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After Plancherel Formula

Yury Neretin

Abstract. We discuss two topics related to Fourier transforms on Lie groups
and on homogeneous spaces: the operational calculus and the Gelfand–Gindi-
kin problem (program) about separation of non-uniform spectra. Our purpose
is to indicate some non-solved problems of noncommutative harmonic analysis
that definitely are solvable.
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1. Abstract Plancherel theorem for groups

See, e.g., [2]. Let G be a type I locally compact group with a two-side invariant

Haar measure dg. Denote by Ĝ the set of all irreducible unitary representations

of G (defined up to a unitary equivalence1). For ρ ∈ Ĝ denote by Hρ the space of

the representation ρ. For ρ ∈ Ĝ and f ∈ L1(G) we define the following operator
in Hρ:

ρ(f) :=

∫
G

f(g) ρ(g) dg.

This determines a representation of the convolution algebra L1(G) in Hρ,

ρ(f1)ρ(f2) = ρ(f1 ∗ f2).

Consider a Borel measure ν on Ĝ and the direct integral of Hilbert spaces Hρ with

respect to the measure ν. Consider the space L(Ĝ, ν) of measurable functions Φ

Supported by the grant FWF, P28421.
1For a formal definition of type I groups see, e.g., [2, Sect. 7.2]. Connected semisimple Lie groups,
connected nilpotent Lie groups, classical p-adic groups have type I. This condition implies a

presence of the standard Borel structure on Ĝ and a uniqueness of a decomposition of any
unitary representation of G into a direct integral of irreducible representations.
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on Ĝ sending any ρ ∈ G to a Hilbert–Schmidt operator in Hρ and satisfying the
condition ∫

Ĝ

tr
(
Φ(ρ)∗Φ(ρ)

)
dν(ρ) < ∞.

There exists a unique measure μ on Ĝ (the Plancherel measure), such that
for any f1, f2 ∈ L1 ∩ L2(G) we have

〈f1, f2〉L2(G) =

∫
Ĝ

tr
(
ρ(f2)

∗ρ(f1)
)
dμ(ρ)

and the map f �→ ρ(f) extends to a unitary operator from L2(G) to the space

L2(Ĝ, μ) (F.I. Mautner, I. Segal (1950), see, e.g., [2]).

2. An example. The group GL(2,R)
Let GL(2,R) be the group of invertible real matrices of order 2. Let μ ∈ C and
ε ∈ Z2. We define the function xμ//ε on R \ 0 by

xμ//ε := |x|μ sgn(x)ε.
Denote Λ := C×Z2×C×Z2. For each element (μ1, ε1;μ2, ε2) of Λ we define

a representation Tμ,ε of GL2(R) in the space of functions on R by

Tμ1,ε1;μ2,ε2

(
a b
c d

)
ϕ(t)

= ϕ

(
b+ td

a+ tc

)
· (a+ tc)−1+μ1−μ2//ε1−ε2 det

(
a b
c d

)1/2+μ2//ε2

.

This formula determines the principal series of representations of GL(2,R). If
μ1 − μ2 /∈ Z, then representations Tμ1,ε1;μ2,ε2 and Tμ2,ε2;μ1,ε1 are irreducible and
equivalent (on representations of SL(2,R), see, e.g., [4, 39]).

If μ1 = iτ1, μ2 = iτ2 ∈ iR, then a representation Tμ1,ε1;μ2,ε2 is unitary in
L2(R) (they are called representations the unitary principal series).

Next, we define representations of the discrete series. Let n = 1, 2, 3, . . .
Consider the Hilbert space Hn of holomorphic functions ϕ on C \ R satisfying∫

C\R
|ϕ(z)|2| Im z|n−1 dRe z d Im z < ∞.

In fact, ϕ is a pair of holomorphic functions determined on half-planes Im z > 0
and Im z < 0. For τ ∈ R, δ ∈ Z2 we define the unitary representation Dn,τ,δ of
GL2(R) in Hn by

Dn,τ,δ

(
a b
c d

)
ϕ(z) = ϕ

(b+ zd

a+ zc

)
(a+ zc)−1−n det

(
a b
c d

)1/2+n/2+iτ//δ

.

There exists also the complementary series of unitary representations, which
does not participate in the Plancherel formula.
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Remark. The expression for Dn,τ,δ is contained in the family Tμ1,ε1;μ2,ε2 , but we
change the space of the representations.

