricts oneself to full dualities
or a specific sense of category-theoretic duality like adjunctions, a number of issues
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stand out. It is also that the mathematical formalisms used for handling rough
sets have ontological commitments that become more jarring when categorical
formalisms with its additional ontological commitments are initiated. These are
explained to an extent by the present author in [98] in this volume. The inverse
problems considered by her in [86, 94] is not fully included by duality in a
mathematical sense, but are definitely so in a philosophical sense (at least as of
this writing). In this research chapter, some of the available representation results,
dualities and issues in formalization will be looked into. Some other representation
and duality are also considered in other chapters [12, 61, 109] in this volume and
some optimization has been at play.

Consider the following definitions:
Let S and Z be two classes of algebraic systems of the same type τ . If every

algebraic system S ∈ S is isomorphic to a Z ∈ Z, then S is said to be represented in
Z. In some cases, Z is a subclass of S.

Let S and Z be two classes of algebras of type τ1 and τ2. If every algebraic
system S ∈ S is isomorphic to an algebra Z∗ derived (in the algebraic sense) from
an algebra Z ∈ Z, then S can be said to be represented over Z.

Both definitions can be generalized to include partial operations. It can also be
argued that both types of representation are essentially the same.

Mathematicians typically understand representation in a dyadic or triadic scheme
of things. The latter happens because of the contexts in which they happen. For
example, the problem of representing lattices having some property π as the lattices
of congruences of an algebra of type τ satisfying some property ξ has been solved in
a number of cases [51]. This can be read as a problem of representing a class within
a subclass—but the formalism presumes first order objective conditions that do not
exist.

Fundamental to these considerations is the concept of interpretation. Across ideas
of representation and duality, it gets modified as below:

• If S is an algebraic system of type τ , then every endomorphism ϕ ∈ E(S) re-
interprets S within itself.

• If S, K are algebraic systems of signature 8 and 8′ respectively of type τ and
τ ′ with τ being part of τ ′, then every forgetful 8-morphism ϕ ∈ Mor(K, S)

interprets K in S.
• In particular, morphisms between algebraic systems of the same type interpret

one in the other and isomorphisms are essentially equivalences that express
bounds on interpretation by way of algebraic methods and properties.

• Typically, in duality theory, a category C is interpreted in another category
K by way of interpretations of Cobj in Kobj and Cmor in Kmor . That is, the
interpretation spans both objects and morphisms.

• Representations of Algebraic Systems may be classified into abstract and
concrete representations—these require a triadic understanding of representation
for proper classification.

• There are many types of dualities in category theory and the ones of interest for
rough sets go beyond what is considered as standard mathematics [86]. Rough
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sets can, for example, be interpreted from the perspective of semisets. This in
turn means connections with other types of non set-theoretic mereology. In this
chapter, only some key mathematical results will be considered.

Some examples for representations are

• Every group is isomorphic to a group of permutations [15].
• Every Boolean ring is isomorphic to a Boolean algebra.
• Every Boolean algebra is isomorphic to a field of sets [136]. More specifically,

Stone’s theorem states that every Boolean algebra B can be extended to a com-
plete and atomic Boolean algebra, and that this embedding is an isomorphism if
the algebra B itself is atomic.

• Every Boolean algebra with operators is a subalgebra of a powerset algebra
where the operators are obtained from relations on the base set [64]. This can
be seen as a proper generalization of the previous result.

• Every regular double Stone algebra is isomorphic to a subalgebra of the algebra
of rough sets for some approximation space

〈
S,R
〉

[24].

The third, fourth and fifth of these also correspond to dualities. The last is a duality
result between an algebra and a relational system of different types. In this regard
it should be noted that fully fledged dualities involve two categories and functors
between them with special properties:

• The category of Boolean algebras with Boolean homomorphisms is dual to
the category of totally disconnected compact Hausdorff spaces and continuous
mappings—an extension of Stone’s Representation Theorem, see e.g. [71,
Chapter 3] for details.

• The category of distributive lattice is dual to the category of compact totally order
disconnected topological spaces and continuous increasing maps [120].

Many more representation and duality theorems can be found in the literature. Often,
the representation or duality will involve a class (or category) of topological spaces.
If one considers only the discrete topology then a duality will be called discrete
duality, see [105] for a comprehensive overview.

Discrete dualities have the following form: If A is a class of algebras of a type
τ and F a class of algebraic systems of type τ ′, then a discrete duality between the
two classes is the tuple 〈A,F, f, g〉 such that

• f : A �−→ F and g : F �−→ A are maps,
• each S ∈ A is embeddable in gf(S), and
• each F ∈ F is embeddable in fg(F ).

Some discrete dualities, of relevance in rough contexts, are also proved in this
chapter.

Definition 1 A result or theory that concerns representation or duality will be
referred to as a red result or theory respectively.
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1.1 More on Duality

The concept of duality, in general, is not a crisp one and many competing definitions
that capture aspects of philosophical motivations are known (see [101] for example).
From a category-theoretical perspective, it can be argued that the loosest general
notion of “duality” is that of adjunction or dual adjunction, as in pairs of adjoint
functors (Lambek 81). Here one may omit any concretizations via functors to Set,
or even for that matter any explicit mention of opposite categories, and just work at
the level of abstract categories themselves.

Nevertheless, many adjunctions come packaged in dual pairs. A famous slogan
from Categories for the Working Mathematician is that all concepts are Kan
extensions, and in that light the dual pairs are instances of the general dual pair (right
Kan extension, left Kan extension) which are formal duals in the axiomatic sense
described earlier. Via the many incarnations of universal constructions in category
theory, dualities may concern

• limit and colimits
• end and coends
• dependent sum and dependent products
• existential quantification and universal quantifications
• terminal and initial objects

When the adjoint functors are monads and hence modalities, then adjointness
between them has been argued to specifically express the concept of duality of
opposites.

Again, adjunctions and specifically dual adjunctions (Galois connections) may
be thought of as generalized dualities, more general than “perfect duality” which
involves equivalences between categories (Galois correspondences or adjoint equiv-
alences). However, it should also be noted that any such adjunction (or dual
adjunction) restricts to a maximal (dual) equivalence between subcategories, by
considering objects where the appropriate units and counits are isomorphisms.
This generalizes the manner by which any Galois connection induces a Galois
correspondence (where in this special case, one need only take the images of the
partially ordered set maps which constitute the connection). Any adjunction (or dual
adjunction) between two categories is a duality context.

Furthermore, although an adjoint equivalence is more structured notion than
a mere equivalence, the property of being adjoint equivalent is no stronger than
being equivalent. This is because every equivalence may be refined to an adjoint
equivalence by modifying one of the natural isomorphisms involved.

1.1.1 Syntactic Dualities

A number of logics have been found to be relevant in the context of reasoning with
rough objects in the rough, classical and some other semantic domains. All related



Representation and Beyond 463

Table 1 Dual operators Operator Meaning Dual operator Meaning

5 Truth ⊥ Falsity

∧ Conjunction ∨ Disjunction

⇒ Implication \ Without

⇔ Equivalence ⊕ XOR

¬ Negation � B-negation

∀ Universal Q ∃ Existential Q

� Necessitation ♦ Possibility

syntactic and semantic dualities are of natural interest and results may be found
all over this volume. For an abstract view of syntax-semantics duality and recent
developments, the reader is referred to [2, 4, 28].

In logic, a De Morgan duality or a syntactic duality is a duality between logical
operators of intuitionistic logic and dual-intuitionistic paraconsistent logic that
extends to other logics. In classical logic and linear logic, it can be read as a self-
duality. Modal operators are also accommodated in such dualities. As the dualities
operate at the level of the respective languages (the language L underlying a logic
forms a partial algebra in general), they can be read as algebraic dualities. De
Morgan dualities in category theory are category-theoretic generalizations of these
dualities of logic (Table 1).

Note that in the table Quantification is abbreviated by the letter ‘Q’. Further
¬p = p⇒ ⊥ and�p = 5\p may be definable operators in many logics including
intuitionist logic.

All of the operators are used (or are definable) in classical logic. The two
negations¬ and� coincide in classical logic. The first two operators in each column
are used in both intuitionist and dual-intuitionist propositional logic. The last two in
each column are used in both predicate logic and many modal logics (respectively).

The first two rows of the intuitionist duality are also valid for bounded lattices,
including sub object lattices in coherent categories. These generalize to duality
between limits and colimits in category theory in particular. in fact, all duality in
category theory can be perceived as a generalization of De Morgan duality. This
aspect will not be considered in this chapter as the focus is not on logics. For more
details the reader is referred to [12, 98, 109, 110, 147] and related work.

1.2 Representation and Duality (Red) Results in Rough Sets

Various types of semantic dualities and representations have been developed by
different authors for rough sets over the last quarter of a century. Some references are
[5, 10, 24, 32, 35, 36, 46, 57, 60, 62, 80–83, 85–87, 92, 97, 104, 106–108, 110, 116–
118]. The abbreviation Red will be used for representation and duality throughout
this chapter.
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Table 2 Medical diagnostics Nom Temp. Body Pain Skin H.ache State

A Set1 Medium 1 No (F0, 0.5)

B Set2 None 1 Yes (F0, 0.3)

C Set1 Mild NA No (Test,0.8)

E Medium Medium 1 Yes (F1, 0.9)

F High None 1 Yes (Test, 0.4)

G Set1 High NA Yes (F1,0.8)

Often, rough approximations and related properties are studied over information
tables. These information tables can also be seen from a formal perspective. Apart
from formalisms in fixed language [70], it is possible to relate them to cylindric
algebras [23, 24] and to model them using CIS algebras [66]. A duality result
relating to cylindric algebras is actually proved in [24]. But the cylindric algebra
does not faithfully model information tables—information is lost in the process of
defining models.

Given an information table and the process of obtaining relation based general
approximation spaces or cover based approximation systems, it is usually not pos-
sible to construct the reverse process as some information is lost in the construction
of the latter. To see this, consider the following information table (Table 2) with the
last column referring to grades of illness.

If the attributes { Temp., Body Pain } are used to approximate after replacing
None with Mild and taking Set1 is Medium and Set2 is High, then the resulting
equivalence does not have any access to these values after the construction of
the relation in question. Typically the valuation data used in the construction of
approximation spaces is not present in the approximation space and cannot be
recovered from it. In [23], the quality of the information loss is improved. Better
models of information tables are also known.

From the available literature on rough sets, it can be said that the main dualities
and representations relating to rough sets concern

• General approximation spaces and covering approximation spaces,
• Information Systems in logical or mathematical formalism,
• Derived algebraic systems that serve as semantics of reasoning with objects in

some semantic domain. The semantic domains fall into the following subcat-
egories (these are determined by nature of objects of interest in the semantics
[98]):

– rough semantic domain,
– classical semantic domain,
– hybrid and higher order semantic domains.

The collection of rough objects (or roughly equal objects) have order structures
of different kind associated, many order theoretic dualities are of natural interest
in rough sets. Because of this, a part of this chapter is devoted to relatively more
fundamental duality and representation results of an ordered structures and another
part concerns actual dualities and representation theorems of semantics.
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1.3 Foundational Issues in Representation

In the present author’s opinion, the distinction between abstract and concrete
representation contexts require a triadic understanding of the context involving the
representation, the represented and the representation process. This is argued for in
this subsection. This subsection is not absolutely essential for an understanding of
the rest of the research chapter and the reader may skip to the next subsection.

Ideas of concrete and abstract representation are also popular in the study of
specific algebras. Many authors in the study of algebraic approaches to rough
sets often speak of abstract and concrete representation results. In all cases of
representation, it does not happen that the type (and fundamental operations and
predicates) of the original class and the class used for representation are the same.
This aspect of usage is reflected in some results in this chapter.

The distinction between concrete and abstract representation is not a perfectly
unambiguous one—especially if one omits major steps involved in their formalism.
The concepts of concrete and abstract representation theorems refer to concrete
and abstract models that may respectively be constructed from natural numbers or
sets with set-theoretic operations that can be abstracted from properties observed in
more specific contexts (or apparent subclasses). In fact, the very subject of abstract
algebra is committed to this distinction. In the perspective of category theory, the
connections are not easily abstractable in a uniform way—concrete isomorphisms
are not particularly helpful in deciding between the two.

The concepts of concrete and abstract representation theorems are also of a
relative nature in rough sets. General rough sets may or may not concern information
tables. There are many different ways of obtaining structures like general approxi-
mation spaces or covers or operators from information structures. The appropriate
process depends on the data set, context, computational considerations and related
heuristics of a subjective nature. If approximation spaces are to be derived from a
complete information table with a finite set of attributes, then only a finite number of
these can be derived. For every process a determinate number of related structures
can be derived. Some methods of handling related collections of semantics are
available.

From a purely topological algebraic representation or canonical duality perspec-
tive, representation results may also be

• of a concrete nature (of concrete representation theorems) or
• of a relatively abstract nature (of abstract representation theorems),
• natural (as natural as algebraic naturalists think they are),
• purely algebraic (or set-theoretical),
• constructive or
• approximate.

The concept of abstract representation theorems in mathematics often refers to
models abstracted from mathematical models that may have no direct relation to
real processes. Any mathematical model constructed from a model of arithmetic or
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of sets and set operations can also be designated as the only admissible concrete
models. Absence of reference to such models, subject to a few minimal conditions
being satisfied, may also seen to be the defining conditions of abstract representation
theorems. Any abstract representation theorem in the context is typically arrived at
through the following steps:

• Let K = 〈K,8, ν
〉

be an algebraic system of signature 8 (ν being the
interpretation of 8 on the set K) and type τ and let it satisfy a number of
properties � that seek to capture some phenomenon in a context (and so is
designated as a concrete algebraic system). Let K, the collection of all such
algebraic systems of the type satisfying �, be closed under isomorphism.

• Let S = 〈S,8o, νo
〉

be a derived algebraic system of signature 8o (νo being
the interpretation of 8o on the set S) and type τo that satisfies a subset of
properties 9 ⊂ �. Here derived is in the universal algebraic sense of having
derived operations (or terms) and predicates or universal algebraic construction
involving class operators [42, 79]. Terms are the [49]. Let S, the collection of all
such algebraic systems of the type satisfying 9, be closed under isomorphism.

• An abstract representation theorem is a provable statement of the form Every
algebraic system of the form S ∈ S is derived from an algebraic system of
the form K ∈ K by a construction C and an application of the construction
C on any K ∈ K yields an algebraic system S ∈ S.

For example, it is known that [114], A finite lattice is isomorphic to the
congruence lattice of a finite algebra if and only if it is isomorphic to an interval in
the lattice of subgroups of a finite group. In this result, the finite lattice is an abstract
algebra, while the concrete algebra is a class of algebraic lattices derived by a higher
order class operator on a finite group. This is an example of a complicated concrete
representation theorem.

In the well known result [121] every finite lattice L is isomorphic to a sublattice
of the congruence lattice of some finite algebra S, L is an abstract algebra as it
satisfies no additional conditions, while S is also an algebra whose construction is
actually determined by the lattice. So this is an example of an abstract representation
theorem.

From the above discussion it should be clear that the concepts of abstract and
concrete are relative to the algebraic machinery allowed in a context. In other words,
the concepts are triadic in nature.

In Ch. 2 of the book on universal algebra [63], a problem of the form Is every
monoid of transformations of a non empty set U equal (not just isomorphic) to
the monoid of all endomorphisms of some structure? is referred to as a concrete
representation problem. The problem has a negative solution. There are other usages
of the term in the book, and the basic understanding is closer to what has been stated
above.

In terms of formal languages and structures, abstract and concrete representation
contexts can be written in the following form: Suppose that � is a set of statements
in a logical language L, and K be the class of L-models satisfying �. If L′ ⊆ L,
9 is a set of statements of L′ and 9 ⊆ �, we let S be the class of L′-models
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of 9. Historically the former formalism has been the standard approach in universal
algebra, while the structure based formalism has been used for concrete and abstract
model theory [65].

Explicit designation of representation theorems as abstract also depend on the
context. It may also happen that 8 = 8o. A theorem is a concrete representation
theorem just in case it fits into the following schema:

• Let K = 〈K,8, ν
〉

be an algebraic system of signature 8 and type τ and let
it satisfy a number of properties �. Let K, the collection of all such algebraic
systems of the type satisfying �. Further let K be constructed from sets and
set-theoretic operations or the set of real numbers with related operations.

• Let S = 〈S,8o, ν
〉
be a derived algebraic system of signature 8o and type τo that

satisfies a subset of properties 9 ⊂ �. Let S, the collection of all such algebraic
systems of the type satisfying 9.

• A concrete representation theorem is a provable statement of the form Every
algebraic system of the form S ∈ S is derived from an algebraic system of
the form K ∈ K.

The first of the statements is open ended and additional conditions of mathe-
matical or logical naturality may be used in practice. For example, The irrational
number

√
2 can be regarded as more natural than other irrational numbers because

it is algebraic and can be constructed through ruler and compass methods.

1.4 Chapter Organization

This chapter is organized as follows:

• In this introduction, a number of philosophical issues concerning the concepts of
representation and duality are also discussed.

• In the following section, some of the essential background is considered.
This includes concepts of rough sets, topology, closure operators and discrete
dualities.

• In the third section, Galois connections and correspondences are also considered.
• Concrete representation theorems are proved apparently in the next section.
• Three representation theorems are proved for classical rough sets in the fifth

section.
• In the sixth section, apart from basic results concerning relations and covers,

order theoretic representations, representation of quasi-order based CAS and
dualities for Tarski algebras are proved. Tarski algebras have actually been
adapted to the rough context in the last subsection.

• Discrete dualities are proved for double Stone algebras in the next section. The
proofs have been reworked.

• Some very interesting duality results on preference relations have been reworked
for rough sets contexts in the next section.
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• In the ninth section, distributive lattices with Galois connections are studied.
Specific connections with Heyting algebras with Galois connections are also
pointed out.

• In the following section, other representation and duality results that have been
left out are mentioned. Canonical extensions are explained in a subsection.

• In the next two subsections connections between rough and Fuzzy sets are
studied.

• Results on L-fuzzy sets and quasi-orders are part of the next section.
• New representation results between specific classes of fuzzy sets and rough sets

are proved in the next section by the present author.
• In the fourteenth section, representation results of antichain based semantics are

explored in detail.

2 Background

Information tables (also referred to as information systems in the rough set
literature) are basically representations of structured data tables. When columns for
decision are also included, then they are referred to as decision tables. Often rough
sets arise from information tables and decision tables. As mentioned in [22, 98], the
term information system is used in other broader senses in the literature on computer
science.

An information table I, is a relational system of the form

I = 〈O, A, {Va : a ∈ A}, {fa : a ∈ A}〉

with O, A and Va being respectively sets of objects, attributes and values respec-
tively. fa : O �−→ ℘(Va) being the valuation map associated with attribute a ∈ A.
Values may also be denoted by the binary function ν : A ×O �−→ ℘V defined by
for any a ∈ A and x ∈ O, ν(a, x) = fa(x).

An information table is deterministic (or complete) if

(∀a ∈ A)(∀x ∈ O)fa(x) is a singleton.

It is said to be indeterministic (or incomplete) if it is not deterministic that is

(∃a ∈ A)(∃x ∈ O)fa(x) is not a singleton.

Relations may be derived from information tables by way of conditions of the
following form: For x, w ∈ O and B ⊆ A, (x, w) ∈ σ if and only if

(∀a ∈ B) ν(a, x) = ν(a, w).
(∀a ∈ B) ν(a, x) ∩ ν(a, w) 
= ∅.
(∀a ∈ B) ν(a, x) ⊆ ν(a, w).
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(∀a ∈ B)(∃z ∈ B) ν(a, x) ∪ ν(a, w) = ν(a, z).
(∀a, b ∈ B)(ν(a, x) ∩ ν(b, x) 
= ∅ −→ ν(a, w) ∩ ν(b, w) 
= ∅).
(∀a ∈ B)(∃b ∈ B) ν(a, x) = ν(b, w).
(∀a, b ∈ B)(ν(a, x) = ν(b, w) −→ ν(a, w) = ν(b, x)).
(∀a, b ∈ B)(ν(a, x) ⊂ ν(a, w)& ν(b, x) ⊂ ν(b, w) −→ ν(a, x) ∩ ν(b, x) =

ν(a,w) ∩ ν(b, w)).
(∀a, b ∈ B) (ν(a, x) ∩ ν(b, x) ⊆ ν(a, w)) or (ν(a, x) ∩ ν(b, x) ⊆ ν(b, w)).
(∀a, b ∈ B) (ν(a, x) ∩ ν(b, w) ⊆ ν(a, w)) or (ν(a, w) ∩ ν(b, x) ⊆ ν(b, w)).

For a reference of relations that may be obtained from information tables also
see [92, 103, 111, 129, 130].

Definition 2 The following definitions relate to quasi-orders on sets. If QO(S) is
the set of all quasi-orders on a set S, then

• <∈ QO(S) is said to be a up-directed if and only if

(∀a, b)(∃c) a < c& b < c.

x ‖ y will be an abbreviation for x � y & y � x.
• < is well founded if and only if every nonempty subset of S has a minimal

element. The latter condition is equivalent to S having no infinite descending
chains

. . . < xn < . . . < xo.

• A well founded quasi-order < is well quasi-ordered (WQO) if it has no infinite
anti-chains.

• A quasi-ordered set S is total if the quasi-order S2 ⊆<pre-well if the quasi-order
on it is total and well-founded.

• A subset A of the quasi-ordered set S = 〈S,<〉 is an o-ideal (or initial segment)
if and only if

x < y & y ∈ A −→ x ∈ A.

The o-ideal generated by a subset X will be the o-ideal

X ↓= {y ; y ∈ S & (∃x ∈ X) y < x}.

An o-ideal is principal if it is generated by a singleton {x} and in this case is
denoted by x ↓. The set of all o-ideals (resp principal, finitely generated) on S

will be denoted by I(S) (resp. Ip(S), If (S)). An o-ideal A will be said to be an
ideal if it is up-directed.

• A subset A of the quasi-ordered set will be said to be an o-filter (or final segment)
if and only if

x < y & x ∈ A −→ y ∈ A.
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The o-filter generated by a subset X will be the o-filter

X ↑= {y ; y ∈ S & (∃x ∈ X) x < y}.

An o-filter is principal if it is generated by a singleton {x} and in this case is
denoted by x ↑. The set of all o-filters (resp principal, finitely generated) on S

will be denoted by F(S) (resp. Fp(S), Ff (S)). An o-filter A will be said to be
a filter if it is down-directed. A subset A is said to be a double o-ideal if and
only if it is both an o-filter and an o-ideal. The set of double o-ideals of S will be
denoted by FI(S).

• In a quasi-ordered set S, x ∈ S is an atom if and only if

(∀y)(y < x −→ y = x).

A lattice S is atomistic if and only if every element is the join of atoms below it.
This definition extends to join-semi-lattices naturally.

• In a lattice, ideals are o-ideals that are closed under ∨ (filters are defined dually).
If a lattice ideal is also a filter, then it is said to be a double ideal. Principal
double ideals would be those principal ideals that are also filters.

A lattice L is weakly atomic if, given x < y in L, there exist a, b ∈ L such that
x ≤ a ≺ b ≤ y, where ≺ denotes the covering relation of L. All algebraic lattices
are weakly atomic

A complete lattice L satisfies the join-infinite distributive law (JID) if and only
if for any S ⊆ L and x ∈ L,

(∀K ⊆ L)(∀x ∈ L) x ∧
(∨

K
)
=
∨
{x ∧ b : b ∈ K}. (JID)

The dual condition is the meet-infinite distributive law (MID).
It is well known that a complete lattice is a Heyting algebra if and only if it

satisfies (JID). Also, a complete lattice is a Heyting-Brouwer algebra if and only if
it satisfies both (JID) and (MID). In particular as any distributive algebraic lattice
satisfies JID and so they are Heyting algebras.

An element a of a complete lattice L is called completely join-irreducible if
(∀K ⊆ L) (a = ∨K −→ a ∈ K). J will be used to denote the set of completely
join-irreducible elements of L.

A complete lattice L is spatial if and only if

(∀a ∈ L) a =
∨
{b ∈ J : b ≤ a}

Topology
An Alexandrov topology τ on a set S is a topology that satisfies

(∀σ ⊆ τ )
⋂

σ ∈ τ.
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For each x ∈ S, Nτ (x) = ∩{X ; x ∈ X ∈ τ } is the neighborhood generated by
x. A(S) will denote the set of all Alexandrov topologies on S.

In an arbitrary topological space 〈S, τ 〉, the To axiom is for any two points
x, y ∈ S, there exists a neighborhood U satisfying x ∈ U & y /∈ U or conversely.
The T1 axiom is for any two points x, y ∈ S, there exist neighborhoods U, V

satisfying x ∈ U & y ∈ V & y /∈ U & x /∈ V . Any Alexandroff space satisfying the
T1 axiom is known to be discrete.

If an Alexandrov space satisfies the To axiom, then it has nicer topological
properties and the topology will be referred to as a To Alexandrov topology. In
particular in such a space it is provable that

Nτ (a) = Nτ (b) ←→ x = y.

In a topological space is 〈S, τ 〉 a path from a point a to b is a continuous function
p : [0, 1] �−→ S that satisfies p(0) = a and p(1) = b. S is said to be path connected
if and only if for every a, b ∈ S, there exists a path p from a to b.

If ϕ : X �−→ L is a L-fuzzy set, and a topological property π is induced on X

through some process μ, then ϕ can be said to be a π L- fuzzy set. This concept is
an optional abbreviation.

A simple chain from a to b in a topological space S is a sequence of open sets
{Ai}ni=0 satisfying

(∀i) Ai ∩ Ai+1 
= ∅,
(∀i, j) (|i − j | > 1 −→ Ai ∩ Aj = ∅),

(∀i 
= 0) a ∈ A0 \ Ai,

(∀i 
= n) b ∈ An \Ai.

S is said to be chain connected if given any open cover A of S, every pair of distinct
points has a chain consisting of elements of A from one to the other. In a Alexandrov
space that satisfies the T0 axiom, the property of chain connectedness reduces to the
following condition: For every a, b ∈ S, there exist {xi}ni=0 in S such that

a = x0, b = xn &N(xi) ∩N(xj ) 
= ∅ whenever |i − j | ≤ 1.

In any topological space, the following implication holds:

Path Connectedness $⇒ Connectedness $⇒ Chain Connectedness.

Alexandroff topologies have also been referred to as principal topologies or fixed
topologies. They have been found to be useful in few papers in rough sets and soft
computing. Some references are [3, 72, 132, 134].
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From [135], it can be deduced that

Theorem 3 The lattice of all Alexandroff topologies on a set is complemented.

The following result is due to [124].

Proposition 4 Let < be a quasi-order on a set X and τ< the Alexandrov topology
on X induced by <. If

A→ B = {a ∈ X : (∀a ≤ b) (b ∈ A→ b ∈ B)},
A← B = {a ∈ X : (∃b ≤ a) b /∈ A& b ∈ B},

then (τ<,∪,∩,→,←,∅,X) is a Heyting-Brouwer algebra.

2.1 Closure and Related Operators

Closure, interior operators and variants thereof have a central role to play in duality
theory in general and rough sets. These are reviewed in this section and some
advanced theorems are proved. Let S = 〈S,≤〉 be a partially ordered set.

Definition 5 A mapping F : S → S is called a closure operator if

(∀x) x ≤ F(x) (Inclusion)

(∀x,w) x ≤ w −→ F(x) ≤ F(w) (Monotonicity)

(∀x) F (F (x)) = F(x) (Idempotence)

Inclusion is also referred to as extensivity and monotonicity as isotonicity or
increasing respectively. An element x ∈ S is closed, if F(x) = x.

If the partial-order on S is a lattice order then the lattice operations ∨ and ∧ will
be assumed. Consider the following conditions:

(∀x) F(x) ≤ x (Contraction)

(∀x,w) F(x ∨w)=F(x) ∨ F(w) (Additivity)

(∀x,w) F(x ∧w)=F(x) ∧ F(w) (Multiplicativity)

(∀x,w) F(x) ∨ F(w) ≤ F(x ∨w) (Sub-Additivity)

(∀x,w) F(x ∧w)≤F(x) ∧ F(w) (Sub-Multiplicativity)

(∀x,w) (F(x) = F(w) −→ F(x ∧w) = F(x) = F(w)) (UniqueGen)

(∀xi) F (
∨

xi) =
∨

F(xi) (Complete additivity)
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(∀xi) F (
∧

xi) =
∧

F(xi)

(Complete multiplicativity)

F(0) = 0 (Bottom)

F(1) = 1 (Top)

Note that for complete additivity and multiplicativity to hold, the operations need
to be defined in the first place.

(¬(a ≤ x)&¬(b ≤ x)&b ≤ F(x∨a)&¬(a = b) −→ a ≤ F(x∨b)) (Exch)

(¬(a ≤ x)&¬(b ≤ x)&b ≤ F(x ∨ a)&¬(a = b) −→ ¬(a ≤ F(x ∨ b)))

(AExch)

The following associations/definitions are well known:

• Pre-topological operators are operators that satisfy inclusion, additivity and
bottom.

• Closure operators that satisfy bottom, and additivity are called topological or
Kuratowski closure operators.

• Topological closure operators that satisfy Infinite Join on a complete lattice are
Alexandrov closure operators.

• An kernel or interior operator is an operator that satisfies idempotence, mono-
tonicity and non-extensivity.

• Any closure operator C on a lattice S induces a partial-order≤C defined by

a ≤C b ↔ C(a) ∧ b ≤ a ≤ C(b)

• Any closure operator C on a lattice S induces a quasi-order � defined by

a � b ↔ C(a) ≤ C(b)

Even if the lattice is a Boolean algebra, � need not be a partial-order. To see this
let B be the four element BA with atoms a, b, and set

C(x) =
{

0, if x = 0,

1, otherwise.
(1)

This yields a � b & b � a.



474 A. Mani

If C is a closure operator on a collection 〈S,⊆〉 of sets partially ordered by set
inclusion then

• C is said to be finitary, if for any s ⊆ S and b ∈ C(s), then there exists a finite
e ⊆ s such that b ∈ C(e).

• A generator of a closed subset Z by a closure operator C is any minimal subset
G such that C(G) = Z. C is said to be uniquely generated if and only if every
closed subset has a unique generator.

• The exchange property is common for algebraic closure operators in linear
algebra, matroids and projective geometries, while the anti-exchange property
can be encountered in the study of convex geometry [100] and anti-matroids.

The reader should note that not every closed set has a generator, for example, if
B is an atomless Boolean algebra, and C is defined as in (1), then 1 is closed without
a generator.

An element a of a complete lattice L is compact if and only if if for any X ⊆ L,
a ≤ ∨X then there exists a finite subset B ⊆ X such that a ≤ ∨B. An algebraic
lattice is a complete lattice L in which every element is a join (possibly infinite) of
compact elements.

Definition 6 A collection C of subsets of a non-empty set S is said to be a closure
system on S if C is closed under arbitrary intersections, that is,

(∀Z ⊆ C)
⋂

Z ∈ C.

By definition,
⋂ ∅ = S, so S ∈ C.

Proposition 7 ([9]) A closure system C forms a complete lattice with respect to ⊆,
where for all X ⊆ C,

∧
X =
⋂

X,
∨

X =
⋂
{Z : Z ∈ C&

⋃
X ⊆ Z}. (2)

Theorem 8 ([9])

1. Let F be a closure operator on S. Then, the collection CF of closed elements is
a closure system.

2. If C is a closure system on S, then the mapping FC defined by

FC(X) =
⋂
{Y ∈ C : X ⊆ Y }

is a closure operator.
3. If F is a closure operator, then F = FCF

.
4. If C is a closure system on S, then C = CFC

.

If a closure system C is also closed under the union of subcollections that are
(upward) directed under set inclusion, then it is called an algebraic closure system
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(or an algebraic closed-set system). Equivalently if C is inductive (closed under
union of nonempty chains) then it is an algebraic closure system.

Theorem 9

• An algebraic closure system C forms an algebraic lattice under the set-theoretic
inclusion order and the operations of (2). All algebraic lattices are necessarily
complete.

• If C is an algebraic closure system over a non-empty set A, and if B is a non-
empty subset of A, then {F ∩ B : F ∈ C} is an algebraic closure system over
B.

• If h : B �−→ A is a map, then h−1(C) = {h−1(F ) : F ∈ C} is an algebraic
closure system over B.

Theorem 10 If S is an algebraic lattice, then

1. The set of compact elements K(S) is a join semilattice with least element in the
induced order;

2. S is order-isomorphic to the lattice of order ideals of the compact elements, that
is S ∼= I(K(S)). The associated map is : x �→ x ↓ ∩K(S) (x ↓ being the
principal order ideal generated by x).

In a join-semilattice L with least element 0, an ideal is any subset of K of L that
is an order ideal and is closed under ∨. For each x ∈ L, x ↓ is the principal ideal
generated by x. The next representation result is due to [50] and the first part is due
to [69]. The proofs can be found in [49].

Theorem 11 If L is a join-semilattice with least element, then

1. The collection I(L) of all ideals of L is an algebraic lattice (the meet corresponds
to set intersection)

2. The compact elements of I(L) are the principal ideals.

Moreover, for every algebraic lattice P , there exists a join-semilattice Q such that
I(Q) is isomorphic to P .

Closure operators can be directly related to ideas of consistency under minimal
additional assumptions.

Let F be a closure operator on a set S. Call a set X ⊆ S F -consistent if
F(X) 
= S, and F -inconsistent otherwise. Maximal F -consistent sets are said to
be F-complete. F is called logically compact (l-compact) if every F -inconsistent
set includes a finite F -inconsistent subset. The terminology is motivated by the
behavior of the consequence operator in algebraic logic [28].

Theorem 12 ([28])

1. F is logically compact if and only if the collection of all F -consistent sets is
inductive or finitary.

2. If F is logically compact, then every F -consistent set is contained in a F -
complete set.



476 A. Mani

3. A closure operator F on S is finitary and logically compact if and only if F \ {S}
is inductive.

The next theorem is a negative result, due to the present author, for upper
approximations in granular rough sets. The theorem is a variation of the result in
Boolean algebras [29, 40]. The second part can be read as an abstract representation
theorem and is relevant for matroidal approaches to rough sets [78, 138, 144].

Theorem 13 In any lattice S, if a closure operator C is uniquely generated, then
C satisfies the anti-exchange property. Every complemented lattice generated by
a closure operator C that is unique generated is isomorphic to a complemented
lattice generated by a closure operator F that satisfies anti-exchange property and
conversely.

Proof

• Assuming Unique Generation, let ¬(a ≤ x)&¬(b ≤ x) and b ≤ C(a ∨ x).
• Suppose also that a ≤ C(b ∨ x),
• then by Unique Generation, it is necessary that C(a ∨ x) = C(b ∨ x) = C(x).
• This contradicts ¬(a ≤ x).
• Therefore Unique Generation $⇒ AntiExchange.

For the converse in a complemented lattice,

• Suppose C(x) = C(w) and let z be a minimal element satisfying C(x) = C(z).
• If a ≤ z, then C(a) ≤ C(x).
• If ¬(a ≤ w), let k ≤ w be a minimal element satisfying C((z∧ a′)∨ k) = C(x).
• Let p ≤ k and h = (z ∧ a′) ∨ (k ∧ p′), then C(h) ≤ C(x)

• All this yields, ¬(p ≤ x), ¬(a ≤ x), but a ≤ C(h ∨ p) = C(x) and p ≤
C(h ∨ a) = C(x).

• This contradicts Anti exchange, so it is essential that z ≤ w and C(x) = C(w) =
C(x ∧w)

��
Proposition 14 In classical rough sets, the upper approximation operator satisfies
all of idempotence, inclusion, monotonicity, exchange, submultiplicativity and join.
The properties of unique generation and anti-exchange do not hold.

Proof If X is an approximation space, then u is a closure operator on the Boolean

algebra S =
〈
℘(X),∪,∩,c , 0, 1

〉
then the properties of idempotence, inclusion,

monotonicity, submultiplicativity and join are well known [110].

• For proving exchange, note that
• for any distinct A,B,C ∈ ℘(X), if ¬(A ⊂ C), ¬(B ⊂ C) and B ⊂ (A ∪ C)u,
• then for any element x ∈ B, there exists a class [z] with z ∈ A ∪ C such that

x ∈ [z].
• It follows that z ∈ [x] must hold as well.
• Therefore, A ⊆ (B ∪ C)u holds.

��
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The last two results relate to the closure operators of matroids in the study of
rough sets with matroids. Some aspects are mentioned below.

Definition 15 A matroid is a pair of the form H = (S,H), with S being a finite set
and H being a set of subsets of S that satisfies:

• H is an order ideal with respect to set inclusion,
• ∅ ∈ H and
• For any A,B ∈ H, if #(A) < #(B) (#(A) being the cardinality of A), then

(∃a ∈ B \A)A ∪ {a} ∈ H.

On matroids a rank function rH is a map rH : ℘(S) �−→ N that satisfies

For X ∈ ℘(S) rH (X) = max{#(K) : K ⊆ X &K ∈ H}

Closure operators clH on H are defined as a map clH : ℘(S) �−→ ℘(S)

satisfying

(∀X ∈ ℘(S)) clH (X) = {a : a ∈ S & rH (X) = rH (X ∪ {a})}

The main directions of studies on the connections between covering based rough
sets and matroids have been along the following directions:

• Study of matroidal properties of matroids derived from given covers (see for
example [78, 144]), and

• Study of structures like graphs and matrices formed through matroidal construc-
tions (see for example [138]).

The theorems on exchange and anti-exchange properties considered concern the
closure operator on matroids.

2.2 Discrete Dualities for Rough Sets

A frame may be seen as another name for a general approximation space. Then
these are simply relational systems of the form S = 〈S, σ 〉 (with S being a set
and σ a binary relation over it). This view is reductionist because frames have
been used in literature on modal logic with many ontological assumptions (see
[47] for example). Over such frames, pointwise approximations are definable and
have a number of nice properties that are modal logic friendly (see the subsection
on pointwise approximations in [98] by the present author for a summary). For
frame semantics of modal logic, the reader is referred to books like [127]. Often it
happens that frames have additional structure and in almost all of these sub-cases
they are relational systems with one or more quasi-orders or meaningful relations.
In general, however general approximations may not have much to do with modal
understanding of things.
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In simplified terms any discrete duality is between a class A of algebras and a
class K of frames and may be seen as a tuple 〈A,K,C,Cf〉 satisfying all of the
following:

• Every S ∈ A, there exists a Cf(S) ∈ K called the canonical frame of S.
• Every K ∈ K, there exists a C(K) ∈ A called the complex algebra of K .
• For every S ∈ A, there exists an embedding ιS : S �−→ C(Cf(S)).
• For every K ∈ K, there exists an embedding κK : K �−→ Cf(C(S)).

A discrete duality has the following properties:

• The topology associated in the duality is the discrete one.
• It preserves truth in the sense that the concept of truth associated with the

class of algebras S corresponds to the truth associated with its frame semantics
corresponding to the class of all frames B associated. A special case of this is
when the latter class is the class of Kripke frames. A relatively minimalist case
for lattices is considered in [104].

• Instead of isomorphisms, two-way embeddings are seen to be sufficient for the
purpose.

In rough sets, many discrete dualities have been found to be useful and some have
been specifically developed for application in rough semantics. Results relating to
Heyting algebras, double Stone algebras [35] and rough relation algebras [36] are
known.

3 Basic Results on Order Structures

In this section some basic results on order structures are presented. Often collections
of all definite objects in rough sets form a distributive lattice. Sometimes the definite
objects are taken to unions of basic definite granules. For a number of cases, the
reader is referred to [98] in this volume. Because of these reasons some stress has
been laid on related concepts.

A lattice ideal K of a lattice L = (L,∨,∧) is a subset of L that satisfies the
following (≤ is assumed to the definable lattice order on L):

(∀a ∈ L)(∀b ∈ K)(a ≤ b −→ a ∈ K) (o-Ideal)

(∀a, b ∈ K) a ∨ b ∈ K (Join Closure)

The set of all order ideals and lattice ideals of a lattice L will respectively be denoted
by Io(L) and I(L) respectively.

An ideal P in a lattice L is prime if and only if (∀a, b)(a ∧ b ∈ P −→ a ∈
P or b ∈ P). Spec(L) shall denote the set of all prime ideals. Maximal lattice
filters are the same as ultrafilters. In Boolean algebras, any filter F that satisfies
(∀a)a ∈ F or ac ∈ F is an ultra filter. Chains are subsets of a partially ordered
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set in which any two elements are comparable, while antichains are subsets of a
partially ordered set in which no two distinct elements are comparable. Singletons
are both chains and antichains.

A filter (resp. ideal) of a lattice is irreducible provided it is proper and not the
intersection of two proper filters (resp. proper ideals). All maximal filters (maximal
ideals) are irreducible. All prime filters (prime ideals) are irreducible.

The next theorem is easy to prove, has many generalizations and extensions and
is very important in algebraic semantics of a wide variety of logics.

Theorem 16 If A and B are two disjoint subsets of a lattice L whose union is L (in
other words if A and B are complementary subsets of L), then A is a prime ideal if
and only if B is a prime filter.

In a lattice, L, an element s ∈ L is standard if and only if

(∀a, b ∈ L) a ∧ (s ∨ b) = (a ∧ s) ∨ (a ∧ b) (Standard)

An ideal K of L is said to be standard if and only if

(∀A,B ∈ I(L))A ∧ (K ∨ B) = (A ∧K) ∨ (A ∧ B) (Standard Ideal)

The set of standard ideals will be denoted by IS(S).

3.1 Galois Connections and Correspondences

Let P = 〈P ,≤〉 and Q = 〈Q,@〉 be two quasi-ordered relational systems. A pair of
maps (f, h) with f : P �−→ Q and h : Q �−→ P is said to be Galois connection
[102] (or a residuated-residual pair) between P and Q if and only if

(∀p ∈ P)(∀q ∈ Q)(f (p) @ q ↔ p ≤ h(q)) (3)

h is also called the adjoint (or residual) and f is called the co-adjoint (or residuated
map) in the context. It is possible to define these concepts through the following
proposition:

Proposition 17 A pair of maps (f, h) with f : P �−→ Q and h : Q �−→ P is a
Galois connection if and only if

• f , h are isotone (order-preserving maps, and)
•

(∀p ∈ P)(∀q ∈ Q)(p ≤ h(f (p))& q @ h(f (q))) (4)

In the definition above, if f and h are partial maps instead and the condition (3)
holds, then (f, h) is referred to as a partial Galois connection.
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Theorem 18 If (f, h) is a Galois connection between the complete lattices P and
Q, then all of the following hold:

1. (∀a ∈ P)(∀b ∈ Q)f (h(f (a))) = f (a)& h(f (h(b))) = h(b)

2. f is a complete ∨-morphism and h is a complete ∧-morphism.
3. h ◦ f and h ◦ f are closure and interior operators on P and Q respectively.
4. The maps f (a) �→ h(f (a)) and h(b) �→ f (h(b)) are mutually inverse order-

isomorphisms : ?(f ) �−→ ?(h)
5. f and h are inter-definable by the equations:

f (a) =
∧
{b : b ∈ Q& a ≤ h(b)} & h(b) =

∨
{a : a ∈ P & f (a) ≤ b}

(5)

Galois connections on residuated lattices have been studied in [119] for example.
Importantly Galois connections between lattices have connections with compatible
tolerances.

Proposition 19 If P and Q are lattices and f : P �−→ Q is a map, then

• f is ∧-morphism and K is a filter of Q, then f−1(K) is a filter of P .
• f is ∨-morphism and J is an ideal of Q, then f−1(J ) is an ideal of P .

Proof Using the same operation symbols in both lattices, if a, b ∈ f−1(K), then
f (a∧b) = f (a)∧f (b) ∈ K and f (a), f (b) ∈ K . So f (a)∧f (b) ∈ K . It follows
that a ∧ b ∈ f−1(K).

If x ∈ f−1(K) and w ∈ P and x ≤ w. f is a order preserving map necessarily.
So f (x) ≤ f (w). As f (x) ∈ K and K is a filter, therefore f (w) ∈ K . It follows
that w ∈ f−1(K). ��

If R ⊆ P ×Q, then define the maps ζ, ξ : ℘(Q) �−→ ℘(P) via

(∀H ∈ ℘(Q)) ζ(H) = {x : x ∈ P & (∃a ∈ H)Rxa}
(∀H ∈ ℘(Q)) ξ(H) = {x : x ∈ P & (Rxa⇒ a ∈ H)}

ζ is ∨-preserving and ξ is ∧-preserving.

Theorem 20 If L is a Boolean algebra,

• F a proper filter and K an ideal of L satisfying F ∩ K = ∅, then there is a
maximal filter F ∗ such that F ⊆ F ∗ and F ∗ ∩K = ∅

• If L is complete, then L is atomic if and only if it is atomistic.
• a ∈ L is an atom if and only if a ↑ is a maximal filter.
• Any Power set Boolean algebra is complete and atomic.
• Stone Representation: If Fmax(L) is the set of maximal filters, then the

function:

ν : L �−→ ℘(Fmax(L))
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defined by ν(x) = {U : U ∈ Fmax(L); x ∈ L} is an injective morphism of
lattices.

Proposition 21 In any lattice L,

(∀a, b, c) (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c)

(∀a, b, c) a ∨ (b ∧ c) ≤ (a ∨ b)∧ (a ∨ c)

Definition 22 A lattice L has prime filter property PFP if and only if given a proper
filter K and an ideal J of L such that K ∩ J = ∅ there is a prime filter P of L such
that K ⊆ P and P ∩ J = ∅.

Theorem 23 A lattice has PFP if and only if it is distributive.

Proof Suppose that a lattice has the PFP, but is not distributive, then

(∃a, b, c) (a ∨ b)∧ (a ∨ c) � a ∨ (b ∧ c)

because in all lattices the RHS ≤ LHS.
Let x = (a ∨ b) ∧ (a ∨ c), w = a ∨ (b ∧ c), K = x ↑ and J = w ↓. By the

condition, K and J are proper and K ∩ J = ∅. So by assumption, there exists a
prime filter P satisfying x ∈ K ⊆ P . Consequently, a ∨ b, a ∨ c ∈ K .

If now a ∈ P , then as a ≤ a ∨ (b ∧ c) = w, w ∈ P—a contradiction. Again if
a /∈ P , then as a ∨ b ∈ P , (P being prime) it is necessary that b ∈ P . Using the
same argument c, b ∧ c ∈ P . So w ∈ P—again a contradiction.

So it follows that if L has PFP then L must necessarily be distributive.
For the converse, starting from a proper filter K and ideal J of L that satisfy

K ∩ J = ∅, form the collection

K = {H : H ∈ F(L),∅ ⊂ H ⊂ L, &K ⊆ H &H ∩ J = ∅}

under the inclusion ordering.
Each union of a chain of filters in K must be disjoint from J and contains K .

So every chain has an upper bound in K. By Zorn’s lemma, K has a maximal
element P .

P must be prime, otherwise a contradiction follows. To see this let for some
a, b ∈ L, a ∨ b ∈ P with a, b /∈ P . Form the filter Pa generated by P ∪ {a}. By the
maximality of P in K, it is necessary that Pa ∩ J 
= ∅. So there exists a g ∈ P such
that g ∧ a ∈ J . Similarly there is a h ∈ P with h ∧ b ∈ J .

So (h ∧ a) ∨ (g ∧ b) ∈ J . By distributivity,

p = (g ∨ h) ∧ (h ∨ b)∧ (g ∨ a) ∧ (a ∨ b) ∈ J

Since filters are increasing and h ≤ h ∨ g, h ≤ h ∨ b and g ≤ g ∨ a, and g, h ∈ P

therefore h ∨ g, h ∨ b, g ∨ a ∈ P . So p ∈ P and this contradicts P ∩ J = ∅.
��
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A subset H of a partially ordered set P is join dense in it if and only if

(∀x ∈ P)(∃Hx ⊆ H) x =
∨

Hx

If P is a complete lattice, then the defining condition is equivalent to

(∀x ∈ P) x =
∨
{a : a ∈ H & a ≤ x}.

The spectrum Spec(a) of an element a is the set of join-irreducible elements
below it:

Spec(a) = {x : x ∈ J I (L)& x ≤ a} = a ↓ ∩J I (L)

Let S be a set and H ⊆ ℘(S) be a complete ring of sets. For any x ∈ S, if
nbd(x) = ⋂{X ; x ∈ X ∈ H}, then nbd(x) ∈ H and N = {nbd(x) ; x ∈ S} is the
set of join-irreducible elements of H. It is also the smallest join-dense sets in H.

Proposition 24 In a distributive lattice L, a ∈ L is join-irreducible if and only if
the principal filter generated by a is prime.

Theorem 25 For every finite distributive lattice L, there exists a partially ordered
set P unique upto isomorphism such that L ∼= I(P ). Associated classes of nonempty
distributive lattices and partially ordered sets correspond bijectively. Also, a lattice
is distributive if and only it is isomorphic to a ring of sets.

Proof The proofs are simplified by the provable statement that the map ϕ : a �−→
Spec(a) is an isomorphism between L and J I (L) ↓. To see this, note that every
element of L is the join of nonzero join-irreducible elements because L is finite:

a =
∨

Spec(a).

So ϕ is injective. Also

• Since Spec(a) ∩ Spec(b) = Spec(a ∧ b),
• So ϕ(a ∧ b) = ϕ(a)∧ ϕ(b)

• and ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b).

because if x ∈ Spec(a ∨ b), then x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b). Since
x ∈ J I (L), either x = x ∧ a or x = x ∧ b. That is, x ∈ Spec(a) ∪ Spec(b). So
Spec(a ∨ b) = Spec(a) ∪ Spec(b).

To show that (∃a ∈ L) ϕ(a) = A if A ∈ J I (L) ↓, let a = ∨A. Then A ⊆
Spec(a). If x ∈ Spec(a), then

x = x ∧ a = x ∧
∨

A =
∨
{x ∧ z : z ∈ A}.

By join-irreducibility, x = x ∧ z for some z ∈ A as A is a down set.
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A lattice is distributive if and only it is isomorphic to a ring of sets because of
Stone’s theorem [137] and because any ring of sets is a distributive lattice. ��

The collection Spec(L) of all prime ideals of a distributive lattice L does not
characterize it. But it does so when endowed with an additional topology.

Definition 26 If ψ : L �−→ Spec(L) is a map defined by

(∀x ∈ L)ψ(x) = {F : F ∈ Spec(L)& x ∈ Spec(L)},

then Spec(L) with sub base P(L) = {ψ(x) : x ∈ L} forms a topological space
called the Stone space of L.

Theorem 27 Every distributive lattice L = 〈L,∨,∧〉 is homeomorphic to the Stone
space St (L) = 〈P(L),∪,∩〉 with the To topology. If L has a top, then the Stone
space is compact.

Definition 28 A Priestley Space is a compact totally order-disconnected topolog-
ical space. That is a structure of the form 〈X,≤, τX〉 in which all of the following
hold:

• 〈X,≤〉 is a partially ordered set,
• 〈X, τX〉 is a topological space in which for all a, b ∈ X satisfying a � b, there

exists a clopen increasing set K for which a ∈ K and b /∈ K holds and
• the topology is compact.

The set of clopen increasing sets is denoted by 	(X).

Theorem 29 Given a bounded distributive lattice L,

• the algebra
〈
S(Spec(L)),∪,∩,∅, Spec(L)

〉
over the set of all ⊆-order filters of

Spec(L) is also a bounded lattice,
• The function α : L �−→ S(Spec(L)) defined by α(x) = {F : F ∈ Spec(L) : x ∈

F } is an injective lattice morphism (embedding)
•
〈
Spec(L),⊆, τSpec(L)

〉
is a Priestley space.

• L ∼= 	(Spec(L)) and the subbase of the topology is

α(L) ∪ {Spec(L) \ α(x) : α(x) ∈ α(L)}

• If O(Spec(L)) is the set of all open increasing subsets of Spec(L), then the map
ϕ : I(L) �−→ O(Spec(L)) defined by

(∀H ∈ I(L)) ϕ(H) = {T : T ∈ Spec(L)& T ∩H 
= ∅}

is a lattice isomorphism.
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Theorem 30 If 〈X,≤, τX〉 is a Priestley space, then the map ξX : X �−→
Spec(	(X)) defined by

(∀x) ξX(x) = {U : x ∈ U ∈ 	(X)}

is a homeomorphism and order isomorphism.

4 Concrete Representation Theorems

In this section, concrete representation for lattices or partially ordered sets with
additional operations are considered.

4.1 Quasi-Boolean Algebras

By a De Morgan lattice or a quasi-Boolean algebra (	ML) will be meant an
algebra of the form L = 〈L, ∨, ∧, c, 0, 1

〉
with ∨, ∧ being distributive lattice

operations and c satisfying

xcc = x (Complement-1)

(x ≤ a ↔ ac ≤ xc) (Complement-2)

The De Morgan properties (including (x ∨ a)c = xc ∧ ac) follow from the
above.

Proposition 31 In a quasi-Boolean algebra S = 〈S,∪,∩,∼, 0, 1
〉
, the operation ◦

defined by

(∀A ∈ ℘(S))A◦ = {∼ x : x ∈ A}

on ℘(S) satisfies

(S \ A)◦ = S \ (A◦), &A◦◦ = A. (6)

Let X be a non-empty set with h : X �−→ X being an involution (that is satisfies
(∀x ∈ X) h(h(x)) = x). Involutions are necessarily bijective. On A ∈ ℘(X), if

∼ A = X \ h(A),

a quasi-field of sets is the algebra
〈
Q(X),∪,∩,∼,X〉, with the Q(X) ⊆ ℘(X)

being any nonempty subcollection of subsets of X closed under the induced
operations.
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Theorem 32 Every quasi Boolean algebra is isomorphic to a quasi-field of some
open subsets of a topological, compact To-space.

Proof Let L = 〈L,∪,∩,∼, 0, 1
〉
be a quasi-Boolean algebra and Spec(L) be the set

of prime filters of the lattice. For each a ∈ A, let ψ(a) = {F : F ∈ Spec(L)& a ∈
F }. By the representation of distributive lattices, {ψ(a) a ∈ L} is a sub base for
Spec(L) with compact, To topology.

ψ is injective and satisfies:

ψ(a ∪ b) = ψ(a) ∪ ψ(b)

ψ(a ∩ b) = ψ(a) ∩ ψ(b)

ψ(1) = Spec(L)

Let α : Spec(L) �−→ Spec(L), be a map defined by

(∀F ∈ Spec(L))α(F ) = L \ F ◦ (7)

By definition, for each F ∈ Spec(L), F ◦ is a prime ideal and L \ F ◦ is a prime
filter. So α is a self map : Spec(L) �−→ Spec(L).

Further,

α(α(F )) = L \ ((α(F ))◦ = L \ (L \ F ◦)◦ = L \ (L \ F ◦◦) = F

• Clearly, F ∈ α(ψ(a)) if and only there exists a prime filter G ∈ ψ(a) subject to
F = α(G).

• But G ∈ ψ(a) if and only if a ∈ G if and only if ∼ a ∈ G◦ if and only if
∼ a /∈ L \ (G◦).

• So, F ∈ α(ψ(a)) if and only if there exists a prime filter G subject to ∼ a /∈
L \ (G◦) = F .

• This yields F ∈ α(ψ(a)) if and only if ∼ a /∈ F

• So F ∈∼ ψ(a) = Spec(L) \ α(ψ(a)) if and only if ∼ a ∈ F , if and only if
F ∈ ψ(∼ a).

• This proves∼ ψ(a) = ψ(∼ a).

So Q(Spec(L)) = {ψ(a) : a ∈ L} is a quasi-field of open sets of Spec(L) and
the map ψ is an injection from L onto Q(Spec(L)). ��
Example 33

Let S = {5, a, b,⊥}&Uo =
〈
S,∪,∩,∼,5〉

defined by (∀x,w) x + x = x & x +w = w + x for + ∈ {∩,∪}
5 ∪ x = 5&5∩ x = x = ⊥ ∪ x &⊥ ∩ x = ⊥
∼ 5 = ⊥& ∼ ⊥ = 5& ∼ a = a & ∼ b = b
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Let B = {5,⊥}&Bo =
〈
B,∩,∪,∼,5〉

Let C = {5, a,⊥}&Co =
〈
C,∩,∪,∼,5〉

It is easy to check that Uo is a quasi-Boolean algebra and all its subalgebras upto
isomorphism are Bo and Co.

Theorem 34

• The class of all quasi-Boolean algebras forms a variety Vqba that is a generated
by the subdirectly irreducible algebra Uo.

• Every quasi-Boolean algebra is isomorphic to a subalgebra of a product of the
form �i∈IUi with Ui = Uo for i ∈ I—a directed set.

• Uo is functionally free relative to Vqba . That is any two terms are identically
equal in Vqba if and only if they are identically equal in Uo. Further, the three-
element quasi-Boolean algebra Co is functionally free for the class Ko of all
quasi-Boolean algebras satisfying the Kleene condition a∧ ∼ a ≤ b∨ ∼ b.

Proof It is easy to verify that Vqba is closed under HSP (that is HSPVqba = Vqba).
By the previous representation theorem, it suffices to deal with quasi-Boolean

algebras formed by quasi-fields of subsets alone. Let

Q(X) = 〈Q(X),∪,∩,∼,X〉

be a quasi-field of subsets of a set X and let h : X �−→ X be an involution defining
∼:

(∀Z ∈ Q(X)) ∼ Z = X \ h(Z). (8)

Let

I = {(x, h(x)) : x ∈ X} (9)

and define a map hi : Q(X) �−→ Uo via

hi(Z) =

⎧
⎪⎪⎨

⎪⎪⎩

⊥ if {x, h(x)} ∩ Z = ∅,
a if {x, h(x)} ∩ Z = {x} 
= {h(x)},
b if {x, h(x)} ∩ Z = {h(x)} 
= {x},
5 if {x, h(x)} ∩ Z = {x, h(x)}.

(10)

Since hi : Q(X) �−→ Uo is a morphism for each i, the map h : Q(X) �−→
�i∈IUo defined by (∀Z ∈ Q(X)) h(Z) = (hi(Z))i∈I is a morphism. It is easy to
verify that it is a monomorphism.

The reader is invited to supply the missing parts of the proof. ��
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Next a relational representation theorem will be proved. It can be claimed that it
is relatively more concrete than the previous representation.

• Let S be a set and T ∈ T ol(S).
• Let Qo(S, T ) = {K : K ⊆ T }
• Define ∼ R = T \ R−1 for any R ⊆ S2

• Define Q(S, T ) = {K : K ∈ Qo(S, T )& ∼ K ∈ Qo(S, T )}
• Q(S, T ) = 〈Q(S, T ,∪,∩,∼, T 〉 is a quasi-Boolean algebra of relations.

Theorem 35 Every quasi-Boolean algebra is isomorphic to a quasi-Boolean alge-
bra of relations.

Proof The proof is not too difficult. ��

4.2 Red Results of Neighborhood Systems

A neighborhood operator n on a set S is any map of the form n : S �−→ ℘S.

Proposition 36 Every neighborhood operator n induces a global map N :
℘(S) �−→ ℘(S) that satisfies

(∀X ∈ ℘(S) \ {∅}) N(X) =
⋃

x∈X
n(x) and N(∅) = ∅ (11)

The following properties of neighborhood operators have important connections
with relations and help in transforming results on approximations to cover based
rough contexts and vice versa.

(∀a)(∃b) b ∈ n(a) (Serial)

(∀a)(∃b) a ∈ n(b) (Cover)

(∀a) a ∈ n(a) (Reflexive)

(∀a, b) (a ∈ n(b) −→ b ∈ n(a)) (Symmetric)

(∀a, b, c) (b ∈ n(a)& c ∈ n(b) −→ c ∈ n(a)) (Transitive)

(∀a, b, c) (b ∈ n(a)& c ∈ n(a) −→ c ∈ n(b)) (Euclidean)

Let the set of all binary relations on a set S be denoted by R(S). The following
operations can be defined on it (for any P,Q ∈ R(S) and for any a, b ∈ S ):

• (P ∪Q)ab if and only if Pab or Qab.
• (P ∩Q)ab if and only if Pab &Qab.
• (P c)ab if and only if ¬Pab.
• (P ◦Q)ab if and only if (∃c) Pac &Qcb
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• (P−1)ab if and only if Pba

• ⊥ = ∅, 	 = {(a, a) : a ∈ S} and 5 = S2

The relation algebra formed on S is then the algebra

9 =
〈
R(S),∪,∩,c ,⊥,5, ◦,−1 ,	

〉

of type (2, 2, 1, 0, 0, 2, 1, 0) that satisfies

•
〈
R(S),∪,∩,c ,⊥,5〉 is a Boolean algebra.

•
〈
R(S), ◦,−1 ,	

〉
is an involuted monoid. 	 being the diagonal relation.

• (∀a, b, c) ((a ◦ b) ∩ c = 0 ↔ (a−1 ◦ c) ∩ c = 0 ↔ (c ◦ b−1) ∩ a = 0)

Recall that the different neighborhoods generated by a relation are as below

[x] = {a; Rax} (Successor)

[x]i = {a; Rxa} (Predecessor)

[x]o = {a; Rax &Rxa} (Multiplicative)

[x]∨ = {a; Rax ∨ Rxa} (Additive)

Relations will be adjoined as superscripts whenever multiple relations are under
consideration.

Proposition 37

• If P ⊆ Q, then (∀x) [x]P ⊆ [x]Q.

• [x]Ro = [x]R∩R−1

• [x]R∨ = [x]R∪R−1

Theorem 38 If a binary relation R has a property then its associated neighborhood
operators also possess related properties. This is tabulated below (Sym, Se, i.Se, Re,
Tr and Eu stand respectively for symmetry, serial, inverse serial, reflexive, transitive
and Euclidean respectively) (Table 3):

Theorem 39 The collection of all neighborhoods N = {n(x) : x ∈ S} of S will
form a cover if and only if (∀x)(∃y)x ∈ n(y) (anti-seriality).

Table 3 Relation and
neighborhoods

R [x] [x]i [x]o [x]∨
Any Sym Sym

Se. Se. iSe. Se.& i.Se.

Re. Re. Re. Re. Re.

Sym Sym Sym Sym Sym

Tr. Tr. Tr. Tr. Tr.

Eu. Eu. Eu.



Representation and Beyond 489

So in particular a reflexive relation on S is sufficient to generate a cover on it. Of
course, the converse association does not necessarily happen in a unique way.

5 Red Results of Classical Rough Sets

For rough sets over approximation spaces, a number of representation, duality and
canonical duality results are known. In the literature some partial surveys [6] are also
known. All of the following semantic approaches have red results associated:

• Regular Double Stone Algebras[24, 35]
• Pre-Rough Algebras [5]
• Rough Algebras [5]
• Semi-simple Nelson Algebras [106]
• 3-Valued Lukasiewicz Algebras[55]
• Cylindric Algebras[23]
• BZ lattices and Variants [12, 13]
• Ortho-pair approach [14]
• Super Rough algebras[81]
• Post Algebras [106]
• Stone Algebras[46]
• AntiChain based approach[89, 95]

Some of these are considered in this section.

5.1 TQBA and Related Algebras

In this subsection dualities associated with topological quasi Boolean algebras
(TQBA) including rough algebras are examined. For the basic theory, notation and
related references refer to Chapter “Algebraic Methods for Granular Rough Sets” in
this volume [98]. An important difference with [5] is the absence of the definable
rough implication and order in these considerations as they are not relevant for
the essential duality. It should be mentioned that semantics have been strongly
influenced by a number of other papers including [10, 46, 57].

• X = 〈X,R
〉

is an approximation space.

• ℘(X) =
〈
℘(X), l, u,∪,∩,∼, 0, 1

〉
is the topological Boolean algebra associ-

ated with X

• 9(X) =
〈
℘(X)| ≈, L,�,�,¬,⊥,5

〉
is the topological quasi Boolean algebra

on roughly equal elements.
• If B = 〈B,∨,∧,∼, 0, 1

〉
is a Boolean algebra, then TQ(B) is the topological

quasi Boolean algebra generated by ordered pairs.
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• δ(X) is the Boolean algebra of definites over the approximation space.

Theorem 40 Every pre-rough algebra of the form S = 〈S,�,�,¬, L,⊥,5〉 is
isomorphic to a subalgebra of TQ(L(S)).

Proof

• L(S) = {Lx : x ∈ S} is a Boolean algebra and TQ(L(S)) is a topological
quasi-Boolean algebra.

• The set {(Lx,♦x) : x ∈ S} generates a topological quasi-Boolean algebra that is
a subalgebra of TQ(L(S)). S is epimorphic to the generated topological quasi-
Boolean algebra.

• Injectivity follows from the property La ≤ Lb &♦a ≤ ♦b −→ a ≤ b.
��

Theorem 41 For every approximation space X, there exists a unique rough algebra
S (upto isomorphism) associated with it and conversely every rough algebra is a
subalgebra of a rough algebra generated by an approximation space.

Proof

• Let S = 〈S,�,�,¬, L,⊥,5〉 be a rough algebra. By definition it is completely
distributive.

• The set L(S) (the image of L) with induced operations is a complete
Boolean subalgebra of S and is isomorphic to a complete field of sets
K = 〈K,∩,∪,c ,∅,K 〉

• Since K is atomic, let X = ⋃At(K). The atoms induce an equivalence relation
R on X and X = 〈X,R〉 becomes an approximation space.

• Clearly K = δ(X) and the isomorphism of L(S) and K induces the isomorphism
of TQ(L(S)) and TQ(δ(X)).

• It should be noted that in all these considerations singleton definite sets do not
matter as any atomic Boolean algebra is isomorphic to an atomic Boolean algebra
of sets without singleton atoms.

��
A few topological quasi-Boolean algebras that are not rough algebras or rough

pre-algebras have been studied in the literature [128]. But no duality results have
been proved in the study.

5.2 Super Rough Dualities

Super rough dualities refer to dualities in the context of a higher order approach to
rough sets due to the present author [81]. Prerequisites can be found in this chapter
[98]. The essential duality is presented here.

As mentioned before, a higher order similarity relation between represented
rough objects is used in the semantics to arrive at super rough algebras.
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Theorem 42 For every super rough algebra S, there exists an approximation space
X such that the super rough set algebra generated by X is isomorphic to S.

Proof

• As S is a long lattice so there exists a partially ordered set P such that the lattice
of convex subsets Co(P ) generated by it is isomorphic to a sublattice of it.

• The finiteness part ensures that an isomorphic copy of Co(P ) is obtainable.
• The convex structure ensures better expression in terms of total operations as

opposed to partial ones and is always available and helps in simplifying the proof.
• By the fundamental characterization of tolerances by blocks (Theorem 46), it is

possible to reconstruct a lattice F along with a compatible tolerance T on it from
the set of fixed points of the map LT .

• LT is definable by a set of conditional equations and F is also constructible as the
set of ‘singletons’ in S. These singletons are definable via the covering property
with respect to the empty set.

• Again note that in any partially ordered set all singletons are convex subsets. This
allows the definition of the operations�, �, L, ¬ and the distinguished elements
on the desired prerough algebra.

Now the representation theorem for rough algebras Theorem 41 allows the
existence of the approximation space X. Checking that the super rough set algebra
generated by the approximation space is isomorphic to S is by a direct contradiction
argument. ��

5.3 Nelson Algebras

All Nelson algebras are quasi-Boolean algebras and semantics using these have
been considered in two chapters in this volume [98, 109]. These are constructed
as follows:

• Let S be an approximation space.
• Form the collection of N = {(xl, xuc) : x ∈ ℘(S)},
• For anya, b ∈ ℘(S), define (al, auc) ∧ (bl, buc) = (al ∩ bl, auc ∪ buc)

• For anya, b ∈ ℘(S), define (al, auc) ∨ (bl, buc) = (al ∪ bl, auc ∩ buc)

• For anya, b ∈ ℘(S), define (al, auc)⇒ (bl, buc) = (alc ∪ bl, al ∩ buc)

• For anya ∈ ℘(S), define ¬(al, auc) = (auc, al)& ∼ (al, auc) = (alc, al)

• Define 0 = (∅, S) and 1 = (S,∅).
The following abstract representation theorem holds:

Theorem 43 The algebra N = 〈N,∨,∧,⇒,∼,¬, 0, 1
〉

is a semi-simple Nelson
algebra as it also satisfies

(∀a ∈ N) a∨ ∼ a = 1 (Nelson-SS)
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Further, any finite semi-simple Nelson algebra is isomorphic to a semi-simple
Nelson derived by the above construction from an approximation space.

It should also be noted that in the above construction if the term functions

∗ = ¬ ∼∼ &+ =∼

are used as fundamental operations instead of ¬,∼, then

Theorem 44 The algebra L = 〈N,∨,∧,∗ ,+ , 0, 1
〉

is a regular double Stone
algebra as it also satisfies all of the following apart from being a pseudo-
complemented bounded distributive lattice that satisfies

(∀a, b) (b ≤ a∗ ↔ b ∧ a = 0) (pseudo complement)

(∀a) a∗ ∨ a∗∗ = 1 (Stone Id)

(∀a, b) (a+ ≤ b↔ b ∨ a = 1) (dual pc)

(∀a) a+ ∧ a++ = 0 (dual Stone Id)

(∀a, b) (a∗ = b∗& a+ = b+ −→ a = b) (regularity)

This result is due to [23].

6 Red Results of Cover Based Rough Sets

In this section, the red results considered are of the following forms:

• Representation between General Approximation Spaces and Covers
• Order Theoretic Dualities

The duality result in the subsection on Tarski algebras is a new adaptation due to the
present author. The result has not been used in the context of covering approximation
spaces previously.

A Basic Problem that can substantially reduce efforts used in logico-algebraic
approaches to general rough sets is the following: Given a general approximation
space S = 〈S,R〉, does there exist a unique covering approximation space of
the form Scov =

〈
S,C
〉

from which R can be reconstructed in a unique way and
conversely?

Variations of the question are also of interest from the point of view of multiple
general approximation spaces that seek to model multi agent systems.
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6.1 Basic Results

Theorem 45

• Every partition S on a set S corresponds to a unique equivalence R on S and
conversely.

• EQ(S) has a lattice structure with respect to the inclusion order. More specif-
ically, 〈EQ(S),∨,∧,	, 1〉 is an atomic, atomistic, relatively complemented,
complete, continuous, semimodular lattice with the least element 	 being the
diagonal of S and the greatest element 1 = S2. Moreover, semimodularity in the
above can be replaced with

(a ∧ b ≺ a & a ∧ b ≺ b −→ a ≺ a ∨ b)

• The atoms of EQ(S) have the form 	∪{(a, b), (b, a)} for distinct a, b ∈ S. The
compact elements of EQ(S) are finite joins of these atoms.

• The partition lattice �(S) is dually isomorphic to EQ(S).
• Every lattice is embeddable into a lattice of the form EQ(S) for some set S[145].

Proof Most of the proof can be found in [48]. Note that continuous lattices are
essentially a form of generalized algebraic lattices. ��

A collection A = {Hα : α ∈ I } of subsets of S is a normal cover if and only if
all of the following hold:

• A is an antichain with respect to the usual inclusion order,
• A is a cover for S, and
• if A is a subset of S which is not included in any Hα , then there exists a two

element subset of A with the same property.

Normal covers correspond to blocks of tolerances defined on the set S in a
bijective way [18, 19]. A refined version of the result is proved next. A specific
version of this result for compatible tolerances on a lattice has been used by the
present author in a duality for super rough sets [81] Sect. 5.2.

Theorem 46 Every normal cover S on a set S is a system of blocks of a tolerance
T ∈ T ol(S) and conversely.

Proof

• If T ∈ T ol(S), then let B = {Bj : j ∈ J } be a system of blocks of T . As T

is reflexive and Bj s are maximal squares contained in T , B is an antichain that
covers S. Suppose the third condition is false, then there exists a H ⊂ S such
that H � Bj for all j ∈ J and satisfies

(∀a, b ∈ H)(∃j ∈ J ) (a, b) ∈ Bj .
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This yields H 2 ⊆ T and so it must be contained in a block of the form Bj—a
contradiction.

• For the converse, if S = {Bj : j ∈ J } is a normal cover, let

(a, b) ∈ T ↔ (∃j ∈ J ) a, b ∈ Bj .

It is easy to check that T is reflexive and symmetric. Suppose that B is a block of
T , but B /∈ S, then B2 ⊂ T and third condition contradicts the assumption. So T

is exactly the tolerance corresponding to the cover S.
��

The result can be extended to generalizations of tolerances to finite arity [77].
The generalization is very significant for rough sets and so the following concept
of k-ary similarity space is introduced. Such structures can be found in application
contexts, but their semantics remain an open problem.

Definition 47 A k-ary relation T on a set S is a k-tolerance on S if and only if all
of the following hold (for all k-permutations σ ):

(∀(a, a, . . . , a) ∈ Sk) T (a, a, . . . , a) (k-reflexive)

T (a1, a2, . . . , ak) −→ T (aσ1, aσ2, . . . , aσk) (k-symmetric)

Definition 48 A collection of subsets L = {Lj : j ∈ J } is a τk-covering if and
only if all of the following hold:

• L is an antichain with respect to the usual inclusion order,
• L is a cover for S, and
• if A is a subset of S which is not included in any Lj , then there exists a k elements
{ai}k1 of A which are not included in any Lj .

The proof of the following theorem also relies on the same strategy used for
tolerances:

Theorem 49 Every τk cover S on a set S is a system of blocks of a k-tolerance
T ∈ T olk(S) and conversely. T olk(S) being the set of all k-tolerances on S.

6.2 Order Theoretic Representations

Given a covering approximation space derived from an information table and
associated basic operators, some operators relating to information exchange and
approximations can be defined. Related red results are also presented in this sub
section. The basic form of these duality results is the following:

• For an operator satisfying some property there exists a cover such that it generates
an equivalent approximation operator.
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• A lower approximation operator is a topological interior operator if and only if
the cover that generates it satisfies a property Xi.

• An upper approximation operator ui defined by a cover C is a topological
(or Kuratowski) closure operator if and only if ui satisfies condition φi for
i = 1, 2, 3, 4.

The following theorem was proved in [152]

Theorem 50 When S is finite, a covering C is unary if and only if

(∀K1,K2 ∈ C)(∃C1, . . . Cn ∈ C)K1 ∩K2 = ∪n
1Ci.

Proof Suppose C is unary, then as (∀x ∈ S) #(Md(x)) = 1, let md(x) = {Kx} and
let K1,K2 ∈ C.

• If K1 ⊆ K2, then K1 ∩K2 is obviously a union of a finite number of elements of
the cover.

• Otherwise, if x ∈ K1 ∩K2 and Kx � K1, then K1 /∈ md(x). So (∃K∗1 ∈ C) x ∈
K∗1 ⊂ K1. Using the same argument on K2 and other elements of C, it is possible
to get an infinite sequence K∗1 ⊂ K∗2 ⊃ . . . from elements of C

• But S is finite and the contradiction means

Kx ⊆ K1,K2 and K1 ∩K2 =
⋃

x∈K1∩K2

Kx

• For the converse, if there exist two elements K1,K2 ∈ md(x) such that K1 ∩K2
is not a union of finite number of elements of C, then

• it is easy to obtain a contradiction when K1 and K2 are comparable.
��

Proposition 51 If L : ℘(S) �→ ℘(S) is an abstract operator on a set S that
satisfies contraction, idempotency, monotonicity and top then there exists a covering
C of S such that the lower approximation l1 generated by S coincides with L.

Theorem 52 For every interior operator L : ℘(S) �→ ℘(S) there exists a unary
covering C on S such that the lower approximation of the first type l1 generated by
C coincides with L.

Proof Since L is an interior operator, it satisfies top, contraction, monotonicity and
idempotence. By the previous lemma, there exists a cover C such that the lower
approximation of the first type l1 generated by it coincides with L.

L satisfies multiplicativity, (∀A,B)L(A∩B) = L(A)∩L(B), and this together
with Theorem 50 yields the result. ��

In general, the first, second, third and fourth type of upper approximation
operators determined by a cover S on a set S are not topological closure operators.
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These are defined as below:

• Xl1 =⋃{K : K ∈ S&K ⊆ X}
• Xu1+ = Xl1 ∪⋃{md(x) : x ∈ X},
• Xu1 = Xl1 ∪⋃{md(x) : x ∈ X \Xl1} [11],
• Xu2+ = ⋃{K : K ∈ S,K ∩X 
= ∅} =⋃{Fr(x) : x ∈ X},
• Xu3+ = ⋃{md(x) : x ∈ X},
• Xu4+ = Xl1 ∪ {K : K ∩ (X \Xl1) 
= ∅},

Closely related to Xu1 is Xu1+ = Xl1 ∪⋃{md(x) : x ∈ X} These have been
defined many times over in the literature (see [86, 148]) and also the chapter on
granular rough sets in this volume by the present author for details [98].

In [151, 153, 154], conditions for the upper approximation operators to be closure
operators are proved, but the conditions do not amount to the operators being
topological closure operators. In [44], the following is proved:

Theorem 53 The following are equivalent if S is finite:

1. C is a unary cover of S.
2. C is a base for some topology τ on S

3.

(∀K1,K2 ∈ C)(∀x ∈ K1 ∩K2)(∃K ∈ C) x ∈ K ⊆ K1 ∩K2

4. u1 is a topological closure operator.

Proof The equivalence of the first and third statement will be proved first. If C is
unary, let (∀A,B ∈ C)(∀x ∈ A ∩ B) md(x) = {Kx}. x must be a representative
element of Kx . So x ∈ Kx ⊆ A ∩ B, with Kx ∈ C.

If C is not unary, then (∃A,B ∈ C)A,B ∈ md(x)&A 
= B. But by the third
statement, there must exist a K ⊂ A∩B satisfying x ∈ K . This contradicts A,B ∈
md(x).

From the above, it follows that C is a unary cover if and only if there exists a
topology τ on S such that C is a base for the topology. ��

The following example shows that it is not possible to generalize to the infinite
case:

Example 54

• Let S = [−1, 1]
• C = {{x} : x ∈ S \ {0}} ∪ {(− 1

n
, 1

n
) : n ∈ N} ∪ {{−1, 0, 1}}

• C covers S and if x 
= 0 then md(x) = {{x}} and md(0) = {{−1, 0, 1}}. C is
unary, but the theorem does not hold.

Example 55

• Let S = R—the set of reals and C = {(x − 1
n
, x + 1

n
) : x ∈ S & n ∈ N}.

• C is a base for the usual topology on S.
• (∀x ∈ S)md(x) = ∅& {x}u1 = ∅. So u1 is not a closure operator.
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Theorem 56 When S is a finite or an infinite set, u2+ is a topological closure
operator if and only if {Fr(x) : x ∈ S} forms a partition of S.

Proof The converse is obvious.

• Let u2+ be a topological closure operator. It suffices to show that

(∀a, b)(F r(a) 
= Fr(b) −→ Fr(a) ∩ Fr(b) = ∅).

Or else there exists z ∈ Fr(a) ∩ Fr(b).
• Clearly, Fr(z) ⊆⋃{Fr(x) : x ∈ Fr(b)} = Fr(b) and
• Fr(b) ⊆⋃{Fr(x) : x ∈ Fr(z)} = Fr(z). So Fr(b) = Fr(z)

• Similarly, Fr(a) = Fr(z) = Fr(b)

• This contradicts Fr(a) 
= Fr(b).
��

Theorem 57 u2+ is a topological closure operator if and only if there is a closed-
open topology τ (that is a union of members of a partition on S) on S such that
{Fr(x) : x ∈ S} is a base of τ if and only

(∀a, b ∈ S) Fr(a) ∩ Fr(b) = ∅ or a ∈ Fr(b)

Proof The proof is by an extension of the proof of the previous theorem. ��
Let cf r(x) =⋃md(x) for any x ∈ S

Theorem 58 For a finite or an infinite S, u3+ is a topological closure operator if
and only if each x ∈ S is a representative element of cf r(x) for the unary cover
{cf r(x) : x ∈ S}.
Proof If u3+ is a closure operator then

• for each a ∈ S, if a ∈ cf r(b) for some b ∈ S, then

cf r(a) ⊆
⋃
{cf r(z) : z ∈ cf r(b)} = cf r(b)u3+ = cf r(b)

• So a must be a representative element of cf r(a) for the cover {cf r(z) : z ∈ S}
If x is a representative element of cf r(a) for the cover C = {cf r(z) : z ∈ S},
then

• For each z ∈ {x}u3+ = cf r(x), since z is a representative element of cf r(z) for
the cover C,

{z}u3+ = cf r(z) ⊆ cf r(x) = {x}u3+

• So

{x}u3+u3+ =
⋃
{cf r(z) : z ∈ cf r(x)} ⊆ {x}u3+.
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• This verifies idempotence. Rest of properties can be directly checked.
��

Theorem 59 For a finite or an infinite S, u3+ is a topological closure operator if
and only if {cf r(x) : x ∈ S} is a base for a topology τ on S and for each x ∈ S,
{cf r(x)} is a local base at x.

Proof The proof follows from the previous theorem and the result that for every
unary cover there exists a topology τ on S for which {cf r(x) : x ∈ S} is a base for
(S, τ ). The missing steps can be found in [44]. ��

For the proof of the next three theorems, the reader is referred to [44].

Theorem 60 For any finite or infinite S, u4+ is a closure operator if and only
if the cover C satisfies For all K1,K2 ∈ C if K1 
= K2 &K1 ∩ K2 
= ∅ then
(∀x ∈ K1 ∩K2) {x} ∈ C.

Theorem 61 For any finite or infinite S, u4+ is a closure operator if and only if
the cover C is a base for a topology τ on S and

• (S, τ ) is a union of disjoint subspaces S1 and S2.
• For any distinct A,B ∈ C, either A∩ S2 = B ∩ S2 = ∅ or A∩ S2 
= B ∩ S2 and
{F ∩ S2 : F ∈ C} is a partition of S2, and

• In the topologies τ1, τ2 induced on S1 and S2 respectively, S1 is a discrete
topological space and S2 is a pseudo-discrete space.

From the above results it can be deduced that

Theorem 62 u4+ is a closure operator Rightarrow u1 is a closure operator
Rightarrow u3+ is a closure operator and no other relation between similar
statements hold.

A number of if and only conditions for a covering C being unary are known.
Some of these are summarized below:

Theorem 63 A cover C of a set S is unary if and only if

• u3+ = u1
• (∀x ∈ S) nbd(x) ∈ C

• (∀X ⊆ S) (Xu4+)u3+ = Xu4+.
• (∀X ⊆ S) (Xu2+)u3+ = Xu2+.

6.3 Galois Connections

A Galois connection for partial covers (that is arbitrary collections of subsets of a
given set) under stringent conditions on approximations has been proved recently in
[27]. The main definitions, terminology and result of [27] has been simplified and
reformulated in this subsection.
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A base systems B is essentially an an arbitrary nonempty collection of subsets
of a universe S. It is not required that

⋃
B = S

This is used as a very restricted granulation (even relative to cover based rough sets).
A set X is said to be B-definable if it is a union of some elements of B in at least

one way. That is

∃H ⊆ B
⋃

H = X

The set of all B-definable elements is denoted by 	B. It is assumed that ∅ ∈ B.
A B-definable element will be said to be strongly B-definable if it is the union of
exactly one set of elements of B.

A base system B is said to be single-layered if and only if

(∀B ∈ B)(∀H ⊆B \ {B}) B ∩
⋃

H 
= B

This means that

Proposition 64 If a base system B is single-layered, then each element of B is
a minimum description of some x ∈ S. Also an element x ∈ S need not satisfy
md(x) ∈ B.

This concept of one-layer base systems in [27] is superfluous because it is the
same thing as saying that the elements of B are pairwise disjoint.

The lower and upper approximation are defined by taking B to be the set of
granules like so

Alb =
⋃
{B : B ∈ B&B ⊆ A}

Aub =
⋃
{B : B ∈ B&B ∩ A 
= ∅}

Proposition 65 The two approximations satisfy all of

• Monotonicity: (∀A,X ∈ ℘(S))(A ⊆ B −→ Alb ⊆ Xlb &Aub ⊆ Xub)

• ∅ub = ∅ and ∅lb = ∅
• If H ∈ 	B then Hlb = H

• (∀X ∈ ℘(S))Xlblb = Xlb ⊆ X & xlb ⊆ Xub

• ?(ub) ⊆ ?(lb) = 	B

The following proposition happens precisely because of the constraints imposed
on definability.

Proposition 66 The set of B-definable elements are all strongly B-definable if and
only if B is single layered.
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The main theorem proved in [27] is this:

Theorem 67 In the context of partial covering approximation spaces, the pair of
maps (lb, ub) is a Galois connection on 〈℘(S),⊆〉 if and only if B is single-layered
and pairwise disjoint, and therefore a partition.

Proof To ensure that (∀X ∈ ℘(S))Xlbub ⊆ X it is necessary that B be pairwise
disjoint and conversely—this can be proven through a contradiction argument.

The other part (∀X ∈ ℘(S))X ⊆ Xublb ⊆ X holds obviously under the
conditions.

A particularly strange way of partialization is also considered in [27] to improve
the above result to single-layer B-systems. The strategy in the presence of the
strong aggregation properties assumed means that no nontrivial approximation that
are below the minimal elements of B are to be regarded as legitimate and upper
approximations of sets that do not include the set are inadmissible. Formally this
translates into

Definition 68 In the context, let lpb, upb be partial maps that satisfy

xlpb =
{
xlb if x = ∅ or xlb 
= ∅
undefined otherwise

(12)

xupb =
{
xub if x ⊆ xub

undefined otherwise
(13)

Theorem 69 In the context of partial covering approximation spaces, the pair of
partial maps (lpb, upb) is a partial Galois connection on 〈℘(S),⊆〉 if and only if
B is pairwise disjoint.

6.4 Representation of QOAS

In the chapter on algebraic approaches to granular rough sets in this volume [98], the
basic algebraic semantics of quasi-ordered approximation spaces has been presented
by the present author. In this subsection, the main representation results are stated
with minimal remarks. Proofs of the result are in [73]. For notation and other details,
the reader is referred to the same chapter.

The almost routine construction used for proving representation results is in the
proof of the following theorem.

Theorem 70 If L = 〈L,∨,∧, 0, 1
〉

is a bounded distributive lattice, then there
exists a QOAS Q = 〈Q,R

〉
such that L is embeddable in its lattice of definable sets.
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Proof

• Let Q = Spec(L)—the set of prime filters of L. Let Ca = {F : a ∈ F ∈
Spec(L)}

• Let C = {Ca : a ∈ Q}, then define R through its neighborhoods by [x]i =⋂{C : x ∈ C ∈ C}, then Q = 〈Q,R
〉

is a QOCAS.
• (∀X ∈ Q) [X]i =⋂{Ca : X ∈ Ca ∈ C} =⋂{Ca : a ∈ X &Ca ∈ C}.
• So definable sets including Ca are open sets in the Alexandrov topology τR

generated by R

• The map h : L �−→ δ(Q) defined by h(a) = Ca is a lattice embedding.
��

Theorem 71 If L = 〈L,∨,∧,⇒, 0, 1
〉

is a Heyting algebra, then there exists a
QOAS Q = 〈Q,R

〉
such that L is embeddable in its lattice of definable sets.

Proof

• Define Q as in the previous theorem. Using C as a sub basis, generate a new
topology τ that is coarser than τR

• Using τ form a Heyting algebra with set union, intersection and⇒ as per

(∀A,B ⊆ Q)A⇒ B = intτ (A
c ∪ B)

• h as defined in the proof of the previous theorem is an embedding of Heyting
algebras.

��
A lattice filter F is complete if it is closed under arbitrary meets. It is completely
prime if and only if

∨
ai ∈ F implies there is at least one i for which ai ∈ F .

Theorem 72 If L = 〈L,∨,∧,⇒, 0, 1
〉

is a Heyting algebra, then there exists a
QOAS Q = 〈Q,R

〉
such that L is isomorphism in its lattice of definable sets.

Proof The main step in the proof is to take the base set of Q as the principal filters
generated by join-irreducible elements. These filters would be complete, completely
prime and would separate points in the lattice. ��
Theorem 73 If L = 〈L,∨,∧,⇒, 0, 1

〉
is a Heyting algebra, then there exists a

QOAS Q such that L is isomorphic to a subalgebra of the Heyting algebra RQ

formed by Q

Proof The proof of the result is based on that of the previous results and the
properties of RQ. ��
Theorem 74 If L = 〈L,∨,∧,⇒, 0, 1

〉
be a completely distributive Heyting

algebra in which the set of join irreducibles is join-dense, then there exists a QOAS
Q such that L is isomorphic to the Heyting algebra RQ formed by Q.

Proof The proof of the result is based on that of the previous results and the
properties of RQ. ��
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6.5 Tarski Algebras and Spaces

Tarski algebras are the same thing as implication algebras [123]. A few full dualities
relating to classes of such algebras are known. Two related dualities are outlined
in this section. One of this is a duality for finite Tarski sets [16, 17] or covering
approximation spaces. But it has not been viewed in a rough perspective before.
Open research problems in the context are also indicated.

The duality between Boolean algebras and Boolean spaces is an example of a
topological duality—this basic result can be generalized to a duality between Tarski
algebras and spaces [1]. Full dualities between the category of Boolean algebras
with meet-morphisms that preserve 1 and Boolean spaces with Boolean relations
are also known [52]. This is generalized to Tarski algebras in [17].

Definition 75 A Tarski algebra (or an implication algebra) is an algebra of the
form S = 〈S, ·, 1

〉
of type 2, 0 that satisfies (in the following, the implication a · b is

written as ab as in [123])

1a = a (T1)

aa = 1 (T2)

a(bc) = (ab)(ac) (T3)

(ab)b = (ba)a (T4)

The variety of IAs is denoted by VIA. If X is a set, and (∀A,B ∈ ℘(S))A ·B =
Ac ∪ B, then

〈
℘(X), ·,X

〉
is an IA. Any subalgebra of such an algebra is said to be

an IA or Tarski algebra of sets. A join-semilattice order ≤ is definable in a IA as
below:

(∀a, b) a ≤ b↔ ab = 1; the join is a ∨ b = (ab)b

Filters or deductive systems of an IA S are subsets K ⊆ S that satisfy

1 ∈ K & (∀a, b)(a, ab ∈ K −→ b ∈ K)

The set of all filtersF(S) is an algebraic, distributive lattice whose compact elements
are all those filters generated by finite subsets of S. A filter K is prime if and only if
it satisfies (∀a, b)(a ∨ b ∈ K −→ a ∈ K or b ∈ K).

Theorem 76 In a finite IA S, the following hold:

• A filter is prime if and only if it is a maximal filter.
• A filter is prime or maximal iff it is of the form (x ↓)c for a coatom x
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• If Spec(S) is the set of prime or maximal filters of S and σS : S �−→ ℘(Spec(S))

is a map into the IA of sets ℘(Spec(S)) and is defined by

(∀x) σS(x) = {K : x ∈ K ∈ Spec(S)},

then σS is an embedding

In the last theorem if S is a finite Boolean algebra, then it is provable that
Spec(S) ∼= Spec(℘ (Spec(S)) and in fact for any finite Boolean algebra S, S ∼=
℘(Spec(S)). This does not hold for finite IA. But note that Spec(S) is determined
by the set CoAt(S) of coatoms.

Definition 77 A Tarski set is a pair 〈X, S〉 where X is a non-empty set and S is a
nonempty subset of ℘(X). It is dense (or a covering approximation space (CAS)) if
and only if

⋃
(S) = X. The dual of a Tarski set 〈X, S〉 is the subset 	(X) ⊂ ℘(X)

defined as below:

	(X) = {U : ∃W ∈ S& ∃H ⊆ W &U = Wc ∪H }

Theorem 78 Let 〈X, S〉 is a Tarski set, then 〈	(X), ·,X〉 is a Tarski subalgebra of
sets.

The proof is by direct verification.
If S is a finite Tarski algebra and σS : S �−→ ℘(Spec(S)) is the map defined

earlier and KS = {σ(x)c : x ∈ S}, then the Tarski set 〈Spec(S),KS〉 is also referred
to as the associated set of S.

Theorem 79 If S is a finite Tarski algebra, then σS(S) = 	(Spec(S)) and so S ∼=
	(Spec(S)).

Proof

• Since (∀x) σS(x) = σ(x) ∪ ∅, therefore σS(x) ∈ 	(Spec(S)).
• Let U ∈ 	(Spec(S)). By definition, (∃x ∈ S)(∃H ⊆ (σS(x))

c) U = σS(x) ∪H

• Let H = {Q1, . . . ,Qn} For each of these maximal filters Qi , there exists a
coatom qi that generates it.

• So σS(qi)
c = {(qi ↓)c}. So H =⋃ (σS(qi))

c.
• This means U = σ(x) ∪⋃ (σS(qi))

c = σS(b) for some b

• So U ∈ σS(S) and σS(S) = 	(Spec(S)).
��

Theorem 80 Let 〈X, S〉 be a finite dense Tarski set or a CAS, then the map ξX :
X �−→ Spec(	(X)) defined by ξX(x) = {U : x ∈ U ∈ 	(X)} is an injective and
a surjection.

Proof The proof is by direct verification.

• If a, b ∈ X are distinct elements, then b ∈ {a}c ∈ Coat (	(X)). So ξX is
injective.
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• By finiteness, (∀Q ∈ Spec(	(X)))(∃U ∈ Coat (	(X)))Q = (U ↓)c.
• For a specific Q and U in the last statement, (∃x ∈ X)U = {x}c as 〈X, S〉 is

dense. Clearly then ξX(x) = Q and X ∼= Spec(	(X)).
��

The result is an abstract representation theorem for finite Tarski algebras. The
actual significance of the result has not been properly explored in the context
of covering approximation spaces (even in the finite case). This is considered
separately by the present author in a forthcoming paper. For one thing, every
construct in a CAS has an algebraic representation.

For extending the results to the infinite case, a topological extension is necessary.

Definition 81 A Tarski space (T-space) is a concrete topological structure of the
form χ = 〈X,K, τ 〉 that satisfies:

1. 〈X, τ 〉 is a Hausdorff, totally disconnected topological space with K being a basis
for the compact subsets of τ .

2. (∀A, .B ∈ K) A ∩ Bc ∈ K

3. For any two distinct a, b ∈ X, exists a U ∈ K such that a ∈ U and b /∈ U .
4. If F is a closed subset and {Ui}i∈I is a directed subcollection of sets in K and for

each i ∈ I , F ∩ Ui 
= ∅, then F ∩ (
⋂

Ui) 
= ∅.

Given a T-space two distinct Tarski subalgebras of a set Tarski algebra are defined
in [17]:

TK(X) = {Wc ∪H : H ⊆ W ∈ K} (T-algebra)

	K(X) = {U : Uc ∈ K} (dual T-algebra)

Theorem 82

• If X ∈ K, then χ is a Boolean space and 	K(X) is a Boolean algebra of all
clopen sets of the topological space.

• If X is finite, then TK(X) = 	K(X)

If A,B ∈ VIA, then a semi-morphism is a monotone map f : A �−→ B that
satisfies

• f (ab) ≤ f (a)f (b)

• f (1) = 1

Example 83 If X and W are sets and R ⊂ X ×W , let [x]i = {a : Rxa}. Define a
map hr : ℘(W) �−→ ℘(X) such that for any U ⊆ W ,

hR(U) = {x : [x]i ⊆ U}

hR ∈ SMor(℘ (W),℘ (X))—the set of semi-morphisms : W �−→ X.
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Definition 84 Let χX and χW be two T-spaces over X and W respectively, then
R ⊆ X ×W is a T-relation if and only if the following hold:

• (∀U ∈ 	KW
(W)) hR(U) = {x : [x]i ⊆ U} ∈ 	KX

(X)

• [x]i is a closed subset of W for each x ∈ X

A T-partial function is a partial map f : X �−→ W such that for each U ∈
	KW

(W), f−1(U) ∈ 	KX
(X). The set of all T-partial functions (resp. relations)

from X to W will be denoted by T F(X,W) (resp. T R(X,W)).

Definition 85 The following categories can be defined on the basis of the above:

• TR with Objects being Tarski spaces and Morphisms being sets of T-Relations.
• TF with Objects being Tarski spaces and Morphisms being sets of T-partial

functions.
• ST with Objects being Tarski algebras and Morphisms being sets of semi-

morphisms.
• HT with Objects being Tarski algebras and Morphisms being sets of homomor-

phisms.

Theorem 86

• HT is a subcategory of ST,
• ST is dually equivalent to TR, and
• HT is dually equivalent to TF.

Proof For the gory details, the reader is referred to [17]. Simpler proofs are of
interest. ��

7 Discrete Duality for Double Stone Algebras

Double Stone algebras are among the first algebras proposed as a semantics for
classical rough sets. Two new discrete dualities have been proved recently for double
Stone algebras in [35]. These are considered here. Dualities like these are justified
by their use in applications in logic or in algebra and related logics have been
considered in the same paper. The main proof in [35] has been reworked here.

Recall from [98] that a Stone algebra L is an algebra of type (2, 2, 1, 0, 0) of the
form

L = 〈L, ∨, ∧, ∗, 0, 1
〉

that satisfies

•
〈
L,∨,∧, 0, 1

〉
is a bounded distributive lattice.

• x∗ is the pseudo-complement of x, that is y ≤ x∗ ⇔ y ∧ x = 0
• x∗ ∨ x∗∗ = 1
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B(L) = {a∗ : a ∈ L} is the center of L 	∗(L) = {a : a∗ = 0} is its set of dense
elements.

Proposition 87 In a Stone algebra L, the following hold:

• B(L) is a Boolean subalgebra of L.
• 	∗(L) ∈ F(L) and 	∗(L) = {a ∨ a∗ : a ∈ L}
• A prime filter is maximal if and only if 	∗(L) ⊆ F .
• (∀a, b) (a ∧ b)∗ = a∗ ∨ b∗& (a ∨ b)∗∗ = a∗∗ ∨ b∗∗

A double Stone algebra L is an algebra of type (2, 2, 1, 1, 0, 0) of the form

L = 〈L, ∨, ∧, ∗, +, 0, 1
〉

that satisfies

•
〈
L, ∨, ∧, ∗, 0, 1

〉
is a Stone algebra

• x+ is the dual pseudo-complement of x, i.e. x+ ≤ a ⇔ a ∨ x = 1
• x+ ∧ x++ = 0.

It is possible to replace the second and the third condition by the equations,

• x ∧ (x ∧ b∗ = x ∧ b∗, x ∨ (x ∨ b)+ = x ∨ b+
• x ∧ 0∗ = x, x ∨ 1+ = x

• 0∗∗ = 0 & 1++ = 1.

A double Stone algebra is regular if and only if x ∧ x+ ≤ b ∨ b∗ if and only if

(x+ = b+, x∗ = b∗ −→ x = b).

If Q is a subset of a partially ordered set X = 〈X,≤〉, then Q ↑= {x : (∃q ∈
Q) q ≤ x}. It is the principal o-filter generated by Q. The set of all o-filters will
be denoted by Fo(X). It is a bounded distributive lattice under the induced set-
theoretical operations. The set of maximal and minimal elements of the partially
ordered set X will be denoted by max(X) and min(X) respectively. For any a, b ∈
X, LB(a, b) and UB(a, b) shall denote the set of common lower and common upper
bounds respectively.

On a partially ordered set X = 〈X,≤〉, consider the following conditions:

(∀a)(∃!b ∈ max(X)) a ≤ b (F1)

(∀a)(∃!b ∈ min(X)) b ≤ a (F2)

(∀a, b)(LB(a, b) 
= ∅ −→ UB(a, b) 
= ∅) (FW1)

(∀a, b)(UB(a, b) 
= ∅ −→ LB(a, b) 
= ∅) (FW2)

(∀a)(∃b ∈ max(X)) a ≤ b (W1)

(∀a)(∃b ∈ min(X)) b ≤ a (W2)
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Theorem 88 In a partially ordered set X, the following hold:

• If F1 holds then FW1 also holds. The converse is false in general.
• If F2 holds then FW2 also holds. The converse is false in general.
• X satisfies F1 if and only if X satisfies FW1 and W1.
• X satisfies F2 if and only if X satisfies FW2 and W2.

Proof The proof is easy and is left to the reader. If X is an infinite unbounded chain,
then it satisfies FW1 and FW2, but none of the rest. ��
Definition 89

• A double Stone frame (dsf) X = 〈X,≤〉 is a partially ordered set that satisfies F1
and F2.

• A weak double Stone frame (wdsf) X = 〈X,≤〉 is a partially ordered set that
satisfies FW1 and FW2.

The main motivation for the definitions is in the following theorem [20] on the
set of prime ideals Ip(L) of a Stone algebra L.

Theorem 90 A partially ordered set X is isomorphic to the partially ordered set
Spec(L) of a Stone algebra if and only if F2 holds and if x ∈ min(X) then x ↑ is a
singleton or is isomorphic to Spec(Z) of some distributive lattice with top.

The second part of the condition can be seen relative to the fact that a pseudo-
complemented distributive lattice is a Stone algebra if and only if the join of any
two minimal prime ideals is the whole algebra.

Definition 91 The complex algebra of a double Stone frame X is the algebra

C(X) = 〈Fo(X),∩,∪,∗ ,+ ,∅, 〉

with extra operations being defined by

(∀A ⊆ X)A∗ = (max(X) ∩ A) ↓c (14)

(∀A ⊆ X)A+ = (min(X) ∩ A) ↑c (15)

Fo(X) will be abbreviated by oX

Definition 92 If L is a double Stone algebra, then its canonical frame is the frame

Cf(L) = 〈Fp(L),⊆〉

Theorem 93 If X is a double Stone frame, then C(X) is a double Stone algebra.

Proof

• oX is a bounded distributive lattice.
• A∗ ∩ A = ∅ because (max(X) ∩ A) ↓= A ↓.
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• Let B ∈ oX and A ∩ B = ∅. If B ∩ (A ↓) 
= ∅ and b ∈ B, a ∈ A and b ≤ a.
As B is an order filter, it follows that a ∈ B ∩ A—a contradiction. So A∗ is the
pseudo-complement of A.

• Suppose x ∈ X \ (A∗ ∪ A∗∗), then

–

x ∈ (A∗ ∪A∗∗)c = A∗c ∩ A∗∗c = A ↓ ∩((A ↓)c ↓)

– So (∃a, b) x ≤ a & a ∈ A& x ≤ b & b /∈ A ↓
– By F1, let x ≤ h ∈ max(X). Clearly it is necessary that a, b ≤ h.
– Now a ∈ A ∈ oX yields h ∈ A

– b ≤ h yields b ∈ A ↓—a contradiction
– Therefore A∗ ∪ A∗∗ = X.

• To show that A+ is an o-filter, let x ∈ (min(X) ∩ A) ↑c and x ≤ a

– If a ∈ (min(X) ∩ A) ↑ then (∃b ∈ (min(X) ∩A)) b ≤ a

– If s ∈ min(X)& s ≤ x ≤ a, hence s = b ∈ A

– This yields the contradiction x ∈ (min(X) ∩ A) ↑. So A+ is an o-filter.

• Next, it will be shown that A = Bc ↔ A+ ⊆ B

– If A = Bc, let x /∈ B and h ∈ min(X)& h ≤ x

– If x /∈ (min(X) ∩ A) ↑, then h /∈ min(X) ∩A. So h /∈ A

– So A ∪ B = X & h ∈ B and therefore x ∈ B—a contradiction.
– The converse implication a direct argument suffices for A ∪ A+ = X

– x /∈ A+ → x ∈ (min(X) ∩ A) ↑ and (∃h ∈ min(X) ∩ A) h ≤ x

– As A is an o-filter, x ∈ A

A+ ∩ A++ = ∅ can be verified by a contradiction argument again. In words, this
reads as let h be the minimal element of an element x in the intersection, then x can-
not be in the o-filter generated by the minimal elements in A. This means h cannot
be in A. On the other hand as x is in the double dual pseudo complementation of
A, h cannot be a minimal element in the dual pseudo complementation of A. So h

must be in the o-filter generated by the set of minimal elements in A. Minimality of
h, means it must be in A. This contradiction means the original intersection must be
empty. ��
Theorem 94 If S is a double Stone algebra, then Cf(S) is a double Stone frame.

The proof of this statement is obvious.

Theorem 95

• If S is a double Stone algebra, then S is isomorphic to a subalgebra of CCf(L).
• If X is a double Stone frame, then it is isomorphic to a substructure of

〈CfC(X),⊆〉 .
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Proof For any prime filter F , let Fmax be the unique maximal filter containing it and
let Fm be the unique minimal filter contained in F .

• For the first part, note that the Stone embedding w : L �−→ ℘(Fp(L)) defined
by w(x) = {F : x ∈ F ∈ Fp(L)} is an embedding of bounded lattices. So it
suffices to show that w preserves ∗ and +.

• If F ∈ w(a)∗, then F /∈ (max(Fp(L)∩w(a))) ↓ and so a /∈ Fmax. So a∗ ∈ Fmax
and a∗ ∈ F . Otherwise a∗ ∨ a∗∗ = 1 yields a∗∗ ∈ F ⊆ Fmax—a contradiction.
So F ∈ w(a∗).

• For proving w(a∗) ⊆ w(a)∗, note that if F ∈ w(a∗), yields a∗ ∈ F ⊆ Fmax. So
a /∈ Fmax and F /∈ (max(Fp(L) ∩ w(a))) ↓ or F ∈ w(a)∗.

• To show w(a)+ ⊆ w(a+), let F ∈ w(a)+, then Fm /∈ w(a) and a /∈ Fm. Since
a ∨ a+ = 1 and Fm is prime, a+ ∈ Fm and a+ ∈ F .

• To show w(a+) ⊆ w(a)+, if a+ ∈ F then it suffices to show Fm /∈ w(a). Since
Fm is minimal, a ∧ a+ /∈ Fm. So if a ∈ Fm, then a+ /∈ Fm and a++ ∈ Fm

and therefore a++ ∈ F . But as a+ ∈ F , 0 = a+ ∧ a++ ∈ F—a contradiction.
Therefore a /∈ Fm.

• For the second part of the theorem, define a map g : X �−→ CfC(X) by

(∀x) g(x) = {B : x ∈ B ∈ Fo(X)}

• If b ≤ c and A ∈ g(b), then c ∈ A as it is an order filter. Hence g(b) ⊆ g(c).
• If b � c, then c ↑� b ↑ and there exists a prime filter F containing c ↑ but not

b ↑.
��

The second part of the proof shows that the second part of theorem holds for all
partially ordered sets.

A duality for weak double Stone frames can also be proved. Here only the
statement of the result will be mentioned. For details the reader is referred to [35].

Definition 96 If X is a weak double Stone frame, then its complex algebra Cw(X)

is the algebra

〈
Fo(X),∩,∪,∗ ,+ ,∅, 〉

with extra operations being defined by

(∀A ⊆ X)A∗ = {x : x ↑ ∩A = ∅} (16)

(∀A ⊆ X)A+ = {x : x ↓ ∩(Ac) 
= ∅} (17)

It can be shown that this definition coincides with the earlier one if X is a double
Stone frame. Analogue dualities hold for weak double Stone frames.
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Theorem 97

• If S is a double Stone algebra, then S is isomorphic to a subalgebra of CwCf(L).
• If X is a weak double Stone frame, then it is isomorphic to a substructure of
〈CfCw(X),⊆〉.
The next theorem concerns regular double Stone algebras:

Theorem 98

• If a partially ordered set X has chains of length at most 2, then C(X) is a regular
double Stone algebra.

• If L is a regular double Stone algebra, then Cf(L) has chains of at most length 2
• The duality for double Stone algebras extends to this context as well.

8 Preference and Discernibility in Rough Sets

In this section, the duality proved in connection to preference relations in [34] is
reworked for general contexts. These have connections with rough sets but have not
been indicated in the paper and so these aspects are also invented here. Importantly
the approach has connections with specific versions of the antichain based approach
due to the present author [89, 97].

For basics of preference relations, semi orders and interval orders, the reader is
referred to [43, 115, 125]. A survey of non conventional approaches is in [76].

Definition 99 Let S be a set of concepts, attributes or alternatives. A preference
relation π and a indifference I relation are binary relation on S that satisfy;

(∀a, b) (πab −→ ¬πba) (A1)

(∀a, b) (πab −→ ¬Iab) (subdiscernibility)

(∀a) Iaa (I-reflexive)

(∀a, b) (Iab −→ Iba) (I-symmetry)

The tuple
〈
S, π, I

〉
is said to be a preference frame.

In the definition, indifference is a similarity or tolerance relation, while preference
is a asymmetrical, irreflexive relation. Transitivity is not required of π .

Some of the essential terminology is fixed first. Every function f ∈ SS on a set
S induces a complex (or global) function f̄ ∈ ℘(S)℘(S) that is defined as (∀A ∈
℘(S))f̄ (A) = {f (x) : x ∈ A}. For simplicity f̄ (A) will be denoted by f [A].
Further, the same symbol will be used for an algebra and its underlying set.

If L = 〈L,∨,∧, 0, 1
〉

is a bounded lattice, then a modal operator on it is a map
f ∈ LL that satisfies

(∀a, b) f (0) = 0 & f (a ∨ b) = f (a)∨ f (b)
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h ∈ LL is a sufficiency operator if and only if it satisfies

(∀a, b) h(0) = 1 & h(a ∨ b) = h(a) ∧ h(b)

Definition 100 A mixed algebra (MIX) is an algebra of the form

B = 〈B,∨,∧,¬, f, h, 0, 1
〉

that satisfies all of the following (Fu(B) is the set of all ultrafilters of B):

B = 〈B,∨,∧,¬, 0, 1
〉

is a Boolean algebra (BA)

f is a modal operator on B (modal)

h is a sufficiency operator on B (suff)

(∀F,G ∈ Fu(B)) , F ∩ h(G) 
= ∅ ↔ f (G) ⊆ F (UF)

A weak mixed algebra (wMIX) is an algebra of the form

B = 〈B,∨,∧,¬, f, h, 0, 1
〉

that is a Boolean algebra with a modal operator f and a sufficiency operator h that
coincide on all atoms of B. Each complete and atomic MIX is a wMIX, but the
converse is false in general. Also every modal algebra cannot be extended to a MIX.
To see this consider a modal algebra with the modal operator being the identity
operator. It is known that the class of MIX is not first order axiomatizable [33].

Definition 101 If B is a MIX and RB is a relation on the set of its ultrafilters Fu(B)

defined by

RBFG↔ f [G] ⊆ F,

then the relational system C(B) = 〈Fu(B),RB〉 is the canonical system of B.

Definition 102 Let S = 〈S,R〉 be a general approximation space, with R being an
arbitrary binary relation, then on its powerset ℘(S), the following operators can be
defined:

(∀A ∈ ℘(S))Aū = {x : [x]i ∩ A 
= ∅& x ∈ S} (inverse-upper)

(∀A ∈ ℘(S))As = {x : A ⊆ [x]i & x ∈ S} (sufficiency)

(∀A ∈ ℘(S))Al̄ = {x : [x]i ⊆ A& x ∈ S} (inverse-lower)
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Theorem 103 In the context of the above definition all of the following hold:

• ū is a complete modal operator and s is a complete sufficiency operator.

•
〈
℘(S),∪,∩,c ,ū ,s ,∅, S

〉
is a MIX.

• l̄ is a definable operation: (∀X ∈ ℘(S))Xl̄ = Xcūc.
• R is symmetric if and only if (∀X ∈ ℘(S))X ⊆ Xss

• (∀X ∈ ℘(S))Xs ⊆ Xū &Xū \X∗ ⊆ Xū \Xl

• (∀X ∈ ℘(S)) (Xs ⊆ Xl̄ −→ X∗ = Xl)

From this, it should be clear that the MIX algebra on a powerset is essentially
the Boolean algebra with approximation operators enhanced with an additional
sufficiency operator. From a rough perspective, it helps in comparing the relative
size of sets and granules.

8.1 Preference Algebras

Preference algebras are basically double MIXs.

Definition 104 A preference algebra B is an algebra of the form

B = 〈B,∨,∧,¬, f, h, f1, h1, 0, 1
〉

that satisfies B = 〈B,∨,∧,¬, f, h, 0, 1
〉

and B = 〈B,∨,∧,¬, f1, h1, 0, 1
〉

are
MIXs and satisfy all of the following:

(∀a ∈ B) a ∧ f (h(a)) = 0 (A1)

(∀a ∈ B) a ∧ f (h1(a)) = 0 (A2)

(∀a ∈ B) a ≤ f1(a) (A3)

(∀a ∈ B) a ≤ h1(h1(a)) (A4)

The axioms A1–A4 correspond to the four axioms of preference frames in the
sense of correspondences between modal frame and algebraic semantics (see [127]).

Construction
A unique preference algebra can be constructed from a given preference frame〈
S, π, I

〉
, as below:

• Define the operators ū and s on ℘(S) by regarding
〈
S, π
〉

as a general approxi-
mation space as in Definition 102 and denote them by fπ and hπ respectively.

• Define the operators ū and s on ℘(S) by regarding
〈
S, I
〉

as a general approxima-
tion space as in Definition 102 and denote them by fI and hI respectively.

• C(S) =
〈
℘(S),∪,∩,c , fπ , hπ , fI , hI , 0, 1

〉
is the complex algebra derived from

the preference frame S
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Theorem 105 In the complex algebra C(S) derived from a preference frame S,

both
〈
℘(S),∪,∩,c , fπ , hπ , 0, 1

〉
and
〈
℘(S),∪,∩,c , fI , hI , 0, 1

〉
are weak MIXs

that satisfy A1–A4.

Proof The proof is fairly direct. ��
Definition 106 If B = 〈B,∨,∧,¬, f, h, f1, h1, 0, 1

〉
is a preference algebra, on

the set of ultrafilters Fu(B) of B, let πB and IB be two binary relations defined as
below:

(∀F,G ∈ Fu(B)) (πBFG↔ f (G) ⊆ F)

(∀F,G ∈ Fu(B)) (iBFG↔ f1(G) ⊆ F)

Then the relational system 〈Fu(B), πB, IB〉 is called the canonical frame of the
preference algebra B and is denoted by Cf(B).

Using a contradiction argument, it can be proved that

Theorem 107 The canonical frame of a preference algebra is a preference frame.

The meaning of the following duality result will be explored after its proof:

Theorem 108 Suppose S = 〈S, π, I 〉 is a preference frame and

B = 〈B,∨,∧,¬, f, h, f1, h1, 0, 1
〉

is a preference algebra, then

1. The map v : B �−→ CCf(B) defined by

(∀a ∈ B) v(a) = {F : F ∈ Fu(B)& a ∈ F }

is an embedding of preference algebras.
2. The map w : S �−→ CfC(S) defined by

(∀a ∈ S)w(a) = {X : X ∈ ℘(S)& a ∈ X}

is an embedding of preference frames.

Proof

• Stone maps are Boolean embeddings. So v is a Boolean embedding.
• To show that v preserves f, h, f1 and h1, note that

– F ∈ hπB (v(x)) ↔ F ∈ hB(v(x)) ↔ (∀G ∈ Fu(B))(G ∈ v(x) → πBFG).
The subscript on the predicate π has been used to indicate its construction.

– So, by condition UF f (G) ∈ F ↔ (∀G ∈ Fu(B))(x ∈ G→ F ∩ h(G) 
= ∅)
– Inclusion: Let x ∈ G ∈ Fu(B), then as h(x) ∈ F , F ∩ h(G) 
= ∅.
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– Reverse Inclusion: Suppose h(x) /∈ F . Form the set Wh = {b : b ∈
B &¬(h(¬b)) /∈ F }. Let G+ be the proper filter generated by Wh∪{x}. If G+
is not proper, then it would be yield the contradiction h(x) ∈ F . So G+ can be
extended to a prime filter G. As x ∈ G, F ∩h(G) 
= ∅. So (∃b ∈ G)h(b) ∈ F .
This yields ¬h(b) = ¬(h(¬(¬b))) /∈ F , that is ¬b ∈ Wh ⊆ G or b /∈ G—a
contradiction (by the definition of ultrafilters.)

• Preservation of modal operators is by standard methods.

For the second part of the theorem,

• Clearly w(x) is the principal ultrafilter of ℘(S) generated by {x}. For any b, c ∈
S, it suffices to prove that πbc↔ π℘(S)w(b)w(c) and Ibc↔ I℘(S)w(b)w(c).

• π℘(S)w(b)w(c)↔ fπ (w(c)) ⊂ w(b)

– ↔ (∀B ⊂ A) (c ∈ B → b infπ(B))

– ↔ (∀B ⊂ A) (c ∈ B → [b]i ∩ B 
= ∅).
• If πbc and c ∈ B, then [b]i ∩ B 
= ∅ and by the last two way implication,

π℘(S)w(b)w(c).
• If π℘(S)w(b)w(c) for some b, c ∈ S, then setting B = c suffices to show πbc.
• This proves the second part.

��
From the theorem, it follows that

Corollary 109

• Every preference frame is embeddable into the canonical frame of its complex
algebra.

• Every preference algebra is embeddable into the complex algebra of its canonical
frame.

In the appendix of the paper [34], it is also shown that the above duality can be
modified to first order scenario.

8.2 Interpretation and Problems

If indifference is read as similarity (as the axioms indicate), then the duality theorem
apparently provides an interesting semantic bound for similarity based rough sets
using pointwise approximations only. This is because in the preference algebra,
it is not possible to represent the sufficiency operator in terms of other rough
operators and set operations. However it is representable using additional rough
approximation operators. This suggests a number of related problems.
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1. Preference among single attributes may possibly generate reducts and can in any
case, help with reduct computation. The fine details are an open problem.

2. What is the connection of the preference frames with dominance based rough
sets?

9 Distributive Lattices with Galois Connections

If S = 〈S,R〉 is a general approximation space, then for any subset A ⊆ S, let

A� = {x : x ∈ S & [x]i ⊆ A}
A� = {x : x ∈ S & [x] ⊆ A}

A� = {x : x ∈ S & [x]i ∩ A 
= ∅}
A� = {x : x ∈ S & [x] ∩ A 
= ∅}

Let R = {(X�,X�) : X ⊆ S}. Define a partial-order on it via

(X�,X�) ≤ (Z�, Z�)↔ X� ⊆ Z� &X� ⊆ Z� (18)

It is known that the pair (�,�) (resp (�,�) ) of pointwise rough approximation
operators forms an order-preserving Galois connection for any binary relation on
the powerset ℘(S).

In [39], extensions of bounded distributive lattices equipped with a Galois
connection are studied through concepts of GC-frames and canonical frames (of
the algebras). The complex algebras of GC-frames are defined through rough
approximation operators and it is proved that every bounded distributive lattice
with a Galois connection (represented by rough upper and lower approximations)
can be embedded into the complex algebra of its canonical frame. The result is
also extended to weakly atomic Heyting-Brouwer algebras endowed with a Galois
connection in the paper. The essence of the constructions are considered in this
section.

9.1 Bounded Distributive Lattices with a Galois Connection

Bounded distributive lattices often arise as sets of subsets of a universe of attributes
in the study of rough sets. They also relate to generalization of relation algebras, but
that connection is too weak.
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Definition 110 A bounded distributive lattice with a Galois connection, (gcd-
lattice), is an algebra of the form La =

〈
L,∨,∧, f, g, 0, 1

〉
that satisfies:

•
〈
L,∨,∧, 0, 1

〉

• The two maps f, g : L �→ L form an order preserving Galois connection or
adjunction: that is the following hold:

f ◦ g ◦ f = f (19)

g ◦ f ◦ g = g (20)

(∀x, b) f (x ∨ b) = f (x) ∨ f (b) (21)

(∀x, b) g(x ∧ b) = g(x) ∧ g(b) (22)

(∀x) f (x) =
∧
{b : x ≤ g(b)} (23)

(∀x) g(x) =
∨
{b : f (b) ≤ q} (24)

Definition 111 A Galois connection-frame (or a GC-frame or an A-frame) F =〈
F,<,R

〉
is a relational system that satisfies the following:

〈
F,<
〉

is a quasi-ordered set (quasi-ordered set)

(∀a, b, c, e) (a < b & e < c &Rac −→ Rbe) (Eq:R)

In [39], the authors have used flawed notation:≤ instead of <. If > is defined by
(∀a, b)(a < b↔ b > a), then the condition Eq:R can be rewritten as: > ◦R ◦> ⊆
R. It is also possible to replace < with a groupoidal operation.

Definition 112 If Fp(L) is the set of all prime lattice filters of a gcd-lattice La =
(L,∨,∧, f, g, 0, 1), then let 9 be the relation defined by

9FG⇔ (∀b) (b ∈ G −→ f (b) ∈ F)⇔ (∀b) (g(b) ∈ G −→ b ∈ F) (�)

then the canonical frame of the gcd-lattice La is the relational system Cf(L) =〈
Fp(L),⊆,9

〉

Lemma 113 For a gcd-lattice La = 〈L,∨,∧, f, g, 0, 1
〉
, its canonical frame

Cf(L) = (Fp(L),⊆,9) is a GC-frame.

Proof Let F ⊆ H , 9FG, and J ⊆ G. Then,

(∀a) a ∈ J → a ∈ G( because J ⊆ G)

→ f (a) ∈ F ( as 9FG)

→ f (a) ∈ H ( because F ⊆ H)

This yields 9HJ and also condition Eq:R holds. ��
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Definition 114 Let F = (X,<,9) be a GC-frame. The algebra

C(F) = (τ<,∪,∩,�,�,∅,X)

is the complex algebra of F.

Complex algebras of GC-frames are gcd-lattices

Proposition 115 Let F = (X,<,9) be a GC-frame. Then, the complex algebra
C(F) = (τ<,∪,∩,�,�,∅,X) is a gcd-lattice.

Proof It is clear that the algebra (τ<,∪,∩,∅,X) is a bounded distributive lattice. It
is required to show that (∀A ∈ τ<)A

�, A� ∈ τ<.

• (∀x ∈ A�) (x ≤ b −→ (∃z ∈ A)9xz)

• As F is a GC-frame (x ≤ b &9xz& z ≤ z −→ 9xz).
• So b ∈ A� and A� ∈ τ<.
• For the other part, let x ∈ A� and x ≤ b.
• If 9zb, then z ≤ z &9zb& x ≤ b yields 9zx and z ∈ A.
• Hence, b ∈ A� and A� ∈ τ<.

��
In [38], the following improved version of the prime filter theorem was proved

Theorem 116 Let Q be a set whose complement is a join-subsemilattice of a
distributive lattice. If a filter F is contained in Q, then there exists a prime filter
P such that

F ⊆ P ⊆ Q

To derive the prime filter theorem from this, it suffices to start from a Q = L \ {a}
satisfying a /∈ F .

Theorem 117 For every gcd-lattice La =
〈
L,∨,∧, f, g, 0, 1

〉
, there exists a GC-

frame F = 〈X,<,9
〉

such that La is isomorphic to a subalgebra of C(F). If La is
finite, then it is isomorphic to C(F).

Proof The long proof of [39] has been restructured here.
Define a map h : La �−→ C(Cf(L)) as below:

h(x) = {F : F ∈ Fp(L)& x ∈ F }

Since L is a distributive lattice, h is a lattice embedding (see [48], for example) that
satisfies h(0) = ∅ and h(1) = Fp(L).

Next it will be shown that

(∀x ∈ L) h(g(x)) = h(x)�
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• Let F ∈ h(g(x)). This is equivalent to g(x) ∈ F ∈ Fp(L).
• Suppose F /∈ h(x)�, then (∃G ∈ Fp(L))9GF &G /∈ h(x).
• Now g(x) ∈ F −→ x ∈ G. So by the definition of 9G ∈ h(x)—a contradiction.

Hence, F ∈ h(x)�.

For the converse,

• If F ∈ h(x)�, then 9GF −→ G ∈ h(x) and x ∈ G.
• Suppose F /∈ h(g(x)), that is, g(x) /∈ F .
• The preimage g−1(F ) of the filter F must necessarily be a filter as g is

multiplicative and order-preserving.
• As x /∈ g−1(F ) there exists a prime filter G such that g−1(F ) ⊆ G and x /∈ G

(by the prime filter theorem).
• g−1(F ) ⊆ G yields (∀z ∈ L)(g(z) ∈ F −→ z ∈ G). So 9GF .
• This yields the contradiction x ∈ G. So, F ∈ h(g(x)).

Using a similar, but not equivalent argument it can be shown that

(∀x ∈ L) h(f (x)) = h(x)�

To see this,

• Suppose F ∈ h(x)�, then (∃G ∈ h(x))9FG.
• Since G ∈ h(x)↔ x ∈ G, therefore f (x) ∈ F and F ∈ h(f (x)) follows.
• If F ∈ h(f (x)), that is, f (x) ∈ F , then x↑ ⊆ f−1(F ). Theorem 116 ensures

that there is a prime filter H such that x↑ ⊆ H ⊆ f−1(F ). It follows that 9FH ,
H ∈ h(x) and F ∈ h(x)�.

For the last part, let L be a finite gcd-lattice and let J (L) be its set of all join-
irreducible elements. In a finite lattice, all filters are principal order filters and a
principal filter b↑ is prime if and only if b ∈ J (L). So Fp(L) = {a↑ : a ∈ J (L)}.
• To show that the map h is onto C(Cf(L)), note that if A ∈ C(Cf(L)), then A is a
⊆-closed subset of Fp(L).

• Let x =∨{z ∈ J (L) : z↑ ∈ A}, then h(x) = {z↑ : z ≤ x & z ∈ J (L)}.
• If c↑ ∈ h(x), then c ∈ J (L) and c ≤∨{z ∈ J (L) : z↑ ∈ A}.
• Because L is finite and c is join-irreducible, it is necessary that c ≤ y for some

y ∈ {z ∈ J (L) : z↑ ∈ A}.
• c ≤ y −→ y↑ ⊆ c↑.
• So ↑c ∈ A and A ⊆ h(x) follows.

��

9.2 Extensions to Heyting-Brouwer Algebras

The above result can be extended to Heyting and Heyting-Brouwer algebras
endowed with Galois connections.

Definition 118 A HGC-algebra Ha =
〈
L,∨,∧,→, f, g, 0, 1

〉
is an algebra that

satisfies
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•
〈
L,∨,∧, f, g, 0, 1

〉
is a gcd lattice.

•
〈
L,∨,∧,→, 0, 1

〉
is a Heyting algebra

This algebra is a model for intuitionistic logic with a Galois connection (IntGC)
[38]. A formula φ is provable in IntGC if and only if φ is valid in all HGC-algebras.
IntGC has the finite model property: that is a formula φ is provable in IntGC if and
only if φ is valid in all finite HGC-algebras.

GC-frames introduced in Definition 111 serve also as frames for HGC-algebras.
The canonical frame of an HGC-algebra is Cf(L) = (Fp(L),⊆,9), where Fp(L)

is the set of prime filters and 9 is defined as in (�). Similarly, for a GC-frame F, its
complex HGC-algebra is

C(F) = (τ<,∪,∩,→,�,�,∅,X),

where → is defined as in Proposition 4. Clearly, the complex algebra C(F) of any
GC-frame F is an HGC-algebra, because τ< is a Heyting algebra, and A�, A� ∈ τ<
for all A ∈ τ<.

Theorem 119 Let Ha =
〈
L,∨,∧, f, g, 0, 1

〉
be an HGC-algebra. Then, there

exists a GC-frame F = 〈X,≤,9〉 such that Ha is isomorphic to a subalgebra of
C(F).

A HGC-algebra is said to be spatial if its underlying lattice is spatial. In
particular, any finite distributive lattice with a Galois connection determines a spatial
HGC-algebra.

Theorem 120 Let Ha =
〈
L,∨,∧, f, g, 0, 1

〉
be a spatial HGC-algebra. Then,

there exists a GC-frame F = 〈X,≤,9〉 such that Ha is isomorphic to C(F).

The proof can be found in [39].

Definition 121 A HBGC-algebra Lh =
〈
L,∨,∧,→,←, f, g, 0, 1

〉
is an algebra

such that
〈
L,∨,∧,→,←, 0, 1

〉
is a Heyting-Brouwer algebra and (f, g) is an order-

preserving Galois connection on L.

The canonical frame of an HBGC-algebra Lh is the GC-frame defined on the set

of all prime filters, that is, Cf(L) =
〈
Fp(L), ,⊆,9

〉
. Similarly, for a frame F =

〈
X, ,≤,9〉, its complex HBGC-algebra is

C(F) = 〈τ<,∪,∩,→,←,�,�,∅,X〉

It is clear that the complex algebra C(F) determined by any GC-frame F is
an HBGC-algebra because the operation ← for Alexandrov topologies is given in
Proposition 4.

Theorem 122 Let Lh =
〈
L,∨,∧,→,←, f, g, 0, 1

〉
be an HBGC-algebra. Then,

there exists a GC-frame F = 〈X,≤,9〉 such that Lh is isomorphic to a subalgebra
of C(F).
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Theorem 123 Let Lh =
〈
L,∨,∧,→,←, f, g, 0, 1

〉
be a complete and weakly

atomic HBGC-algebra. Then, there exists a GC-frame F = 〈X,≤,9〉 such that
Lh is isomorphic to C(F).

Proof If Lh =
〈
L,∨,∧,→,←, f, g, 0, 1

〉
is a complete and weakly atomic HBGC-

algebra, then its underlying complete lattice satisfies (JID) and (MID). Weak
atomicity ensures that the lattice is isomorphic to a Alexandrov topology. It is
also known that Alexandrov topologies determine complete weakly atomic HBGC-
algebras. That Lh is isomorphic to C(F) can be proved similarly as in case of
Heyting GC-algebras. ��

10 Other Red Results in Rough Sets

A number of representation and duality results are known in rough sets. In this
section some of those that have not been covered in other sections are mentioned.

10.1 Spatial Mereology

Duality and representation theory for spatial mereology is very rich [37, 56, 141].
These have been recently used in papers concerning rough sets in [96, 141].
Proximity relations and related topologies have also been extensively used in image
processing [25, 112, 113]. Connections between dependence in rough sets and
subjective probability due to the present author in [93] and spatial mereology have
investigated by her in a forthcoming paper. In [86], mereological aspects have been
approached via parthood relations as opposed to contact relations. Related theory
has been omitted for reasons of time and space.

10.2 Duality Results

Topological dualities (including discrete dualities) between the algebras and frames
indicated in Table 4 are relevant for some semantics of rough sets. Details of these
have been omitted.

The duality approach due to [30, 31] is also referred to as perp semantics. In the
modal approach negations are also viewed as modal operators in this framework and
a Kripke-style semantics has been developed for various logics. In a recent paper
[74], this has been extended to rough sets. In a partially ordered set, a sub-minimal
negation is a unary operation ¬ that satisfies

(∀a, b) (a ≤ b −→ ¬b ≤ ¬a)
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Table 4 Dualities-1 Name Class of algebras Frame/space

Kleene SK FK

Dual Kleene SKd FKd

Stone SS FS

Boolean contact SBc FBc

Boolean proximity SBp FBp

The negations used in the logics must necessarily be stronger than this sub-minimal
negation (also see [140]).

10.3 Canonical Extensions

The basic idea of the approach is to extend a given semantic structure through
canonical constructions and study the original ordered algebra through the prop-
erties of the extension. For this strategy to be successful it is necessary that most
properties (especially equational ones) be preserved. Common completions include
Dedekind-Macneille completions or natural completions and canonical extensions.
Many of the results in the approach relate to pointwise approximations because
of their use in modal logic. A survey can be found in [45]. Canonical extensions
of convex decompositions of distributive lattice and related consequence operators
have also been considered by the present author in [82]. But connections with rough
approximations are not part of the paper. A major problem with the method is that
many properties are not preserved in non-distributive lattices. Some of the basics of
the method are recalled first.

The canonical model approach can be traced to early work on Boolean algebras
with operators [64]. These techniques have since been adapted to different gener-
alized modal logics admitting of the Lindenbaumm algebra construction and more
recently to bounded lattices with operators [45]. In rough sets, natural extensions
have been considered for pointwise approximations in [58, 139].

On a Poset, natural completions are defined in the following way.

Definition 124 Let
〈
X,≤〉 be a Poset, then

(∀A ∈ ℘(X)) ub(A) = {x : x ∈ X&(∀a ∈ A) a ≤ x} (upper bound)

(∀A ∈ ℘(X)) lb(A) = {x : x ∈ X&(∀a ∈ A) x ≤ a} (lower bound)

dm(X) = {A : A ∈ ℘(X)& lb(ub(A)) = A} (dm-set)

〈dm(X),⊆〉 is the natural completion of X and is also realizable as the set of
principal order ideals. The map ϕ : X �−→ dm(X) defined by ϕ(x) = x ↓ preserves
joins and meets that exist in X and Im(ϕ) is both join-dense and meet-dense in
dm(X).
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Let K be a complete lattice and L a sublattice of it, then

1. K is join-dense in L if every element of L is a join of elements of a subset of K .
2. K is meet-dense in L if every element of L is a meet of elements of a subset of

K .
3. K is dense in L if it is both meet-dense and join-dense in L.
4. K is compact in L if

(∀A, B ⊆ K)
∧

A ≤
∨

B −→ ∃ finiteH ⊆ A, F ⊆ B,
∧

H ⊆
∨

F

Theorem 125 For all lattices K there exists a unique complete lattice L (up to
isomorphism) such that the following hold:

• K is a sublattice of L.
• K is both join and meet-dense in L.

K∗ = L is called the natural or Mc Neille completion of the lattice K .

Theorem 126 For all lattices K there exists a unique complete lattice L (up to
isomorphism) such that the following hold:

• K is a sublattice of L.
• K is both join and meet-dense in L.
• K is compact in L.

Kσ = L is known as the canonical extension of K .

Definition 127 In the above the closed elements of Kσ are those elements that are
representable as meets of elements of K . The open elements of Kσ are those that
are representable as joins of elements of K . The corresponding sets will be denoted
by C(Kσ ) and O(Kσ ).

Note that in the canonical extension, the elements of K are precisely the clopen
elements.

Definition 128 Let A, B be two lattices and let f : A �−→ B be an order
preserving map, then f l , f u, f σ , f π are the lower Mc Neille (or lower natural),
upper Mc Neille, lower canonical and upper canonical extensions of f to the
respective completions.

f l =
∨
{f (a) : a ≤ ua ∈ A} (l-natural)

f u =
∧
{f (a) : u ≤ aa ∈ A} (u-natural)

f σ (u) =
∨{∧

{f (a) : x ≤ a ∈ A} : x ≤ u, x ∈ K(Lσ )
}

(lcan)

f π (u) =
∧{∨

{f (a) : a ≤ b, a ∈ A} : u ≤ b ∈ O(Lπ)
}

(ucan)
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The above canonical extensions can be generalized to arbitrary maps in the
following way:

f ∗σ (u) =
∨{∧

{f (a) : a ∈ [x, b]A} : x ≤ u ≤ b ∈ K(Aσ ) b ∈ O(Aσ )
}

(25)

and

f ∗π(u) =
∧{∨

{f (a) : a ∈ [x, b]A} : x ≤ u ≤ b ∈ K(Aσ ) b ∈ O(Aσ )
}

(26)

Definition 129 By a canonical extension of a Boolean algebra S, is meant a
complete atomic Boolean algebra S∗ that satisfies,

1. S ∈ Su(S∗)
2. Each atom of S∗ is a meet of elements of S.
3.

(∀K ∈ ℘(S))

⎛

⎝
S∗∨

(K) = 1 −→ ∃F ∈ ℘f (K)

S∗∨
(F ) = 1

⎞

⎠

It is provable that

Proposition 130

1. If ϕ : S1 �−→ S2 is an isomorphism of Boolean algebras, then there exists an
isomorphism ϕ∗ : S∗1 �−→ S∗2 such that ϕ∗ ∩ (S1 × S2) ≡ ϕ.

2. If S∗ is a canonical extension of the Boolean algebra S, then ∀x ∈ S∗ ∃ xij ∈
S x = ∨i ∧j (xij ).

3. If S∗ is a canonical extension of the Boolean algebra S, then ∀x ∈ S∗ ∃ xij ∈
S x = ∧i ∨j (xij ).

4. The canonical extension of a Boolean algebra S = 〈S,+,−, 0
〉

is the Boolean

algebra S∗ =
〈
℘((S)),∪, \,∅

〉
, where ℘((S)) is the powerset of all

ultrafilters of S. If ξ(x) = {U ∈ (S); x ∈ U} then the map ξ : S �→ S∗ is
a Boolean embedding.

A modal operator λ in any Boolean algebra with a modal operator λ, can be
extended in at least two ways for forming canonical models. If S is a Boolean
algebra with a operator, then the canonical extension of the forgetful Boolean
algebra Sb can generated from the collection of all open sets O(Sσ ) and also from
the collection of ‘closed sets’ C(Sσ ) respectively. Corresponding to this the natural
way of extending λ is as in the following definition.
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Definition 131 If S, B are Boolean algebras and λ : S �→ B a monotone function,
then let λσ , λπ be maps : ℘((S)) �−→ ℘((B)) defined via

λσ (A) =
⋃

X⊇F∈C(Aσ )

⋂

F⊆ξ(a)
ξ(λ(a))

λπ (A) =
⋂

X⊆L∈O(Aσ )

⋃

ξ(a)⊆L
ξ(λ(a)).

Proposition 132 For clopen, closed and open elements of Sσ , it is that

• λσ (ξ(a)) = λπ (ξ(a)) = ξ(λ(a)) for all clopens ξ(a) ∈ ξ(S).
• λσ (F ) = ⋂F⊆ξ(a) ξ(λ(a))

Proposition 133 If S, B are Boolean algebras and λ : S �→ B be a monotone
function, then

• λσ and λπ are monotone functions.
• λσ and λπ coincide on open and closed sets.
• Both preserve closed and open elements respectively.

Definition 134 If S is a Boolean algebra with a modal operator then

Sσ = 〈Sσ
bool, λ

σ
〉

and

Sπ = 〈Sπ
bool, λ

π
〉
.

Proposition 135 In the above context S is a subalgebra of both Sσ and Sπ .

Remark 136 Sσ is ∨ and ∧-generable from cl(Sσ ) and O(Sσ ) respectively.

Proposition 137 If S is a Boolean algebra with a modal operator λ and B a π- or
σ -canonical extension of S, then S is isomorphic to a subalgebra of B.

10.3.1 Connections with Rough Sets

In [58, 139], Dedekind-Macneille completions of the algebras derived from the
pointwise approximations mentioned in Sect. 9 are considered. Assume that on a
general approximation space S = 〈S,R〉, the pointwise approximations �,�,�,�
are given for any subset A ⊆ S (the notation does not agree with that used in [139]).
Let

R = {(A�, A�) : A ⊆ S} (RS)

9 = {(A,B) (A,B) ∈ ?(�)× ?(�)&A ⊆ B (Ob)
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Let R = {(X�,X�) : X ⊆ S}. Define a partial-order on it via

(X�,X�) ≤ (Z�, Z�)↔ X� ⊆ Z� &X� ⊆ Z� (27)

and similarly define a partial-order preceq on ?(�) × ?(�). This induces a order
on 9. All of the partial-orders can be denoted by the same symbol ≤ because of
inclusions of the sets.

Recall that in [46], it had been proved that

Theorem 138 When R is an equivalence relation, then

9 ∼=
〈
2I × 3J ,≤

〉
,

with I being the set of singleton predecessor neighborhoods, J being the set of non-
singleton predecessor neighborhoods, 2I being the set of all maps from I to the two
element chain and 3J being the set of all maps from J to a three element chain.

In [58], it has been proved that

Theorem 139 When R is a reflexive relation, then

• R is a sub partially ordered set of 9
• 9 is a sublattice of ?(�)× ?(�).
• 9 is a completion of R
•
〈
2I × 3J ,≤〉 is a completion of R with I being the set of singleton predecessor

neighborhoods and J is the set of non-singleton predecessor neighborhoods.

The smallest completion that is isomorphic to the natural completion has been
constructed in [139]. However the algebraic properties are not clear because of
the fact that the order structure is apparently not good enough. Let H = {x :
#([x]i) = 1}

H(R) = {(A,B) : (A,B) ∈ ?(�)×?(�)&A�� ⊆ B &A∩H = B∩H } (28)

Theorem 140 In a general approximation space S, H(R) is isomorphic to the
natural completion of R.

For the proof, the reader is referred to [139].

10.4 Inverse Problems

The concept of inverse problem was introduced by the present author in [81] and
was subsequently refined in [86]. Granular operator spaces and higher order variants
studied by the present author in [84, 94, 97] are important structures that can be
used for its formulation. In simple terms, the problem is a generalization of the
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duality problem which may be obtained by replacing the semantic structures with
parts thereof. In a mathematical sense, this generalization may not be proper (or
conservative) in general.

The basic problem is

• Given a set of approximations, similarities and
• some relations about the objects.
• Find an information system or a set of approximation spaces that
• fits the available information according to a
• rough procedure

In this formalism, a number of information systems or approximation systems
along with rough procedures may qualify. Even when a number of additional
conditions like lattice orders, aggregation and commonality operations are available,
the problem may not be solvable in a unique sense. In this respect, the example using
the information system from Table 2 should be suggestive. The following example
from [97] is more suggestive

Example 141 This example has the form of a narrative in [97] that gets progres-
sively complex. It has been used to illustrate a number of computational contexts in
the paper.

Suppose Alice wants to purchase a laptop from an on line store for electronics.
Then she is likely to be confronted by a large number of models and offers from
different manufacturers and sellers. Suppose also that the she is willing to spend less
than ex and is pretty open to considering a number of models. This can happen, for
example, when she is just looking for a laptop with enough computing power for
her programming tasks.

This situation may appear to have originated from information tables with
complex rules in columns for decisions and preferences. Such tables are not
information systems in the proper sense. Computing power, for one thing, is
a context dependent function of CPU cache memories, number of cores, CPU
frequency, RAM, architecture of chipset, and other factors like type of hard disk
storage.

Proposition 142 The set of laptops S that are priced less than ex can be totally
quasi-ordered.

Proof Suppose ≺ is the relation defined according to a ≺ b if and only if price of
laptop a is less than or equal to that of laptop b. Then it is easy to see that ≺ is a
reflexive and transitive relation. If two different laptops a and b have the same price,
then a ≺ b and b ≺ a would hold. So ≺ may not be antisymmetric.

��
Suppose that under an additional constraint like CPU brand preference, the set of

laptops becomes totally ordered. That is under a revised definition of ≺ of the form:
a ≺ b if and only if price of laptop a is less than that of laptop b and if the prices
are equal then CPU brand of b must be preferred over a’s.
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Suppose now that Alice has more knowledge about a subset C of models in
the set of laptops S. Let these be labeled as crisp and let the order on C be ≺|C .
Using additional criteria, rough objects can be indicated. Though lower and upper
approximations can be defined in the scenario, the granulations actually used are
harder to arrive at without all the gory details.

This example once again shows that granulation and construction of approxima-
tions from granules may not be related to the construction of approximations from
properties in a cumulative way.

In [97], it is also shown that the number of data sets, of the form mentioned, that
fit into a rough scheme of things are relatively less than the number of those that
do not fit. A number of combinatorial bounds on the form of distribution of rough
objects are also proved in the paper.

Examples of approximations that are not rough in any sense are common in
misjudgments and irrational reasoning guided by prejudice. So solutions to the
problem can also help in judging the irrationality of reasoning and algorithms in
different contexts. Development of proper algebraic methods for the problem class
is an important research area.