The Plancherel measure for SL(2,R) was explicitly evaluated in 1952 by
Harish-Chandra, it is supported by the principal and discrete series. On the prin-
cipal series the density is given by the formula (see, e.g., [39])

dP =
1

16π3
(τ1 − τ2) tanhπ(τ1 − τ2)/2 dτ1 dτ2, if ε1 − ε2 = 0;

dP =
1

16π3
(τ1 − τ2) cothπ(τ1 − τ2)/2 dτ1 dτ2 if ε1 − ε2 = 1.

On nth piece of the discrete series the measure is given by

dP =
n

8π3
dτ.

3. Homogeneous spaces, etc.

The Plancherel formula for complex classical groups was obtained by I.M. Gelfand
and M.A. Naimark [5] in 1948–50, for real semisimple groups by Harish-Chandra in
1965 (see, e.g., [11, 13]), there is also a formula for nilpotent groups (A.A. Kirillov
[12], L. Pukanszky [37]).

During 1950–early 2000s there was obtained a big zoo of explicit spectral
decompositions of L2 on homogeneous spaces, of tensor products of unitary repre-
sentations, of restrictions of unitary representations to subgroups. We present some
references, which can be useful for our purposes [1, 5, 9, 11, 16, 23, 27, 38, 41].
Unfortunately, texts about groups of rank > 1 are written for experts and are
heavy for exterior readers. See also the paper [29] on some spectral problems (de-
formations of L2 on pseudo-Riemannian symmetric spaces), which apparently are
solvable but are not solved.

However, a development of the last decades seems strange. The Plancherel
formula for Riemannain symmetric spaces [7] (see, e.g., [10]) and Bruhat–Tits
buildings [14] had a general mathematical influence (for instance to theory of
special functions and to theory of integrable systems). Usually, Plancherel formulas
are heavy results (with impressive explicit formulas) without further continuation
even inside representation theory and noncommutative harmonic analysis.

4. Operational calculus for GL(2,R), see [33], 2017

Denote by Gr24 the Grassmannian of all two-dimensional linear subspaces in R4.
The natural action of the group GL(4,R) in R4 induces the action on Gr24, therefore
we have a unitary representation of the group GL(4,R) in L2 on Gr24 (this is an
irreducible representation of a degenerate principal series) and the corresponding
action of the Lie algebra gl(4).
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For g ∈ GL(2,R) its graph is a linear subspace in R2 ⊕R2 = R4. In this way
we get an embedding

GL(2,R) → Gr24.

The image of the embedding is an open dense subset in Gr24. Thus we have an
identification of Hilbert spaces

L2
(
GL(2,R)

)
� L2

(
Gr24

)
(since natural measures on GL(2,R) and Gr24 are different, we must multiply func-
tions by an appropriate density to obtain a unitary operator). Therefore we get a
canonical action of the group GL(4,R) in L2

(
GL(2,R)

)
. It is easy to see that the

block diagonal subgroup GL(2,R) × GL(2,R) ⊂ GL(4,R) acts by left and right
shifts on GL(2,R).

We wish to evaluate the action of the Lie algebra gl(4) in the Fourier-image.

Consider the space C∞
0

(
GL(2,R)

)
of smooth compactly supported functions

on GL(2,R). For any F ∈ C∞
0

(
GL(2,R)

)
consider the operator-valued function

Tμ1,ε1;μ2,ε2(F ) depending on (μ1, ε1;μ2, ε2) ∈ Λ. We write these operators in the
form

Tμ1,ε1;μ2;ε2(F )ϕ(t) =

∫ ∞

−∞
K(t, s|μ1, ε1;μ2, ε2)ϕ(s) ds.

The kernel K is smooth in t, s and holomorphic in μ1, μ2.

On the other hand we have the Hilbert space L2
( ̂GL(2,R), dP

)
. The norm

in this Hilbert space is given by

‖K‖2 =
∫ ∫ ∞

−∞

∫ ∞

−∞

∣∣K(t, s|μ1, ε1;μ2, ε2)
∣∣2dt ds dP(μ)+

+
{
summands corresponding to the discrete series

}
.