11 Representations of General Rough and Fuzzy Sets

Some representation results between rough and fuzzy sets have been proved by the
present author in [86, 91]. Her results were obtained in connection with properties
of granules and possible valuations. The result in [86] includes the representation
proved through membership functions for classical rough sets in [146] and so the
latter is omitted. It may also be noted that a large number of algebraic structures
including rough algebras, pre-rough algebras, regular double Stone algebras, semi-
simple Nelson algebras, super rough algebras [81], 3-valued Lukasiewicz (Moisil)
algebras and Wajsberg algebras provide semantics of classical rough sets (see
[110]). Related logics [7] do not have much to say about granularity in an explicit
way, but are nevertheless related to logics associated with fuzzy sets and the special
cases of BL-algebras [8]. In the second chapter [12] of this volume semantics of
fuzzy sets over rough sets have also been discussed in the context of BZ De Morgan
algebras. The goal of this section is also to motivate investigations of granularity in
these considerations.

A non-controversial definition of fuzzy sets, with the purpose of removing the
problems with the ‘membership function formalism’, was proposed in [122]. In [86],
it was shown by the present author that the definition can be used to establish a link
between fuzzy sets and granulations in rough sets. The connection is essentially of
a mathematical nature. In the present author’s view, the results should be read as
in a certain perspective, the granularity of particular rough contexts originate from
fuzzy contexts and vice versa. The existence of any such perspective and its possible
simplicity provides another classification of general rough set theories.
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Definition 143 A fuzzy subset (or fuzzy set) A of a set S is a collection of subsets
{Ai}i∈[0,1] satisfying the following conditions:

• A0 = S,
• (0 ≤ a < b ≤ 1 → Ab ⊆ Aa),
• Ab = ⋂0≤a<b Aa .

A fuzzy membership function μA : X �→ [0, 1] is defined via μA(x) = Sup{a :
a ∈ [0, 1], x ∈ Aa} for each x. The core of A is defined by Core(A) = {x ∈
S : μA(x) = 1}. A is normalized if and only if it has non-empty core. The
support of A is defined as the closure of {x ∈ S; μA(x) > 0}. The height of A
is H(A) = Sup{μA(x); x ∈ S}. The upper level set is defined via U(μ, a) = {x ∈
S : μA(x) ≥ a}. The class of all fuzzy subsets of S will be denoted by F(S). The
standard practice is to refer to ‘fuzzy subsets of a set’ as simply a ‘fuzzy set’.

Proposition 144 Every fuzzy subset A of a set S is a granulation for S which is a
descending chain with respect to inclusion and with its first element being S.

The cardinality of the indexing set and the second condition in the definition of
fuzzy sets is not a problem for use as granulations in RST, but almost all types
of upper approximations of any set will end up as S. From the results proved in
the previous sections it should also be clear that many of the nice properties of
granulations will not be satisfied modulo any kind of approximations. It is shown
below that simple set theoretic transformations can result in better granulations.
Granulations of the type described in the proposition will be called phi-granulations.

Construction-1

1. Let P = {0, p1, . . . pn−1, 1} be a finite set of rationals in the interval [0,1] in
increasing order.

2. From A extract the collection B corresponding to the index P .
3. Let B0 \ Bp1 = C1, Bp1 \ Bp2 = C2 and so on.
4. Let C = {C1, C2, . . . , Cn}.
5. This construction can be extended to countable and uncountably infinite P in a

natural way.

Theorem 145 The collection C formed in the fourth step of the above construction
is a partition of S. The reverse transform is possible, provided P has been selected
in an appropriate way.

It has been shown that fuzzy sets can be corresponded to classical rough sets
in at least one way and conversely by way of stipulating granules and selecting a
suitable transform. But a full semantic comprehension of these transforms cannot be
done without imposing a proper set of restrictions on admissibility of transformation
and is context dependent. The developed axiomatic theory makes these connections
clearer.
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As far as granulation in the context of fuzzy sets is concerned, most approaches
have been in relation to the precision based approach as in [149, 150]. These do not
directly relate to the present approach.

The result also means that rough membership functions are not necessary to
establish a semantics of fuzzy sets within the rough semantic domain as considered
in [146]. Further as noted in [146], the semantics of fuzzy sets within rough sets
is quite restricted and form a special class. The core and support of a fuzzy set is
realized as lower and upper approximations. Here this need not happen, but it has
been shown that any fuzzy set defined as in the above is essentially equivalent to
a granulation that can be transformed into different granulations for RST. A more
detailed analysis of the connections and extensions has been proved in [90] and in a
forthcoming paper due to the present author. This includes an extension of L-fuzzy
sets and is presented in the section following the next section.

11.1 Dualities of Rough Difference Orders

Rough difference orders were introduced in [80] by the present author as a semantic
approach to handling orders on sets of attributes. The structure is closely related
to BL-algebras, the algebras of Hajek-style fuzzy logic [53, 143] and hybrid fuzzy
rough approaches. The approach is also relevant for dominance based rough sets.
Related representation theorems are also adapted for the context in the paper.

12 L-Fuzzy Sets, Quasi Orders and Topology

In this section, connections between Alexandrov topologies, L-fuzzy sets, quasi-
orders and related red results are studied. New results on direct decomposability
and definable operations are also proved by the present author.

Theorem 146 The set QO(S) of quasi-order relations on a set S forms a complete
lattice with respect to the induced inclusion order. The meet coincides with set
intersection, while the join of quasi-orders P, Q is the least quasi-order containing
the two. It is a quotient lattice of Ref (S) and the continuous lattice EQ(S) is a
sublattice of QO(S).

Proof On Ref (S), the order < defined via, if P,Q ∈ Ref (S), then

P < Q if and only if P ⊆ Q in ℘(S2)—the powerset of S2,

is a complete lattice order. Since the set QO(S) ⊆ Ref (S) and if P ∈ QO(S),
there exists a subset τ (P ) of Ref (S) that is the largest with respect to the condition:

R ∈ τ (P )
def←→ T(R) = P.
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T(R) being the transitive closure of R.
If P ∼ Q if and only if τ (P ) = τ (Q), then ∼ is an equivalence on Ref (S)

and clearly Ref (S)| ∼= QO(S). ∼ preserves the order on Ref (S), so QO(S) is a
quotient lattice of Ref (S). ��
Proposition 147 On QO(S), a complementation ′ and involution −1 can be
respectively defined in the following way:

∀R ∈ QO(S) R′ = R1 ∨ R2

with R1 = {(y, x) ; Rxy&¬Ryx} ∪	S

and R2 = {(x, y) ; [x], [y] ∈ S|E(R)& [x] 
= [y]} ∪	S.

R−1 = {(y, x); Rxy}.

Proof R′ = R1∨R2 means it has to be the transitive completion of R1∪R2 as both
R1, R2 are reflexive relations. So it is necessarily a quasi-order.

A pair (a, b) is in the complement (or R′ab) if and only if (a = b or Rba &Rab)
or ([a], [b] form distinct classes of the smallest equivalence containing R) or (a, b)
is in the smallest quasi-order containing the previous two relations R1, R2.

��
Theorem 148 Every quasi-ordered set of the form S = 〈S,≤〉 induces an Alexan-
drov topology on S via:

τ≤ = {X ; X ⊆ S & (∀x, y ∈ S)(x ∈ X & x ≤ y −→ y ∈ X)}.

Conversely, if τ is an Alexandrov topology then a quasi-order≤τ can be defined on
S via

y ∈ Nτ (x) −→ x ≤τ y.

That is the o-filters of ≤ form an Alexandrov topology. Further under the above
process it is that

〈QO(S),⊆〉 ∼= 〈A(S),⊇〉

and the corresponding operations on the two lattices are related as per

• ≤1 ∨ ≤2=≤τ1∩τ2=≤τ1∨τ2 .
• τ1 ∨ τ2 = τ≤1∩≤2

Let τop = 〈τ,⊇〉 be the opposite topology, then the map ϕτ : S �−→ τop defined by
ϕτ (x) = Nτ (x) is a τop-fuzzy set.

If ϕ is an L-Fuzzy set on S, then ϕ∗ : S �−→ τ
op
ϕ defined by ϕ∗(x) = Nϕ(x) is a

fuzzy set such that ≤ϕ of ϕ is equal to ≤ϕ∗ and ϕ∗∗ = ϕ∗.
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Proof Proof of this theorem can be found in [59]. ��
It is known that algebraic operations on F(X,L) can be induced on the fuzzy set

through point-wise operations. The most important problems in this regard relate to
definability of aggregation, commonality, implicants, complementarity and negation
like operations. In [59], aggregation, commonality and generalized negation are
defined as below (the notation is flawed there):

• ϕ ∪ ψ = ξ where <ξ=<ϕ ∨ <ψ .
• ϕ ∩ ψ = ξ where <ξ=<ϕ ∧ <ψ

• ϕc = ξ where <ξ=<ϕ′

If ϕ ∈ F(X,L), then a quasi-order≤ϕ can be defined on X via

x ≤ϕ y ←→ ϕx ≤ ϕy.

Neighborhoods are defined by setting Nϕ(x) = {y; ϕx ≤ ϕy}.

12.1 Direct Decomposition of Quasi Orders

Definition 149 A quasi-ordered set (quasi-ordered set) S is said to be a direct sum
of the subsets {Sα}α∈A = S;

S =
∑

α∈A
Sα

def←→ S =
⋃

α

Sα & (∀α 
= β) Sα ‖ Sβ.

But Sα ‖ Sβ −→ Sα ∩ Sβ = ∅. So S is a partition of S with a corresponding
equivalence σ .

Definition 150 A quasi-ordered set S is said to be direct sum indecomposable if
whenever S is a direct sum of the form

S =
∑

α∈A
Sα,

then #(A) = 1. That is it admits of no non trivial direct sum decompositions.

The following problems/questions will be dealt with in this section:

• How to characterize direct sum indecomposable L-Fuzzy sets?
• Is it possible to generate all of the fuzzy sets from direct sum indecomposable

ones?
• What is the connection with Alexandrov topologies?
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Theorem 151 All of the following hold:

• The set of double ideals IF(S) is the center of both I(S) and F(S) and is a
complete atomic Boolean algebra.

• The atoms of the complete atomic Boolean algebra coincide with the principal
double ideals of S and will be denoted by At(IF(S))

• The principal double ideals can be generated by a recursive process.

Some key results relating to direct sum decompositions of quasi-ordered set s are
collected in the following theorem. Proofs can be found in [21].

Theorem 152

1. The collection of all direct sum decompositions E(S) of a quasi-ordered set S
is a principal double ideals of the lattice EQ(S). In fact it is generated by the
smallest equivalence E(<) containing the quasi-order <.

2. If ηbc means b and c have nonempty intersection, then E(<)bc if and only if
(∃x1, x2, . . . xn ∈ S) x1 = b & xn = c & η(↓ xi)(↓ xi+1), n <∞.

3. E(S) is isomorphic to the lattice of complete Boolean subalgebras of the lattice
FI(S) of double ideals of S.

4. Every quasi-ordered set S is representable as a direct sum of direct sum
indecomposable quasi-ordered set s.

5. The lattice I(S) of o-ideals of a quasi-ordered set S is a direct product of lattices
{La}a∈A if and only if S is a direct sum of {Sa}a∈A and La = I(Sa) for each
a ∈ A.

The following result provides some ways of identifying direct sum indecompos-
ability.

Theorem 153 The following are equivalent:

1. I(S) is a direct product indecomposable lattice.
2. S is a direct sum indecomposable quasi-ordered set.
3. S has no proper double o-ideals.

Proof See [21]. ��

12.2 Example: Direct Sum Indecomposable Quasi-Ordered Set

An example of a L-Fuzzy set that has L as a direct sum indecomposable quasi-
ordered set is the quasi-ordered set in Fig. 1 of [59]. Another example is formulated
in this subsection.

In Fig. 1, if a← b is read as a is part of b, then← is a quasi-order in the context.
Let the associated quasi-ordered set be L. Then L is direct-sum indecomposable.

As L denotes aesthetic attributes, it can be used to classify art work in the
associated perspective. A L-Fuzzy set would simply be a map from a set of
processes (or art works) with related attributes that best describes the process (or
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Fig. 1 Aesthetic attributes

art works). Admittedly the example is minimalist—but it is suggestive of ways of
forming similar quasi-ordered set s for the analysis of art and possibly integrating
them.

12.3 Connections with Alexandrov Topologies and Fuzzy
Operations

The structure of direct sum indecomposable quasi-ordered set s are investigated and
the properties of fuzzy operations of [59] are extended below.

Theorem 154 If a quasi-ordered set L is direct sum indecomposable and ϕ :
X �−→ L is a L-Fuzzy set, then ϕ induces a chain connected Alexandrov topology on
X. If X is also path connected and connected, then X is a To—Alexandrov topology.

Proof

1. As ϕ : X �−→ L is a L-fuzzy set,
2. A quasi-orderC=<ϕ can be induced on X as per earlier definition:

a C b←→ ϕ(a) < ϕ(b).

3. Define the Alexandrov topology τC on X as per

τC = {A ; A ⊆ X & (∀x, y ∈ X)(x ∈ A& ϕ(x) < ϕ(y) −→ y ∈ A)}.

That is τC is the set of order filters on X.
4. If B ∈ τC, then it cannot be a proper ideal.
5. If x, y ∈ X, then a finite sequence of elements xi : i = 1, . . . , n can be

determined subject to

x1 = x, xn = y and (∀i)(xi ↑)η(xi+1 ↑)
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6. This means the Alexandrov topology is chain connected but not path connected
and connected (unless L is a partial-order). Because if it were path connected
and connected, then the To-axiom would be deducible.

��
As the concept of direct sums (or coproducts) extends naturally to topologies, it

is provable that

Theorem 155 Every L-fuzzy set on X induces an Alexandrov topology on it that
is a direct sum of chain connected Alexandrov topologies {τα}α∈A. Further every
L-fuzzy set is direct sum of Lα-fuzzy sets over Xα for α ∈ A corresponding to the
direct sum selected on L.

Proof The proof relies on the extension of the concept of direct sum (or coproducts)
to topologies.

��
The connection of the three operations of [59] on F(X,L) and direct sum

decomposability are considered next.

Theorem 156 All of the following hold in a F(X,L):

1. The quasi-order on L induces a quasi-order on F(X,L) via

ϕ � ψ if and only if (∀x ∈ X)ϕ(x) < ψ(x).

Let the resulting quasi-ordered set be X
2. X is direct sum decomposable into {Xa}a∈A.
3. The operations ∪,∩ induce restricted operations ∪a,∩a, on the ath direct sum-

mand. Complementation also induces a complementation on direct summands.
4. If {Lα}α∈K is the direct sum decomposition of L, then the set of all admissible

direct sum combinations {Yb}b∈B of F(X,Lα) coincides with {Xa}a∈A.
5. For a fixed direct sum composition of X into {Xa}a∈A, the operations ∩a,∪a on

each of the direct summands can respectively be extended to ∪,∩ on X.
6. The complementation operation is also so extendable over summands.

Proof Most of the theorem has already been proved.
The main thing about the operations ∪,∩ are that they are defined relative the

induced order on X. If ϕa,ψa ∈ Xa for each a ∈ A, then it is necessary to be able
to determine the quasi-order associated with them and ensure that the direct sum is
well defined. Extension of the maps is then easy. The extension of the operations
∪a,∩a from the direct summand domains to the direct sum follows then.

For complementation, the proof succeeds because the complement of a quasi-
order on a direct summand is a closed operation that actually coincides with the
restriction of the global complementation. This is because the equivalence closure
of a quasi-order restricted to a direct sum indecomposable summand is the same as
the restriction of the equivalence closure of the quasi-order to the direct summand.
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It is necessary to restrict the considerations to a single direct sum as two different
direct sums cannot be handled simultaneously.

��

13 General Rough Sets and Dreamy Fuzzy Sets

The arguments for allowing more scope for handling ontology by avoiding numeric
oversimplifications and distortions is important particularly for AI as humans
express thoughts in many different ways through words. The written expression
may be a refinement of their actual thinking. Evidence for this can be found in
Susan Sontag’s views expressed in [131] (in relation to writing literary works):

Words have their own firmness. The word on the page may not reveal (may conceal) the
flabbiness of the mind that conceived it. All thoughts are upgrades — get more clarity,
definition, authority, by being in print - that is, detached from the person who thinks them.
(20th Aug’1964)

I think I am ready to learn how to write. Think with words, not with ideas. (5th
March’1970)

The function of writing is to explode one’s subject — transform it into something else.
(Writing is a series of transformations.)

Writing means converting one’s liabilities (limitations) into advantages. For example, I
don’t love what I’m writing. Okay, then - that’s also a way to write, a way that can produce
interesting results. (5th Nov’1976)

Then again in many reflective writing (as in poetry) compositionality works in
ways that cannot be explained from the immediate context. It is the whole together
with parts thereof that lead to a new context and meaning—in a sense, this kind of
expression is dreamy. These suggest one again that it would be better to assume as
little as is possible and at the same time have scope for adding additional layers of
information. Associating numeric grades with linguistic hedges amounts to adding
an additional layer of distortion and so should be avoided. These models are bound
to have embedded concepts that can be cast in the Object-Property-Attribute-
Value perspective (as encoded by information tables). Which in turn are liable
to contamination when simplified with numeric valuations of vague predicates and
domain of discourse are not stable [86].

Definition 157 By a Dreamy Fuzzy Set is meant a collection of the form {Aα}α∈L
that satisfies all of the following:

L = 〈L,∧, 0, 1
〉

is a bounded directed quasi-order, (1)

(∀α, β ∈ L)(α < β −→ Aβ ⊆ Aα), (2)

A0 = S (3)
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(∀β ∈ L)Aα =
⋂

β∈↓α
Aβ, (4)

⋃

α 
=0

Aα = S. (5)

Proposition 158 The fifth condition does not follow from the first two conditions.

Proof This can be proved through easy counterexamples. ��
Theorem 159 All of the following hold:

• Every L-fuzzy set when L is a bounded directed quasi-ordered set is trans-
formable into a dreamy fuzzy set.

• Every dreamy fuzzy set is not necessarily derivable from a L-fuzzy set.

Proof Let ϕ : X �−→ L be a L-fuzzy set with L being a bounded directed quasi-
ordered set. Then dreamy fuzzy sets can be constructed in many ways from which
the L-fuzzy set can be recovered through specific processes π . One way is as
below:

• Induce a quasi-order 	 on X via

a 	 b
def←→ ϕ(a) < ϕ(b).

• On Ip(X) define a map

ϕ̂(↓ x) = {ϕ(x)}.

This definition is clearly always possible.
• Principal order ideals are well defined over quasi-ordered sets. So the existence

of principal order ideals is guaranteed.
• The map ϕ̂ provides the required index.
• Alternatively, on ℘(L), an orderC can be defined via

AC B
def←→ (∀x ∈ A)(∀y ∈ B) x < y.

• Define suitable global extensions of ϕ to the lattice of all order ideals.
��

In the present author’s perspective, the main problems are about the natural ways
in which dreamy fuzzy sets can be viewed as generators of granulations. The earlier
decomposition based algebraic perspective suggests the following:

Definition 160 A well founded dreamy set {Ai}i∈L, will be a dreamy fuzzy set in
which L is pre-well.



Representation and Beyond 537

Definition 161

1. Let {Ai}i∈L be a well founded well dreamy fuzzy set.
2. Form a direct sum decomposition {Lα}α∈: of L with Lα being direct sum

indecomposable for each α.
3. On each direct sum indecomposable component Lα = {J α

r }r∈Kα
, apply

construction-1 on sets corresponding to each of the chains to get multiple
partitions in S

4. All of the partitions in S together form a collection of sets of granules

{{Ciα}i∈J α }α∈: on S.

5. The corresponding granulation C will be referred to as the granulation induced
by a WWF-dreamy fuzzy set {Ai}i∈L.

Definition 162 On the set S, endowed with the granulation C, let the approximation
operators l, u be defined as follows (for an arbitrary subset B ⊆ S):

Bl =
⋃
{X : X ∈ C&X ⊆ B}, (Lower Approximation)

Bu =
⋃
{X : X ∈ C&X ∩ B 
= ∅}} (Upper Approximation)

The defined approximations are granular and make use of the available informa-
tion in the context and are therefore justified.

Theorem 163 The granulation C satisfies:

⋃
C = S,

It is possible that (∃B,G ∈ C) B ∩G 
= ∅,
It is possible that (∃B,G ∈ C) B ⊆ G,

It is possible that C is not a normal cover,

It is possible that (∅ /∈ C).

Further C satisfies the axioms of representability (RA), lower stability (LS), lower
idempotence (LI) and lower full underlap (LFU) relative the approximations l, u in
the terminology of [86, 88]. So they form an admissible set of granulation.

Proof The counterexamples required for the proof are easy to construct.
Most of the axioms of granules including those for mereological atomicity,

crispness, stability, unique underlap and idempotence do not hold in general.
Representability holds because of the definition of approximations. The other
properties in this context are:

(∀X ∈ C)(∀B)(X ⊆ B −→ X ⊆ Bl), (LS)
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(∀X ∈ C)Xll = Xl, (LI)

(∀X,Y ∈ C)(∃B)Bl = B. (LFU)

A normal cover, by definition, must also be an antichain. This property fails to
start with. ��

The above shows that

• fuzzy sets in the non controversial view are simple transformations of granulation
that contain the actual measures,

• these granulations can be realized within general rough sets,
• Even L-Fuzzy sets can be so transformed,
• fuzzy sets lose information by way of simplification (when a more involved

perspective is possible),
• a unique transformation of fuzzy sets into rough sets and conversely is not a good

idea—the actual situations when they become unique requires a very frequentist
perspective when cardinalities can measure properties uniquely, and

• that L-Fuzzy sets defined over direct sum decompositions of directed well
founded quasi-ordered set s correspond to admissible granulations.

13.1 How to Construct Examples

Examples are pretty easy to construct for the concepts defined above. This is shown
through well-known results in the theory of quasi orders and related relational
and algebraic systems. Dreamy fuzzy sets and L-fuzzy sets when L is a well
quasi-ordered set can be visualized as special arrangements of subsets on positions
corresponding to elements of the well quasi-ordered set. Well quasi-orders and
closely related variants can be handled in a computationally efficient way, in
principle, because they have no infinite antichains and no infinite strictly decreasing
sequences.

Theorem 164 The class of well quasi-ordered sets is closed under relational
morphic images, finite unions and finite cartesian products.

Definition 165 Let S = 〈S, <, 8
〉

be a quasi-ordered algebraic system (with 8

being a set of finitary operations) with the arity ν(f ) = r < ∞ for each operation
f ∈ 8. Further assume that each of the operations are compatible with the quasi
order. S is said to be minimal if it has no proper subalgebraic systems. < is said to
be a divisibility order on S if

(∀f ∈ 8)(∀x1, . . . xr ∈ S)(∀1 ≤ j ≤ r) xj < f (x1, . . . , xj , . . . , xr )
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If 8r is the set of operations of arity r is quasi ordered by an order ≺, then ≺ is
said to be compatible with < if and only if

(∀f, h ∈ 8r)(∀x1, . . . , xr ∈ S) f ≺ h→ f (x1, . . . , xr ) < h(x1, . . . , xr )

The following theorem (see [133]) encompasses a large number of situations that
can occur in practice.

Theorem 166 On any minimal quasi-ordered algebraic system S = 〈S, <, 8
〉
with

divisibility quasi-order, if each8r is well quasi-ordered and compatible with <, then
< is a well quasi-order.

The following are all special cases of the above theorem that are more common
in practical situations.

Theorem 167 All of the following hold:

• On any quasi-ordered algebraic system S = 〈S, <, 8
〉

with divisibility quasi-
order and generated by a well quasi-ordered set X and finite 8, < is a well
quasi-order.

• On any finitely generated algebraic system S = 〈S, 8〉 with divisibility quasi-
order and finite 8, < is a well quasi-order.

• If X is a well quasi-ordered alphabet, then the free monoid X∗ on X is well
quasi-ordered by for all {ak}p1 , {bi}q1 ,

a1 · · · ap < b1 · · · bq ↔ (∃1 ≤ j1 < . . . < jp ≤ q)(∀1 ≤ i ≤ p) ai < bji

• If X is a finite alphabet, then the free monoid X∗ on X is well quasi-ordered by
the subword order for all {ak}p1 , {bi}q1 ,

a1 · · · ap < b1 · · · bq ↔ (∃1 ≤ j1 < . . . < jp ≤ q)(∀1 ≤ i ≤ p) ai = bji

Ideals and filters can be used to specify closure conditions in the context. Further
sets of graphs under subgraph ordering have been studied as well quasi-orders.
The same applies to directed graphs of different kinds. A survey of theoretical
application areas is in [54] and more details can be found in standard texts like
[133].

13.2 Extended Example: Dreamy Fuzzy Set

Dreamy fuzzy sets are plentiful, thanks to the unrealness of the so-called natural
numbers, in real life. The first example is both an example of a dreamy fuzzy set and
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also a new approach to psychological tests of a kind. Psychological scales based on
long batteries of questions have the following features:

• they tend to be very sensitive to contexts in which they are employed,
• practitioners may not agree on scale,
• get outdated over time due to changes in social conditions,
• get outdated over time due to changes in the very model that they were designed

for and
• numeric summaries are intended for easy decision making and superficial

diagnosis.

Human resources and psychologists professionals use various models for char-
acterizing the personality of individuals. These use either a type or trait approach to
personality. Traits are defined as relatively enduring, stable and consistent individual
differences in cognition, emotions and behavior. Another view compatible with [26]
is that traits are the biologically heritable, pre-cultural, and hierarchically structured
aspects that are integral parts of personality like a person’s beliefs, skills, and
attitudes.

In the big five model due to [26], the five personality dimensions are openness,
conscientiousness, extroversion, agreeableness and neuroticism. The last is also
referred to as emotional stability is distinct from Freudian concept of the same name
and is related to a person’s emotional stability and amount of negative emotions
harbored. Negative emotions are not the same as skeptical thought, and weak
people may become moody and tense (reflecting neuroticism) due to their negative
thinking. For more information on these models the reader is referred to [26, 99].
There is no general agreement as to whether these models are really usable outside
of the western world.

In the associated emotional stability trait, people who score low in neuroticism
are more emotionally stable and do not experience negative feelings often. But
they do not need to experience positive feelings often. Those who score high in
neuroticism are likely to be emotionally reactive.

In the Big Five personality traits are sub-classifiable into six subtracts. The sub-
traits associated with the emotional stability trait are anxiety, anger, depression,
self-consciousness, immoderation and vulnerability. Sub-traits can be assessed
independently of the trait they belong to.

Some examples of questions used in the battery for assessment are as follows:

1. I am a ‘worrier’
2. I make friends easily
3. I have a vivid imagination
4. I trust others
5. I complete tasks successfully
6. I get angry easily
7. I really enjoy large parties and gatherings
8. I think art is important
9. I use and manipulate others to get my own way

10. I don’t like things to be a mess—I like to tidy up
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Table 5 Value of response Meaning Value

Strongly disagree −2

Disagree −1

Neutral 0

Agree 1

Strongly agree 2

11. I often feel sad
12. I like to take charge of situations and events
13. I experience deep and varied emotions
14. I love to help others
15. I keep my promises

Let S be the set of questions, P a population of individuals and V is mapped to
be the set V = {−2,−1, 0, 1, 2} as per the table (Table 5):

Response to one question is often not independent of other questions and
responses. If two questions refer to a concept and its expression in a subject, then
response to one question consisting of an expression can get altered by the response
to the other question. Usually this does not happen in a linear way and experts can
potentially differ on how the expressions should be combined. To see this consider
possible ways of inferring from possible responses to I love to help others and I make
friends easily. If a subject responds with +2 and −1 to these queries respectively,
then a expert with preconceived world view of how things should be is bound to
infer differently from another who assumes nothing in relation to the context being
referred to. In fact responses to these two queries are directly related to responses
of few other queries. Numeric valuations of potential integration strategies used by
experts is bound to be controversial and so a noncontroversial approach is used here.

Typically the number of questions exceed 150 in the context, these are not all
independent and it is possible to define dreamy fuzzy sets in more than one way—
either through

1. relations defined on the set of questions through associated tags for example or
2. through relations defined on set of relevant subsets S of S (relevant relates to key

concepts being isolated by the queries).

In the second perspective, it is possible to define a relation < corresponding to
is at least as informative as (from a relative perspective). If A,B ∈ S, then it can
happen that a A,B ⊆ C ⊆ A ∪ B is actually relevant and C may be at least as
informative as A ∪ B.

Proposition 168 < is a directed quasi-order on the set of subsets of questions S ⊆
℘(S).

Proof If A is a subset of questions, then A < A.
If A ⊂ B, then obviously A < B.
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If A ⊂ B and B ⊂ A then it does not mean that A = B as the intent of the
questionnaire is to isolate features through multiple perspectives—positive, negative
and neutral.

Transitivity of ⊂ relation yields transitivity of <—this monotonicity is implicit
in the idea of being informative as opposed to being clear.

The directed aspect arises from the aggregation operation and finite boundedness
of S:

(∀A,B ∈ S)(∃C ∈ S)(∀E ∈ S) (A < E&B < E −→ A < C < E).

��
Proposition 169 The above proposition holds even when the aggregation operation
is set theoretic union.

Theorem 170 The directed quasi-ordered set of sets is transformable into a dreamy
fuzzy set when the set of all relevant subsets of questions is closed under intersection.

Proof By direct verification. ��
The information provided by the valuation and query is usable to define another

quasi-order on a set of subsets of pairs of the form (query, valuation). This again
leads to dreamy fuzzy subsets.

14 Red Results of AntiChain Based Semantics

Antichains have been used by the present author for inventing semantics [89, 97] for
almost all general rough sets. For the semantics, the minimal assumptions required
are

• the requirement that the collection of objects under consideration forms a set.
• a classification of objects as crisp or non-crisp, and
• enough description of the properties satisfied and related valuation

A few distinct relations on the set of all antichains of a partially or quasi-ordered set
P are of natural interest in these contexts. The antichain based approach has also
been described in the chapter on granular rough sets in this volume by the present
author [98] and some of the red results that have been used are included in the same
chapter.

If P is a Poset, then max(P ) shall denote its set of maximal elements, while
the width (respectively height) of the partially ordered set will be denoted by w(P)

(respectively h(P )). The order dimension dim(P ) of P is the minimum number l
for which there exists an order-preserving function from P into a direct product of
l chains.

An element x in a lattice L is said to be completely join irreducible (respectively
completely meet irreducible) if for any X ⊆ L,

∨
X = x (respectively

∧
X = x )

implies x ∈ X.
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An element x in a lattice L is said to be completely join prime (respectively
completely meet prime) if for any X ⊆ L, x ≤ ∨X (respectively

∧
X ≤ x )

implies that (∃a ∈ X) x ≤ a (respectively (∃a ∈ X) a ≤ x).
L is said to be superalgebraic if and only if every element is the join of

completely join prime elements. This concept is self-dual.
The Alexandrov completion of a partially ordered set P = 〈P ,≤〉 is Io(P ) =〈

I(P ),⊆〉 with I(P ) being the set of order ideals of P .

Theorem 171

• Alexandrov completions are superalgebraic complete lattices.
• If P satisfies ascending chain condition (ACC), then Io(P ) is a strongly

coatomic, superalgebraic, completely distributive lattice. ACC is the condition
that there are no proper infinite ascending chains.

• Every element of Io(P ) has an irredundant join-representation by join irre-
ducible elements of the form x ↓ for each x ∈ P .

• The set of completely meet-irreducible elements M(Io(P )) is in injective corre-
spondence with {P \ ({x} ↑) : x ∈ P } as defined by x �−→ P \ ({x} ↑). If P is
coatomistic, then P \ ({x} ↑) = ∪{c ↓: c is a coatom &xnleqc}.

• Every strongly coatomic, superalgebraic, completely distributive lattice is iso-
morphic to the Alexandrov completion of a partially ordered set satisfying ACC.
These lattices are also representable as sober To Alexandrov spaces. (A To—
space is sober when point closures are the join-prime closed sets.)

Proof The proofs can be found in [3, 48, 72, 75, 132]. ��
Proposition 172 A partially ordered set Q has no infinite anti-chains if and only if
every o-ideal of Q is a finite union of o-ideals.

Proof The proof of this result can be found in [75] for example.
��

The next theorem is an extension of the classic result due to Dilworth [48] and
its converse. Many proofs of the result are known [75].

Theorem 173 Let P be a partially ordered set with longest chains of length r , then
P can be partitioned into k number of antichains implies r ≤ k. Dually, if Z is
a finite partially ordered set with k elements in its largest antichain, then a chain
decomposition of Z must contain at least k chains.

Proof The dual is proved below:

• Let a ∈ max(P ), then w(P \ {a}) = k $⇒ k ≤ w(P) ≤ k + 1.
• If {Ci}ki=1 is a chain decomposition of P \ {a} and X is an antichain of size k,

then #(A ∩ Ci) = 1.
• Let ai = max(Ci) and let it be in an antichain of size k for each i. Then {ai}k1 must

be an antichain. Otherwise if a2 > a1, and {b1, a2, b3, . . . , bk} is an antichain of
size k with b1 ∈ C1, then a2 > a1 ≥ b1—a contradiction.
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• If {a, a1, . . . , ak} is an antichain, then w(P) = k + 1 and {{a}, C1, . . . , Ck}
would be a partition into k+ 1 chains. Otherwise, ai < a for some i and {x : x ∈
C1 & x ≤ ai} ∪ {a} = K would be a chain.

• Since every antichain of size k in P \{a} contains an element of {z : z ∈ Ci & z ≤
ai} for each i, P \K does not contain any antichain of size k.

• By induction a partition {Ti}k−1
i=1 = � of P \ K into antichains can be formed.

� ∪K would then be a partition of P into k antichains.

The rest of the proof is left to the reader. ��
Proposition 174 If a finite partially ordered set P satisfies #(P ) ≥ st + 1, then it
contains a chain of length s + 1 or an antichain of size t + 1.

Theorem 175 If L is a finite distributive lattice then dim(L) = w(J (L)).

A normal ideal or cut is an intersection of principal ideals:

Z↓ = {a : ∀b ∈ Za ≤ b}

Definition 176 On the set of all antichains AC(P) of a partially ordered set P , the
following relations can be defined:

(∀A,B ∈ AC(P))A � B if and only if (∀a ∈ A)(∃b ∈ B)a ≤ b

(∀A,B ∈ AC(P))A @ B if and only if A ↓⊆ B ↓

AC(P) =
〈
AC(p),�

〉
is the antichain completion of P .

Proposition 177 In the above definition, the two relations are equivalent join
semilattice orders. The join-irreducible elements of AC(P) are the singleton
antichains and the unique irredundant join representation of any antichain is given
by

(∀A ∈ AC(P))A =
∨

x∈A
{x}

Proof The maximal elements of A ↓ ∪B ↓ coincide with those of A ∪ B. So the
result follows. ��

In any infinite ascending chain, complete join irreducibility and join complete-
ness need not be definable.

Theorem 178 AC(P) is a lattice if and only if

(∀A,B ∈ AC(P))(∃C ∈ AC(P))A ↓ ∩B ↓= C ↓ (29)

In the situation, A ∧ B = C is well defined. The lattice is necessarily distributive.
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Proof If the Condition (29) is true then it can be checked that A∧B = C. The order
ideals generated by AC(P) form a meet semilattice with respect to ∩. Distributivity
holds because the lattice of order ideals is a set lattice and this in turn causes AC(P)

to be distributive.
For the converse, if AC(P) is a lattice, but (∃A,B ∈ AC(P))A ↓ ∩B ↓= E is

not generated by an antichain. For this to happen, it is necessary that there exists a
z ∈ E that is not bounded by any element of E. By assumption,

A ∧ B ⊆ (A ∧ B) ↓⊂ E.

As (A ∧ B) ↓ and E are down closed sets, (∃x ∈ E)(∀b ∈ A ∧ B)¬(x ≤ b) must
hold. This in turn leads to A ∧ B G A ∧ B—a contradiction.

Rest of the proof is easy. ��
Corollary 179 If AC(P) is a lattice and P is a ·-semilattice, then

A ∧ B = {a · b : a ∈ A& b ∈ B}

Theorem 180 If P satisfies ACC, then the order embedding ↓: AC(P) �−→ Io(P )

is an isomorphism.

Proposition 181 In any partially ordered set P , the atoms of the Alexandrov
completion Io(P ) are the down sets of the form {x} ↓, with x being minimal
elements of P . The atoms of AC(P) are the antichains of the form {x} with x being
a minimal element of P .

Proof The result can be proved by a simple contradiction argument. ��
The second part of the following theorem was proved in [67]

Theorem 182 The partially ordered set ACm(X) of all maximum sized antichains
of a partially ordered set X is a distributive lattice under the order induced from
AC(X) and for every finite distributive lattice L and every chain decomposition C

of JL (the set of join irreducible elements of L), there is a partially ordered set XC

such that L ∼= ACm(XC).

Proof The first part of the result is fairly direct. The proof of the converse is very
long and the reader is invited to try and find a simpler proof. ��
Theorem 183

• If X1,X2 are two partially ordered sets then AC(X1) ∼= AC(X2) if and only if
X1 ∼= X2.

• It is possible that ACm(X1) ∼= ACm(X2) for non isomorphic partially ordered
sets X1,X2.

• For each distributive lattice L, there exist infinitely many partially ordered sets
X such that L ∼= ACm(X)
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• If α(L) is the set of partially ordered sets whose lattice of maximum sized
antichains are isomorphic to L, then α(L) contains a set of minimal partially
ordered sets relative to inclusion and size.

• For any partially ordered set X, the partially ordered set of join irreducible
elements of the distributive lattice of antichains of X coincides with X. That
is J (AC(X)) ∼= X.

• For any distributive lattice L, L ∼= AC(J (L)).

The minimal partially ordered sets in α(L) are of much interest for inverse
problems [94] of rough sets. A characterization of these is proved in [68].

If P is a finite partially ordered set of width w(P) = n, then an element a ∈
P is said to be essential if there exist {ai}n−1

i=1 ∈ P such that {a, a1, . . . an−1} ∈
ACm(P). P is essential if and only if all of its elements are essential. All minimal
partially ordered sets in α(L) must be essential, but not all essential partially ordered
sets are minimal in general.

15 Conclusion and Directions

In this chapter a broad overview of some basic representation and duality results that
have been used in the study of rough sets have been considered. Results that have
much potential have also been adapted for rough sets. Some important directions
are mentioned below:

Canonical dualities have gained some importance in recent work, but these have
not been covered fully in the present chapter. Infinitary operations are commonly
used in these and also in many topological algebraic. But very little work on the
meaning of infinitary operations in the rough context has been done. It can be argued
that they are not being grounded properly. For example, infinite attribute sets are
not encountered in practice and some reformulation of the attributes involved in
information tables is essential for speaking about infinite sets of attributes. This is
an important foundational problem that can significantly alter the direction of the
subject.

Duality and representation theory for rough sets has been shaped to a substantial
extent by the concerns of modal logic and frame semantics. In the present author’s
opinion it is also important to change the filters and ideals used in proofs. Plenty of
such concepts are available for the purpose[41, 126, 142]. This is necessitated by
the needs of approximate reasoning.

The interconnections between pointwise, granular, abstract and cogranular
approximations [96] are not fully understood because of the limited number
of results that have been proved to date. Some of the known results have been
mentioned in this chapter. It should be noted that both positive and negative results
on possible interconnections are relevant in the study of rough sets, and vague
reasoning in general. A subclass of the above class of problems is that of redefining
co-granular and point wise approximations as granular approximations.
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Pěst. Mat. 67, 1–25 (1937)

138. Tang, J., She, K., Zhu, W.: Matroidal structure of rough sets from the viewpoint of graph
theory. J. Appl. Math. 2012, 1–27 (2012)

139. Umadevi, D.: On the completion of rough sets system determined by arbitrary binary
relations. Fund. Inform. 137, 1–12 (2015)

140. Vakarelov, D.: Non-classical negation in the works of Helena Rasiowa and their impact on
the theory of negation. Stud. Logica 84(1), 105–127 (2006)

141. Vakarelov, D.: Actual existence predicate in mereology and mereotopology. In: Polkowski,
L., et al. (eds.) Rough Sets, Part 2, IJCRS 2017, pp. 138–157. Springer, Cham (2017)

142. Venkataranasimhan, P.: Pseudo-complements in posets. Proc. Am. Math. Soc. 28, 9–17 (1971)
143. Vetterlein, T.: BL-algebras and effect algebras. Soft Comput. 9, 557–564 (2005)
144. Wang, S., Zhu, W., Zhu, Q., Min, F.: Four matroidal structures of covering and their

relationships with rough sets. Int. J. Approx. Reason. 54, 1361–1372 (2013)
145. Whitman, P.M.: Lattices, equivalence relations, and subgroups. Bull. Am. Math. Soc. 52(6),

507–522 (1946). https://projecteuclid.org/euclid.bams/1183509413
146. Yao, Y.Y.: Semantics of fuzzy sets in rough set theory. In: Skowron, A., Peters, J.F. (eds.)

Transactions on Rough Sets II. Lecture Notes in Computer Science, vol. 3135, pp. 297–318.
Springer, Berlin (2005)

147. Yao, Y.Y., Lin, T.Y.: Generalizing rough sets using modal logics. Intell. Autom. Soft Comput.
2(2), 103–120 (1996)

148. Yao, Y.Y., Yao, B.: Covering based rough set approximations. Inf. Sci. 200, 91–107 (2012)
149. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., et al. (eds.) Advances in

Fuzzy Set Theory and Applications, pp. 3–18. North Holland, Amsterdam (1979)
150. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human

reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)
151. Zhu, W.: Relationship among basic concepts in covering-based rough sets. Inf. Sci. 179,

2478–2486 (2009)
152. Zhu, W.: Relationship between general rough set based on binary relation and covering. Inf.

Sci. 179, 210–225 (2009)
153. Zhu, W., Wang, F.Y.: Relationships among three types of covering rough sets. In: IEEE GRC,

pp. 43–48 (2006)
154. Zhu, W., Wang, F.Y.: On three types of covering-based rough sets. IEEE Trans. Knowl. Data

Eng. 19(9), 1131–1144 (2007)

https://projecteuclid.org/euclid.bams/1183509413


Algebraic Methods for Orthopairs
and Induced Rough Approximation
Spaces

Gianpiero Cattaneo and Davide Ciucci

Abstract In this chapter we are interested to study the structures arising from pairs
of elements from a partially ordered set (poset) which share some orthogonality
between them, the so-called orthopairs, with respect to a unary operation of De
Morgan complementation (or in the case of a lattice interpreted as De Morgan
negation).

1 Part I: Orthopair Algebras from De Morgan Posets
and Lattices

In this chapter we are interested to study the structures arising from pairs of elements
from a partially ordered set (poset) which share some orthogonality between
them, the so-called orthopairs, with respect to a unary operation of De Morgan
complementation (or in the case of a lattice interpreted as De Morgan negation).

1.1 De Morgan Posets and Lattices

Let us start our investigation from the basic structure of De Morgan poset in its
abstract formulation according to the following definition.

Definition 1 A De Morgan poset is a structure DP = 〈Σ,≤, ′, 0, 1
〉

where

(i) the sub-structure P = 〈Σ,≤, 0, 1〉 is a poset with respect to the partial order
relation ≤, bounded by the least element 0 and the greatest element 1, i.e.,
∀a ∈ Σ, 0 ≤ a ≤ 1 (with 0 
= 1, i.e., Σ contains at least two distinct elements
0 and 1).
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(ii) the mapping ′ : Σ → Σ is a De Morgan unary operation, i.e., it satisfies the
two conditions:

(dM1) ∀a ∈ Σ , a = a′′ (involutive);
(dM2) ∀a, b ∈ Σ , a ≤ b implies b′ ≤ a′ (contraposition)

A De Morgan lattice is a De Morgan poset
〈
Σ,≤, ′, 0, 1

〉
in which both the

greatest lower bound (g.l.b.) and the least upper bound (l.u.b.) exist for any pair
of elements a, b ∈ Σ; the g.l.b. is denoted by a ∧ b and the l.u.b. by a ∨ b. Hence
a De Morgan lattice is denoted by

〈
Σ,∧,∨, ′, 0, 1

〉
.

(Let us recall that a lattice is a fortiori a poset and so all the results involving a
poset can be immediately applied to a lattice).

Lemma 2 Let Σ be a De Morgan poset then 0′ = 1 and 1′ = 0. Moreover the
following holds:

∀a ∈ Σ, a′ = a′′′ (1)

where we have adopted the convention of writing a′′ := (a′)′ and so on by the
iteration procedure.

The following proposition expresses in the poset context the equivalence among
the contraposition law (dM2) and the dual contraposition law (dM2a). In the lattice
case this equivalence result can be improved with the further two De Morgan laws
(dM2b-L) and (dM2c-L). The proof of the various points of this proposition can be
found in [22, Proposition 3.3].

Proposition 3 Let Σ be a De Morgan poset then under condition (dM1), the
following properties are mutually equivalent among them:

(dM2) ∀a, b ∈ Σ , a ≤ b implies b′ ≤ a′ (contraposition);
(dM2a) ∀a, b ∈ Σ , b′ ≤ a′ implies a ≤ b (dual contraposition).

Let Σ be De Morgan lattice then under condition (dM1) the following four
properties are mutually equivalent among them:

(dM2) ∀a, b ∈ Σ , a ≤ b implies b′ ≤ a′ (contraposition);
(dM2a) ∀a, b ∈ Σ , b′ ≤ a′ implies a ≤ b (dual contraposition);
(dM2b-L) ∀a, b ∈ Σ , (a ∧ b)′ = a′ ∨ b′ (first De Morgan law);
(dM2c-L) ∀a, b ∈ Σ , (a ∨ b)′ = a′ ∧ b′ (second De Morgan law).

Remark 4 As usual a De Morgan lattice
〈
Σ,∧,∨, ′, 0, 1

〉
is considered an algebraic

model of some propositional logic where the elements a, b, c, . . . of Σ are
interpreted as propositions, the lattice binary operations meet, ∧, and join, ∨, as
mathematical realizations of the logical connectives AND and OR, and the unary
De Morgan operation ′ as mathematical realization of the logical (De Morgan)
connective NOT ([42] and see also [30]). This last consideration allows us to call
the unary De Morgan operation as De Morgan negation in the sequel, also in
the poset case, and in this interpretation the condition (dM1) realizes the double
negation law. �
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1 = 0

e = f

c = b d = a

h = h k = k

a = d b = c

f = e

0 = 1

Fig. 1 The ten element De Morgan poset dMP10 with two half elements

Let Σ be a De Morgan poset then, according to Moisil [50],

(a) the set N0(Σ) := {a ∈ Σ : a ≤ a′
}

is the 0-kernel of Σ , whose elements are
said to be contingent or of type II. Of course, 0 ∈ N0(Σ) and a ∈ N0(Σ) iff
a′′ ∈ N0(Σ);

(b) the set N1(Σ) := {b ∈ Σ : b′ ≤ b
}

is the 1-kernel of Σ , whose elements are
said to be possible or of type I. Of course, 1 ∈ N1(Σ) and b ∈ N1(Σ) iff
b′ ∈ N1(Σ);

(c) the set Nc(Σ) := N0(Σ) ∩N1(Σ) = {c ∈ Σ : c = c′
}

is the half kernel of Σ ,
whose elements are said to be the half elements.

A De Morgan poset is said to be genuine iff it admits at least two half elements,
i.e., iff ∃h, k ∈ Nc(Σ), h 
= k.

Example 5 In Fig. 1 it is drawn the Hasse diagram of the De Morgan poset dMP10
based on a ten element poset Σ10.

This is a poset which is not a lattice since the collection of lower bounds (l.b.) of
the pair {c, d} consists of the subset l.b.{c, d} = {a, b, f, 0} which has no greatest
lower bound (g.l.b.). Similarly the pair {a, b}, whose collection of upper bounds
(u.b.) is u.b.{a, b} = {c, d, e, 1}, has no least upper bound (l.u.b.). Furthermore it
contains two half elements h = h′ and k = k′, that is Nc(Σ10) = {h, k}, and so it is
a genuine De Morgan poset.

Let us note that in particular k ≤ k′ and h′ ≤ h, but k � h, and so, according to
Definition 7 below, it is not a Kleene poset.

In a De Morgan poset it may happen that there is a unique half element without
being a Kleene poset (look at Definition 7 below with the corresponding Lemma 9).
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Fig. 2 The seven element De
Morgan (not distributive)
lattice dML7 with a unique
half element h

1 = 0

c = a d = b

h = h

a = c b = d

0 = 1

Example 6 The Hasse diagram drawn in Fig. 2 shows the De Morgan lattice called
dML7, based on a seven element lattice Σ7, which contains a half elements:
Nc(Σ7) = {h}. This De Morgan lattice is neither distributive (a ∨ (h ∧ d) =
a 
= 1 = (a ∨ h) ∧ (a ∨ d)) nor Kleene (see the condition (K) in the following
Definition 7) since a ≤ a′ and d ′ ≤ d but a � d or equivalently (see the condition
(KL) in Lemma 8) a ∧ a′ = a � b′ = b ∨ b′. In this De Morgan lattice it is that
a ∧ a′ = a 
= 0 and a ∨ a′ = a′ 
= 1. Therefore neither the noncontradiction law
nor the excluded middle law are satisfied (it is not a Boolean lattice).

Definition 7 A Kleene poset is a De Morgan poset which satisfies the further
Kleene condition:

(K) ∀a, b ∈ Σ, a ≤ a′ and b′ ≤ b imply a ≤ b. (2a)

In other words, condition (K) can also be formulated as follows:

(KN) a ∈ N ′0(Σ) and b ∈ N ′1(Σ) imply a ≤ b. (2b)

Lemma 8 Let Σ be a De Morgan lattice. Then, property (K) is equivalent to the
following:

(KL) ∀a, b ∈ Σ, a ∧ a′ ≤ b ∨ b′. (3)

Proof Let us suppose that (KL) holds. if a ≤ a′ and b′ ≤ b, then a = a ∧ a′ ≤
b ∨ b′ = b. Conversely, for all a, b one has that a ∧ a′ ≤ a ∨ a′ = (a′ ∧ a)′ and
b ∧ b′ = (b ∨ b′)′ ≤ b ∨ b′; thus by (K), a ∨ a′ ≤ b ∨ b′. ��

A Kleene poset (resp., lattice) is said to be genuine iff there exists an element
1
2 ( 
= 0, 1), called the half element, such that

(
1
2

)′ = 1
2 and so the central kernel is

not empty: 1
2 ∈ Nc(Σ) (and a fortiori 1

2 ∈ N ′0(Σ) and 1
2 ∈ N ′1(Σ)). Note that for

this element 1
2 ∧
(

1
2

)′ = 1
2 ( 
= 0) and 1

2 ∨
(

1
2

)′ = 1
2 ( 
= 1), i.e., 1

2 does not satisfy

the noncontradiction law and the excluded middle law.
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Lemma 9 The half element with respect to the Kleene complementation, if it exists,

is unique. In other words, a Kleene poset is genuine iff Nc(Σ) =
{

1
2

}
and in this

case one has that:

(i) a ≤ 1
2 for all a ∈ N0(Σ);

(ii) 1
2 ≤ b for all b ∈ N1(Σ).

Proof Let h be another half element, i.e., such that h = h′. From 1
2 =
(

1
2

)′
and

h = h′ it follows that in particular 1
2 ≤
(

1
2

)′
and h′ ≤ h and so (K) implies

that 1
2 ≤ h. Conversely, the same identities in particular also lead to h ≤ h′ and

(
1
2

)′ ≤ 1
2 and so (K) implies that h ≤ 1

2 . For the proof of point (i), if a ≤ a′ and

h′ = h ≤ h(= 1
2 ), applying the condition (K), we get a ≤ h. The point (ii) can be

proved in a similar way. ��
In a Kleene poset it may happen that there is no half element, as Example 10

shows.

Example 10 In Fig. 3 it is depicted the Hasse diagram of the Kleene poset KP6
based on a six element poset Σ6.

This is a poset which is not a lattice. Furthermore it contains no half element
since there is no element x ∈ Σ6 s.t. x = x ′, that is Nc(Σ6) = ∅.

Let us note that for any pair of elements x, y ∈ Σ6, conditions x ≤ x ′ and y ′ ≤ y

always imply x ≤ y and so, according to Definition 7, it turns out to be a Kleene
poset.

On the contrary the following is an example of a genuine Kleene lattice:

Example 11 With a slight modification of Fig. 3, we have drawn in Fig. 4 the
Hasse diagram of the Kleene distributive lattice KL7 based on the seven element
distributive lattice ΣK7 with a unique half element. Note that for any pair of
elements x, y ∈ ΣK7, conditions x ≤ x ′ and y ′ ≤ y always imply x ≤ y and
so it is a Kleene lattice.

In Example 12 below we have a not distributive Kleene lattice with a unique half
element.

Fig. 3 The six element
Kleene poset KP6 with no
half element

1 = 0

c = b d = a

a = d b = c

0 = 1
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Fig. 4 The seven element
distributive Kleene lattice
KL7 with a unique half
element

1 = 0

c = b d = a

h = h

a = d b = c

0 = 1

Fig. 5 The five element
Hasse diagram of the not
distributive Kleene lattice
KL5 with a unique half
element

1 = 0

a = b h = h b = a

0 = 1

Example 12 Let us consider the following Hasse diagram of the Kleene lattice KL5
based on the lattice Σ5. This lattice is not distributive since a ∧ (h ∨ b) = a 
= 0 =
(a ∧ h) ∨ (a ∧ b) and has a unique half element h = h′ (Fig. 5).

Definition 13 A De Morgan operation ′ on a poset Σ is said to be an orthocomple-
mentation (also standard negation) if one, and hence both, of the following mutually
equivalent properties is satisfied:

(oc-2a) For every a ∈ Σ there exists in Σ the g.l.b. a ∧ a′ and it is a ∧ a′ = 0
(noncontradiction);

(oc-2b) For every a ∈ Σ there exists in Σ the l.u.b. a ∨ a′ and it is a ∨ a′ = 1
(excluded middle);

Adopting the notation for partial algebras s
ω= t which means “if both sides s and

t are defined then the two terms are equal,” we can write the above definitions as
follows:

(oc-2a) ∀a ∈ Σ, a ∧ a′ ω= 0 (noncontradiction)

(oc-2b) ∀a ∈ Σ, a ∨ a′ ω= 1 (excluded middle)

In this case Σ is said to be an orthoposet .
Of course, if Σ is a De Morgan lattice the above two mutually equivalent

properties reduce to the following:

(ocL-2a,b) ∀a ∈ Σ, a ∧ a′ = 0 (equivalently, a ∨ a′ = 1)
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and if they are satisfied we say that Σ is a (not distributive) Boolean lattice and in
the case of distributivity of Σ we speak of Boolean algebra .

In the case of a De Morgan poset in general neither the noncontradiction nor the
excluded middle laws for the De Morgan negation, both involving a property which
must be satisfied for any element of Σ , are required to hold. But it may happen that
only for some element from Σ condition (oc-2a), or equivalently (oc-2b), is verified.
This allows one to make the following characterization:

• Let Σ be a De Morgan poset. An element a ∈ Σ is said to be complemented iff
its De Morgan negation a′ ∈ Σ is such that a ∧ a′ ω= 0 (or, equivalently, is such
that a ∨ a′ ω= 1).

The collection of all complemented elements on a De Morgan poset Σ is denoted
by:

Σc := {a ∈ Σ : a ∧ a′ ω= 0 (equivalently a ∨ a′ ω= 1)}.

This set is not empty since 0, 1 ∈ Σc. Moreover, if a ∈ Σc then also a′ ∈ Σc

(whose De Morgan complement is (a′)′ = a) and so the restriction of the De Morgan
negation to Σc is in its turn a De Morgan negation ′ : Σc → Σc. Hence, we have
the structure

〈
Σc,≤, ′, 0, 1

〉
(resp.,

〈
Σc,∧,∨, ′, 0, 1

〉
) which is a sub De Morgan

poset (resp., lattice) of the original De Morgan poset
〈
Σ,≤, ′, 0, 1

〉
(resp., lattice〈

Σ,∧,∨, ′, 0, 1
〉
).

Example 14 In the Kleene not distributive lattice KL5 of Example 12 the collection
of complemented elements is Σc(KL5) = {0, a, a′, 1

}
, which does not contain the

half element h.

1.2 The Space of Orthogonal Pairs on De Morgan Structures

Following the paper [21] (and also [22]) the structure of De Morgan poset is the
more natural one to introduce in an abstract context a notion of orthogonality
between pairs of elements, according to the following definition.

Definition 15 Let
〈
Σ,≤,′ , 0, 1

〉
be a De Morgan poset. Two elements a, b ∈ Σ are

orthogonal, and we write a⊥b, iff the following holds.

a ⊥ b iff a ≤ b′ (equivalently, b ≤ a′). (4)

For any pair of subsets M and N of the poset Σ we denote by M ⊥ N the
fact that ∀m ∈ M and ∀n ∈ N it is m ⊥ n. In the particular case of a singleton
M = {m} we denote by m ⊥ N the fact that ∀n ∈ N it is m ⊥ n.
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Proposition 16 The just introduced orthogonality relation on the De Morgan poset
Σ satisfies the following properties (see [21, 23]).

(og − 0) ∀a ∈ Σ, 0 ⊥ a (0 full orthogonality)

(og − 1) ∀a ∈ Σ, a ⊥ a iff a ∈ N0(Σ) (0-kernel irreflexive)

(og − 2) ∀a, b ∈ Σ, a ⊥ b iff b ⊥ a (symmetry)

(og − 3) ∀a, b ∈ Σ, a ≤ b and b ⊥ c imply a ⊥ c (absorbtion)

In the case of an orthoposet Σ condition (og-1) must be substituted by the
following

(op − 1) ∀a ∈ Σ, a ⊥ a iff a = 0 (0-irreflexive)

Proof The (og-0) is a trivial consequence of 0 ≤ a′ for any a ∈ Σ . Moreover, a ⊥ a

means a ≤ a′, i.e., a ∈ N0(Σ), i.e., the (og-1). The (og-2) is trivial consequence of
the fact that a ≤ b′ iff b = b′′ ≤ a′. On the other hand, a ≤ b and b ⊥ c means
a ≤ b and b ≤ c′ and so, for the transitivity of the order relation a ≤ c′, i.e., a ⊥ c,
that is (og-3). Finally, in the case of an orthoposet the two conditions a ≤ a′ and
a ∧ a′ = 0 imply a ∧ a ≤ a ∧ a′ = 0, i.e., a = a ∧ a = 0, i.e., (op-1). On the other
hand, if a = 0 then a = 0 ≤ 1 = a′. ��

1.2.1 Minimal (or Pre) BZ Posets of Orthopairs Induced from De Morgan
Posets

Let Σ be a De Morgan poset. The collection of all orthopairs generated by Σ will
be denoted by

A(Σ) := {(a1, a0) ∈ Σ ×Σ : a1 ⊥ a0}. (5)

(Sometimes, A(Σ) will also be written as (Σ ×Σ)⊥ = (Σ2)⊥.)
The following is trivial.

Proposition 17 Let
〈
Σ,≤, ′, 0, 1

〉
be a De Morgan poset. Then, the collection

A(Σ) of all its orthopairs turns out to be a poset with respect to the following
partial order relation:

(a1, a0) ' (b1, b0) iff a1 ≤ b1 and b0 ≤ a0 (6)

The poset 〈A(Σ),'〉 is bounded by the least element 0 := (0, 1) and the greatest
element 1 := (1, 0). For any (a1, a0) let us set −(a1, a0) := (a0, a1) as the result of
a unary operation whose properties will be discussed in the following.
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The following subsets of A(Σ) will be very useful in the sequel

(0A) Since ∀a ∈ Σ , 0 ≤ a′, i.e., 0 ⊥ a, we can define

Aoa(Σ) := {(0, a) ∈ Σ ×Σ : a ∈ Σ} ⊆ A(Σ). (7)

(A0) Since ∀a ∈ Σ , a ≤ 0′ = 1, i.e., a ⊥ 0, we can define

Aao(Σ) := {(a, 0) ∈ Σ ×Σ : a ∈ Σ} ⊆ A(Σ). (8)

Let us note that (a, 0) ∈ Aao(Σ) iff −(a, 0) = (0, a) ∈ Aoa(Σ), so the
list of all the elements belonging to Aoa(Σ) allows one to immediately
obtaining the corresponding list of elements from Aao(Σ). We denote
this fact by Aao(Σ) = −Aoa(Σ). Of course, (0, 1) ∈ Aoa(Σ) and
(1, 0) ∈ Aao(Σ) and so both of them are not empty. Moreover, (0, 0) ∈
Aao(Σ) ∩ Aoa(Σ).

(AB) Making use of these we can define also

Aab(Σ) : = A(Σ) \ (Aao(Σ) ∪ Aoa(Σ)) (9a)

= {(a1, a0) ∈ Σ ×Σ : (0 
=)a1 ⊥ a0( 
= 0)} (9b)

Let us note that (a1, a0) ∈ Aab(Σ), with a1 ≤ a′0, implies
(a0, a1) = −(a1, a0) ∈ Aab(Σ), since from a1 ≤ a′0 it can be deduced that
a0 = (a′0)′ ≤ a′1.

Of course, trivially,

A(Σ) = Aao(Σ) ∪ Aoa(Σ) ∪ Aab(Σ).

From (0A) and (A0) we obtain the following partial order chain in A(Σ):

∀a ∈ Σ, (0, 1) ' (0, a) ' (0, 0) ' (a, 0) ' (1, 0) (10)

Furthermore, from (AB) we have the following two partial order chains in A(Σ):

∀(a1, a0) ∈ Aab(Σ), (0, 1) ' {(a1, a0), (a0, a1)} ' (1, 0) (11)

These two situations can be compacted in the partial Hasse diagram of Fig. 6 relative
to a generic possible element a ∈ Σ (of course with a 
= 0, 1) and a possible
single orthopair (a1, a0) ∈ Aab(Σ), which must be present in each complete Hasse
diagram of A(Σ) involving all possible (and different among them) orthopairs
(a1, a0) ∈ Aab(Σ).

In this section we study the algebraic poset structure shared by the collection of
all orthopairs from a De Morgan poset.
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(1, 0)

(a, 0) = −(0, a)

(a0, a1) = −(a1, a0) (0, 0) (a1, a0) = −(a0, a1)

(0, a) = −(a, 0)

(0, 1)

Fig. 6 Partial Hasse diagram that must be present in every complete Hasse diagram of A(Σ) if
there exists a 
= 0 and at least an orthopair (a1, a0) ∈ Aab(Σ)

Lemma 18 Let
〈
Σ,≤, ′, 0, 1

〉
be a De Morgan poset. For any element a ∈ Σ , the

pairs (a, a′) ∈ A(Σ) and (a′, a) ∈ A(Σ).

Proof For any a ∈ Σ we have that from condition (dM1) a = (a′)′, which in
particular satisfies the inequality a ≤ (a′)′, i.e., a ⊥ a′. On the other hand, from this
last, by condition (og-2) we obtain that also a′ ⊥ a. Thus, ∀a ∈ Σ , (a, a′), (a′, a) ∈
A(Σ). ��

Hence the partial Hasse diagram of Fig. 6 must be completed by Fig. 7 always
under the existence of an element a 
= 0 and at least one orthopair (a1, a0) ∈
Aab(Σ).

Fig. 7 Further partial Hasse
diagram that must be present
in every complete Hasse
diagram of A(Σ)

(1, 0)

(a, 0)

(a0, a1) (a , a) (0, 0) (a, a ) (a1, a0)

(0, a)

(0, 1)
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In Proposition 17 we have seen that the collection of all orthopairs from a De
Morgan poset Σ has a structure of bounded poset 〈A(Σ),', 0 = (0, 1), 1 = (1, 0)〉
with respect to the partial order relation:

(a1, a0) ' (b1, b0) iff a1 ≤ b1 and b0 ≤ a0.

Then, the following can be proved.

Theorem 19 Let
〈
Σ,≤, ′, 0, 1

〉
be a De Morgan poset.

This poset structure can be equipped with the following two mappings A(Σ)→
A(Σ) associating with any element (a0, a1) ∈ A(Σ) the following element in A(Σ),
respectively:

−(a1, a0) := (a0, a1) (12a)

∼ (a1, a0) := (a0, (a0)
′) (12b)

The mapping − : A(Σ) → A(Σ) is such that it admits the half element 1/2 =
(0, 0) = −1/2, moreover all the properties of a De Morgan negation on posets are
true since for any orthopairs α = (a1, a0) and β = (b1, b0) one has the following:

(dM1) α = −(−α) (double negation law);
(dM2) α ' β implies −β ' −α (contraposition);

The mapping ∼: A(Σ) → A(Σ) satisfies the properties of a minimal Brouwer
negation on posets true for any orthopairs α = (a1, a0) and β = (b1, b0):

(B1) α '∼ (∼ α) (weak double negation law)
(B2) α ' β implies ∼ β '∼ α (B-contraposition)

Further, the (strong) interconnection rule is satisfied:

(IR) Let α = (a1, a0) ∈ A(Σ), then − ∼ α =∼∼ α.

Note that the orthopair (a1, a0) ∈ A(Σ) is a half element ((a1, a0) = −(a1, a0)) iff
a1 = a0, that is the half elements are of the form (a, a) with a ≤ a′. Denoting by
Ah(Σ) the collection of all half elements from A(Σ) we have that

Ah(Σ) := {(a, a) ∈ Σ ×Σ : a ∈ N0(Σ)} ⊆ A(Σ).

In particular we have already seen that 1/2 = (0, 0) is one of the possible half
elements: (0, 0) ∈ Ah(Σ).

Proof As to the De Morgan properties of−, we have that 1/2 = (0, 0) = −(0, 0) =
−1/2. Furthermore, trivially −(− (a1, a0)) = (a1, a0), i.e., (dM1).

Condition (a1, a0) ' (b1, b0), i.e., a1 ≤ b1 and b0 ≤ a0, leads to (b0, b1) '
(a0, a1), i.e., −(b1, b0) ' −(a1, a0), i.e., (dM2).

As to the Brouwer properties of ∼, first of all we have that ∼ (∼ (a1, a0)) =∼
(a0, (a0)

′) = ((a0)
′, ((a0)

′)′
) = ((a0)

′, a0) and from a1 ≤ (a0)
′ and a0 ≤ a0 it
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follows that (a1, a0) '∼ (∼ (a1, a0)), which is the (B1). Moreover, if (a1, a0) '
(b1, b0) then in particular b0 ≤ a0, which for the contraposition law (dM2) implies
(a0)

′ ≤ (b0)
′. So conditions b0 ≤ a0 and (a0)

′ ≤ (b0)
′ mean that ∼ (b1, b0) =

(b0, (b0)
′) ' (a0, (a0)

′) =∼ (a1, a0), i.e., the (B2).
For the interconnection rule (IR), let us observe that −(∼ (a1, a0)) =

− (a0, (a0)
′) = ((a0)

′, a0
)

and ∼ (∼ (a1, a0)) =∼
(
a0, (a0)

′) = ((a0)
′, a0
)
. ��

In this way, and summarizing the results of Theorem 19, we have the following.

(mBZ) Starting from a De Morgan poset
〈
Σ,≤, ′, 0, 1

〉
one obtains a structure

〈A(Σ),', −, ∼, 0, 1〉 of minimal Brouwer Zadeh (mBZ) poset , since

(Z) the operation− satisfies both the conditions (dM1) and (dM2) for
a De Morgan (Zadeh) negation;

(mB) the operation ∼ satisfies only the two conditions (B1) and (B2)
of an intuitionistic (Brouwer) negation, but not the condition (B3)
required by intuitionistic logic. Let us recall that a negation satis-
fying the only two conditions (B1) and (B2) is called “minimal”
by Dunn in [38] whereas in [23] it is called “pre Brouwer”.

Furthermore the mBZ poset A(Σ) is genuine since the orthopair 1/2 :=
(0, 0) ∈ A(Σ) is one of the possible half elements of this poset, −1/2 =
1/2, with the further identity ∼ 1/2 = (0, 1) = 0.
Finally, the two negations are interconnected by condition (IR), necessary
in order to have a BZ structure.

Let us note that relative to the De Morgan (Zadeh) negation − one has that
1/2 � −1/2 = 1/2 
= 0 and 1/2 � −1/2 = 1/2 
= 1, and so both the algebraic
versions of noncontradiction and excluded middle principles in order to have a
Boolean negation on orthopairs do not hold. On the other hand, 1/2 � ∼ 1/2 = 0.
But we have seen that for any a ∈ N0(Σ), i.e., such that a ≤ a′, the orthopair (a, a)
is a half element (−(a, a) = (a, a)) for which ∼ (a, a) = (a, a′) (a ≤ (a′)′ = a)
and so for a 
= 0 we have (a, a)� ∼ (a, a) = (a, a ∨ a′) 
= (0, 1) = 0.

Summarizing,

(N1) the operation − is not an algebraic realization of a standard Boolean
negation. Moreover,

(N2) in general the operation∼ is not an algebraic realization of the intuitionistic
Brouwer negation (it is sufficient that N0(Σ) contains an element a 
= 0).

As to the point (N2), the noncontradiction principle ∀α, α � ∼ α = 0, usually
denoted as (B3), combined with the previous ones (B1) and (B2) completely
characterizes the intuitionistic (Brouwer) negation as can be verified in the book of
Heyting [44] where, after the claim that “the main differences between classical and
intuitionistic logics are in the properties of the negation,” it is listed the accepted
principles of this negation whose formulation in terms of the algebraic model, as
shown in [19], are just the conditions (B1), (B2), and (B3). In the same book the
principles that this negation rejects are also listed, in particular the dual of the (B1),
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which would lead to the strong version of the double negation law, and also the
excluded middle principle ∀α, α� ∼ α = 1 is rejected.

We have seen that the mBZ poset A(Σ) induced from a De Morgan poset Σ
always admits at least a half element, the orthopair 1/2 = (0, 0). But in general this
is not the unique half element since any orthopair (a, a), for a running in N0(Σ), is
a half element of A(Σ).

Example 20 In the Hasse diagram of the Kleene poset KP6 treated in Example 10
the corresponding structure of orthopairs A(KP6) is decomposed into the following
three parts:

Aoa(KP6) = {(0, 0), (0, a), (0, b), (0, c = b′), (0, d = a′), (0, 1)
} = −Aao(KP6)

Aab(KP6) = {(a, a), (b, b), (a, a′), (a′, a), (b, b′), (b′, b), (a, b), (b, a)}

The Hasse diagram of the induced minimal BZ poset structure A(KP6) of all
orthopairs is drawn in Fig. 8, from which one realizes that in addition to the standard

(1, 0)

(b , 0) (a , 0)

(b, 0) (b , b) (a , a) (a, 0)

(b, b) (a, b) (0, 0) (b, a) (a, a)

(0, b) (b, b ) (a, a ) (0, a)

(0, b ) (0, a )

(0, 1)

Fig. 8 Hasse diagram of the mBZ structure A(KP6) with three half elements
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1 = 0

h = h a = b b = a k = k

0 = 1
Fig. 9 The six element De Morgan lattice dML6 with two half elements h and k

half element (0, 0) it contains two other half elements (a, a) and (b, b), although
KP6 has no half element.

Theorem 19 assures that the mapping ∼ defined by Eq. (12b) is a minimal
Brouwer negation which in general does not satisfy the condition (B3). That the
negation∼ of A(KP6) is a minimal Brouwer negation which is not full Brouwer can
be directly proved for instance considering that (0, b)� ∼ (0, b) = (0, b)�(b, b′) =
(0, b′) 
= (0, 1), i.e., in the present case the condition (B3) is not satisfied.

This poset is not a lattice since, for instance, the upper bounds of the two
orthopairs {(a, 0), (b, 0)} are

{
(a′, 0), (b′, 0), (1, 0)

}
which do not admit the l.u.b.

Analogously we have that the lower bounds of the two orthopairs {(0, a), (0, b)} are{
(0, a′), (0, b′), (0, 1)

}
which do not admit the g.l.b.