(1)

We must write the action of the Lie algebra gl(4). Denote by ekl the standard
generators of gl(4) acting in smooth compactly supported functions on GL(2,R)
and by Ekl the same generators acting in the space of functions of variables t, s,
μ1, ε1, μ2, ε2. The action of the subalgebra gl(2)⊕gl(2) is clear from the definition
of the Fourier transform, this Lie algebra acts by first-order differential operators.
For instance

e12 = −b
∂

∂a
− d

∂

∂b
, E12 =

∂

∂t
;

e43 = b
∂

∂a
+ d

∂

∂c
, E43 = −s2

∂

∂s
+ (−1− μ1 + μ2)s.

Define shift operators V +
1 , V −

1 , V +
2 , V −

2 by

V ±
1 K(t, s|μ1, ε1;μ2, ε2) = K(t, s|μ1 ± 1, ε1 + 1;μ2, ε2); (2)

V ±
2 K(t, s|μ1, ε1;μ2, ε2) = K(t, s|μ1, ε1;μ2 ± 1, ε2 + 1). (3)
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To be definite, we present formulas for two nontrivial generators ekl and their
Fourier images Ekl:

e14 =
∂

∂b
+

c

ad− bc
,

E14 =
−1/2 + μ1

μ1 − μ2

∂

∂s
V −
1 +

−1/2 + μ2

μ1 − μ2

∂

∂t
V −
2 ,

e32 = −
(
ac

∂

∂a
+ ad

∂

∂b
+ c2

∂

∂c
+ cd

∂

∂d

)
− c,

E32 =
1/2 + μ1

μ1 − μ2

∂

∂t
V +
1 +

1/2 + μ2

μ1 − μ2

∂

∂s
V +
2 .

There is also a correspondence for operators of multiplication by functions. For
instance, the operator of multiplication by c in C∞

0

(
GL(2,R)

)
corresponds to

1

μ1 − μ2

(
∂

∂t
V +
1 +

∂

∂s
V +
2

)
in the Fourier-image. There are similar formulas for multiplications by a, b, d. The
operator of multiplication by (ad−bc)−1 corresponds to V −

1 V −
2 (the last statement

is trivial). The operator ∂
∂b corresponds to

μ1

μ1 − μ2

∂

∂s
V −
1 +

μ2

μ1 − μ2

∂

∂t
V −
2 ,

There are similar formulas for other partial derivatives.

We emphasize that our formulas contain shifts in imaginary directions (the
shifts in (2)–(3) are transversal to the contour of integration in (1)).

5. Difference operators in imaginary direction and
classical integral transforms

The operators iEkl are symmetric in the sense of the spectral theory. The question
about domains of self-adjointness is open.

There exist elements of spectral theory of self-adjoint difference operators in
L2(R) of the type

Lf(s) = a(s)f(s+ i) + b(s)f(s) + c(s)f(s− i), i2 = −1, (4)

see [8, 30]. Recall that several systems of classical hypergeometric orthogonal poly-
nomials (Meixner–Polaszek, continuous Hahn, continuous dual Hahn, Wilson) are
eigenfunctions of operators of this type. In the polynomial cases the problems are
algebraic. The simplest nontrivial analytic example is the operator

Mf(s) =
1

is

(
f(s+ i)− f(s− i)

)
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in L2
(
R+, |Γ(is)|−2ds

)
. We define M on the space of functions f holomorphic in

a strip | Im s| < 1 + δ and satisfying the condition

|f(s)| � exp{−π|Re s|}|Re s|−3/2−ε

in this strip. The spectral decomposition of M is given by the inverse Konto-
rovich–Lebedev integral transform. Recall that the direct Kontorovich–Lebedev
transform

Kf(s) =

∫ ∞

0

Kis(x)f(x)
dx

x
,

where Kis is the Macdonald–Bessel function, gives the spectral decomposition of
a second-order differential operator, namely

D :=

(
x
d

dx

)2

− x2, x > 0.

The transform K is a unitary operator L2(R+, dx/x) → L2
(
R+, |Γ(is)|−2ds

)
. It

sends D to the multiplication by s2, and K−1 sends M to the multiplication by
2/x. So we get so-called bispectral problem.

Now there is a zoo of explicit spectral decompositions of operators (4). The
similar bispectrality appears for some other integral transforms: the index hyperge-
ometric transform (another names of this transform are: the Olevsky transform, the
Jacobi transform, the generalized Mehler–Fock transform) [25], the Wimp trans-
form with Whittaker kernel [30], for a continuous analog of expansion in Wilson
polynomials proposed by W. Groenevelt [8], etc.