Example 21 Let us consider the De Morgan (not distributive) lattice dML6 of
the Fig. 9 with two half elements h, k. The corresponding structure of orthopairs
A(dML6) is decomposed into the following three parts:

Aoa(dML6) = {(0, 0), (0, a), (0, b = a′), (0, h), (0, k), (0, 1)
} = −Aao(dML6)

Aab(dML6) = {(h, h), (k, k), (a, a′), (a′ = b, a = b′)
}

The Hasse diagram for the minimal BZ lattice A(dML6) is drawn in Fig. 10.
Note that A(dML6) is a lattice which is not distributive since for instance (h, 0)�

[(a′, 0) � (a, 0)] = (h, 0) 
= (0, 0) = [(h, 0) � (a′, 0)] � [(h, 0) � (a, 0)]. Moreover
it does not satisfy the condition (KL) since for instance (h, h) �−(h, h) = (h, h) is
incomparable with (k, k)�−(k, k) = (k, k). Also the condition (B3) is not satisfied
since for instance (h, h)� ∼ (h, h) = (h, h) 
= (0, 1).

Definition 22 Owing to condition (B1) it is possible to define an orthopair α =
(a1, a0) as exact (or B-crisp) with respect to the quasi Brouwer negation if and only
if (iff) (a1, a0) =∼∼ (a1, a0) and since ∼∼ (a1, a0) = ((a0)

′, a0) this happens
iff a0 = (a1)

′, that is iff they are of the form α = (a1, (a1)
′) for a1 ∈ Σ , i.e.,

setting a := a1 iff α = (a, a′) for a ∈ Σ . The collection of all orthopairs which are
Brouwer exact (or B-crisp) is denoted as Ae(Σ) and so:

Ae(Σ) : = {(a1, a0) ∈ A(Σ) : (a1, a0) =∼∼ (a1, a0) = ((a0)
′, a0)
}

(13a)

= {(a, a′) ∈ A(Σ) : a ∈ Σ
}
. (13b)
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(1, 0)

(h, 0) (a, 0) (a , 0) (k, 0)

(h, h) (a, a ) (0, 0) (a , a) (k, k)

(0, h) (0, a ) (0, a) (0, k)

(0, 1)

Fig. 10 Hasse diagram of A(dML6) with the three half elements (h, h), (0, 0), and (k, k)

Once observed that for every a ∈ Σ the inequality a ≤ (a′)′ holds, i.e., ∀a ∈ Σ ,
(a, a′) ∈ A(Σ), the above collection of Brouwer exact orthopairs Ae(Σ) must not
be confused with the collection:

A(Σc) : =
{
(a1, (a1)

′) ∈ A(Σ) : ∃a1 ∧ (a1)
′ = 0 and ∃a1 ∨ (a1)

′ = 1
}

(14a)

= {(c, c′) ∈ A(Σ) : c ∈ Σc

}
. (14b)

Comparing (13b) with (14b) we have the inclusions:

A(Σc) ⊆ Ae(Σ) ⊆ A(Σ).

Example 23 In Example 11 of the seven element Kleene distributive lattice KL7
based on the lattice ΣK7 we have that

Ae(ΣK7) =
{
(0, 1), (a, a′), (a′, a), (b, b′), (b′, b), (h, h), (1, 0)

}

which is the distributive lattice (Fig. 11).
On the contrary,A((ΣK7)c) = {(0, 1), (1, 0)} is a two elements Boolean algebra.

Example 24 Let us consider the six element Boolean algebra BA6 drawn in Fig. 12.
In this case we have that

Ae(BA6) = A((BA6)c) =
{
(0, 1), (a, a′), (a′, a), (b, b′), (b′, b), (1, 0)

}

The latter two are represented by the six element Boolean algebra whose Hasse
diagram is given in Fig. 13.
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Fig. 11 Hasse diagram of the
distributive lattice Ae(ΣK7)

(1, 0)

(a , a) (b , b)

(h, h)

(a, a ) (b, b )

(0, 1)

Fig. 12 Hasse diagram of the
six element Boolean algebra
BA6

1 = 0

b = c d = a

d = a b = c

0 = 1

Fig. 13 Hasse diagram of the
two Boolean algebras
Ae(BA6) = A((BA6)c)

(1, 0)

(b , b) (a , a)

(a, a ) (b, b )

(0, 1)

Note that x ←→ (x, x ′) defines an isomorphism between the Boolean algebras
BA6 and A(BA6).

Rough Approximation Spaces Induced from Minimal BZ Posets of Orthopairs

In the minimal BZ poset A(Σ) of all orthopairs induced from the De Morgan poset
Σ , the interior and the closure of any orthopair (a1, a0) ∈ A(Σ) are defined in the
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following way:

I (a1, a0) :=∼ −(a1, a0) =
(
a1, (a1)

′) (15a)

C (a1, a0) := − ∼ (a1, a0) =
(
(a0)

′, a0
)

(15b)

Trivially the following chain of inclusions with respect to the partial order '
of orthopairs holds, corresponding to the satisfaction of the following roughness
coherence condition:

(RC1) ∀(a1, a0) ∈ A(Σ), I (a1, a0) ' (a1, a0) ' C(a1, a0) (16)

That is the interior (resp., closure) orthopair I (a1, a0) (resp., C(a1, a0)) is an inner
(resp., outer) approximation of the given orthopair (a1, a0).

Proposition 25 Let A(Σ) be the minimal BZ poset of all orthopairs from Σ .
Then, the corresponding set of open elements O(A(Σ)) := {(a1, a0) ∈ A(Σ) :
I (a1, a0) = (a1, a0)} and closed elements C (A(Σ)) := {(a1, a0) ∈ A(Σ) :
C(a1, a0) = (a1, a0)} coincide and are equal to the collection of all exact (or B-
crisp) orthopairs introduced by Eq. (22) of Definition 22:

O(A(Σ)) = C (A(Σ)) = Ae(Σ) = {(a, a′) : a ∈ Σ
}

On Ae(Σ) the two negations coalesce in a unique negation ∀(a, a′) ∈
Ae(Σ), −(a, a′) =∼ (a, a′) = (a′, a), denoted by −, and the structure
〈Ae(Σ),',−, (0, 1), (1, 0)〉 is a De Morgan bounded poset. Furthermore, the
mapping

ϕ : 〈Ae(Σ),',−, (0, 1), (1, 0)〉 → 〈Σ,≤, ′, 0, 1
〉
, (a, a′)→ ϕ(a, a′) := a

is a bijection preserving the De Morgan structures in the sense that

(Is1) (a, a′) ' (b, b′) iff ϕ(a, a′) ≤ ϕ(b, b′) iff a ≤ b

(Is2) ϕ(−(a, a′)) = a′

(Is3) ϕ(0, 1) = 0 and ϕ(1, 0) = 1.

This De Morgan poset isomorphism between Ae(Σ) and Σ , also denoted by
(a, a′) ←→ a, will be extended to the Cartesian products Ae(Σ) × Ae(Σ) and
Σ × Σ by the one-to-one correspondence denoted simply as ((a, a′), (b, b′))←→
(a, b).

The exterior of an orthopair (a1, a0) ∈ A(Σ) is defined as

E(a1, a0) := −C(a1, a0) = (a0, (a0)
′) (17)
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(a1, a0) ∈ A(Σ)

I

R⊥

E

(a1, (a1) ) a1
ϕ

a0
ϕ

(a0, (a0) )

(a1, a0) ∈ A(Σ)

Fig. 14 Ortho-rough approximation of the orthopair (a1, a0) ∈ A(Σ)

Trivially, (a1, a0) ' −E(a1, a0) = ((a0)
′, a0), that is

∀(a1, a0) ∈ A(Σ), (a1, a0) ⊥ E(a1, a0) (18)

The ortho-rough approximation of any orthopair (a1, a0) ∈ A(Σ) is

R⊥(a1, a0) := (I (a1, a0), E(a1, a0)) = ((a1, (a1)
′), (a0, (a0)

′) (19)

whose diagrammatic representation is given by Fig. 14.
Hence, the ortho-rough approximation of (a1, a0) is identifiable with the pair

itself, R⊥(a1, a0) = ((a1, (a1)
′), (a0, (a0)

′)←→ (a1, a0). Therefore, this approxi-
mation does not bring any knowledge increase.

1.2.2 Minimal (or Pre) BZdM Lattices of Orthopairs Induced from De
Morgan Lattices

Let us now investigate what happens when the starting structure is a De Morgan
lattice.

Theorem 26 Let
〈
Σ,∧,∨, ′, 0, 1

〉
be a De Morgan lattice. Then, the collection

A(Σ) of all its orthopairs is a lattice with respect to the following meet and join
operations:

(a1, a0) � (b1, b0) := (a1 ∧ b1, a0 ∨ b0) (20a)

(a1, a0) � (b1, b0) := (a1 ∨ b1, a0 ∧ b0) (20b)

The partial order induced from these operations according to

(a1, a0) ' (b1, b0) iff (a1, a0) = (a1, a0) � (b1, b0) (21a)

iff (b1, b0) = (a1, a0) � (b1, b0) (21b)

is just the one of Eq. (6): iff a1 ≤ b1 and b0 ≤ a0.
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The unary operations of De Morgan and minimal Brouwer negations are always
the ones defined by Eq. (12):

−(a1, a0) := (a0, a1)

∼ (a1, a0) := (a0, (a0)
′)

Therefore, we have a lattice structure 〈A(Σ),�,�, −,∼, 0, 1〉 based on the
collection A(Σ) of all orthopairs from the De Morgan lattice Σ whose operation
− satisfies the conditions (dM1) and (dM2) of a De Morgan negation and whose
operation ∼ satisfies the conditions (B1) and (B2) of a minimal Brouwer negation .
The two negations are linked by the interconnection rule:

(IR) − ∼ (a1, a0) =∼∼ (a1, a0)

Moreover, the following laws for the Brouwer negation turn out to be mutually
equivalent among them:

(B2) (a1, a0) ' (b1, b0) implies ∼ (b1, b0) '∼ (a1, a0),

(B2a) ∼ ((a1, a0) � (b1, b0)) =∼ (a1, a0)� ∼ (b1, b0) ,

(B2b) ∼ ((a1, a0) � (b1, b0)) =∼ (a1, a0)� ∼ (b1, b0) .

In other words A(Σ) is a minimal BZ lattice whose Brouwer negation satisfies
both the De Morgan laws, i.e., a minimal BZdM lattice.

Recall that the half elements are of the form (a, a) with a ≤ a′. Precisely,

Let a ≤ a′ (a ∈ N0(Σ)) then − (a, a) = (a, a) and ∼ (a, a) = (a, a′).

In particular (0, 0) is a half element such that −(0, 0) = (0, 0) and ∼ (0, 0) =
(0, 1). Furthermore, if h is a half element, h = h′, then−(h, h) =∼ (h, h) = (h, h).

Proof of (20a) Let us show that if (a1, a0), (b1, b0) ∈ A(Σ) then (a1 ∧ b1) is
orthogonal to (a0 ∨ b0), i.e., ((a1 ∧ b1), (a0 ∨ b0)) ∈ A(Σ) . From the hypothesis
we get a1 ≤ a′0 and b1 ≤ b′0 and so a1 ∧ b1 ≤ a′0 ∧ b′0 = (a0 ∨ b0)

′. Thus
(a1 ∧ b1, a0 ∨ b0) ∈ A(Σ).

Let us show that (a1∧b1, a0∨b0) is a lower bound of the pair {(a1, a0), (b1, b0)}.
From a1 ≤ a1 ∧ b1 and a0 ≤ a0 ∨ b0 it follows that (a1 ∧ b1, a0 ∨ b0) ' (a1, a0).
In a similar way one obtains that (a1 ∧ b1, a0 ∨ b0) ' (b1, b0).

Let (x1, x0) ∈ A(Σ) be a lower bound of the pair (a1, a0) , (b1, b0) ∈ A(Σ),
i.e., x1 ≤ {a1, b1} and {a0, b0} ≤ x0. From these it follows that x1 ≤ a1 ∧ b1
and a0 ∨ b0 ≤ x0 and so (x1, x0) ' (a1 ∧ b1, a0 ∨ b0), i.e., (a1 ∧ b1, a0 ∨ b0) =
(a1, a0) � (b1, b0). The � case is similar. ��
Proof of (21a) (a1, a0) � (b1, b0) = (a1 ∧ b1, a0 ∨ b0) = (a1, a0) iff a1 = a1 ∧ b1
and a0 = a0 ∨ b0 iff a1 ≤ b1 and b0 ≤ a0 iff (a1, a0) ' (b1, b0). ��
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Proof of (B2) Trivially, let (a1, a0), (b1, b0) ∈ A(Σ), i.e., a1 ≤ a′0 and from b1 ≤
b′0 it follows b0 ≤ b′1. Since, (a1, a0) ' (b1, b0) means in particular that b0 ≤ a0,
with this last equivalent to a′0 ≤ b′0, we get that (b0, b

′
0) ' (a0, a

′
0) and so from

∼ (b1, b0) = (b0, b
′
0) and ∼ (a1, a0) = (a0, a

′
0) we conclude that ∼ (b1, b0) '∼

(a1, a0). ��
Proof of (B2b)

∼ ((a1, a0) � (b1, b0)) =∼ (a1 ∧ b1, a0 ∨ b0) =
= (a0 ∨ b0, (a0 ∨ b0)

′) = (a0 ∨ b0, (a0)
′ ∧ (b0)

′) =
= (a0, (a0)

′) � (b0, (b0)
′) =∼ (a1, a0) � (b1, b0) .

The proof of (B2a) is similar and the equivalence of (B2), (B2a), and (B2b) is trivial.
��

Some negative results of the structure of minimal BZdM lattices of orthopairs
generated by De Morgan lattices are collected in the following theorem.

Theorem 27 Let A(Σ) be the minimal BZdM lattice of orthopairs generated by the
De Morgan lattice Σ . Then,

(NG1) Condition (K) characterizing the Kleene complementation in general does
not hold. Indeed let α = (a1, a0), β = (b1, b0) ∈ A(Σ), then from α �
−α = (a1 ∧ a0, a1 ∨ a0) and β � −β = (b1 ∨ b0, b1 ∧ b0) one has that
the condition inside A(Σ), “(K) α � −α ' β � −β,” assumes the form:

(K) (a1 ∧ a0, a1 ∨ a0) ' (b1 ∨ b0, b1 ∧ b0)

This is satisfied under the two conditions “a1 ∧ a0 ≤ b1 ∨ b0 and b1 ∧
b0 ≤ a1 ∨ a0,” which in general do not hold since from the orthogonality
condition a0 ≤ a′1 we can only state that 0 ≤ a1 ∧ a0 ≤ a1 ∧ a′1 
= 0.

(NG2) Noncontradiction principle (oc-2a) and excluded middle principle (oc-2b)
characterizing the orthocomplementation of an orthoposet in general are
not satisfied. Indeed, for any element α = (a1, a0) ∈ A(Σ) one has that

(woc-2a) (a1, a0) � − (a1, a0) = (a1 ∧ a0, a1 ∨ a0) 
= (0, 1)

(woc-2b) (a1, a0) � − (a1, a0) = (a1 ∨ a0, a1 ∧ a0) 
= (1, 0)

(NG3) Also the condition (B3) of the Brouwer complementation in general does
not hold but the following weaker form is satisfied:

(wB3) (a1, a0)� ∼ (a1, a0) =
(
a1 ∧ a0, a0 ∨ (a0)

′) .
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1

h = h

0

(1, 0) =∼ (0, 1)

−(0, h) = (h, 0)

(0, 0) = −(0, 0) (h, h)

−(h, 0) = (0, h)

(0, 1) = −(1, 0) =∼ (1, 0)
=∼ (0, 0) =∼ (h, 0)

Fig. 15 The three valued totally ordered Kleene distributive lattice MVL3 (at the left side) with
corresponding minimal BZdM distributive lattice A(MVL3) (at the right side), where (h, h) =
−(h, h) =∼ (h, h) =∼ (0, h)

(NG4) Also in the case of a Kleene lattice Σ (and so with a unique half element)
the orthopair 1/2 = (0, 0) is a half element which in general, as in the
case of a Kleene poset, is not unique (see the Example 28 of the Kleene
lattice MVL3).

Example 28 Let us consider the totally ordered three valued Kleene lattice MVL3
of the Fig. 15, which can be considered as a part of the three valued logic of
Łukasiewicz: “A possible step beyond the simple case of two-valued logic is the
introduction of a third, “intermediate” or “neutral” or “indeterminate” truth value h.
This step was first taken by J. Łukasiewicz [. . . ] with a paper of 1920” [62, p. 22].

The three valued totally ordered Kleene lattice MVL3 is such that we can select
the following three subsets of A(MVL3):

Aoa(MVL3) = {(0, 0), (0, h), (0, 1)} = −Aao(MVL3)

Aab(MVL3) = {(h, h)}

Once constructed the lattice A(MVL3) depicted at the right side of Fig. 15 we
can say that

• The totally ordered three valued Kleene distributive lattice MVL3 contains the
unique half element h (intermediate, neutral, indeterminate truth value).

• The minimal BZdM distributive lattice A(MVL3) contains two half elements
(0, 0) and (h, h) (and so it is not minimal Brouwer Kleene, i.e., ¬(mBKdM)).

• The structure is minimal since condition (B3) for the Brouwer negation does not
hold. For instance (0, h)� ∼ (0, h) = (0, h) 
= (0, 1).
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The next proposition improves on Theorem 26.

Proposition 29 Let Σ be a Boolean lattice (that is the De Morgan negation is such
that condition ∀a ∈ Σ , a ∧ a′ = 0 and its dual a ∨ a′ = 1 both hold, defining in
this way a Boolean orthocomplementation on a not necessary distributive lattice).
Then, under these conditions:

(BL-K) The (KL) condition holds for any element (a1, a0) ∈ A(Σ) since in the
case of a Boolean lattice it assumes the form (0, a1 ∨ a0) ' (b1 ∨ b0, 0)
with respect to which the two relations 0 ≤ b1∨b0 and 0 ≤ a1∨a0 hold.

(BL-H) It contains a unique half element (0, 0). Indeed, conditions (a, a) and
a ≤ a′ imply a = a ∧ a′ = 0.

(BL-B3) The (B3) condition holds for any element (a1, a0) ∈ A(Σ) since in the
case of a Boolean lattice it assumes the form (a1, a0)� ∼ (a1, a0) =
(0, 1). But from the orthogonality condition a0 ≤ a′1 we have that 0 ≤
a1 ∧ a0 ≤ a1 ∧ a′1 ≤ 0, and from the Boolean lattice condition we have
also that a0 ∨ a′0 = 1.

As a consequence of these results, if Σ is a Boolean lattice different from the trivial
one, Σ 
= {0, 1}, then A(Σ) is a Brouwer Kleene (BKdM) lattice since the negation
− is a Kleene complementation satisfying (dM1), (dM2), and (KL), and the ∼ is a
real Brouwer negation satisfying (B1), (B2)–(B2a,b), and (B3), the two are linked
by the interconnection rule (IR).

Furthermore,

(BA) If Σ is a Boolean algebra (that is a distributive Boolean lattice) then the
BKdM lattice A(Σ) is distributive (its Kleene negation − is not Boolean in
general). Summarizing, A(Σ) is a BKdM algebra (distributive lattice).

Proof The proofs of points (BL-K), (BL-oc2), (BL-B3), and (BL-H) are quite
simple. Let us prove the only condition (BA). Indeed, (a, b) � ((c, d) � (e, f )) =
(a, b) � (c ∨ e, d ∧ f ) = (a ∧ (c ∨ e), b ∨ (d ∧ f )). On the other hand,
((a, b) � (c, d)) � ((a, b) � (e, f )) = (a ∧ c, b ∨ d) � (a ∧ e, b ∨ f ) = ((a ∧
c)∨ (a∧ e), (b∨d)∧ (b∨f )) = (distributivity) = (a∧ (c∨ e), b∨ (d∧f )). From
these two results we get (a, b)�((c, d)�(e, f )) = ((a, b)�(c, d))�((a, b)�(e, f )),
whatever be (a, b), (c, d), and (e, f ). ��
Example 30 Let us consider the four element Boolean algebra B4 of Fig. 16.

Fig. 16 The four element
Boolean algebra B4

1 = 0

a = b b = a

0 = 1
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Fig. 17 Hasse diagram of the
BKdM distributive lattice
A(B4) with unique half
element (0, 0)

(1, 0)

(b, 0) (a, 0)

(b, a) (0, 0) (a, b)

(0, a) (0, b)

(0, 1)

The corresponding BKdM distributive lattice structure of orthopairs A(B4) can
be decomposed into the three subsets

Aa0(B4) = {(0, 0), (0, a), (0, b), (0, 1)} = −A(B4)

Aab(B4) = {(a, a′) = (a, b), (b, b′) = (b, a)
}

The corresponding Hasse diagram is drawn in Fig. 17 where the tabular description
of the two negations of A(B4) is the following.

A(B4) (0, 0) (0, a) (0, b) (a, 0) (b, 0) (0, 1) (1, 0) (a, a′) (b, b′)
−(x, y) (0, 0) (a, 0) (b, 0) (0, a) (0, b) (1, 0) (0, 1) (a′, a) (b′, b)
∼ (x, y) (0, 1) (a, a′) (b, b′) (0, 1) (0, 1) (1, 0) (0, 1) (a′, a) (b′, b)

1.3 Concrete Models of Orthopair Structures

In this section we consider concrete models of orthopair structures from the
strongest to the weakest one, in order to give concrete examples in which this
structure plays an important role. All these models, unlike the examples considered
earlier, admit of infinite universes.
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1.3.1 Orthopairs from the Distributive Lattice of Subsets of a Universe

Let us consider a concrete (nonempty) universe of points X. It is well know that:

(P1) The corresponding power set, P(X), consisting of the collection of all its
subsets A ⊆ X, is an atomic distributive (complete) lattice with respect to
the set theoretical intersection (∩) and union (∪), bounded by the empty set
∅ as the least element and the whole universe X as the greatest element of the
lattice. The lattice atoms are the singletons {x} formed by elements from X.

(P2) The lattice P(X) can be equipped with the orthocomplementation mapping
(Boolean negation) associating with any subset A ∈ P(X) the set theoreti-
cal complement Ac := X \ A ∈P(X).

(P3) In conclusion, the structure P(X) = 〈P(X),∩,∪,c ,∅,X〉 is an orthocom-
plemented distributive (complete) lattice, i.e., a Boolean algebra.

The orthogonality relation on P(X), according to (4) of Definition 15 is then

∀A,B ∈P(X), A ⊥ B iff A ⊆ Bc iff A ∩ B = ∅. (22)

So the collection of all orthopairs of subsets from X is

P(X) : = {(A1, A0) ∈P(X)×P(X) : A1 ⊆ Ac
0

} =
= {(A1, A0) ∈P(X)×P(X) : A1 ∩ A0 = ∅}

Sometimes, in order to stress that we have to do with orthopairs, we also denote this
collection by (P(X)×P(X))⊥.

The collection P(X), according to the point (BA) of Proposition 29, has a
structure of BKdM algebra containing the half element (∅,∅)

OP := (P(X),�,�,−,∼, (∅,X), (X,∅)) .

Since this case will play an important role in the following, we will explicitly list
all the operations that distinguish its algebraic behavior.

(A1, A0) � (B1, B0) = (A1 ∩ B1, A0 ∪ B0) (23a)

(A1, A0) � (B1, B0) = (A1 ∪ B1, A0 ∩ B0) (23b)

−(A1, A0) = (A0, A1) (23c)

∼ (A1, A0) = (A0, A
c
0) (23d)

with induced operations

I (A1, A0) = (A1, A
c
1) (23e)

C(A1, A0) = (Ac
0, A0) (23f)

E(A1, A0) = (A0, A
c
0) (23g)
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Of course, the following chain of order inclusions holds.

I (A1, A0) = (A1, A
c
1) ' (A1, A0) ' (Ac

0, A0) = C(A1, A0)

Note that the Kleene negation − is not Boolean. For instance for any arbitrary
orthopair (A1, A0), with A1 ∩ A0 = ∅, we have that (A1, A0) � −(A1, A0) =
(∅, A1 ∪ A0) which in general is different from the least lattice element (∅,X)

unless A1 ∪ A0 = X, i.e., A0 = Ac
1.

An orthopair of subsets (A1, A0) ∈ P(X) is exact (or Brouwer crisp) iff A1 =
A0 and so their collection is Pe(X) = {(A,Ac) : A ∈P(X)}. Hence, Pc(X) and
P(X) are isomorphic by the one-to-one correspondence

(A,Ac) ∈ Pc(X)←→P(X) 2 A (24)

We remark that the many other operations can be defined on orthopairs of
(Boolean) sets. A more general survey can be found in [32], whereas for a link
among these orthopairs and other knowledge representation systems, the reader can
refer to [34].

1.3.2 Orthopairs from the Distributive Lattice of Fuzzy Sets on a Universe

According to the seminal paper of Zadeh [70], let us consider a universe X and the
collection of fuzzy sets on it, represented by their functions: f : X �→ [0, 1], whose
collection will be denoted by F (X) := [0, 1]X. Hence,

(F1) The family F (X) of all fuzzy sets on the universe X is a distributive
(complete) lattice with respect to the following operations on pairs of fuzzy
sets f, g ∈ F (X) defined ∀x ∈ X by the laws:

(f ∧ g)(x) = min{f (x), g(x)} (meet)

(f ∨ g)(x) = max{f (x), g(x)} (join)

This lattice is bounded by the least fuzzy set 0(x) = 0 and the greatest fuzzy
set 1(x) = 1.

(F2) The lattice F (X) can be equipped by the following operation:

∀x ∈ X, f ′(x) = 1− f (x) (Kleene negation)

which turns out to be a Kleene negation, i.e., the conditions (dM1), (dM2),
and (KL) are satisfied.

(F3) In conclusion, the structure F(X) := 〈F (X),∧,∨,′ , 0, 1, 1/2
〉

is a Kleene-
complemented distributive (complete and so bounded) lattice, i.e., Kleene
algebra, with half element 1/2.
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Remark 31

– About the three properties which characterize the negation f ∈ F (X) → f ′ =
1 − f ∈ F (X) the not trivial one is the Kleene condition (KL) which we prove
now. This result is a consequence of the fact that if r is a real number with 0 ≤
r ≤ 1, then min {r, 1− r} ≤ 1/2. Indeed, if r ≤ 1/2 there is nothing to prove.
But if 1/2 ≤ r then 1 − r ≤ 1/2 and so min {r, 1− r} ≤ 1/2; of course, if
r = f (x) then from f (x) + f ′(x) = 1 it follows that f ′(x) = 1 − r and so
∀x ∈ X, min

{
f (x), f ′(x)

} ≤ 1/2.
Analogously, it is trivial to prove that max {r, 1− r} ≥ 1/2 from which in the

case of the generic fuzzy set g ∈ F (X) we get that ∀x ∈ X, max
{
g(x), g′(x)

} ≥
1/2. Therefore, ∀x ∈ X, (f ∧ f ′)(x) ≤ 1/2 ≤ (g ∨ g′)(x).

– Note that the Kleene negation f ∈ F (X) → f ′ = 1 − f ∈ F (X) cannot
be a Boolean complementation since in general for any fuzzy set f ∈ F (X)

we have that ∀x ∈ X, (f ∧ f ′)(x) = min {f (x), 1− f (x)}, which is equal to
0(x) iff ∀x ∈ X, f (x) ∈ {0, 1}, i.e., iff f ∈ {0, 1}X is a two-valued set (so the
noncontradiction law does not hold in F (X) since it must be verified for every
fuzzy set f ).

Similarly, f ∨ f ′ = 1 iff f ∈ {0, 1}X, i.e., iff f is a two-valued fuzzy set (so
also the excluded middle law does not hold in F (X)).

– Recall that for any subset A ∈ P(X) of the universe X the corresponding
characteristic function χA(x) = 1 if x ∈ A and = 0 otherwise, is a two-valued
fuzzy set which in the fuzzy set tradition is called crisp set.

Note that at this moment the notion of crisp set has nothing to do with the notion
of exact element according to the Definition 22 which requires the definition of a
quasi Brouwer negation∼ f .

Conversely, given a crisp set f : X → {0, 1} its certainty-yes domain is the
subset A1(f ) := {x ∈ X : f (x) = 1} of the universe X, and so f = χA1(f ). If we
denote by Fc(X) := {0, 1}X the collection of all crisp sets we have that Fc(X) =
{χA : A ∈P(X)} obtaining in this way a one-to-one correspondence

χA ∈ Fc(X)←→P(X) 2 A

which allows one to identify crisp sets on X with subsets of X. �
The partial order relation induced from the lattice operations (f ≤ g iff f =

f ∧ g, or equivalently iff g = f ∨ g) is the usual point-wise order:

f ≤ g iff ∀x ∈ X, f (x) ≤ g(x). (25)

The orthogonality relation between fuzzy sets f, g ∈ F (X) is

f ⊥ g iff f ≤ g′ iff f + g ≤ 1 iff f + g ∈ F (X) (26)
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Hence, we can consider the collection of all orthopairs of fuzzy sets:

F(X) = {(f1, f0) ∈ F (X)×F (X) : f0 ≤ f ′1} =
= {(f1, f0) ∈ F (X)×F (X) : f1 + f0 ∈ F (X)}

Also in this case, in order to stress the orthogonality condition, we sometimes use
to denote this collection by (F (X) ×F (X))⊥.

According to Theorem 26 F(X) has a minimal BZdM lattice structure (with two
half elements (0, 0) and (1/2, 1/2)):

OF(X) := 〈F(X),�,�,−,∼, (0, 1), (1, 0)〉 .

While the formal versions of the lattice operations � and � for orthopairs of fuzzy
sets according to Eq. (20) are straightforward (with respect to which OF(X) turns
out to be a distributive (complete) lattice), let us dwell a little in the formulation of
the two negations− and ∼ in the present case of orthopairs of fuzzy sets.

About the Two Negations on Orthopairs of Fuzzy Sets: The De Morgan
and the Minimal Brouwer

Let us recall the two definitions of negation specialized to the case of orthopairs of
fuzzy sets:

(dM) − (f1, f0) := (f1, f0) (De Morgan negation on orthopairs)

(mB) ∼ (f1, f0) := (f0, f
′
0) (minimal Brouwer negation on orthopairs)

Note that

¬(KL) The negation (dM) is not Kleene. First of all, for any real number k ∈
[0, 1] let us define the constant fuzzy set k ∈ F (X) defined by the
law ∀x ∈ X, k(x) = k. Then, let us consider the two orthopairs of
fuzzy sets (0.4, 0.5) ∈ F(X) and (0, 0.2) ∈ F(X). Trivially, (0.4, 0.5) �
−(0.4, 0.5) = (0.4, 0.5) and (0, 0.2) � −(0, 0.2) = (0.2, 0).
But (0.4, 0.5) � −(0.4, 0.5) 
' (0, 0.2) � −(0, 0.2), since 0.4 � 0.2.

¬(B3) The best which we can obtain is that
∀x ∈ X, (0, 1) ≤ [(f1, f0)� ∼ (f1, f0)](x) = [(f1, f0) � (f0, f

′
0)](x) =

(f1 ∧ f0, f0 ∨ f ′0)(x) ≤ (1/2, 1/2). The last inequality is a consequence
of the inequalities true for any x ∈ X (see the remark 2) (f1 ∧ f0)(x) ≤
(f1 ∧ f ′1)(x) ≤ 1/2 and (f0 ∨ f ′0)(x) = max {f0(x), 1− f0(x)} ≥ 1/2.

Therefore, according to Theorem 26 we can conclude with the following result.

Proposition 32 The structure OF(X) based on the collection F(X) of all
orthopairs of fuzzy sets is a minimal Brouwer Zadeh (mBZdM) distributive
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(complete) lattice, whose minimal Brouwer negation besides the weak double
negation law (B1) satisfies both the De Morgan laws (B2-a,b).

Furthermore, an orthopair of fuzzy sets (f1, f0) ∈ F(X) is an exact element in
the sense that according to Definition 22 it satisfies the condition (f1, f0) =∼∼
(f1, f0) = (f ′0, f0) iff ∀x ∈ X, f1(x)+ f0(x) = 1.

Orthopairs of fuzzy sets (f1, f0) are the basic elements of the Atanassov
approach introduced in his paper [3] (and see also [4]). This approach has been
the cause of a terminological debate started for the first time in [23, p. 183], at that
time without any resonance, and subsequently re-proposed in [15, 16]. An explicit
discussion about this terminological controversy has been published in [37], with
the consequent answer in [39], and by the same Atanassov in [5]. This debate ended
definitively with the article [18].

To summarize the question, we must bear in mind that Atanassov introduces
the terminology of intuitionistic fuzzy sets (IFS) taking into account the lattice
sub-structure 〈F(X),�,�,−, (0, 1), (1, 0)〉 of OF(X) in which the only negation
−(f1, f0) = (f0, f1) is considered, completely neglecting the other minimal
intuitionistic (Brouwer) negation∼ (f1, f0) = (f0, f

′
0).

In [3] Atanassov claims that since for the operation − “the logical law of
excluded middle is not valid, similarly to the case of intuitionistic mathematics,
one can assert that − is an intuitionistic negation”. Our answer was that the
negation − is a De Morgan negation which satisfies the strong double negation
law −(−(f1, f0)) = (f1, f0), rejected by intuitionistic mathematics (recall the
before quoted Heyting book [44]), and does not satisfy the algebraic version of
noncontradiction law (in general (f1, f0) � −(f1, f0) 
= (0, 1)) which on the
contrary is assumed to hold in intuitionistic logic.

About a Real Brouwer Negation

In [18] it is shown that another negation≈ in F(X) can be defined as follows:

≈ (f1, f0) = (χA1(f0), χA1(f0)c )

Then it is proved that

• the negation≈ is a full Brouwer negation in the sense that it satisfies not only the
two expected conditions (B1) and (B2) (also in this case equivalent to the two B
De Morgan laws (B2-a) and (B2-b)), but also the noncontradiction law (B3). Let
us note that as stated by Heyting in [44, p. 100] condition (B2-b) is the algebraic
version of a principle which cannot be asserted by the intuitionistic logic. In some
sense the operation ≈ relative to orthopairs of fuzzy sets is a stronger version of
the standard intuitionistic negation.
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1.3.3 Unsharp (or Fuzzy) Quantum Mechanics in Hilbert Spaces

In this section we treat the argument of unsharp quantum mechanics based on the
set of effect operators realizing the formal analogy, but underlying also the profound
differences, with respect to the discussion of fuzzy sets on a universe X treated in
Sect. 1.3.2.

First of all let us recall that “a (complex) Hilbert space is a vector space over the
complex numbers in which there is given a complex valued function of two variables
〈φ|ψ〉 such that: (1) For fixed ψ , 〈φ|ψ〉 is a linear function on φ, (2) 〈φ|ψ〉 = 〈ψ|φ〉,
(3) 〈φ|φ〉 > 0 unless φ = 0.” Setting ‖φ‖ = √〈φ|φ〉, under d(φ,ψ) = ‖φ − ψ‖,
(4) H is a complete metric space (from [48, section 6]; a more complete treatment
can be found in [43]).

An effect operator is a linear operator F satisfying the condition of being positive
and absorbing: ∀ψ ∈ H , 0 ≤ 〈ψ|Fψ〉 ≤ ‖ψ‖2. Let us denote by F (H ) the
collection of all effect operators onH , whose elements are interpreted as describing
physical apparatuses which measure a yes-no effect on any individual sample of the
physical system udder observation [45, 46]. As particular interesting cases of effect
operators we consider the zero operator O : ψ ∈ H → O(ψ) = 0 ∈ H , the
identity operator I : ψ ∈ H → I (ψ) = ψ ∈ H , and the semi-transparent effect
operator (1/2)I : ψ ∈H → (1/2)I (ψ) := (1/2)ψ .

The first analogy is that it is possible to introduce a partial order relation on
F (H ):

Let F,G ∈ Φ(H ), then F ≤ G iff ∀ψ ∈H , 〈ψ|Fψ〉 ≤ 〈ψ|Gψ〉 (27)

Let us denote by H0 the collection of all non zero vectors of the Hilbert space
H , whose elements are interpreted as preparation procedures of identical physical
systems under well defined and repeatable conditions [45, 46]. Since any effect
operator is positive and absorbing, it is possible to introduce the probability of
occurrence of the effect F ∈ F (H ) in the preparation ψ ∈H0 as the quantity

p(ψ,F ) := 〈ψ|Fψ〉
‖ψ‖2

∈ [0, 1] (28)

With this definition of occurrence probability the above partial order relation can be
formulated in the following equivalent way:

Let F,G ∈ F (H ), then F ≤ G iff ∀ψ ∈H0, p(ψ, F ) ≤ p(ψ,G)

(29)

If for a fixed effect F ∈ F (H ) one introduces the mapping

fF :H0 → [0, 1], ψ → fF (ψ) := p(ψ,F ) = 〈ψ|Fψ〉
‖ψ‖2
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then the mapping fF ∈ [0, 1]H0 can be considered as a quantum fuzzy set. Hence
F (H0) := {fF : F ∈ F (H )} is the collection of all fuzzy representations of
quantum effect operators.

We can now explore the analogy of the representation of effect operators F ∈
F (H ) by fuzzy sets fF ∈ F (H0) = [0, 1]H0 on the universe H0.

(Qm-F1) The above partial ordering on effect operators F and G (29) can
be translated into the following partial ordering of the corresponding
quantum fuzzy sets fF and fG (and compare with the fuzzy case of
Eq. (25)):

fF ≤ fG iff ∀ψ ∈H0, fF (ψ) ≤ fG(ψ) (30)

But it is well known that different from the standard fuzzy set theory
on the universe X, the structure 〈F (H ),≤,O, I 〉 is not a lattice but it
is a poset bounded by the least element O and the greatest element I :
∀F ∈ F (H ), O ≤ F ≤ I .

(Qm-F2) For any effect F ∈ F (H ), the linear operator F ′ := I −F is an effect
too. This means that the mapping ′ : F (H ) → F (H ) associating
with any effect F ∈ F (H ) the effect F ′ ∈ F (H ) is a Kleene negation
on a poset (not a lattice) since not only the two conditions (dM1) F =
F ′′ and (dM2b) F ≤ G implies G′ ≤ F ′ hold, but also the Kleene
condition on posets is verified: (K) F ≤ F ′ and G′ ≤ G implies
F ≤ (1/2)I ≤ G.
In particular we have that ((1/2)I)′ = (1/2)I and so there exist the
meet (1/2)I ∧ ((1/2)I)′ = (1/2)I 
= O (the noncontradiction law does
not hold) and the join (1/2)I ∨ ((1/2)I)′ = (1/2)I 
= I (the excluded
middle law does not hold). This means that the operator ′ is a genuine
Kleene negation on a poset, which cannot be an orthocomplementation.

(Qm-F3) The orthogonality relation on effect operators is the usual

∀F,G ∈ F (H ), F ⊥ G iff F ≤ G′

iff F +G ≤ I

iff F +G ∈ F (H )

(compare with (26)).
(Qm-F4) No possible analogy with respect to the lattice operations on fuzzy sets

on the universe X can be done since F (H ) is a poset which is not a
lattice.
Furthermore, there is a deep different interpretation of the mathematical
objects treated in the two theories: in the Zadeh interpretation for any
point x of the universe X the real quantity f (x) ∈ [0, 1] represents
the degree of membership of the point to the fuzzy set f ∈ F (X) [70],
whereas in the axiomatic version of unsharp quantum mechanics for any
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preparation ψ of the universe H0 the real quantity fF (ψ) represents the
probability of occurrence of the effect F when the physical system is
prepared according to ψ [10].

Anyway, we can introduce the collection A(H ) of all orthopairs (F1, F0)F (H )×
F (H ), with F1 ⊥ F0 (F1 + F0 ∈ F (H )), of effect operators whose collection
will be denoted by F(H ) := {(F1, F0) ∈ F (H )×F (H ) : F1 + F0 ∈ F (H )}.

F(H ) has a structure of minimal (pre) BZ poset (with half element (O,O))
according to the results of Theorem 19:

〈F(H ),',−,∼, (O, I), (I,O)〉

2 Part II: Orthopair Algebras from Minimal Brouwer Zadeh
(BZ) Posets and Lattices

2.1 Brouwer Zadeh (BZ) Structures

In the previous section we have seen as the collection A(Σ) of all orthopairs
induced from a de Morgan poset (resp., lattice) naturally presents a structure of
minimal (pre) BZ poset (resp., minimal (pre) BZdM lattice). This result induces to
consider this kind of structure from a pure abstract point of view, in itself interesting,
regardless of where and how it can be obtained from other structures, thus neglecting
their eventual induced generation. This will be the argument of the present section
starting from the following abstract definition based on a De Morgan poset.

2.1.1 Minimal (Pre) BZ Posets with Analysis of the Induced Structures

Now we are going to discuss an abstract system based on a De Morgan poset
according to the following definition.

Definition 33 A system BZ := 〈Σ,≤, ′, ∼, 0, 1
〉

is a minimal (pre) Brouwer
Zadeh (BZ) poset (resp., lattice) iff the following hold:

(1) The sub-structure DM := 〈Σ,≤, ′, 0, 1
〉

is a De Morgan poset (resp., lattice).
(2) This De Morgan poset (resp., lattice) is equipped with a unary operation ∼ :

Σ �→ Σ which is a minimal (pre) Brouwer complementation. In other words
for arbitrary a, b ∈ Σ:

(B1) a ≤ a∼∼ (weak double negation law)
(B2) a ≤ b implies b∼ ≤ a∼ (B contraposition law)

(3) The two complementations are linked by the interconnection rule which must
hold for arbitrary a ∈ Σ:

(IR) a∼∼ = a∼′.
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A Brouwer Kleene (BK) lattice is a minimal BZ lattice in which the further following
conditions hold for arbitrary a, b ∈ Σ .

(KL) a ∧ a′ ≤ b ∨ b′;
(B3) a ∧ a∼ = 0.

In this case a → a′ is a Kleene negation (i.e., (dM1), (dM2), and (KL) hold) and
a → a∼ is a true Brouwer (also intuitionistic) negation (i.e., (B1), (B2), and (B3)
hold).

A Brouwer Boolean (BB) lattice is a minimal BZ lattice in which the further
following conditions hold for arbitrary a, b ∈ Σ .

(ocL-2a,b) a ∧ a′ = 0 (equivalently a ∨ a′ = 1);
(B3) a ∧ a∼ = 0.

In this case a → a′ is a Boolean negation (i.e., (dM1), (dM2), and (oc-2a,b)) and
a→ a∼ is a true Brouwer (also intuitionistic) negation (i.e., (B1), (B2), and (B3)).

Example 34 The three valued Łukasiewicz logic treated in Example 28 can be
equipped with a Brouwer negation obtaining in this case the Brouwer Kleene (BK)
distributive lattice drawn in Fig. 18.

In particular, it is h ≤ 1 = h∼∼ according to the Brouwer condition (B1).
Condition (B2) is also trivially verified: 0 ≤ h implies h∼ = 0 ≤ 1 = 0∼ and
h ≤ 1 implies 1∼ ≤ h∼. Furthermore, h ∧ h∼ = h ∧ 0 = 0, i.e., condition (B3)
is true. Finally, the interconnection condition between the two negations (IR) is
verified since h∼′ = 1 = h∼∼.

Let us now prove some properties of BZ poset structures. Some of them can be
found in [12], but here they are repeated in such a way as to make the reading of this
chapter self-sufficient, even for readers who are not interested in all the arguments
treated in [12].

Lemma 35 In any minimal (pre) BZ poset the following holds.

0′ = 0∼ = 1 and 1′ = 1∼ = 0 (31)

Proof Since for every x ∈ Σ , 0 ≤ x ′, by De Morgan contraposition (dM2) and
double negation (dM1) laws, x = x ′′ ≤ 0′ holds for every x. Taking in particular
x = 1 we have that 1 = 0′. On the other hand, for every x ∈ Σ , 0 ≤ x∼ from which,

Fig. 18 The three valued BK
distributive lattice

1 = 0 = 0∼

h = h

0 = 1 = 1∼ = h∼
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by Brouwer contraposition (B2) and weak double negation (B1) laws, it follows that
x ≤ x∼∼ ≤ 0∼ holds for every x. Taking x = 1 we obtain that 1 = 0∼.

Since, for every x ∈ Σ , x ′ ≤ 1, by De Morgan contraposition, double negation
and (IR), 1∼ ≤ 1′ ≤ x is true for every x. Choosing x = 0 we obtain 1∼ = 1′ = 0.

��
Let us prove some results about Brouwer complementation which will be useful

in the sequel.

Lemma 36 Let Σ be a minimal (pre) BZ lattice. Then, under condition (B1), the
following are equivalent for every pair of elements a, b ∈ Σ .

(B2) a ≤ b implies b∼ ≤ a∼ (B-contraposition)

(B2a) (a ∨ b)∼ = a∼ ∧ b∼ (B-De Morgan law)

Proof First of all, let us assume that the contraposition (B2) is true. From a, b ≤
a ∨ b, by contraposition, (a ∨ b)∼ ≤ a∼, b∼, i.e., (a ∨ b)∼ is a lower bound of
the pair a∼, b∼. Now, let c be any lower bound of this pair, c ≤ a∼, b∼, then
by contraposition and (B1) a, b ≤ a∼∼, b∼∼ ≤ c∼ from which it follows that
a ∨ b ≤ c∼ and by contraposition and (B1) c ≤ c∼∼ ≤ (a ∨ b)∼, i.e., this last is the
greatest lower bound of the pair a∼, b∼.

On the contrary, let (a ∨ b)∼ = a∼ ∧ b∼ be true, then if a ≤ b we have that
b∼ = (a ∨ b)∼ = a∼ ∧ b∼ ≤ a∼. ��

In general, the “dual” contraposition law for a minimal (pre) BZ poset, “b∼ ≤ a∼
implies a ≤ b”, and the “dual” De Morgan law for a minimal (pre) BZ lattice,
“(a ∧ b)∼ = a∼ ∨ b∼,” do not hold for the Brouwer negation. As expressed by
property (B3), the noncontradiction law is satisfied by all elements of a BK lattice,
whereas, in general, the excluded middle law, “∀a ∈ Σ , a∨a∼ = 1,” is not required
to hold.

Lemma 37 In any minimal (pre) BZ poset the following holds.

∀a ∈ Σ, a∼∼∼ = a∼ (32)

In any minimal (pre) BZ lattice the following holds.

a∼ ∨ b∼ ≤ (a ∧ b)∼ (33)

Proof Let Σ be a minimal BZ poset. Since (B1) is true for any element of Σ , if we
apply it to the element a∼ we obtain a∼ ≤ a∼∼∼; on the other hand, applying the
contraposition law of the Brouwer complementation to (B1) we obtain a∼∼∼ ≤ a∼.

Let Σ be a minimal BZ lattice. Applying B-contraposition to a ∧ b ≤ a, b we
get a∼, b∼ ≤ (a ∧ b)∼ from which it follows that a∼ ∨ b∼ ≤ (a ∧ b)∼. ��
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1 = 0 = 0∼

a∼ = a = c d = b = b∼

h = h k = k

c∼ = h∼ = c = a b = d = k∼ = d∼

0 = 1 = 1∼

Fig. 19 Genuine minimal BZ poset of eight element mBZP8

Let us recall that an element h ∈ Σ of a poset with De Morgan complementation
has been called a half element iff it is such that h = h′; this half element cannot be
equal to 0 or 1, h 
= 0, 1, since 0 
= 0′ = 1 and 1 
= 1′ = 0. We have seen that
for this element ∃h ∧ h = h 
= 0 and ∃h ∨ h = h 
= 1. A minimal (pre) BZ poset
is said to be genuine iff there exist at least two half elements for the De Morgan
complementation.

Example 38 In Fig. 19, it is drawn a genuine minimal BZ poset. This poset has
two half elements h = h′ and k = k′ and so it cannot be Kleene. Let us note
that ∀x 
= h, k, x = x∼∼ whereas it is h ≤ c = h∼∼ and k ≤ d = k∼∼. The
minimal Brouwer negation does not satisfy the condition (B3) since for instance
a ∧ a∼ = a 
= 0.

In the framework of minimal (pre) BZ posets, one can naturally introduce the
anti-Brouwer complement � : Σ �→ Σ defined for every a ∈ Σ as: a� := a′∼′. It
can be easily shown that the operation � satisfies the following properties:

(AB1) a�� ≤ a (dual weak double negation law)
(AB2) a ≤ b implies b� ≤ a� (contraposition law)

In a BZ poset, the complementation � satisfies also the further property:

(AB3) a ∨ a� = 1 (excluded middle law)
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2.1.2 Rough Approximation Spaces Induced from Minimal BZ Posets

We have seen that in a minimal (pre) BZ poset three complementations, playing the
role of De Morgan, Brouwer, and anti Brouwer negations, are involved. These three
negations turn out to be connected according to the following result:

Lemma 39 Let Σ be a minimal (pre) BZ poset. Then, the following order chain
holds:

∀a ∈ Σ , a∼ ≤ a′ ≤ a� .

Proof Indeed, from (B1) a ≤ a∼∼ by (dM2) we get a∼∼′ ≤ a′, then by (IR) it
follows a∼∼∼ ≤ a′, i.e., a∼ ≤ a′. We have just proved that ∀a ∈ Σ , a∼ ≤ a′; if
we apply this last to the element a′ we get a′∼ ≤ a from which it follows a′ ≤ a′∼′
= a�. ��

Let us now introduce three unary operations on Σ defined for any a ∈ Σ by the
laws (recall the interconnection rule (IR)):

i(a) := a�� = a′∼ (interior=necessity) (34a)

c(a) := a∼∼ = a∼ ′ (closure = possibility) (34b)

e(a) := c(a)′ = a∼ (exterior=impossibility) (34c)

From another point of view, since in the minimal BZ poset approach the negation
∼ plays a primitive role, these relationships can also be formulated in the following
way.

e(a) := a∼ (exterior=impossibility) (35a)

i(a) := e(a′) (interior=necessity) (35b)

c(a) := e(a)′ (closure = possibility) (35c)

Lemma 40 The following are true.

∀a ∈ Σ, i(a) ≤ a ≤ c(a) (36)

∀a ∈ Σ, i(a) ⊥ e(a) and c(a) ⊥ e(a) (37)

Proof Applying ∀a ∈ Σ , a∼ ≤ a′ to the element a′ we get i(a) = a′∼ ≤ a′′ = a.
On the other hand, from a∼ ≤ a′, by the (dM2) contraposition, we obtain a = a′′ ≤
a∼′ = (IR) = a∼∼ = c(a).

Applying ∀a ∈ Σ , a∼ ≤ a′ to the element a∼ we get c(a) = a∼∼ ≤ a∼′ =
e(a)′, i.e., c(a) ⊥ e(a). On the other hand, i(a) ≤ c(a) and c(a) ≤ e(a)′ imply
i(a) ≤ e(a)′, i.e., i(a) ⊥ e(a). ��



588 G. Cattaneo and D. Ciucci

Since in general i(a) ≤ a, an element e ∈ Σ is said to be open iff i(e) = e.
Analogously, since in general a ≤ c(a), an element f ∈ Σ is said to be closed iff
f = c(f ). We will denote by O(Σ) the collection of all open elements of the space,
while C (Σ) will represent the collection of all closed elements.

Formally:

O(Σ) = {e ∈ Σ : e = i(e)} and C (Σ) = {f ∈ Σ : f = c(f )}

Proposition 41 Let Σ be a minimal BZ poset. Then, the collection of all open
elements coincides with the collection of all closed elements, O(Σ) = C (Σ), and
in this case this common set of clopen elements will be denoted by

E (Σ) := O(Σ) = C (Σ)

Any element of E (Σ) is said to be exact, or crisp.
Of course for any a ∈ Σ , all the elements i(a), c(a), and e(a) are exact. Formally.

i(a), c(a), e(a) ∈ E (Σ) (38)

Finally, also 0, 1 ∈ E (Σ).

Proof Let e ∈ O(Σ), i.e., e = i(e) = e′∼, then (e)∼′ = (e′∼)∼′ = ((e′)∼∼)′ =
(IR) = e′∼′′ = e′∼ = e, i.e., c(e) = e∼′ = e, in other words e ∈ C (Σ).

Conversely, let e ∈ C (Σ), i.e., e = c(e) = e∼∼, then (e)′∼ = (e∼∼)′∼ = (IR) =
(e∼′)′∼ = e∼∼ = e, i.e., i(e) = e′∼ = e, in other words e ∈ O(Σ).

Furthermore, (i(a))∼∼ = (a′∼)∼∼ = (a′)∼∼∼ = a′∼ = i(a), i.e., i(a) ∈
C (Σ) = E (Σ). Similarly, (c(a))∼∼ = (a∼∼)∼∼ = a∼∼ = c(a), i.e., c(a) ∈
C (Σ) = E (Σ). Finally, (e(a))∼∼ = (a∼)∼∼ = a∼ = e(a), i.e., e(a) ∈ C (Σ) =
E (Σ). ��
Lemma 42 In any minimal BZ poset the following relations hold:

i(a′) = e(a) and e(a′) = i(a) (39a)

a ≤ b implies e(b) ≤ e(a) (39b)

Proof Trivially, i(a′) = (a′)′∼ = a∼ = e(a). Analogously, for the second identity.
The (39b) is nothing else than the condition (B2) under the definition e(x) = x∼.

��
The collection of all exact elements has an interesting lattice structure according

to the following results.

Proposition 43 Let (Σ,∧,∨,′ ,∼ , 0, 1) be a minimal (pre) BZ lattice. Then, the set
of all exact elements is a De Morgan lattice

〈
E (Σ),∧o,∨o,

′, 0, 1
〉

with respect to
the following.
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1. E (Σ) is closed under the join and this join ∨o coincides with the join ∨ of the
lattice Σ . In other words:

∀e, f ∈ E (Σ) : e ∨o f = e ∨ f ∈ E (Σ)

2. E (Σ) is closed under the meet and this meet ∧o coincides with the meet ∨ of the
lattice Σ . In other words:

∀e, f ∈ E (Σ) : e ∧o f = e ∧ f ∈ E (Σ)

3. The two negations coincide on elements from E (Σ),

∀e ∈ E (Σ) : e′ = e∼ ∈ E (Σ)

and the mapping ′ : E (Σ) �→ E (Σ), e → e′ turns out to be a De Morgan
complementation in the sense that the following are satisfied:

(SC1) e′′ = e,
(SC2) (e ∨ f )′ = e′ ∧ f ′,

Furthermore, if Σ is a BZ lattice (so besides conditions (B1) and (B2) the Brouwer
negation satisfies also the condition (B3)), then

(SC3) ∀e ∈ E (Σ), e ∧ e′ = 0 (equivalently, e ∨ e′ = 1).

i.e., E (Σ) is a standard complemented lattice (Boolean lattice).

Proof Let e, f ∈ E (Σ), then from the lattice property of Σ the join e ∨ f exists in
〈Σ,≤ 〉. To prove that the join e ∨o f exists in the poset 〈E (Σ),≤o〉 it is sufficient
to show that e∨f is exact. Now, the involved elements are such that {e, f } ≤ e∨f .
Thus, by the isotonicity condition (L2) of the interior operation, {e = i(e), f =
i(f )} ≤ i(e∨ f ), i.e., i(e∨ f ) is an upper bound of the pair {e, f }. Hence, e∨ f ≤
i(e ∨ f ) so that, since i(e ∨ f ) ≤ e ∨ f , we obtain e ∨ f = i(e ∨ f ).

Let e, f ∈ E (Σ) be two exact elements whose meet e ∧ f exists in 〈Σ,≤〉. We
have to show that i(e∧f ) is their meet in E (Σ). We have i(e∧f ) ≤ e∧f ≤ {e, f },
i.e., it is a lower bound of the pair {e, f }. Let x ∈ E (Σ) be any lower bound
x ≤ {e, f }, then x ≤ e ∧ f , from this it follows that x = i(x) ≤ i(e ∧ f ), i.e.,
i(e ∧ f ) = e ∧ f .

The element e is exact iff e = e∼∼, from which it follows that e′ = (e∼)∼′ =
(IR) = e∼∼∼ = e∼, i.e., ∀e ∈ E (Σ), e′ = e∼. Moreover, we have that e∼ =
(e∼)∼∼, i.e., e∼ ∈ C (Σ) = E (Σ), and so also e′ = e∼ is exact.

From this result, we have that (SC1) and (SC2) are conditions (dM1) and (dM2)
which hold in Σ . Whereas (SC3) is condition (B3), ∀a ∈ Σ , a ∧ a∼ = 0, applied
to any exact element e ∈ E (Σ) under the condition e∼ = e′. ��

The above considerations lead to the definition of an abstract approximation
space generated by a minimal (pre) BZ poset.
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Definition 44 Let
〈
Σ,≤, ′, ∼, 0, 1

〉
be a minimal BZ poset. The induced rough

approximation space is the structure

RAS(Σ) = 〈Σ,E (Σ), i, c〉

where

• Σ is the set of approximable elements;
• E (Σ) ⊆ Σ is the set of exact (crisp) elements;
• i : Σ → E (Σ) is the lower approximation map, associating with any

approximable element a, its (exact) interior i(a) = a��;
• c : Σ → E (Σ) is the upper approximation map, associating with any

approximable element a, its (exact) closure c(a) = a∼∼;

For any element a ∈ Σ , its rough approximation is defined as the pair:

r(a) := (i(a), c(a)) ∈ E (Σ) × E (Σ) [with i(a) ≤ a ≤ c(a)]

drawn in the following diagram:

This approximation is the best approximation by interior–closure pairs which is
possible to introduce on a minimal BZ structure. To be precise, for any element
a ∈ Σ the following requirements in order to have a “good” lower approximation
hold:

(L1) i(a) is an exact element, i.e., i(a) ∈ E (Σ);
(L2) i(a) is a lower approximation of a, i.e., i(a) ≤ a;
(L3) i(a) is the best lower approximation of a by exact elements, i.e., let e ∈

E (Σ) be such that e ≤ a, then e ≤ i(a).

From properties (L1)–(L3), it follows that the interior of an element a can be
expressed in the following compact form:

i(a) = max{x ∈ E (Σ) : x ≤ a}



Algebraic Methods for Orthopairs and RAS 591

Fig. 20 Ortho-rough approximation of the element a ∈ Σ

Analogously, for any approximable element a ∈ Σ the following minimal
requirements in order to have a “good” upper approximation hold:

(U1) c(a) is an exact element, i.e., c(a) ∈ E (Σ);
(U2) c(a) is an upper approximation of a, i.e., a ≤ c(a);
(U3) c(a) is the best upper approximation of a by exact elements, i.e., let f ∈

E (Σ) be such that a ≤ f , then c(a) ≤ f .

By properties (U1)–(U3), it follows that the upper approximation of an element a
can be expressed in the following compact form:

c(a) = min{y ∈ E (Σ) : a ≤ y}

An equivalent way to define a rough approximation is to consider the interior–
exterior pair instead of the interior–closure pair:

r⊥(a) := (i(a), e(a)) = (i(a), c(a)′) [with i(a) ⊥ e(a)]

Since a minimal BZ (mBZ) poset Σ is a De Morgan poset with respect to the
negation ′, also in the present case we can consider the collectionA(Σ) = (Σ×Σ)⊥
of all (De Morgan) orthopair introduced in Sect. 1.2.1 by Eq. (5). However, in the
case of a mBZ poset one can select, according to Proposition 41, the collection
E (Σ) of all its exact elements and then construct the collection (E (Σ)×E (Σ))⊥ :=
{(h1, h0) ∈ E (Σ)× E (Σ) : h1 ⊥ h0} of all orthopairs formed by exact elements.
Of course, (E (Σ) × E (Σ))⊥ ⊆ (Σ × Σ)⊥. Moreover, according to Eqs. (37)
and (38), any (i(a), e(a)) ∈ (E (Σ)× E (Σ))⊥ is an orthopair of exact elements.

All this discussion can be summarized by the following diagram.
Let us remark that given the interior–exterior approximation r⊥(a), the interior–

closure approximation r(a) can be obtained in an obvious way, and vice versa,
through the one-to-one correspondence e(a) ↔ c(a)(= e(a)′) established by the
De Morgan mapping which is a bijection on Σ .

Furthermore, from the fact that (E (Σ) × E (Σ))⊥ ⊆ (Σ × Σ)⊥ = A(Σ) and
taking into account the diagram of Fig. 14, we can complete the diagram of Fig. 20
in the following way.
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2.1.3 Minimal (Pre) BZ Lattices with Analysis of the Induced Structures

In this subsection we prove some interesting properties in the case of minimal BZ
lattices recalling that, since a lattice is in particular a poset, all the properties about
posets proved in the previous sections of the Part II are immediately true for the case
of lattices.

Proposition 45 Let
〈
Σ,∧,∨, ′, ∼, 0, 1

〉
be a minimal BZ lattice. Then, the map-

ping

i : Σ → Σ, i(a) := a�� = a′∼ (40a)

is a Halmos interior operator. That is, the following are satisfied:

(I0) 1 = i(1) (normalized = N modal principle)

(I1) i(a) ≤ a (decreasing = T modal principle)

(I2K) i(a ∧ b) = i(a)∧ i(b) (multiplicative= M and C modal principles)

(sI3) i(a) = (i(i(a)′))′ (interconnection = 5 modal principle)

Dually, the mapping

c : Σ → Σ, c(a) := a∼∼ (40b)

is a Halmos closure operator. That is, the following are satisfied:

(C0) 0 = c(0) (normalized = P modal principle)

(C1) a ≤ c(a) (increasing = T modal principle)
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(C2K) c(a ∨ b) = c(a) ∨ c(b) (additive = M and C modal principles)

(sC3) c(a) = (c(c(a))′)′ (interconnection = 5 modal principle)

The two operators are linked by the relationships [30, p. 7]:

DF� i(a) = (c(a′))′ and DF♦ c(a) = (i(a′))′

Let us note that the two conditions (sI3) and (sC3) can be equivalently formulated
in the following forms usually considered in the algebraic approach to modal logic.

(5 modal principle) i(a) = c(i(a)) and c(a) = i(c(a))

Proof Let us prove only the properties (C0)–(C3K) relative to c; the case of i is
dual.

(C0) is a trivial consequence of (31).
(C1) From (B1) we get a ≤ a∼∼ = c(a).
(C2K) From c(a ∨ b) = (a ∨ b)∼ ′ = (B2a) = (a∼ ∧ b∼)′ = (dM2b-L) =

a∼ ′ ∨ b∼ ′ = c(a)∨ c(b).
(sC3) From c(a) = a∼′ we get (c(c(a)′))′ = ((c(a)′)∼′)′ = (c(a)′)∼ =

(a∼′)′∼ = a∼∼ = (IR) = a∼′ = c(a). ��
As stressed in the brackets, both the interior and closure operators satisfy

the algebraic versions of axioms and rules of some celebrated modal principles
(see [30]), once interpreted the interior as a necessity operator and the closure as a
possibility operator and the partial order relation a ≤ b as the algebraic counterpart
of the statement “A → B is true” with respect to some implication connective→
involving sentences A and B of the modal language. As a consequence of the results
of Proposition 45 we can state the following.

(AM) Let
〈
Σ,∧,∨, ′, ∼, 0, 1

〉
be a minimal BZ lattice. Then, the structure〈

Σ,∧,∨, ′, i, 0, 1
〉

is an algebraic model (AM) of a necessity modal
logical system,

(a) in general based on a De Morgan lattice instead of on a Boolean
algebra,

(b) in which modal principles for necessity N, T, M – C, 5, and DF♦ are
satisfied.

Let us note that the following further principles of modalities are satisfied (as can
be directly proved).

a ≤ i(c(a) B principle

i(a) = i(i(a)) and c(a) = c(c(a)) 4 principle
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Fig. 21 Brouwer Kleene
lattice of five element BKL5
with one half element

1 = 0 = 0∼
= a∼∼ = b∼∼ = h∼∼

a = b h = h b = a

0 = 1 = 1∼
= a∼ = b∼ = h∼

Example 46 The Hasse diagram drawn in Fig. 21 is a Brouwer Kleene (BK) not
distributive lattice of five elements named BKL5 with a unique half element
h = h′ = h∼. The satisfaction of the Kleene condition (KL) follows from the
inequalities:

∀x 
= h, x ∧ x ′ = 0 ≤ h = h ∨ h′

∀y 
= h, h ∧ h′ = h ≤ 1 = y ∨ y ′

∀x, y 
= h, x ∧ x ′ = 0 ≤ 1 = y ∨ y ′

This BK lattice is not minimal since for any x condition (B3) x∧x∼ = 0 is satisfied.

A Result on the BZ Distributive Lattice Case

In the abstract BZ distributive lattice context we can “translate” a very interesting
result proved by Bonikowski in the concrete case of Pawlak rough set theory based
on the power set of an approximation space (Theorem 2.6 of [8]).

Proposition 47 Let Σ be a BZ distributive lattice. If either a or b is exact, i.e., it
belongs to E (Σ), then

i(a ∨ b) = i(a)∨ i(b) (41a)

c(a ∧ b) = c(a)∧ c(b) (41b)

Proof Without loss in generality, let us assume that e ∈ E (Σ) and b ∈ Σ .
First of all, from Eq. (33) we have e∼ ∨ b∼ ≤ (e ∧ b)∼ from which, by (dM2),

we get (e ∧ b)∼′ ≤ (e∼ ∨ b∼)′ = (dM2c-L) = e∼′ ∧ b∼′, that is we have obtained

c(e ∧ b) ≤ c(e)∧ c(b) (*)

Let us set c := c(e∧b). By e∧b ≤ e and isotonicity of c we have c = c(e∧b) ≤
c(e) = e, i.e., c ≤ e. Hence, taking into account the (sC3) of Proposition 43,

c = e ∧ c = (e ∧ e′) ∨ (e ∧ c) = e ∧ (e′ ∨ c) (**)
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From point (3) of Proposition 43 we have that e′ is exact, moreover from the
idempotency of the modal principle 4 we have that c = c(e ∧ b) is exact; hence, by
point (1) of Proposition 43, also e′ ∨ c is exact. So, recalling that for exact elements
of a BZ lattice the (SC3) holds: e ∨ e′ = 1,

b ≤ c(b) = c(b ∧ (e ∨ e′)) = distributivity = c[(b ∧ e) ∨ (b ∧ e′)] = (C2K)

= c(b ∧ e) ∨ c(b ∧ e′) = c ∨ c(b ∧ e′) = isotonicity =
≤ c ∨ c(e′) = c ∨ e′

Hence, c(b) ≤ c ∨ e′, from which it follows that e ∧ c(b) ≤ e ∧ (c ∨ e′) = (∗∗) =
c = c(e ∧ b). Since e is exact, this last can be written as

c(e) ∧ c(b) ≤ c(e ∧ b) (***)

From (*) e (***) we obtain the result (41b).
From (41b), applied to the pair e′ (exact) and b′, it follows that (e′ ∧ b′)∼′ =

e′∼′ ∧ b′∼′, that is (e′ ∧ b′)∼ = (e′∼′ ∧ b′∼′)′ = e′∼ ∨ b′∼. Finally, i(e ∨ b) =
(e ∨ b)′∼ = (e′ ∧ b′)∼ = e′∼ ∨ b′∼ = i(e) ∨ i(b), that is (41a). ��
Example 48 Let us consider the minimal BKL6 distributive lattice of Fig. 22. The
Brouwer negation is minimal (pre) since b ∧ b∼ = b 
= 0 so the Brouwer condition
(B3) is not satisfied. The two negations satisfy the interconnection rule (IR) since
∀x, x∼′ = x∼∼.

Let us recall that the Kleene negation cannot be an orthocomplementation if it
does not satisfy the noncontradiction law (b∧ b′ = b 
= 0) and the excluded middle
law (d ∨ d ′ = d 
= 1). This BZ lattice has no De Morgan half element ( 
 ∃x s.t. x =
x ′), while it has c such that c∼ = 0. Moreover, the contraposition law dual with
respect to (B2a) is not verified in this example: indeed, it is c∼ ≤ a∼, but a � c.

Fig. 22 The six element
minimal BKL6 lattice

•

•

•

•

• •

•

b = d =
= a∼ = d∼ = b∼∼

c = a

1 = 0 = 0∼ = 1∼∼ = c∼∼

b∼ = b = d
= a∼∼ = d∼∼

c = a

0 = 1 = 1∼ = 0∼∼ = c∼
•
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2.2 Minimal BZ Posets of Orthopairs Induced from Minimal
BZ Posets

In Sect. 1.2, we have seen that,

(mBZP) from a De Morgan poset structure DM(Σ) = 〈Σ,≤, ′, 0, 1
〉

based on a
De Morgan negation ′ : Σ → Σ , the collection A(Σ) of all orthopairs
(a1, a0) ∈ Σ × Σ such that a1 ⊥ a0 (i.e., a1 ≤ a′0)) has a natural
structure of minimal BZ poset;

(mBZL) moreover, in the particular case of a De Morgan lattice this structure of
orthopairs A(Σ) turns out to be a minimal BZdM lattice, i.e., a minimal
BZ lattice whose Brouwer negation satisfies both the De Morgan laws
(B2a) and (B2b) (contrary to the standard intuitionistic negation in which
only one of the De Morgan laws, precisely (B2a), is accepted whereas the
other (B2b) is rejected). This structure is minimal since condition (B3)
in general does not hold.
Furthermore, if we start from a Boolean lattice then the structure of
orthopairs is a BKdM lattice, i.e., the negation ∼ is full Brouwer one,
since besides the conditions (B1), (B2a)–(B2b), it satisfies also (B3);
whereas the other negation − is Kleene, i.e., it satisfies the conditions
(dM1), (dM2), and (KL).

In Sect. 2.1.2, we have seen that given an element a of a minimal BZ poset (resp.,
lattice) Σ , the ortho-rough approximation of a is given by r⊥(a) = (i(a), e(a)),
with i(a) ⊥ e(a). Now, we show that it is possible to give to the collection of all
such ortho-rough approximations, r⊥(a) for a running in Σ , a structure which is
embedded into the minimal BZ poset A(Σ) (resp., minimal BZdM lattice).

Let
〈
Σ,≤,′ ,∼ , 0, 1

〉
(resp.,

〈
Σ,∧,∨,′ ,∼ , 0, 1

〉
) be a minimal BZ poset (resp.,

lattice). For the sake of simplicity, in the sequel we set

∀a ∈ Σ ai := i(a) and ae := e(a) = c(a)′

We recall that both ai and ae are exact elements, ai, ae ∈ E (Σ), such that ai ⊥ ae.
Let us now introduce the collection of all ortho-rough approximations from Σ

as the set

R(Σ) := {(i(a), e(a)) = (ai, ae) : a ∈ Σ}

which is the imagine under the rough approximation map r⊥ of the minimal BZ
poset Σ: R(Σ) = Range(r⊥). Since a minimal BZ poset Σ is in particular a De
Morgan poset, also in this case it is possible to introduce the collection A(Σ) which
contains R(Σ) owing to the fact that its generic element (i(a), e(a)) is such that
i(a) ⊥ e(a). Therefore, R(Σ) ⊆ A(Σ). But at the beginning of this section we
have stressed that A(Σ) is characterized by a particular BZ structure according to
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the points (mBZP) and (mBZL). Precisely, it is a minimal BZ poset in the poset case
of Σ and a minimal BZdM lattice in the lattice case of Σ .

Now, it is interesting to investigate whether BZ-like structures can also be
generated in the case of R(Σ). Recalling the two negations defined in A(Σ), the
De Morgan and the minimal Brouwer, according to

∀(a1, a0) ∈ A(Σ), −(a1, a0) = (a0, a1) and ∼ (a1, a0) = (a0, (a0)
′)

the following theorem holds.

Theorem 49 Let
〈
Σ,≤, ′, ∼, 0, 1

〉
be a minimal BZ poset. Then, the structure

〈R(Σ),', −, ∼, (0, 1), (1, 0) 〉 is a minimal BZ poset (which in general is not a
lattice) bounded by the least element (0, 1) and the greatest element (1, 0) with
respect to the partial order:

(ai, ae) ' (bi, be) iff ai ≤ bi and be ≤ ae (42)

and the De Morgan and minimal Brouwer negations, given respectively by:

−(ai, ae) :=
(
i(a′), e(a′)

) = (ae, ai) (43a)

∼ (ai, ae) := (i(a∼), e(a∼)) = (ae, (ae)
′) (43b)

Moreover, the following hold.

1. The poset R(Σ) satisfies the interconnection rule:

(IR) − ∼ (ai, ae) =∼∼ (ai, ae).

2. If Σ has a half element h = h′ = h∼ (it is genuine) then also R(Σ) has the half
element (it is genuine too):

(i(h), e(h)) = (h, h)

with (i(h), e(h)) = − (i(h), e(h)) =∼ (i(h), e(h)).

Proof Trivially, (0, 1) ' (ai, ae) ' (1, 0), whatever be (ai, ae).
Let Σ be a minimal BZ poset. As to the unary mapping −, relations i(a′) = ae

and e(a′) = ai are nothing else than the (39a) written in another form. Moreover,
we have the following results:

(dM1) −(− (ai, ae)) = − (ae, ai) = (ai, ae).
(dM2) Let us suppose that (ai, ae) ' (bi, be), i.e., ai ≤ bi and be ≤ ae. It easily

follows that (be, bi) ' (ae, ai), i.e., − (bi, be) ' − (ai, ae).

Hence,− is a De Morgan negation.
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As to the unary mapping ∼ we have the following: i(a∼) = (a∼)∼′ = (IR) =
a∼∼∼ = a∼, i.e., i(a∼) = a∼. On the other hand, e(a∼) = (a∼)∼ = (IR) = a∼′,
i.e., e(a∼) = a∼′. Therefore from these results we get ∼ (ai, ae) = (ae, (ae)

′) =
(a∼, (a∼)′ = (i(a∼), e(a∼)), i.e., ∼ (ai, ae) = (i(a∼)), e(a∼)).

Furthermore, the following hold.

(B1) We have ∼ (ai, ae) = (ae, (ae)
′) = (a∼, a∼′), and so ∼ (∼ (ai, ae)) =∼

(ae, (ae)
′) = ((ae)

′, ((ae)′)′) = ((ae)
′, ae) i.e.,∼ (∼ (ai, ae)) = ((ae)

′, ae).
This being stated, from ae ≤ ((ae)

′)′ it follows that (ai, ae) '∼∼ (ai, ae).
(B2) Let (ai, ae) ' (bi, be), i.e., a1 ≤ bi and be ≤ ae, from which in particular

we have the following be ≤ ae and (ae)
′ ≤ (be)

′. Hence, ∼ (bi, be) =
(be, (be)

′) ' (ae, (ae)
′) =∼ (ai, ae).

Hence,∼ is a minimal Brouwer negation.
Let us prove the interconnection rule.

(IR) We have − ∼ (ai, ae) = −(ae, (ae)′) = ((ae)
′, ae). On the other hand,

∼∼ (ai, ae) =∼ (ae, (ae)
′) = ((ae)

′, (ae)′)′) = ((ae)
′, ae). From these two

results we can conclude that − ∼ (ai, ae) =∼∼ (ai, ae), i.e., the rule (IR).

Now, if the minimal BZ poset Σ has the half element h = h′ = h∼, then i(h) =
h′∼ = h. On the other hand e(h) = h∼ = h. Hence, (i(h), e(h)) = (h, h) with
−(h, h) = (h, h) = (h, h′) =∼ (h, h). ��

Since in general R(Σ) is not a lattice it will be interesting to have some result
about the possible existence of upper bounds and lower bounds with respect to (42).

Proposition 50 In the poset R(Σ) the element (i(ai ∧ bi), e(ai ∧ bi)) (which is
equal to

(
i(ai ∧ bi), i(a′i ∨ b′i )

)
) is a lower bound of the pair (ai, ae) , (bi, be) ∈

R(Σ). That is,

(i(ai ∧ bi), e(ai ∧ bi)) ' {(ai, ae) , (bi, be)} .

In general the greatest lower bound of the pair (ai, ae) , (bi, be) does not exist.

Proof On the poset based on the partial order relation (42) let us consider
a generic pair of elements (ai, ae) , (bi, be) ∈ R(Σ). Let us prove that
(i(ai ∧ bi), e(ai ∧ bi)) = (39a), (dM2b-L) = (i(ai ∧ bi), i(a′i ∨ b′i)

)
is a lower

bound of this pair.
We have that ai∧bi = i(a)∧i(b) = (I2K) = i(a∧b) = (modal 4) = i(i(a∧b)) =

(I2K) = i(i(a) ∧ i(b)) = i(ai ∧ bi), i.e., ai ∧ bi = i(ai ∧ bi).
So i(ai ∧ bi) ≤ {ai, bi}. Moreover, from

{
a′i , b′i
} ≤ a′i ∨ b′i , by (I1) and (39a),

one gets that
{
e(ai) = i(a′i ), e(bi) = i(b′i )

} ≤ i(a′i ∨ b′i ). But, since by (I1) it is
ai ≤ a, using (39b) we arrive to the relation {e(a), e(b)} ≤ i(a′i∨b′i ). In conclusion,
(i(ai ∧ bi), e(ai ∧ bi)) ' {(ai, ae) , (bi, be)}. ��
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2.3 BZdM Lattice Structures of Orthopairs Induced from BZ
Lattice Structures

We will investigate now a class of BZ structures in which the existence of the lattice
meet and join is assured for any pair of elements from R(Σ).

Let us recall that in Lemma 36 we have proved that in any minimal BZ lattice Σ

the required contraposition law (B2) is equivalent to the first B-De Morgan law:

(B2a) ∀a, b ∈ Σ, (a ∨ b)∼ = a∼ ∧ b∼.

In general the dual B-De Morgan law does not hold (as Example 48 shows,
where, for instance, a∼ ∨ b∼ = b < 1 = (a ∧ b)∼; note that also i(a)∨ i(b) = b <

d = i(a ∨ b)).
In this regard, we can prove the following result recalling that the condition (DD)

plays an important role in the paper [28].

Proposition 51 In any minimal BZ lattice the following are equivalent.

(B2b) ∀a, b ∈ Σ , (a ∧ b)∼ = a∼ ∨ b∼;
(DD) ∀a, b ∈ Σ , i(a ∨ b) = i(a) ∨ i(b);
(DDc) ∀a, b ∈ Σ , c(a ∧ b) = c(a)∧ c(b).

In literature the condition (DD) is also called the distributivity principle for
modality.

Proof Let (B2b) be true. i(a ∨ b) = (a ∨ b)′∼ = (dM2) = (a′ ∧ b′)∼ = (B2b) =
a′∼ ∨ b′∼ = i(a) ∨ i(b).

Conversely, let (DD) be true. (a ∧ b)∼ = (dM1), (dM2) = (a′ ∨ b′)′∼ = i(a′ ∨
b′) = (DD) = i(a′) ∨ i(b′) = (a′)′∼ ∨ (b′)′∼ = a∼ ∨ b∼.

The equivalence between (DD) and (DDc) is a trivial consequence of the
identities i(a) = (c(a′))′ and c(a) = (i(a′))′. ��

This result allows one to introduce the following definition.

Definition 52 A minimal B-De Morgan BZ (minimal BZDM ) lattice is a minimal
BZ lattice satisfying also the dual De Morgan property for the Brouwer negation:

(B2b) ∀a, b ∈ Σ , (a ∧ b)∼ = a∼ ∨ b∼

Now, the following results hold.

Theorem 53 Let
〈
Σ,∧,∨, ′, ∼, 0, 1

〉
be a minimal B–De Morgan Brouwer Zadeh

(minimal BZDM ) lattice with corresponding minimal BZDM lattice structure
〈A(Σ),�,�, −, ∼, (0, 1) , (1, 0)〉 of all its orthopairs induced from the De Morgan
lattice sub-structure

〈
Σ,∧,∨, ′, 0, 1

〉
(recall Theorem 26 of Sect. 1.2.2).
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(1) The collection R(Σ) of all rough representations r⊥(a) = (i(a), e(a)) =
(ai, ae), for a running in Σ , is closed with respect to the BZ operations ofA(Σ):

(ai, ae) � (bi, be) := (ai ∧ bi, ae ∨ be) = ((a ∧ b)i, (a ∧ b)e) ∈ R(Σ)

(ai, ae) � (bi, be) := (ai ∨ bi, ae ∧ be) = ((a ∨ b)i, (a ∨ b)e) ∈ R(Σ)

−(ai, ae) := (ae, ai) =
(
(a′)i , (a′)e

) ∈ R(Σ)

∼ (ai, ae) := (ae, (ae)
′) = ((a∼)i , (a∼)e) = (ai, ae) ∼∈ R(Σ)

(Note that the lattice meet and join in R(Σ) coincide with the lattice meet and
join in A(Σ)).

In particular the negation ∼ is a minimal Brouwer negation satisfying the
conditions (B1) and (B2). Therefore the structure 〈R(Σ),�,�,−,∼, (0, 1),
(1, 0)〉 is a minimal BZDM lattice whose induced partial order is the usual
one:

(ai, ae) ' (bi, be) iff ai ≤ bi and be ≤ ae

(2) If Σ is a BZ lattice (and so the negation ∼ on Σ satisfies besides conditions
(B1) and (B2) also condition (B3)) then we have also:

(B3) (ai, ae)� ∼ (ai, ae) = ((a ∧ a∼)i, (a ∧ a∼)e) = (0, 1) .

In this case the structure 〈R(Σ),�,�,−,∼, (0, 1), (1, 0)〉 is a BZDM lattice.
(3) Moreover, if Σ is Boolean with respect to the De Morgan negation (and so

the negation ′ on Σ besides conditions (dM1) and (dM2) satisfies also the two
conditions (oc-2ab)), then also R(Σ) is Boolean with respect to −, i.e.,

(oc-2a) (ai, ae) � − (ai, ae) = (0, 1)

(oc-2b) (ai, ae) � − (ai, ae) = (1, 0)

In this case the structure 〈R(Σ),�,�,−,∼, (0, 1), (1, 0)〉 is a BBDM lattice.

Proof Let Σ be a minimal BZDM lattice whose operation∼ is a minimal De Morgan
Brouwer negation, i.e., it satisfies all the conditions (B1), (B2) equivalent to (B2a),
and (B2b).

(1) With respect to the lattice meet we have ai ∧ bi = i(a) ∧ i(b) = (I2K) =
i(a∧b) = (a∧b)i . On the other hand, ae∨be = a∼∨b∼ = (B2b) = (a∧b)∼ =
(a ∧ b)e. The lattice join leads to ai ∨ bi = i(a) ∨ i(b) = (DD) = i(a ∨ b) =
(a∨b)i . On the other hand, ae∧be = a∼∧b∼ = (B2b) = (a∨b)∼ = (a∨b)e.

As to the De Morgan negation ae = a∼ = (dM1) = (a′)′∼ = (a′)i and
ai = a′∼ = (a′)∼ = (a′)e.
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As to the minimal Brouwer negation, in Theorem 49 it has been shown that
∼ (ai, ae) =

(
ae, (ae)

′), with the proof of the interconnection rule (IR) at the
point (1).

(2) Let us now suppose that the negation ∼ on Σ satisfies besides the minimal
conditions (B1) and (b2) also the condition (B3): ∀a ∈ Σ , a ∧ a∼ = 0. Let
us now consider (ai, ae)� ∼ (ai, ae) =

(
ai ∧ ae, ae ∨ (ae)

′). Then, ai ∧ ae =
a′∼ ∧ a∼ = (32) = a′∼ ∧ (a∼∼)∼ = (IR) = a′∼ ∧ a∼′∼ = i(a) ∧ i(a∼) =
(I2K) = i(a ∧ a∼) = (B3) = i(0) = 0. Similarly, ae ∨ (ae)

′ = a∼ ∨ a∼′ =
(IR) = a∼ ∨ a∼∼ = (B2b) = (a ∧ a∼)∼ = (B3) = 0∼ = 1.

(3) Finally, let “(oc-2a) ∀a ∈ Σ , a ∧ a′ = 0” and “(oc-2b) ∀a ∈ Σ , a ∨ a′ = 1” be
true. Then (ai, ae)�− (ai, ae) = (ai ∧ ae, ai ∨ ae). But, ai ∧ae = i(a)∧a∼ =
i(a) ∧ i(a′) = (I2K) = i(a ∧ a′) = (oc-2a) = i(0) = 0. Dually ai ∨ ae =
i(a) ∨ a∼ = i(a) ∨ i(a′) = (DD) = i(a ∨ a′) = (oc-2b) = i(1) = 1.

The excluded middle law can be proved similarly. ��

2.3.1 Zadeh Fuzzy Sets and Induced BZ Structures

In Sect. 1.3.2, we have introduced the notion of fuzzy set on a universe X as a
mapping f : X → [0, 1], whose collection has been denoted as F (X) := [0, 1]X.
Let us recall that in any F (X) it is possible to single out the subset Fc(X) :=
{0, 1}X of all two-valued fuzzy sets consisting of the characteristic functions χA of
all the subsets A of X: Fc(X) = {χA : A ∈P(X)}, whose elements are said to be
exact sets.

Let us now follow the points of Definition 33 in order to give to F (X) an
interesting algebraic structure.

(BKF1) We have proved that the collection of all fuzzy sets on the universe
X has a structure of Kleene algebra with half element F =〈
F (X),∧,∨, ′, 0, 1, 1/2

〉
, i.e., it is a distributive (complete) lattice

bounded by the fuzzy sets 0(x) = 0 and 1(x) = 1, with half element
1/2(x) = 1/2, equipped with a Kleene negation, i.e., a unary operation
f ∈ F (X) → f ′ = (1 − f ) ∈ F (X) satisfying the De Morgan
conditions (dM1) and (dM2), plus the Kleene condition (KL).

(BKF2) For any fixed fuzzy set f ∈ F (X) let us introduce the following subsets
of the universe X:

A0(f ) := {x ∈ X : f (x) = 0} (the certainty-no domain)

A1(f ) := {x ∈ X : f (x) = 1} (the certainty-yes domain)

Ap(f ) := {x ∈ X : f (x) 
= 0} = (A0(f ))c (the possibility domain)

Then we can associate with any fuzzy set f ∈ F (X) the exact set f∼ :=
χA0(f ) ∈ Fc(X). It is now easy to prove that the mapping ∼ : F (X)→
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F (X), f → f∼ = χA0(f ), is a Brouwer negation since it satisfies the
conditions (B1), (B2) (equivalent to (B2a)), and (B3).

(BKF3) In this way we have obtained the structure
〈
F (X),∧,∨, ′, ∼, 0, 1, 1/2

〉

of Brouwer Kleene distributive lattice since the interconnection rule (IR)
∀f ∈ F (X), f∼′ = f∼∼ holds.

In Sect. 1.3.2 we have shown that f ∧ f ′ = 0 iff f ∨ f ′ = 1 iff f ∈ {0, 1}X,
excluding in this way that the Kleene negation ′ can be Boolean. Similarly, we have
that f ∨ f∼ = 1, i.e., ∀x ∈ X, max

{
f (x), χA0(f )(x)

} = 1, iff f ∈ {0, 1}X.
On the basis of this BK distributive lattice, according to Eq. (34), the interior,

closure, and exterior of any fuzzy set f ∈ F (X) assume the forms:

i(f ) := χA1(f ) (fuzzy interior)

c(f ) := χAp(f ) (fuzzy closure)

e(f ) := χA0(f ) (fuzzy exterior)

From these definitions we have that

f = i(f ) iff f = c(f ) iff ∃A ∈P(X) s.t. f = χA

In other words, the collection E (X) of all exact elements from the BK lattice F (X)

coincides with the collection of all two valued functions (crisp sets) on X. Formally,

E (X) = {0, 1}X.

Then, according to the results of Proposition 43, we have that the collection of all
crisp sets is a Boolean algebra

〈
E (X),∧,∨, ′, χ∅, χX

〉
where, in particular, we have

that for any pair of crisp sets χA, χB ∈ E (X) and any point of the universe x ∈ X

it is

(χA ∧ χB)(x) = min {χA(x), χB(x)} = χA∩B(x)

(χA ∨ χB)(x) = max {χA(x), χB(x)} = χA∪B(x)

(χA
′)(x) = (1− χA)(x) = χAc(x)

χ∅(x) = 0(x) = 0

χX(x) = 1(x) = 1

Now, the mapping Φ : E (X) → P(X), χA → Φ(χA) := A is an
isomorphism between the two Boolean algebras

〈
E (X),∧,∨, ′, χ∅, χX

〉
and

〈P(X),∩,∪, c,∅,X〉 since it is a one-to-one and onto mapping preserving the
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Boolean operations:

Φ(χA ∧ χB) = Φ(χA∩B) = A ∩ B

Φ(χA ∨ χB) = Φ(χA∪B) = A ∪ B

Φ(χA
′) = Φ(χAc ) = Ac

Φ(χ∅) = ∅
Φ(χX) = X

This result allows one to identify the two Boolean algebra structures, written as
E (X)←→P(X). In the present case of fuzzy sets, the orthopair description of the
rough approximation of a fuzzy set f ∈ F (X) by the interior–exterior crisp pair is
drawn by the diagram:

Extending the above isomorphism Φ : E (X) → P(X) to the Cartesian product,
Φ2 : E (X)×E (X)→ (P(X)×P(X)), (χA, χB)→ Φ2(χA, χB) := (A,B), the
ortho-rough approximation of the fuzzy set f ∈ F (X) can be represented by the
following diagram:

where we have introduced the extensional mapping ext = (Φ2 ◦ r⊥) : F (X) →
(P(X)×P(X))⊥ associating with any fuzzy set f ∈ F (X) its extension ext (f ) =
(Φ2 ◦ r⊥)(f ) = (A1(f ),A0(f )).

We have adopted here the notation

(P(X)×P(X))⊥ := {(A1, A0) ∈P(X)×P(X) : A1 ∩ A0 = ∅}
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for the collection of all orthogonal pairs of subsets of the universe X which in
Sect. 1.3.1 we have denoted by P(X).

Let us recall that P(X) has a natural structure of BKDM distributive lattice
with respect to the operations defined by Eq. (23) where the Kleene negation
−(A1, A0) = (A0, A1) cannot be Boolean since we can only state that for every
orthopair it is (A1, A0) � −(A1, A0) = (∅, A1 ∪ A0) which in general is different
from the least element (∅,X) unless it is A0 = (A1)

c, belonging to the set of all
exact orthopairs (A,Ac).

The mapping ext : F (X) → (P(X) × P(X))⊥ is an epimorphism, i.e., a
morphism from the BK distributive lattice

〈
F (X),∧,∨, ′, ∼, 0, 1

〉
onto the BKDM

distributive lattice 〈P(X),�,�, −, ∼, (∅,X), (X,∅)〉 (for this structure recall the
Sect. 1.3.1 with related operations (23)). Indeed, we have the following results.

Proposition 54 Let f, g ∈ F (X). Then,

(EP1) ext (f ∧ g) = ext (f ) � ext (g)

(EP2) ext (f ∨ g) = ext (f ) � ext (g)

(EP3) ext (f ′) = −ext (f )
(EP4) ext (f∼) =∼ ext (f )

(EP5) ext (0) = (∅,X) and ext (1) = (X,∅).

Furthermore, the mapping ext : F (X)→ P(X) is surjective.

Proof (EP1) First of all, we have that

A1(f ∧ g) = {x ∈ X : (f ∧ g)(x) = 1} = {x ∈ X : f (x) = 1 and g(x) = 1} =
{x ∈ X : f (x) = 1} ∩ {x ∈ X : g(x) = 1} = A1(f ) ∩ A1(g)

A0(f ∧ g) = {x ∈ X : (f ∧ g) = 0} = {x ∈ X : f (x) = 0 or g(x) = 0} =
{x ∈ X : f (x) = 0} ∪ {x ∈ X : g(x) = 0} = A0(f ) ∪ A0(g)

From these two results we get that

ext (f ∧ g) = (A1(f ∧ g),A0(f ∧ g)) = (A1(f ) ∩ A1(g),A0(f ) ∪ A0(g)) =
(A1(f ),A0(f )) � (A1(g),A0(g)) = ext (f ) � ext (g)

The proof of(EP 2) is similar. Let us now prove (EP3). We have that
A1(f

′) = {x ∈ X : f ′(x) = 1
} = {x ∈ X : f (x) = 0} = A0(f ) and similarly

A0(f
′) = A1(f ). Hence, ext (f ′) = (A1(f

′), A0(f
′)) = (A0(f ),A1(f )) =

−(A1(f ),A0(f )) = −ext (f ). For the proof of (EP4) let us note that f∼ = χA0(f )

from which we have that A1(f
∼) = {x ∈ X : χA0(f )(x) = 1

} = A0(f ) and
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A0(f
∼) = {x ∈ X : χA0(f )(x) = 0

} = (A0(f ))c. So, ext (f∼) = (A1(f
∼),

A0(f
∼)) = (A0(f ), and (A0(f ))c) =∼ (A1(f ),A0(f )) =∼ ext (f ).

Furthermore, ext (0) = (A1(0), A0(0)) = (∅,X) and ext (1)
= (A1(1), A0(1)) = (X,∅).

Let (A1, A0) ∈ P(X). Let us now consider the fuzzy set f := 1
2

(
χA1 + χAc

0

)
,

then f (x) = 1 iff χA1(x) = 1 and χAc
0
(x) = 1 iff χA1(x) = 1 and χA0(x) =

0, i.e., f (x) = 1 iff x ∈ A1; similarly, f (x) = 0 iff x ∈ A0. Hence, ext (f )

= (A1, A0). ��

2.3.2 Pawlak Rough Sets and Induced BZ Structures

The standard Pawlak’s notion of rough approximation space (see, for instance, [57,
58, 60]) is essentially based on an equivalence space (X,R), where X is an universe
equipped with an equivalence (reflexive, symmetric and transitive) relation R,
sometimes denoted also by ≡. In this context, the binary relation ≡ is said to be
an indiscernibility relation and two elements x, y of the universe X which are in the
relation x ≡ y are called indiscernible.

As a consequence, the equivalence relation of indiscernibility ≡ will determine
a partition π of the universe X into a set of equivalence classes G, each of which is
called elementary set or also granule of knowledge.

(In) Two elements x and y will be indiscernible (x ≡ y) iff they belong to the
same equivalence class G:

Let x, y ∈ X, then x ≡ y iff ∃G ∈ π s.t. x ∈ G and y ∈ G.

Given an element x ∈ X we can define the equivalence class generated by x as the
subset of the universe X defined as

G(x) = {y ∈ X : x ≡ y}

Obviously, G(x) is not empty because x belongs to it and it constitute a granule of
knowledge about x. Let us stress that two knowledge granules are either disjoint or
equal between them.

Following Definition 33, in the case of the partition π of X generated by an
indiscernibility (equivalence) relation ≡ we have the following results

Proposition 55 Let X be a (nonempty) universe of points equipped with a parti-
tion π .

(1) The power set P(X) of the universe X equipped with the has a structure
〈P(X),∩,∪, c,∅,X〉 of Boolean algebra with respect to the set theoretical
operations of intersection ∩, union ∪ and complementation Ac := X \ A,
bounded by the least element ∅ and the greatest element X.
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(2) The Boolean algebra P(X) can be equipped with an operation ∼ assigning to
any subset of the universe X the subset

∀H ∈P(X), H∼ := ∪ {G ∈ π : G ⊆ Hc
}
. (44)

This operation is a Brouwer negation since the following hold for arbitrary
H,K ∈P(X):

(B1) H ⊆ H∼∼

(B2) H ⊆ K implies K∼ ⊆ H∼

(B3) H ∩H∼ = ∅

(3) The interconnection rule between the two negations holds:

(IR) ∀H ∈P(X), H∼∼ = H∼ c.

In other words, 〈P(X),∩,∪, c, ∼,∅,X〉 is a Brouwer Boolean (BB) algebra
(distributive lattice).

Proof Since the proofs of points (B1)–(B3) are quite trivial, let us prove the
interconnection rule (IR).

Since Eq. (44) defining H∼ is true for every subset of X we can apply it to the
same subset H∼ obtaining

(H∼)∼ = ∪ {Ĝ ∈ π : Ĝ ⊆ (H∼)c
}

(*)

On the other hand we have that y ∈ (H∼)c iff “∀G ⊆ Hc, y /∈ G” iff “¬∃G ⊆
Hc s.t. y ∈ G” iff “∃ Ĝ ⊆ (H∼)c s.t. y ∈ Ĝ.” From this result we get

(H∼)c = ∪ {Ĝ ∈ π : Ĝ ⊆ (H∼)c
}

(**)

Comparing (*) and (**) we obtain (IR). ��
In order to stress that this BB algebraic structure rises from the partition space

(X, π), at least in defining the Brouwer negation ∼ by Eq. (44), in the sequel we
denote this power set as P(X, π).

As usual in BZ structures, taking into account the condition (B1) of Brouwer
negation, one can introduce the exact elements, or definable sets in the Pawlak ter-
minology, in order to distinguish them from all the other subsets called undefinable
[59], as those subsets E ∈ P(X, π) such that E = E∼∼(= E∼ c). The collection
of all definable sets from the partition space (X, π) will be denoted by E (X, π)

Proposition 56 Let E ∈ E (X, π), then there exists a subfamily of knowledge
granules

{
Gj ∈ π : j ∈ J

} ⊆ π s.t. E = ∪ {Gj ∈ π : j ∈ J
}
. Furthermore the

following hold.
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(CS1) E ∈ E (X, π) iff Ec ∈ E (X, π),
(CS2) ∅ ∈ E (X, π) and X ∈ E (X, π),
(CS3) ∀ {Ej : j ∈ J

} ⊆ E (X, π), ∩ {Ej : j ∈ J
} ∈ E (X, π),

(CS4) ∀ {Ej : j ∈ J
} ⊆ E (X, π), ∪ {Ej : j ∈ J

} ∈ E (X, π).

In other words, E (X, π) is an Alexandroff topology [1, 2] in which, owing to (CS1),
the collections of open sets and closed sets coincide with E (X, π).

Proof From Ê = Ê∼ c we get Êc = Ê∼ = ∪{G ∈ π : G ⊆ Êc}. Setting E = Êc

the previous identity can be written as E = ∪{G ∈ π : G ⊆ E}. Conditions (CS1)–
(Cs4) are easy to prove. ��

We are now ready to introduce on P(X, π) the usual operations of interior,
closure, and exterior, according to the general theory developed in Sect. 2.1.2,
according to Eq. (35).

e(H) = H∼ = ∪{G ∈ π : G ⊆ Hc} (45a)

i(H) = Hc∼ = ∪{G ∈ π : G ⊆ H } (45b)

c(H) = H∼ c = ∪{G ∈ π : H ∩G 
= ∅} (45c)

So, given a subset of objects from the universe H ∈P(Xπ), its rough approxima-
tion is the interior–closure pair r(H) = (i(H), c(H)), with i(H) ⊆ H ⊆ c(H).
Equivalently the rough approximation of the subset H can be expressed as the
interior–exterior pair r⊥(H) = (i(H), e(H)) = (i(H),u(H)c), with i(H) ∩ e(H)

= ∅.
Now we can apply the general results proved before.

(OP1) The collection A(X, π) of all orthopairs (H1,H0), with H1,H0 subsets of
X such that H1 ⊆ Hc

0 (i.e., H1 ∩ H0 = ∅), according to Theorem 26 and
Proposition 29, has a structure of BBDM algebra (distributive lattice) with
respect to the lattice operations (20) and the two negations (12).

(OP2) The collection P(X, π) of all subsets of the partition space (X, π) in
general does not satisfy the dual B De Morgan law (B2b), and so neither
(DD) and (DDc).

Example 57 In the universe X = {a, b, c, d, e, f, g, h} let us consider the partition
π = {G1 = {a, b},G2 = {c},G3 = {d, e, f },G4 = {g, h}}.

Let us consider the two subsets H = {a, b, d} and K = {b, f, g}, then H∼ =
{c, g, h}, K∼ = {c} and so H∼ ∪K∼ = {c, g, h}. On the other hand (H ∩K)∼ =
{b}∼ = {c, d, e, f, g, h}. Hence H∼ ∪K∼ � (H ∩K)∼.

(OP3) Since P(X, π) is not (B2b)-De Morgan, we cannot apply the results of
Theorem 53 to the collection R(X, π) of all ortho-rough approximations
(i(H), e(H)), for H running on P(X, π).
In particular, we cannot state that the structure
〈R(P(X, π)),', −, ∼, (∅,X) , (X,∅)〉, is a lattice, but only that it
is a BK poset equipped with a Kleene negation − (i(H), e(H)) =
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(e(H), i(H)) and a full Brouwer negation ∼ (i(H), e(H)) =
(e(H), e(H)c) interconnected by the rule (IR).
That negation − is Kleene follows from the fact that (i(H), e(H)) �
−(i(H), e(H)) = (i(H) ∩ e(H)), i(H) ∪ e(H)) = (∅, i(H) ∪ e(H))

and (i(K), e(K)) � −(i(K), e(K)) = (i(K) ∪ e(K)), i(K) ∩ e(K)) =
(i(K) ∩ e(K),∅); hence,

(i(H), e(H)) � −(i(H), e(H)) = (∅, i(H) ∪ e(H)) '
(i(K) ∩ e(K),∅) = (i(K), e(K)) � −(i(K), e(K)).

For the Brouwer condition (B3) we have that
(i(H) ∪ e(H))� ∼ (i(H), e(H)) = (i(H) ∪ e(H)) � (e(H), e(H)c) =
(∅,X).

Let us now discuss two standard partitions for any universe X.

Example 58 Let X be a not empty universe. The trivial partition of X is the
collection of its subsets πt = {∅,X}. Of course the corresponding collection of
definable sets is E (X, πt ) = {∅,X} = πt . The corresponding Brouwer negation,
according to Eq. (44) is then

∀H ∈P(X, πt ), H∼t =
{
∅ if H 
= ∅
X if H = ∅ with H∼t∼t =

{
X if H 
= ∅
∅ if H = ∅

Therefore, for any subset H ∈P(X, πt ) \ {∅,X} we have that

e(H) = ∅ i(H) = ∅ c(H) = X

from which it follows that r(H) = (∅,X) and r⊥(H) = (∅,∅).
Moreover, for the two extremal cases ∅ and X we have that

e(∅) = X i(∅) = ∅ c(∅) = ∅

from which it follows that r(∅) = (∅,∅) and r⊥(∅) = (∅,X).
On the other hand,

e(X) = ∅ i(X) = X c(X) = X

from which it follows that r(X) = (X,X) and r⊥(X) = (X,∅).
Note the following chain of inclusions:

∀H ∈P(X, πt ), (∅,X) ' r⊥(H) = (∅,∅) ' (X,∅).

Example 59 Let X be a not empty universe. The discrete partition πd of X consists
of all singletons {x} ∈ P(X, πd), for x running in X, plus the empty set ∅. In this



Algebraic Methods for Orthopairs and RAS 609

case we have that the collection of all definable sets coincides with the power set:
E (X, πd) =P(X, πd).

Hence, for any subset H ∈ P(X, πd) we have that H∼d = Hc, the set
theoretical complement of the subset itself. So, we have that in this case for any
H ∈P(X, πd)

i(H) = H c(H) = H e(H) = Hc

From these results it follows that r(H) = (H,H) and r⊥(H) = (H,Hc).

The Classical Pawlak Approach

In particular, in the classical Pawlak’s approach to rough sets the equivalence
relation is obtained from an information table K (X) = 〈X,Att (X), V al, F 〉,
where X is a nonempty universe of objects, Att (X) is a nonempty set of attributes
related to the objects of X, and F : X × Att (X) → V al the information mapping
associating with any pair consisting of an object x ∈ X and an attribute a ∈ Att the
value F(x, a) ∈ V al which the attribute a assigns to the object x.

Precisely, once fixed a subset of attributes D ⊆ Att (X), the equivalence
indiscernibility relation of any two objects is defined as:

x ≡ y iff ∀a ∈ D, F(x, a) = F(y, a) (46)

Following the partition space results, we have that the structure
〈P(X),∩,∪,c ,∼ ,∅,X〉 is a BBDM lattice where the preclusive complementation
∼ is the mapping associating with any subset H of the universe its preclusive
complement

H∼ = {x ∈ X : ∀y ∈ H, ∃a ∈ D s.t. F(x, a) 
= F(y, a)}

Indeed, we have that “x ∈ H∼ iff ∀y ∈ H , y /∈ G(x).” But “y ∈ G(x) iff ∀a ∈ D,
F(x, a) = F(y, a)” and so “y /∈ G(x) iff ∃a ∈ D s.t. F(x, a) 
= F(y, a).” In
conclusion, “x ∈ H∼ iff ∀y ∈ H , ∃a ∈ D s.t. F(x, a) 
= F(y, a).”

Notwithstanding the drawbacks of points (OP2) and (OP3), a very interesting
and important result of Bonikowski in [8] assures that in the case of a partition
space (X, π) based on a universe X of finite cardinality and a partition π induced
from an equivalence relation of indiscernibility ≡, the structure R(X, π) :=
{(i(H), e(H)) : H ∈P(X, π)} is a distributive lattice with respect to the partial
order relation '.

Before obtaining this result we give here a new proof of a preliminary result
which is totally inspired by the Bonikowski paper (Lemma 4.11 of [8]), but which
is more compact and self-consistent.
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Proposition 60 Let (X, π) be a partition space whose universe is finite (|X| <∞).
Then, for every pair H,K ∈P(X, π) there exists a subset Z ∈P(X, π) such that:

i(Z) = i(H) ∩ i(K) (47a)

c(Z) = c(H) ∩ c(K) (47b)

e(Z) = e(H) ∪ e(K) (47c)

Moreover, as to the anti-Brouwer negation, we have that

Z� = H� ∪H� (47d)

Proof For an arbitrary pair of subsets H,K of X, let us consider the subset A :=
c(H) ∩ c(K). We discuss two cases.

(a) Let A = c(H)∩c(K) = ∅. In this case a fortiori i(H)∩ i(K) = ∅, and from the
general property (I2K) i(H∩K) = i(H)∩i(K) = ∅. On the other hand, from (*)
of the proof of Proposition 47 it follows that ∅ ⊆ c(H∩K) ⊆ c(H)∩c(K) = ∅.

(b) Let A = c(H) ∩ c(K) 
= ∅. Then A is an exact (clopen) nonempty set which
can be expressed as the set theoretic union of mutually disjoint nonempty
elementary sets (knowledge granules): A = c(H) ∩ c(K) = G1(A) ∪ . . . ∪
Gk(A), where for every i it is Gi(A) 
= ∅ and for i 
= j it is Gi(A)∩Gj(A) = ∅.
Let us choose in any elementary set Gi(A) a single element xi ∈ Gi(A) and
let us collect them in the set Y = {x1, . . . , xk} ⊆ c(H) ∩ c(K). Of course,
according to (45c), c({xi}) = Gi(A) and from this result one gets that Y is a
minimal lower sample according to the terminology of Bonikowski:

c(Y ) = c({x1} ∪ . . . ∪ {xk}) = G1(A) ∪ . . . ∪Gk(A) = i(A)

Since A is exact, i.e., A = i(A), we can also write this result as follows:

c(Y ) = A = c(H) ∩ c(K) (48)

As to i(Y ), if its interior is empty, i(Y ) = ∅, then trivially i(Y ) ⊆ i(H) ∩ i(K).
Let us suppose that i(Y ) 
= ∅, then there exists z ∈ i(Y ) ⊆ Y and so there exists j

such that z = xj ∈ Y . In particular, z ∈ Gj(A) = [xj ] and for every i 
= j it is
z /∈ Gi(A), or in other words [z] ∩ Gi(A) = ∅. Moreover, z ∈ i(Y ) implies [z] ⊆
i(Y ) ⊆ Y , i.e., [z] ⊆ {x1, . . . , xk}, and so necessarily Gj(A) = [xj ] = [z] = {xj }.
Hence, xj = z ∈ i(Y ) ⊆ Y ⊆ c(H)∩c(K). In particular, xj ⊆ c(H) and this means
that ∅ 
= [xj ] ∩H = {xj } ∩H , i.e., {xj } = [xj ] ⊆ H which is a condition assuring
that xj ∈ i(H). Therefore, we have obtained that for every xj ∈ i(Y ) necessarily
xj ∈ i(H). In a similar way one obtains that for every xj ∈ i(Y ) necessarily xj ∈
i(K). Thus, also in this case i(Y ) ⊆ i(H) ∩ i(K).
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As a conclusion, whatever be the intersection A = c(H) ∩ c(K) one always has
that

i(Y ) = i({x1, . . . , xk}) ⊆ i(H) ∩ i(K) (49)

Now, let us consider the subset Z := [i(H) ∩ i(K)] ∪ Y . Then, making use of
Proposition 47 applied to the pair formed by the exact subset i(H) ∩ i(K) and the
subset Y we get

i(Z) = i { [i(H) ∩ i(K)] ∪ Y } = (41a) = i(i(H) ∩ i(K)) ∪ i(Y ) =
= (i(H) ∩ i(K)) ∪ i(Y ) = (2) = i(H) ∩ i(K) (50)

Similarly, applying Proposition 47 to the pair of exact sets i(H) and i(K)

c(Z) = c { [i(H) ∩ i(K)] ∪ Y } = c(i(H) ∩ i(K)) ∪ c(Y ) = (41b)

= [c(i(H)) ∩ c(i(K))] ∪ c(Y ) = (1)

= [i(H) ∩ i(K)] ∪ [c(H) ∩ c(K)] = c(H) ∩ c(K) (51)

From c(Z) = c(H) ∩ c(K) it follows that X \ c(Z) = X \ c(H) ∩ c(K) =
[X \ c(H)] ∪ [X \ c(K)], that is e(Z) = e(H)∪ e(K). Finally, H� ∪K� = Hc∼ c ∪
Hc∼ c = (H c∼ ∩Hc∼)c = (i(H)∩ i(K))c = (47a) = i(Z)c = (Zc∼)c = Z�. ��

We discuss now the main difficulty in asserting that R(X, π) is a lattice. If
one considers the rough sets generated by a subset H , r⊥(H) = (i(H), e(H))

and by a subset K , r⊥(K) = (i(K), e(K)), then mimicking the lattice opera-
tions (20) involving orthopairs of the abstract approach, one is tempted to define
(i(H) ∩ i(K), e(H) ∪ e(K)) and (i(H) ∪ i(K), e(H) ∩ e(K)) as possible lattice
operations of the concrete Pawlak case. The delicate point consists in the fact that
in order to assure that these two pairs are elements of R(X, π) it is necessary
to prove that there exists two subsets Z and W of X such that r⊥(Z) =
(i(H) ∩ i(K), e(H) ∪ e(K)) and r⊥(W) = (i(H) ∪ i(K), e(H) ∩ e(K)).

The following result is exactly a reformulation of the Bonikowski proof of [8,
p. 417] assuring that in the case of a finite universe X this condition is satisfied.

Proposition 61 Let (X, π) be a finite partition space (|X| < ∞). The poset
R(X, π) of all rough representations of subsets from X is a distributive lattice.

Precisely, for any pair of subsets H,K ∈P(X, π) the meet and join operations
are given respectively by the following (where Z is the subset introduced in the
proof of Proposition 60 relatively to the pair H and K , and Wc is the subset
corresponding to the application of Proposition 60 to the pair Hc and Kc):

r⊥(H) � r⊥(K) = r⊥(Z) = (i(H) ∩ i(K), e(H) ∪ e(K)) (52a)

r⊥(H) � r⊥(K) = r⊥(W) = (i(H) ∪ i(K), e(H) ∩ e(K)) (52b)
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Proof Let us consider the element of R(X, π) corresponding to the rough represen-
tation of the subset Z of Proposition 60: r⊥(Z) = (i(Z), e(Z)) = (47a) and (47c) =
(i(H) ∩ i(K), e(H) ∪ e(K)). We have that r⊥(Z) ' r⊥(H) = (i(H), e(H)) since
from (47a) one has that i(Z) ⊆ i(H) and e(H) ⊆ e(Z). Similarly, from (47c) it
follows that r⊥(Z) ' r⊥(K) = (i(K), e(K)). That is r⊥(Z) is a lower bond in the
poset R(X, π) of the pair r⊥(H), r⊥(K).

Let now r⊥(W) = (i(W), e(W)) be a generic lower bond of the same pair in the
poset R(X, π), then

i(W) ⊆ i(H), i(K) and e(H), e(K) ⊆ e(W)

From these, using (3) and (4) of the proof of Proposition 60, it follows that

i(W) ⊆ i(H) ∩ i(K) = i(Z)

e(Z) = X \ c(Z) = X \ [c(H) ∩ c(K)] = e(H) ∪ e(K) ⊆ e(W)

Hence, we have proved that r⊥(W) ' r⊥(Z), and so r⊥(Z) is the greatest lower
bond of the pair r⊥(H), r⊥(K).

This being stated, let us consider i(H) ∪ i(K) = [i(H)c ∩ i(K)c]c = [(H c)∼ c ∩
(Kc)∼ c ]c = [c(H c) ∩ c(Kc) ]c. If we denote by Wc the subset of X corresponding
to the application of Proposition 60 (in particular Eq. (47b)) relatively to the pair Hc

and Kc, we have that i(H) ∪ i(K) = [c(Wc)]c = [(Wc)∼ c]c = Wc∼ = i(W). On
the other hand, c(H) ∩ c(K) = H∼ ∩ K∼ = (H∼ c ∪ K∼ c)c = [(H c)c∼ c ∪
(Kc)c∼ c]c = [(H c)� ∪ (H c)�]c. With respect to the same pair Hc and Kc if
we apply (47d) of Proposition 60 we obtain c(H) ∩ c(K) = [(Wc)�]c = W∼
= e(W). ��

Summarizing,

1. In the case of a partition space (X, π) consisting of a universe X of finite cardi-
nality equipped with a partition π induced from an indiscernibility (equivalence)
relation≡, the collection R(X, π) of all rough representations of subsets H ⊆ X

gives rise to a BK algebra (distributive lattice)

(R(X, π),�,�, −, ∼, (∅,X), (X,∅)).
2. This algebra is a sub BK algebra of the BBDM algebra A(X) of all mutually

disjoint pairs (A1, A0) of subsets A1 and A0 (with A1 ∩ A0 = ∅) of the finite
universe X. In particular all the operations �, �, −, ∼ are preserved and so also
R(X, π) is a BKDM algebra, whose operations are the following:

(i(H), e(H)) � (i(K), e(K)) = (i(H) ∩ i(K), e(H) ∪ e(K))

(i(H), e(H)) � (i(K), e(K)) = (i(H) ∪ i(K), e(H) ∩ e(K))

−(i(H), e(H)) = (e(H), i(H))

∼ (i(H), e(H)) = (e(H), c(H))
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2.4 Heyting Wajsberg (HW) Algebras

Before entering into the details involving Heyting Wajsberg (HW) algebras, we need
to introduce some notions about implications and their algebraic axiomatization.
This structures will indeed be used to characterize the collection of different kind of
orthopairs.

This problem was addressed by the authors in the paper [14] and subsequently
expanded and completed in [26, 27] (after some preliminary works in weaker
structures [20, 24, 25]), where it is introduced a structure based on two operations
→L and→G called Wajsberg and Heyting (HW) implications, respectively. These
names are justified on the basis of the papers [63, 66, 67] for Wajsberg algebra
and [52] for Heyting algebra (recalling that what is here called Heyting algebra
in literature sometimes appears with the name of Brouwerian lattice [7, p. 45] or
Brouwer algebra [51]).

The discussion just made leads to investigate abstract algebraic structures based
on two primitive implication connectives by the following structure [26].

Definition 62 A system HW(A) = 〈A,→L,→G, 0〉 is a Heyting Wajsberg (HW)

algebra if A is a nonempty set, 0 ∈ A, and →L,→G are binary operations, such
that, once defined the further operations

(Op1) a ∨ b := (a→L b)→L b

(Op2) a ∧ b := ¬((¬a→L ¬b)→L ¬b)
(Op3) ¬a := a→L 0
(Op4) ∼ a := a →G 0
(Op5) 1 := ¬0

the following axioms are satisfied:

(HW1) a→G a = 1
(HW2) a→G (b ∧ c) = (a→G c) ∧ (a→G b)

(HW3) a ∧ (a→G b) = a ∧ b

(HW4) (a ∨ b)→G c = (a→G c) ∧ (b→G c)

(HW5) 1→L a = a

(HW6) a→L (b→L c) = ¬(a →L c)→L ¬b
(HW7) ¬ ∼ a →L∼∼ a = 1
(HW8) (a→G b)→L (a →L b) = 1

Let us recall that from any HW algebra it is possible to induces the algebraic
structures discussed in the following Sects. 2.4.1 and 2.4.2 (see also [26]).

2.4.1 Wajsberg Algebras Induced from HW Algebras

(W) The structure W = 〈A,→L, 1〉 obtained from a HW algebra neglecting
the implication connective →G is a Wajsberg algebra in the sense that the
following axioms are satisfied
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(W1) 1→L a = a

(W2) (a→L b)→ ((b→L c)→L (a →L c)) = 1
(W3) (a→L b)→L b = (b→L a)→L a

(W4) (a′ →L b′)→L (b→L a) = 1

The notion of Wajsberg algebra (W algebra for short) was introduced by Wajsberg
in order to give an algebraic axiomatization to many valued logic [66, 67], taking
inspiration from the Łukasiewicz approach to many-valued logic [9] (see also [62]).

Furthermore, the important result about Wajsberg algebras with respect to the
Kleene complementation is the following one.

Proposition 63 Let W = 〈A,→L, 1〉 be a Wajsberg algebra. Let us define ∧,∨
as in equations (OP1), (OP2), the unary operation ¬a as in equation (OP3), and
according to (OP5) let us set 0 = ¬1. Then,

• the algebraic structure K = 〈A,∧,∨, ¬, 0, 1〉 is a Kleene complemented lattice
bounded by the least element 0 and the greatest element 1 whose induced partial
order relation is given by

(E∗)L a ≤ b iff a →L b = 1.

which according to Hardegree [41, 42] expresses one of the minimal implicative
conditions, called law of entailment, relating the implication connective with the
partial order relation describing the binary implication relation.

Another algebraic approach to Łukasiewicz logic is the one proposed by Chang
in [29] with the name of MV algebra. This algebra represents a weakening of
Boolean algebras, where the notion of disjunction (resp., conjunction) is split into
two different operations. The first kind of operation behaves like a Łukasiewicz
disjunction� (resp., conjunction⊕) which in general is not idempotent; the second
kind of operation is a lattice meet ∧ (resp., lattice join ∨).

As noticed by Chang “it is clear that the axiom system [formalized in [29]] is
not the most economical one; they are given in the above form for their intuitive
contents”. A more economical and independent axiomatization of MV algebras was
given in [20] according to the following.

Theorem 64 Let
〈
A,⊕, ′, 0

〉
be an algebra satisfying the following axioms

(MV1) (a ⊕ b)⊕ c = b⊕ (c ⊕ a)

(MV2) a ⊕ 0 = a

(MV3) a ⊕ 0′ = 0′
(MV4) (0′)′ = 0
(MV5) (a′ ⊕ b)′ ⊕ b = (a ⊕ b′)′ ⊕ a

Then, once defined a� b := (a′ ⊕ b′)′ and 1 = 0′, the structure
〈
A,⊕,�,′ , 0, 1

〉
is

a MV algebra according to Definition originally proposed by Chang. The vice versa
is also true, i.e., any Chang formalization of MV algebra satisfies all properties
(MV1)–(MV5).
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In any MV algebra it is possible to induce a Kleene lattice structure
〈
A,∧,∨, ′, 0, 1

〉

where the ∧ and ∨ operations are defined as a ∨ b = (a � b′) ⊕ b and a ∧ b =
(a ⊕ b′) � b, and ′ : A → A is the unary operation of the original MV structure.
The order relation induced on A from this Kleene lattice is:

a ≤ b iff a ∧ b = a iff a′ ⊕ b = 1

Thus in this framework, the lattice operations turn out to be defined in terms
of the Kleene complement and of the Łukasiewicz operations. Whenever the
two disjunctions–meet (resp., conjunctions–join) collapse into one and the same
operation,� = ∧ (⊕ = ∨), one obtains a Boolean algebra.

The proof of the following result can be found in [31], or also in [64, pp. 41, 44,
45]

Theorem 65

1. Let A = 〈A,⊕, ′, 0
〉

be a MV algebra. Once defined 1 = 0′ and the operator
→L: A �→ A as a →L b = a′ ⊕ b and setting ¬a = a′, then the structure
AW = 〈A,→L,¬, 1〉 is a Wajsberg algebra.

2. Let A = 〈A,→L,¬, 1〉 be a Wajsberg algebra. Once defined 0 = ¬1 and the
operator ⊕ : A �→ A as a ⊕ b = ¬a →L b and setting a′ = ¬a, then the
structure AC =

〈
A,⊕, ′, 0

〉
is a MV algebra.

3. Let A = 〈A,⊕, ′, 0
〉

be a MV algebra. Then A = AWC.

4. Let A = 〈A,→L,¬, 1〉 be a Wajsberg algebra. Then A = ACW .

In other words, there is a one-to-one correspondence between MV algebras and
Wajsberg algebras [64, p. 45, Theorem 9].

Furthermore, the Kleene lattice structure induced from AW coincides with the
Kleene lattice structure induced from AC: that is (a ⊕ b′) � b = ¬((¬a →L

¬b)→L ¬b) for the meet and an analogous result for the join.

In all the above discussion, either relative to Wajsberg algebras or to Chang
MV algebras, there is no mention to the possible distributivity of the induced
Kleene lattice structure. This result is proved in the context of MV algebras, whose
proof can be found in [64] as consequence of proposition 54 taken into account
proposition 21.

Proposition 66 Chang MV algebras, and so Wajsberg algebras, are distributive
lattices.

2.4.2 Heyting Algebras Induced from HW Algebras

(H) The structure H = 〈A,∧,∨,→G, 0〉 obtained from a HW algebra neglecting
the implication connective→L is a Gödel algebra that is an Heyting algebra
plus the Dummett condition [27]. We recall that a Heyting algebra satisfies
the following axioms
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(H1) a→G a = b→G b

(H2) (a→G b)∧ b = b

(H3) a→G (b ∧ c) = (a→G c) ∧ (a →G b)

(H4) a ∧ (a →G b) = a ∧ b

(H5) (a ∨ b)→G c = (a→G c) ∧ (b→G c)

(H6) 0 ∧ a = 0

and the Dummett (or pre-linearity) condition reads as:

(D) (a→G b)∨ (b→G a) = 1

We also remark that a Gödel algebra can be seen also as a residuated lattice [69],
i.e. a structure (A,∧,∨, �,→, 0, 1) such that the pair (�,→) satisfies the adjoint
condition

(Adj) c ≤ a→ b iff a � c ≤ b,

where the two operators ∧ and � coincide.
Heyting algebras have also been called by Birkhoff in [7, p. 45] Brouwerian

lattices, i.e., lattices in which the relative pseudo-complement exists for any pair
of its elements. Rasiowa and Sikorski call these algebraic structures as relatively
pseudo-complemented lattices, whereas “every relatively pseudo-complemented
lattice with zero element is called a pseudo-Boolean algebra” [61, p. 59], where
it is remarked that the name “pseudo Boolean algebra” is due to the fact that this
notion generalizes the one of Boolean algebra, since any Boolean algebra is also
a pseudo Boolean algebra. It is interesting to note that this notion, in its variety of
different adopted terminology, is defined in a non-equational way.

Rasiowa and Sikorski in [61, p. 59] asserted that “Obviously every relatively
pseudo-complemented lattice can be conceived as an algebra [. . . ] Similarly every
pseudo-Boolean algebra can be conceived as an algebra.” The equational formaliza-
tion of these algebras, here only enunciated, is then dealt with in [61, Chapter IV],
with all the necessary proofs (point 1.1 p. 123 for relatively pseudo-complemented
lattices and point 1.2 p. 124 for pseudo Boolean algebras).

Furthermore in the footnote of [61, p. 124] it is recognised that “a simpler
[equational] set of axioms for pseudo-Boolean algebras” has been introduced by
Monteiro in [51]. Precisely, it is discussed an equational set of axioms based
on lattices without 0 element with the name of generalized Brouwer algebra
and a generalized Brouwer algebra equipped with the least element 0 is called
Brouwer algebra. In this paper it is proved the equivalence between generalized
Brouwer algebras and relatively pseudo-complemented lattices, together with the
independence of the introduced axioms, and of Brouwer algebras with pseudo-
Boolean lattices. In a successive paper of Monteiro [52] the same structure is called
Heyting algebra.
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Let us remark that in a footnote of the page 59 of [61] in which pseudo-Boolean
lattices are introduced, Rasiowa and Sikorski underline that the structures dual to
the latter are called Brouwer algebras by McKinsey and Tarski in [49]).

The main result about Heyting algebras (pseudo-Boolean algebras) with respect
to the Brouwer complementation is the following one.

Proposition 67 Let H = 〈A ,∧,∨,→G, 0〉 be a Heyting algebra (pseudo-Boolean
algebra). Let the negation of any a ∈ A be defined as ∼ a := a →G 0 with the
further definition 1 :=∼ 0 = 0 →G 0. Then,

• the algebraic structure B = 〈A ,∧,∨,∼, 0, 1〉 is a Brouwer complemented
lattice with 0 as the least and 1 as the greatest elements of the lattice whose
induced partial order relation is given by

(E∗)G a ≤ b iff a →G b = 1.

Recalling that the non-equational way to introduce Heyting algebras (pseudo-
Boolean lattices) is given by the existence for any pair of elements a, b of an element
a→G b, called the pseudo-complement of a relative to b, such that,

(I) a ∧ x ≤ b if and only if x ≤ a→G b

then, the (I) applied to the case x = 1 leads immediately to the minimal implicative
condition for Heyting algebras (E∗)G.

In Proposition 67 there is no mention to the distributivity of the involved lattice.
This as a consequence of the following result, whose proof can be found for instance
in [61, p. 59].

Proposition 68 Every pseudo-Boolean algebra (Heyting algebra) is necessarily
distributive.

As a final result (without entering in formal details for which we refer to [61]),
let us recall that the idea of treating the set of all formulas of a formalized language
as an abstract algebra with operations corresponding to logical connectives was first
used by A. Lindenbaum and A. Tarski. Then it is possible to prove the following
[61, p. 382].

Theorem 69 Let T be a formalized intuitionistic theory, then the Lindenbaum–
Tarski algebra U (T ) associated to T is a pseudo-Boolean algebra (Heyting
algebra).

Thus, “the metatheory of the intuitionistic logic coincides with the theory of
pseudo-Boolean [Heyting] algebras in the same sense as the metatheory of classical
logic coincides with the theory of Boolean algebras” [61, p. 380], or simply
“Heyting algebras play for the intuitionistic propositional calculus the same role
played by the Boolean algebras for the classical propositional calculus.” [52].
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2.4.3 An Important Result About HW Algebras

Given a Heyting Wajsberg algebra it turns out that the following results can be
proved [26].

Proposition 70 Let HW(A) be a Heyting Wajsberg algebra. Then

(HW1) the operations ∧ and ∨ are just the meet and join operators of a
distributive lattice structure whose partial order is as usual defined as
a ≤ b iff a ∧ b = a (equivalently, iff a ∨ b = b).

(HW2) It is easy to prove that under the above axioms the following holds:

a ≤ b iff a→L b = 1 |iff a→G b = 1 (53)

(HW3) The structure BZ(A) := 〈A,∧,∨,¬,∼, 0〉 is a Brouwer Kleene algebra
(distributive lattice) whose Brouwer negation satisfies the B-De Morgan
condition (B2b) (i.e., it is a BKDM algebra). The induced interior and
closure operations are i(a) =∼ ¬(a) and c(a) = ¬ ∼ (a), respectively.
Hence the exterior of a is then e(a) =∼ a.

Some formal remarks. What in HW algebras is denoted by¬a and∼ a for a generic
element a ∈ A coincides with what in the BZ context is denoted by a′ and a∼. In
this section we maintain the orthodox notation of the HW algebras, considering it
is easy to translate this last to the BZ notation.

Let us recall the results of Proposition 51 which assure that the interior (resp.,
closure) operation satisfies the condition (DD) (resp., (DDc)).

As a consequence of the point (HW3) we can apply to HW algebras all the results
obtained in the Part II. Precisely,

1. Since BZ(A) is in particular a Boolean algebra with respect to the negation
¬, point (BA) of Proposition 29 assures that the collection A(BZ(A)) of all
orthopairs (a1, a0) ∈ BZ(A)×BZ(A) such that a1 ≤ ¬a0 is a Brouwer Kleene
(BK) algebra (distributive lattice) whose operation ∼ (a1, a0) = (a0,¬a0) is a
Brouwer negation as consequence of point (BL-B3) of Proposition 29 and whose
operation −(a1, a0) = (a0, a1) is a Kleene negation as proved in point (BA) of
the same proposition, which in general is not Boolean. Furthermore, the Brouwer
negation∼ satisfies the B-De Morgan condition (B2b) of Proposition 51 and so

A(BZ(A)) is a BKDM algebra.

2. Point (3) of Theorem 53 holds, which assures that the collection R(BZ(A)) of
all ortho-rough approximations (i(a), e(a)) = (∼ ¬(a),∼ (a)), for a ∈ BZ(A),
is a Brouwer Boolean algebra (distributive lattice) whose Brouwer negation ∼
satisfies the B-De Morgan condition (B2b) of Proposition 51 and so

R(BZ(A)) is a BBDM algebra.
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The development of the abstract theory of Heyting Wajsberg (HW) algebra as an
algebraic method developed in the lattice context would be too wasteful of space
to be developed in this chapter (obviously interested persons can access the papers
[26, 27]). We only mention without proofs some interesting results.

First of all, let us remark that HW algebras are equivalent to other well-known
algebras such as

• De Morgan BZMVDM algebras, which are a pasting of BZDM lattices and MV
algebras [25];

• De Morgan BZ Wajsberg algebras, a pasting of BZDM lattices and Wajsberg
algebras [13];

• Stonean MV algebras [6];
• MVΔ algebras [40].

Finally, in [27] a logical calculus has been introduced such that the corresponding
Lindembaum–Tarski algebra is a HW algebra and its semantical completeness has
been proved.

2.5 Concrete Models of HW Algebras

HW algebras are the best suitable structures able to fully characterize some interest-
ing concrete models. For instance, as we will see in the following subsections, the
real unit interval or the collection of all fuzzy sets on a universe X can be endowed
with a HW algebraic structure.

2.5.1 HW Algebra Based on Real Unit Interval

In this subsection we discuss, as a useful model, the particular case of the concrete
HW algebra based on the unit real interval [0, 1]. This approach is in itself
interesting and not particularly reductive because all the results on the HW algebra
[0, 1] that will be exposed here are valid and immediately extendable to the abstract
algebraic case. Indeed, owing to [27, Theorem 2.8] and some equivalence theorems
[27, Section 2], we can state the very important result about the strong form of
completeness theorem:

(SCT) Let φ and ψ be well defined terms, in the traditional way, on the language
of a HW algebra (that is well formed formulas formed using the primitive
and derived unary and binary connectives).

If the identity φ = ψ , as expression of a HW principle, holds in the
[0,1]–model.

Then the same HW principle holds in all HW algebras.
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From the terminological point of view, we must stress that in the concrete case of
the real unit interval [0,1] the structure of Wajsberg algebra is obtained through an
implication connective introduced by Łukasiewicz while the structure of Heyting
algebra is obtained through an implication connective introduced by Gödel (see the
important book of Rescher on multi-valued logic [62]).

In conclusion as we say in this long quotation from the introduction of [26]:

Taking inspiration by [. . . ] considerations about [0, 1], we are going to study algebraic
structures provided by [. . . ] more than one implication and we will focus our attention on
new added operators definable by composition of the previous ones. All these structures are
algebraic counterparts of corresponding logical systems. [. . . ]

At the top level of our construction we introduce Heyting Wajsberg (HW) algebras. This
new structure is characterized by the presence of both and only the Gödel and Łukasiewicz
implications as primitive operators. It was introduced with the aim of giving a rich and
complete algebraic approach to rough sets [14, 17], and it revealed a great connection with
other existing algebras of many valued logics.

So let us investigate the real unit interval as a standard environment of an
algebraic model for many valued logic. Technically speaking, truth values of a
logical system are defined just as syntactic labels, with no numerical meaning. In a
subsequent step, it is possible to give an interpretation of the logical system in terms
of an algebraic structure; only during such a process, the truth values are associated
with elements of the structure, that can be mathematical objects more abstract than
real numbers. Therefore, always quoting from [26]:

The numbers of [0, 1] are interpreted, after Łukasiewicz [47], as the possible truth values
which the logical sentences can be assigned to. As usually done in literature, the values
1 and 0 denote respectively truth and falseness, whereas all the other values are used to
indicate different degrees of indefiniteness.

Now the following result holds.

(U-HW) Let us consider the structure HW([0, 1]) = 〈[0, 1],→L,→G, 0〉 con-
sisting of the totally ordered unit interval [0, 1] equipped with the two
primitive implication connectives defined by the following equations:

a→L b := min{1, 1− a + b}

a→G b :=
{

1 if a ≤ b

b if a > b

Then introduced according to the definitions (Op1)–(Op5) the derived
connectives

a ∨ b := ¬((¬a →L ¬b)→L ¬b) = max{a, b} (54a)

a ∧ b := (a →L b)→L b = min{a, b} (54b)

¬a := a →L 0 = 1− a (54c)
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∼ a := a →G 0 =
{

1 if a = 0

0 otherwise
(54d)

1 := 0 →L 0 (54e)

it turns out that HW([0, 1]) is a HW algebra since all the eight axioms
(HW1)–(HW8) of Definition 62 characterizing this algebraic structure
are satisfied (see also the section 4 of [14]).

The connective →L is the implication introduced by Łukasiewicz in his infinite
valued logic L∞ in 1930, while the connective→G is the implication introduced by
Gödel in his infinite valued logic G∞ (see [62]).

Let us stress that the standard total order of [0, 1] can be recovered by these
implications since it is

∀a, b ∈ [0, 1], a ≤ b iff a→L b = 1 iff a→G b = 1

This means that both these implication connectives satisfy the law of entailment
(E∗), one of the minimal implication conditions (see [41, 42]).

According to the general theory of HW algebras the MV-disjunction and MV-
conjunction connectives are the following.

a ⊕ b = ¬a→L b = min{1, a + b} (55a)

a � b = ¬(a→L ¬b) = ¬(¬a ⊕¬b) = max{0, a + b − 1} (55b)

Let us now consider the two unary operations defined inside the HW algebra
structure [0, 1] by the two implication connectives →L and →G according to the
following two definitions:

c(a) = (a→G 0)→L 0 =
{

0 if a = 0

1 otherwise
(56a)

i(a) = (a→L 0)→G 0 =
{

1 if a = 1

0 otherwise
(56b)

Then the following is easy to prove.

(U-KC) The structure KC([0, 1]) := 〈[0, 1],∧,∨,¬, c, 0, 1〉 based on the
unit interval [0, 1] is a Kuratowski closure (Kleene) lattice whose
Kuratowski closure operation c : [0, 1] → [0, 1] is defined by Eq. (56a).
The corresponding set of closed elements is C ([0, 1]) = {0, 1}, the two
values Boolean algebra, since c(a) = a in [0, 1] iff either a = 0 or
a = 1.
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(U-KI) The Kuratowski interior operation induced from the closure c is just
the operation given by (56b), that is i = ¬c¬(a). The structure of
Kuratowski interior (Kleene) lattice is defined consequently and the
corresponding set of open elements is O([0, 1]) = {0, 1}, i.e., always
the two values Boolean algebra, since also in this case i(a) = a in [0, 1]
iff either a = 0 or a = 1.

(U-RAS) The rough approximation space based on [0, 1] is then obtained by the
rough approximation map r : [0, 1] → {0, 1} × {0, 1} assigning to
any real number a ∈ [0, 1] the Boolean pair r(a) = (i(a), c(a)) ∈
{0, 1} × {0, 1}.

Making use of the closure operation it is possible to introduce another binary
connective considered by Monteiro in [52] and defined as follows:

a →F b = c(¬a)∨ b =
{
b if a = 1

1 otherwise

with respect to which we have a further negation connective:

�a = a→F 0 =
{

0 if a = 1

1 otherwise

Let us stress that the two binary operations� and∧ are paradigmatic examples of
continuous t-norms, i.e., continuous mappings t : [0, 1] × [0, 1] �→ [0, 1] fulfilling
the following properties for all a, b, c ∈ [0, 1]:
(T1) atb = bta (commutativity)
(T2) (atb)tc = xt(btc) (associativity)
(T3) a ≤ b implies atc ≤ btc (monotonicity)
(T4) at1 = 1ta = a

The t-norm ∧ is called the Gödel t-norm, while the t-norm � is the Łukasiewicz
t-norm.

Let t be a continuous t-norm. The implication (residuum, quasi-inverse) oper-
ation induced by t is the map →t: [0, 1] × [0, 1] �→ [0, 1] defined for arbitrary
a, b ∈ [0, 1] as follows:

a→t b = sup{c ∈ [0, 1] : atc ≤ b}

The Gödel and Łukasiewicz t-norms induce the above two implication connectives:
a→∧ b = a→G b and a→� b = a →L b respectively.

Remark 71 As proved in [26], there does not exist a t-norm whose residuum in the
Monteiro implication→F defined above.
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Let t be a t-norm with associated implication operation→t. The negation induced
from t is the unary operation ¬t : [0, 1] �→ [0, 1] defined as:

¬ta := a→t 0 = sup{c ∈ [0, 1] : atc = 0}

It is worth noting that the negation induced by the Gödel t-norm is a →G 0 =∼ a,
while the negation induced by the Łukasiewicz t-norm is a →L 0 = ¬a.

Finally, a t-conorm is a mapping s : [0, 1] × [0, 1] �→ [0, 1] fulfilling properties
(T1), (T2), (T3) and the boundary condition:

(S4) as0 = a for all a ∈ [0, 1].
Given a t-norm t, the dual t-conorm is defined through the formula

st(a, b) := 1− (t((1− a), (1− b))

The dual t-conorms of Łukasiewicz and Gödel t-norms, are respectively, the
mappings⊕ and ∨.

2.5.2 HW Algebra Based on Fuzzy Sets

In this section we show that, similarly to the previous case of real unit interval, the
collection of all fuzzy sets F (X) = [0, 1]X on the universe X, can be equipped with
a structure of a HW algebra once defined the suitable two implication operators.

Proposition 72 The structure
〈[0, 1]X,→L,→G, 0

〉
is a HW algebra once defined

the implication operators as follows:

(f1 →L f2)(x) : = min{1, 1− f1(x)+ f2(x)}

(f1 →G f2)(x) : =
{

1 f1(x) ≤ f2(x)

f2(x) otherwise

The lattice meet and join operations defined on F (X) by the fuzzy set HW
structure according to the above (Op1) and (Op2) are the following:

(f1 ∨ f2)(x) = max{f1(x), f2(x)}
(f1 ∧ f2)(x) = min{f1(x), f2(x)}

whose corresponding partial order relation is the usual pointwise ordering on fuzzy
sets:

∀f1, f2 ∈ F (X), f1 ≤ f2 iff ∀x ∈ X, f1(x) ≤ f2(x)
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The Kleene and Brouwer negations induced on the HW structure of F (X)

according to the above definition (Op3) and (OP4) are given respectively by:

¬f (x) : = 1− f (x)

∼ f (x) : =
{

1, if f (x) = 0

0, otherwise

In Sect. 2.3.1 these two negations have been denoted respectively as f ′ = ¬f and
f∼ =∼ f .

The MV operations of conjunction and disjunction are respectively:

(f1 ⊕ f2)(x) = min{1, f1(x)+ f2(x)}
(f1 � f2)(x) = max{0, f1(x)+ f2(x)− 1}

Recalling that in point (BKF2) of Sect. 2.3.1 we have introduced the certainty-
yes domain (resp., possibility domain) of a fuzzy set f as the subset of the universe
A1(f ) := {x ∈ X : f (x) = 1} (resp., Ap(f ) := {x ∈ X : f (x) 
= 0}), we have the
following.

The interior of a fuzzy set f is the characteristic function of the certainty-yes
domain of f :

i(f ) = χA1(f ) =
{

1 if f (x) = 1

0 otherwise

The closure of a fuzzy set f is the characteristic function of the possibility domain
of f :

c(f ) = χAp(f ) =
{

1 if f (x) 
= 0

0 otherwise

Let us recall that in Sect. 2.3.1 we have introduced the isomorphism Φ2 :
(E (X) × E (X))⊥ → (P(X) ×P(X))⊥, (χA, χB) → Φ2(χA, χB) := (A,B),
which allows the identification between the collection (E (X) × E (X))⊥ of all
orthopairs of crisp sets (χA1(f ), χA0(f )) (with χA1(f ) ⊥ χA0(f )) and the collection
(P(X) ×P(X))⊥ of all the orthopair of subsets of the universe (A1(f ),A0(f ))

(with (A1(f ) ∩ A0(f )) = ∅). Formally,

(χA1(f ), χA0(f )) ∈ (E (X)× E (X))⊥ ←→ (P(X)×P(X))⊥ 2 (A1(f ),A0(f ))

Furthermore, in Sect. 1.3.1 we have seen that the collection P(X) = (P(X) ×
P(X))⊥ of all the orthopairs from the power set P(X) of the universe X (which
is a Boolean algebra) has a structure of BKDM algebra (distributive lattice). From
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another point of view, the Boolean algebra P(X) of subsets generates the BKDM

algebra P(X) of orthopairs of subsets.
But in point (HW3) of Proposition 70 we have shown that in general any abstract

structure of HW algebra HW(A) generates a structure of BKDM algebra BZ(A).
Thus it is of some interest to investigate whether in the concrete case of P(X) the
BKDM structure can also be obtained from a corresponding concrete HW algebra
defined on it. We shall give a positive answer to this problem in the forthcoming
Corollary 74 in the general context of the family A(Σ) of all orthopairs from an
abstract Boolean algebra Σ .

This topic will be dealt with in the following section where all the operations
involved have been inspired by the works of Pagliani [54, 55], also treated by us in
[17] and for the only Gödel implication case in [18].

2.6 HW Algebra of All Orthopairs Induced by Boolean
Algebras

Now, we give to the collection of all orthopairs from a Boolean algebra the structure
of a HW algebra.

Theorem 73 Let 〈Σ,∧,∨,¬, 0, 1〉 be a Boolean algebra with associated collec-
tion of all orthopairs A(Σ) = {(a1, a0) ∈ Σ × Σ : a1⊥a0}, equipped with the
negation−(a1, a0) = (a0, a1).

Then, the structure 〈A(Σ),→L,→G, 0〉, where →L,→G and 0 are defined as
follows:

(a1, a0)→L (b1, b0) := ((¬a1 ∧ ¬b0) ∨ a0 ∨ b1, a1 ∧ b0) (57a)

(a1, a0)→G (b1, b0) := ((¬a1 ∧ ¬b0) ∨ a0 ∨ b1,¬a0 ∧ b0) (57b)

0 := (0, 1) (57c)

is the HW algebra of orthopairs.
According to points (OP1) and (OP2) of Definition 62 the lattice operations are

defined as

(a1, a0) � (b1, b0) := ((a1, a0)→L (b1, b0))→L (b1, b0)

= (a1 ∨ b1, a0 ∧ b0)

(a1, a0) � (b1, b0) := −((−(a1, a0)→L −(b1, b0))→L −(b1, b0))

= (a1 ∧ b1, a0 ∨ b0)

The partial order induced from these lattice operations is:

(a1, a0) ' (b1, b0) iff a1 ≤ b1 and b0 ≤ a0
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According to points (OP3) and (OP4) of Definition 62 the two negations are
defined as

−(a1, a0) := (a1, a0)→L 0 = (a0, a1)

∼ (a1, a0) := (a1, a0)→G 0 = (a0,¬a0)

Therefore, in agreement with point (HW3) of Proposition 70, the negation − is
Kleene and∼ is a Brouwer negation satisfying the B-De Morgan condition (B2b).