This subject is now a list of examples (which certainly can be extended), but
there are no a priori theorems.

6. A general problem about overalgebras

Let G be a Lie group, g the Lie algebra. Let H ⊂ G be a subgroup. Let σ be an
irreducible unitary representation of G. Assume that we know an explicit spectral
decomposition of restriction of ρ to a subgroup H. To write the action of the
overalgebra g in the spectral decomposition.

Remarks.

1) Above we haveG = GL(4,R), its representation σ in L2 on the Grassmannian
Gr24, and H = GL(2,R) × GL(2,R). The restriction problem is equivalent
to the decomposition of regular representation of GL(2,R) × GL(2,R) in
L2

(
GL(2,R)

)
. The Fourier transform is the spectral decomposition of the

regular representation.
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2) It is important that similar overgroups exist for all 10 series of classical real
Lie groups2. Moreover, a decomposition of L2 on any classical symmetric
space3 G/M can be regarded as a certain restriction problem, see [24].

3) Next, consider a tensor product ρ1 ⊗ ρ2 of two unitary representations of a
group G. Then we have the action of G × G in the tensor product, so the
problem of decomposition of tensor products can be regarded as a problem
of a restriction from the group G×G to the diagonal subgroup G.

The question under the discussion was formulated in [30]. Several problems
of this kind were solved [18–20, 30, 31, 33]. In all the cases we get differential-
difference operators including shifts in imaginary direction. Expressions also in-
clude differential operators of high order, even for SL(2,R)-problems we usually
get operators of order 2.

Conjecture. All problems of this kind are solvable (if we are able to write a spectral
decomposition).

7. The Gelfand–Gindikin problem, [3], 1977

The set Ĥ of unitary representations of a semisimple group H naturally splits into
different types (series).

Let H be a semisimple group, M a subgroup. Consider the space L2(H/M).
Usually its H-spectrum contains different series. To write explicitly decomposition
of L2 into pieces with uniform spectrum.

A variant of the problem: let G be a Lie group,H ⊂ G a semisimple subgroup,
ρ is a unitary representation of G. Answer to the same question.

8. Example: separation of series for the one-sheet hyperboloid

Consider the space R3 equipped with an indefinite inner product

〈u, v〉 = −u1v1 + u2v2 + u3v3.

Consider the pseudo-orthogonal group preserving the form 〈·, ·〉, denote by
SO0(2, 1) its connected component. Recall that SO0(2, 1) is isomorphic to the
quotient PSL(2,R) of SL(2,R) by the center {±1}.

Consider a one-sheet hyperboloid H defined by x21 − x2
2 − x2

3 = 1. It is an
SO0(2, 1)-homogeneous space admitting a unique (up to a scalar factor) invariant
measure. Decomposition of L2(H) into irreducible representations of SO0(2, 1) is
well known. The spectrum is a sum of all representations of the discrete series

2More precisely, an overgroup G̃ exists for G = GL(n,R), GL(n,C), GL(n,H), O(p, q), U(p, q),
Sp(p, q), Sp(2n,R), Sp(2n,C), O(n,C), SO∗(2n) (and not for SL(n, ·), SU(p, q)). For instance,
for g ∈ Sp(2n,R) its graph is a Lagrangian subspace in R2n ⊕ R2n, this determines a map from

Sp(2n,R) to the Lagrangian Grassmannian with an open dense image. We set G̃ := Sp(4n,R).
3The groups G, M must be from the list of the previous footnote, M must be a symmetric
subgroup in G.
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of PSL(2,R) and the integral over the whole principal series with multiplicity 2.
The separation of series was proposed by V.F. Molchanov [15] in 1980 (we use a
modification from [22]).

Denote by C = C ∪∞ the Riemann sphere, by R = R ∪∞ denote the real
projective line, R ⊂ C. Consider the diagonal action of SL(2,R) on C× C,

(x1, x2) �→
(
b+ dx1

a+ cx1
,
b+ dx2

a+ cx2

)
.

Consider the subset H ′ in R× R consisting of points x1, x2 such that x1 �= x2. It
is easy to verify that H ′ is an orbit of SL(2,R), it is equivalent to the hyperboloid
H as a homogeneous space4. It is easy to verify that the invariant measure on H ′

is given by the formula

dν(x1, x2) = |x1 − x2|−2 dx1 dx2.

We identify the space L2(H ′, dν) with the standard L2(R × R) by the unitary
operator

Jf(x1, x2) = f(x1, x2)(x1 − x2)
−1.

Now our representation in L2(H) transforms to the following unitary representa-
tion in the standard L2(R2):

Q

(
a b
c d

)
f(x1, x2) = f

(
b+ dx1

a+ cx1
,
b+ dx2

a+ cx2

)
(a+ cx1)

−1(a+ cx2)
−1. (5)

Next, consider a unitary representation of SL(2,R) in L2(R) given by

T

(
a b
c d

)
f(x) = f

(
b+ xd

a+ xc

)
(a+ xc)−1.

Obviously, we have Q = T ⊗ T. The representation T is contained in the unitary
principal series and it is a unique reducible element of this series (see, e.g., [4]).

Denote by Π± the upper and lower half-planes in C. The Hardy spaceH2(Π+)
consists of functions F+ holomorphic in Π+ that can be represented in the form

F+(x) =

∫ ∞

0

ϕ(t)eitx dt, where ϕ(t) ∈ L2(R+).

Obviously, F is well defined also on R and is contained in L2. The space H2(Π−)
consists of functions F− holomorphic in Π− of the form

F−(x) =

∫ 0

−∞
ϕ(t)eitx dt, where ϕ(−t) ∈ L2(R+).

Evidently,

L2(R) = H2(Π+)⊕H2(Π+).

It can be shown that the subspaces H2(Π±) ⊂ L2(R) are invariant with respect to
operators T (·), and therefore T splits into two summands T+ ⊕ T− (one of them

4Two families of lines on the hyperboloid correspond to two families of lines x1 = const and
x2 = const on R× R.
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has a highest weight, another a lowest weight). Hence Q = (T+ ⊕T−)⊗ (T+⊕T−)
splits into 4 summands. It can be shown that this is the desired decomposition:

• the space H2(Π+)⊗H2(Π+) consists of functions in L2(R2) continued holo-
morphically to the domain Π+×Π+; the representation T+⊗T+ in H2(Π±) ⊂
L2(R) is a direct sum of all highest weight representations of representation
of PSL(2,R);

• T− ⊗ T− is a direct sum of all lowest weight representations;
• in T+ ⊕ T− we have the direct integral of all representations of the principal

series (and the same integral in T− ⊗ T+).

Remark. S.G. Gindikin [6] used a similar argument (restriction from a reducible
representation of an overgroup) for multi-dimensional hyperboloids.

9. Splitting off the complementary series, see [35]

Consider the pseudo-orthogonal group O(1, q) consisting of operators preserving
the following indefinite inner product in R1+q,

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xqyq.

We write elements of this group as block (1 + q) × (1 + q) matrices g =

(
a b
c d

)
.

Denote by SO0(1, q) its connected component, it consists of matrices satisfying two
additional conditions det g = +1, a > 0. Denote by Sq−1 the unit sphere in Rn. The
group O(1, q) acts on Sq−1 by conformal transformations x �→ (a+ xc)−1(b + xd)
(they preserve the sphere), the coefficient of a dilation equals to (a+ xc)−1.

For λ ∈ C we define a representation Tλ = T q
λ of SO0(1, q) in a space of

functions on Sq−1 by

Tλ

(
a b
c d

)
f(x) = (a+ xc)−(q−1)/2+λf

(
(a+ xc)−1(b+ xd)

)
.

If λ = iσ ∈ iR, then our representation is unitary in L2(Sq−1), in this case Tiσ

is called a representation of the unitary spherical principal series, representations
Tiσ and T−iσ are equivalent (on these representations see, e.g., [40]). If 0 < s <
(q − 1)/2, then Ts is unitary in the Hilbert space Hs with the inner product

〈f1, f2〉s =
∫
Sq−1

∫
Sq−1

f1(x1) f2(x2) dx1 dx2

‖x1 − x2|(q−1)/2−s
.

More precisely, 〈, ·, ·〉 determines a positive definite Hermitian form on the space
C∞(Sq−1) (this is not obvious), we get a pre-Hilbert space and consider its com-
pletion Hs. Such representations form the spherical complementary series. The
spaces Hs are Sobolev spaces5.