So, the anti–Brouwer negation is:

�(a1, a0) := − ∼ −(a1, a0) = (¬a1, a1)

and according to point (Op5) the greatest lattice element is 1 := (1, 0).
The MV conjunction and disjunction operations are then the following:

(a1, a0)⊕ (b1, b0) = ((¬a0 ∧ ¬b0) ∨ (a1 ∨ b1), a0 ∧ b0)

(a1, a0)� (b1, b0) = (a1 ∧ b1, (¬a1 ∧ ¬b1) ∨ (a0 ∨ b0))

Proof Trivially, →L and →G are closed operators on A(Σ), i.e., for any pair of
elements h, k ∈ A(Σ), (h →L k) ∈ A(Σ) and (h →G k) ∈ A(Σ). That axioms
(HW1)–(HW8) are satisfied is proved in Appendix 2.9. ��

Let us synthesize the following particular aspect of the previous Theorem 73
stated as suitable corollary formed by two steps.

Corollary 74 Starting from the Boolean algebra 〈Σ,∧,∨,¬, 0, 1〉
(Step 1) it is possible to construct the induced HW algebra based on the collection

A(Σ) = {(a1, a0) ∈ Σ ×Σ : a1 ⊥ a0} of all its orthopairs equipped
with the two implications defined by Eq. (57):

〈A(Σ),→L,→G, 0 = (0, 1)〉

(Step 2) then, it is possible, according to point (HW3) of Proposition 70, to induce
the BKDM algebra discussed in Theorem 26

〈A(Σ),�,�,−,∼, (0, 1), (1, 0)〉

Indeed, the lattice operations �,� and the negations−,∼ are the same:

(a1, a0) � (b1, b0) = (a1 ∨ b1, a0 ∧ b0)

(a1, a0) � (b1, b0) = (a1 ∧ b1, a0 ∨ b0)

−(a1, a0) := (a0, a1)

∼ (a1, a0) := (a0,¬a0)
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Consequently, the interior and closure operators are also the same:

i(a1, a0) = (a1,¬a1)

c(a1, a0) = (¬a0, a0)

with the obvious relationships:

i(a1, a0) = (a1,¬a1) ' (a1, a0) ' (¬a0, a0) = c(a1, a0).

Furthermore, the Kleene algebra sub-structure 〈A(Σ),�,�,−, 0, 1〉 cannot be
a Boolean algebra owing to the presence of the half element 1

2 := (0, 0) such that
1
2 � 1

2 = 1
2 � 1

2 = 1
2 .

From the modal point of view the structure 〈A(Σ),�,�,−, i, (0, 1) , (1, 0)〉
satisfies the (AM) statement discussed in Sect. 2.1.3 and the further (DD) principle,
since this is true for any HW algebra. Summarizing,

1. it based on a Kleene algebra (distributive lattice), which cannot be a Boolean
algebra;

2. it is S5-like since the modal principles N , T , M-C, and 5 are satisfied by the
necessity operator i;

3. it satisfies the “spurious” axiom (DD).

Example 75 (The HW Algebra of Orthopairs from the Power Set P(X)) For any
fixed universe of points X, its power set has a structure 〈P(X),∩,∪, c,∅,X〉 of
Boolean algebra and so one can apply the two steps of Corollary 74 of Theorem 73
in order to obtain the HW algebra based on the collection P(X) of all orthopairs
(A1, A0) of subsets of X (with A1 ∩ A0 = ∅) and containing the half element
(∅,∅):

〈P(X),→L,→G, (∅,X)〉

This according to the operations defined by Eq. (57):

(A1, A0)→L (B1, B0) := ((Ac
1 ∪ Bc

0) ∪ A0 ∪ B1, A1 ∩ B0) (58a)

(A1, B0)→G (B1, B0) := ((Ac
1 ∪ Bc

0) ∪ A0 ∪ B1, A
c
0 ∩ B0) (58b)

The induced (according to the step 2) BKDM algebra

〈P(X),�,�,−,∼, (∅,X), (X,∅)〉 .
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is characterized by the following operations:

(A1, A0) � (B1, B0) = (A1 ∩ B1, A0 ∪ B0) (59a)

(A1, A0) � (B1, B0) = (A1 ∪ B1, A0 ∩ B0) (59b)

−(A1, A0) = (A0, A1) (59c)

∼ (A1, A0) = (A0, A
c
0) (59d)

This in agreement with what we have discussed in Sect. 1.3.1.

We remark that orthopairs have been considered also in other algebraic settings
by different authors:

• Walker studied orthopairs on a Boolean algebra Σ [68] and proved that the
structure 〈A(Σ),�,�,∼, (0, 1)〉 is a Stone algebra, where �,� and ∼, are the
operations defined as above.

• The structure of nested pairs of a Boolean algebra, i.e., pairs (a, b) such that a ≤
b, was studied also by Monteiro [52, p. 199]. Translating his results to orthopairs,
he showed that 〈A(Σ),�,�,−, c, (1, 0)〉 is a three-valued Łukasiewicz algebra.

• If we consider as starting point an Heyting algebra 〈Σ,∧,∨,→, 0, 1〉 instead of
a Boolean one, Vakarelov [65] showed that 〈A(Σ),�,�,�,¬, c, (1, 0)〉 where
(a, b) � (c, d) := (a → c, a ∧ d) is a Nelson algebra.

Further historical remarks can be found in [56, Frame 10.11].

2.7 HW Algebra R(Σ) of All Rough Representatives Induced
from BBDM Algebras

In the previous Sect. 2.6 we have seen that for a given Boolean algebra
〈Σ,∧,∨,¬, 0, 1〉, the collection of all its orthopairsA = {(a1, a0) ∈ Σ2 : a1 ⊥ a0

}

has a structure of HW algebra with respect to the two implication connectives of
Eq. (57) introduced by Theorem 73.

In this section we want to explore another possibility of constructing a HW
algebra on the basis of a BBDM structure. As this structure was quickly mentioned
earlier, we want now give it a complete definition.

Definition 76 A BBDM algebra is a structure 〈Σ,∧,∨,¬, ∼, 0, 1〉 such that

(BB1) the sub-structure 〈Σ,∧,∨, 0, 1〉 is a distributive bounded lattice;
(BB2) the sub-structure 〈Σ,∧,∨,¬, 0, 1〉 is a Boolean algebra, i.e., a De Morgan

algebra satisfying the two conditions

(oc-1,2) ∀a ∈ Σ , a ∧ ¬a = 0 and a ∨ ¬a = 1;
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(BB3) the mapping ∼: Σ → Σ is a Brouwer negation satisfying besides
conditions (B1) and (B3) also the further two B-De Morgan conditions

(B2a,b) ∀a, b ∈ Σ , ∼ (a ∨ b) =∼ a∧ ∼ b and ∼ (a ∧ b) =∼ a∨ ∼ b.

Since a BBDM algebra is in particular a Boolean algebra (see point (BB2)) it is
always possible to construct on its basis the HW algebra A(Σ) of its orthopairs. But
in this particular case it is also possible to construct the collectionR(Σ) = {r⊥(a) =
(i(a), e(a)) : a ∈ Σ} of all ortho-rough approximations r⊥(a) for a running in Σ .
In the next theorem we show that it is possible to easily define a HW algebraic
structure on R(Σ). Recall that setting ai = i(a) =∼ ¬(a) and ae = e(a) =∼ a we
usually write r⊥(a) = (ai, ae).

Theorem 77 Let Σ be a BBDM algebra and let (ai, ae) , (bi, be) ∈ R(Σ). Since
from point (BB2) we have a sub-structure of Boolean algebra, the following two
implication operations defined similarly as in Eq. (57) can be introduced

(ai, ae)→L (bi, be) := ((¬ai ∧ ¬be) ∨ ae ∨ bi, ai ∧ be) (60a)

(ai, ae)→G (bi, be) := ((¬ai ∧ ¬be) ∨ ae ∨ bi,¬ae ∧ be) (60b)

They are closed on R(Σ) and the following hold:

(ai, ae)→L (bi, be) = r⊥(¬(ai ∨ be) ∨ ¬a ∨ b),

(ai, ae)→G (bi, be) = r⊥(¬(ai ∨ be)∨ ∼ a ∨ b).

The structure 〈R(Σ),→L,→G, (0, 1)〉 is a HW algebra whose lattice opera-
tions defined according points (OP1) and (OP2) of Definition 62 are:

(ai, ae) � (bi, be) = (ai ∧ bi, ae ∨ be) = r⊥(a ∧ b)

(ai, ae) � (bi, be) = (ai ∨ bi, ae ∧ be) = r⊥(a ∨ b)

The Kleene, Brouwer and anti-Brouwer negations of any element (ai, ae) ∈ R(Σ)

are respectively:

−(ai, ae) := (ae, ai) = r⊥(¬a)
∼ (ai, ae) := (ae,¬ae) = r⊥(∼ a)

�(ai, ae) := (¬ai, ai) = r⊥(�a)

The MV operations are defined as:

(ai, ae)⊕ (bi, be) := ((¬ae ∧ ¬ae) ∨ (ai ∨ bi), ae ∧ be)

(ai, ae)� (bi, be) := (ai ∧ bi, (¬ai ∧ ¬bi) ∨ (ae ∨ be))
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Finally, the interior and closure operations are defined as

i(ai, ae) := (ai,¬ai) = r⊥(i(a))

c(ai, ae) := (¬ae, ae) = r⊥(c(a))

Proof If (ai, ae) , (bi, be) ∈ R(Σ) then,

r⊥(¬(ai ∨ be) ∨ ¬a ∨ b) =
= (∼ ¬[(¬ ∼ ¬(a) ∧ ¬ ∼b) ∨ ¬a ∨ b],∼[(¬ ∼ ¬(a)∧ ¬ ∼b)∨ ¬a ∨ b]) =
= (∼ [(∼ ¬a∨ ∼ b)∧ a ∧ ¬b],∼[(¬ ∼ ¬(a) ∧ ¬ ∼b) ∨ ¬a ∨ b]) =
= ((∼∼ ¬a∧ ∼∼ b)∨ ∼ a ∨ i(b), (∼ ¬ ∼ ¬a ∨∼ ¬ ∼b)∧ ∼ ¬a ∧∼b) =
= ((¬ ∼ ¬a ∧ ¬ ∼ b)∨ ∼ a ∨ i(b), (∼∼∼ ¬a ∨∼∼∼b)∧ ∼ ¬a ∧ ∼b) =
= ((¬i(a) ∧ ¬be) ∨ ae ∨ i(b), (¬a∨ ∼ b)∧ ∼ ¬a ∧∼b) =
=((¬ai ∧ ¬be) ∨ ae ∨ bi, ai ∧ be) = (ai, ae)→L (bi, be).

Dually, for the Gödel implication.
Let us consider r⊥(a ∧ b) = (i(a ∧ b),∼ (a ∧ b)) = (B2b) = (∼ ¬(a ∧ b),∼

a∨ ∼ b) = (DM2b) = (∼ (¬a ∨ ¬b), ae ∨ be) = (B2a) = (∼ ¬a∧ ∼ ¬b, ae ∨
be) = (ai ∧ bi, ae ∨ be). Dually, for the � case.

Let us consider r⊥(i(a)) = (i(i(a)), e(i(a)) = (i(a),∼∼ ¬(a)). But from the
interconnection rule (IR) we have that ∀α ∈ Σ , ∼∼ α = ¬ ∼ α, which applied to
α = ¬a leads to ∼∼ ¬a = ¬(∼ ¬a) = ¬(i(a)). Thus we obtain that r⊥(i(a)) =
(i(a),¬(i(a)). Dually, for the other identity, or directly r⊥(c(a)) = (i(ca),∼ ca) =
(∼ ¬¬ ∼ a,∼ ¬ ∼ a) = (IR) = (¬ ∼ a,∼ a) = (¬ae, ae).

All the other identities are easy to prove. ��

2.7.1 Implication Operations in Concrete Pawlak Rough Set Theory

In Sect. 2.3.2 we have treated the Pawlak approach to rough sets on a given (not
empty and finite) universe of points X based to an equivalence space (X,≡), where
≡ is an equivalence (reflexive, symmetric, and transitive) binary relation on X. This
relation is interpreted as an indiscernibility relation since for any pair of points
a, b ∈ X the formula a ≡ b means that there is a system of information generating
(X,≡) with respect to which “a cannot be distinguished from b” (for a general
discourse about this rough sets argument see [11]).

Of course, as usual, from any equivalence relation it can be induced a partition
π := {Gj : j ∈ J

}
of the universe X by the equivalence classes Gj generated
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from ≡, in such a way that (X, π) is a partition space. This partition space is
interpreted as

• an approximation space with respect to which any subset A of X can be
approximated by the bottom (lower approximation l(A) = ∪{G ∈ π : G ⊆ A})
and the top (upper approximation u(A) := ∪ {G ∈ π : A ∩G 
= ∅}).

From this point of view any such equivalence class G ∈ π is also considered as
a granule of knowledge supported/furnished a priori by the information system. In
order to underline its role of lower (resp., upper) approximation we will indicate
with l(A) (resp., u(A)) what in the general treatment we have denoted with i as
interior (resp., c(A) as closure). The denotation of e(A) := ∪ {G ∈ π : G ⊆ Ac} as
exterior remains unchanged, but it is also denoted as A∼ = e(A).

Let us recall that an exact or definable set E ∈ P(X) is a union of a collection
of granules (equivalence classes) from π . We denote now the collection of all such
exact sets by E (X) (instead of E (X, π) if this does not involve any confusion). Let
us recall that E (X) has a structure of Alexandroff topology (it is closed with respect
to the intersection (resp., union) of any arbitrary family open (resp., closed) exact
sets).

In the case of the ortho-rough representations r⊥(H) := (l(H), e(H)), with
l(H) ∩ e(H) = ∅, of any subset H of X, whose collection has been denoted
as R(X, π) := (E (X) × E (X))⊥, one can apply the operations introduced in
Theorem 77 by Eq. (60):

(l(H), e(H))→L (l(K), e(K)) (61a)

:= ( [lc(H) ∩ ec(K)] ∪ [e(H) ∪ l(K)], l(H) ∩ e(K))

(l(H), e(H))→G 〈l(K), e(K)〉 (61b)

:= ( [lc(H) ∩ ec(K)] ∪ [e(H) ∪ l(K)], ec(H) ∩ e(K))

It is in this context that Pagliani introduced the operator→L in [53, Definition 1.2]
and →G in [54, Proposition 3.8], and all the results concerning the approach of
Pagliani to the algebraic structure of rough sets have been collected in [55].

The above operators (61) are closed on R(X, π) since the following proposition
can be proved.

Proposition 78 Let 〈l(H), e(H)〉 , (l(K), e(K)〉 be two elements from R(X, π),
and let→L and→G be defined as in (61). Then

(l(H), e(H))→L (l(K), e(K)) = [r⊥(l(H)c) � r⊥(l(K))] � r⊥(K) � r⊥(Kc)

(l(H), e(H))→G (l(K), e(K)) = [r⊥(l(H)c) � r⊥(l(K))] � r⊥(K) � r⊥(K∼)
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Thus, according to Proposition 60, there exists two subsets ZL and ZG of the
universe X such that

(l(H), e(H))→L (l(K), e(K)) = r⊥(ZL)

(l(H), e(H))→G 〈l(K), e(K)) = r⊥(ZG)

In this way (l(H), e(H)) →L (l(H), e(H)) and (l(H), e(H)) →G 〈l(H), e(H)),
as rough representations of two subsets ZL and ZG of X, are both elements of
R(X, π).

We note that other implication operators on rough sets and orthopairs have been
studied in [33], where also a discussion on their interpretability is put forward.

2.8 A Negative Theorem and a Consequent Open Problem

If one looks at the concrete models of HW algebras described in the previous
sections, they realize that the case of the collection F(X) of orthopairs of fuzzy
sets does not appear as a possible candidate for such a structure. This happens not
for some forgetfulness, but rather for an impossibility due to two facts:

Fact 1. The theorem on orthopairs 73 requires that the initial basic structure must
be a Boolean algebra (see the proofs in Appendix 2.9 strongly dependent
from the Boolean properties). But F(X) has a negation −(f1, f0) =
(f0, f1) which is not Boolean (it is Kleene).

Fact 2. An interesting negative theorem on which we discuss now.

In order to clarify this second fact let us make a summary of the involved theoretical
situation.

In Theorem 73 one starts from a Boolean algebra Σ and then, through the
induced relation of orthogonality, builds the collection A(Σ) of all the orthopairs
of elements from Σ . Then, a structure of HW is assigned to A(Σ) through
the definition of the two implication operations →L and →G according to the
definitions (57) of Theorem 73.

Let us stress that the so obtained HW algebra A(Σ) is the merge of a Wajsberg
algebra linked to the Łukasiewicz implication→L and a Heyting algebra linked to
the Gödel implication →G. In its turn, this HW algebra A(Σ) induces a BKDM

algebra as a merge of a Kleene algebra based on the negation −(a1, a0) =
(a1, a0) →L (0, 1) and a Brouwer algebra based on the negation ∼ (a1, a0) =
(a1, a0)→G (0, 1).

The important point for our discussion is that the obtained Wajsberg algebra
induces a Kleene negation−(a1, a0) (see Proposition 63).

Once made these general premises, let us recall that in [18] we have introduced
on F(X) the following Gödel implication (proposed in [35, p. 64] relatively to the
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unit interval [0, 1] and extended by us to F(X) on [16]):

((fA, gA)→G (fB, gB))(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0) if fA(x) ≤ fB(x)

and gA(x) ≥ gB(x)

(1− gB(x), gB(x)) if fA(x) ≤ fB(x)

and gA(x) < gB(x)

(fB(x), 0) if fA(x) > fB(x)

and gA(x) ≥ gB(x)

(fB(x), gB(x)) if fA(x) > fB(x)

and gA(x) < gB(x)

The structure 〈F(X),�,�,→G, (0, 1)〉 is a Heyting algebra. The Brouwer nega-
tion induced from the Gödel implication connective →G in the usual manner
∼ 〈fA, gA〉 = 〈fA, gA〉 →G 〈0, 1〉 is the following one, defined whatever be x ∈ X

by the law:

∼ (fA, gA) (x) =
{
(1, 0) if gA(x) = 1

(0, 1) if gA(x) 
= 1

With this result it would seem that the path to attribute to F(X) some “kind”
of HW algebra has been traveled in half. It would be enough to introduce on it an
appropriate Łukasiewicz-like implication. But unfortunately due to the following
interesting negative theorem proved in [36] this is not possible:

• Any de Morgan negation on F(X), whatever be its concrete definition, cannot
satisfy the Kleene condition (K).

Thus, since the negation induced from a Wajsberg algebra is necessarily Kleene, it
is impossible to give to the set of fuzzy orthopairs F(X) a structure of Wajsberg
algebra.

This result poses as conclusion of this Chapter the following interesting

Open Problem: whether it is possible to weaken one of the (W1)–(W4) conditions
that define a Wajsberg algebra in such a way as to obtain a weak Łukasiewicz
implication, say→wL, such that:

1. a→L b implies a→wL b.
2. The structure 〈A,→wL, 1〉 satisfies the conditions (W1)–(W3) and a weak

form (wW4) of (W4), i.e. it is a weak Wajsberg algebra, in such a way that
¬wa := a →wL 0 turns out to be a de Morgan negation without condition (K).
This is due to the fact that if one looks, for example in [64], the proof of how
it is possible to obtain from a Wajsberg algebra the structure of de Morgan
lattice, only the axioms (W1)–(W3) are needed plus some weak form of (W4),
while it is the condition (W4) that strongly enters in the proof of the Kleene
condition (K).
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3. It is possible to give an axiomatization of the structure 〈A,→wL,→G, 0〉 in
such a way that the structure 〈A,→wL, 1〉 turns out to be a weak Wajsberg
algebra, while the structure 〈A,∧,∨,→G, 0〉 of Heyting algebra must be
unchanged.

As real conclusion of this chapter, let us note that also if in the case of orthopairs
of fuzzy sets (f1, f0) ∈ F(X) = (F (X)×F (X))⊥ only the Gödel implication can
be introduced, in Sect. 1.3.2 F(X) has been equipped with a structure of minimal
BZDM algebra with respect to the two negations

−(f1, f0) = (f0, f1) and ∼ (f1, f0) = (f0,¬f0)

The induced interior and closure operations are then the following

i(f1, f0) = (f1,¬f1) and c(f1, f0) = (¬f0, f0)

From this it follows that an orthopair (f1, f0) ∈ F(X) is exact, i.e., it satisfies
the conditions i(f1, f0) = c(f1, f0) = (f1, f0), iff it satisfies the condition ∀x ∈
X, f1(x) + f0(x) = 1, contrary to the general condition of being an orthopair
characterized by ∀x ∈ X, f1(x)+ f0(x) ≤ 1.

A particular sub-family of orthopairs of fuzzy sets fromF (X) is the collection of
all orthopairs consisting of crisp sets fromFc(X), i.e., pairs (χA1, χA0) ∈ (Fc(X)×
Fc(X))⊥ such that A1 ∩ A0 = ∅. Let us denote this family as C(X) ⊆ F(X). This
family can be put in a one-to-one correspondence with the HW algebra P(X) =
(P(X)×P(X))⊥ of orthopairs of subsets of X discussed in Example 75. Formally,
(χA1, χA0)←→ (A1, A0).

Therefore also C(X) is a HW algebra with respect to the two operations of
implications that it can inherit from P(X).

2.9 Proof of Theorem 73

Let A(Σ) = {(a, b) ∈ Σ2 : a⊥b, a ∨ a′ = 1, b ∨ b′ = 1} be the collection of all
exact orthogonal pairs of elements from a Boolean algebra (distributive (condition
(D)) ortholattice (conditions (dM1), (dM2), and (oc-2a) and (oc-2b)) Σ . Let us
define the following operators on A(Σ)

(a1, a0)→L (b1, b0) := ((a′1 ∧ b′0) ∨ a0 ∨ b1, a1 ∧ b0) (62a)

(a1, a0)→G (b1, b0) := ((a′1 ∧ b′0) ∨ a0 ∨ b1, a
′
0 ∧ b0) (62b)

0 := (0, 1) (62c)

Further, if according to Definition 62, we derive the negation and lattice operators
we obtain the following result.
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Lemma 79 Let →L,→G and 0 be defined as in Eq. (62). Then the following
hold:

1. −(a1, a0) := (a1, a0)→L 0 = (a0, a1)

2. ∼ (a1, a0) = (a1, a0)→G 0 = (a0, a
′
0)

3. (a1, a0) � (b1, b0) = ((a1, a0)→L (b1, b0))→L (b1, b0) = (a1 ∨ b1, a0 ∧ b0)

4. (a1, a0) � (b1, b0) = −(−(a1, a0)→L −(b1, b0))→L −(b1, b0)) =
= (a1 ∧ b1, a0 ∨ b0)

5. 1 = 0− = (1, 0)

Proof Let us denote by (⊥) the condition of orthopair a0 ≤ a′1. Moreover, from this
we get a′1 ≤ a′1 ∨ a0 ≤ (⊥) ≤ a′1 ∨ a′1 = a′1 i.e., a′1 ∨ a0 = a′1.

(1) So we have the following.

(a1, a0)→L (0, 1) =
= ((a′1 ∧ 0) ∨ a0 ∨ 0, a1 ∧ 1) = (D) =
= ((a′1 ∨ a0) ∧ (0 ∨ a0), a1) = (⊥) =
= (a′1 ∧ a0, a1) = (⊥) =
= (a0, a1)

Note that in this proof the conditions (oc-2a,b) are not used.
(2)

(a1, a0)→G (0, 1) =
= ((a′1 ∧ 0) ∨ a0 ∨ 0, a′0 ∧ 1) = (D) =
= ((a′1 ∨ a0) ∧ (0 ∨ a0), a

′
0) = (⊥) =

= (a′1 ∧ a0, a
′
0) = (⊥) =

= (a0, a
′
0)

Also in this case there is no use of conditions (oc-2a,b).
(3) Let us note that at the step (*), in the right part we use the following results:

a′1 ∧ (b0 ∧ b′0) = (co-2a) = a′1 ∧ 0 = 0; on the other hand, from the condition
of orthopair b1 ≤ b′0 we get 0 ≤ b0 ∧ b1 ≤ b0 ∧ b′0 = (oc-2) = 0, i.e.,
b0 ∧ b1 = 0.

Hence, we have

• ((a1, a0)→L (b1, b0))→L (b1, b0) =
• ((a′1 ∧ b′0) ∨ a0 ∨ b1, a1 ∧ b0)→L (b1, b0) =
• ((((a′1 ∧ b′0) ∨ a0 ∨ b1)

′ ∧ b′0) ∨ (a1 ∧ b0), ((a
′
1 ∧ b′0) ∨ a0 ∨ b1) ∧ b0) =

(dM), (D) =
• (((a1∨b0)∧a′0∧b′1∧b′0)∨b1∨(a1∧b0), (a

′
1∧b′0∧b0)∨(a0∧b0)∨(b0∧b1)) =

• (Distributivity with respect to b′0 at the left and (*) at the right)
• ((((a1 ∧ b′0) ∨ (b0 ∧ b′0)) ∧ a′0 ∧ b′1) ∨ b1 ∨ (a1 ∧ b0), a0 ∧ b0) =
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• (Distributivity with respect to b1 and (oc-2a))
• (([(a1∧b′0)∨b1]∧(b1∨a′0)∧(b′1∨b1))∨(a1∧b0), a0∧b0) = (D), (oc-2b) =
• ([(a1 ∨ b1) ∧ (b′0 ∨ b1) ∧ (b1 ∨ a′0)] ∨ (a1 ∧ b0), a0 ∧ b0) =
• From the orthogonality b1 ≤ b′0 we get b′0 ∨ b1 = b′0 and from (D)
• ([b′0 ∧ (b1 ∨ (a1 ∧ a′0))] ∨ (a1 ∧ b0), a0 ∧ b0) =
• (From (D) and orthogonality a1 ∧ a′0 = a1, b1 ∧ b0 = b1) =
• [(b1 ∨ (b′0 ∧ a1)] ∨ (a1 ∧ b0), a0 ∧ b0) =
• (b1 ∨ (a1 ∧ (b0 ∨ b′0)), a0 ∧ b0) = (oc-2b) = (a1 ∨ b1, a0 ∧ b0)

(4) Can be deduced by (3) and definition of �,�, −.
(5) By definition of 0 and − . ��

Now we have the instruments to show that A(Σ) has a HW algebraic structure.

Theorem 80 The structure 〈A(Σ),→L,→G, 0〉, where A(Σ) is the collection of
all orthogonal pairs on a Boolean algebra,→L,→G and 0 are defined as in (62) is
a HW algebra.

Proof We show that all axioms (HW1)–(HW8) are satisfied.

(HW1)

(a1, a0)→G (a1, a0) = ((a′1 ∧ a′0) ∨ a0 ∨ a1, a
′
0 ∧ a0) =

= ([(a′1 ∨ a0) ∧ (a′0 ∨ a0)] ∨ a1, 0) =
= (1, 0) = 1.

(HW2)

• (a1, a0)→G ((b1, b0) � (c1, c0)) =
• ((a′1 ∧ (b0 ∨ c0)

′) ∨ a0 ∨ (b1 ∧ c1), a
′
0 ∧ (b0 ∨ c0)) =

• ((a′1∧(b0∨c0)
′)∨(a′1∧a0)∨(a0∧b1∧c1)∨(b′0∧b1∧c′0∧c1), a

′
0∧(b0∨c0)) =

• ((a′1 ∧ (a0 ∨ (b0 ∨ c0)
′)) ∨ ((b1 ∧ c1) ∧ (a0 ∨ (b′0 ∨ c0))), a

′
0 ∧ (b0 ∨ c0)) =

• ((a′1 ∨ (b1 ∧ c1)) ∧ (a0 ∨ (b0 ∨ c0)
′), a′0 ∧ (b0 ∨ c0)) =

• ((a′1 ∨ b1) ∧ (a′1 ∨ c1) ∧ (a0 ∨ b′0) ∧ (a0 ∨ c′0), a′0 ∧ (b0 ∨ c0)) =
• ((a′1 ∨ b1) ∧ (a0 ∨ b′0 ∨ b1) ∧ (a′1 ∨ c1) ∧ (a0 ∨ c′0 ∨ c1), a

′
0 ∧ (b0 ∨ c0)) =

• (((a′1 ∧ (b′0 ∨ a0)) ∨ b1) ∧ (c1 ∨ (a′1 ∧ (c′0 ∨ a0))), a
′
0 ∧ (b0 ∨ c0)) =

• (((a′1 ∧ b′0) ∨ a0 ∨ b1) ∧ ((a′1 ∧ c′0) ∨ a0 ∨ c1), (a
′
0 ∧ b0) ∨ (a′0 ∧ c0)) =

• ((a1, a0)→G (b1, b0)) � ((a1, a0)→G (c1, c0)).

(HW3)

(a1, a0) � ((a1, a0)→G (b1, b0)) =
(a1 ∧ ((a′1 ∧ b′0) ∨ a0 ∨ b1), (a

′
0 ∧ b0) ∨ a0) =

((a1 ∧ a′1 ∧ b′0) ∨ (a1 ∧ a0) ∨ (a1 ∧ b1), (a0 ∨ a′0) ∧ (a0 ∨ b0)) =
(a1 ∧ b1, a0 ∨ b0) =
(a1, a0) � (b1, b0).
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(HW4) Similar to (HW3).

(HW5)

(1, 0)→L (a1, a0) = ((1′ ∧ a′0) ∨ 0 ∨ a1, 1 ∧ a0) = (a1, a0).

(HW6)

(a1, a0)→L ((b1, b0)→L (c1, c0)) =
((a′1 ∧ (b1 ∧ c0)

′) ∨ a0 ∨ ((b′1 ∧ c′0) ∨ b0 ∨ c1), a1 ∧ b1 ∧ c0) =
((a′1 ∧ (b′1 ∨ c′0)) ∨ a0 ∨ ((b′1 ∧ c′0) ∨ b0 ∨ c1), a1 ∧ b1 ∧ c0) =

((a′1 ∧ b′1) ∨ (a′1 ∧ c′0) ∨ a0 ∨ (b′1 ∧ c′0) ∨ b0 ∨ c1, a1 ∧ b1 ∧ c0) =
((b′1 ∧ (a′1 ∨ c′0)) ∨ (a′1 ∧ c′0) ∨ a0 ∨ b0 ∨ c1, a1 ∧ b1 ∧ c0) =

= −((a1, a0)→L (c1, c0))→L −(b1, b0).

(HW7)

− ∼ (a1, a0)→L∼∼ (a1, a0) = (a′0, a0)→L (a′0, a0) =
= (((a0)

′′ ∧ a′0) ∨ a0 ∨ a′0, a′0 ∧ a0) =
= (1, 0).

(HW8)

((a1, a0)→G (b1, b0))→L ((a1, a0)→L (b1, b0)) =
((a′1 ∧ b′0) ∨ a0 ∨ b1, a

′
0 ∧ b0)→L ((a′1 ∧ b′0) ∨ a0 ∨ b1, a1 ∧ b0) =

((((a′1 ∧ b′0) ∨ a0 ∨ b1)
′ ∧ (a1 ∧ b0)

′) ∨ (a′0 ∧ b0) ∨ ((a′1 ∧ b′0) ∨ a0 ∨ b1),

((a′1 ∧ b′0) ∨ a0 ∨ b1) ∧ b0 ∧ a1) =
(a′1 ∨ b′0 ∨ (a′0 ∧ b0) ∨ a0 ∨ b1 ∨ (a′1 ∧ b′0), ((a0 ∨ b1) ∧ b0) ∧ a1) =

(a′1 ∨ ((b′0 ∨ a′0) ∧ (b′0 ∨ b0)) ∨ a0 ∨ b1 ∨ (a′1 ∧ b′0),

((a0 ∧ b0) ∨ (b1 ∧ b0)) ∧ a1) = (1, 0).

��
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Rough Objects in Monoidal Closed
Categories

Patrik Eklund and María-Ángeles Galán-García

Abstract This chapter will build upon previous achievements on monadic rough
objects over the category Set, and show how rough object approximation and
algebraic manipulation in general can be enriched by extending constructions to
work similarly over monoidal closed categories embracing both algebraic as well as
order structures. The chapter will also show how the rough information model in this
monoidal closed category extension connects with other information models being
relational in their basic original structures. Additionally, the chapter will discuss the
potential of real world applications.

1 Introduction

In [11–13], we initiated work on category theoretic extension of rough sets, con-
structed by set functors, i.e., functors over the category Set of sets and functions.
Based on the observation that a relation R ⊆ X × X is equivalently represented
as a morphism ρX : X �� PX, the Kleisli morphism of the corresponding Kleisli
category for the powerset monad, approximations for rough sets can be equivalently
defined using the natural transformations, respectively, the unit η : id �� P and
multiplication μ : PP �� P of the corresponding powerset monad (P, η, μ).

A key property needed in the case of considering monads over Set is that the
monad is a partially ordered monad [24], as developed in [11]. The powerset monad
is partially ordered, and partially ordered monads composed with monad make the
composition partially ordered. This opens up the possibility to define a wide range
of monads to be used as a monadic generalization of rough sets [14, 17]. A typical
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composition is the powerset monad composed, and, more generally, many-valued
powerset monads, composed with the term monad, as originally proposed in [15].

The syntax of relations as extendable to monadic representation appears also in
other similar computational and logical models like in formal concept analysis and
description logic [9, 20].

Examples of applications in data analysis were outlined in [16, 18], and monadic
constructions appear in several information structure oriented applications, e.g., in
manufacturing and production [22] and health [6, 21].

Development on rough monads, and, more generally, on rough objects in a
category theory settings, have so far focused on functors and monads exclusively
over the category Set. In order to generalize from just using partially ordered
monads to enable order structures, we need to consider functors and monads
over categories embracing order structures. The term functor construction has
been provided over Goguen’s category, and, more generally, over monoidal closed
categories [19].

These algebraically enriched categories provide suitable structure for man-
agement of algebraic developments related to objects like those represented by
generalized rough sets. In fact, as shown in [23], they enable to provide the algebraic
foundations of many-valued structures, combining algebraic operations in presence
of order structures. This in particular involves the use of quantales and related
categorical objects, starting with most general categories like the category Sup of
complete lattices and join preserving maps.

2 Information Granularity and Classification

The basic relational model starts with a binary relation

R ⊆ X ×X

which equivalently can be represented as a mapping

ρ : X ×X→ 2

where 2 denotes the two-pointed set {0, 1} (or {f alse, true}), i.e., representing
binary (two-valued) truth. The relation has initially no (algebraic) properties.
Neither are elements x ∈ X assumed to embrace any features.

In this context, information granularity has therefore several different aspects,
and possibilities to increase that granularity.

Firstly, two valuedness can (and in many applications should) be extended to
many valuedness. If we extend 2 to Q, typically with Q = (Q, ∗) as a non-
commutative quantale, we have a relation that can take multiple truth values:

ρ : X ×X→ Q.
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In this case, non-commutativity of the quantale means that aggregations will need
to consider the order among elements in Q.

Secondly, we may indeed add algebraic properties (to ρ). Here we observe that
relations R ⊆ X × X correspond precisely to functions (in form of substitutions)
σR : X �� PX, where P is the powerset functor over the category of sets and
functions. This is then the basis for viewing generalized relations as morphisms
(substitutions) in the Kleisli category over generalized powerset monads. In the
many-valued case we have many-valued relations in form of σR : X �� QX. The
powerset functors P (in the case of 2) and Q (in the case of Q) are both extendable
to monads, and they generate respective Eilenberg-Moore categories, where the
algebraic structure of the monad become explicit. Here we should distinguish clearly
between algebraic structure and algebraic properties. Algebraic structures comes
from the monad, whereas algebraic properties are imposed over that structure. An
algebraic operator provides structure and we may have properties for that operator.
For instance, commutativity is a property of a binary operator.

Thirdly, we may unravel the features of x ∈ X, so that x is not just a point or a
name of an element, but an expression. Now we should not confuse with algebraic
expressions enabled by Q, but rather start with an underlying signature Σ , so that
x ∈ X are just variables, and the term set TΣX is now the base set for which
relations

ρ : TΣX × TΣX→ 2

are explored. This brings us to the many-valued

σ : X �� QTΣX

where the term composition makes Q ◦ TΣ extendable to a monad. The algebraic
structure of that monad is much more elaborate.

A generalized relation for a monad F = (F, η, μ) is thus equivalent to a
variable substitution σ : X �� FX. Doing so immediately brings us to monads
over categories. A functor F : Set �� Set over the category of sets is rather
rudimentary, and functors F : C �� C more generally over monoidal closed
categories can embrace much more structure. This shows how ‘structure and
properties’ can be invoked in several ways. From application point of view it is
often critical where and how such structure and properties are added.

As an example, if we only say ‘crankshaft’ as a name for a component in an
automotive system-of-systems, ‘crankshaft’ is just an x in some X, but if we include
the attributes attr1, . . . , attrn attached to a crankshaft, it becomes a logical term.
Using logical notation, crankshaf t is a logical constant (of zero arity), whereas
crankshaf t (attr1, . . . , attrn) is a term, with

crankshaf t : s1 × · · · × sn
�� s

being an operator (of arity n) and si , i = 1, . . . , n, and s are types (sorts).
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Where terms in TΣX are one-sorted [10], this example calls for the need to
describe the many-sorted term functor. Indeed, so far we have only provided the
term functor TΣ : Set �� Set, which for a “set of variables” X (an object in
Set) provides TΣX, the “set of all terms over Σ”. Following the notation in [19],
in the many-sorted (and crisp) case we need the “sorted category of sets” for the
many-sorted term functor. Let the sort set S, as an object of Set, be an index set
(in ZFC). For a category C, we write CS for the product category

∏
S C. The objects

of CS are tuples (Xs)s∈S such that Xs ∈ Ob(C) for all s ∈ S. We could use XS

as a shorthand notation for these tuples. Based on our signature Σ , we will have
Xs and Xbool as separate variable sets, so that TΣXS is the tuple (TΣ,sXs)s∈S .
See [19] for the formal categorical term construction. It corresponds, in Set, to the
traditional view of the “set of terms”. In the case of λ-terms, the term construction
avoids the need to use renaming.

3 Partially Ordered Monads

Partially ordered monads were introduced in [24] based on the notion of basic
triples, i.e., triples Φ = (φ,≤, η), where φ is a covariant functor from Set,
the category of sets and functions, to acSLAT, the category of almost complete
semilattices and non-empty suprema preserving maps, and η : id �� φ is a
natural transformation. The functor φ takes objects (sets) X in Set and produces
objects (φX,≤) in acSLAT, so that if X is empty, then also φX is empty. Further,
η(x) ∧ η(y) exists only in the case x = y.

Instead of the more general category acSLAT, we may obviously use the specific
Sup category, and benefit from properties as described in [23].

Example 1 Let L be a completely distributive lattice. The covariant powerset
functor L is obtained by LX = LX, i.e. the set of mappings (or L-fuzzy sets)
A : X → L, and following [25], for a morphism f : X → Y in Set, by defining
Lf (A)(y) = ∨f (x)=y A(x). Further, define ηX : X → LX so that ηX(x)(x ′) is 1,
if x = x ′, and 0 otherwise. Then (L,≤, η) is a basic triple, and can be extended to a
partially ordered monad (L,≤, η, μ) by μX(M )(x) =∨A∈LX A(x)∧M (A) [11].
A special case indeed is L = 2, where L = P, the ordinary powerset functor, and
the structure of L can also be that of a quantale.

Example 2 Let Σ = (S,Ω) be a signature of sorts in S and operators in Ω , and let
TΣ : Set �� Set be the term functor over Σ [19]. Then the composed functor
L ◦ TΣ can be extended to a monad, and further to a partially ordered monad [11].
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4 Monoidal Biclosed Categories

The history of monoidal closed categories goes back to the study of such natural
equivalences [8], and further back to theories of linear operators [1] and homology
theory. Monoidal closed categories became formally defined in [28]. Monoidal
categories were called categories with multiplication in [2, 3] and [29]. The notion
and name of monoidal closed category attains its final formulation in [30].

In monoidal closed categories, the notion of a product is weakened. Products of
objects are related to exponential objects, and the Hom-set Hom(X, Y ) in a category,
with X and Y as objects, itself and object of the category, is such an exponential
object. The natural equivalence Hom(A× B,C) ∼= Hom(A,Hom(B,C)) is funda-
mental. In Set, Hom(B,C) is the exponential object, and the natural equivalence
means that Set is a cartesian closed category. The cartesian product is indeed
strong, and therefore products can be weakened using bifunctors ⊗ : C × C �� C.
We write A⊗ B instead of ⊗(A,B), for objects A and B in Ob(C).

In defining monoidal closed categories, we follow the notational style in [27].
Let C be a category, ⊗ : C × C �� C a bifunctor, and I a unit object in C. If there
are natural isomorphisms aX,Y,Z : (X⊗Y )⊗Z ��X⊗ (Y ⊗Z), lX : I ⊗X ��X

and rX : X ⊗ I ��X making the diagrams

((W ⊗X)⊗ Y )⊗Z (W ⊗X)⊗ (Y ⊗Z)

aW⊗X,Y,Z

�� (W ⊗X)⊗ (Y ⊗Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y⊗Z

��((W ⊗X)⊗ Y )⊗Z

(W ⊗ (X ⊗ Y ))⊗Z

aW,X,Y⊗idZ

��

W ⊗ (X ⊗ (Y ⊗ Z))

W ⊗ ((X ⊗ Y )⊗ Z)

��

idW ⊗aX,Y,Z

(W ⊗ (X ⊗ Y ))⊗Z W ⊗ ((X ⊗ Y )⊗ Z)
aW,X⊗Y,Z

��

and

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y)

aX,I,Y

��(X ⊗ I)⊗ Y

X ⊗ Y

rX⊗idY
��
��

��
��

��
�

X ⊗ (I ⊗ Y)

X ⊗ Y

idX ⊗lY
����
��
��
��
�

commute, we say that C, equipped with the bifunctor, a unit object, and these natural
isomorphisms, is a monoidal category. A monoidal category becomes a monoidal
(left) closed category, if the functor _ ⊗ B : C �� C has a right adjoint, denoted
[B, _], for all objects B. It is right closed, if A ⊗ _ : C �� C, for all objects A,
has a right adjoint. A monoidal closed category is biclosed, if it is both left and
right closed, and a symmetric monoidal category, whenever the tensor product is
commutative.
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Example 3 If a quantale Q is commutative and unital, then the Goguen category
Set(Q) is a symmetric monoidal closed category and it is therefore also biclosed.
See [19] for detail on how the term functor is constructed over Set(Q). Note also
how Lid ◦ TΣ over Set is very different from the term functor TΣ over Set(Q).
This difference is intuitively the difference between “computing with fuzzy” and
“fuzzy computing”.

5 Rough Monads over Monoidal Closed Categories

Let R be a relation on X, i.e. R ⊆ X × X, and ρX : X �� PX the corresponding
mapping, where ρX(x) = {y ∈ X|xRy}. The inverse relation R−1 is ρ−1

X (x) =
{y ∈ X|xR−1y}.

In [12] we showed, for the powerset monad P = (P, η, μ) over Set, how the
lower approximation of a set A ⊆ X is obtained by

A↓ = {x ∈ X|ρ(x) ⊆ A} =
∨

ρX(x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)

and the upper approximation correspondingly by

A↑ = {x ∈ X|ρ(x) ∩ A 
= ∅} =
∨

ρX(x)≤A
ηX(x).

This indeed works because the monad P = (P, η, μ) is a partially ordered monad
P = (P,≤, η, μ) with ≤ being ⊆.

We can now note the distinction between “sets as rough” over Set and “rough
sets” over Set(Q). The former is basically based on a composed monad Φ ◦ TΣ

over Set, whereas the latter is based on a monad over Set(Q). Almost all of fuzzy
rough set theory is not actually about ‘rough sets’ but rather ‘sets as rough’. This
restricted understanding is due to not using categorical constructions, and indeed
doing so means being simply over the category of sets.

We now formally describe the extension from over the category of sets to
generally over a monoidal closed category. The first step is extending φ :
Set �� acSLAT to φ : C �� SUP, where C is a monoidal biclosed category, and
SUP of complete lattices and join-preserving maps. The category SUP is considered
as the underlying category for the algebraic foundations of many-valuedness in [23].

For a generalized relation ρ : id �� φ, and a well-defined corresponding
inverse transformation ρ−1 : id �� φ, rough monads over C then enable to define
approximations. Since we now do not have ‘elements’ like x in X, we need to
corresponding ‘singleton objects’ defined in C. In the special case of Set, a x ∈ X

can be identified with its one-pointed set {x} as the singleton object. Given the
powerset monad (P, η, μ), this singleton object is η(x).
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The situation over Set indeed provides the generalized lower approximation of
an object A in Set, as a monoidal biclosed category, according to

A↓ = μX ◦ φρ−1
X (A),

and the upper approximation correspondingly according to

A↑ =
∨

ρX(x)≤A
ηX(x).

This situation can be generalized to become over any monoidal biclosed category C.
In [23], Example 2.3.4 shows the technique for handling singleton objects, and this
technique can be generalized to enable approximations over any monoidal biclosed
category.

Example 4 Since Set(Q) is a monoidal biclosed category [26], we may consider
φ : Set(Q) �� SUP, providing a suitable “rough sets” over Set(Q) as a useful
model in applications.

6 Applications

In this section we show how the notion of approximations can be understood in the
context of relations between drugs, and in particular for drug interactions, where
the interaction between respective chemical substances (coded on ATC level V) is
many-valued and classified given a quantale.

We will use the drug interaction example outlined in [21] and see how rough
monad approximations can be used to model interactions for conglomerates of
drugs.

Interventions aim to create transitions between ‘states of condition’, where the
objective of an intervention is based on the fundamental principle of at least not
to make things worse (‘primum non nocere’). The three-valuedness used in [21]
includes

• condition under control or problem removed (5),
• condition that requires intervention (a),
• condition not improvable by intervention (⊥).

Interventions having desirable effect will change a condition state from a to 5,
where interventions having no effect leaves the condition states unchanged. The
state set C3 = {5, a, ⊥} is used as a partial order. The unitalization Ĉ3 was in
[21] shown to correspond to levels of evidence, and interventions were identified as

(condition state) transitions in an action C3 ⊗Q
�−→ C3.

In the following we briefly discuss the structure of classifications of drugs.
The Anatomic Therapeutic Chemical ATC/DDD (Anatomical Therapeutic Chem-
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Table 1 Classification of nitrazepam

N Nervous system 1st level,

main anatomical group

N05 Psycholeptics 2nd level,

therapeutic subgroup

N05C Hypnotics and sedatives 3rd level,

pharmacological subgroup

N05CD Benzodiazepine derivatives 4th level,

chemical subgroup

N05CD02 Nitrazepam 5th level,

chemical substance

ical/Defined Daily Dose) classification system is one of the Related Classifications
in the WHO (World Health Organization) Family of International Classifications1

(FIC). The drugs are classified using ATC codes appearing in five levels.
For drug utilization statistics, a unit of measurement called defined daily dose

(DDD) has also been developed to complement ATC. A DDD is the average dose
per day for a drug that is used for its main indication when treating adults. This
is not to be confused with the guideline or recommendation of dosage. Indeed, the
DDD could be in the middle between two commonly prescribed dosages and as such
never be an actual prescribed dosage.

Table 1 presents an example using nitrazepam (code N05CD02) as a drug,
typically used for short term sleeping problems (insomnia).

ATC encodes drugs and drug interventions, where interventions in general
stem from diseases and also targets functioning. From WHO classification point
of view, diseases are encoded in ICD (International Classification Diseases),
and functioning is encoded in ICF (International Classification of Functioning,
Disability and Health). As an example, the ICD code for insomnia is G47.0,
where insomnia is a sleep disorder (ICD code G47). Nitrazepam (ATC code
N05CD02) is therapeutically indicated for the short-term treatment of insomnia
(ICD code G47.0). An example contraindication is acute pulmonary insufficiency
(ICD code J95.2). Common side-effects of the use of nitrazepam are dizziness
and unsteadiness. Note how ‘dizziness’ is basically undefined and uncoded when
appearing in the context of listed side-effects for nitrazepam. However, ‘dizziness’
is formally encoded as a functioning aspect under ICF. The ICF code for Dizziness
is b2401, and characterized as Sensation of motion involving either oneself or one’s
environment; sensation of rotating, swaying or tilting. Dizziness falls under ICF
code b240 ‘Sensations associated with hearing and vestibular function’, in turn part
of ‘Sensations of dizziness, falling, tinnitus and vertigo, in turn part of ‘Hearing and
vestibular functions’ (ICF codes b230-b249).

1WHO website for classifications http://www.who.int/classifications/en/.

http://www.who.int/classifications/en/
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This discussion, drawn from [21], shows the need to relate diseases, functioning
and (drug) treatments, and how one domain may act on another.

From rough sets point of view, drug-drug interactions are bivalent or multivalent
relations. Pharmacological societies do not share a common view on this valuedness
issue. However, there are shared models, where SFINX2 [4] is one of them. The
information in SFINX is divided into five different parts describing each pair of
drugs involving an interaction: medical consequence, recommendation, mechanism,
background and references.

In SFINX, classifications A, B, C and D are defined, respectively, as ‘Minor inter-
action of no clinical relevance.’, ‘Clinical outcome of the interaction is uncertain
and/or may vary.’, ‘Clinically relevant interaction that can be handled e.g. by dose
adjustments.’ and ‘Clinically relevant interaction. The combination is best avoided.’,
respectively. The classifications A and B are obviously related since they mean
no or uncertain clinical relevance, whereas C and D represent clinically relevant
interactions. In other words, A and B are closer to allow prescription, whereas C and
D basically means not to prescribe. Further, A is stronger in favour of prescription
(despite interaction) than B since A is no evidence and B is uncertain clinical
outcome. Similarly, D is stronger against prescription that C since D is generally best
avoided, whereas C opens up a possibility to manage a clinically relevant interaction
with dose adjustment.

If L is the lattice with A–D, and ATC is some structure representing the
ATC classification, then SFINX is basically a mapping σSFINX : ATC ×
ATC → L. Whereas A–D classifies clinical relevance, the SFINX interaction
model additionally include levels of documentation (0–4), which represent strength
of ‘evidence’. Since L represents level of evidence, the question is now which
quantale homomorphism best model the situation. In this case we would naturally
choose L = Im(h3) with natural order. For the definition of h3, see [21]. If two
conditions x and y are treated with respective drugs dx and dy , as interventions
notated, respectively, as (x, 1) and (y, 1), then we expect

σSFINX(dx, dy) ≥ h3((x, 1) ∗̂; (y, 1)) = h3((x, 1)) ◦ h3((y, 1))

i.e., the drug interaction must be proportionally less as compared to the aggregated
evidence of respective drugs interventions. Or the other way around, a strong
interaction between dx and dy will jeopardize the advantage of the aggregation
of the simultaneous intervention for conditions x and y. The equality establishes
a connection between order in interventions and sequentializing evidence-based
treatment guidelines.

Similarly we can now imagine many-valued relation in connection with ICD ×
ATC for drug interventions related to disease, or with ATC× ICF for functioning

2SFINX as a database and corresponding support system is in use in almost all pharmacies in
Finland.
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related side-effects of drugs, or ICD, ICF and ATC appearing in other products
and combinations.

Upper and lower approximations can potentially be added as granularity features
in the ATC classification, where the upper approximation is moving upwards in ATC
levels, and lower approximation is correspondingly moving downwards. Concepts
like ‘cholinergic drugs’ embrace a set of drugs with similar pharmacological
properties mostly as inhibitors in the nervous system. Rough operators and related
algebra is well suited to instruments such an analysis of drug features. In this paper
we provide only some suggestions and indications for further studies.

Drug interactions is part of the issue of ‘polypharmacy’, where withdrawal of
drugs is becoming subjected to guideline development, e.g. for FRIDs (fall risk
inducing drugs) [7, 32, 33]. Falls prevention is one of the activities within EIP AHA
(European Innovation Partnership for Active and Healthy Ageing) [6], where good
practices, e.g. as related with drugs management, are implemented with respective
reference site [31].

Acknowledgement Research reported by the second author of this chapter was partially supported
by the Spanish project:TIN2015-70266-C2-1-P.

Appendix: Category Theory Notations and Constructions

Basic Concepts and Notations

In a category C with objects A and B, morphisms f from A to B are typically

denoted by f : A �� B or A
f

�� B. The (A-)identity morphism is denoted

A
idA

��A and morphism composition uses ◦. The set of C-morphisms from A to
B is written as HomC(A,B) or Hom(A,B).

The category of sets, Set, is the most typical example of a category, and consists
of sets as objects and functions (in ZFC) as morphisms together with the ordinary
composition and identity. Other categories may be defined, for example, using Set
as a basis: a structure, defined by the given metalanguage, is added on Set-objects,
and then morphisms are defined as Set-morphisms preserving these structures. A
typical example is to add uncertainty, modelled by a quantale Q, on Set-objects:
The objects of the Goguen category Set(Q) are pairs (X, α), where X is an object

of Set and α : X ��Q is a function (in ZFC). The morphisms (X, α)
f

�� (Y, β)

are Set-morphisms X
f

��Y satisfying α ≤ β ◦f . The composition of morphisms
is defined as composition of Set-morphisms. Originally, Goguen considered a
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completely distributive lattice as the underlying lattice in [25] and further properties
for Goguen categories can be found in [34].

A (covariant) functor F : C �� D between categories is a mapping that assigns

each C-object A to a D-object F(A) and each C-morphismA
f

��B to a D-morphism

F(A)
F(f )

�� F(B), such that F(f ◦ g) = F(f ) ◦ F(g) and F(idA) = idF(A).
Composition of functors is denoted G ◦ F : C �� E and the identity functor
is written idC : C �� C. The (covariant) powerset functor P : Set �� Set
is the typical example of a functor, and is defined by PA being the powerset of
A, i.e., the set of subsets of A, and Pf (X), for X ⊆ A, being the image of X

under f , i.e., Pf (X) = {f (x) | x ∈ X}. A contravariant functor F : C �� D

maps to each C-morphism A
f

�� B a D-morphism F(B)
F(f )

�� F(A), and for

the contravariant powerset functor P : Set �� Set we have PA = PA and
Pf (Y ) = {x ∈ X | ∃y ∈ Y : f (x) = y}.

A natural transformation τ : F �� G between functors assigns to each C-object
A a D-morphism τA : FA ��GA such that Gf ◦τA = τB ◦Ff , for any f : A ��B.

The identity natural transformation F
idF

�� F is defined by (idF)A = idFA. If all
τA are isomorphisms, τ is called a natural isomorphism, or natural equivalence.
For functors F and natural transformations τ we often write Fτ and τF to mean
(Fτ )A = FτA and (τF)A = τFA, respectively. It is easy to see that η : idSet �� P

given by ηX(x) = {x}, and μ : P ◦P ��P given by μX(B) =⋃B(=⋃B∈B B)

are natural transformations. The (vertical) composition σ ◦ τ : F �� H of natural
transformations is defined by (σ ◦ τ )A = σA ◦ τA, for all D-objects A.

Whereas morphisms are typically seen as ‘mappings’ between objects in a
category, functors are ‘mappings’ between categories, i.e., morphisms in (quasi-)
categories of categories, and natural transformations are ‘mappings’ between
functors, i.e., morphisms in functor categories. These notions clearly lead to views
on hierarchies of sets, classes and conglomerates, where foundational issues enter
the scene, and our approach roughly follows Grothendieck’s [5] view of set-theoretic
foundations for category theory.

A monad (or triple, or algebraic theory) over a category C is written as F =
(F, η, μ), where F : C �� C is a (covariant) functor, and η : id �� F and μ :
F ◦ F �� F are natural transformations for which μ ◦ Fμ = μ ◦ μF and μ ◦ Fη =
μ ◦ηF = idF hold. A Kleisli category CF for a monad F over a category C is defined
as follows: Objects in CF are the same as in C, and the morphisms are defined as
HomCF(X, Y ) = HomC(X,FY ), that is morphisms f : X ⇁ Y in CF are simply
morphisms f : X �� FY in C, with ηX : X �� FX being the identity morphism on
X. Composition of morphisms is defined as

(X ⇁f Y) H (Y ⇁g Z) = X
μZ◦Fg◦f

�� FZ.
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The category Rel with sets as objects and binary relations as morphisms, is
isomorphic with the Kleisli category of the powerset monad over Set. This invites
to viewing Kleisli morphisms as a general notion for relations in the sense of
intuitively being “substitutions”.

Powerset monads and their many-valued extensions are in close connection
to fuzzification and are good candidates to represent situations with incomplete
or imprecise information. The many-valued covariant powerset functor L for a
completely distributive lattice L = (L,∨,∧) is obtained by LX = LX , i.e. the set
of functions (or L-sets) α : X ��L, and following [25], for a morphism f : X ��Y

in Set, by defining Lf (α)(y) =∨f (x)=y α(x). Further, if we define ηX : X ��LX
by

ηX(x)(x
′) =
{
5 if x = x ′

⊥ otherwise

and μ : L ◦ L �� L by

μX(M )(x) =
∨

α∈LX
A(x)∧M (α)

then L = (L, η, μ) is a monad.

Sorted Categories

In the one-sorted (and crisp) case for signatures we typically work in Set, but in
the many-sorted (and crisp) case we need the “sorted category of sets” for the many-
sorted term functor. We start this section by a more general view by considering “a
sorted category of objects”.

Let S be an index set (in ZFC), the indices are called sorts (or types), and we do
not assume any order on S. For a category C, we write CS for the product category∏

S C. The objects of CS are tuples (Xs)s∈S such that Xs ∈ Ob(C) for all s ∈ S. We
will also use XS as a shorthand notation for these tuples. The morphisms between
objects (Xs)s∈S and (Ys)s∈S are tuples (fs)s∈S such that fs ∈ HomC(Xs, Ys) for
all s ∈ S, and similarly we will use fS as a shorthand notation. The composition
of morphisms is defined sortwise (componentwise), i.e., (gs)s∈S ◦ (fs)s∈S = (gs ◦
fs)s∈S .

Functors Fs : C �� D are lifted to functors F = (Fs)s∈S from CS to DS . so
that e.g. the regular powerset functor PS = (P)s∈S and the regular many-valued
powerset functor LS = (L)s∈S , both are lifted to functors on SetS .

Products and coproducts,
∏

and
∐

, are handled sortwise. We also have a
“subobject relation”, thus, (Xs)s∈S ⊆ (Ys)s∈S if and only if Xs ⊆ Ys for all s ∈ S.
It is clear that all limits and colimits exist in SetS , because operations on SetS-
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objects are defined sortwise for sets. Further, the product
∏

i∈I Fi and coproduct∐
i∈I Fi of covariant functors Fi over SetS are defined as

(
∏

i∈I
Fi )(Xs)s∈S =

∏

i∈I
Fi (Xs)s∈S

and

(
∐

i∈I
Fi )(Xs)s∈S =

∐

i∈I
Fi (Xs)s∈S

with morphisms being handled accordingly.
The category Set(Q)S is called the many-sorted Goguen category. Objects in

this category are tuples of pairs ((Xs, αs))s∈S as objects, where for each s ∈ S,
αs : Xs �� Q is a function (in ZFC). So, fixing s ∈ S we consider pairs (Xs, αs)

as objects in Set(Q). Now, the Set(Q)-morphisms (Xs, αs)
fs

�� (Ys, βs) form

morphisms ((Xs, αs))s∈S
(fs)s∈S

�� ((Ys, βs))s∈S .

Term Constructions

Here we recall the term functor construction and for clarity we present it in the one
sorted situation, using the construction presented in [18]. The many sorted extension
is found in [19].

Let Ω = ⋃∞n=0 Ωn be an operator domain, where Ωn contains n-ary operators.
The term functor TΩ : Set→ Set is given as TΩ(X) =⋃∞k=0 T

k
Ω(X), where

T0
Ω(X) = X,

Tk+1
Ω (X) = {(n, ω, (mi)i≤n) | ω ∈ Ωn, n ∈ N,mi ∈ Tk

Ω(X)}.

In this context it is more convenient to write terms as (n, ω, (xi )i≤n) instead of the
more common ω(x1, . . . , xn). It is clear that (TΩX, (σω)ω∈Ω) is an Ω-algebra, if

σω((mi)i≤n) = (n, ω, (mi)i≤n) for ω ∈ Ωn and mi ∈ TΩX. Morphisms X
f→ Y

in Set are extended in the usual way to the corresponding Ω-homomorphisms

(TΩX, (σω)ω∈Ω)
TΩf−→ (TΩY, (τω)ω∈Ω), where TΩf is given as the Ω-extension

of X
f→ Y ↪→ TΩY associated to (TΩY, (τnω)(n,ω)∈Ω). To obtain the term

monad, define η
TΩ

X (x) = x, and let μTΩ

X = id�
TΩX be the Ω-extension of idTΩX

with respect to (TΩX, (σnω)(n,ω)∈Ω). This gives us the (one-sorted) term monad
TΩ = (TΩ, ηTΩ ,μTΩ ).
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Rough Algebraic Structures
Corresponding to Ring Theory

Bijan Davvaz

Abstract The concept of rough set was originally proposed by Pawlak in 1982.
Since then the subject has been investigated in many papers. Some authors studied
algebraic properties of rough sets. The lattice theoretical approach has been
suggested by Iwinski. Pomykala and Pomykala showed that the set of rough sets
forms a Stone algebra. Comer presented an interesting discussion of rough sets and
various algebras related to the study of algebraic logic, such as Stone algebras and
relation algebras. It is a natural question to ask what does happen if we substitute
an algebraic structure instead of the universe set. Biswas and Nanda introduced
the notion of rough subgroups. Kuroki introduced the notion of a rough ideal
in a semigroup. Kuroki and Wang gave some properties of the lower and upper
approximations with respect to the normal subgroups. Also, Kuroki and Mordeson
studied the structure of rough sets and rough groups. Jun applied the rough set
theory to BCK-algebras. The present author applied the concept of approximation
spaces in ring theory, module theory and algebraic hyperstructures. A key notion
in Pawlak rough set model is an equivalence relation. The equivalence classes are
the building blocks for the construction of the lower and upper approximations. An
equivalence relation is sometimes difficult to be obtained in real-world problems
due to the vagueness and incompleteness of human knowledge. From this point
of view, the author introduced the concept of lower inverse and upper inverse of
a set under a set-valued map, which is a generalization of the lower and upper
approximations. Using this the concept of a set-valued homomorphism for groups,
rings, modules and lattices was introduced. The concept of uniform set-valued
homomorphism was introduced and it was shown by the present author that every
set-valued homomorphism is uniform. The overall aim of this chapter is to present
an introduction to some of these results, methods and ideas about rough algebraic
structures. Most of the focus will be on rough rings and their generalizations.
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1 Introduction

The concept of rough set was originally proposed by Pawlak [24, 25] as a formal
tool for modelling and processing in complete information in information systems.
Since then the subject has been investigated in many papers. The theory of rough set
is an extension of set theory, in which a subset of a universe is described by a pair
of ordinary sets called the lower and upper approximations. A key notion in Pawlak
rough set model is an equivalence relation, i.e., a reflexive, symmetric and transitive
relation. The equivalence classes are the building blocks for the construction of the
lower and upper approximations. The lower approximation of a given set is the
union of all the equivalence classes which are subsets of the set, and the upper
approximation is the union of all the equivalence classes which have a non-empty
intersection with the set. The lattice theoretical approach has been suggested by
Iwinski [12]. He defined the family R of rough subsets of a universe U as an
inclusion relation restricted to certain Boolean complete subalgebra B of P(U)

and proved that it is a complete, atomic, distributive lattice.
This chapter is organized as follows: After an introduction, Sect. 2 begins

with defining upper and lower approximations in terms of an equivalence ρ and
Proposition 1 lists the essential and well-known properties of rough approximations.
After that, rough equality relation is defined and rough sets are defined to be
equivalence classes of rough equality. Then we define a pair (A,B) of subsets of
U as a rough set if and only if (A,B) = app(X) for some X in P(U). Then, we
recall the result by J. Pomykala and J.A Pomykala stating the rough sets form a
complete atomic distributive Stone lattice. The section ends by recalling the result
by Comer which says that rough set lattice forms a regular double Stone algebra.
Section 3 presents results on the relationship between rough sets and ring theory. In
applied mathematics we encounter many examples of mathematical objects that can
be added to each other and multiplied to each other. First of all, the real numbers
themselves are such objects. Other examples are real valued functions, the complex
numbers and infinite series. We introduce the notion of rough subring (respectively,
ideal) with respect to an ideal of a ring which is an extended notion of a subring
(respectively, ideal) in a ring, and we give some properties of the lower and the upper
approximations in a ring. Section 4 begins by recalling Zadeh’s basic definitions
of fuzzy sets and their set-theoretical operations. We also recall Liu’s (1982)
definitions of fuzzy subrings and fuzzy ideals of a ring. The theory of rough set and
the theory of fuzzy set are seen as complementary generalizations of classical set
theory. By using the concept of fuzzy sets, we introduce and discuss the concept of
fuzzy rough subrings and ideals of a ring. Section 5 concerns a relationship between
rough sets, fuzzy sets and ring theory. We consider a ring as a universal set and
we assume that the knowledge about objects is restricted by a fuzzy ideal. In fact,
we apply the notion of fuzzy ideal of a ring for definitions of the lower and upper
approximations in a ring. Some characterizations of the above approximations are
made and some examples are presented. In Sect. 6, we consider the relation α and
its transitive closure α∗. The relation α is the smallest equivalence relation on a
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ring R so that R/α∗ is a commutative ring. Based on the relation α, we define a
neighborhood system for each element of R, and we present a general framework of
the study of approximations in rings. The connections between rings and operators
are examined. In the last section, the concepts of set-valued homomorphism and
strong set-valued homomorphism of a ring are presented, and related properties are
investigated.

2 Rough Sets and Stone Algebra

Let U be a universe of objects and ρ be an equivalence relation on U . Given an
arbitrary set A ⊆ U , a concept in U , it may be impossible to describe A precisely
using the equivalence classes of ρ. That is, the available information is not sufficient
to give a precise representation of A. In this case, one may characterize A by a pair
of lower and upper approximations

app(A) := ⋃

[a]ρ⊆A
[a]ρ and app(A) := ⋃

[a]ρ∩A
=∅
[a]ρ,

where [a]ρ = {b | a ρ b} is the equivalence class containing a. The lower
approximation app(A) is the union of all the elementary sets which are subsets of A.
The upper approximation app(A) is the union of all the elementary sets which have
a non-empty intersection with A. An element in the lower approximation necessarily
belongs to A, while an element in the upper approximation possibly belong to A.
We can express lower and upper approximations as follows:

app(A) = {a ∈ U | [a]ρ ⊆ A} and app(A) = {a ∈ U | [a]ρ ∩ A 
= ∅}.

A subset X of U is called definable if app(X) = app(X). If X ⊆ U is given by a
predicate P and x ∈ U , then

(1) x ∈ app(X) means that x certainly has property P

(2) x ∈ app(X) means that x possibly has property P

(3) x ∈ U\app(X) means that x definitely does not have property P .

Proposition 1 We have

(1) app(A) ⊆ A ⊆ app(A)

(2) app(∅) = ∅ = app(∅)
(3) app(U) = U = app(U);
(4) If A ⊆ B, then app(A) ⊆ app(B) and app(A) ⊆ app(B)

(5) app(app(A)) = app(A)

(6) app(app(A)) = app(A)

(7) app(app(A)) = app(A)

(8) app(app(A)) = app(A)
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(9) app(A) = (app(AC))C

(10) app(A) = (app(AC))C ;
(11) app(A ∩ B) = app(A) ∩ app(B)

(12) app(A ∩ B) ⊆ app(A) ∩ app(B)

(13) app(A ∪ B) ⊇ app(A) ∪ app(B)

(14) app(A ∪ B) = app(A) ∪ app(B).

A pair (U, ρ) where U 
= ∅ and ρ is an equivalence relation on U , is called an
approximation space. For an approximation space (U, ρ), by a rough approximation
in (U, ρ) we mean a mapping app :P(U)→P(U)×P(U) defined by for every
X ∈P(U),

app(X) = (app(X), app(X)).

The rough equality between sets is defined in the following way: for any
A,B ⊆ U

A ≈ B ⇔ app(A) = app(B) and app(A) = app(B).

Obviously, ≈ is an equivalence relation on P(U). Any equivalence class of the
relation ≈ is called a rough set. We denote by

R0 = {[X]≈ | X ⊆ U}

the family of all rough sets
Therefore, for a given approximation space (U, ρ), a pair (A,B) ∈ P(U) ×

P(U) is a rough set in (U, ρ) if and only if (A,B) = app(X) for some X ∈ P(U).
Many properties of rough equality between sets as well as suggestions for their

applications are to be found in [24]. An algebraic characterization of the relation ≈
is given in [22, 23].

Let app(A) = (app(A), app(A)) and app(B) = (app(B), app(B)) be any two
rough sets in the approximation space (U, ρ). Then, we set the union, intersection,
inclusion relation, complement, and set difference between rough sets as follows:

(1) app(A) � app(B) := (app(A) ∪ app(B), app(A) ∪ app(B))

(2) app(A) � app(B) := (app(A) ∩ app(B), app(A) ∩ app(B))

(3) app(A) ' app(B) :⇔ app(A) ∩ app(B) = app(A).

When app(A) ' app(B), we say that app(A) is a rough subset of app(B).
Thus, in the case of rough sets app(A) and app(B),

app(A) ' app(B) if and only if app(A) ⊆ app(B) and app(A) ⊆ app(B).
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This property of rough inclusion has all the properties of set inclusion. The rough
complement of app(A) denoted by appC(A) is defined by

appC(A) := (U\app(A), U\app(A)).

Also, we can define app(A)\app(B) as follows:

app(A)\app(B) := app(A) ∩ appC(B)

= (app(A)\app(B), app(A)\app(B)).

Pomykala and Pomykala [26] showed that the set of rough sets forms a Stone
algebra.

Lemma 2 ([26, Lemma 4]) Let (U, ρ) be an approximation space and R0 the
family of rough sets. Then, the algebra (R0,�,�) is a complete distributive lattice.

The lattice (R0,�,�) is bounded, where 0 = [∅]≈ is the least element and
1 = [U ]≈ is the greatest element.

Let us recall that in a bounded lattice (L,∨,∧, 0, 1), x is a complement of y if
and only if x ∧ y = 0 and x ∨ y = 1.

It is easy to notice that R0 is not a complemented lattice [12].
Let L be a lattice with 0; an element x∗ is a pseudo-complement of x ∈ L if and

only if x ∧ x∗ = 0 and x ∧ z = 0 implies that z ≤ x∗. A pseudo-complemented
lattice is one in which every element has a pseudo-complement.

We may define a pseudo-complement operation on R∗, as follows: for any
X ∈ R∗,

X ∗ = [U −X ]≈,

X ∗ is a pseudo-complement of X .

Lemma 3 ([26, Lemma 7]) (R0,�,�, ∗) is pseudo-complemented.

A distributive lattice with pseudo-complementation is called a Stone algebra if
and only if it satisfies the Stone identity a∗ ∨ a∗∗ = 1.

Lemma 4 ([26, Lemma 8]) In the algebra (R0,�,�, ∗, 0, 1) the Stone identity is
valid.

Now, we can summarize the above results as follows.

Theorem 5 ([26, Theorem 1]) Suppose that R0 is the family of rough sets. Then,
the algebra (R0,�,�, ∗, 0, 1) is a complete, atomic Stone algebra.

Comer [2] remarked upon some relationships between the ideas of an approx-
imation space and rough sets and algebras related to the study of algebraic logic,
namely, cylindric algebras, relation algebras, and Stone algebras. He considered
three separate cases. The first deals with the family of approximation spaces induced
by the indiscernibility relation for different sets of attributes of an information
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system. The family of closure operators defining these approximation spaces is
abstractly characterized as a certain type of Boolean algebra with operators. An
alternate formulation in terms of a general class of diagonal-free cylindric algebras
is given. The second observation concerns the lattice theoretic approach to the study
of rough sets suggested by Iwinski [12] and the result by Pomykala and Pomykala
[26] that the collection of rough sets of an approximation space forms a Stone
algebra. It is shown that every regular double Stone algebra is embeddable into
the algebra of all rough subsets of an approximation space.

A double Stone algebra is an algebra (L,+, ·, ∗,+, 0, 1) such that (L,+, ·, 0, 1)
is a bounded distributive lattice, ∗ is a pseudo-complement, Stone’s law holds (i.e.,
a∗ + a∗∗ = 1), + is a dual pseudo-complement (i.e., x ≥ a+ ⇔ x + a = 1), and
the dual Stone law (i.e., a+ · a++ = 0) holds. A double Stone algebra is regular if
a+ = b+ and a∗ = b∗ imply a = b. See Gratzer [11] for basic facts about (double)
Stone algebras.

Theorem 6 ([2, Theorem 2.1]) R0 is a regular Stone algebra for every approxi-
mation space.

3 Roughness in Rings

Biswas and Nanda [1] studied rough sets in algebraic structures. They gave the
notion of rough subgroups. Because their notation depends on the upper approx-
imation and does not depend on the lower approximation, Kuroki and Wang [17]
discussed the lower and upper approximation of a group. Kuroki in [15], introduced
the notion of a rough ideal in a semigroup. Also, Kuroki and Mordeson [16] studied
the structure of rough sets and rough groups. Jun [13] applied the rough set theory
to BCK-algebras.

Davvaz [3] concerned a relationship between rough sets and ring theory, also see
[14]. He introduce the notion of rough subring (resp. ideal) with respect to an ideal
of a ring which is an extended notion of a subring (resp. ideal) in a ring, and he gave
some properties of the lower and the upper approximations in a ring.

A non-empty set R is said to be a ring if in R there are defined two binary
operations, denoted by+ and · respectively, such that for all a, b, c in R: (1) a+b =
b + a, (2) (a + b) + c = a + (b + c), (3) there is an element 0 in R such that
a + 0 = a, (4) there exists an element −a in R such that a + (−a) = 0, (5)
(a ·b)·c = a ·(b ·c), (6) · is distributive with respect to+, i.e., x ·(y+z) = x ·y+x ·z
and (x + y) · z = x · z + y · z. Axioms (1) through (4) merely state that R is an
abelian group under the operation +. The additive identity of a ring is called the
zero element. If in addition: a · b = b · a, for all a, b in R, then R is said to be
a commutative ring. If R contains an element 1 such that 1 · a = a · 1 = a for
all a in R, then R is said to be a ring with unit element. Let R be a ring and S be
a non-empty subset of R, which is closed under the addition and multiplication in
R. If S is itself a ring under these operations then S is called a subring of R; more
formally, S is a subring of R if the following conditions hold: a, b ∈ S implies that
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a − b ∈ S and a · b ∈ S. A non-empty subset I of a ring R is said to be an ideal of
R if (1) I is a subgroup of R under addition, (2) for every a ∈ I and r ∈ R, both ar

and ra are in I . Clearly, each ideal is a subring.
Given a ring R and an ideal I , the underlying equivalence relation ≡I induced

by I on R is given by x ≡I y :⇐⇒ x − y ∈ I . In such a case we have that the
equivalence class of x with respect of ≡I is exactly the coset x + I . Therefore,
properly speaking, the corresponding approximation space is (R,≡I ). Now, this
notation can be naturally substitute with (R, I).

Throughout this paper R is a ring. Let I is an ideal of R and X is a non-empty
subset of R. Then, the sets

app
I
(X) := {x ∈ R| x + I ⊆ X}, appI (X) := {x ∈ R| (x + I) ∩X 
= ∅},

are called, respectively, lower and upper approximations of the set X with respect
to the ideal I . The pair (R, I will be referred to as a rough ring.

Proposition 7 In a rough ring (R, I), for any two subsets A,B ⊆ R, we have:

(1) app
I
(A) ⊆ A ⊆ appI (A)

(2) app
I
(∅) = ∅ = appI (∅)

(3) app
I
(R) = R = appI (R)

(4) If A ⊆ B, then app
I
(A) ⊆ app

I
(B) and appI (A) ⊆ appI (B)

(5) app
I
(app

I
(A)) = app

I
(A)

(6) appI (appI (A)) = appI (A)

(7) appI (appI
(A)) = app

I
(A)

(8) app
I
(appI (A)) = appI (A)

(9) app
I
(A) = (appI (A

C))C

(10) appI (A) = (app
I
(AC))C

(11) app
I
(A ∩ B) = app

I
(A) ∩ app

I
(B)

(12) appI (A ∩ B) ⊆ appI (A) ∩ appI (B)

(13) app
I
(A ∪ B) ⊇ app

I
(A) ∪ app

I
(B);

(14) appI (A ∪ B) = appI (A) ∪ appI (B)

(15) app
I
(x + I) = appI (x + I) for all x ∈ R.

For every approximation space (R, I),

(1) for every A ⊆ R, app
I
(A) and appI (A) are definable sets

(2) for every x ∈ R, x + I is definable set.

If A and B are non-empty subsets of R, let AB denote the set of all finite sums
{a1b1 + a2b2 + . . .+ anbn| n ∈ N, ai ∈ A, bi ∈ B}. Moreover,

A+ B := {a + b | a ∈ A, b ∈ B}.

Proposition 8 Let I be an ideal of R, and A,B non-empty subsets of R. Then,

appI (A)+ appI (B) = appI (A+ B).
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Proposition 9 Let I be an ideal of R, and A,B non-empty subsets of R. Then,

app
I
(A)+ app

I
(B) ⊆ app

I
(A+ B).

The following example shows that

app
I
(A+ B) ⊆ app

I
(A)+ app

I
(B)

does not hold in general.

Example 10 Let R = Z12, I = {0, 6}, A = {0, 1, 2, 5, 6, 8} and B =
{0, 3, 4, 6, 9}. Then

app
I
(A) = {0, 2, 6, 8},

app
I
(B) = {0, 3, 6, 9},

app
I
(A)+ app

I
(B) = {0, 2, 3, 5, 6, 8, 9, 11},

app
I
(A+ B) = {0, 2, 3, 4, 5, 6, 8, 9, 10, 11}.

Let I be an ideal of R and A any non-empty subset in R. It is easy to see that
appI (A) coincides with the subset I + A.

Proposition 11 ([32, Theorem 3.2]) Let I be an ideal of R and A,B non-empty
subsets of R. Then,

appI (A) · appI (B) ⊆ appI (A · B).

Proposition 12 ([32, Theorem 3.3]) Let I be an ideal of R and A,B non-empty
subsets of R. If I 2 = I , then

(1) appI (A) · appI (B) = appI (A · B);
(2) app

I
(A) · app

I
(B) ⊆ app

I
(A · B).

Proposition 13 ([32, Proposition 3.4]) Let R be an idempotent ring, I, J two
ideals of R and K a subring of R. Then,

app
I
(K) · app

J
(K) = app

(I+J )(K).

Lemma 14 Let I, J be two ideals of R such that I ⊆ J and let A be a non-empty
subset of R, then

(1) app
J
(A) ⊆ app

I
(A)

(2) appI (A) ⊆ appJ (A).

Lemma 15 Let I, J be two ideals of R and A a non-empty subset of R. Then,

(1) app
I
(A) ∩ app

J
(A) ⊆ app

(I∩J )(A)

(2) app(I∩J )(A) ⊆ appI (A) ∩ appJ (A).
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Proposition 16 If I, J are two ideals of R, then appI (J ) is an ideal of R.

Proof Suppose that a, b ∈ appI (J ) and r ∈ R, then (a+ I)∩ J 
= ∅ and (b+ I)∩
J 
= ∅. So there exist x ∈ (a + I) ∩ J and y ∈ (b + I) ∩ J . Since J is an ideal
of R, we have x − y ∈ J and x − y ∈ (a + I) − (b + I) = a − b + I . Hence,
(a − b + I) ∩ J 
= ∅, which implies a − b ∈ appI (J ). Also, we have rx ∈ J and
rx ∈ r(a + I) = ra + I . So (ra + I) ∩ J 
= ∅, which implies ra ∈ appI (J ).
Therefore, appI (J ) is an ideal of R. ��

Similarly, if I is an ideal and J is a subring of R, then appI (J ) is a subring of R.

Proposition 17 If I, J be two ideals of R, then app
I
(J ) is an ideal of R.

Proof Suppose a, b ∈ app
I
(J ) and r ∈ R. Then, a + I ⊆ J and b + I ⊆ J . It is

easy to see that (a − b + I) ⊆ J and (ra + I) ⊆ J . Hence, a − b ∈ app
I
(J ) and

ra ∈ app
I
(J ). ��

Similarly, if I is an ideal and J is a subring of R, then app
I
(J ) is a subring of R.

Let I be an ideal of R and appI (A) = (app
I
(A), appI (A)) a rough set in the

approximation space (R, I). If app
I
(A) and appI (A) are ideals (resp. subrings) of

R, then we call appI (A) a rough ideal (resp. subring). Note that a rough subring
also is called a rough ring.

Corollary 18

(1) If I, J are two ideals of R, then appI (J ) and appJ (I) are rough ideals.
(2) If I is an ideal and J is a subring of R, then appI (J ) is a rough ring.

Proposition 19 Let I, J be two ideals of R and K a subring of R. Then,

appI (K) · appJ (K) ⊆ app(I+J )(K).

Proof Suppose x be any element of appI (K) · appJ (K). Then, x =
n∑

i=1
aibi for

some ai ∈ appI (K) and bi ∈ appJ (K). Hence, (ai + I) ∩K 
= ∅ and (bi + J ) ∩
K 
= ∅, and so there exist elements xi, yi ∈ R such that xi ∈ (ai + I) ∩ K and

yi ∈ (bi + J ) ∩K . Since K is a subring of R, we have
n∑

i=1
xiyi ∈ K . On the other

hand we have

n∑

i=1
xiyi ∈

n∑

i=1
(ai + I)(bi + J ) =∑n

i=1 aibi + I + J.

Therefore, we have

(
n∑

i=1
aibi + I + J ) ∩K 
= ∅,

which implies that
n∑

i=1
aibi ∈ app(I+J )(K). ��
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If we strengthen the condition, the inclusion symbol “⊆” of Proposition 19 may
be replaced by an equal sign.

Proposition 20 ([32, Theorem 3.6]) Let R be a ring with identity 1, I, J two ideals
of R and K a subring of R such that 1 ∈ K . Then,

appI (K) · appJ (K) = app(I+J )(K).

Proof Since 1 ∈ K , we have IK = I,KJ = J and K2 = K . Thus, we obtain

appI (K) · appJ (K) = (I +K) · (J +K) = IJ + IK +KJ +K2

= I + J +K = app(I+J )(K). ��

Proposition 21 ([32, Theorem 3.4]) Let R be an idempotent ring, I, J two ideals
of R and K a subring of R. Then,

app
I
(K) · app

J
(K) = app

(I+J )(K).

Proposition 22 Let I, J be two ideals of R and K a subring of R. Then,

app
I
(K)+ app

J
(K) = app

(I+J )(K).

Proof Since I ⊆ I + J and J ⊆ I + J , it follows that app
(I+J )(K) ⊆ app

I
(K)

and app
(I+J )(K) ⊆ app

J
(K) and so app

I+J (K) ⊆ app
I
(K)+ app

J
(K).

Now, let x ∈ app
I
(K)+ app

J
(K), then x = a + b for some a ∈ app

I
(K) and

b ∈ app
J
(K). Hence, a + I ⊆ K and b + J ⊆ K . So

x + I + J = a + b + I + J = a + I + b + J ⊆ K +K = K

which yields x ∈ app
(I+J )(K). ��

Proposition 23 Let I, J be two ideals of R and K a subring of R. Then,

appI (K)+ appJ (K) ⊆ app(I+J )(K).

Now, let R and R′ be two rings and ϕ : R→ R′ a homomorphism from R to R′.
It is well known, kerϕ is an ideal of R.

Theorem 24 Let R and R′ be two rings and f a homomorphism from R to R′. If A
is a non-empty subset of R, then

f (appkerϕ(A)) = f (A).

Proof Since A ⊆ appkerϕ(A), it follows that f (A) ⊆ f (appkerϕ(A)).
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Conversely, let y ∈ f (appkerϕ(A)). Then, there exists an element x ∈
appkerϕ(A) such that f (x) = y, so we have (x + kerϕ) ∩ A 
= ∅. Thus, there
exists an element a ∈ (x + kerϕ)∩A. Then, a = x + b for some b ∈ kerϕ, that is,
x = a − b. Then, we have

y = f (x) = f (a − b) = f (a)− f (b) = f (a) ∈ f (A),

and so f (appkerϕ(A)) ⊆ f (A). ��
The lower and upper approximations can be presented in an equivalent form as

follows:
Let I be an ideal of R, and A a non-empty subset of R. Then,

app
I
(A) = {a+I ∈ R/I | a+I ⊆ A}, appI (A) = {a+I ∈ R/I | (a+I)∩A 
= ∅}.

Proposition 25 Let I, J be two ideals of R, then appI (J ) is an ideal of R/I .

Proof Suppose that a+I, b+I ∈ appI (J ) and r+I ∈ R/I . Then, (a+I)∩J 
= ∅
and (b + I) ∩ J 
= ∅, so there exist x ∈ (a + I) ∩ J and y ∈ (b + I) ∩ J . Since J

is an ideal of R, we have x − y ∈ J and rx ∈ J . Also, we have

x − y ∈ (a + I)− (b + I) = a − b + I,

rx ∈ r(a + I) = ra + I.

Therefore, (a−b+I)∩J 
= ∅ and (ra+I)∩J 
= ∅, which imply (a+I)−(b+I) ∈
appI (J ) and (r + I)(a + I) ∈ appI (J ). Therefore, appI (J ) is an ideal of R/I . ��
Proposition 26 If I, J be two ideals of R, then app

I
(J ) is an ideal of R/I .

Proof It is straightforward. ��
Similarly, if I is an ideal and J is a subring of R, then app

I
(J ) and appI (J ) are

subrings of R/I .

4 Fuzzy Sets and Fuzzy Rough Sets

Zadeh in [30] introduced the notion of a fuzzy subset A of a non-empty set U as a
membership function μA : U → [0, 1] which associates with each point x ∈ U its
“degree of membership” μA(x) ∈ [0, 1].

Let A and B are fuzzy subsets in U . Then,

(1) A = B :⇔ μA(x) = μB(x), for all x ∈ U

(2) A ⊆ B :⇔ μA(x) ≤ μB(x), for all x ∈ U

(3) C = A ∪ B :⇔ μC(x) = max{μA(x), μB(x)} for all x ∈ U
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(4) D = A ∩ B :⇔ μD(x) = min{μA(x), μB(x)}, for all x ∈ U

(5) The complement of A denoted by AC , is defined by μAC (x) := 1 − μA(x) for
all x ∈ U .

Rosenfeld [27] introduced fuzzy sets in the realm of group theory and formulated
the concept of a fuzzy subgroup of a group. Since then many researchers are engaged
in extending the concepts of abstract algebra to the broader framework of the fuzzy
setting. In 1982, Liu [19] defined and studied fuzzy subrings and fuzzy ideals of
a ring.

A fuzzy subset A of a ring R is called a fuzzy subring of R if, for all x, y ∈ R

(1) μA(x − y) ≥ min{μA(x), μA(y)};
(2) μA(xy) ≥ min{μA(x), μA(y)}.
If the condition (2) is replaced by

μA(xy) ≥ max{μA(x), μA(y)},

then A is called a fuzzy ideal of R.
The reader will find in [8, 20] some basic definitions and results about the fuzzy

algebra.
Let (U, θ) is an approximation space and app(X) a rough set in (U, θ). A fuzzy

rough set app(A) = (app(A), app(A)) in app(X) is characterized by a pair of
maps

μapp(A) : app(X)→ [0, 1] and μapp(A) : app(X)→ [0, 1].

with the property that

μapp(A)(x) ≤ μapp(A)(x) for all x ∈ app(X).

Dubois and Prade [9] introduced the problem of fuzzification of a rough set. Also,
Nanda and Majumdar in [21] investigated and discussed the concept of fuzzy rough
sets.

For two fuzzy rough sets

app(A) = (app(A), app(A)) and app(B) = (app(B), app(B))

in app(X) we define

(1) app(A) = app(B) iff

μapp(A)(x) = μapp(B)(x) for all x ∈ app(X),

μapp(A)(x) = μapp(B)(x) for all x ∈ app(X);
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(2) app(A) ⊆ app(B) iff

μapp(A)(x) ⊆ μapp(B)(x) for all x ∈ app(X),

μapp(A)(x) ⊆ μapp(B)(x) for all x ∈ app(X);

(3) app(C) = app(A) ∪ app(B) iff

μapp(C)(x) = max{μapp(A)(x), μapp(B)(x)} for all x ∈ app(X),

μapp(C)(x) = max{μapp(A)(x), μapp(B)(x)} for all x ∈ app(X);

(4) app(D) = app(A) ∩ app(B) iff

μapp(D)(x) = min{μapp(A)(x), μapp(B)(x)} for all x ∈ app(X),

μapp(D)(x) = min{μapp(A)(x), μapp(B)(x)} for all x ∈ app(X);

(5) We define the complement appC(A) of app(A) by the ordered pair (appC(A),

appC(A)) of membership functions where

μappC(A)(x) = 1− μapp(A)(x) for all x ∈ app(X),

μappC(A)(x) = 1− μapp(A)(x) for all x ∈ app(X).

Let I is an ideal of R and appI (X) = (app
I
(X), appI (X)) a rough ring.

The difference âppI (X) = appI (X)\app
I
(X) is called the boundary region of X.

Let appI (A) = (app
I
(A), appI (A)) is a fuzzy rough set of appI (X). We define

μapp
I
(A) : appI (X)→ [0, 1] as follows:

μapp
I
(A)(x) =

{
μapp

I
(A)(x) if x ∈ app

I
(X)

0 if âppI (X).

Definition 27 Let appI (X) is a rough ring. An interval-valued fuzzy subset A is
given by

A = {(x, [μapp
I
(A)(x), μappI (A)(x)] | x ∈ appI (X)}

where (app
I
(A), appI (A)) is a fuzzy rough set of appI (X).

Suppose that μ̃A (x) = [μapp
I
(A)(x), μappI (A)(x)] for all x ∈ appI (X), and

D([0, 1]) denotes the family of all closed subintervals of [0, 1]. If μapp
I
(A)(x) =

μappI (A)(x) = c where 0 ≤ c ≤ 1, then we have μ̃A (x) = [c, c] which we
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also assume, for the sake of convenience, to belong to D([0, 1]). Thus, μ̃A (x) ∈
D([0, 1]) for all x ∈ appI (X).

Definition 28 Let D1 = [a1, b1], D2 = [a2, b2] be elements of D([0, 1]) then we
define

rmax(D1,D2) = [a1 ∨ a2, b1 ∨ b2],

rmin(D1,D2) = [a1 ∧ a2, b1 ∧ b2].

We call D2 ≤ D1 if and only if a2 ≤ a1 and b2 ≤ b1.

Definition 29 Let appI (X) be a rough ring. A fuzzy rough set appI (A) =
(app

I
(A), appI (A)) in appI (X) is called a fuzzy rough subring if for each x, y ∈

appI (X), the following hold:

μ̃A (x + y) ≥ rmin{μ̃A (x), μ̃A (y)} (1)

μ̃A (xy) ≥ rmin{μ̃A (x), μ̃A (y)} (2)

If the condition (2) is replaced by

μ̃A (xy) ≥ rmax{μ̃A (x), μ̃A (y)}

then A is called a fuzzy rough ideal.

Lemma 30 Let appI (X) is a rough ring. If appI (A) = (app
I
(A), appI (A)) and

appI (B) = (app
I
(B), appI (B)) are two fuzzy rough subrings (resp. ideals) of

appI (X) then A ∩ B is a fuzzy rough subring (resp. ideal) of appI (X).

Definition 31 Let app(X) be a rough ring and appI (A) = (app
I
(A), appI (A)) a

fuzzy rough set of app(X). Then, we define

A t = {x ∈ app
I
(X) | μapp

I
(A)(x) ≥ t},

A t = {x ∈ appI (X) | μappI (A)(x) ≥ t}.

(A t ,A t ) is called a level rough set.

Theorem 32 Let appI (X) is a rough ring and appI (A) = (app
I
(A), appI (A)) a

fuzzy rough set of appI (X). Then, appI (A) is a fuzzy rough subring of appI (X) if
and only if for every 0 ≤ t ≤ 1, (A t ,A t ) is a rough subring of appI (X).
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5 Roughness in Rings Based on Fuzzy Ideals

Davvaz [4] considered a ring as a universal set and assumed that the knowledge
about objects is restricted by a fuzzy ideal. In fact, he applied the notion of fuzzy
ideal of a ring for definitions of the lower and upper approximations in a ring. Here
we review some definitions and results.

Let μ and λ be two fuzzy subsets of a ring R. Then, the sum μ+ λ is defined by

(μ+ λ)(x) := sup
x=a+b

{ min{μ(a), λ(b)} } for all x ∈ R.

This definition is obtained from Zadeh’s extension principle [31].
A fuzzy subset μ of a ring R is called a fuzzy ideal of R if it has the following

properties:

(1) μ(x − y) ≥ min{μ(x), μ(y)} for all x, y ∈ R

(2) μ(xy) ≥ max{μ(x), μ(y)} for all x, y ∈ R.

For a fuzzy ideal μ of a ring R, we have the following:

(1) μ(x) ≤ μ(0) and μ(x) = μ(−x) for all x ∈ R, where 0 denotes the additive
identity of R

(2) μ(x − y) = μ(0) implies μ(x) = μ(y), where x, y ∈ R.

The following statement is well known and easily seen.
Let μ and λ be fuzzy ideals of a ring R. Then, μ ∩ λ is also a fuzzy ideal of R.
When μ is any fuzzy subset of R. The μt = {x ∈ R | μ(x) ≥ t}, where t ∈ [0, 1]

is called a t-level subset of μ. The concept of t-level subset is very important in the
relationship between fuzzy sets and crisp sets. It is well known that each fuzzy set
can be uniquely represented by the family of all its t-level subsets. Also, a fuzzy
subset μ of a ring R is a fuzzy ideal of R, if and only if the t-level subsets μt ,
t ∈ Imμ are ordinary ideals of R.

Definition 33 Let μ be a fuzzy ideal of R. For each t ∈ [0, 1], the set U(μ, t) :=
{(a, b) ∈ R × R | μ(a − b) ≥ t} is called a t-level relation of μ.

An equivalence relation θ on a ring R is a congruence relation if (a, b) ∈ θ

implies (a + x, b + x) ∈ θ and (x + a, x + b) ∈ θ for all x ∈ R.

Lemma 34 Let μ be a fuzzy ideal of a ring R, and let t ∈ [0, 1]. Then, U(μ, t) is a
congruence relation on R.

Proof For any element a of R, μ(a − a) = μ(0) ≥ t and so (a, a) ∈ U(μ, t). If
(a, b) ∈ U(μ, t), then μ(a − b) ≥ t . Since μ is a fuzzy ideal of R, μ(b − a) =
μ(−(b − a)) = μ(a − b) ≥ t which yields (b, a) ∈ U(μ, t). If (a, b) ∈ U(μ, t)

and (b, c) ∈ U(μ, t), then since μ is a fuzzy ideal of R,

μ(a − c) = μ((a − b)+ (b − c)) ≥ min{μ(a − b), μ(b− c)} ≥ min{t, t} = t,
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and so (a, c) ∈ U(μ, t). Therefore, U(μ, t) is an equivalence relation on R. Now,
let (a, b) ∈ U(μ, t) and x be any element of R. Then, since μ(a − b) ≥ t ,

μ((a + x)− (b + x)) = μ((a + x)+ (−x − b)) = μ(a + (x − x)− b)

= μ(a + 0− b) = μ(a − b) ≥ t,

and so (a + x, b + x) ∈ U(μ, t). Since (R,+) is an abelian group, it follows that
(x + a, x + b) ∈ U(μ, t). Therefore, U(μ, t) is a congruence relation on R. ��

In this case, we say that a is congruent to b mod μ, written a ≡t b(modμ) if
μ(a − b) ≥ t .

Lemma 35 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. Then,

U(μ ∩ λ, t) = U(μ, t) ∩ U(λ, t).

We denote by [x](μ,t) the equivalence class of U(μ, t) containing x of R.

Lemma 36 Let μ be a fuzzy ideal of a ring R. If a, b ∈ R and t ∈ [0, 1], then

(1) [a](μ,t) + [b](μ,t) = [a + b](μ,t);
(2) [−a](μ,t) = −([a](μ,t)).

Proof

(1) Suppose that x ∈ [a](μ,t) + [b](μ,t). Then, there exist y ∈ [a](μ,t) and z ∈
[b](μ,t) such that x = y + z. Since (a, y) ∈ U(μ, t) and (b, z) ∈ U(μ, t), it
follows that (a + b, y + z) ∈ U(μ, t) or (a + b, x) ∈ U(μ, t), and so x ∈
[a + b](μ,t).

Conversely, let x ∈ [a + b](μ,t) then (x, a + b) ∈ U(μ, t). Hence, (x −
b, a) ∈ U(μ, t) and so x − b ∈ [a](μ,t) or x ∈ [a](μ,t) + b, which implies that
x ∈ [a](μ,t) + [b](μ,t).

(2) We have

x ∈ [−a](μ,t) ⇔ (x,−a) ∈ U(μ, t)⇔ (0,−a − x) ∈ U(μ, t)

⇔ (a,−x) ∈ U(μ, t)⇔ −x ∈ [a](μ,t)⇔ x ∈ −([a](μ,t)).

��
Proposition 37

(1) Let μ be a fuzzy ideal of a ring R and t ∈ [0, 1]. For any a ∈ R, we have
a + [0](μ,t) = [a](μ,t).

(2) Let μ and λ be two fuzzy ideals of a ring R such that λ ⊆ μ and t ∈ [0, 1].
Then, [x](λ,t) ⊆ [x](μ,t) for all x ∈ R.
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Proof

(1) Assume that a ∈ R, then we have

x ∈ a + [0](μ,t) ⇔ x − a ∈ [0](μ,t) ⇔ (x − a, 0) ∈ U(μ, t)

⇔ (x, a) ∈ U(μ, t)⇔ x ∈ [a](μ,t).

(2) We have

y ∈ [x](λ,t) ⇒ (x, y) ∈ U(λ, t)⇒ λ(x − y) ≥ t

⇒ μ(x − y) ≥ t ⇒ (x, y) ∈ U(μ, t)

⇒ y ∈ [x](μ,t).

��
Let μ and λ be two fuzzy ideals of a ring R. The composition of congruence

relations U(μ, t) and U(λ, t) is defined as follows:
U(μ, t) ◦ U(λ, t) =
{(a, b) ∈ R × R | ∃y ∈ R such that (a, c) ∈ U(μ, t), (c, b) ∈ U(λ, t)}.
It is no difficult to see that U(μ, t) ◦ U(λ, t) is also a congruence relation. We

denote this congruence relation by U(μ ◦ λ, t).
Proposition 38

(1) Let μ and λ be two fuzzy ideals of a ring R and t ∈ [0, 1]. Then, U(μ ◦ λ, t) ⊆
U(μ+ λ, t).

(2) Let μ and λ be fuzzy ideals of a ring R with finite images, and t ∈ [0, 1]. Then,
U(μ ◦ λ, t) = U(μ+ λ, t).

Proof

(1) Suppose that (a, b) be an arbitrary element of U(μ ◦λ, t). Then, there exists an
element c ∈ R such that (a, c) ∈ U(μ, t) and (c, b) ∈ U(λ, t). Therefore, we
have μ(a − c) ≥ t and λ(c − b) ≥ t . Then,

(μ+ λ)(a − b) = sup
u+v=a−b

{ min{μ(u), λ(v)}} ≥ min{μ(a − c), λ(c − b)}
≥ min{t, t} = t,

and so (a, b) ∈ U(μ+ λ, t).
(2) By item (1), we have U(μ◦λ, t) ⊆ U(μ+λ, t), Therefore, we show that U(μ+

λ, t) ⊆ U(μ◦λ, t). Assume that (x, y) ∈ U(μ+λ, t), then (μ+λ)(x−y) ≥ t .
We have

sup
x−y=a+b

{ min{μ(a), λ(b)} } ≥ t .
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Since Imμ and Imλ are finite, then

min{μ(a0), λ(b0)} ≥ t for some a0, b0 ∈ R

such that x − y = a0 + b0. Thus, μ(a0) ≥ t and λ(b0) ≥ t . Now, we have
μ(a0 − 0) ≥ t and λ(x − y − a0) ≥ t , which imply (a0, 0) ∈ U(μ, t) and
(x − y, a0) ∈ U(λ, t). Therefore, (x − y, 0) ∈ U(μ ◦ λ, t). Since U(μ ◦ λ, t)
is a congruence relation, we get (x, y) ∈ U(μ ◦ λ, t). ��

Let μ be a fuzzy ideal of a ring R and t ∈ [0, 1], we know U(μ, t) is an
equivalence relation (congruence relation) on R. Therefore, when U = R and θ

is the above equivalence relation, then we use (R,μ, t) instead of approximation
space (U, θ).

Let μ be a fuzzy ideal of a ring R and U(μ, t) be a t-level congruence relation
of μ on R. Let X be a non-empty subset of R. Then, the sets

U(μ, t,X) := {x ∈ R | [x](μ,t) ⊆ X},

U(μ, t,X) := {x ∈ R | [x](μ,t) ∩X 
= ∅},

are called, respectively, the lower and upper approximations of the set X with respect
to U(μ, t).

The following proposition serve as the starting point for our analysis in the
present paper.

Proposition 39 For every approximation space (R,μ, t) and every subsets A,B of
R, we have:

(1) U(μ, t, A) ⊆ A ⊆ U(μ, t, A)

(2) U(μ, t,∅) = ∅ = U(μ, t,∅)
(3) U(μ, t, R) = R = U(μ, t, R)

(4) If A ⊆ B, then U(μ, t, A) ⊆ U(μ, t, B) and U(μ, t, A) ⊆ U(μ, t, B)

(5) U(μ, t, U(μ, t, A)) = U(μ, t, A)

(6) U(μ, t, U(μ, t, A)) = U(μ, t, A);
(7) U(μ, t, U(μ, t, A)) = U(μ, t, A)

(8) U(μ, t, U(μ, t, A)) = U(μ, t, A)

(9) U(μ, t, A) = (U(μ, t, Ac))c

(10) U(μ, t, A) = (U(μ, t, Ac))c

(11) U(μ, t, A ∩ B) = U(μ, t, A)) ∩ U(μ, t, B)

(12) U(μ, t, A ∩ B) ⊆ U(μ, t, A)) ∩ U(μ, t, B)

(13) U(μ, t, A ∪ B) ⊇ U(μ, t, A)) ∪ U(μ, t, B)

(14) U(μ, t, A ∪ B) = U(μ, t, A)) ∪ U(μ, t, B)

(15) U(μ, t, [x](μ,t)) = U(μ, t, [x](μ,t)) for all x ∈ R.

The following example shows that the converse of (12) and (13) in Proposition 39
is not true.
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Example 40 Let R = {0, a, b, c}. Define addition and multiplication by Cayley
tables:

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

· 0 a b c

0 0 0 0 0
a 0 a b c

b 0 a b c

c 0 0 0 0

Then, R is a ring. Clearly, a = −a, b = −b and c = −c. We define

μ(0) = t0, μ(c) = t1, μ(a) = μ(b) = t2,

where ti ∈ [0, 1], i = 0, 1, 2 and t2 < t1 < t0. It is no difficult to see that μ is a
fuzzy ideal of R. We have

U(μ, t0) = {(0, 0), (a, a), (b, b), (c, c)};
U(μ, t1) = {(0, 0), (a, a), (b, b), (c, c), (a, b), (b, a), (0, c), (c, 0)};
U(μ, t2) = R × R.

Now, let A = {0, a} and B = {0, b, c}. Then,

U(μ, t1, A) = R; U(μ, t1, B) = R; U(μ, t1, A ∩ B) = {0, c};

and

U(μ, t1, A) = ∅; U(μ, t1, B) = {0, c}; U(μ, t1, A ∪ B) = U(μ, t1, R) = R.

Therefore,

U(μ, t1, A) ∩ U(μ, t1, B) 
⊆ U(μ, t1, A ∩ B),

U(μ, t1, A ∪ B) 
⊆ U(μ, t1, A) ∪U(μ, t1, B).

From Proposition 39 and Example 40, we can draw the following conclusions.

(1) The certain information of A ∪ B may be more than the union of the certain
information of A and B.

(2) The uncertain information of A ∩ B may be less than the intersection of the
uncertain information of A and B.

Proposition 41 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. If X is a
non-empty subset of R, then

U(μ ∩ λ, t,X) ⊆ U(μ, t,X) ∩ U(λ, t,X).
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Proof We have

x ∈ U(μ ∩ λ, t,X) ⇒ [x](μ∩λ,t) ∩X 
= ∅
⇒ ∃a ∈ [x](μ∩λ,t) ∩X

⇒ (a, x) ∈ U(μ ∩ λ, t) and a ∈ X

⇒ (μ ∩ λ)(a − x) ≥ t and a ∈ X

⇒ min{μ(a − x), λ(a − x)} ≥ t and a ∈ X

⇒ μ(a − x) ≥ t and λ(a − x) ≥ t and a ∈ X

⇒ (a, x) ∈ U(μ, t) and (a, x) ∈ U(λ, t) and a ∈ X

⇒ (a, x) ∈ U(μ, t), a ∈ X and (a, x) ∈ U(λ, t), a ∈ X

⇒ a ∈ [x](μ,t) ∩X and a ∈ [x](λ,t) ∩X

⇒ [x](μ,t) ∩X 
= ∅ and [x](λ,t) ∩X 
= ∅
⇒ x ∈ U(μ, t,X) and x ∈ U(λ, t,X).

Therefore, U(μ∩λ, t,X) ⊆ U(μ, t,X)∩U(λ, t,X). This completes the proof. ��
The following example shows that the converse of Proposition 41 is not true.

Example 42 Let R = Z6 (the ring of integers modulo 6). Define fuzzy subsets
μ : Z6 → [0, 1] and λ : Z6 → [0, 1] by

μ(0) = t0, μ(1) = μ(2) = μ(4) = μ(5) = t3, μ(3) = t2;
λ(0) = t1, λ(1) = λ(3) = λ(5) = t4, λ(2) = λ(4) = t2,

where ti ∈ [0, 1], 0 ≤ i ≤ 4 and t4 < t3 < t2 < t1 < t0. It follows that μ and λ are
fuzzy ideals of Z6. We have

(μ ∩ λ)(0) = t1,

(μ ∩ λ)(2) = (μ ∩ λ)(4) = t3,

(μ ∩ λ)(1) = (μ ∩ λ)(3) = (μ ∩ λ)(5) = t4.

Also, we have

U(μ, t0) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)};
U(μ, t2) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5),

(5, 2), (2, 5), (4, 1), (1, 4), (0, 3), (3, 0)};
U(μ, t3) = Z6 × Z6,

U(λ, t1) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)};
U(λ, t2) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5);

(5, 3), (3, 5), (4, 2), (2, 4), (1, 3), (3, 1),
(0, 2), (2, 0), (5, 1), (1, 5), (0, 4), (4, 0)};

U(λ, t4) = Z6 × Z6;
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and

U(μ ∩ λ, t1) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)};
U(μ ∩ λ, t3) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5),

(5, 3), (3, 5), (4, 2), (2, 4), (1, 3), (3, 1),
(0, 2), (2, 0), (5, 1), (1, 5), (0, 4), (4, 0)};

U(μ ∩ λ, t4) = Z6 × Z6.

Now, let X = {1, 2, 3}, then

U(μ, t2,X) = Z6, U(λ, t2,X) = Z6, U(μ ∩ λ, t2,X) = {1, 2, 3},

and so U(μ ∩ λ, t,X) 
= U(μ, t,X) ∩ U(λ, t,X).

Proposition 43 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. If X is a
non-empty subset of R, then

U(μ, t,X) ∩ U(λ, t,X) ⊆ U(μ ∩ λ, t,X).

Proof We have

x ∈ U(μ, t,X) ∩ U(λ, t,X) ⇒ x ∈ U(μ, t,X) and x ∈ U(λ, t,X)

⇒ [x](μ,t) ⊆ X and [x](λ,t) ⊆ X

⇒ [x](μ∩λ,t) ⊆ X

⇒ x ∈ U(μ ∩ λ, t,X).

Therefore, U(μ, t,X) ∩ U(λ, t,X) ⊆ U(μ ∩ λ, t,X). ��
The inclusion symbol⊆ in Proposition 43 may not be replaced by an equals sign,

as the next example shows.
From Propositions 41, 43, we can draw the following conclusions.

(1) The certain information of X with respect to the intersection of two fuzzy ideals
μ and λ may be more than the intersection of the certain information of X with
respect to the fuzzy ideals μ and λ.

(2) The uncertain information of X with respect to the intersection of two fuzzy
ideals μ and λ may be less than the intersection of the uncertain information of
X with respect to fuzzy ideals μ and λ.

A non-empty subset A of a ring R is called an upper rough ideal of R if
U(μ, t, A) is an ideal of R.

Proposition 44 Let μ be a fuzzy ideal of a ring R and t ∈ [0, 1]. If A is an ideal of
R, then A is an upper rough ideal of R.

Proof Suppose that a, b ∈ U(μ, t, A) and r ∈ R, then [a](μ,t) ∩ A 
= ∅ and
[b](μ,t) ∩ A 
= ∅. So there exist x ∈ [a](μ,t) ∩ A and y ∈ [b](μ,t) ∩ A. Since A
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is an ideal of R, it follows that x − y ∈ A and rx ∈ A. Now, we have

x − y ∈ [a](μ,t) − [b](μ,t) = [a − b](μ,t).

Hence, [a − b](μ,t) ∩ A 
= ∅, which implies a − b ∈ U(μ, t, A).
Since (x, a) ∈ U(μ, t), it follows that μ(x − a) ≥ t . Now, we have

μ(rx − ra) = μ(r(x − a)) ≥ max{μ(r), μ(x − a)} ≥ μ(x − a) ≥ t .

Hence, (rx, ra) ∈ U(μ, t) or rx ∈ [ra](μ,t), thus rx ∈ [ra](μ,t) ∩ A which implies
[ra](μ,t) ∩ A 
= ∅. Therefore, ra ∈ U(μ, t, A). In a similar way, we get ar ∈
U(μ, t, A). Therefore, U(μ, t, A) is an ideal of R. ��

The above proposition shows that the notion of an upper rough ideal is an
extended notion of a usual ideal of a ring. It is no difficult to see that the converse
of Proposition 44 does not hold in general.

Lemma 45 Let μ be a fuzzy ideal of a ring R and t ∈ [0, 1]. If U(μ, t, A) is a
non-empty set, then [0](μ,t) ⊆ A.

Proof Suppose that U(μ, t, A) 
= ∅, then there exists x ∈ U(μ, t, A) or [x](μ,t) ⊆
A. So −([x](μ,t)) ⊆ −A = {−a | a ∈ A} = A. Now, we have

[0](μ,t) = [x + (−x)](μ,t)

= [x](μ,t) + [−x](μ,t)

= [x](μ,t) + (−[x](μ,t))

⊆ A+ A = A.

��
Proposition 46 Let μ be a fuzzy ideal of a ring R and t ∈ [0, 1]. Let A be an ideal
of R. If U(μ, t, A) is a non-empty set, then it is equal to A.

Proof By Proposition 39(1), we have U(μ, t, A) ⊆ A. We show that A ⊆
U(μ, t, A). Assume that a is an arbitrary element of A. By Lemma 45, we have
[0](μ,t) ⊆ A. Since A is an ideal of R, it follows that

a + [0](μ,t) ⊆ a + A ⊆ A.

Now, we obtain [a](μ,t) ⊆ A, which implies a ∈ U(μ, t, A). ��
Let μ be a fuzzy ideal of a ring R and (U(μ, t, A), U(μ, t, A)) a rough set in the

approximation space (R,μ, t). If U(μ, t, A) and U(μ, t, A) are ideals of R, then
we call (U(μ, t, A), U(μ, t, A)) a rough ideal. Therefore, we have

Corollary 47 Let μ be a fuzzy ideal of a ring R and t ∈ [0, 1]. If A is an ideal of
R, then (U(μ, t, A), U(μ, t, A)) is a rough ideal of R.
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Proposition 48 Let μ and λ be two fuzzy ideals of a ring R such that λ ⊆ μ. If A
is a non-empty subset of R and t ∈ [0, 1], then

(1) U(λ, t, A) ⊆ U(μ, t, A)

(2) U(μ, t, A) ⊆ U(λ, t, A).

Proof

(1) Suppose that x be an arbitrary element of U(λ, t, A), then [x](λ,t) ∩ A 
= ∅.
Since [x](λ,t) ⊆ [x](μ,t), it follows that [x](μ,t) ∩ A 
= ∅ which implies x ∈
U(μ, t, A).

(2) Assume that x ∈ U(μ, t, A), then [x](μ,t) ⊆ A. Now, we obtain [x](λ,t) ⊆ A

which implies x ∈ U(λ, t, A). ��
Lemma 49 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. Let X be a
non-empty subset of R. If U(λ, t) ⊆ U(μ, t), then

(1) U(λ, t,X) ⊆ U(μ, t,X)

(2) U(μ, t,X) ⊆ U(λ, t,X).

Proof

(1) Suppose that x is an arbitrary element of U(λ, t,X), then there exists a ∈
[x](λ,t) ∩ X. Then, a ∈ X and (a, x) ∈ U(λ, t) ⊆ U(μ, t). Therefore,
a ∈ [x](μ,t) ∩X, and so x ∈ U(μ, t,X).

(2) Suppose that x is an arbitrary element of U(μ, t,X), then [x](μ,t) ⊆ X.
Since [c](λ,t) ⊆ [x](μ,t), it follows that [x](λ,t) ⊆ X which implies that
x ∈ U(λ, t,X). ��

Now, we consider the relationships between the lower and upper approximations
with respect to the sum of fuzzy ideals and the composition of congruence relations.

Proposition 50 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. If X is a
non-empty subset of R, then

(1) U(μ ◦ λ, t,X) ⊆ U(μ+ λ, t,X)

(2) U(μ+ λ, t,X) ⊆ U(μ ◦ λ, t,X).

Proposition 51 Let μ and λ be fuzzy ideals of a ring R with finite images, and
t ∈ [0, 1]. If X is a non-empty subset of R, then

(1) U(μ ◦ λ, t,X) = U(μ+ λ, t,X)

(2) U(μ ◦ λ, t,X) = U(μ+ λ, t,X).

If A and B are non-empty subsets of R, Let A ·B denote the set of all finite sums
{a1b1 + a2b2 + . . .+ anbn n ∈ N, ai ∈ A, bi ∈ B}.
Proposition 52 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. If A is an
ideal (or sub-ring) of R, then

U(μ, t, A) · U(λ, t, A) ⊆ U(μ ◦ λ, t, A).
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Proof Suppose that z be any element of U(μ, t, A) · U(λ, t, A). Then,

z =
n∑

i=1
aibi for some ai ∈ U(μ, t, A) and bi ∈ U(λ, t, A).

Thus, [ai](μ,t) ∩ A 
= ∅ and [bi](λ,t) ∩ A 
= ∅ for i = 1, . . . , n. So, there exist
elements xi and yi in R such that

xi ∈ [ai](μ,t) ∩ A and yi ∈ [bi](λ,t) ∩ A for i = 1, . . . , n.

Since A is an ideal (or sub-ring) of R, it follows that
n∑

i=1
xiyi ∈ A. Since (xi, ai) ∈

U(μ, t) and (yi, bi) ∈ U(λ, t), we have μ(xi − ai) ≥ t and λ(yi − bi) ≥ t . Then,
μ(xibi − aibi) = μ((xi − ai)bi) ≥ max{μ(xi − ai), μ(bi)} ≥ μ(xi − ai) ≥ t , and
λ(xiyi −xibi) = λ(xi(yi −bi)) ≥ max{λ(xi), λ(yi −bi)} ≥ λ(yi −bi) ≥ t . Hence,
(xibi, aibi) ∈ U(μ, t) and (xiyi, xibi) ∈ U(λ, t), and so

(xiyi, aibi) ∈ U(μ ◦ λ, t) for all i = 1, . . . n.

Since U(μ ◦ λ, t) is a congruence relation, it follows that

(
n∑

i=1
xiyi,

n∑

i=1
aibi) ∈ U(μ ◦ λ, t),

and so
n∑

i=1
xiyi ∈ [

n∑

i=1
aibi](μ◦λ,t). Therefore, [

n∑

i=1
aibi](μ◦λ,t) ∩ A 
= ∅ which

implies that x =
n∑

i=1
aibi ∈ U(μ ◦ λ, t, A). ��

Corollary 53 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. If A is an
ideal (or sub-ring) of R, then

U(μ, t, A) · U(λ, t, A) ⊆ U(μ+ λ, t, A).

The inclusion symbol⊆ in Proposition 52 may not be replaced by an equal sign,
as the next example shows.

Example 54 Let R = Z15 and

μ(x) =
{

1 if x = 0
0 otherwise

and λ(x) =
{

1 if x = 0, 5, 10
0 otherwise
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and let A = {0, 3, 6, 9, 12}. Then, routine calculations give that

U(μ, 1
2 , A) = {0, 3, 6, 9, 12} = A; U(λ, 1

2 , A) = Z15;
U(μ, 1

2 , A) · U(λ, 1
2 , A) = A · Z15 = A.

On the other hand, it is easy to see that U(μ◦λ, 1
2 ) = U(λ, 1

2 ), and so U(μ◦λ, 1
2 ) =

Z15. This shows that U(μ, t, A) ·U(λ, t, A) = U(μ ◦λ, t, A) is not true in general.

From Proposition 52 and Example 54, we see that the uncertain information of A
with respect to the sum of two fuzzy ideals μ and λ may be more than the product
of the uncertain information of A with respect to the fuzzy ideals μ and λ.

Proposition 55 Let μ and λ be fuzzy ideals of a ring R, and t ∈ [0, 1]. If A is a
subgroup of (R,+), then

U(μ, t, A)+ U(λ, t, A) = U(μ ◦ λ, t, A).

Proof Suppose that z be any element of U(μ, t, A)+ U(λ, t, A). Then, z = a + b

for some a ∈ U(μ, t, A) and b ∈ U(λ, t, A). Thus,

[a](μ,t) ∩ A 
= ∅ and [b](λ,t) ∩ A 
= ∅.

So there exist elements x and y in R such that x ∈ [a](μ,t)∩A and y ∈ [b](λ,t)∩A.
Since A is a subgroup of (R,+), it follows that x + y ∈ A. Since (x, a) ∈ U(μ, t)

and (y, b) ∈ U(λ, t), we obtain (x − a, 0) ∈ U(μ, t) and (0, b − y) ∈ U(λ, t),
and so

(x − a, b − y) ∈ U(μ ◦ λ, t) or (x + y, a + b) ∈ U(μ ◦ λ, t).

Hence, x + y ∈ [a + b](μ◦λ,t). Now, we have x + y ∈ [z](μ◦λ,t) ∩A, which implies
z ∈ U(μ ◦ λ, t, A). Therefore, U(μ, t, A)+ U(λ, t, A) ⊆ U(μ ◦ λ, t, A).

Conversely, assume that x be any element of U(μ◦λ, t, A), then [x](μ◦λ,t)∩A 
=
∅. So there exists a ∈ R such that a ∈ [x](μ◦λ,t) ∩ A. Thus, (a, x) ∈ U(μ ◦ λ, t).
Since U(μ ◦ λ, t) is a congruence relation, there exists y ∈ R such that (a, y) ∈
U(μ, t) and (y, x) ∈ U(λ, t). Since a ∈ A and a ∈ [y](μ,t), we have [y](μ,t)∩A 
=
∅, and so y ∈ U(μ, t, A). From (y, x) ∈ U(λ, t), we get (x − y, 0) ∈ U(λ, t) or
0 ∈ [x − y](λ,t). Since A is a subgroup of (R,+), it follows that 0 ∈ A. Thus,
0 ∈ [x − y](λ,t) ∩ A, which implies x − y ∈ U(λ, t, A). So

x = y + (x − y) ∈ U(μ, t, A)+ U(λ, t, A).

Therefore, we get U(μ ◦ λ, t, A) ⊆ U(λ, t, A)+ U(λ, t, A). ��
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6 Approximations in a Ring by Using a Neighborhood
System

Lin [18] proposed a more general framework for the study of approximation
operators by using the so-called neighborhood systems from a topological space.
In a neighborhood system, each element of a universe is associated with a family
of subsets of the universe. This family is called a neighborhood system of the
element, and each member in the family is called a neighborhood of the element.
Any subset of the universe can be approximated based on neighborhood systems of
all elements in the universe, also see [28]. In [10], Freni considered the relation γ

and its transitive closure γ ∗ on a semigroup.
Let S be a semigroup. Then, we set γ1 = {(x, x) | x ∈ S} and for every integer

n > 1, γn is the relation defined as follows:

xγny ⇔ ∃(z1, . . . , zn) ∈ Sn, ∃σ ∈ Sn : x =
n∏

i=1
zi, y =

n∏

i=1
zσ(i),

where Sn is the symmetric group on n letters. The relation γ is the smallest
equivalence relation on S so that S/γ ∗ is a commutative semigroup. Based on the
relation γ , Davvaz in [6] defined a neighborhood system for each element of S,
and presented a general framework of the study of approximations in semigroups.
Davvaz [7] considered the relation α and its transitive closure α∗. The relation α is
the smallest equivalence relation on a ring R so that R/α∗ is a commutative ring.
Based on the relation α, he defined a neighborhood system for each element of R.

Definition 56 Let R be a ring. A congruence relation ρ on R is an equivalence
relation that satisfies

r1 + s1 ρ r2 + s2 and r1s1 ρ r2s2,

whenever r1ρr2 and s1ρs2.
For a congruence on a ring, the equivalence class containing 0 is always a two-

sided ideal, and the two operations on the set of equivalence classes define the
corresponding quotient ring.

Lemma 57 Let R be a ring and ρ be an equivalence relation on R. Then, ρ is a
congruence relation on R if and only if for every x, y, a ∈ R,

xρy ⇒
{
x + a ρ y + a, a + x ρ a + y,

x · a ρ y · a, a · x ρ a · y.

Proof It is straightforward. ��
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Definition 58 Let R be a (non-commutative) ring. We define the relation α as
follows:

x α y ⇐⇒ ∃n ∈ N, ∃(k1, . . . , kn) ∈ N
n and [∃(xi1, . . . , xiki ) ∈ Rki , ∃σi ∈

Ski , (i = 1, . . . , n)] such that

x =
n∑

i=1
(

ki∏

j=1
xij ) and y =

n∑

i=1
(

ki∏

j=1
xiσi(j)).

The relation α is reflexive and symmetric. Let α∗ be the transitive closure of α.

Theorem 59 α∗ is a congruence relation on R.

Proof If xαy, then ∃n ∈ N, ∃(k1, . . . , kn) ∈ N
n, and [∃(xi1, . . . , xiki ) ∈ Rki ,

∃σi ∈ Ski , (i = 1, . . . , n)] such that

x =
n∑

i=1
(

ki∏

j=1
xij ) and y =

n∑

i=1
(

ki∏

j=1
xiσi(j)).

and so

x + a =
n∑

i=1
(

ki∏

j=1
xij )+ a and y + a =

n∑

i=1
(

ki∏

j=1
xiσi(j))+ a.

Now, let kn+1 = 1, xn+1 1 = a, σn+1 = id . Thus,

x + a =
n+1∑

i=1
(

ki∏

j=1
xij ) and y + a =

n+1∑

i=1
(

ki∏

j=1
xiσi(j)).

Therefore, x + a α y + a. In the same way, we can show that a + x α a + y. Now,
it is easy to see that

x + a α∗ y + a and a + x α∗ a + y.

Now, note that

xa = (
n∑

i=1
(

ki∏

j=1
xij )
)
a and ya = (

n∑

i=1
(

ki∏

j=1
xiσi(j))

)
a,

which yields that

xa =
n∑

i=1

(
(

ki∏

j=1
xij )a
)

and ya =
n∑

i=1

(
(

ki∏

j=1
xiσi(j))a

)
.
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We put k′i = ki + 1, xik′i = a and define τi(r) = σi(r) for all r = 1, . . . , ki and
τi(ki + 1) = ki + 1. In this case, τi ∈ Sk′i (i = 1, . . . , n). Thus,

xa =
n∑

i=1
(

k′i∏

j=1
xij ) and ya =

n∑

i=1
(

k′i∏

j=1
xiτi(j)).

Therefore, xa α ya and so xa α∗ ya. Similarly, we obtain ax α∗ ay. This completes
the proof. ��

We define⊕ and� on R/α∗ in the usual manner:

α∗(a)⊕ α∗(b) = α∗(a + b),

α∗(a)� α∗(b) = α∗(ab).

Corollary 60 The quotient R/α∗ is a commutative ring.

Proof Since α∗ is a congruence relation, it follows that R/α∗ is a ring. Suppose that
σ is the permutation of S2 such that σ(1) = 2. Clearly, we have x1x2 α xσ(1)xσ(2).
Then, x1x2 α∗ xσ(1)xσ(2). Therefore, R/α∗ is a commutative ring. ��
Theorem 61 The relation α∗ is the smallest equivalence relation such that the
quotient R/α∗ is a commutative ring.

Proof Let θ be an equivalence relation such that R/θ is a commutative ring and
let ϕ : R → R/θ be the canonical projection. If xαy, then there exist n ∈ N,
(k1, . . . , kn) ∈ N

n and there exist (xi1, . . . , xiki ) ∈ Rki and σi ∈ Ski (i = 1, . . . , n)
such that

x =
n∑

i=1
(

ki∏

j=1
xij ) and y =

n∑

i=1
(

ki∏

j=1
xiσi(j)).

Hence,

ϕ(x) =
n∑

i=1
(

ki∏

j=1
ϕ(xij )) and ϕ(y) =

n∑

i=1
(

ki∏

j=1
ϕ(xiσi(j))).

By the commutativity of R/θ , it follows that ϕ(x) = ϕ(y). Thus, xαy implies that
xθy. Finally, let xα∗y. Then, there exist z1, . . . , zm ∈ R such that x = z1αz2,
z2αz3, . . ., zn−1αzn = y, and so x = z1θz2, z2θz3, . . ., zn−1θzn = y

Since θ is transitively closed, it follows that xθy. Hence,

x ∈ α∗(y) ⇒ x ∈ θ(y).

Therefore, α∗ ⊆ θ . ��
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Definition 62 For the relation α on R and a positive integer k, we now define a
notion of binary relation αk called the k-step-relation of α as follows:

(1) α1 = α

(2) αk = {(x, y) ∈ R × R | there exist y1, y2, . . . , yi ∈ R, 1 ≤ i ≤ k − 1, such
that xαy1, y1αy2, . . ., yiαy} ∪ α1, k ≥ 2.

It is easy to see that

αk+1 = αk ∪ { (x, y) ∈ R × R | there exist y1, . . . , yk ∈ R, such that
xαy1, y1αy2, . . . , ykαy}.

Obviously, αk ⊆ αk+1, and there exists n ∈ N such that αk = αn for all k ≥ n.
(In fact αn = α∗ is nothing else but the transitive closure of α). Of course α∗ is
transitive. The relation αk can be conveniently expressed as a mapping from R to
℘(R), Nk(x) = {y ∈ R | xαky} by collecting all αk-related elements for each
element x ∈ R. The set Nk(x) may be viewed as a αk-neighborhood of x defined
by the binary relation αk .

Based on the relation αk on R, we can obtain a neighborhood system for each
element x: {Nk(x) | k ≥ 1}. This neighborhood system is monotonically increasing
with respect to k. We can also observe that

Nk(x) = {y ∈ R | there exist y1, y2, . . . , yi ∈ R such that xαy1, y1αy2, . . . , yiαy,

1 ≤ i ≤ k − 1, or xαky}.

If A and B are non-empty subsets of a ring R, then A+B = {a+ b | a ∈ A, b ∈
B} and AB denote the set of all finite sums {a1b1+ a2b2+ . . .+ anbn| n ∈ N, ai ∈
A, bi ∈ B}.
Theorem 63 For each a, b ∈ R and natural numbers k, l we have

Nk(a)+Nl(b) ⊆ Nk+l−1(a + b).

Proof Suppose that x ∈ Nk(a)+Nl(b). Then, there exist a′ ∈ Nk(a) and b′ ∈ Nl(b)

such that x = a′ + b′. Since a′ ∈ Nk(a), it follows that a′αka and so there exist
{x1, . . . , xk+1} ⊆ R with x1 = a′, xk+1 = a such that x1 α x2, x2 α x3, . . .,
xk α xk+1. Hence, for t = 1, . . . , k,

xt α xt+1 ⇔ ∃nt ∈ N, ∃(ht1, . . . , htnt ) ∈ N
nt and [∃(uti1, . . . , utihti

) ∈ Rhti ,
∃σi ∈ Shti , (i = 1, . . . , nt )] such that

xt =
nt∑

i=1
(
hti∏

j=1
utij ) and xt+1 =

nt∑

i=1
(
hti∏

j=1
utiσi(j)).
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Also, since b′ ∈ Nl(b), it follows that b′ αl b and so there exist {y1, . . . , yl+1} ⊆ R

with y1 = b′, yl+1 = b such that y1 α y2, y2 α y3, . . ., yl α yl+1. Hence, for
s = 1, . . . , l,

ys α ys+1 ⇔ ∃ms ∈ N, ∃(h′s1, . . . , h
′
sms

) ∈ N
ms and [∃(vsi1, . . . , vsih′si ) ∈

Rh′si , ∃σi ∈ Sh′si , (i = 1, . . . ,ms)] such that

ys =
ms∑

i=1
(

h′si∏

j=1
vsij ) and ys+1 =

ms∑

i=1
(

h′si∏

j=1
vsiσi(j)).

Therefore, we obtain

xt + y1 =
nt∑

i=1
(
hti∏

j=1
utij )+

m1∑

i=1
(

h′1i∏

j=1
v1ij ),

xt+1 + y1 =
nt∑

i=1
(
hti∏

j=1
utiσi(j))+

m1∑

i=1
(

h′1i∏

j=1
v1ij ),

and

xk+1 + ys =
nk∑

i=1
(
hki∏

j=1
ukiσi(j))+

ms∑

i=1
(

h′si∏

j=1
vsij ),

xk+1 + ys+1 =
nk∑

i=1
(
hki∏

j=1
ukiσi(j))+

ms∑

i=1
(

h′si∏

j=1
vsiσi(j)).

If we pick up elements z1, . . . , zk+l such that

zi = xi + y1, i = 1, . . . , k,
zk+j = xk+1 + yj+1, j = 1, . . . , l.

Then, z1 αk+l−1 zm+1. So x = a′ + b′ = x1 + y1 αk+l−1 xk+1 + yl+1 = a + b.
Therefore, x ∈ Nk+l−1(a + b). ��

For a neighborhood operator Nk on R, we can extend Nk from ℘(R) to ℘(R)

by: Nk(X) = ⋃
x∈X

Nk(x) for all X ⊆ R. So, we can directly deduce that

Proposition 64 We have

(1) A ⊆ B ⇒ Nk(A) ⊆ Nk(B)

(2) for all k, l ≥ 1, we have Nl(Nk(x)) ⊆ Nl+k(x).

If θ∗ is a congruence relation on R such that R/θ∗ is a commutative ring, then
α∗ ⊆ θ∗.
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Let R be a ring and A be a non-empty subset of R. We define the lower and upper
approximations of A with respect to α∗ as follows:

α∗(A) := {x ∈ R | α∗(x) ⊆ A} and α∗(A) := {x ∈ R | α∗(x) ∩ A 
= ∅}.

Similarly, we can define the lower and upper approximations of A with respect to
η∗. In this case, we have

θ∗(A) ⊆ α∗(A) ⊆ A ⊆ α∗(A) ⊆ θ∗(A).

Definition 65 For the relation α, by substituting equivalence class α∗(x) with αk-
neighborhood Nk(x) in the previous definition, we can define a pair of lower and
upper approximation operators with respect to Nk as follows:

apr
k
(A) := {x ∈ R | Nk(x) ⊆ A} and aprk(A) := {x ∈ R | Nk(x) ∩ A 
= ∅}.

The set apr
k
(A) consists of those elements whose αk-neighborhoods are contained

in A, and aprk(A) consists of those elements whose αk-neighborhoods have a non-
empty intersection with A.

Proposition 66 If A is a non-empty subset of R, then we have

(1) apr
k+1

(A) ⊆ apr
k
(A)

(2) aprk(A) ⊆ aprk+1(A).

Therefore:

Corollary 67 We have

⋃{x | x ∈ α∗(A)} =⋂
k

apr
k
(A) and

⋃{x | x ∈ α∗(A)} =⋃
k

aprk(A).

Proposition 68 If A and B are non-empty subsets of R, then the pair of approxi-
mation operators satisfies the following properties:

(1) apr
k
(A) ⊆ A ⊆ aprk(A)

(2) apr
k
(A) = (aprk(A

c))c

(3) aprk(A) = (apr
k
(Ac))c

(4) apr
k
(A ∩ B) = apr

k
(A) ∩ apr

k
(B)

(5) aprk(A ∪ B) = aprk(A) ∪ aprk(B)

(6) apr
k
(A ∪ B) ⊇ apr

k
(A) ∪ apr

k
(B);

(7) aprk(A ∩ B) ⊆ aprk(A) ∩ aprk(B)

(8) A ⊆ B ⇒ apr
k
(A) ⊆ apr

k
(B)

(9) A ⊆ B ⇒ aprk(A) ⊆ aprk(B).
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Proposition 69 Let A be a non-empty subset of R. For all k ≥ l ≥ 1, we have

(1) A ⊆ apr
l
(aprk(A))

(2) aprl(aprk
(A)) ⊆ A.

Proof

(1) Suppose that a ∈ A. If Nl(a) = ∅. Then, it is clear that Nl(a) ⊆ aprk(A),
which implies that a ∈ apr

l
(aprk(A)), and so A ⊆ apr

l
(aprk(A)). If Nl(a) 
=

∅, then for each b ∈ Nl(a), we have a ∈ Nl(b). Hence, Nl(b) ∩ A 
= ∅. Now,
we have b ∈ aprl(A), and then we obtain b ∈ aprk(A). Therefore, Nl(a) ⊆
aprk(A), which implies that a ∈ apr

l
(aprk(A)), and so A ⊆ apr

l
(aprk(A)).

(2) Suppose that a ∈ aprl(aprk
(A)). Then, we have Nl(a)∩ apr

k
(A) 
= ∅, and so

there exists b ∈ Nl(a)∩aprk(A). Therefore, a ∈ Nl(b) and Nk(b) ⊆ A. Hence,
a ∈ Nl(b) ⊆ Nk(b) ⊆ A, and so we conclude that aprl(aprk(A)) ⊆ A. ��

Proposition 70 For all k, l ≥ 1 and A ⊆ R, we have

(1) apr
l+k(A) ⊆ apr

l
(apr

k
(A))

(2) aprl+k(A) ⊇ aprl(aprk(A)).

Proof

(1) Suppose that a ∈ apr
l+k(A). Then, Nl+k(a) ⊆ A. We have Nk(Nl(a)) ⊆

Nk+l (a) ⊆ A, which implies that Nl(a) ⊆ apr
k
(A). Therefore, a ∈

apr
l
(apr

k
(A)).

(2) Suppose that a ∈ aprl(aprk(A)). Then, Nl(a) ∩ aprk(A) 
= ∅, and so there
exists b ∈ Nl(a)∩aprk(A). Since b ∈ aprk(A), it follows that Nk(b)∩A 
= ∅.
Now, we have

∅ 
= Nk(b) ∩ A ⊆ Nk(Nl(a)) ∩ A ⊆ Nl+k(a) ∩ A,

and so Nl+k(a) ∩ A 
= ∅, which implies that a ∈ aprl+k(A). ��
Proposition 71 If A,B are non-empty subsets of R, then

aprk(A)+ aprl(B) ⊆ aprk+l−1(A+ B).

Proof Suppose that z be any element of aprk(A)+ aprl(B). Then, there exist x ∈
aprk(A) and y ∈ aprl(B) such that z = x+y. Since x ∈ aprk(A) and y ∈ aprl(B),
it follows that there exist a, b ∈ R such that a ∈ Nk(x)∩A and b ∈ Nl(y)∩B. So,
a ∈ Nk(x) and b ∈ Nl(y). Now, we have Nk(x)+Nl(y) ⊆ Nk+l−1(z). Since a+b ∈
A+ B, it follows that a + b ∈ Nk+l−1(z) ∩ A+ B, and so z ∈ aprk+l−1(A+ B).
This completes the proof. ��
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7 Generalized Lower and Upper Approximations
with Respect to Ideals

Yamak et al. [29], introduced a general framework for the study of generalized
rough sets in which both constructive and axiomatic approaches are used, also see
[5]. They introduced the concept of a set-valued homomorphism for rings, which
is a generalization of ordinary homomorphism. Then, by using the definitions of
lower inverse and upper inverse, they presented the definition of uniform set-valued
homomorphism. In the next paragraph we review some of their results.

Let X and U be two finite universes. We can define a set-valued function T :
X→P(U) whereP(U) denotes the set of all subsets of U . The triple (X,U, T ) is
referred to as a generalized approximation space. It can be defined a relation from X

to U by setting ρT = {(x, y) | x ∈ T (y)}. Obviously, suppose that ρ is an arbitrary
relation from X to U . It can be defined a set-valued function Tρ : X → P(U) by
Tρ(x) = {y ∈ U | (x, y) ∈ ρ, x ∈ X}.

Two trivial generalized approximation space are the null generalized approxi-
mation space and the total generalized approximation space which are respectively
defined as follows:

(1) The null generalized approximation space (T ,X,U): T (x) = ∅ for all x ∈ X.
(2) The total generalized approximation space (T ,X,U): T (x) = U for all x ∈ X.

Suppose A be a fuzzy set of a universe U , we take the parameter set X = [0, 1],
and define the mapping T : X→P(U) as follows:

T (α) := {x ∈ X | α ≤ A(x)}

Definition 72 Let (X,U, T ) be a generalized approximation space. For any set
B ⊆ U , a pair of lower and upper approximations, T −(B) and T +(B), are defined
by

T −(B) := {x ∈ X | T (x) ⊆ B}and T +(B) := {x ∈ X | T (x) ∩ B 
= ∅}.

The pair (T −(B), T +(B)) is referred to as a generalized rough set.

Proposition 73 Let (X,U, T ) be a generalized approximation space. If A and B

are subsets of U , then the following hold:

(1) T −(A) =∼ T +(∼ A), T +(A) =∼ T −(∼ A)

(2) T −(Y ) = X, T +(∅) = ∅
(3) If A ⊆ B implies T −(A) ⊆ T −(B);
(4) If A ⊆ B implies T +(A) ⊆ T +(B);
(5) T +(A ∪ B) = T +(A) ∪ T +(B)

(6) T +(A ∩ B) ⊆ T +(A) ∩ T +(B)

(7) T −(A) ∪ T −(B) ⊆ T −(A ∪ B)

(8) T −(A ∩ B) = T −(A) ∩ T −(B)
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where ∼ A is the complement of A. With respect to certain special types, say,
serial, reflexive, symmetric, and transitive binary relation on the universe U , the
approximation operators have the following additional properties.

(9) If ρT is a serial relation, then T +(U) = U , T −(∅) = ∅, T −(A) ⊆ T +(A)

(10) If ρT is a reflexive relation, then T −(A) ⊆ A ⊆ T +(A)

(11) If ρT is a symmetric relation, then T +(T −A) ⊆ A ⊆ T −(T +A)

(12) If ρT is a transitive relation, then T −(A) ⊆ T −(T −(A)), T +(A) ⊇
T +(T +(A)).

Proposition 74 Let (X,U, T ) be a generalized approximation space. Let {Ai}i∈J
be an arbitrary family in U . Then,

(1) T −(
⋂

Ai) =⋂ T −(Ai)

(2) T +(
⋃

Ai) ⊆⋃ T +(Ai).

Proposition 75 Let X and Y be two non-empty sets and let (X, Y, T ) be a
generalized approximation space. Then,

(1) {T −(A) | A ∈P(Y )} is a complete lattice relative to the relation ⊆;
(2) {T +(A) | A ∈P(Y )} is a complete lattice relative to the relation ⊆;
(3) {(T −(A), T +(A)) | A ∈P(Y )} is a complete lattice relative to the relation ⊆.

Every Pawlak rough set may be consider as a generalized rough set.
Suppose that R, S are rings. First, we define a set-valued homomorphism from

R to P(S) and then we show that every set-valued homomorphism is uniform.

Definition 76 Let T : R→P(S) be a set-valued function. The mapping T is said
to be a set-valued homomorphism if

(1) T (a)+ T (b) ⊆ T (a + b);
(2) −T (a) ⊆ T (−a)
(3) T (a) · T (b) ⊆ T (a · b)
for all a, b ∈ R. A set-valued function T is called a strong set-valued homomor-
phism if

(1) T (a + b) = T (a)+ T (b)

(2) T (−a) = −T (a)

(3) T (a · b) = T (a) · T (b)

for all a, b ∈ R.

It is easy to verify that T (0) ( 
= ∅) is a subring of S for every set-valued
homomorphism T .

Example 77

(1) Let F be a field. Consider the ring (F\{0}, ·,�) where a � b = 1. Then,
the generalized approximation space (T , F\{0}, F\{0}) defined by T (x) =
{x,−x} is a strong set-valued homomorphism.
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(2) Let I be an ideal of a ring S, and let T : R → P(R) be a set-valued function
defined as T (r) = r+ I . Then, T is a set-valued homomorphism and T +(B) =
appI (B), T −(B) = appI (B).
This example shows that the lower and upper approximations of the set B with
respect to the ideal I is a generalized rough set.

(3) Let R and S be rings. If T : R → P(S) is a total set-valued function, then T

is a set-valued homomorphism. If S is a ring with unity 1S , then T is a strong
set-valued homomorphism.

(4) Let R, S be rings. Then, the set-valued function T : R → P(S) defined as
T (r) = {0} is a strong set-valued homomorphism.

(5) Let f : R → S be a ring homomorphism. Then, the set-valued function T :
R→P(S) defined as T (r) = {f (r)} is a strong set-valued homomorphism.

(6) Let R be a ring, I an ideal of R; for a, b ∈ R we define a ≡ b(modI) if and
only if a − b ∈ I . Then, the relation ≡ is a congruence.

(7) Let R be a ring, I and J ideals of R; for x, y ∈ R we define x ∼ y if and only if
x = a+ y + b for some a ∈ I and b ∈ J . Then, the relation∼ is a congruence.

Let θ be a congruence on a ring R. Define Tθ : R → P(R) by Tθ (x) = [x]θ .
Then, Tθ is a set-valued homomorphism. Note that Tθ is not a strong set-valued
homomorphism in general.