5In the standard notation, Hs is the Sobolev space H−s,2(Sq−1). Notice that Sobolev spaces
Hσ,2(·) are Hilbert spaces but inner product are defined not canonically. In our case the inner
products are uniquely determined from the SO0(1, q)-invariance. For semisimple groups of rank
> 1 complementary series are realized in functional Hilbert spaces that are not Sobolev spaces.
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Consider a restrictions of Tiσ to the subgroup SO0(1, q − 1). The group
SO0(1, q − 1) has the following orbits on Sq−1: the equator Eq = Sq−2 defined
by the equation xq = 0, the upper hemisphere H+ and the lower hemisphere
H−. The equator has zero measure and can be forgotten. Therefore L2(Sq−1) =
L2(H+) ⊕ L2(H−). On the other hand, hemispheres as homogeneous spaces are
equivalent to SO0(1, q−1)/SO(q−1), i.e., to the (q− 1)-dimensional Lobachevsky
space. The decomposition of L2 is a classical problem, in each summand L2(H±)
we get a multiplicity-free direct integral over the whole spherical principal series.

The restriction of a representation Ts of the complementary series is more
interesting, it contains several summands of the complementary series and is equiv-
alent to ⊕

k: s−k>1/2
T q−1
s−k

⊕
L2(H+)

⊕
L2(H−). (6)

This spectrum was obtained by Ch. Boyer (1973), our purpose is to visualize
summands of the complementary series.

According to the trace theorems Sobolev spaces of negative order can contain
distributions supported by submanifolds. Denote by δEq the delta-function of the
equator, δEq := δ(xq). Let ϕ be a smooth function on Eq.

‖ϕδEq‖2s = 〈ϕδEq, ϕδEq〉s =
∫
Sq−2

∫
Sq−2

ϕ(y1)ϕ(y2) dy1 dy2
‖y1 − y2|−(q−1)/2+s

.

If s > 1/2 the integral converges and ϕδEq ∈ Hs. The representation of SO0(1, q)
in the space of such functions is T q−1

s .

Denote by ∂
∂nδEq := δ′(xq) the derivative of δEq in the normal direction.

Similar arguments show that for s > 3/2 and smooth ψ we have ψ ∂
∂nδEq ∈ Hs.

The space of functions of the form

ϕδEq + ψ
∂

∂n
δEq

again is invariant. It contains the subspace T q−1
s and we get the representation

T q−1
s+1 in the quotient. Since our representation is unitary, T q−1

s+1 must be direct
summand, etc. . .

Next, we consider the operator J : Hs �→ L2(Sq−1) given by

Jf(x) = |xq|(q−1)/2−sf(x).

It intertwines restrictions of Ts and T0, the kernel of J consists of distributions
supported by Eq and the image is dense6. This gives us (6).

6More precisely, we consider this operator as an operator on smooth functions compactly sup-

ported outside Eq, take the closure Γ of its graph in Hs ⊕L2, and examine projection operators
Γ → Hs, Γ → L2.
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10. The modern status of the problem

We mention the following works:

a) G.I. Olshanski [36] (1990) proposed a way to split off highest weight and
lowest weight representations.

b) The author in [21] (1986) proposed a way to split off complementary series
(see proofs and further examples in [35], the paper [28] contains an example
with separation of direct integrals of different complementary series).

c) S.G. Gindikin [6] (1993) and V.F. Molchanov [17] (1998) obtained a separa-
tion of spectra for multi-dimensional hyperboloids.

These old works had continuations, in particular there were many further
works with splitting off highest weight representations (for more references, see
[32]).

The recent paper [32] (2017) contains formulas for projection operators sep-
arating spectrum for L2 on pseudo-unitary groups U(p, q). In this case we can
consider separation into series (if we fix the number r of continuous parameters
of a representation, r � min(p, q)), subsubseries (if we fix all discrete parameters
of a representation) and intermediate subseries. All these question are solvable.
The solution was obtained by a summation of all characters corresponding to a
given type of spectrum, certainly this way must be available for all semisimple Lie
groups.

In [34] the problem was solved for L2 on pseudo-Riemannian symmetric
spaces GL(n,C)/GL(n,R). The calculation is based on an explicit summation of
spherical distributions. Apparently, this can be extended to all symmetric spaces
of the form GC/GR, where GC is a complex semisimple Lie group and GR is a real
form of GC (on Plancherel formulas for such spaces, see [1, 9, 38]).

For arbitrary semisimple symmetric spaces the problem does not seem to be
well formulated, see a discussion of multi-dimensional hyperboloids in [17].
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