Proposition 78 Let R and S be two rings, B be a subset of S. Then,

(1) Let T : R → P(S) be a set-valued homomorphism. Let B be a subring of S,
and T +(B) a non-empty subset of R. Then, T +(B) is a subring of R;

(2) Let T : R→P(S) be a strong set-valued homomorphism. Let B be a subring
of S, and T −(B) a non-empty subset of R. Then, T −(B) is a subring of R;

(3) Let T : R → P∗(S) be a set-valued homomorphism where P∗(S) denotes
the set of all non-empty subsets of S. Let B be an ideal of S, and T +(B) a
non-empty subset of R. Then, T +(B) is an ideal of R;

(4) Let T : R → P∗(S) be a strong set-valued homomorphism where P∗(S)
denotes the set of all non-empty subsets of S. Let B be an ideal of S, and T −(B)

a non-empty subset of R. Then, T −(B) is an ideal of R,

Proposition 79 Let T : R → P(S) be a set-valued homomorphism. If A,B are
non-empty subsets of S, then

(1) T +(A) ∗ T +(B) ⊆ T +(A ∗ B)

(2) T +(A)+ T +(B) ⊆ T +(A+ B)

(3) T +(A) · T +(B) ⊆ T +(A · B).

Proposition 80 Let T : R→P(S) be a strong set-valued homomorphism. If A,B

are non-empty subsets of S, then

(1) T −(A) ∗ T −(B) ⊆ T −(A ∗ B);
(2) T −(A)+ T −(B) ⊆ T −(A+ B)

(3) T −(A) · T −(B) ⊆ T −(A · B).
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Proposition 81 Let T : R → P(S) be a (strong) set-valued homomorphism.
Let f : R′ → R be a ring homomorphism. Then, T of is a (strong) set-valued
homomorphism from R′ to S and (T of )−(B) = f−1(T −(B)), (T of )+(B) =
f−1(T +(B)) for all B ∈P(S).

Proposition 82 Let T : R → P(S) be a (strong) set-valued homomorphism.
Let f : S → S′ be a ring homomorphism. Then, Tf is a (strong) set-valued
homomorphism from R to S′ defined by Tf (r) = f (T (r)) and (Tf )

−(B) =
T −(f−1(B)), (Tf )+(B) = T +(f−1(B)) for all B ∈P(S′).

Proposition 83 Let T : R → P(S) be a (strong) set-valued homomorphism. Let
I be an ideal of S. Define TI : R→P(S/I) by TI (r) = {a + I | a ∈ T (r)}. Then,
TI is a (strong) set-valued homomorphism.

Definition 84 Let (T ,R, S) be a generalized approximation space. The mapping
T is said to be lower semiuniform if, for each subring B in S, the set T −(B) is a
subring of R or empty set. The mapping T is said to be upper semiuniform if, for
each subring B in S, the set T +(B) is a subring of R or empty set. A set-valued
mapping T is said to be uniform if it is upper and lower semiuniform.

Every strong set-valued homomorphism is uniform.

Definition 85 Let R and S be two rings, B be a subset of S. Let T : R → P(S)

be a set-valued function. If T −(B) and T +(B) are subrings (resp. ideals) of R, then
we call (T −(B), T +(B)) a generalized rough subring (resp. ideal).

Corollary 86 Let R, S be two rings, B be a subset of S. Let T : R → P∗(S)
be a strong set-valued homomorphism. Let B be a subring (resp. ideal) of S. Then,
(T −(B), T +(B)) a generalized rough subring (resp. ideal).

Suppose that R, S are rings and T : R → P(S) is a set-valued function. Let I
be an ideal of S and X be a non-empty subset of S. Then, the sets

A−I (X) = {a ∈ R | T (x)+ I ⊆ X} and A+I (X) = {a ∈ R | (T (x)+ I) ∩X 
= ∅},

are called, respectively, generalized lower and generalized upper approximations of
the set X with respect to the ideal I .

Lemma 87 Let I, J be two ideals of S such that I ⊆ J and let A be a non-empty
subset of S. Then,

(1) A−J (A) ⊆ A−I (A);
(2) A+I (A) ⊆ A+J (A).

Corollary 88 Let I, J be two ideals of S and B be a non-empty subset of S. Then,

(1) A−J (B) ∩ A−I (B) ⊆ A−(I∩J )(B)

(2) A+(I∩J )(B) ⊆ A+J (B) ∩ A+I (B).
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Proposition 89 Let R, S be two rings, I be an ideal of S and B be a non-empty
subset of S. Then,

(1) Let T : R → P(S) be a set-valued homomorphism. Let B be a subring of S,
and A+I (B) a non-empty subset of R. Then, A+I (B) is a subring of R;

(2) Let T : R→P(S) be a strong set-valued homomorphism. Let B be a subring
of S, and A−I (B) a non-empty subset of R. Then, A−I (B) is a subring of R;

(3) Let T : R→P∗(S) be a set-valued homomorphism where P∗(S) denotes the
set of all non-empty subsets of S. Let B be a ideal of S, and A+I (B) a non-empty
subset of R. Then, A+I (B) is a ideal of R;

(4) Let T : R → P∗(S) be a strong set-valued homomorphism where P∗(S)
denotes the set of all non-empty subsets of S. Let B be a ideal of S, and A−I (B)

a non-empty subset of R. Then, A−I (B) is a ideal of R,

Proposition 90 Let I be an ideal of S, and B,C non-empty subsets of S. Then,

(1) Let T : R→P(S) be a set-valued homomorphism. Then,

A+I (B) ∗ A+I (C) ⊆ A+I (B ∗ C).

(2) Let T : R→P(S) be a strong set-valued homomorphism. Then,

A−I (B) ∗ A−I (C) ⊆ A−I (B ∗ C).

(3) Let T : R→P(S) be a set-valued homomorphism. Then,

A+I (B)+ A+I (C) ⊆ A+I (B + C).

(4) Let T : R→P(S) be a strong set-valued homomorphism. Then,

A−I (B)+ A−I (C) ⊆ A−I (B + C).

Proposition 91 Let I, J be two ideals of S, and B be a subring of S. Then,

(1) Let T : R→P(S) be a set-valued homomorphism. Then,

A+I (B) ∗A+J (B) ⊆ A+I+J (B).

(2) Let T : R→P(S) be a strong set-valued homomorphism. Then,

A−I (B) ∗A−(B) = A−I+J (B).

(3) Let T : R→P(S) be a set-valued homomorphism. Then,

A+I (B)+ A+J (B) ⊆ A+I+J (B).
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(4) Let T : R→P(S) be a strong set-valued homomorphism. Then,

A−I (B)+ A−(B) = A−I+J (B).
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S-Approximation Spaces

Ali Shakiba

Abstract In this paper, the concept of S-approximation spaces is surveyed at
first and then, the combination of different S-approximation spaces with different
decider mappings S is considered, i.e. combining S-approximation spaces Gi =
(Ui,Wi, Ti , Si) for i = 1, . . . , k. Moreover, the problem of preserving the
corresponding properties of the lower and upper approximation operators as well
as the three regions of the 3WD in the combination of different S-approximation
spaces is considered in the paper.

1 Introduction

Uncertainty is present in many practical decision making applications due to the
incompleteness of knowledge. There are several different approaches to handle
uncertainty in these applications such as the theory of rough sets and its extensions
[1, 9–12, 25, 28], fuzzy set theory [29–31], Dempster-Shafer theory of evidence or
belief functions [2, 16] and S-approximation spaces [3, 17–20]. The concept of S-
approximation spaces was introduced in [3] as a generalization of Dempster-Shafer
theory of evidence and rough set theory. Then, it was studied from a three-way
decision [27] viewpoint in [17]. It is then extended to neighborhood systems [26]
in [18]. It is also extended to fuzzy sets [20] as well as intuitionistic fuzzy set
theory [19].

S-approximation spaces are shown to be a generalization of the belief structures
in [21], i.e. any belief structure can be represented by an S-approximation space,
however, the converse does not hold. For any belief structure, there exists an S-
approximation space where the quality of the lower and the upper approximations
induce the corresponding belief and plausibility functions. On the other hand, every
irreducible partial monotone S-approximation space induces a belief structure. An
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irreducible partial monotone S-approximation space is one which does not contain
trivial elements, an element x ∈ U which either IPG(x) = {∅} or IPG(x) = ∅
is trivial in a partial monotone S-approximation space.

S-approximation spaces can be viewed as a generalization of T -rough sets [1] as
well as the generalization of neighborhood systems [6] to two universal sets.

Finally, S-approximation spaces are equivalent to concrete neighborhood spaces
defined in [8]. Let N : U →P(P(W)) be a neighborhood map defined as

N(x) = {X ⊆ W | S(T (x),X) = 1} , (1)

for x ∈ U . Then, the core and the vicinity maps induced by N (U) are exactly
the same as the lower and the upper approximations of X in G = (U,W, T , S),
respectively. On the other hand, given a concrete neighborhood space (U,N (U)),
then the core and the vicinity maps induced by N (U) are equivalent to the lower
and the upper approximations in G = (U,W, T , S) where W = P(U ′), T (x) =
n(x), and

S(A,B) =
{

1 if C ∈ A for some C ∈ B,

0 otherwise,
(2)

for A,B ⊆ W . However, S-approximation spaces provide another useful represen-
tation for concrete neighborhood spaces. An S-approximation space considers the
key elements used to construct a neighborhood system, that is the knowledge and
the decider mappings, and studies their impact on the properties of the concrete
neighborhood space. The decider mapping in an S-approximation space can be
almost anything, a decision tree, a classifier such as an artificial neural network
or a similarity measure. On the other hand, the knowledge mapping can be used
to represent almost all types of data representation and was constructed based on a
key-value representation, i.e. W can be considered as pairs of attributes and values.
Such a representation makes S-approximations applicable to consider almost all data
representations.

In this paper, the concept of S-approximation spaces is surveyed at first and then,
the combination of different S-approximation spaces with different decider map-
pings S is considered, i.e. combining S-approximation spaces Gi = (Ui,Wi, Ti, Si )

for i = 1, . . . , k. Note that the problem of combining Gi = (U,W, Ti, S) for
i = 1, . . . , k is considered in [18]. We will also consider the problem of preserving
the corresponding properties of the lower and upper approximation operators as well
as the 3WD regions in the combination of different S-approximation spaces. The
intuition behind studying this combination is considering the problem of combining
different knowledge mappings and deciders, e.g. different experts.

The remainder of this paper is organized as follows: In Sect. 2, we survey the
concept of S-approximation spaces and its corresponding properties. In Sect. 3.1,
we first survey recent results on the combination of S-approximations in terms
of their knowledge mappings. Then, the problem of combining S-approximation
spaces in terms of their deciders is considered in Sect. 3.2. Section 3.3 studies the
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problem of combining S-approximation spaces in terms of both knowledge and
decider mappings. The general problem of combining S-approximation spaces in
considered in Sect. 3.4. Finally, we conclude the paper and give some future research
directions in Sect. 4.

2 S-Approximation Spaces

An S-approximation spaces is simply a quadruple G = (U,W, T , S) where U

and W are two finite non-empty sets and T and S are two mappings[3, 17]. This
structure is extend to represent fuzzy sets in [20] and intuitionistic fuzzy sets in
[19]. It is shown in [3, 17, 19, 20] that S-approximation spaces capture almost all
the extensions of rough set theory, up to the authors’ knowledge. The mapping T

in all variants of S-approximation spaces can be interpreted as a granular mapping
of knowledge and the mapping S can be interpreted as a decider of similarity or
satisfiability or any other kind of decision based on the application. Using these two
mappings, any set X ⊆ W can be approximated by two subsets of U which are
called the upper and the lower approximation sets of X with respect to G.

An ordinary S-approximation space, which is simply called S-approximation
space, is defined formally in Definition 1.

Definition 1 (S-Approximation Spaces[3, 17]) An S-approximation space is a
quadruple G = (U,W, T , S) where U and W are finite non-empty sets, T : U →
P(W) and S :P(W)×P(W)→ {0, 1} are two mappings.

The lower and the upper approximations of a set X ⊆ W are defined as

G(X) = {x ∈ U | S(T (x),X) = 1} , (3)

and

G(X) = {x ∈ U | S(T (x),Xc) = 0
}
, (4)

respectively, where Xc is the complement of X with respect to W .

The intuition behind defining Eqs. (3) and (4) is as follows:

• an element x ∈ U which the decider can decide it as 1 with respect to the
knowledge T to be in the set X, belongs to the lower approximation of X,

• and an element x ∈ U which the decider S cannot decide it as 1 with respect to
the knowledge T to be in the set Xc, belongs to the upper approximation of X.

The properties of the lower and upper approximation operators mostly depend on
the properties of the mapping S. In [3, 17], it is shown that most of the properties of
these operators are the same as the corresponding properties in rough set theory if
the decider is of certain class. A mapping S satisfies the S-min property defined in
[3] whenever for all X,Y,Z ⊆ W , we have S(X, Y ∩Z) = min {S(X, Y ), S(X,Z)}.
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Whenever S(Z,X) = 1 and X ⊆ Y imply S(Z, Y ) = 1 for all X,Y,Z ⊆ W ,
the mapping S is called partial monotone[17]. It is shown in [17] that partial
monotonicity is much broader than the S-min property in the sense that every S-
min structure is partial monotone, however, the other side does not necessarily
hold. Sometimes, the properties of the lower and upper approximation operators
depends on the mapping T in addition to the mapping S. An S-approximation
space G = (U,W, T , S) is called complement compatible if we have S(T (x),X)×
S(T (x),Xc) = 0 for all x ∈ U and X ⊆ W .

Remark 2 Note that the S-min and partial monotonicity properties corresponds to
the properties “(N3) if N,N ′ ∈ Nx , then N ∩N ′ ∈ Nx” and “(N2) if N ∈ Nx and
N ⊆ N ′, then N ′ ∈ Nx” in neighborhood systems defined in [8], respectively.

Proposition 3 ([17]) Let G = (U,W, T , S) be a partial monotone S-
approximation space. For all X,Y ⊆ W , the followings hold:

(PS1) X ⊆ Y implies G(X) ⊆ G(Y),
(PS2) X ⊆ Y implies G(X) ⊆ G(Y),
(PS3) G(X ∪ Y ) ⊇ G(X) ∪G(Y),
(PS4) G(X ∩ Y ) ⊆ G(X) ∩G(Y),
(PS5) G(X ∪ Y ) ⊇ G(X) ∪G(Y),
(PS6) G(X ∩ Y ) ⊆ G(X) ∩G(Y),
(PS7) G(X) = (G(Xc))c,
(PS8) G(X) = (G(Xc))c.

Remark 4 As it is shown in [3], if S satisfies the S-min property, then (PS3) and
(PS6) turn into equations.

Proposition 5 ([17]) Let G = (U,W, T , S) be a complement compatible S-
approximation space. Then, for any X ⊆ W , G(X) ⊆ G(X).

Since the mapping S can be arbitrarily chosen in S-approximation spaces, the
lower and upper approximations of a set X ⊆ W do not directly lead us toward
any decision. So, these approximations are used to construct three-way decisions,
or 3WDs for short, as in Definition 6.

Definition 6 ([17]) Let G = (U,W, T , S) be an S-approximation space and X ⊆
W . Then, the 3WD regions of X with respect to G are defined as

POSG(X) = {x ∈ U |S(T (x),X) = 1 ∧ S(T (x),Xc) = 0
}
, (5)

NEGG(X) = {x ∈ U |S(T (x),X) = 0 ∧ S(T (x),Xc) = 1
}
, (6)

BRG(X) = {x ∈ U |S(T (x),X) = S(T (x),Xc)
}
, (7)

where POSG(X), NEGG(X) and BRG(X) denote the positive, negative and bound-
ary regions.
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The Definition 6 is an extension to the one in [27] (Equation 1 in there). It is
notable that the properties of these three regions also depends on the properties of
the decider map S.

Proposition 7 ([17]) Let G = (U,W, T , S) be a partial monotone S-
approximation space. Then, for any X,Y ⊆ W , the followings hold:

1. X ⊆ Y implies POSG(X) ⊆ POSG(Y ),
2. X ⊆ Y implies NEGG(Y ) ⊆ NEGG(X),
3. POSG(X ∪ Y ) ⊇ POSG(X) ∪ POSG(Y ),
4. NEGG(X ∪ Y ) ⊆ NEGG(X) ∪ NEGG(Y ),
5. POSG(X ∩ Y ) ⊆ POSG(X) ∩ POSG(Y ),
6. NEGG(X ∩ Y ) ⊇ NEGG(X) ∩ NEGG(Y ),
7. POSG(X) ∩ NEGG(Y ) ⊆ POSG(X) ∩ NEGG(X ∩ Y ).

3 The Combination of S-Approximation Spaces

The concept of S-approximation spaces shows a great flexibility in representing
and handling distributed knowledge bases. In [18], the S-approximation spaces are
combined in the sense of their knowledge mappings based on ideas in neighborhood
systems and multi-granular rough set theory. These results are summarized in
Sect. 3.1. The S-approximation spaces can be combined in terms of their decider
mappings, too. Some preliminary results are given in [3], which we extend in
Sect. 3.2.

3.1 Combining Knowledge Mappings in S-Approximation
Spaces

Data might be aggregated from different providers or sources. Hence, we need a
model to represent and handle this situation. To address the issue, there are several
models such as multi-granulation rough sets [13], neighborhood-based multi-
granulation rough sets [7], multi-granulation rough sets over two universal sets [22],
multigranulation decision-theoretic rough sets in [15], pessimistic multigranulation
rough sets in [14], multigranulation fuzzy rough sets in [23, 24], intuitionistic fuzzy
multigranulation rough sets in [4], composite rough sets [32], and neighborhood
system S-approximation spaces [18].

Given a collection of S-approximation spaces Gi = (U,W, Ti, S) for i =
1, . . . , ; and a set X ⊆ W , how can one compute the lower or upper approximation
of the set X with respect to these S-approximation spaces? In [18], two different
approaches are studied to answer this problem, e.g. optimistic and pessimistic
interpretations. For simplicity and clearance in expression, we can consider ; = 2
without loss of generality. Each of these two approaches are formally defined in
Definitions 8 and 9.
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Definition 8 (Optimistic Neighborhood System S-Approximation Spaces[18])
Let G1 = (U,W, T1, S) and G2 = (U,W, T2, S) be two S-approximation spaces
and X ⊆ W . Then, G1⊕2 = (U,W, T1⊕T2, S) is called an optimistic neighborhood
system S-approximation space of G1 and G2, or ONS S-approximation space of G1
and G2 for short. The lower and upper approximations of the set X with respect to
G1⊕2 are defined as

G1⊕2(X) = {x ∈ U | S(T1(x),X) = 1 ∨ S(T2(x),X) = 1}, (8)

and

G1⊕2(X) = {x ∈ U | S(T1(x),X
c) = 0 ∧ S(T2(x),X

c) = 0
}
, (9)

respectively.

Definition 9 (Pessimistic Neighborhood System S-Approximation Spaces[18])
Let G1 = (U,W, T1, S) and G2 = (U,W, T2, S) be two S-approximation spaces
and X ⊆ W . Then, G1⊗2 = (U,W, T1 ⊗ T2, S) is called an pessimistic neighbor-
hood system S-approximation space of G1 and G2, or PNS S-approximation space
of G1 and G2 for short. The lower and upper approximations of the set X with
respect to G1⊗2 are defined as

G1⊗2(X) = {x ∈ U | S(T1(x),X) = 1 ∧ S(T2(x),X) = 1}, (10)

and

G1⊗2(X) = {x ∈ U | S(T1(x),X
c) = 0 ∨ S(T2(x),X

c) = 0
}
, (11)

respectively.

The properties of the lower and upper approximations of a set X ⊆ W with
respect to either ONS or PNS of S-approximation spaces depend on the properties
of the mapping S.

Proposition 10 (Properties of ONS of Partial Monotone S-Approximations[18])
Suppose that G1⊕2 = (U,W, T1 ⊕ T2, S) is an ONS S-approximation space of
G1 = (U,W, T1, S) and G2 = (U,W, T2, S) such that G1 and G2 are partial
monotone and X,Y ⊆ W . Then,

(OL2) G1⊕2(X) ∩G1⊕2(Y ) ⊇ G1⊕2(X ∩ Y ),

(OU2) G1⊕2(X) ∩G1⊕2(Y ) ⊇ G1⊕2(X ∩ Y ),
(OL3) G1⊕2(X) ∪G1⊕2(Y ) ⊆ G1⊕2(X ∪ Y ),

(OU3) G1⊕2(X) ∪G1⊕2(Y ) ⊆ G1⊕2(X ∪ Y ),
(OL4) X ⊆ Y implies G1⊕2(X) ⊆ G1⊕2(Y ),

(OU4) X ⊆ Y implies G1⊕2(X) ⊆ G1⊕2(Y ).



S-Approximation Spaces 703

Proposition 11 (Properties of PNS of Partial Monotone S-Approximations[18])
Suppose that G1⊗2 = (U,W, T1 ⊗ T2, S) is a PNS S-approximation space of G1 =
(U,W, T1, S) and G2 = (U,W, T2, S) such that G1 and G2 are partial monotone
and X,Y ⊆ W . Then,

(PL2) G1⊗2(X) ∩G1⊗2(Y ) ⊇ G1⊗2(X ∩ Y ),

(PU2) G1⊗2(X) ∩G1⊗2(Y ) ⊇ G1⊗2(X ∩ Y ).
(PL3) G1⊗2(X) ∪G1⊗2(Y ) ⊆ G1⊗2(X ∪ Y ),

(PU3) G1⊗2(X) ∪G1⊗2(Y ) ⊆ G1⊗2(X ∪ Y ),
(PL4) X ⊆ Y implies G1⊗2(X) ⊆ G1⊗2(Y ),

(PU4) X ⊆ Y implies G1⊗2(X) ⊆ G1⊗2(Y ).

Definition 12 ([18]) Let G1 = (U,W, T1, S) and G2 = (U,W, T2, S) be S-
approximation spaces and X ⊆ W . Then, the 3WD regions of X with respect to
G1⊕2 are defined as

POSG1⊕2(X) =G1⊕2(X) ∩G1⊕2(X), (12)

NEGG1⊕2(X) =U \
(
G1⊕2(X) ∪G1⊕2(X)

)
, (13)

BRG1⊕2(X) =G1⊕2(X) Δ G1⊕2(X), (14)

where POS(·), NEG(·) and BR(·) denote the positive, negative and boundary
regions. Similarly, the 3WD regions of X with respect to G1⊗2 are defined as

POSG1⊗2(X) =G1⊗2(X) ∩G1⊗2(X), (15)

NEGG1⊗2(X) =U \
(
G1⊗2(X) ∪G1⊗2(X)

)
, (16)

BRG1⊗2(X) =G1⊗2(X) Δ G1⊗2(X). (17)

Corresponding to Eqs. (12)–(15), one may ask about the relation between the
ONS 3WD regions of a set X ⊆ W and the 3WD regions of the set X with respect
to each G1 and G2 separately. A similar question can be asked about the PNS.

Proposition 13 ([18]) Suppose that G = (U,W, T , S) is either an ONS or PNS
S-approximation space for G1 = (U,W, T1, S) and G2 = (U,W, T2, S). Then for
every set X ⊆ W , we have

1. POSG1(X) ∩ POSG2(X) ⊆ POSG1⊕2(X),
2. POSG1⊕2(X) ⊆ POSG1(X) ∪ POSG2(X),
3. NEGG1(X) ∩ NEGG2(X) ⊆ NEGG1⊕2(X),
4. NEGG1⊕2(X) ⊆ NEGG1(X) ∪ NEGG2(X),
5. BRG1(X) ∩ BRG2(X) ⊆ BRG1⊕2(X).

As it can be observed, since the behaviors of the regions are identical for ONS
and PNS of S-approximation spaces, then this bound cannot be improved anymore
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[18]. However, if the S-approximations participating in the ONS and PNS satisfy
the non-contradictory knowledge mappings introduced in [18], then we can state
stronger results.

Definition 14 (Non-contradictory Knowledge Mappings [18]) Given a decider
mapping S :P(W)×P(W)→ {0, 1} and two knowledge mappings T1, T2 : U →
P(W), T1 and T2 are called contradictory knowledge mappings with respect to S,
if at least one of the following holds:

1. ∃X ⊆ W, ∃x ∈ U, S(T1(x),X) = S(T2(x),X
c) = 1,

2. G1 = (U,W, T1, S) is not complement compatible,
3. G2 = (U,W, T2, S) is not complement compatible.

Otherwise, T1 and T2 are called non-contradictory knowledge mappings with respect
to S.

Example 15 Let U = {u1, . . . , u5}, W = {w1, . . . , w10} and S is defined as

S(X, Y ) =
{

1 if X ⊆ Y,

0 otherwise.
(18)

Knowledge mappings T1 and T2 are defined as in Tables 1 and 2. Given set X =
{w1, w3, w5, w6, w9}, then

POSG1(X) = {u1}, POSG1(X) = {u2},
NEGG1(X) = {u3}, NEGG1(X) = {u1},

BRG1(X) = {u2, u4, u5}, BRG1(X) = {u3, u4, u5},

Table 1 Knowledge T1 x ∈ U T1(x)

u1 {w1, w3, w5, w6, w9}
u2 {w2, w3, w4, w6, w7, w8, w10}
u3 {w8, w10}
u4 {w1, w3, w5, w6, w8, w10}
u5 {w2, w4, w5, w6}

Table 2 Knowledge T2 x ∈ U T2(x)

u1 {w2, w4, w7, w8, w10}
u2 {w1, w5, w9}
u3 {w1, w2, w3, w4, w5, w6, w7, w9}
u4 {w2, w4, w7, w9}
u5 {w1, w3, w7, w8, w9, w10}
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where G1 = (U,W, T1, S) and G2 = (U,W, T2, S). It is easy to see that T1 and T2
are contradictory knowledge mappings since for x1,

S(T1(x1),X) = S(T2(x1),X
c) = 1.

Proposition 16 ([18]) Suppose that G1⊕2 = (U,W, T1 ⊕ T2, S) is an ONS S-
approximation space of G1 = (U,W, T1, S) and G2 = (U,W, T2, S) such that T1
and T2 are non-contradictory knowledge mappings. Then,

1. POSG1⊕2(X) = POSG1(X) ∪ POSG2(X),
2. NEGG1⊕2(X) = NEGG1(X) ∪ NEGG2(X),
3. BRG1⊕2(X) = BRG1(X) ∩ BRG2(X),

for every X ⊆ W .

Proposition 17 ([18]) Suppose that G1⊗2 = (U,W, T1 ⊗ T2, S) is a PNS S-
approximation space of G1 = (U,W, T1, S) and G2 = (U,W, T2, S) such that
T1 and T2 are non-contradictory knowledge mappings. Then,

1. POSG1⊗2(X) = POSG1(X) ∩ POSG2(X),
2. NEGG1⊗2(X) = NEGG1(X) ∩ NEGG2(X),
3. BRG1⊗2(X) = BRG1(X) ∪ BRG2(X),

for every X ⊆ W .

Note the difference between Propositions 16 and 17. The boundary region in
ONS is minimized if the knowledge mappings are non-contradictory, however, it
is maximized in the PNS. To maximize the boundary region of the PNS, a weaker
notion of non-contradictory is needed.

Proposition 18 ([18]) Let G1⊗2 = (U,W, T1 ⊗ T2, S) be a PNS S-approximation
space of G1 = (U,W, T1, S) and G2 = (U,W, T2, S), X ⊆ W and x ∈ U such
that

x 
∈ BRG1(X) ∪ BRG2(X) $⇒ S(T1(x),X)× S(T2(x),X
c) = 0

∧ S(T2(x),X)× S(T1(x),X
c) = 0,

(19)

and

x ∈ BRGi (X) $⇒ S(Ti(x),X) = S(Ti(x),X
c) = 1, (20)

for i = 1, 2. Then

1. POSG1⊗2(X) = POSG1(X) ∪ POSG2(X),
2. NEGG1⊗2(X) = NEGG1(X) ∪ NEGG2(X),
3. BRG1⊗2(X) = BRG1(X) ∩ BRG2(X).

Similarly, the properties of these three regions depends on the properties of the
mapping S.
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Proposition 19 ([18]) Suppose that G1⊕2 = (U,W, T1 ⊕ T2, S) is an ONS S-
approximation space of G1 = (U,W, T1, S) and G2 = (U,W, T2, S) such that G1
and G2 are partial monotone and X,Y ⊆ W . Then,

1. X ⊆ Y implies POSG1⊕2(X) ⊆ POSG1⊕2(Y ),
2. X ⊆ Y implies NEGG1⊕2(Y ) ⊆ NEGG1⊕2(X),
3. POSG1⊕2(X) ∪ POSG1⊕2(Y ) ⊆ POSG1⊕2(X ∪ Y ),
4. POSG1⊕2(X) ∩ POSG1⊕2(Y ) ⊇ POSG1⊕2(X ∩ Y ),
5. NEGG1⊕2(X) ∪ NEGG1⊕2(Y ) ⊇ NEGG1⊕2(X ∪ Y ),
6. NEGG1⊕2(X) ∩ NEGG1⊕2(Y ) ⊆ NEGG1⊕2(X ∩ Y ).

Proposition 20 ([18]) Suppose that G1⊗2 = (U,W, T1 ⊗ T2, S) is a PNS S-
approximation space of G1 = (U,W, T1, S) and G2 = (U,W, T2, S) such that
G1 and G2 are partial monotone and X,Y ⊆ W . Then,

1. X ⊆ Y implies POSG1⊗2(X) ⊆ POSG1⊗2(Y ),
2. X ⊆ Y implies NEGG1⊗2(Y ) ⊆ NEGG1⊗2(X),
3. POSG1⊗2(X) ∪ POSG1⊗2(Y ) ⊆ POSG1⊗2(X ∪ Y ),
4. POSG1⊗2(X) ∩ POSG1⊗2(Y ) ⊇ POSG1⊗2(X ∩ Y ),
5. NEGG1⊗2(X) ∪ NEGG1⊗2(Y ) ⊇ NEGG1⊗2(X ∪ Y ),
6. NEGG1⊗2(X) ∩ NEGG1⊗2(Y ) ⊆ NEGG1⊗2(X ∩ Y ).

Knowing these two approaches to combine knowledge mappings in S-approxi-
mation spaces, one may ask about the relation among these two approaches.

Theorem 21 ([18]) Suppose that G1⊕2 = (U,W, T1 ⊕ T2, S) and G1⊗2 =
(U,W, T1 ⊗ T2, S) are ONS and PNS S-approximation spaces of G1 =
(U,W, T1, S) and G2 = (U,W, T2, S). Then for any X ⊆ W , we have

1. G1⊗2(X) ⊆ G1⊕2(X),

2. G1⊕2(X) ⊆ G1⊗2(X).

An interesting result would be the following. For any number of S-approximation
spaces, there exists a single S-approximation space which acts identically the same
with the ONS (PNS) combination of the S-approximation spaces. These results are
called completion results.

Theorem 22 (Completion Result for ONS S-Approximation Spaces [18])
Assume that Gi = (U,W, Ti, S) are ; S-approximation spaces. Then, a single
S-approximation space such as G = (U,W, T ,S) can be constructed such that the
lower and upper approximations of any set X ⊆ W with respect to G and G⊕;

i=1
are identical.

Proof The proof is a constructive proof. We will define knowledge mapping T as

T : U →P(W),

T (x) �→ {T1(x)× T2(x)× . . .× T;(x)}.
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By this definition, it is clear that

W =P(W)× . . .×P(W)︸ ︷︷ ︸
; times

.

For the decider S, we have

S :P(W)×P(W)→ {0, 1},

S(X, Y ) =
{

1 if
∑;

i=1 S (P roji (X) , P roj1(Y )) 
= 0 and |X| = |Y | = 1
0 otherwise

,

where Proji(X) = Ai for X = {(A1, . . . , A;)}. Up to now, we have completely
defined the S-approximation G. For X ⊆ W , we construct a counterpart X ⊆ W as

X =
⎧
⎨

⎩
(X,∅, . . . ,∅︸ ︷︷ ︸

;−1 times

)

⎫
⎬

⎭
.

Let show this way of obtaining X from X by a mapping f :P(W)→P(W), i.e.
f (X) = X. Next, we will show that for every X ⊆ W , we have

1. G(f (X)) = G⊕;
i=1i

(X),

2. G(f (X)) = G⊕;
i=1i

(X).

For the first case, let x ∈ G⊕;
i=1i

(X). Then, by the definition there exists an index

1 ≤ i ≤ ; such that S(Ti(x),X) = 1. This way, by the definition of S we have
S(T (x), f (X)) = 1 and hence, x ∈ G(f (X)). On the other hand, assume that
x ∈ G(f (X)), hence S(T (x), f (X)) = 1. By the definition of S, it is necessary that
there exists an index 1 ≤ i ≤ ; such that S(Ti(x),X) = 1, hence x ∈ G⊕;

i=1i
(X).

So, we have shown the first part. The second part can be also obtained in a similar
way. These two parts conclude the proof.

Theorem 23 (Completion Result for PNS S-Approximation Spaces [18])
Assume that Gi = (U,W, Ti, S) are ; S-approximation spaces. Then, a single
S-approximation space of the form G = (U,W, T ,S) can be constructed such that
the lower and upper approximations of any set X ⊆ W with respect to G and G⊗;

i=1
are identical.

Proof The proof and construction is similar to Theorem 22, except for S which is
constructed as

S(X, Y ) =
{

1 if
∏;

i=1 S (P roji (X) , P roj1 (Y )) 
= 0 and |X| = |Y | = 1,
0 otherwise.
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A naive, however hard to answer, question would be on the necessity or
redundancy of a knowledge map in either ONS or PNS of S-approximation spaces.
This is called knowledge significance in [18].

Definition 24 (⊕T -Significant Knowledge Set[18]) Suppose that Gi =
(U,W, Ti, S) be ; S-approximation spaces (i = 1, . . . , ;) and T = {T1, . . . , T;}. A
knowledge Tj is called⊕T -significant whenever there exists at least some X ⊆ W

such that

G⊕T \{Tj }(X) 
= G⊕T (X), (21)

or

G⊕T \{Tj }(X) 
= G⊕T (X). (22)

Otherwise, the knowledge Tj is called ⊕T -redundant. If all the knowledge
mappings in A ⊆ T are ⊕A -significant and for all X ⊆ W ,

G⊕A (X) = G⊕T (X), (23)

and

G⊕A (X) = G⊕T (X). (24)

then A is called an ⊕T -significant knowledge set. The set of all ⊕T -significant
knowledge sets is denoted by SG⊕(T ).

Definition 25 (⊗T -Significant Knowledge Set[18]) Suppose that Gi =
(U,W, Ti, S) be ; S-approximation spaces (i = 1, . . . , ;) and T = {T1, . . . , T;}. A
knowledge Tj is called⊗T -significant whenever there exists at least some X ⊆ W

such that

G⊗T \{Tj }(X) 
= G⊗T (X), (25)

or

G⊗T \{Tj }(X) 
= G⊗T (X). (26)

Otherwise, the knowledge Tj is called ⊗T -redundant. If all of knowledge map-
pings in A ⊆ T are ⊗A -significant and for all X ⊆ W ,

G⊗A (X) = G⊗T (X), (27)
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and

G⊗A (X) = G⊗T (X). (28)

then A is called a ⊗T -significant knowledge set. The set of all ⊗T -significant
knowledge sets is denoted by SG⊗(T ).

Finding a minimum cardinality ⊕T -significant (⊗T -significant) knowledge
mappings of T is an NP-hard problem.

Theorem 26 ([18]) For a given set of knowledge mappings T = {T1, . . . , T;}
where U and W are finite non-empty sets, Ti : U → P(W), finding a minimum
⊕T -significant knowledge set is NP-hard.

Theorem 27 ([18]) For a given set of knowledge mappings T = {T1, . . . , T;}
where U and W are finite non-empty sets, Ti : U → P(W), finding a minimum
⊗T -significant knowledge set is NP-hard.

The proofs of Theorems 26 and 27 are quite technical and an interested reader is
advised to consult [18].

Although finding either a minimal⊕T -significant or⊗T -significant knowledge
set is shown to be NP-hard, there exist exponential-time exact algorithms to find
such knowledge sets. Algorithm 1 decides whether or not a knowledge mapping
Tj ∈ T is ⊕T -significant. Algorithm 1 can be modified to answer the same
question for ⊗T -significance. These modifications include substituting 0s instead
of 1s in lines 7, 10, 17 and 31 of Algorithm 1 and also changing the line 1 to
ISPESSIMISTICREDUNDANT(U,W, Tj ,T , S).

To illustrate the usefulness of the combination of knowledge mappings, consider
the following illustrative example taken from [18].

Example 28 ([18]) Suppose that there are historical records of five doctors curing
different patients with some medicines and we want to construct a medical expert
system. Let U = {u1, . . . , u5} be a set of five medicines and W = {w1, . . . , w10}
be a set of ten symptoms. For each doctor i, we have extracted the set of symptoms
which caused him to prescribe a medicine u and denoted it by Ti(u). In other words,
Ti : U → P(W). These mappings are shown in Table 3. Now, the expert system
is fed with some clinical observations of two patients, e.g. X = {w3, w6, w8, w10}
and Y = {w1, w3, w9, w8}. The goal of the expert system is to recommend a set
of medicines for each of these patients. Since the medicines in U have strong side
effects, the expert system is supposed to use a pessimistic approach to prescribe a
medicine. Moreover, the expert system uses Jaccards similarity measure [5], i.e.

J (A,B) = |A ∩ B|
|A ∪ B| , (29)
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Algorithm 1 ⊕T -redundancy decision problem
1: procedure ISOPTIMISTICREDUNDANT(U,W, Tj,T , S)
2: IsRedundant ← T rue

3: for all X ⊆ W do
4: lower ← ∅
5: upper ← ∅
6: for all x ∈ U do
7: if S(Tj (x),X) = 1 then
8: lower ← lower ∪ {x}
9: end if

10: if S(Tj (x),Xc) = 1 then
11: upper ← upper ∪ {x}
12: end if
13: end for
14: for all x ∈ lower do
15: f lag← T rue

16: for all Ti ∈ T \ {Tj
}

do
17: if S(Ti (x),X) = 1 then
18: f lag← False

19: break
20: end if
21: end for
22: if f lag then
23: IsRedundant ← False

24: upper ← ∅
25: break
26: end if
27: end for
28: for all x ∈ upper do
29: f lag← T rue

30: for all Ti ∈ T \ {Tj
}

do
31: if S(Ti (x),Xc) = 1 then
32: f lag← False

33: break
34: end if
35: end for
36: if f lag then
37: IsRedundant ← False

38: upper ← ∅
39: break
40: end if
41: end for
42: if not IsRedundant then
43: break
44: end if
45: end for
46: return IsRedundant

47: end procedure
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Table 3 Medicines and
symptoms [18]

W w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

T1

u1 1 1 1 1 1 1 1 1 1 0

u2 1 0 1 1 1 1 1 1 1 0

u3 0 0 1 0 1 0 1 0 1 0

u4 1 1 1 1 1 1 1 1 1 1

u5 1 1 1 1 1 1 1 1 0 1

T2

u1 0 1 0 0 1 1 0 0 0 0

u2 1 0 0 0 0 0 1 1 1 1

u3 0 1 1 0 1 0 0 1 0 1

u4 0 0 1 0 0 0 0 0 0 0

u5 1 1 1 1 1 0 1 1 1 1

T3

u1 1 1 0 0 1 1 1 1 0 1

u2 0 0 0 0 0 0 0 1 0 0

u3 0 0 0 0 0 0 0 0 0 0

u4 1 1 0 1 0 1 1 1 1 1

u5 0 0 0 0 0 0 0 0 1 0

T4

u1 1 1 1 0 1 1 1 0 1 1

u2 1 0 1 0 0 0 1 1 0 1

u3 1 1 0 0 0 1 0 0 0 1

u4 0 1 1 1 1 0 1 1 1 1

u5 0 0 0 0 0 0 0 0 0 0

T5

u1 1 1 1 0 0 1 1 0 1 1

u2 1 1 1 0 0 1 0 1 1 1

u3 1 1 1 1 1 1 1 0 1 1

u4 0 0 0 0 0 0 0 0 0 0

u5 0 0 0 0 0 0 0 0 0 0

for ∅ 
= A,B ⊆ W . Hence, S :P(W)×P(W)→ {0, 1} is defined as

S(A,B) =
{

1 if J (A,B) ≥ 0.1 and A ∪ B 
= ∅
0 otherwise

,

for A,B ⊆ W .



712 A. Shakiba

In this case, the system would suggest the patient with symptomsX the following
set of medications

POS⊗T (X) ={u2},
NEG⊗T (X) =∅,

BR⊗T (X) ={u1, u3, u4, u5},

that is, it suggests taking medicine u2, but it cannot decide about medicines u1, u3
through u5. Similarly, for patient with symptoms Y ,

POS⊗T (Y ) ={u2},
NEG⊗T (Y ) ={u1},

BR⊗T (Y ) ={u3, u4, u5},

that is, it suggests medicine u2, but prohibits medicine u1. For medicines u3 through
u5, it cannot make a decision.

By applying modified version of Algorithm 1 for pessimistic combination of
knowledge mappings, it can be seen that knowledge mappings T1 and T4 are ⊗-
redundant in T = {T1, . . . , T5}, i.e. ⊗T (X) = ⊗T ′(X) and⊗T (X) = ⊗T ′(X)

for X ⊆ W and either T ′ = {T1, T2, T3, T5} or T ′ = {T4, T2, T3, T5}. Considering
each of these T ′ knowledge mappings sets, we can run the modified algorithm again
and again to obtain all minimal ⊗T -significant knowledge mappings sets. Finally,
we can choose a minimum cardinality⊗T -significant knowledge mappings set.

To illustrate the optimistic combination of knowledge mappings, consider
designing a medical expert system for suggesting further tests based on historical
records of five doctors examining different patients which is taken from [18]. Let
U = {u1, . . . , u5} be a set of five tests and W = {w1, . . . , w10} be a set of ten
symptoms. For each doctor i, we have extracted the set of symptoms which caused
him to recommend a test u and denoted it by Ti(u) and are shown in Table 4. Now,
the expert system is fed with some clinical observations of two patients the same as
the previous example. The goal of the expert system is to recommend a set of tests
for each of these patients. Since the patients want to be assured of their possible
disease and the tests in U do not have any side effects, the expert system is supposed
to use an optimistic approach to suggest a test. Moreover, the expert system uses
Jaccards similarity measure, Eq. (29), but with a different setting as follows

S′(A,B) =
{

1 if J (A,B) ≥ 0.6 and A ∪ B 
= ∅
0 otherwise

,

for A,B ⊆ W .
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Table 4 Tests and symptoms
[18]

W w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

T1

u1 0 1 1 1 1 1 1 1 1 1

u2 0 0 0 1 0 0 1 0 0 1

u3 0 1 1 1 1 1 1 1 0 1

u4 0 0 0 0 0 0 0 1 0 0

u5 0 0 0 1 0 0 0 1 0 0

T2

u1 1 0 0 1 1 0 1 0 1 1

u2 0 0 0 0 0 1 1 0 0 0

u3 0 0 0 0 1 0 0 1 0 0

u4 0 0 1 0 0 0 1 1 1 0

u5 1 1 1 1 1 1 1 1 1 1

T3

u1 1 0 0 1 1 0 1 0 1 1

u2 0 1 0 1 0 0 0 0 0 0

u3 0 1 1 0 1 0 1 0 1 0

u4 1 0 1 1 1 1 1 1 1 1

u5 1 0 1 1 1 1 1 1 1 1

T4

u1 0 0 0 0 0 0 0 0 0 0

u2 0 1 0 1 0 0 0 0 0 0

u3 1 1 1 1 1 1 1 1 1 1

u4 0 0 0 0 0 0 0 0 0 0

u5 1 1 0 1 1 1 1 1 1 1

T5

u1 1 0 1 1 1 1 1 1 0 1

u2 0 0 0 1 0 0 0 0 0 1

u3 1 1 1 1 1 1 1 1 1 1

u4 1 1 1 0 1 0 1 0 1 1

u5 1 0 0 0 0 0 0 1 0 0

In this case, for the patient with symptoms X, the system has the following
suggestions

POS⊕T (X) =∅,
NEG⊕T (X) ={u1, u3, u4, u5},

BR⊕T (X) ={u2},
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that is, it cannot make any recommendations for this patient, but suggests that tests
u1, u3 through u5 are not useful. Similarly, for patient with symptoms Y ,

POS⊕T (Y ) ={u4},
NEG⊕T (Y ) ={u1, u3, u5},

BR⊕T (Y ) ={u2},

that is, it recommends taking the test u2, but tests u1, u3 and u5 are not useful. For
test u2, it cannot make a decision.

3.2 Combining Decision Mappings in S-Approximation Spaces

The results surveyed in Sect. 3.1 are applicable whenever we want to combine
identical S-approximation spaces, except for the knowledge mapping. Sometimes,
the S-approximations just differ in the decider mappings, i.e. G = (U,W, T , Si) for
i = 1, . . . , ;. In this case, the approach of Sect. 3.1 is not applicable. Some basic
results on this situation are stated in [3].

Definition 29 (Complement S-Approximation Space[3]) Suppose G =
(U,W, T , S) is an S-approximation space. The complement of G is defined as

Gc = (U,W, T , Sc) where Sc(·, ·) = 1− S(·, ·).

Definition 30 (Conjunction of S-Approximations[3]) Let G1 = (U,W, T , S1)

and G2 = (U,W, T , S2) be two S-approximation spaces. The conjunction of G1
and G2, denoted by G1∧G2 is defined as G1∧G2 = (U,W, T , S∧) where S∧(·, ·) =
S1(·, ·)× S2(·, ·).
Definition 31 (Disjunction of S-Approximations[3]) Let G1 = (U,W, T , S1)

and G2 = (U,W, T , S2) be two S-approximation spaces. The disjunction of G1 and
G2, denoted by G1 ∨G2 is defined as G1 ∨G2 = (U,W, T , S∨) where S∨(·, ·) =
S1(·, ·)+ S2(·, ·) mod 2.

Note that the operations defined in Definitions 29–31 are functionally com-
plete set of Boolean operators. In other words, one can construct arbitrary S-
approximation spaces from simpler ones by combining decider mappings.

Proposition 32 ([3]) Suppose that G = (U,W, T , S) is an S-approximation space
and Gc = (U,W, T , Sc) is its complement. Then, for any X ⊆ W we have Gc(X) =
G(Xc) and Gc(X) = G(Xc).
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Proposition 33 ([3]) Let G1 = (U,W, T , S1) and G2 = (U,W, T , S2) be two
S-approximation spaces. Then, for any X ⊆ W , we have

G1 ∧G2(X) =G1(X) ∩G2(X), (30)

G1 ∧G2(X) =G1(X) ∪G2(X), (31)

G1 ∨G2(X) =G1(X) ∪G2(X), (32)

and

G1 ∨G2(X) = G1(X) ∩G2(X), (33)

where G1 ∧G2 and G1 ∨G2 denote the conjunction and disjunction of G1 and G2,
respectively.

Another basic question can be asked on the relation of the 3WD regions
of S-approximation spaces with their complement, their conjunction and their
disjunction.

Proposition 34 Suppose that G = (U,W, T , S) is an S-approximation space and
Gc = (U,W, T , Sc) is its complement. Then, for any X ⊆ W , we have

• POSGc(X) = NEGG(X),
• NEGGc(X) = POSG(X),
• BRGc(X) = BRG(X).

Proof The proof is obvious by considering Definition 29.

Proposition 35 Let G1 = (U,W, T , S1) and G2 = (U,W, T , S2) be two S-
approximation spaces. Then, for any X ⊆ W , we have

1.

POSG1∧G2(X) ⊆ (BRG1(X) ∩ POSG2(X)
) ∪ (POSG1(X) ∩ BRG2(X)

)

∪ (POSG1(X) ∩ POSG2(X)
)
,

2.

POSG1∧G2(X) ⊇ (POSG1(X) ∩ POSG2(X)
)
,

3.

NEGG1∧G2(X) ⊆ (BRG1(X) ∩ NEGG2(X)
) ∪ (NEGG1(X) ∩ BRG2(X)

)

∪ (NEGG1(X) ∩ NEGG2(X)
)
,
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4.

NEGG1∧G2(X) ⊇ (NEGG1(X) ∩ NEGG2(X)
)
,

5.

BRG1∧G2(X) ⊇ (NEGG1(X) ∩ POSG2(X)
) ∪ (POSG1(X) ∩ NEGG2(X)

)

∪ (BRG1(X) ∩ BRG2(X)
)
,

6.

POSG1∨G2(X) ⊆ (BRG1(X) ∩ POSG2(X)
) ∪ (POSG1(X) ∩ BRG2(X)

)

∪ (POSG1(X) ∩ POSG2(X)
)
,

7.

POSG1∨G2(X) ⊇ (POSG1(X) ∩ POSG2(X)
)
,

8.

NEGG1∨G2(X) ⊆ (BRG1(X) ∩ NEGG2(X)
) ∪ (NEGG1(X) ∩ BRG2(X)

)

∪ (NEGG1(X) ∩ NEGG2(X)
)
,

9.

NEGG1∨G2(X) ⊇ (NEGG1(X) ∩ NEGG2(X)
)
,

10.

BRG1∨G2(X) ⊇ (NEGG1(X) ∩ POSG2(X)
) ∪ (POSG1(X) ∩ NEGG2(X)

)

∪ (BRG1(X) ∩ BRG2(X)
)
,

where G1 ∧G2 and G1 ∨G2 denote the conjunction and disjunction of G1 and G2,
respectively.

Proof The proof is immediate from Table 5.

Note that the bounds of Proposition 35 are strict. It is interesting that these bounds
can be made exact if both G1 and G2 are complement compatible.

Proposition 36 Let G1 = (U,W, T , S1) and G2 = (U,W, T , S2) be two
complement compatible S-approximation spaces. Then, for any X ⊆ W , we have

• POSG1∧G2(X) = POSG1(X) ∩ POSG2(X),
• NEGG1∧G2(X) = NEGG1(X) ∩ NEGG2(X),
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• POSG1∨G2(X) = (POSG1(X) ∩ POSG2(X)
) ∪ (POSG1(X) ∩ BRG2(X)

) ∪(
BRG1(X) ∩ POSG2(X)

)
,

• NEGG1∨G2(X) = (NEGG1(X) ∩ NEGG2(X)
) ∪ (NEGG1(X) ∩ BRG2(X)

) ∪(
BRG1(X) ∩ NEGG2(X)

)
,

• BRG1∨G2(X) = (POSG1(X) ∩ NEGG2(X)
) ∪ (NEGG1(X) ∩ POSG2(X)

) ∪(
BRG1(X) ∩ BRG2(X)

)
,

where G1 ∧G2 and G1 ∨G2 denote the conjunction and disjunction of G1 and G2,
respectively.

Proof The proof is easy to verify by removing the rows which contain either
S1 (T (x),X) = S1 (T (x),Xc) = 1 or S2 (T (x),X) = S2 (T (x),Xc) = 1.

Remark 37 Note that the boundary region in the conjunction of two complement
compatible S-approximation spaces is maximized whereas it is minimized in their
disjunction.

Proposition 38 Let G1 = (U,W, T , S1) and G2 = (U,W, T , S2) be two partial
monotone S-approximation spaces. Then, G1 ∧ G2 = (U,W, T , S∧) is a partial
monotone S-approximation space.

Proof Let X,Y,A ⊆ W , X ⊆ Y and S∧(A,X) = 1. Then, by Definition 30, we
have S1(A,X) = S2(A,X) = 1. Given that X ⊆ Y and G1 and G2 are partial
monotone, we have S1(A, Y ) = S2(A, Y ) = 1. This implies S∧(A, Y ) = 1 which
concludes the proof.

Proposition 39 Let G1 = (U,W, T , S1) and G2 = (U,W, T , S2) be two partial
monotone S-approximation spaces. Then, G1 ∨ G2 = (U,W, T , S∨) is a partial
monotone S-approximation space.

Proof Let X,Y,A ⊆ W , X ⊆ Y and S∨(A,X) = 1. Then, by the Definition 31,
we have either S1(A,X) = 1 or S2(A,X) = 1. Given that X ⊆ Y and G1 and G2
are partial monotone, we have either S1(A, Y ) = 1 or S2(A, Y ) = 1. This implies
S∨(A, Y ) = 1 which concludes the proof.

Considering Propositions 38 and 39, one may expect that Gc of a partial
monotone S-approximation space G be partial monotone, too. However, as it is
shown in Example 40, this is not the case.

Example 40 Let G = (U,W, T , S) be an S-approximation space, Gc =
(U,W, T , Sc) be its complement and S(A,B) ≡ A ⊆ B. It is obvious that S

is partial monotone. However, Sc is not partial monotone. Let A = {x1, x2, x3},
X = {x1, x2, x4} and Y = {x1, x2, x3, x4}. Therefore, X ⊆ Y and Sc(A,X) = 1
because A 
⊆ X and Sc(A, Y ) = 0, i.e. A ⊆ Y .

The following example illustrates one possible application of combining decider
mappings in ensemble decision making.
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Table 6 Knowledge
mapping used by two doctors
in Example 41

T w1 w2 w3 w4 w5 w6

u1 0 1 1 1 1 1

u2 0 0 0 1 0 0

u3 1 0 1 0 0 1

u4 0 1 1 0 0 0

u5 1 1 0 0 0 0

Example 41 Consider two doctors each specialized in diagnosing certain diseases.
These two doctors use the same knowledge mapping T over a set of diseases U =
{u1, . . . , u5} with symptoms W = {w1, . . . , w6} as in Table 6, however, they differ
in their decision mappings S1 and S2 defined as

S1(A,B) =
{

1 if {w3, w6} ⊆ A ∩ B,

0 otherwise,
(34)

and

S2(A,B) =
{

1 if |A∩B||W | ≥ 0.3,

0 otherwise,
(35)

where A,B ⊆ W . Note that the doctors can be represented by S-approximation
spaces G1 = (U,W, T , S1) and G2 = (U,W, T , S2). Consider two patients with
symptoms X = {w1, w3, w6} and Y = {w1, w2, w6}. If we use the conjunction of
these two doctors, i.e. G1∧2, then we have

POSG1∧2(X) = {u1, u3} , NEGG1∧2(X) = ∅, BRG1∧2(X) = {u2, u4, u5} ,
POSG1∧2(Y ) = ∅, NEGG1∧2(Y ) = ∅, BRG1∧2(Y ) = U.

Using the disjunction of these two doctors, we have

POSG1∨2(X) = {u3} , NEGG1∨2(X) = ∅, BRG1∨2(X) = {u1, u2, u4, u5} ,
POSG1∨2(Y ) = {u3, u5} , NEGG1∨2(Y ) = ∅, BRG1∨2(Y ) = {u1, u2, u4} .

3.3 Combining Knowledge and Decision Mappings
in S-Approximation Spaces

Now, it is time to consider the combination of S-approximation spaces in terms
of both the decider mappings and the knowledge mappings. Suppose that Gi =
(U,W, Ti, Si ) be S-approximation spaces for i = 1, . . . , ;. We investigate the



720 A. Shakiba

following four cases:

• G⊕T ,∨S = (U,W, T⊕T , S∨S
)

which is the ONS combination of the knowl-
edge mappings and the disjunction of the decider mappings.

• G⊗T ,∨S = (U,W, T⊗T , S∨S
)

which is the PNS combination of the knowl-
edge mappings and the disjunction of the decider mappings.

• G⊕T ,∧S = (U,W, T⊕T , S∧S
)

which is the ONS combination of the knowl-
edge mappings and the conjunction of the decider mappings.

• G⊗T ,∧S = (U,W, T⊗T , S∧S
)

which is the PNS combination of the knowl-
edge mappings and the conjunction of the decider mappings.

Proposition 42 Suppose that Gi = (U,W, Ti, Si) are S-approximation spaces for
i = 1, . . . , ; and X ⊆ W . Then,

1. G⊕T ,∧S (X) =
(
G1(X) ∩G1

2(X)
)
∪
(
G2(X) ∩G2

1(X)
)

,

2. G⊕T ,∧S (X) =
(
G1(X) ∪G1

2(X)
)
∩
(
G2

1(X) ∪G2(X)
)

,

3. G⊕T ,∨S (X) = G1(X) ∪G2
1(X) ∪G1

2(X) ∪G2(X),

4. G⊕T ,∨S (X) = G1(X) ∩G2
1(X) ∩G1

2(X) ∩G2(X),
5. G⊗T ,∧S (X) = G1(X) ∩G2

1(X) ∩G1
2(X) ∩G2(X),

6. G⊗T ,∧S (X) = G1(X) ∪G2
1(X) ∪G1

2(X) ∪G2(X),

7. G⊗T ,∨S (X) =
(
G1(X) ∩G2

1(X)
)
∪
(
G2(X) ∩G1

2(X)
)

,

8. G⊗T ,∨S (X) =
(
G1(X) ∪G2

1(X)
)
∩
(
G1

2(X) ∪G2(X)
)

,

where Gi and G
j
i denote the S-approximation spaces (U,W, Ti, Si) and

(U,W, Tj , Si), respectively.

Proof Without loss of generality, we can assume T = {T1, T2} and S = {S1, S2}.
These proofs can be generalized by induction.

1. By the definitions, we have

G⊕T ,∧S (X) ={x ∈ U | S∧ (⊕T (x),X) = 1}
= {x ∈ U | S∧ (T1(x),X) = 1 ∨ S∧ (T2(x),X) = 1}
= {x ∈ U | S1 (T1(x),X) = S2 (T1(x),X) = 1} ∪
{x ∈ U | S1 (T2(x),X) = S2 (T2(x),X) = 1}

=
(
G1(X) ∩G1

2(X)
)
∪
(
G2(X) ∩G2

1(X)
)
.

2. By the definitions, we have

G⊕T ,∧S (X) = {x ∈ U | S∧
(⊕T (x),Xc

) = 0
}

= {x ∈ U | S∧
(
T1(x),X

c
) = 0 ∧ S∧

(
T2(x),X

c
) = 0
}
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= {x ∈ U | [S1
(
T1(x),X

c
) = 0 ∨ (S2

(
T1(x),X

c
) = 0
)]

∧ [S1
(
T2(x),X

c
) = 0 ∨ (S2

(
T2(x),X

c
) = 0
)]}

=
(
G1(X) ∪G1

2(X)
)
∩
(
G2

1(X) ∪G2(X)
)
.

3. By the definitions, we have

G⊕T ,∨S (X) ={x ∈ U | S∨ (⊕T (x),X) = 1}
= {x ∈ U | S1 (⊕T (x),X) = 1 ∨ S2 (⊕T (x),X) = 1}
= {x ∈ U | ( S1 (T1(x),X) = 1 ∨ S1 (T2(x),X) = 1)

∨ (S2 (T1(x),X) = 1 ∨ S2 (T2(x),X) = 1)}
=G1(X) ∪G2

1(X) ∪G1
2(X) ∪G2(X).

4. By the definitions, we have

G⊕T ,∨S (X) = {x ∈ U | S∨
(⊕T (x),Xc

) = 0
}

= {x ∈ U | S1
(⊕T (x),Xc

) = 0 ∧ S2
(⊕T (x),Xc

) = 0
}

= {x ∈ U | ( S1
(
T1(x),X

c
) = 0 ∧ S1

(
T2(x),X

c
) = 0
)

∧ (S2
(
T1(x),X

c
) = 0 ∧ S2

(
T2(x),X

c
) = 0
)}

=G1(X) ∩G2
1(X) ∩G1

2(X) ∩G2(X).

5. By the definitions, we have

G⊗T ,∧S (X) ={x ∈ U | S∧ (⊗T (x),X) = 1}
= {x ∈ U | S1 (⊗T (x),X) = 1 ∧ S2 (⊗T (x),X) = 1}
= {x ∈ U | S1 (T1(x),X) = 1 ∧ S1 (T2(x),X) = 1

∧S2 (T1(x),X) = 1 ∧ S2 (T2(x),X) = 1}
=G1(X) ∩G2

1(X) ∩G1
2(X) ∩G2(X).

6. By the definitions, we have

G⊗T ,∧S (X) = {x ∈ U | S∧
(⊗T (x),Xc

) = 0
}

=
{
x ∈ U | S1

(
⊗T (x),X0

)
= 0 ∨ S2

(⊗T (x),Xc
) = 0
}

= {x ∈ U | S1
(
T1(x),X

c
) = 0 ∨ S1

(
T2(x),X

c
) = 0
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∨S2
(
T1(x),X

c
) = 0 ∨ S2

(
T2(x),X

c
) = 0
}

=G1(X) ∪G2
1(X) ∪G1

2(X) ∪G2(X).

7. By the definitions, we have

G⊗T ,∨S (X) ={x ∈ U | S∨ (⊗T (x),X) = 1}
= {x ∈ U | (S1 (T1(x),X) = 1 ∧ S1(T2(x),X) = 1)

∨ (S2 (T1(x),X) = 1 ∧ S2(T2(x),X) = 1)}
=
(
G1(X) ∩G2

1(X)
)
∪
(
G2(X) ∩G1

2(X)
)
.

8. By the definitions, we have

G⊗T ,∨S (X) = {x ∈ U | S∨
(⊗T (x),Xc

) = 0
}

= {x ∈ U | (S1
(
T1(x),X

c
) = 0 ∨ S1(T2(x),X

c) = 0
)

∧ (S2
(
T1(x),X

c
) = 0 ∨ S2(T2(x),X

c) = 0
)}

=
(
G1(X) ∪G2

1(X)
)
∩
(
G1

2(X) ∪G2(X)
)
.

3.4 General Combination of S-Approximation Spaces

Next, we consider the problem of combining S-approximations Gi =
(Ui,Wi, Ti , Si) for i = 1, . . . , ;. We propose two approaches: (1) the union
denoted by G∪ and (2) the intersection denoted by G∩.

Definition 43 (Union of S-Approximation Spaces) Let Gi = (Ui,Wi, Ti , Si) be
; S-approximation spaces where Ti : Ui → P(Wi) and Si :P(Wi) ×P(Wi)→
{0, 1}. Then, the union of these S-approximation spaces is the quadruple G∪ =
(U,W, T , S) where U = ∪i=1,...,;Ui , W = ∪i=1,...,;Wi . The knowledge mapping
T : U →P(W) is defined as

T (x) �→
;⋃

i=1

Ti(x), (36)

for x ∈ U where Ti(x) = ∅ if x 
∈ Ui . Finally. the decider S :P(W) ×P(W)→
{0, 1} is defined as

S(X, Y ) =
;∨

i=1

Si(X ∩Wi, Y ∩Wi). (37)
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Definition 44 (Intersection of S-Approximation Spaces) Let Gi = (Ui,Wi , Ti,

Si) be ; S-approximation spaces where Ti : Ui → P(Wi) and Si : P(Wi) ×
P(Wi) → {0, 1}. Then, the intersection of these S-approximation spaces is the
quadruple G∩ = (U,W, T , S) where U = ∩i=1,...,;Ui , W = ∩i=1,...,;Wi . The
knowledge mapping T : U →P(W) is defined as

T (x) �→
;⋂

i=1

Ti(x), (38)

for x ∈ U . Finally. the decider S :P(W)×P(W)→ {0, 1} is defined as

S(X, Y ) =
;∧

i=1

Si(X, Y ). (39)

Corollary 45 Let G∪ = (U,W, T , S) be the union of partial monotone S-approxi-
mation spaces Gi = (Ui,Wi, Ti , Si) for i = 1, . . . , ;. Then, G∩ is also partial
monotone.

Proof The proof is easily concluded from Proposition 38.

Corollary 46 Let G∪ = (U,W, T , S) be the union of partial monotone S-approxi-
mation spaces Gi = (Ui,Wi, Ti , Si) for i = 1, . . . , ;. Then, G∪ is also partial
monotone.

Proof The proof is easily concluded from Proposition 39.

4 Conclusion

In this paper, we have surveyed recent results on S-approximation spaces as a
generalization of rough set theory and three-way decisions. We have also studied
the combination of S-approximation spaces as a concise tool to manage distributed
uncertain data in several ways: (1) Combining them in terms of their knowledge
mapping, (2) combining them in terms of their decision mappings and (3) combining
them in general. The results obtained can be used to formalize the management
of distributed uncertainty as well as the invention of novel distributed uncertain
data processing algorithms. As for future research directions, one may consider
the following questions: (1) Different methods of combining either the knowledge
mappings or the decider mappings or both, (2) Different methods of combining S-
approximation spaces in general, (3) Extending the combination of S-approximation
spaces to manage fuzzy or intuitionistic datasets like [19, 20] (4) Investigating other
conditions under which the lower, upper and 3WD regions preserve their properties.
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adjunction, 345
connection, 345, 479, 498

partial, 479
Granular

approach, 187
correspondence, 182

Granular computing
PGCP, 162
precision, 165
primitive, 164

Granular operator space, 169
general, 171
higher, 172
by ideals, 168

Granularity, axiomatic approach, 167
Granularity axioms

crispness, 175
idempotence, 177
mereological, 175
overlap, 177
representation, 174
stabilizing, 176

Granulation
admissible, 170
neighborhood, 346

Hasse diagram, 423
Hilbert space, 581

Ideal
A-, 222
double, 470
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lattice, 470, 478
LD, 309
normal, 544
o-, 469
prime, 478
standard, 479
strong, 251
U-, 193
VE, 310

Implication, 71
classical, 84
necessity, 84

Impossibility, 587
Incomplete information system, 419

complete elements, 431
null values, 419

Independence
maximal simple, 307
simple, 307

Indistinguishability relation, 418
Information

deterministic table, 468
indeterministic table, 468
system, 4, 468
table, 4, 468

Information system, 419
attributes, 419
attribute value sets, 419
complete, 5
incomplete, 5
indistinguishability relation, 419
objects, 419

Interior, 568, 587, 590
Alexandroff, 607
Halmos, 592
Kuratowski, 49
Kuratowski concrete, 51
operator, 425
system, 425
Tarski, 44, 46

Interpretation, antichain, 311
Inverse problems, 525
Irreducible, meet, 310

JID, 470
Join irreducible, complete, 542
Join prime, completely, 543

Kleene algebra, 451
Knowledge

in AC semantics, 320
optimistic, 708

pessimistic, 708
sequence, 322

Kuratowski closure, 48

L-Filters, 193
cofine, 194

Lattice(s)
Boolean, 20, 559, 574, 584, 589
Brouwer Zadeh (BZ), 63, 571, 583, 594,

596, 599, 618
BZ De Morgan, 130
convex, 198
De Morgan, 7, 16, 484, 554, 583, 588
full BZ lattices, 123
GCD, 516
generalized Łukasiewicz, 124
Kleene, 19
Łukasiewicz, 130
neo BZ-, 210
OML, 72
orthocomplemented, 20
orthomodular, 21
pre Brouwer-Zadeh (BZ), 63
pre topological, 46
pseudo complemented, 616
quantum, 21
residuated, 616
spatial, 470
Stone, 124
topological, 50
weakly atomic, 470

Law
B-contraposition, 64
entailment (E∗), 71
sub B-De Morgan, 65
weak double negation, 64

Limiter
lower, 277
upper, 277

Logic
classical mechanics, 102
intuitionistic, 617
Łukasiewicz, 573
quantum, 71, 103
semantic, 72
S4 modal, 72, 75
syntactic, 72

Lower approximation, 421

Map, non-contradictory, 704
Matroid, 477
Mechanics, quantum, 21
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Membership, fuzzy, 528
Mereology, spatial, 520
Method, Babylonian, 165
MID, 470
Minimal description, 7
Modal algebra

Halmos, 87
Kuratowski model, 79
Tarski model, 76

Modal semantics
S4, 358
S5, 358

Model, Kripke, 346
Modus ponens, 80
Monad, 651
Monoidal CC, biclosed, 645
Morphism
�, 183
⊕, 183

Necessary, implication, 84, 86
Necessity, 587, 593

extensional, 345
intensional, 345

Negation, 70
Boolean, 574
Brouwer, 83, 563, 571, 574, 583
De Morgan, 571
Kleene, 572, 574
standard, 558
strong, 386

Neighborhood
operator, 487
optimistic, 702
pessimistic, 702
Predecessor, 6
successor, 6

Object
co-rough, 261
definite, 170
full, 247
rough, 170, 247
roughly consistent, 170

o-filter, 193
Operation(s)

♦, 309
�, 309
closure, 17
exterior, 39
interior , 32

Operator
Alexandrov, 473
closure, 472
interior, 473
Lawvere-Tierney, 368
modal necessitation, 70
modal possibility, 70
neighborhood, 6
pre-topological, 473
space, higher, 171
topological, 473

Order, 423
dimension, 542
divisibility, 538
pseudo, 6
quasi, 6

Ordered set, 423
atom, 436
atomistic, 436
bounded, 426

Order-embedding, 423
Order-isomorphism, 423
Orthocomplementation, 558
Orthogonality, 559
Ortholattice, 426

orthocomplement, 426
Orthopair, 38

Boolean algebra, 625
exact, 566, 569
fuzzy sets, 579, 603
rough approximation, 591, 596, 599
rough sets, 607, 609, 628

Parthood, proper, 305
Partially ordered set, see Ordered set
Partial order, see Order
Partition, 428
Polarity, 426
Poset

Brouwer Zadeh, 564, 568, 583, 596
De Morgan, 553, 560, 583
Kleene, 556
ortho, 558

Possibility, 587, 593
extensional, 345
intensional, 345

PRAX, 236
Prime filter

property, 481
Principle

LCP, 300
RMTP, 37
w-RMTP, 37
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Product, Peirce, 340
Property

anti-exchange, 474
exchange, 474

Propositional logic, 554
Proto approximation space, 236
Proto-definite, 246
Pseudocomplemented lattice, 437, 452

double pseudocomplemented lattice, 452
dual pseudocomplement, 452
pseudocomplement, 437, 452

Quantum mechanics, 581
Quasi-order, 469

pre-well, 469
well, 469

Region
negative, 173
positive, 173
strong negative, 174

Relation
approximate, 261
coapproximability, 201
confluent, 5
Euclidean, 5
forcing, 369
generalized, 643
k-tolerance, 494
operations on, 340
orthogonality, 38
preference, 510
proto-transitive, 6, 234
relsem, 274
semi-transitive, 6
serial, 5
similarity, 39
T, 505
tolerance, 39
transitive, 6, 234
weakly transitive, 6, 234

Relevant subsets, 281
Representation

abstract, 465
concrete, 465
k-tolerance, 494
Nelson algebra, 491
QOAS, 500, 501
RDSA, 492
rough algebra, 490
super rough, 491
tolerance, 493

Residual, left, 341

Rings, rough, 662
Rough

approximation space, 590
object, 363
pseudo equality, 206

Rough objects, 173
classical, 188
esoteric, 205

Rough set(s), 446
bitten, 218
cover based, 282
esoteric, 178, 204
ordered set of, 446
PQE, 322
relation based, 204

Rough set theory (RST)
cover-based, 7, 489

S-approximation space
intersection, 723
union, 722

Safe maps, 281
Semantic domain

ACR, 321
rough, 173

Semantics
contamination-free, 192
cumulation, 276
falls down, 275

Set
covering

approximations defined by, 440
rough sets defined by, 454

exceptional, 208
forward-looking, 250
fully-featured, 209
Tarski, 503

Similarity relation, 418
Simple graph, 418

clique, 430
clique problem, 431

Skeleton, 238
Space(s)

approximation, 36
Hilbert, 21
lower approximation, 35
Nelson, 386
partial approximation, 205
preclusion, 92

Tarski closure, 98
preclusion B-necessity, 100
preclusion B-possibility, 100
preclusion RMTP, 101
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preclusion w-RMTP, 101
preclusion S4 necessity, 98
preclusion S4 possibility, 98
preclusion Tarski interior, 98
Priestley, 483
S-approximation, 699
S-Approximation CC, 700
S-approximation, monotone, 700
Stone, 483
Tarski, 504
Tarski approximation, 47
tolerance, 231
upper approximation, 30

Superalgebraic, 543
System

OC-, 195
property, 181

Tolerance, compatible, 198

Tolerance relation, 418
block, 427
induced by a covering, 429
neighbourhood, 420
preblock, 427

Topology, 351
Alexandrov, 352, 470
discrete, 471
Grothendieck, 367

Transformation, natural, 651

Ultrafilter, 478
Upper approximation, 420

Validity, local, 369

Well Fluent AC, 312
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